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Abstract

Late blight of potato, caused by Phytophthora infestans, is a pernicious disease of pota-

toes worldwide. This disease causes yield losses as a result of foliar and tuber damage.

Many models exist to predict late blight risk for control purposes with-in season but rely

upon fine-scale weather data collected in hourly, or finer, increments. This is a major con-

straint when working with disease prediction models for areas of the world where hourly

weather data is not available or is unreliable. Weather or climate summary datasets are

often available as monthly summaries. These provide a partial solution to this problem

with global data at large time-steps (e.g., monthly). Difficulties arise when attempting to

use these forms of data in small temporal scale models. My first objective was to develop

new approaches for application of disease forecast models to coarser resolution weather data

sets. I created metamodels based on daily and monthly weather values which adapt an

existing potato late blight model for use with these coarser forms of data using general-

ized additive models. The daily and monthly weather metamodels have R-squared values

of 0.62 and 0.78 respectively. These new models were used to map global late blight risk

under current and climate change scenarios resistant and susceptible varieties. Changes in

global disease risk for locations where wild potato species are indigenous, and disease risk

for countries where chronic malnutrition is a problem were evaluated. Under the climate

change scenario selected for use, A1B, future global late blight severity decreases. The risk

patterns do not show major changes, areas of high risk remain high relative to areas of low

risk with rather slight increases or decreases relative to previous years. Areas of higher wild

potato species richness experience slightly increased blight risk, while areas of lower species

richness experience a slight decline in risk.
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Chapter 1

The Big Picture: Mapping Global
Plant Disease Risk

1.1 Introduction

New ecoinformatic approaches are expanding our ability to forecast ecosystem status and

changes, such as evaluations of disease risk across large areas and time lines1. As pressures

for use of resources intensify, it will be increasingly important to optimize both short-term

and long-term strategies for disease management. Realistic evaluations of disease risk are

a critical first step for establishing these strategies and play an important role in decision-

making. Infectious plant disease, as the interaction between at least two species, offers a

particularly interesting system for evaluating the status of ecological theory in support of

decision-making across scales2.

Many plant diseases exhibit a strong relationship with meteorological variables, because

pathogens often have direct exposure to environmental conditions during resting stages,

dispersal between hosts, and even within hosts, where they are not buffered from environ-

mental conditions. The occurrence of plant disease is driven by three factors: a susceptible

host, the presence of a competent pathogen (and vector if needed), and conducive weather3.

Plant disease is commonly studied for its impact on crop yields in order to devise control

strategies; overall yield losses of 10% due to plant disease are typical, and in severe epidemics

total crop loss may result4. Losses of ecologically important plant species due to invasive
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pathogens are another important potential impact5, such as the decimation of the American

chestnut by chestnut blight (caused by Cryphonectria parasitica (Murrill) Barr)6 and the

great impacts on Australian plant ecology caused by the generalist pathogen Phytophthora

cinnamomi 7.

Because of its impact upon human activities, plant disease risk is studied in a variety

of ways, where the definition of disease risk may depend upon the situation. First, disease

risk can be measured as the probability that a disease or disease complex8 is important

at a particular point in space and time, where importance might be defined in terms of

expected yield loss, expected introduction of mycotoxins to foods from pathogens, or other

expected impacts on ecosystem integrity or ecosystem services. The capacity to assess the

last impact requires the relationship between disease risk and impacts on ecosystem services

to be well-understood. Second, disease risk can be defined in terms of disease intensity, as

the estimated level of disease severity (e.g., the area of a plant or leaf affected by disease),

or disease incidence (e.g., the amount of plants or plant parts affected by disease). This

perspective emphasizes the level of disease rather than the impacts on yield or ecosystems

services.

Third, disease risk can be defined in terms of the probability of an extreme event, such

as unusually severe crop losses or threats to the survival of a plant species. This perspective

emphasizes “worst case” scenarios and could include cases such as the introduction of an

invasive pathogen into a vulnerable agricultural region6.

The majority of plant disease epidemiologists emphasize epidemiological processes within

fields, often because of the utility of this approach for the majority of stakeholders who

are interested in short-term management decisions. With this synthesis I hope to provide

perspective on the possibilities for expanding research scale for plant pathologists, and the

analytic tools that are already available or that need to be developed. For geographic

scientists already working at national and larger spatial scales, I provide a synthesis of the

biological issues involved in estimating plant disease risk.
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Establishing more links and shared approaches between these groups of scientists is

particularly important as the scientific and policy communities grapple with an array of

related problems: diminished natural resource availability per person, increased species

extirpation and extinction risks under human population pressure, and global change factors

such as climate change and accelerated rates of species invasions. Plant disease and its

management are important components for strategies in each of these areas.

