TRACTOR TRAILER CORNERING

by

RAMGOPAL BATTU

B. S., Osmania University, 1963

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1965

Approved by:

[Signature]
Major Professor
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOMENCLATURE</td>
<td>iii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>DESCRIPTION OF CORNERING PROBLEM</td>
<td>2</td>
</tr>
<tr>
<td>DERIVATION OF EQUATIONS FOR FIRST PORTION OF TRACTRIX</td>
<td>4</td>
</tr>
<tr>
<td>EQUATIONS FOR SECOND PORTION OF TRACTRIX</td>
<td>11</td>
</tr>
<tr>
<td>PRESENTATION OF RESULTS</td>
<td>15</td>
</tr>
<tr>
<td>NUMERICAL RESULTS</td>
<td>18</td>
</tr>
<tr>
<td>DISCUSSION OF RESULTS</td>
<td>30</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>31</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>32</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>33</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>34</td>
</tr>
</tbody>
</table>

A. Listing of Fortran Program to solve for the distance between the tractrix curve and the leading curve.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Radius of path of fifth wheel</td>
<td>Ft</td>
</tr>
<tr>
<td>a</td>
<td>x-Co-ordinate of center of curvature in x-y plane</td>
<td>Ft</td>
</tr>
<tr>
<td>b</td>
<td>y-Co-ordinate of center of curvature in x-y plane</td>
<td>Ft</td>
</tr>
<tr>
<td>x</td>
<td>x-Co-ordinate of path of Trailer in x-y plane</td>
<td>Ft</td>
</tr>
<tr>
<td>y</td>
<td>y-Co-ordinate of path of Trailer in x-y plane</td>
<td>Ft</td>
</tr>
<tr>
<td>ξ</td>
<td>x-Co-ordinate of path of Fifth wheel in x-y plane</td>
<td>Ft</td>
</tr>
<tr>
<td>η</td>
<td>y-Co-ordinate of path of Fifth wheel in x-y plane</td>
<td>Ft</td>
</tr>
<tr>
<td>γ</td>
<td>Angle indicated in Figure 2</td>
<td>Degrees</td>
</tr>
<tr>
<td>θ</td>
<td>Angle indicated in Figure 2</td>
<td>Degrees</td>
</tr>
<tr>
<td>L</td>
<td>Length of Trailer</td>
<td>Ft</td>
</tr>
<tr>
<td>V</td>
<td>Distance between the tractrix and the leading curve</td>
<td>Ft</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SCHEMATIC OF GENERAL TRACTRIX</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>SCHEMATIC OF A 90° CIRCULAR TURN</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>TRACTRIX OF A STRAIGHT LINE</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>TOTAL TRACTRIX INCLUDING THE STRAIGHT LINE</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>DIAGRAM SHOWING PARAMETERS USED IN PRESENTING RESULTS</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>DISTANCE BETWEEN THE TRACTRIX AND THE LEADING CURVE</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>MAXIMUM DIMENSIONLESS DISTANCE V/L VERSUS R/L</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>TRAILER'S POSITION VERSUS V/L</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>POSITION OF THE TRAILER VERSUS V/L</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>POSITION OF THE TRAILER VERSUS V/L</td>
<td>26</td>
</tr>
<tr>
<td>11</td>
<td>POSITION OF THE TRAILER VERSUS V/L</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>TRAILER'S POSITION VERSUS V/L</td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>POSITION OF THE TRAILER VERSUS V/L</td>
<td>29</td>
</tr>
</tbody>
</table>
INTRODUCTION

Maneuvering present day tractor-trailer trucks about in the narrow streets of big cities is sometimes quite difficult. It has been suggested that the trucks be made more manageable by developing a servomechanism to "steer" the trailer wheels while cornering. The servo is to be automatically actuated by a signal from the main steering wheel in the tractor.

In this paper, a preliminary study is made of how trailers corner without servomechanisms. When a trailer moves around a corner, the hitch point of the trailer makes some curve called the "leading curve" and correspondingly the center of the rear axle of the trailer makes some other curve called the "tractrix." It is assumed for the purpose of analysis that the curve made by the fifth wheel, i.e., hitch point, of the trailer while cornering has a constant radius of curvature.

The tracking performance of trailers has previously been studied by Fazekas [1] in the U.S.A. and Schaar in Germany. Tracking performance was studied particularly for leading curves with constant radius of curvature.

In this paper the differential equation and its solution for the 90° circular tractrix has been derived. Numerical results have been determined for different radii of cornering, using a digital computer.

[1] Numbers in brackets designate references at end of report.
DESCRIPTION OF CORNERING PROBLEM

When a four-wheeled trailer moves around a corner, the hitch point describes a curve called the "leading curve" as shown in Figure 1.

