A PROPOSED SEMINAR IN AGRICULTURAL MECHANICS
FOR INTERNATIONAL STUDENTS AT
KANSAS STATE UNIVERSITY

by

WAYNE FREDERICK DOLL

B. S., Kansas State University, 1950

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

School of Education

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1965

Approved by:

Major Professor
ACKNOWLEDGEMENT

The researcher wishes to express his appreciation to Dr. Raymond J. Agan, Professor of Education; Mr. Paul N. Stevenson, Associate Professor, and Mr. Clinton O. Jacobs, Assistant Professor, of the Department of Agricultural Engineering, for their aid and guidance during the course of this report.
TABLE OF CONTENTS

INTRODUCTION ... 1
 Statement of the Problem .. 2
 Definition of Terms .. 2
 Review of Selected Previous Investigation 3

RESEARCH PROCEDURES FOLLOWED 7

PRESENTATION OF DATA .. 7
 Results of Interviews and Letters 7
 Background Differences ... 10
 The Agricultural Engineering Problem 12

THE PROPOSED SEMINAR .. 14
 An Outline of Suggestions for Conducting the Seminar 14
 A Procedure to Determine The Skills That Could Be Taught in the
 Seminar .. 16
 A Plan for Obtaining Farm and Related Experiences 17
 Suggestions for Evaluating the Seminar 18

SUMMARY AND CONCLUSION ... 19

BIBLIOGRAPHY .. 21

APPENDIX .. 22
 Farm Mechanics Questionnaire and Skills Survey 22
 A Schedule of the Classes and Topics Included in The Agricultur-
 al Engineering Problem ... 28
 An Outline of a Class Period of The Problem 30
 A Sample of a Tool Identification Test 31
An Example of a Subject Matter Outline Form 32
A Composite List of Agricultural Mechanics Skills and Proce-
dures .. 33
Interview Questionnaire 44
Letters ... 45
Abstract of this Study ... 50
INTRODUCTION

There has developed a pattern of growth in educational exchange which has reflected the intense interest abroad in educational opportunities in the United States, especially in the emerging countries. Such growth has caused the number of students, teachers, researchers, and doctors who have participated in programs of educational exchange between the United States and other nations to reach a new high in 1964. The number of participating students in programs of educational exchange between Kansas and other nations reached a total of 1,488 including the 494 international students at Kansas State University.

As programs of educational exchange have grown they naturally presented a variety of problems to those who sponsored and administered them—the selection of students, the development of programs fitted to their needs, orientation services, financial aid, and the like. Ralph W. Tyler, Chairman of the Education and World Affairs Study Committee on Foreign Student Affairs, said that:

On the whole, this growing involvement of United States colleges and universities in the education of foreign students has made a constructive contribution both at home and abroad, but it has also created problems which hinder the educational efforts and reduce the effectiveness of the international training programs.

1 Open Doors, 1964, p.2.
2 Ibid., p. 43.
3 The Report of The EWA Study Committee of Foreign Student Affairs, The Foreign Student: Whom Shall We Welcome?, p. ix.
The need for this study became evident to the writer as Kansas State University experienced some of these problems referred to above in the various areas and departments that helped to administer the exchange programs. Clinton O. Jacobs, Assistant Professor, Agricultural Engineering, said in an interview with the writer that one of the problems that has caused concern among the educators in their department was how to help the international students gain a background in mechanical skills. It was his belief that extra time should be provided for the international students in the form of a special problem or seminar that would be useful to them in acquiring the mechanical skills they needed.

Statement of the Problem

The specific objective of this study was to develop guidelines for a seminar in Agricultural Mechanics for international students which would help them gain a background in mechanical skills.

Definition of Terms

For the purpose of this study words and terms were defined as follows:

A seminar. A proposed non-credit requirement of all international students enrolled in Agricultural Mechanics classes at Kansas State University.

Skills. This term referred to the physical dexterity, ability, methods, procedures, and techniques used with Agricultural Mechanics.
International students. These were the students from outside the United States who studied at Kansas State University and were enrolled in any of the Agricultural Mechanics classes.

Agricultural Mechanics classes. These were the Agricultural Engineering courses for students in Agriculture as listed in the 1964-1966 Kansas State University Bulletin General Catalog. They included Farm Mechanics, Farm Machinery Repair, Farm Power, Engineering in Agriculture, Farm Mechanics Methods, Farm Building Construction, Agricultural Engineering Applications, Dairy Mechanics, Advanced Farm Mechanics, Advanced Farm Power, Electricity in Agriculture, Irrigation Practices, and Drainage and Erosion Control.

Creative method of study. This referred to the use of data collected by personal interviews, library research, questionnaires, letters, and the results of a problem conducted in Agricultural Engineering to create a seminar for international students in Agricultural Mechanics.

A problem conducted in Agricultural Engineering. This was an educational problem worked out in co-operation with the Agricultural Engineering Department and consisted of having a graduate student spend extra time with the international students enrolled in Agricultural Mechanics classes to help them acquire mechanical skills.

Review of Selected Previous Investigations

There were no previous investigations found by the writer dealing with seminars designed to assist international students in courses
containing mechanical skills. It was assumed that no writing or research had been completed in this area. Interviews with administrative personnel and faculty members, who were aware of the problem and understood the position of the international students, revealed that little had been done to help the international students overcome their deficiencies in mechanical skills.

Dr. Arthur D. Weber, Vice President Emeritus, and Director of International Activities, said that while he had noticed the inadequacies in mechanical skills of the international students both in their home countries and in the United States, he did not know of any program or seminar that was being conducted at Kansas State University that was designed to help students acquire them.

Dewey McCormick, Assistant Professor, International Agricultural Programs, said that they have had seminars, special discussion groups and tours for all international students under the AID program for several years, but only in the animals field. The program provided instruction and experiences about the major agricultural animals, but contained nothing in Agricultural Mechanics.

Dr. Raymond J. Agan, Professor of Education, said that in 1964 Agricultural Education personnel began a summer placement program to help international students gain farm experience. Arrangements were made with Kansas farmers for the students to stay on their farms for three or four weeks during August. The farmers provided as many farming experiences as possible and gave the students an opportunity to live with an American family.
According to Dr. Agan, the results of this program were encouraging. Several international students drove tractors for the first time. Others performed the various jobs done on the farm like helping to haul wheat to the elevator and helping to handle the cattle on a dairy farm. The students commented about the opportunity they had to live with an American family and to see how an American farm was operated. The farmers were glad to have them in their homes and to learn about the countries from which they came.