My objectives are to synthesize approaches to plant disease risk mapping. I also ad-

dress how risk factors can be combined to produce better estimates, with examples of new

applications and a conceptual framework for future approaches.

1.2 Maps of disease and other ecological traits

Disease maps, which have been produced for several centuries, differ from disease risk maps,

in that the former are intended to communicate the current or prior occurrence of disease,

rather than predicting a future risk associated with a change in the current situation. Early

examples of disease maps include plague incidence in Italy in the 1690s, yellow fever in the US

in the 1700s and 1800s, and perhaps most famously, John Snow’s maps of cholera in London

from 18549,10. Snow is credited for drawing a map of deaths resulting from the 1854 Broad

Street cholera epidemic in London, and as a result, removing the pump handle from the

offending well. While Snow did not necessarily use the map to generate his hypothesis about

the role of water, he did use his map to support his hypothesis that cholera was transmitted

in the water. As Brody et al. state the mere act of seeing data arranged graphically in space

yields no new understanding without the support of pathological theory11. This illustrates

an aspect of mapping: maps can help us interpret information about disease risk, but they

do not tell us how to use the information that they present.

At a larger scale, efforts to map the Earth’s surface in a manner that is useful for

delineating areas of biological commonality also have a long history. In 1905 Herbertson

attempted to describe rational subdivisions of the Earth’s surface, which were distinct from
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political divisions12. He attempted to include many different considerations in his natural

regions: physical characteristics, climate, vegetation, and even human population density.

Later, Omernick defined ecoregions of the conterminous US for research and management

purposes, but cautioned that the ecoregions should only be used at the resolution at which

they were compiled and presented13 . That is, there is less variation within the large

ecoregions than between, however, using the definitions of ecoregions at a resolution smaller

than the ecoregion itself is not suitable.

Omernik’s admonition that the regions should only be used at the resolution for which

they were compiled and presented is important. Information cannot be gleaned from a

map at a lower resolution than the map presents, so trying to base decisions on risk at a

lower resolution than the map represents will not yield satisfactory results. Regions defined

by climate classification schemes, indicating the likely locations of major natural ecosys-

tems and agricultural systems, have been used to determine the likely productivity of an

area and the effects of research and development allocations on natural resources by the

Consultative Group on International Agricultural Research (CGIAR) centers14,15. A new

phase of research including CGIAR centers addresses global factors reducing crop produc-

tivity, making use of GIS (Geographic Information System) data layers (Wood, personal

communication).

1.3 Scale and disease risk mapping

Maps are a powerful way to convey information quickly. For plant disease risk they are

particularly appropriate because of the high level of spatial and temporal variation16. The

contribution of disease risk maps to decision-making occurs across several scales (Figure 1.1);

with relevant scales reviewed in Yang17 and Savary et al.8. For policy making, formulation

of strategies for quarantines or disease management, and for research prioritization, it is

important to know where the combination of susceptible host, competent pathogen, and

disease-conducive weather will co-occur to produce disease that will have important impacts
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on crop yield or on the biological integrity of natural ecosystems. Maps for this purpose are

generally at a much coarser temporal scale (months, years, or decades), and spatial scale

(countries or continents). Such maps may contribute to decisions about responses to invasive

pathogens, in terms of likely points of introduction, areas where climate is conducive to

establishment, and the connectivity of host populations as it may influence invasion processes

(e.g. Magarey et al.18 and Margosian et al.19). For tactical decision-making by individual

land managers or food processors who may be confronted with contaminated products (e.g.,

De et al.20), the time-frame is often much shorter (weeks or days) and the spatial scale must

be smaller to retain accuracy and precision8,17. However, many of the same tools that are

useful for regulatory decision-making are also useful for real-time decision-making processes.

For example, maps of host connectivity19 can be useful for long-term planning as well as

responding to new pathogen introductions.

In ecological modeling, scale may be a challenging aspect of sampling and statistical

analysis, but also a source of interest as an object of study in its own right (e.g., Borcard21).