![leading curve diagram](image1)

FIGURE 1
SCHEMATIC OF GENERAL TRACTRIX

The rear axle of the trailer lies normal to the curve described by the center of the rear axle. This curve is called the "general tractrix," of the "leading curve" as shown in Figure 1.

The general tractrix is thus characterized by the property that the distance of its tangent, taken from the point of tangency to the leading curve, is constant.

![90° circular turn diagram](image2)

FIGURE 2
SCHEMATIC OF A 90° CIRCULAR TURN
In the present study it is assumed that the path of the curve made by the hitch point has a constant radius of curvature while the trailer is performing a 90° turn. This is shown in Figure 2.

The path made by the center of the rear axle of the trailer, i.e., "tractrix," is also shown in Figure 3.

The problem is to determine the equations which describe the tractrix.
DERIVATION OF EQUATIONS FOR FIRST PORTION OF TRACTRIX

The first portion of the tractrix is that part for which the maximum value of \(\gamma \) is 90\(^{\circ} \). After \(\gamma \) reaches 90\(^{\circ} \) the hitch point travels on the straight line. Equations for this are derived later on.

With the previous assumptions, a differential equation may be derived in terms of convenient variables using the principles of geometry.

From geometry,

\[
\begin{align*}
\eta &= y + L \sin \theta \\
\xi &= x + L \cos \theta \\
\eta &= b - R \cos \gamma \\
\xi &= a + R \sin \gamma
\end{align*}
\]

Equating equations (1) and (3)

\[
y = L \sin \theta = b - R \cos \gamma
\]

Similarly equating equations (2) and (4)

\[
x + L \cos \theta = a + R \sin \gamma
\]

Now considering that \(x, y, \theta \) are functions of \(\gamma \) and differentiating equations (5) and (6) with respect to \(\gamma \) leads to

\[
\begin{align*}
\left(\frac{dx}{d\gamma} \right) \left(\frac{dy}{d\gamma} \right) + L \cos \theta \frac{d\theta}{d\gamma} &= R \sin \gamma \\
\left(\frac{dx}{d\gamma} \right) - L \sin \theta \frac{d\theta}{d\gamma} &= R \cos \gamma
\end{align*}
\]

From equation (8),

\[
\frac{dx}{d\gamma} = R \cos \gamma + L \sin \theta \frac{d\theta}{d\gamma}
\]

Since the distance of the tractrix's tangent taken from the point of tangency to the leading curve is constant, the essential criteria of tracking is
\[\frac{dv}{dx} = \tan \theta \]

Substituting the values of \(\frac{dv}{dx} \) from equation (10) and \(\frac{dx}{dy} \) from equation (9) into equation (7).

\[\left[\tan \theta \right] \left[R \cos \gamma \right] + \left[\tan \theta \right] \left[L \sin \theta \frac{d\theta}{dy} \right] + L \cos \theta \frac{d\theta}{dy} = R \sin \gamma \quad (11) \]

Multiplying equation (11) through by \(\cos \theta \)

\[R \sin \theta \cos \gamma + L (\sin^2 \theta + \cos^2 \theta) \frac{d\theta}{dy} = R \cos \theta \sin \gamma \]

\[R \cos \theta \sin \gamma - R \sin \theta \cos \gamma = L \frac{d\theta}{dy} \]

\[R (\sin \gamma \cos \theta - \cos \gamma \sin \theta) = L \frac{d\theta}{dy} \]

Dividing by \(L \),

\[\frac{d\theta}{dy} = \left(\frac{R}{L} \right) (\sin \gamma \cos \theta - \cos \gamma \sin \theta) \]

\[\frac{d\theta}{dy} = \left(\frac{R}{L} \right) (\sin (\gamma - \theta)) \quad (12) \]

Let \(\gamma - \theta = \lambda \) \quad (13)

Differentiating equation (13) with respect to \(\gamma \) leads to

\[\frac{d\theta}{dy} = 1 - \frac{d\lambda}{dy} \quad (14) \]

Substituting \(\frac{d\theta}{dy} \) from equation (14) and \((\gamma - \theta) \) from equation (13) into equation (12),

\[(1 - \frac{d\lambda}{dy}) = \left(\frac{R}{L} \right) \sin \lambda, \quad \frac{d\lambda}{dy} = 1 - \frac{R}{L} \sin \lambda. \]

Separating the equation.

\[\frac{d\lambda}{1 - \left(\frac{R}{L} \right) \sin \lambda} = dy \quad (15) \]

This is the differential equation for the first portion of the tractrix.