Professor Henry Neely, Jr., Assistant to the Dean, Mechanical Engineering, said that they have no special classes or seminars to provide extra training for international students. They did attempt to help the students by placing them in classes that were more suited to their abilities. As they were able to handle the material of these classes, they were assigned to the more advanced classes.

Theodore Heermance, Assistant Dean of Students, and Foreign Student Advisor, said that he did not know of any program that was designed to help the international students gain proficiency in mechanical skills either at Kansas State University or elsewhere. He knew of a university that had developed a special program for training in English, but knew of no university or agency that had a special program in mechanics.

Clinton O. Jacobs, Assistant Professor, Agricultural Engineering, said that their department had arranged a problem in Agricultural Engineering in which a graduate student met with the international students, who were enrolled in the Agricultural Mechanics classes. During
this time they had the opportunity to gain experiences in some of the mechanical skills. He continued, that the program was arranged late in the enrollment period which prevented some of the international students from including it in their schedules, and that there were a few problems in finding the best time and place to meet. However, he thought the program was useful in providing an opportunity for the students to practice and learn the basic skills of Agricultural Mechanics. This problem in Agricultural Engineering has been a major source of the information for this study.

From the foregoing opinions stated by University personnel who worked with international students, it became the assumption of this study that while the Agricultural Education summer program was valuable in providing some much needed farm experience, it was limited in the following ways: (1) only those students who were enrolled in the Agricultural Education curriculum were placed on farms, (2) only those students whose program of study included summer-fall semesters were available for placement, (3) due to the farmer's work schedule there was little time available for systematic instruction in mechanics, and (4) because the program was held during the vacation period it did not contribute directly to the student's needs while he attended classes at Kansas State University.

It was further assumed that the assignment of Mechanical Engineering students to classes according to their ability was a help, but it did not give the additional time needed to practice mechanical skills.
It was further assumed that the Agricultural Engineering problem was the only one on the Kansas State University Campus that was designed to help the international students obtain the mechanical skills they needed.

RESEARCH PROCEDURE FOLLOWED

The creative method of research was used in this study. Procedures used to collect, analyze, and present data included the use of letters, interviews, documentary material, and the results of The Agricultural Engineering problem.

PRESENTATION OF DATA

The data of this study was presented in three sections, (1) the results of the interviews and letters, (2) the report of background differences, and (3) the findings of the Agricultural Engineering problem.

Results of Interviews and Letters

Interviews were limited to professors who taught Agricultural Mechanics classes in which international students were enrolled. Information obtained from the interviews revealed that of the six professors in this category all of them had observed that the international students were generally less proficient in mechanical skills than the United States students, and that they tended to be behind them in achievement and class standing. Three of the professors felt
that the lack of mechanical ability was the primary factor that caused the international students to be behind, while the other three felt it was a combination of all the differences in background. Paul N. Stevenson, Professor of Farm Mechanics, mentioned that on the Farm Mechanics Skill Survey, which he gave to each student enrolled in the Farm Mechanics class, the international students indicated that they could not perform many of the basic skills. This lack of mechanical proficiency was very noticeable in his classes. All of the professors indicated that providing additional time for international students to practice and study agricultural mechanics would be of help either directly or indirectly in their classes. Five were of the opinion that a seminar type program would help to overcome the problem. One of the professors, Dr. George Larson, Head of the Agricultural Engineering Department, said:

"It would seem to me that the best solution, assuming that it is economically feasible, is to hold separate sections in certain courses so that it will be possible for the instructor to cover the material in the course at a rate that is compatible to a foreign student with special emphasis on giving him the opportunity to develop adequately certain skills needed."

Letters from personnel in other areas of the Kansas State University Campus tended to substantiate the concern of the professors of the Agricultural Engineering Department. Dr. Arthur D Weber, Vice President Emeritus, and Director of International Activities, wrote that:

4Department of Agricultural Engineering, Farm Mechanics Questionnaire and Skills Survey, pp. 1-5.
In observing the work of foreign students in their home countries, as well as in the United States, I have noticed their inadequacies in mechanical skills. These deficiencies reflect their cultural environment rather than inherent personal inadequacies. In many countries, an educated person does not have an opportunity to work with his hands.

Any formal academic arrangement whereby such skills may be acquired by the foreign student during his stay in the United States would, in my judgment, pay excellent dividends after he returns home. While I am not certain as to just how such instruction should be given, I should think that the seminar as proposed would be useful.

Dr. Vernon C. Larson, Director of International Agricultural Programs, said:

From our experience in working with many of the international students here at Kansas State we are cognizant that they are particularly weak in many of the fundamental skills in the broad field of agricultural mechanics which domestic students possess. A seminar that could be geared to assist these students achieve an approximate level of background information would have much merit.

The cultures from which these students from abroad have come are such that no built-in mechanism exists in their respective homelands for furnishing this learning experience. Many students here, when given opportunity to associate with a farmer in his shop or around his field equipment, make excellent progress in this respect. A whole seminar in agricultural mechanics geared toward the needs of international students would appear to be very worthwhile.

David J. Mugler, Assistant Director (Acting), Resident Instruction, College of Agriculture, said that three of the twenty-three international students in the College of Agriculture had taken a course in Agricultural Mechanics or were currently enrolled in similar courses.

He continued to say:

In visiting with Dr. Duane Acher, Director of Resident Instruction in the College of Agriculture, I found that we would both be in favor of having an introductory course in Agricultural Mechanics if it were limited to International students. It is our opinion that this would allow these students to receive timely training
which could help them in future courses which they would take in Agricultural Mechanics.

The international students enrolled in the Agricultural Mechanics classes were also concerned with this problem since it affected them directly. They stated that they were aware that the American students were usually ahead of them in mechanical ability and class standing. They did not want special privileges, but only the opportunity to develop the skills they lacked. Victor Colon, graduate student from Puerto Rico, expressed it in this way, "We foreign students need this kind of help, because the American students are too much ahead of us in the using of equipment and working in the shop."

The above statements and references indicated that the international students lacked a background in mechanical skills and that a need existed to provide a program that would enable them to obtain mechanical ability.

Background Differences

In developing a seminar for international students in Agricultural Mechanics some consideration was given to the differences in the philosophical, cultural, physical, and lingual backgrounds between the international and American students. Theodore Keermance, Foreign Student Advisor, Kansas State University, said that due primarily to the Puritan influence in the history of the United States, it was considered honorable for educated people to do physical work. In some countries there was a loss of prestige if an educated person worked with his hands as he was expected to have servants do these tasks.
Dr. Filmer Northrop in his book *The Meeting of East and West*, wrote that easterners have often used a different method of approach to a learning or problem solving situation than have westerners. For example the Chinese cultural approach to knowledge has often been:

... through the use of linguistic symbolism, largely dontative, and often purely idiographic in character, to point toward a component in the nature of things which only immediate experience and continued contemplation can convey.