Scale is an important issue for applications such as plant disease forecasting under climate

change, because plant disease epidemics occur at scales much smaller than that of prediction

for most climate change models22. Information about the scale at which processes were

measured is needed for comparison of studies23. Because the relevant scale of ecological

processes for infectious diseases involves at least two organisms, knowledge of the scale of

pathogen dispersal needs to be combined with information about the range of the host and

the distance between host populations23 for evaluations of large-scale processes. Models

integrating three scales of host plant populations – infection sites, leaves, and plants –

have been developed to examine the effects of scale on disease incidence at different spatial

hierarchies24. This general model could be applied to other organizational scales or ecological

systems making a model like this a powerful tool for investigating disease patterns at different

scales.

Scaling disease ecology from fields to regions and beyond offers many challenges, not the
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least being the reduced availability of experimental data at larger scales. The metacommu-

nity concept is useful when considering plant disease since disease is a factor two or more

species interacting at many scales16. The metacommunity concept extends metapopula-

tion models to incorporate more directly the potential movement of multiple species among

their respective populations as they interact with other species25. The interaction between

species is influenced by the landscape within which the species occur. Characterization of

a landscape’s degree of fragmentation may be useful for predicting dispersal of pathogens,

particularly in cases where pathogens migrate with seasonal changes or are invasive in new

areas26,27.

1.4 Data types and data quality

The type of analysis that can be carried out to produce a risk map depends on the data

model that is used. Geographic information system databases may contain many different

types of data; raster, vector, one, two, or three-dimensional, qualitative, categorical, or

quantitative data. Risk maps can be developed using vector data or raster data models.

The vector data format uses lines which have defined beginning and end points and meet

at nodes, to represent spatial features, and as such is better for displaying discrete spatial

data. Examples of vector data include geopolitical boundaries, points where an observation

was collected, or roads. For example, Margosian et al.19 applied network models with vector

data to analyze the connectivity of the American agricultural landscape. The raster data

model is effective in representing continuous data over a landscape surface. Examples of

raster data include meteorological data, digital elevation models, and degree of soil erosion.

The raster data model employs a regular grid to represent the area of interest and each cell

is assigned a specific value. An example of a plant disease risk model that uses the raster

data format is the Internet-based Wheat Fusarium Head Blight Prediction Center map28.

Caution should be used when selecting data sources to use in a GIS. Often several data

sources are used within a GIS in complex models to generate output upon which critical
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and politically sensitive decisions may be based. However, spatial data of suitable quality

may not be available29. The error associated with each data source may be propagated

and multiplied through the model to the resulting risk map. Sources of uncertainty should

be understood and dealt with to create useful disease risk maps, and methods have been

developed to address uncertainty30,31.

1.5 Spatial pattern and disease risk

Historically some disease risk maps were based on knowledge of prior exposure of a subject

relative to the whole population32. These maps provided local or regional estimations of

relative risk for a population, and illustrated geographical variation, but were not capable of

predicting risk when the risk factors were unknown9. Now with more advanced ecoinformatic

methods, it is becoming easier to predict the risk to individuals when the risk factors not

known a priori 9. The concept of exploratory relative risk mapping is predicated on the

idea that disease will tend to cluster if there is spatial variation in risk, due to variation in

the intensity of unknown risk factors9. Wu and Subbarao used cluster analysis of weather

variables to identify areas in the Salinas Valley of California that were at higher risk of

lettuce downy mildew33. Farmers can use risk maps generated by this analysis to tailor

their fungicide application schedule: in areas of higher risk a conservative approach might

be advised, while in areas of lower risk, fungicide use can be aggressively reduced to cut

costs33. In some cases, the relative importance of particular sources of inoculum within

landscapes can be identified. Zwankhuizen et al. explored the sources of potato late blight

epidemics, concluding that potato cull piles were sources of early inoculum and organic

farms were later sources of secondary inoculum34.

Analyses of animal systems provide additional interesting examples of the incorporation

of spatial pattern in modeling. In an applied example, Boender estimated that poultry

farms that were closer to another farm infected with avian influenza (0-2 km) had a higher

chance (1%-2%) of infection than farms that were >10 km away (0.05%)35. Exploratory
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risk maps can help elucidate spatial patterns related to the host, agent, and environment.

Berke (2005) suggested using isopleth maps to display disease risks over chloropleth maps.

Chloropleth maps display aggregated data over discrete predefined regions. Isopleth maps of

disease risk more useful for illustrating disease risk due to unknown factors over a region with

less visual bias. However disease data are ordinarily collected as discrete spatial point data

and irregularly distributed over the landscape, requiring spatial interpolation for isopleth

mapping9.