The appropriate boundary condition is that \(\lambda = 0 \) when \(\gamma = 0 \) and \(\theta = 0 \).
SOLUTION OF THE DIFFERENTIAL EQUATION

Integrating equation (15) the solution is obtained [4].

\[
\frac{1}{\sqrt{\frac{R^2}{L}} - 1} \ln \left\{ \frac{\tan \left(\frac{\lambda}{2} \right) - \frac{R}{L} - \sqrt{\left(\frac{R}{L}\right)^2 - 1}}{\tan \left(\frac{\lambda}{2} \right) - \frac{R}{L} + \sqrt{\left(\frac{R}{L}\right)^2 - 1}} \right\} = [\gamma]^{\lambda}
\]

\[\lambda_0 = 0 \quad \gamma_0 = 0\]

For \(\frac{R}{L} > 1\)

\[
\ln \left\{ \frac{\tan \left(\frac{\lambda}{2} \right) - \frac{R}{L} - \sqrt{\left(\frac{R}{L}\right)^2 - 1}}{\tan \left(\frac{\lambda}{2} \right) - \frac{R}{L} + \sqrt{\left(\frac{R}{L}\right)^2 - 1}} \right\} = \gamma \sqrt{\left(\frac{R}{L}\right)^2 - 1}
\]

Using the principle \(\log A - \log B = \log \left(\frac{A}{B}\right)\)

\[
\ln \left\{ \frac{\tan \left(\frac{\lambda}{2} \right) - \frac{R}{L} - \sqrt{\left(\frac{R}{L}\right)^2 - 1}}{\tan \left(\frac{\lambda}{2} \right) - \frac{R}{L} + \sqrt{\left(\frac{R}{L}\right)^2 - 1}} \right\} = \gamma \sqrt{\left(\frac{R}{L}\right)^2 - 1}
\]

TAKING EXPONENTIALS OF BOTH SIDES

\[
\frac{\tan \left(\frac{\lambda}{2} \right) - \frac{R}{L} - \sqrt{\left(\frac{R}{L}\right)^2 - 1}}{\tan \left(\frac{\lambda}{2} \right) - \frac{R}{L} + \sqrt{\left(\frac{R}{L}\right)^2 - 1}} = e^{\gamma \sqrt{\left(\frac{R}{L}\right)^2 - 1}}
\]

Using the property \(|ab| = |a| \cdot |b|\)

\[
\frac{\frac{\tan \left(\frac{\lambda}{2} \right) - \frac{R}{L} - \sqrt{\left(\frac{R}{L}\right)^2 - 1}}{\tan \left(\frac{\lambda}{2} \right) - \frac{R}{L} + \sqrt{\left(\frac{R}{L}\right)^2 - 1}}}{\left(\frac{\tan \left(\frac{\lambda}{2} \right) - \frac{R}{L} + \sqrt{\left(\frac{R}{L}\right)^2 - 1}}{\tan \left(\frac{\lambda}{2} \right) - \frac{R}{L} - \sqrt{\left(\frac{R}{L}\right)^2 - 1}}\right)} = e^{\gamma \sqrt{\left(\frac{R}{L}\right)^2 - 1}}
\]
\[
\frac{(\tan \frac{\lambda}{2} - \frac{R}{L} + \sqrt{\frac{R}{L}}^2 - 1) - 2 \sqrt{\frac{R}{L}}^2 - 1}{(\tan \frac{\lambda}{2} - \frac{R}{L} + \sqrt{\frac{R}{L}}^2 - 1)} = \frac{(- \frac{R}{L} - \sqrt{\frac{R}{L}}^2 - 1)}{(- \frac{R}{L} + \sqrt{\frac{R}{L}}^2 - 1)} e^{\frac{\sqrt{\frac{R}{L}}^2 - 1}{-1}}
\]

(16)

The absolute value signs may be omitted in equation (16) for the following reasons:

For \(\frac{R}{L} > 1 \)

It is true that

\(\frac{R}{L} - 1 > 0 \)

\(2 \sqrt{\frac{R}{L}}^2 - 1 > 0 \)

The value of \(\lambda \) must not exceed that value of \(\lambda \) which causes equation (15) to become an improper integral. This value is given by the following equation.

\[\sin \lambda = \frac{L}{R} \]

Using trigometric relations,

\[\tan \frac{\lambda}{2} = \frac{\sin \lambda}{1 + \cos \lambda} \]

\[\tan \frac{\lambda}{2} = \frac{\frac{L}{R}}{1 + \sqrt{1 - \left(\frac{L}{R}\right)^2}} \]

\[\tan \frac{\lambda}{2} = \frac{\frac{1}{\sqrt{L^2 + \sqrt{L^2}^2 - 1}}}{R} \]
Then the value of λ must always be less than $2 \tan^{-1} \left(\frac{1}{(\frac{R}{L})^2 + \sqrt{(\frac{R}{L})^2} - 1} \right)$