This had differed from the western view which had used portions of experience to confirm knowledge which has tended to be expressed in logically developed, scientific and philosophical treatises.

With regard to the differences in lingual background, Dr. George Larson, Head of the Agricultural Engineering Department, said with reference to the international student, "It must be recognized that they are not too proficient with speaking and understanding our language." He continued to say:

The communication between the instructor and the student is not easy; and this, of course, is a definite barrier. This fact alone may contribute to a large degree the reason why the foreign student ranks academically in the lower 50% of the class.

The cultural shock was also faced by the international students as they came to the United States to study and according to Professor Heermance, Foreign Student Advisor, it has caused some serious repercussions.

Since it has been generally assumed that mechanical skills were a basic need of developing countries, it was planned that part of the

introduction of the proposed seminar would be used to explain the western point of view upon which almost all of the mechanics courses at Kansas State University were designed. It was not the aim of this seminar to make Americans of the international students, but only to help them gain experience in mechanical skills.

The Agricultural Engineering Problem

Professor Jacobs of the Agricultural Engineering Department suggested the outline to be followed in The Agricultural Engineering Problem which was designed to help international students gain mechanical experience. The problem was conducted during the fall semester of the 1964-1965 school year at Kansas State University. A graduate student, who had previous teaching experience overseas, was selected as the instructor. Four international students of the Farm Mechanics, Farm Building and Construction, and the Agricultural Engineering Applications classes participated in the program and met with the instructor on Wednesday afternoons from one to four in the Agricultural Engineering shop and class room. There were other international students who could not attend because of conflicts in their schedules. This group served as a comparison group.

The instructor of the problem co-ordinated the content of the problem course with the scheduled Agricultural Mechanics classes. The problem content was supplemented by including some other basic skills and farm experiences which were not included in the scheduled classes. As a part of The Agricultural Engineering Problem, a schedule of the
classes and skill topics, an outline of a class period, and a sample tool identification test were prepared. (See appendix of this report)

In evaluating the problem the only written tests given were the tool identification tests. The instructor recommended that other skill and subject matter tests be given during the proposed seminar. The faculty members who were teaching the scheduled Agricultural Mechanics courses during the time The Agricultural Engineering Problem was being conducted thought the instruction given in the problem was a help. Professor Stevenson said that the practice the international students had in sharpening tools and in using the shop equipment was of real benefit in the Farm Mechanics class. Professor Jacobs said the review of the terminology and the practice the international students had in using the carpentry tools and equipment was a help to them in the Farm Building Construction class.

The international students seemed to appreciate the time spent in the extra class. The instructor of the problem observed this from their alert questions, from the manner in which they worked and practiced skills, and from their comments. One student said, "We had a good chance to discuss the problems of Farm Mechanics which had been taught in the Farm Mechanics course, but missed due to language difficulties." Two students said that this was the first time they had ever cut a board with a hand saw. Another said that the extra time gave him, "... the opportunity to discuss problems, and do some shop work skills that are going to be of a great help to my studies in the future."
The instructor of the problem said that he was pleased with what was accomplished even though there was not enough time to do everything that should have been done. He recommended that the problem be made into a permanent program to continue as long as there were international students enrolled in the Agricultural Mechanics classes that needed help in acquiring mechanical skills.

THE PROPOSED SEMINAR

From information obtained from the University personnel surveyed, from other data collected, and from observations of the instructor of The Agricultural Engineering Problem, the following were developed as recommendations for administering future seminars for international students in Agricultural Mechanics:

An Outline of Suggestions for Conducting the Seminar

I. Determine the skills to be taught.

1. Administer the Farm Mechanics Skill Survey.

2. Administer pre-tests in methods of procedure, subject matter content, and identification of tools and equipment.

3. Consult with the professors regarding the current needs of the students.

4. Avoid duplicating skills taught in scheduled classes, however, these skills may need to be practiced in the seminar.
II. Co-ordinate the seminar with scheduled Agricultural Mechanics classes.
 1. Confer with the professors to determine the probable areas where practice and help in skills will be needed.
 2. Arrange a time schedule so work noise of the seminar will not interfere with scheduled classes, and so the seminar students will not be using tools and equipment needed for the scheduled classes.

III. Select an instructor for the seminar.
 1. Consider his ability to teach, his knowledge of the skills and subject matter of the Agricultural Mechanics classes, and his ability to work with the international students.
 2. Select a graduate student to conduct the seminar as a graduate problem, hire a qualified person for the position, or assign advanced students of the Methods of Teaching Farm Mechanics class to conduct the seminar.

IV. Plan the seminar schedule.
 1. Meet regularly once a week for a three hour period in the Agricultural Engineering Building.
 2. Schedule tours and farm experiences on week-ends or during holidays.
 3. Prepare a schedule of the dates the seminar will meet with the skills and subjects to be taught.
V. Conduct the first meeting.
 1. Obtain and learn names and begin class roll.
 2. Explain the seminar procedures and the philosophical background from which the seminar will be conducted.
 3. Administer the Farm Mechanics Skill Survey.

VI. Conduct subsequent meetings.
 1. Ask the students each meeting to express their questions and problems. The instructor may need to adjust his planned lesson to help answer and solve them.
 2. Divide the students into groups if necessary to facilitate practice of skills.
 3. Administer pre-tests before introducing new skills or subject matter.
 4. Provide a check sheet for the students to mark as they complete each skill or assignment.

VII. Prepare the subject matter of skills to be presented in the seminar in outline form rather than as a lesson plan. (See appendix for an example)

A Procedure to Determine the Skills That Could Be Taught in the Seminar

I. Prepare a composite list of all the skills and procedures generally included in Agricultural Mechanics.

II. Present the composite list to the professors of the scheduled classes to determine which skills they teach.

III. Select the skills that are not included in any of the
scheduled classes and present them to the international students. The skills they want will be considered for the seminar.

A composite list of Agricultural Mechanics skills and procedures was prepared during the course of this study from documents\(^6\) and textbooks\(^7\) (See appendix)

A Plan for Obtaining Farm and Related Experiences

I. Arrange with nearby farmers to help provide actual farm experiences. Have the international students drive tractors, adjust and maintain machinery in the field, and observe farm procedures.

II. Encourage the international students to attend the National FFA Convention, leadership training schools, and related meetings and affairs.