1.6 Disease risk maps based on meteorology

Long-term climate maps or short-term weather maps may be equally important for disease

risk mapping, depending on the goals of the analysis. Weather is often the most rapidly

changing of factors that can trigger important plant disease epidemics; thus, many disease

risk maps for within-season decision-making have been developed based on weather vari-

ables3,28. Disease risk maps based on weather or climate variables are effective when it can

be assumed that weather or climate is the limiting factor, while the host is present and

susceptible to the pathogen and inoculum is not limiting. Many agricultural production

systems meet this criterion at least part of the year where large areas of monocultures are

grown. Disease risk maps based on weather are also effective from the point of view that

even if the map-maker does not know if the host is present, but can assume that inoculum

will not be limiting, individual land managers who use the maps are aware of which hosts are

present in their own land. At larger time scales, prediction of the effects of climate change

on plant disease risk is one important motive for evaluating and mapping the relationship

between climate and disease36,37. Models of plant disease have been developed that can

incorporate sophisticated general circulation models (GCM). But GCM output will often

need to be scaled down for forecasting plant disease interactions22. However, in some cases

coarser large-scale climate indices are better for prediction of ecological processes than local

weather, when local weather has too much noise to be useful38.
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For large-scale strategic analysis of disease risk based on climate, coarser spatial and

temporal evaluations are relevant. Hijmans et al. linked two plot-level disease prediction

models to a climate database in a GIS to predict the severity of global late blight (caused

by Phytophthora infestans (Mont.) de Bary) on potato (Solanum tuberosum L.)39. This

novel approach to predicting disease severity made it possible to compare and contrast the

differences in predicted disease risk and actual management practices derived from survey

data. The results of studies such as this can lead to improved interpretation of survey

data39. An example of a risk map for potato late blight based on point-by-point analyses

of temperature and humidity is given in Figure 2. These late blight forecasting systems use

the daily average temperature, hours of leaf wetness (estimated using relative humidity),

and the host’s level of resistance to estimate disease risk39.

For smaller-scale tactical decision-making within a season, disease risk maps may still

be generated for larger regions, allowing individual land managers to reference their own

locations on the map. Thomas et al. described a GIS created to map disease and insect

risk, and crop cultural requirements using ground-based weather from local stations, plant-

stage measurements, and remotely sensed imagery for commercial crop decision-making

in California, Washington, Oregon, Idaho, and Arizona40. Since the relationship between

weather variables and risk is different for different diseases, such an integrative approach

requires many different models to predict risk for the entire disease complex. Using intuitive

color-coded maps to indicate risk increases the speed with which the growers can learn to

use the maps and evaluate updated maps distributed via the Internet23. When combined

with disease scouting reports, disease risk maps can be useful for letting pest managers

know what diseases have been sighted, where disease is likely to occur, and where inoculum

is likely to be present23.

Another example where short-term risk maps for individual farmer decision-making are

useful is Fusarium head blight (FHB), primarily caused by Gibberella zeae (Schwein.) Petch

(anamorph: Fusarium graminearum Schwabe). FHB has proven difficult to control in
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wheat (Triticum aestivum L. em. Thell) in North America, where epidemics can cause

severe losses through a direct reduction in yield and loss of wheat quality20. Mycotox-

ins produced by G. zeae, such as deoxynivalenol, necessitate that infected kernels be re-

moved from the harvest, increasing cleaning costs. To disseminate updates regarding FHB

risk, an Internet-based risk map was developed for 24 states east of the Rocky Mountains

(http://www.wheatscab.psu.edu/index.html)28. Maps such as this provide farmers with

real-time information to make management decisions and allow grain handlers and food

producers to prepare for the potential for mycotoxin contaminated grain before the grain is

delivered to them20.

When it can be assumed that inoculum is not a limiting factor, disease severity may be

predicted using meteorological data for an area where a host is known to occur. In a model

to predict soybean rust (caused by Phakopsora pachyrhizi Syd.) severity during the soybean

Glycines max (L.) Merrill) growing season in Brazil, precipitation explained 85-93% of the

variation in disease severity at the end of the season41. Such models work well for alerting

farmers to scout for disease development or, in the case of soybean rust, to prepare for

fungicide application since the host can be assumed to be susceptible.