Therefore, $\tan \frac{\lambda}{2} = \tan^{-1} \left(\frac{1}{(\frac{R}{L})^2 + \sqrt{(\frac{R}{L})^2} - 1} \right)$, where $0 < k$

Considering,

$$\tan \frac{\lambda}{2} = \frac{R}{L} + \sqrt{(\frac{R}{L})^2} - 1 = \frac{1}{(\frac{R}{L})^2 + \sqrt{(\frac{R}{L})^2} - 1} - \frac{R}{L} + \sqrt{(\frac{R}{L})^2} - 1$$

$$= \frac{-k \left[\frac{R}{L} - \sqrt{(\frac{R}{L})^2} - 1 \right]}{k + \frac{R}{L} + \sqrt{(\frac{R}{L})^2} - 1}$$

but, k and $\frac{R}{L} + \sqrt{(\frac{R}{L})^2} - 1$ are positive quantities, as the $\frac{R}{L}$ ratio is considered, greater than one.

Also,

$$(\frac{R}{L})^2 > (\frac{R}{L})^2 - 1$$

taking square root of both sides, $\frac{R}{L} > \sqrt{(\frac{R}{L})^2} - 1$. So it is true that

$$\left[\frac{R}{L} - \sqrt{(\frac{R}{L})^2} - 1 \right] > 0.$$

It follows, therefore, that the quantity $\tan \frac{\lambda}{2} - \frac{R}{L} + \sqrt{(\frac{R}{L})^2} - 1$ is always negative, and hence the left hand side of equation (16) is always positive.

Considering the right hand side of equation (16),

$$\frac{-(\frac{R}{L})^2 - \sqrt{(\frac{R}{L})^2} - 1}{-(\frac{R}{L})^2 + \sqrt{(\frac{R}{L})^2} - 1} = \frac{\frac{R}{L} + \sqrt{(\frac{R}{L})^2} - 1}{\frac{R}{L} - \sqrt{(\frac{R}{L})^2} - 1}$$
Since the numerator and denominator are positive, the right side of equation (16) is always positive. The absolute value signs in equation (16) can be omitted. The equation becomes,

\[
\frac{2 \sqrt{\left(\frac{R}{L}\right)^2 - 1}}{\tan \frac{\lambda}{2} - \frac{R}{L} + \sqrt{\left(\frac{R}{L}\right)^2 - 1}} = \frac{(R/L) + \sqrt{\left(\frac{R}{L}\right)^2 - 1}}{e \gamma \sqrt{\left(\frac{R}{L}\right)^2 - 1}}
\]

Solving equation (17) for \(\lambda \)

\[
\tan \frac{\lambda}{2} = \frac{R}{L} - \sqrt{\left(\frac{R}{L}\right)^2 - 1} = \frac{2 \sqrt{\left(\frac{R}{L}\right)^2 - 1}}{1 - \frac{(R/L) + \sqrt{\left(\frac{R}{L}\right)^2 - 1}}{e \gamma \sqrt{\left(\frac{R}{L}\right)^2 - 1}}}
\]

So,

\[
\tan \frac{\lambda}{2} = \frac{R}{L} - \sqrt{\left(\frac{R}{L}\right)^2 - 1} + \frac{2 \sqrt{\left(\frac{R}{L}\right)^2 - 1}}{1 - \frac{(R/L) + \sqrt{\left(\frac{R}{L}\right)^2 - 1}}{e \gamma \sqrt{\left(\frac{R}{L}\right)^2 - 1}}}
\]

Finally,

\[
\lambda = 2 \tan^{-1} \left[\frac{R}{L} - \sqrt{\left(\frac{R}{L}\right)^2 - 1} + \frac{2 \sqrt{\left(\frac{R}{L}\right)^2 - 1}}{1 + \frac{(R/L) + \sqrt{\left(\frac{R}{L}\right)^2 - 1}}{e \gamma \sqrt{\left(\frac{R}{L}\right)^2 - 1}}} \right]
\]
For $\frac{R}{L} < 1$, a different solution is obtained as follows:

$$
\tan^{-1} \left\{ \frac{\tan \frac{\lambda}{2} - \frac{R}{L}}{\sqrt{1 - (\frac{R}{L})^2}} \right\} = \gamma
$$