III. Plan visits and tours of different farms and places of interest that will be of help to develop a background in modern Agricultural Mechanics that may be of help to the inter-

\(^6\)Carl F. Albrecht, *A Comparison Of Skills Needed To Construct Four Different Farm Carpentry Projects*, pp. 1-2; Pittha Bunnag, *Proposed Curriculum For Technical Institutes In Vocational Agriculture For Thailand*, pp. 9, 19-20; Bureau of Public Schools, Manila, *Farm Mechanics Outlines and Course of Study*, pp. 1-17; Kansas State University, Department of Agricultural Engineering, *Farm Mechanics Questionnaire and Skills Survey*, pp. 1-5.

\(^7\)Mack M. Jones, *Shopwork On The Farm*, pp. 1-471.
national students when they return to their homes.

Suggestions for Evaluating the Seminar

I. Use achievement, skill, and subject matter tests. Pre-tests followed later with re-tests could be done in areas of tool identification.

II. Compare the grades made by the international students who attend the seminar with those who do not attend.

III. Obtain the reactions and opinions of the professors of the scheduled classes in which international students are enrolled.

IV. Obtain the opinions of the international students with regard to the seminar. The instructor should bear in mind that international students tend to be very polite and will often not state their true feelings for fear of offending the person with whom they are communicating.

V. Consider some of the variables of evaluation which include previous training, cultural background, English communication and comprehension, and differences in natural ability and intelligence.
SUMMARY AND CONCLUSION

The purpose of this study was to develop a seminar in Agricultural Mechanics for international students. Information obtained during the course of this study revealed that at least fifteen administrative and faculty personnel have observed that in general the international students lack the background in mechanical skills that the United States students possess. According to the professors in the Agricultural Engineering Department, the lack of skills is one of the factors that has tended to prevent the international students from advancing as rapidly as the other students in their Agricultural Mechanics classes. In this study a seminar was designed to help the international students gain this needed background in mechanical skills.

The creative method of research was used in this study. Procedures used to collect, analyze, and present data included the use of letters, interviews, documentary material, and the observations made during the development of an Agricultural Engineering problem designed to help international students gain mechanical skills. Letters were obtained from administrative personnel who had the opportunity to observe international students at Kansas State University as well as in some of their own countries. Interviews were conducted mostly with faculty members who taught one or more of the Agricultural Mechanics classes or related subjects in which international students were enrolled. Documents were used to help determine the skills that should be included in the proposed seminar. Through a Problem in Agricultural
Engineering, observations were made, analyzed, and used as a basis for developing the proposed seminar of this study.

The findings of this study indicated the need for establishing a seminar for the purpose of solving the problems caused by lack of mechanical skills. It also indicated that the seminar should be a non-credit requirement for all international students enrolled in the Agricultural Mechanics classes, that it should meet once a week during a two to three hour period in the Agricultural Engineering Building, and that it should be co-ordinated with the scheduled mechanics classes. An instructor should be selected for the seminar who is familiar with the skills of the scheduled classes, who understands the problems of the international students and who is able to teach. The seminar should be flexible enough to attempt to meet the students' problems as they occur, and should be a continuous program as long as there is a sufficient number of international students who need help in acquiring mechanical skills.

During the study there was developed an outline of suggestions for conducting the seminar, a list of mechanical skills that could be taught, a plan for obtaining actual farm experiences and suggestions for evaluating the seminar.

It was the conclusion of this study that a seminar as proposed would be of great help in enabling the international students to gain a background in mechanical skills. The establishment of the seminar may depend upon finding personnel to administer the program.
BIBLIOGRAPHY

A. BOOKS

B. PUBLICATIONS OF GOVERNMENTS AND OTHER ORGANIZATIONS

C. UNPUBLISHED MATERIALS

Albrecht, Carl F. A Comparison of Skills Needed to Construct Four Different Farm Carpentry Projects. Lansing, Michigan: Michigan State University.

Department of Agricultural Engineering. Farm Mechanics Questionnaire and Skills Survey. Manhattan, Kansas: Kansas State University, 1962.
Farm Mechanics Questionnaire

In order that we may determine more completely the needs of students enrolled in Agricultural Engineering Farm Mechanics Courses, we ask that you complete the information requested on this questionnaire with respect to your evaluation of farm mechanics jobs and skills.

Your Name__ Town_________________ County__________

No. of years associated with farming.______________

Type of farming with which concerned (major enterprise)

[] General farming [] Livestock (hogs, sheep, and beef)

[] Dairy [] Cash grain

[] Poultry [] Fruit and/or truck

Name of high school attended __

Did you complete course work in vocational agriculture? ___Yes ___No. If so, how many years were completed?______________

If shop work instruction was received during your high school attendance, check the following area of instruction which most nearly describes those taken:

[] No shop work taken [] Concrete work

[] Woodworking & finishing [] Blacksmithing and forging

[] Machine shop [] Oxy-acetylene welding

[] Farm Carpentry [] Electric arc welding

[] Use of metal lathe [] Tool fitting

[] Use of milling machine [] Building construction

[] Sheet metal & soldering [] Farm electrification

[] Plumbing [] Soil & water management

[] Tractor & engine maintenance [] Farm water supply

[] Farm sewage disposal

[] Farm machinery operation & maintenance

Was there available on your farm a building or a section of a building for a home farm shop with work bench and tool storage space where you could perform shop work? ___Yes ___No.

Prior to attending college, in what type employment were you engaged? ______________________________

__

Have you been a member of the Armed Forces of the U. S.? ___Yes___, ___No___. If yes, state branch and the type of work or affiliation with which you were connected.