Frequently, the interaction of temperature and moisture is used to predict plant disease

occurrence28. These data are often readily available, though often with a coarse resolution

both geographically and temporally, and they may vary in quality depend upon the region

where the data were collected42. For many biological processes, temperature has a large

impact on disease development and temperature data are generally readily available at some

scale. However, moisture in the form of relative humidity and free leaf wetness are critical

for infection by some pathogens as well43. Relative humidity is well defined, but it is not as

easy to define leaf wetness duration or to gather data to characterize leaf wetness, because

various portions of the canopy may be wet or dry at the same time43. These challenges

have been met by plant pathologists through several methods for measuring leaf wetness or

estimating it from more commonly available measures43–45.
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The above applications of climate and weather for the generation of disease risk maps

are typical in that risk is generated point-by-point without incorporating information about

the risk at neighboring points. This approach is illustrated (Figure 1.2) for a scenario where

there is a single climate variable of importance and a climate threshold below which there

is no risk and above which risk increases linearly with the increasing climate variable. This

approach may be adequate for many applications, but an obvious climatic component that

motivates inclusion of relationships between locations is wind speed and direction, in terms

of both average values and maxima46. Incorporating wind in models provides a link between

previous disease locations and predictions of future disease locations (e.g. Isard et al.47,48).

1.7 Disease risk maps based on previous disease loca-

tions

Observations of historical or current disease intensity may be one of the most useful predic-

tors of future disease risk, particularly when the pathogen and host were not limiting during

previous evaluations. However, most observations of disease intensity have been collected

on a large spatial resolution and have generally not been mapped, per se. Examples of dis-

ease data collections include Diagnostic Compendia from the American Phytopathological

Society, which often include a brief statement about the range where the disease is known

to occur, the International Virus Database of the International Committee on Taxonomy of

Viruses, http://www.ncbi.nlm.nih.gov/ICTVdb/index.htm, and the Systematic Mycol-

ogy and Microbiology Laboratory Index of Fungi Database,

http://nt.ars-grin.gov/fungaldatabases/fungushost/fungushost.cfm.

Other compendia such as the Centre for Agricultural Bioscience International data sets

do include maps or the capability to directly generate maps from their datasets of known oc-

currences. Such databases related to the observed distribution of host and pathogen species

have been used to evaluate hypotheses such as the enemy release hypothesis, which states

that upon introduction to a foreign area a plant species experiences a decrease in regula-
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tion by herbivores and other natural enemies leading to a rapid increase in abundance and

distribution49. The surprising absence of maps of disease occurrence and intensity for most

important diseases may be a function of the intensive effort that must be made to conduct

a survey of disease. Mapping host occurrence, especially in agricultural monocultures, is

much easier on a macro scale where there is often a single host species per field. In con-

trast, even a single plant species may have several different diseases. Even when disease

severity or incidence data are recorded, it may not be completely clear where the disease

occurs geographically. The failure to detect disease during limited sampling events provides

little confidence that the disease is absent in the surveyed area. Maps of previously known

locations for plant disease can be useful for strategies, such as decision-making about the

introduction of new germplasm. However, maps of past disease occurrence are not useful for

immediate decision-making within a field, as they are too coarse temporally for the current

situation.

Data such as the historical extent of a disease’s occurrence may be available, typically

in the form of single points of data that can be represented as a simple dot map or the

data can be interpolated or extrapolated to represent a much larger area. Sporadic disease

occurrence can require a careful repeated approach to sampling, and misidentification can

occur. The quality of this type of data is often lower than for meteorological or host data,

and it is generally rarer. Despite the potential problems with disease occurrence data, it is

useful in helping to point out locations where other factors may influence disease that are

not encompassed by the host availability or meteorological data. For example, soil type may

be important in disease risk for some soil-borne pathogens. Figure 1.2 illustrates a scenario

where a disease has been surveyed and found to be present in two geopolitical units, but, as

is typical for this type of data, another large geopolitical unit was not surveyed, or during the

survey disease presence data only is taken omitting absence data. The lack of survey data

for one geopolitical unit indicating presence or absence is often an issue when attempting

to construct maps or models.
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Pathogens outside plant hosts are sometimes sampled directly, which, combined with

information about disease, host availability, and meteorological conditions, can provide very

useful information about the conditions that support the occurrence of disease. Pathogen

data provides information about whether inoculum is a limiting factor. It also can be used

for short-term predictions about the geographic distribution of disease risk; for example,

combined with other predictor variables, trapping soybean rust spores during the disease’s

annual progression from the southern USA to the northern USA can help in estimating

disease risk48. One of the most important characteristics of pathogen populations is their

competence for overcoming resistance in plant populations. New strains of pathogens that

can infect previously resistant plants are often mapped at a coarse resolution. For example,

new strains of the wheat stem rust pathogen (UG99) are mapped as they spread through

and out of Africa to other wheat production regions50. In addition to information about

the locations of disease or pathogens, information about vectors may also be useful for

estimating disease risk. Peterson et al. used migratory birds to model the range of West