Solving equation (19) for λ,

$$
\tan^{-1} \left\{ \frac{\tan \frac{\lambda}{2} - \frac{R}{L}}{\sqrt{1 - (\frac{R}{L})^2}} \right\} = \frac{\gamma}{2} \sqrt{1 - (\frac{R}{L})^2}
$$

$$
\tan \frac{\lambda}{2} - \frac{R}{L} = \tan \left[\frac{\gamma}{2} \sqrt{1 - (\frac{R}{L})^2} \right]
$$

$$
\tan \frac{\lambda}{2} = \frac{R}{L} + \sqrt{1 - (\frac{R}{L})^2} \tan \left[\frac{\gamma}{2} \sqrt{1 - (\frac{R}{L})^2} \right]
$$

$$
\lambda = 2 \tan^{-1} \left[\frac{\frac{R}{L} + \sqrt{1 - (\frac{R}{L})^2}}{\sqrt{1 - (\frac{R}{L})^2}} \right]
$$

Equations (1), (2), (3), (4), (13), (18), and (20) describe the tractrix and the leading curve for the first portion of the tractrix.
EQUATIONS FOR SECOND PORTION OF TRACTRIX

The second portion of the tractrix is the curve described by the trailer when the hitch point moves on a straight line. Equations for this portion of the tractrix are well known [5]

FIGURE 3
TRACTRIX OF A STRAIGHT LINE

The equations for this portion of the tractrix are expressed in parametric form as follows:

\[x = L \left[t - \tanh t \right] \] \hspace{1cm} (21)

\[y = \frac{L}{\cosh t} \] \hspace{1cm} (22)

These relations are to be joined to the first portion of the tractrix to get the total tractrix.
Equations for x and y coordinates of a point on the second portion of the tractrix will become,

$$\bar{x} = a + R - \frac{L}{\cosh t}$$ \hspace{1cm} (23)

Similarly,

$$\bar{y} = L (t - \tanh t)$$ \hspace{1cm} (24)

The end point of the first portion of the tractrix curve, is the beginning point of the second portion of the tractrix. Using this property, the x coordinate of the end point of the first portion of the tractrix is
made equal to the x coordinate of the beginning point of the second portion of the tractrix. Then the value of the parameter "t" is calculated accordingly.

With this value of t, the value of the y-coordinate of the beginning point of the second portion of the tractrix is calculated using equation (24).

The difference between the y coordinate of the beginning point of the second portion of the tractrix and the y coordinate of the end point of the first portion of the tractrix is the constant to be added to equation (24).

With this constant C added to equation (24), it becomes,

$$\bar{y} = L(t - \tanh t) + C \quad (25)$$

Explicit relations for \bar{x}, \bar{y} coordinates of the tractrix and ξ, η coordinates of the leading curve have now been established.

With equations (23) and (25) the second portion of the tractrix can easily be determined.
FIGURE 5

Diagram showing Parameters Used in Presenting Results
PRESENTATION OF RESULTS

A convenient way to present the results is to plot the distance between the tractrix and the leading curve for one value of the ratio $\frac{R}{L}$. As the leading curve starts from the point D in Figure 5, we can plot the distance $\frac{V}{L}$ between the tractrix and the leading curve against $\frac{X}{L}$ up to the point A of the tractrix, where $\beta = 0$. From geometry $V = y$ for $\frac{R}{L} \leq 0$.

To obtain the formula for the distance V when $\beta > 0; \gamma \leq \frac{\pi}{2}$ consider a point P on the tractrix and Q on the leading curve in the portion of arc AB.

$$\tan \beta_1 = \frac{(x-a)/(b-y)}{(x-a)/(b-y)}$$

$$\beta_1 = \tan^{-1} \left[\frac{(x-a)}{(b-y)} \right]$$

where β_1 is indicated in Figure 4.

$$OP = \sqrt{(x-a)^2 + (b-y)^2}$$

V is the distance between two curves for a particular value of β.

$$V = (OQ - OP)$$

$$= R - \sqrt{(x-a)^2 + (b-y)^2}$$

$\frac{V}{L}$ is plotted against β_1 for this portion of the tractrix.

To obtain the formula for the distance V when $0 < \beta < \frac{\pi}{2}$; and the leading curve is a straight line, consider a point M after the point B.

From the point B onwards, the second portion of the tractrix starts.

The derivation for V is obtained in a similar way as follows:

$$\tan \beta_2 = \frac{(x - a)}{(b - y)}$$

$$\beta_2 = \tan^{-1} \left[\frac{(x - a)}{(b - y)} \right]$$
Distance \(OM = \sqrt{(x-a)^2 + (b-y)^2} \)

\[
V = \frac{ON - OM}{2}
\]

\[
V = R - \sqrt{(x-a)^2 + (b-y)^2}
\]

For this portion of the tractrix \(\frac{V}{L} \) is plotted against \(\beta_2 \). For the remaining portion of the tractrix from the point \(C \) on the tractrix where \(\beta \geq \frac{\pi}{2} \), \(\frac{V}{L} \) is plotted against \(\frac{H}{L} \). Equations for \(\frac{V}{L} \) and \(\frac{H}{L} \) are as follows:

\[
\frac{V}{L} = \frac{(a + R - x)}{L}
\]

and

\[
\frac{H}{L} = \frac{(y - b)}{L}
\]

The graph of the distance between the tractric and the leading curve is roughly indicated in Figure 6.