__

What is your major objective in having enrolled in Agricultural Engineering Farm Mechanics course work?__

__
Based upon your experience, training, and need, place a check (•) in one or more of the columns which most nearly describes your situation in regard to the following skills:

<table>
<thead>
<tr>
<th>AREAS AND JOBS IN FARM MECHANICS</th>
<th>Confident can perform this job when necessary.</th>
<th>Have had formal instruction in this job.</th>
<th>Need additional practice and instruction in this job.</th>
<th>Cannot perform this job.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm Power & Machinery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Figure cost of machine operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Calibrate: (a) Seeding equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Spraying equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Fertilizer equip.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Adjust farm machines:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Plow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Mower</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Cultivator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) Combine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e) Drill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(f) Baler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Figure pulley & sprocket size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Select chain and belt drives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Determine PTO drive relationships</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Service and adjust engine ignition system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Service and adjust engine fuel system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Grind engine valves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Replace engine bearings.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Repaint farm machines by spray method</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Perform pre-operation inspection on farm tractor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Confident can perform this job when necessary</td>
<td>Have had formal instruction in this job</td>
<td>Need additional practice and instruction in this job</td>
<td>Cannot perform this job</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>13.</td>
<td>Operate tractor safely.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Farm Carpentry

1. Develop three plan view small bldg.
2. Construct framework for pole bldg.
3. Replace concrete foundation.
4. Cut common rafter
5. Lay out foundation for building.
6. Determine mix of ingredients for specific standard concrete
7. Lay: (a) wood shingles
 (b) composition shingles
 (c) metal roofing
8. Open can paint
9. Determine proper thinner for paint
10. Clean & store paint brush
11. Construct or rebuild farm fence corner posts
12. Construct permanent fence on contour

Soil and Water Management

1. Use a farm level
2. Keep accurate field notes.
3. Lay out dam for parm pond
4. Locate and construct waterways
5. Develop terrace system
6. Road contour & soil survey maps
7. Pacing distance accurately
<table>
<thead>
<tr>
<th>Rural Electrification</th>
<th>Confident can perform this job when necessary</th>
<th>Have had formal instruction in this job</th>
<th>Need additional practice and instruction in this job</th>
<th>Cannot perform this job</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Figure electric power costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Determine wire capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Service an electric motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Reverse electric motor rotation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Change electric motor voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Determine size & type of motor for given job</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Construct electric brooding equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Check electric wiring circuits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Properly install electric fence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Supply & Sewage Disposal</th>
<th>Confident can perform this job when necessary</th>
<th>Have had formal instruction in this job</th>
<th>Need additional practice and instruction in this job</th>
<th>Cannot perform this job</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Select pipe & pipe fittings for a job</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Cut pipe threads</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Assemble pipe and pipe fittings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Assemble plastic pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Plan sanitary water system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Plan & develop septic tank sewage disposal system for farmstead</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Flare and fit copper & alum. tubing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Farm Shop Work</th>
<th>Confident can perform this job when necessary</th>
<th>Have had formal instruction in this job</th>
<th>Need additional practice and instruction in this job</th>
<th>Cannot perform this job</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Recondition keen edge hand tools (wood chisel, plane, iron, draw knife, butcher knife, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Recondition hand wood saw</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Sharpen hand operated and table type circular saw blades</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Confident can perform this job when necessary</td>
<td>Have had formal instruction in this job</td>
<td>Need additional practice and instruction in this job</td>
<td>Cannot perform this job</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>4.</td>
<td>Sharpen chain type saw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Sharpen metal cutting twist drill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Sharpen mower knives, ensilage cutter or grinder knives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Cut external and internal threads (tap and die work)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Accurately measure and locate points on metal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Set iron rivets cold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Shape metal with hard file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Cut key-ways, oil grooves, etc. with hand chisel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Hand ream holes to accurate fit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Pull or press bearings, shafts, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Cut metal with power driven hack saw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Operate and turn metal with metal cutting lathe.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Identify commonly used metals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Select welding rods & materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Prepare metal parts for welding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Operate acetylene gas generator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Arc weld vertical or overhead position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Weld steel using oxy-acetylene method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Cut steel with cutting torch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Bronze weld steel or cast iron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Hardsurface tillage tools</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Confident can perform this job when necessary</td>
<td>Have had formal instruction in this job</td>
<td>Need additional practice and instruction in this job</td>
<td>Cannot perform this job</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>25.</td>
<td>Welding steel or cast iron with the electric arc welder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Build up worn surfaces by welding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Clean and prepare parts to solder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Solder seams in metal parts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>Solder electrical connections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>Solder copper tubing and parts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>Develop patterns for sheet metal parts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>Calculate and form seams in sheet metal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>Build and maintain a coal forge fire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>Reforge and shape tool steel (chisels, punches, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>Forge and sharpen tillage tools (plow shares, sweeps, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>Heat-treat carbon steel parts; (temper a cold chisel)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Your Name
<table>
<thead>
<tr>
<th>Date</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 23, 1964</td>
<td>Reviewed farm building construction terms, began identification of tools and parts of the equipment.</td>
</tr>
<tr>
<td>October 7, 1964</td>
<td>Practiced using shop power tools—table saw, radial arm saw, jointer, drill press, etc.</td>
</tr>
<tr>
<td>October 14, 1964</td>
<td>Students attended the National FFA Convention at Kansas City, Missouri, and went on the Co-op farm tour.</td>
</tr>
<tr>
<td>October 21, 1964</td>
<td>Began sharpening hand tools—wood chisel, plane iron, screw driver.</td>
</tr>
<tr>
<td>October 28, 1964</td>
<td>Continued practice of using power tools, sharpened lathe bits.</td>
</tr>
<tr>
<td>November 4, 1964</td>
<td>Practiced figuring board feet. Finished sharpening hand tools.</td>
</tr>
<tr>
<td>November 11, 1964</td>
<td>Practiced joining wood with nails—toe nailing, surface nailing, setting finish nails. Pulled nails with hammer, and identified common types and sizes of nails.</td>
</tr>
<tr>
<td>November 18, 1964</td>
<td>Rope work lesson. Pre-test of section of tool</td>
</tr>
</tbody>
</table>
November 25, 1964
Thanksgiving Holiday.

December 2, 1964
Discussed plans for animal shelter. Reviewed material for test.

December 9, 1964
Reviewed lesson on framing square. Discussed how to cut rafters and braces. Worked practice problems.

December 16, 1964
Reviewed identification of tools, figured length of rafters by using the three different methods.

December 22, 1964
Visited two nearby high school vocational agricultural shops.

December 23, 1964
Christmas Vacation.

January 6, 1965
Thread cutting exercise. Retest of tool identification.

January 13, 1965
Pipe cutting and threading exercise. Practice with arc welder.
AN OUTLINE OF A CLASS PERIOD OF THE AGRICULTURAL ENGINEERING

PROBLEM APPEARS BELOW:

SETTING:

The fall semester at Kansas State University.

Date: September 23, 1964. Wednesday afternoon one to three p.m.

PREPARATION:

Consultation with professors revealed that:

(1) most of the international students were having difficulty with terms and nomenclature in the Farm Building Construction Class, and

(2) they needed additional practice in sharpening tools in the Farm Mechanics classes.

Informed of this need the instructor reviewed the material and prepared to help the students.

THE CLASS:

Inquiry with the students revealed that they were having difficulty understanding terms like "cup" (warping of a board), "buck" (a dollar), pitch, run, span, rise per foot of run, purlin, plate, etc. These and others terms were explained and identified.