Nile virus51. The risk of Stewart’s disease of maize (Zea mays) can be forecast by predicting

the winter survival of the corn flea beetle (Chaetocnema pulicaria Melsheimer) populations

which transmit the bacterial pathogen (Pantoea stewartii subsp. stewartii (Smith) Dye)52,

and aphids are routinely monitored as a virus disease risk indicator for virus diseases in

potato seed tuber production, http://aphmon.csl.gov.uk/.

1.8 Disease risk maps based on host availability

Host availability data often may be difficult to locate for use so fewer disease risk models have

been based on host availability. The presence of host species is a logical requirement for dis-

ease risk. Reliable host availability data can be attained from some sources for agricultural

species maps, such as the US National Agriculture Statistics Service (NASS), and the USDA

Natural Resources Conservation Service Plants Database (http://plants.usda.gov). Fig-

ure 1.2 illustrates a scenario where the risk of disease is minimal for low levels of the host,
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but increases rapidly to achieve a high level of risk when host availability is no longer limit-

ing. Often the collection methods for host availability data are similar to those for disease

occurrence data, and may be incomplete, or only positive occurrences may be recorded

while negatives are unknown or difficult to interpret. Another important consideration is

the timing of host availability; annual plant species may be available only part of the year,

and even perennial species may be available in a susceptible growth stage only part of the

time.

The effect of small-scale host heterogeneity has been illustrated dramatically in the case

of rice blast (causal agent Magnaporthe grisea (Barr)) management through mixtures of

higher-value susceptible rice and lower-value resistant rice53. The effects of host heterogene-

ity are not as consistent in all systems (e.g., Garrett et al.54); in some cases the characteristics

of the host-pathogen system can be used to predict the magnitude of effects55,56. Informa-

tion about host availability can be evaluated point-by-point (field-by-field), but also lends

itself to evaluation of the potential for pathogen movement through the host landscape57,58.

Graph theory is becoming more commonly used in ecological applications59. In the graph

theory framework, disease can be modeled as traveling along paths (edges) between host

individuals or populations (nodes). Jeger et al. suggested the use of epidemiological models

based on networks to study individual hosts as a set of vertices60. This helps elucidate

management strategies which provide effective control through better understanding of how

the disease spreads over the host landscape. Networks can be used to study the effects of

a fragmented landscape on disease spread compared to a homogeneous landscape60. Using

a network modeling approach in a GIS, Margosian et al. have applied graph theory to the

US agricultural system19. County-level USDA NASS data about crop abundance were used

to construct networks of four major crops in the US, maize, soybean, wheat, and cotton19.

Determining the scale at which crop species plantings become discontinuous (disconnected)

enough to disrupt pathogen transmission can help target regions where a rapid response

may slow or stop disease movement, and inform policy to enhance agricultural landscape
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heterogeneity.

Networks based on pathogen movement between host populations can be improved by

including information about pathogen starting locations and about how climate or weather

influences rates of reproduction and movement. If neither pathogen availability at starting

points nor climate or weather suitability is limiting, it may be reasonable to assume that a

network based on host availability will predict where disease will develop. Information about

the role of different host species at different time points may also improve risk estimation

(e.g., Isard et al.48).

1.9 Disease risk maps based on climate envelope

Climate envelope models (also known as species distribution models and as ecological niche

models) combine information about previously mapped occurrence of a species with infor-

mation about the climate (and potentially other) characteristics of those areas of occurrence,

in order to predict additional locations where the species could potentially survive.

Most of these models focus on the use of presence or absence data from the species’

known range in combination with other environmental data known or thought to have an

effect on the species survival in its native range61. Common statistical approaches used in

climate envelope modeling include machine learning methods such as Maximum Entropy,

Boosted Regression Trees, as well as General Additive Models and General Linear Models

(often logistic) and distance measures62.