FIGURE 6
DISTANCE BETWEEN THE TRACTRIX AND THE LEADING CURVE

For this curve to be continuous the scale for \(\beta \) is calculated as follows:
The maximum value of $\frac{x}{L}$ is 1.0 and is represented by 1 unit on graph paper.

The length of the quarter circle made by the hitch point to be represented on the graph is equal to $\left(\frac{\pi R}{2}\right)$. Number of units on graph paper representing the length of the quarter circle are equal to $\frac{\pi R}{2L}$. Thus, the scale for β is obtained.
NUMERICAL RESULTS

An IBM 1410 electronic computer was used to obtain solutions to equations (18) through (25) for given values of the independent variables. These numerical results are given in Tables I and II. Figures 8, 9, 10, 11, 12, and 13 show the distance between the curves for different radii of cornering. Figure 7 shows the effect of increase of radius of cornering, on the distance between the curves.

The numerical work was done using 11 place arithmetic.
TABLE I
Distance Between the Tractrix and the Leading Curve

\(R = 45 \text{ Ft.} \quad L = 30 \text{ Ft.} \)

<table>
<thead>
<tr>
<th>(x/L)</th>
<th>(\beta_1) (degrees) for (\beta > 0, \alpha \leq \frac{\pi}{2})</th>
<th>(\beta_2) (degrees) for (\alpha \geq \frac{\pi}{2})</th>
<th>(H/L)</th>
<th>(V/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000</td>
<td>0.00000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.02618</td>
<td>0.00000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.13075</td>
<td>0.00024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.23479</td>
<td>0.00136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.41475</td>
<td>0.00724</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.59100</td>
<td>0.02027</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.71413</td>
<td>0.03506</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.81073</td>
<td>0.05058</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.90458</td>
<td>0.06961</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.99821</td>
<td>0.09229</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.86051</td>
<td>0.09839</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.36357</td>
<td>0.14756</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.11604</td>
<td>0.17530</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.98005</td>
<td>0.19186</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.67758</td>
<td>0.23371</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.49913</td>
<td>0.26365</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.54246</td>
<td>0.27963</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.42645</td>
<td>0.27938</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.41873</td>
<td>0.27937</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X/L</td>
<td>β_1 (degrees) for $\beta > 0$</td>
<td>β_2 (degrees) for $\alpha > \frac{\pi}{2}$</td>
<td>H/L</td>
<td>V/L</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.41834</td>
<td></td>
<td></td>
<td>0.27937</td>
<td></td>
</tr>
<tr>
<td>60.50916</td>
<td></td>
<td></td>
<td>0.29872</td>
<td></td>
</tr>
<tr>
<td>65.67774</td>
<td></td>
<td></td>
<td>0.30134</td>
<td></td>
</tr>
<tr>
<td>70.96308</td>
<td></td>
<td></td>
<td>0.29933</td>
<td></td>
</tr>
<tr>
<td>74.96940</td>
<td></td>
<td></td>
<td>0.29422</td>
<td></td>
</tr>
<tr>
<td>77.64615</td>
<td></td>
<td></td>
<td>0.28891</td>
<td></td>
</tr>
<tr>
<td>84.30138</td>
<td></td>
<td></td>
<td>0.26851</td>
<td></td>
</tr>
<tr>
<td>86.92853</td>
<td></td>
<td></td>
<td>0.25735</td>
<td></td>
</tr>
<tr>
<td>88.23091</td>
<td></td>
<td></td>
<td>0.25112</td>
<td></td>
</tr>
<tr>
<td>89.52465</td>
<td></td>
<td></td>
<td>0.24445</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.01859</td>
<td></td>
<td>0.23747</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.51040</td>
<td></td>
<td>0.14391</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.80572</td>
<td></td>
<td>0.10686</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.01376</td>
<td></td>
<td>0.08671</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.61113</td>
<td></td>
<td>0.04765</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.51018</td>
<td></td>
<td>0.01938</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.02006</td>
<td></td>
<td>0.01164</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.50002</td>
<td></td>
<td>0.00720</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.01000</td>
<td></td>
<td>0.00433</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.27999</td>
<td></td>
<td>0.00330</td>
<td></td>
</tr>
</tbody>
</table>
TABLE II