The instructor demonstrated how to sharpen a screw driver with a grinding wheel and then had the students practice this skill until the end of the period.
A SAMPLE TOOL IDENTIFICATION TEST GIVEN IN THE PROBLEM:

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Name of the Tool</th>
<th>Flash Card Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Expansion Bit</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Claw Hammer</td>
<td>12</td>
</tr>
<tr>
<td>3.</td>
<td>Ripping Claw Hammer</td>
<td>13</td>
</tr>
<tr>
<td>4.</td>
<td>Carpenter Level</td>
<td>17</td>
</tr>
<tr>
<td>5.</td>
<td>Saw Set</td>
<td>28</td>
</tr>
<tr>
<td>6.</td>
<td>Rip Saw</td>
<td>29</td>
</tr>
<tr>
<td>7.</td>
<td>Cross Cut Saw</td>
<td>30</td>
</tr>
<tr>
<td>8.</td>
<td>Compass Saw</td>
<td>31</td>
</tr>
<tr>
<td>9.</td>
<td>Jack Plane</td>
<td>35</td>
</tr>
<tr>
<td>10.</td>
<td>Standard Half Hatchet</td>
<td>36</td>
</tr>
<tr>
<td>11.</td>
<td>Wood Chisels</td>
<td>51</td>
</tr>
<tr>
<td>12.</td>
<td>Wrecking Bar</td>
<td>62</td>
</tr>
<tr>
<td>13.</td>
<td>Combination Square</td>
<td>72</td>
</tr>
<tr>
<td>14.</td>
<td>Try Square</td>
<td>73</td>
</tr>
<tr>
<td>15.</td>
<td>Framing Square</td>
<td>74</td>
</tr>
<tr>
<td>16.</td>
<td>Folding Rule</td>
<td>75</td>
</tr>
<tr>
<td>17.</td>
<td>Steel Tape</td>
<td>76</td>
</tr>
<tr>
<td>18.</td>
<td>Bit Brace</td>
<td>91</td>
</tr>
<tr>
<td>19.</td>
<td>Counter Sink</td>
<td>103</td>
</tr>
<tr>
<td>20.</td>
<td>Sliding Tee Bevel Square</td>
<td>104</td>
</tr>
</tbody>
</table>

The flash cards used to administer the test were published by The Interstate Printers and Publishers, Inc., Danville, Illinois.
AN EXAMPLE OF A SUBJECT MATTER OUTLINE FORM

COLD-METAL WORK

<table>
<thead>
<tr>
<th>KNOWLEDGE</th>
<th>PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nomenclature</td>
<td>1. How to cut inside and outside threads with tap and die.</td>
</tr>
<tr>
<td>2. Types and sizes of threads</td>
<td></td>
</tr>
<tr>
<td>3. Procedure for cutting threads</td>
<td></td>
</tr>
<tr>
<td>4. Types and sizes of rivets</td>
<td>4. How to set cold rivets.</td>
</tr>
<tr>
<td>5. Procedure for riveting</td>
<td></td>
</tr>
<tr>
<td>6. Types and sizes of reamers</td>
<td>6. How to ream with a hand reamer.</td>
</tr>
<tr>
<td>7. Procedure for reaming</td>
<td></td>
</tr>
</tbody>
</table>
A COMPOSITE LIST OF AGRICULTURAL MECHANICS SKILLS AND PROCEDURES:

This list was prepared in order to help determine which skills were taught in scheduled classes at Kansas State University, and which of them could be taught in the proposed seminar.

The list was to be submitted to the professor of each class who was to indicate by a number which skills were included in his classes. The numbers assigned to the classes are as follows:

1—Agriculture Engineering Applications
2—Dairy Mechanics
3—Electricity in Agriculture
4—Farm Building and Construction
5—Farm Machinery and Repair
6—Farm Mechanics
7—Farm Power
8—Methods of Teaching Farm Mechanics
9—Engineering in Agriculture
10—Farm Mechanics Methods
11—Advanced Farm Mechanics
12—Advanced Farm Power
13—Irrigation Practices
14—Drainage and Erosion Control
Place the class number that includes the area or skill

AREA AND SKILLS

PROVIDING AND EQUIPPING A FARM WORKSHOP

Selecting the Site ..
Planning the Building ...
Selecting Tools, Equipment, and Supplies
Arranging the Interior and Storing Tools
Storing Supplies and Materials
Improving Existing Farm Workshops
Maintaining a Farm Workshop
Observing Safety Rules and Precautions
Constructing Inexpensive Shop Equipment from Material on Hand ..
Visiting a Well Planned Farm Workshop
Lighting the Farm Workshop
Heating, Ventilating, and Cooling the Farm Workshop

SKETCHING AND DRAWING

Making Freehand Sketches
Making Isometric and Oblique Sketches and Drawings
Reading Working Drawings and Blueprints
Lettering Sketches and Drawings
Making Floor Plans for Buildings
Making Out a Bill of Material
Making Working Drawings To Scale
FARM CARPENTRY

Selecting Kinds and Grades of Lumber
Measuring and Marking Wood
Sawing Wood
Planning and Smoothing Wood
Cutting with Wood Chisels
Boring and Drilling Holes in Wood
Fastening Wood
Cutting Common Rafters
Building Stairs and Steps
Laying Out and Erecting a Small Building
Identifying Common Handtools Used in Carpentry
Identifying Types of Nails, Screws, and Hardware
Learning Building Construction Terms
Selecting and Using Home-Grown Lumbers and Materials
Selecting, Using and Adjusting Power Tools
Hanging A Door
Roofing Materials and Procedures
Constructing Fence and Corner Posts

PAINTING, FINISHING, AND WINDOW GLAZING

Selecting Paints
Preparing Wood for Painting
Preparing Metal Surfaces for Painting
Applying Paint With Brush and Spray Gun
Selecting, Cleaning, and Caring for Brushes
Cutting Glass

Glazing a Glass Window

Replacing a Broken Window Glass

Storing and Handling Paints Safely

Opening a Can of Paint

Determining Proper Thinner for Paint

SHARPENING AND FITTING HAND TOOLS

Selecting and Using Grinders and Stones

Sharpening Knives, Machetes, or Bolos

Sharpening Axes and Hatchets

Sharpening Plane Bits and Wood Chisels

Sharpening Auger Bits

Sharpening Twist Drills

Sharpening Cold Chisels and Punches

Reconditioning Screw Drivers

Sharpening Scissors or Snips

Sharpening Hoes, Spades, and Shovels

Sharpening Saws

Replacing Handles in Tools

Cleaning and Caring for Tools

Sharpening Disc from Disc Harrow
ROPE WORK

Selecting Materials Used in Ropework
Caring for Rope
Finishing the Ends of Rope
Tying the Ends of Rope Together
Splicing Rope
Making Rope Halters
Using Block and Tackle