Climate matching models such as CLIMEX63 were designed to determine species’ likely

distribution or abundance and elucidate factors that limit the species’ distribution23. CLIMEX

includes a global meteorological database, is process driven64 and has been applied to predict

new locations for plant pathogens65,66. Desprez-Loustau et al. used CLIMEX to examine

the potential effects of climate change on forest pathogenic fungi in Europe, noting that

studies such as this cannot account for pathogen adaptation to climate change67. Other

approaches to map the likelihood of an invasive species’ establishment include the North
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Carolina State University – United States Department of Agriculture (USDA) Animal and

Plant Health Inspection Service (APHIS) Plant Pest Forecasting (NAPPFAST) system18.

The NAPPFAST system is used by the USDA APHIS for mapping the potential geographic

ranges of exotic pathogens and insect pests. It offers a web interface for the user to link

meteorological and geographic templates for biological modeling18.

Often models of species distribution based on climate are accurate in predicting current

species distributions. Models like these may be useful because in many cases the distribution

of a species is not systematically sampled to provide presence/absence data and absence data

cannot be inferred with certainty. It is also important to realize that these models often

assume biotic interactions are unimportant68. These methods have not been fully tested

when applied to forecasting invasive species or the effects of climate change69. Do biotic

interactions play an important enough role to help to define the organism’s niche? If so,

then the niche may be different in an exotic range versus the native range. A species may

become invasive in a new geographic area due to lack of natural enemies49,68.

Predicting plant disease is different than predicting the occurrence of a single species

because infectious disease is always an interaction between two or more organisms. Both a

suitable host and a competent pathogen (and vector if necessary) must be present, combined

with conducive weather conditions to support the occurrence of disease. Because pathogen

species have shorter generation times than plant species, they have the potential to adapt to

new conditions much more quickly than the host species. When including the host in a map

of disease risk, the host population may or may not be homogeneous in its susceptibility to

disease, contributing to spatial and temporal variation in disease occurrence16.

These mapping approaches can be used to quickly create information for disease control,

bringing risk areas into focus for closer inspection. NAPPFAST has been designed to quickly

create a scenario of first guess risk maps at the expense of resolution. These systems also

rely mainly upon climate information to derive the disease risk at a certain point rather

than incorporating the presence of the host, diseased host, inoculum levels, or pathogen
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dispersal. Incorporating real-time movement or inoculum levels into climate-matching maps

could enhance their accuracy. These systems are not suited for pathogenic species where

climate is not the key determinant for the species distribution.

1.10 Combining factors in disease risk mapping

Climate, historical disease, and host maps may each be useful alone for predicting risk when

the other factors are not limiting. As discussed above, these factors have also been combined

in various ways. Climate envelope modeling is based on use of historical disease occurrence,

where the boundaries of historical occurrence in one region was assumed to be defined by

an environmental factor, so that the same factor can be used to predict occurrence in new

regions when inoculum and host are no longer limiting. Other approaches to risk mapping

may use host species abundance along with meteorological variables. Meentemeyer et al.

used a rule-based model to describe forests in California that were likely to be affected by

sudden oak death (SOD), caused by Phytophthora ramorum (Werres, De Cock & Man),

for monitoring purposes70. This is a somewhat different approach, in that many models

previously used host presence only to indicate where the pathogen species could occur. In

this model, risk based on host abundance is weighted by experimental data and expert input.

The model matched ground-truthed observations, but there were many areas mapped as high

risk that did not have any current disease observations. Meentemeyer et al. suggested that

this indicates that large areas are in danger of future SOD epidemics70. But as they point

out, typical data limitations complicate interpretation.

Pathogen dispersal models may be combined with meteorological conditions for disease

risk assessment46,48. Pan et al. introduced a model for the prediction of disease caused by

wind-dispersed pathogens using a particle dispersal model, Hybrid Sing Particle Lagrangian

Integrated Trajectory Model (HYSPLIT 4), and a regional climate prediction model, the

Penn State/National Center for Atmospheric Research Mesoscale Model (MM5)71. This

approach can be applied to other plant pathogens that are aerially transported and could
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be used for an early warning and detection system for soybean rust.

Remote sensing approaches are also being applied to disease risk mapping and offer

the potential for automating otherwise labor-intensive sampling procedures. For example,

remote sensing has been used to identify and analyze oak wilt disease (causal agent Cerato-

cystis fagacearum Bretz) Hunt) Everitt72 and rice blast73. Landscape features can be linked

to disease risk estimates as well74,75. Ultimately it may be possible to identify patterns in

remote sensing data that lead to reliable inference about the presence of plant disease, in

which case such data could be used to strengthen risk mapping based on historical occur-

rence of disease76. Applications in precision agriculture may make use of newly generated

maps of disease intensity within management areas to guide the appropriate application of

pesticides77.