Distance Between the Tractrix and the Leading Curve

\(R = 300 \text{ Ft.} \quad L = 30 \text{ Ft.} \)

<table>
<thead>
<tr>
<th>(x/L)</th>
<th>(\beta_1(\text{degrees})) for (\beta > 0, \alpha \leq \frac{\pi}{2})</th>
<th>(\beta_2(\text{degrees})) for (\alpha \geq \frac{\pi}{2})</th>
<th>(H/L)</th>
<th>(V/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000</td>
<td>0.00000</td>
<td></td>
<td>0.00000</td>
<td></td>
</tr>
<tr>
<td>0.17453</td>
<td></td>
<td></td>
<td>0.00008</td>
<td></td>
</tr>
<tr>
<td>0.34901</td>
<td></td>
<td></td>
<td>0.00065</td>
<td></td>
</tr>
<tr>
<td>0.52343</td>
<td></td>
<td></td>
<td>0.00221</td>
<td></td>
</tr>
<tr>
<td>0.69776</td>
<td></td>
<td></td>
<td>0.00480</td>
<td></td>
</tr>
<tr>
<td>0.87198</td>
<td>0.26429</td>
<td></td>
<td>0.00901</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.25943</td>
<td></td>
<td>0.01489</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.25743</td>
<td></td>
<td>0.03535</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.25074</td>
<td></td>
<td>0.04275</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.24728</td>
<td></td>
<td>0.04974</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40.24536</td>
<td></td>
<td>0.05004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45.24343</td>
<td></td>
<td>0.05009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>51.24113</td>
<td></td>
<td>0.05011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>84.22846</td>
<td></td>
<td>0.05012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>84.22845</td>
<td></td>
<td>0.05015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85.26020</td>
<td></td>
<td>0.05005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>86.81007</td>
<td></td>
<td>0.04878</td>
<td></td>
</tr>
<tr>
<td>x/L</td>
<td>β_1 (degrees) for $\beta > 0, \alpha > \pi/2$</td>
<td>β_2 (degrees) for $\alpha > \pi/2$</td>
<td>H/L</td>
<td>V/L</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>87.67174</td>
<td>0.04701</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88.36116</td>
<td>0.04488</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88.87719</td>
<td>0.04279</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>89.39513</td>
<td>0.04026</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>89.56741</td>
<td>0.03931</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>89.73967</td>
<td>0.03830</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>89.91191</td>
<td>0.03724</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.02065</td>
<td>0.03615</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.20045</td>
<td>0.03019</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.29038</td>
<td>0.02759</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.50025</td>
<td>0.02237</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.01009</td>
<td>0.01344</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.49003</td>
<td>0.00831</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.76001</td>
<td>0.00635</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.00001</td>
<td>0.00499</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.30000</td>
<td>0.00369</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.42000</td>
<td>0.00328</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 8
TRAILER'S POSITION
Dimensionless distance between the tractrix and the leading curve versus Trailer's position
Figure 9

Position of the Trailer

Dimensionless distance between the tractrix and the leading curve versus Trailer's position
FIGURE 10
POSITION OF THE TRAILER
Dimensionless distance between the tractrix and the leading curve versus trailer's position.
FIGURE 11

POSITION OF THE TRAILER

Dimensionless distance between the tractrix and the leading curve versus Trailer's position
FIGURE 12
TRAILER'S POSITION
Dimensionless distance between the tractrix and the leading
curve versus Trailer's position
FIGURE 13

POSITION OF THE TRAILER

Dimensionless distance between the tractive and the leading curve versus trailer's position

Dimensionless distance v/L

H/L

R/L = 10

β (degrees)
DISCUSSION OF RESULTS

The present results indicate that the distance between the leading curve and tractrix increases up to some value of the angle β and then decreases to zero.

It can be seen as in Figure 7 that as the ratio $\frac{R}{L}$ increases, the maximum distance between the leading curve and the tractrix becomes less. Thus, it is concluded that for corners with larger radius of curvature, cornering can easily be done without any difficulty.

The radius of curvature of cornering, i.e., R', was assumed constant for simplicity of analysis. But, practically the radius of curvature of the leading curve may not be constant. Further, investigation is recommended to determine the distances between other leading curves and corresponding tractrix curves.
CONCLUSIONS

The results indicate that the distance between the leading curve and the tractrix will become smaller as the radius of curvature of the leading curve is increased. The procedure can be extended to other leading curves to determine the differential equation. However, the solution becomes more complex as the geometry of the problem is varied.