CONCRETE WORK

Selecting Materials, Tools and Equipment
Determining Proportions of Materials
Building and Preparing Forms
Reinforcing Concrete
Mixing and Placing Concrete
Finishing Concrete
Making Watertight Concrete
Laying Concrete Blocks

COLD-METAL WORK

Identifying Different Kinds of Iron and Steel
Laying Out and Marking Metal
Cutting With a Cold Chisel
Filing
Hack Sawing
Drilling Holes in Metal
Bending Cold Metal

Riveting

Threading

Reaming with Hand Reamer

SOLDERING AND SHEET-METAL WORK

Preparing Parts for Soldering

Soldering seams of Metal Parts

Soldering Electrical Connections

Soldering Copper Tubing and Parts

Operating a Gasoline Blowtorch

Cleaning, Tinning, and Using Soldering Irons

Patching Large and Small Holes

Laying Out Sheet-Metal Work

Cutting Sheet-Metal

Folding and Forming Joints

Riveting Sheet Metal

Fastening Sheet Metal with Self-Tapping Screws

FORGING AND TEMPERING

Identifying and Selecting Forging Tools and Equipment

Building and Maintaining Fire in the Forge

Heating Irons in a Forge

Cutting with the Hardy

Bending, Straightening, Drawing, and Upsetting Iron

Punching Holes in Hot Iron
Annealing and Tempering Tool Steel

WELDING

Welding Principles of Operation
Identifying Welding Tools and Equipment
Selecting Welding Rods and Materials
Preparing Metal Parts for Welding
Operating the Acetylene Gas Generator
Welding with the Arc Welder
Welding with the Oxyacetylene Torch
Cutting Steel with the Cutting Torch
Brazing Steel or Cast Iron
Hardsurfacing Tillage Tools
Building-up Worn Surfaces by Welding

PIPEWORK AND SIMPLE PLUMBING

Identifying and Selecting Pipe Tools
Selecting Pipe and Pipe Fittings
Measuring and Cutting Pipe
Reaming and Threading Pipe
Assembling Pipe and Pipe Fittings
Repairing Leaky Valves and Faucets
Repairing Pumps

WATER SUPPLY

Selecting a Water System
Protecting Wells and Springs From Pollution
Determining Pipe Sizes, Tank Capacity, and Pressure
Principles of Force and Lift Pumps

SEWAGE DISPOSAL AND SANITATION
Identifying the Types of Sewage Disposals
Constructing the Septic Tank
Laying Sewage Drains
Storing and Disposing of Barnyard Manure
Improving Sanitary Conditions on the Farm
Disposing of Waste, Garbage, Dead Animals, etc.
Controlling Insects and Diseases

TRACTORS AND ENGINES
Identifying Different Kinds of Tractors
Operating a Tractor Safely
Maintaining a Tractor and Its Parts
Servicing and Adjusting the Ignition System
Servicing and Adjusting the Fuel System
Grinding the Valves
Replacing Worn Parts
Performing Pre-Operation Inspection of Tractor

FARM POWER AND MACHINERY
Figuring Pulley and Sprocket Size
Selecting Chain and Belt Drives
Determining PTO Drive Relationships
Figuring Cost of Machine Operation
Calibrating Seeding, Spraying, Fertilizer Equipment
Adjusting Farm Machinery
Maintaining and Repairing Farm Machinery
Operating Farm Machinery in the Field
Inspecting Recent Improvements in Machinery

SOIL AND WATER CONSERVATION
Using Surveying Instruments
Running a Level Line
Laying Out Contour Strips
Laying Out Drainage Ditches
Grading and Leveling Land
Constructing a Farm Pond
Measuring Land
Computing Cuts and Fills
Identifying Types and Control of Erosion
Planning for Cover Crops
Determining Grades of Slopes
Measuring Farm Water
Maintaining Irrigation and Drainage Systems

FARM ELECTRICITY
Meaning of Electrical Terms
Reading an Electric Meter and Figuring Current Costs
Identifying and Selecting Electrical Equipment
Using Electricity Safely
Applying Electricity to the Farm and Home
Identifying and Selecting Types of Electric Motors
Using Electric Motors On The Farm
Maintaining Electric Motors
Installing and Reversing Motors
Making a Wiring Diagram for a Farm Building
Making Electrical Installations
Repairing and Maintaining Electrical Appliances
Identifying and Selecting Electrical Generators
Maintaining Electrical Generators

FARM STRUCTURES

Designing Good Farm Buildings
Selecting Building Materials, Types and Costs
Selecting Types of Roofs and Materials
Repairing and Maintaining Farm Structures
Determining Building Requirements
Arranging the Farmstead
Constructing Footings and Foundations

FARM EXPERIENCE

Driving a Tractor
Observing and Participating in Farming Activities
Changing a tire
MACHINE POWERED SHOP TOOLS

Operating Table Saw Correctly and Safely ..
Operating Radial Arm Saw ..
Operating Portable Power Saw ...
Changing Blades ...
Making Cuts With Saws, Cut-off, Rip, Mitre, Dado
Straightening a Crooked Board ..
Operating Jointer ..
 Setting and Adjusting for Cut ...
 Joining to Size ..
 Making Chamfer and Bevel Cuts ..
 Straightening Crooked Boards, Correcting Taper
Operating Drill Press ..
Using Portable Electric Drill ..
Operating Metal Lathe ...
Operating Wood and Metal Band Saws ..
INTERVIEW QUESTIONNAIRE

NAME__

DEPARTMENT__

WHAT AGRICULTURAL ENGINEERING COURSES FOR STUDENTS IN AGRICULTURE DO YOU
TEACH?__

1. Do you have international students in your classes?____(Yes, No)

2. In your observation are international students (1) less proficient,
 (2) equally proficient, or (3) more proficient, in mechanical skills
 than the United States students?______.

3. In your classes do international students tend to be (1) behind,
 (2) even with, or (3) ahead, of the United States students in
 grades and class standing?______.

4. If the students tend to be behind the United States students, do
 you contribute this to a difference of (1) a practical mechanical
 background, (2) language comprehension, (3) socio-economic conditions,
 or (4) a combination of the above factors?______.