The degree of accuracy of the solution obtained by this procedure is dependent upon the efficiency and speed of present day high speed digital computing facilities. The method is practical and results are accurate.
ACKNOWLEDGMENT

I express my appreciation to Dr. F. C. Appl of the Department of Mechanical Engineering, Kansas State University, for his guidance and counsel throughout the course of this work as my adviser.
REFERENCES

APPENDIX A

Listing of Fortran Program to solve for the distance between the tractrix curve and the leading curve.
FORMAT(5E16.8)
FORMAT (4E21.12)
READ (1,5)C,DEL,D,ER
RL=1.5
E=30.
ERR=0.001
GAMA=0.
B=(RL)*C
DELTA=DEL
ERB=0.1
P=RL-\sqrt{(RL)*(RL)-1.})
Q=(RL+\sqrt{(RL)*(RL)-1.})/(-RL+\sqrt{(RL)*(RL)-1.})
T=(2.1*(\sqrt{(RL)*(RL)-1.}))
S=(T)/(1.+EXP(GAMA*(\sqrt{(RL)*(RL)-1.}))*Q)
A=2.*(ATAN(P+S))
THETA=GAMA-A
R=(RL)*C
ETA=B-(R*(COS(GAMA)))
CETA=D+(R*(SIN (GAMA)))
X=CETA-(C*\sqrt{(RL)*((RL-D)-(RL)})
Y=ETA-(C*(SIN(GAMA)))
WRITE(3,7)GAMA,THETA,ETA,CETA
WRITE(3,5)HOR1,VER1,HOR2,VER2
WRITE(3,5)DIS1,BETA1,DIS2,BETA2
WRITE(3,5)DISi,BETAl,DIS2,BETA2
ERROR=ABS(GAMA-1.57079633)
IF(ERROR-ER)14,14,12
GAMA=GAMA+DELTA
A1=ATAN(1./\sqrt{(RL)*(RL)-1.}))
IF(A-A1)16,14,14
DELTA=DELTA/2.
GAMA=GAMA-D GAMA-DELTA
GC TC 11
14 Z=0.
17 CCSHT=(EXP(Z)+EXP(-Z))/Z.
TANHT=(EXP(Z)-EXP(-Z))/(EXP(Z)+EXP(-Z))
XB=D+R-(C/CCSHT)
WRITE(3,5)XB
ER2=ABS(XB-X)
IF(ER2-ERR)19,19,25
25 IF(XB-X)18,19,26
26 DELZ=DELZ/2.
 Z=Z-DELZ
GC TC 17
18 DELZ=0.05
 Z=Z+DELZ
GC TC 17
19 YA=C*(Z-TANHT)
 C1=Y-YA
20 CCSHT=(EXP(Z)+EXP(-Z))/Z.
TANHT=(EXP(Z)-EXP(-Z))/(EXP(Z)+EXP(-Z))
XB=D+R-(C/CCSHT)
YB=C*(Z-TANHT)+C1
IF(YB-B)27,28,28
27 BETA3=(ATAN((XB-D)/(B-YB)))*(180.)/(3.1428)
BETA4=(ATAN((XB-D)/(B-YB)))/R
R2=SQR((XB-D)*(XB-D)+(B-YB)*(B-YB))
DIS3=(R-R2)/C
DIS4=(R-R2)/R
WRITE(3,5)DIS3,BETA3,DIS4,BETA4
GC TC 21
28 HCR3=(YB-B)/C
HCR4=(YB-B)/R
VER3=(D+R-XB)/C
VER4=(D+R-XB)/R
21 WRITE(3,5)HCR3,VER3,HCR4,VER4
ER1=ABS(XB-(D+R))
IF(ER1-ERB)23,23,22
22 DELZ=0.03
 Z=Z+DELZ
GC TC 20
23 RL=RL+1.
 IF(RL-6.)10,10,24
24 STOP
END
S
MCNS$ EXECQ LINKLOAD
CALL TRACTOR
MCNS$ EXECQ TRACTOR,MJB
.30000000E 02 .17453290E-01 .30000000E 02 .10000000E-06
TRACTOR TRAILER CORNERING

by

RAMGOPAL BATTU

B. S., Osmania University, 1963

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1965
When a trailer moves around a corner, the hitch point of the trailer makes a curve called the "leading curve." In this paper it is assumed, for the purpose of analysis, that the leading curve has a constant radius of curvature. The differential equation for the tractrix is determined, and a solution found.

Numerical results are determined for six leading curves with different radii of curvature. Curves indicating the distance between the tractrix and the leading curve as a function of trailer position are plotted for all cases. The method of finding the distance between the curves is well adapted to analysis on high speed digital computers.

The differential equation derived in this paper for the tractrix is not valid when the hitch point makes other than circular leading curves.