5. Are any of the international students failing your courses?______

6. Have any international students failed in the past three years?____

7. Do you think that a seminar designed to give additional time for
 practice and study in agricultural mechanics would be (1) of some
 help, (2) of little help, or (3) of no help, in providing an oppor-
 tunity for international students to gain proficiency in mechanical
 skills?__________________.
Mr. Wayne F. Doll
Department of Agricultural Education
University

Dear Mr. Doll:

In observing the work of foreign students in their home countries, as well as in the United States, I have noticed their inadequacies in mechanical skills. These deficiencies reflect their cultural environment rather than inherent personal inadequacies. In many countries, an educated person does not have an opportunity to work with his hands.

Any formal academic arrangement whereby such skills may be acquired by the foreign student during his stay in the United States would, in my judgment, pay excellent dividends after he returns home. While I am not certain as to just how such instruction should be given, I should think that the seminar as proposed would be useful.

Sincerely yours,

Arthur D. Weber
Vice President Emeritus
Director of International Activities
Mr. Wayne Doll
Department of Agricultural Education
G103b
University

Dear Mr. Doll:

From our experience in working with many of the international students here at Kansas State we are cognizant that they are particularly weak in many of the fundamental skills in the broad field of agricultural mechanics which domestic students possess. A seminar that could be geared to assist these students achieve an approximate level of background information would have much merit.

The cultures from which these students from abroad have come are such that no built-in mechanism exists in their respective homelands for furnishing this learning experience. Many students here, when given opportunity to associate with a farmer in his shop or around his field equipment, make excellent progress in this respect. A whole seminar in agricultural mechanics geared toward the needs of international students would appear to be very worthwhile.

Sincerely yours,

Vernon C. Larson, Director
International Agricultural Programs

VCL:rs
December 14, 1964

Mr. Wayne Doll
Graduate Student
Agricultural Education
Holton 103
Kansas State University

Dear Wayne:

I was interested in learning of your study in proposing an introductory course in Agricultural Mechanics for International students here at Kansas State University. A quick review of the International students in the College of Agriculture revealed that one of the twenty-three had taken a course in Agricultural Mechanics and that two more were currently enrolled in similar courses.

In visiting with Dr. Duane Acker, Director of Resident Instruction in the College of Agriculture, I found that we would both be in favor of having an introductory course in Agricultural Mechanics if it was limited to International students. It is our opinion that this would allow these students to receive timely training which could help them in future courses which they would take in Agricultural Mechanics.

Sincerely yours,

David J. Mugler
Assistant Director (Acting)
Resident Instruction

cc: Dean Duane Acker
Mr. Wayne Doll
Agricultural Education
Holton Hall

Dear Mr. Doll:

This letter concerns your inquiry regarding instruction for foreign students at Kansas State University—particularly in the area of Agricultural Mechanics.

It has been observed from an administrative point of view that in general most students from foreign countries do not possess the mechanical skills at the same level as our American students. There, probably at least two reasons for this. One of them is the kind of instruction they have had in their own country, and the other seems to be that it is below their dignity to get their "hands dirty", in other words, get in and work with their hands. Also, it must be recognized that they are not too proficient with speaking and understanding our language. The communication between the instructor and the student is not easy; and this, of course, is a definite barrier. This fact alone may contribute to a large degree the reason why the foreign student ranks academically in the lower 50% of the class. Occasionally a foreign student will rank high in the class but this, I would say, is an exception.

With regard to overcoming the above problems, it will require a lot of patience on the part of the instructor. It would seem to me that the best solution, assuming that it is economically feasible, is to hold separate sections in certain courses so that it will be possible for the instructor to cover the material in the course at a rate that is compatible to a foreign student with special emphasis on giving him the opportunity to develop adequately certain skills needed. More time and credit should be allowed for the instructor who has the responsibility of working with foreign students.

I note that you would like some comment regarding a proposed seminar for international students in Agricultural Mechanics. It is not clear to me what the objectives would be for the seminar. It is my personal feeling that what we need is a separate set of sections in our courses which are designed specifically for the foreign student. There is too much difference in background between the American and foreign student.

My other suggestion is that the University should require that these
students be more proficient with the English language, oral and written, prior to coming to the United States.

Very truly yours,

G. H. Larson
Head of Department
A PROPOSED SEMINAR IN AGRICULTURE MECHANICS
FOR INTERNATIONAL STUDENTS AT
KANSAS STATE UNIVERSITY

by

WAYNE FREDERICK DOLL

B. S., Kansas State University, 1950

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

School of Education

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1965
The purpose of this study was to develop a seminar in Agricultural Mechanics for international students. Information obtained during the course of this study revealed that at least fifteen administrative and faculty personnel have observed that in general the international students lack the background in mechanical skills that the United States students possess. According to the professors in the Agricultural Engineering Department, the lack of skills is one of the factors that has tended to prevent the international students from advancing as rapidly as the other students in their Agricultural Mechanics classes. In this study a seminar was designed to help the international students gain this needed background in mechanical skills.

The creative method of research was used in this study. Procedures used to collect, analyze, and present data included the use of letters, interviews, documentary material, and the observations made during the development of an Agricultural Engineering problem designed to help international students gain mechanical skills. Letters were obtained from administrative personnel who had the opportunity to observe international students at Kansas State University as well as in some of their own countries. Interviews were conducted mostly with faculty members who taught one or more of the Agricultural Mechanics classes or related subjects in which international students were enrolled. Documents were used to help determine the skills that should be included in the proposed seminar. Through a Problem in Agricultural Engineering, observations were made, analyzed, and used as a basis for developing the proposed seminar of this study.
The findings of this study indicated the need for establishing a seminar for the purpose of solving the problems caused by lack of mechanical skills. It also indicated that the seminar should be a non-credit requirement for all international students enrolled in the Agricultural Mechanics classes, that it should meet once a week during a two to three hour period in the Agricultural Engineering Building, and that it should be co-ordinated with the scheduled mechanics classes. An instructor should be selected for the seminar who is familiar with the skills of the scheduled classes, who understands the problems of the international students and who is able to teach. The seminar should be flexible enough to attempt to meet the students' problems as they occur, and should be a continuous program as long as there is a sufficient number of international students who need help in acquiring mechanical skills.

During the study there was developed an outline of suggestions for conducting the seminar, a list of mechanical skills that could be taught, a plan for obtaining actual farm experiences and suggestions for evaluating the seminar.

It was the conclusion of this study that a seminar as proposed would be of great help in enabling the international students to gain a background in mechanical skills. The establishment of the seminar may depend upon finding personnel to administer the program.