In general, multiple disease risk maps based on individual factors can be combined in

different fashions to create a single map. First I describe potential point-by-point analyses

that combine the host, disease, and climate data layers, in an approach analogous to decision-

making rules based on evaluation of risk factors. Methods for combining factors include a

limiting risk factor approach where the risk at a point is based on the lowest risk identified

by any of the risk maps included in the creation of the final combined risk map. For example,

if the host is rare in a region, this may result in low risk despite highly conducive climatic

conditions. Assuming the system is understood fairly well and the maps are accurate, this

would point out areas known to be of higher risk. This approach would be motivated by

a desire to protect against a type I error in the sense that it would avoid identifying high

risk where there is an indication that risk is lower based on at least one risk factor. Second,

using the highest risk factor would mean that the risk at a point is based on the highest

risk identified by any of the risk maps (Figure 1.3). This method is a good evaluation of the

worst case scenario, if limiting factors are removed or if limiting factors were misunderstood.

This approach would be motivated by a desire to protect against a type II error in the sense

that it would avoid identifying low risk where at least one factor indicates that risk is higher.
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A third method, weighted risk factors, evaluates the risk at a point as a weighted mean of

the risk identified by the single-factor risk maps. This assumes that enough is known about

the system to place greater weight on some potential risk factors than others; or that some

risk factors are measured with substantially more error than others, where those with higher

error would be given lower weight. Bayesian analyses may be used to incorporate different

types of knowledge about the risk factors (e.g., Meentemyer et al.70).

Another approach for combining risk factors on a point-by-point basis is through mech-

anistic modeling, such as the use of disease progress curves78, when enough is known with

confidence about the system to formulate a more detailed expression of disease risk as a

function of the component factors (Figure 1.2). Where there is sufficient knowledge, this

approach may give much more realistic estimates of risk. In this case, the risk at a point is a

known (potentially complex) function of the risk factors, based on knowledge about the na-

ture of the biological interactions between the factors. For example when evaluating disease

risk landscapes in a growing season, historical pathogen distributions may provide model

input relevant to likely regional inoculum loads, and so likely starting values for epidemics

(Figure 1.2). Weather conditions may also contribute to inoculum loads through impacts

on the probability of overwintering of pathogens and vectors, and will have an important

impact on the rates of disease increase during periods of infection. Host availability will also

influence the rate of disease increase, and will determine the carrying capacity for disease

in a region.

Once a disease risk map has been developed on a point-by-point basis, it may be possible

to improve it by incorporating risk neighborhood analyses. If network models can be applied,

this would be one way to capture the influence that the level of risk at one point can

have on neighboring points. As another example, Wimberly et al. incorporated spatial

autocorrelation or spatial heterogeneity into predictive disease models for the geographic

distribution of tick-borne pathogens79. This was more effective than using a standard logistic

regression and could be useful in predictions for plant diseases that exhibit strong spatial
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patterns. A location with neighboring sites of high disease risk can reasonably be expected

to exhibit a higher disease risk than if it were surrounded by sites of low disease risk79. A

general approach to risk neighborhood analysis could be to map regions at the interface

between higher and lower risk areas as having a risk influenced by both areas (Figure 1.3).

The size of the affected area at the interface would be a function of the probability of

pathogen dispersal across the relevant distance at the time scale being considered. This

approach incorporates the potential effects of inoculum produced in a higher risk area on

lower risk neighboring areas80. Ultimately the structure of risk neighborhoods at multiple

scales may also be incorporated in a more mechanistic manor, as pathogen dispersal and its

response to host landscapes and climate landscapes are better understood.

1.11 Conclusion

The future for plant disease risk mapping will be quite exciting, as the technologies de-

velop further. Advances in remote sensing will facilitate evaluation of large-scale epidemic

processes. Advances in genomics may also support a number of improvements in epidemic

forecasting37. For example, genomic information about emerging pathogen species may

improve prediction of their responses to patterns of meteorological variables and host distri-

butions in a form of genome matching’ with other pathogens analogous to climate matching

approaches. The synthesis of ecoinformatic approaches with new pyrosequencing approaches

for characterizing microbial communities (e.g., Roesch et al.81) will also open up an inter-

esting research area. As pyrosequencing becomes more accessible so that characterization

of microbial communities can become a typical feature of any ecological study, it will be

fascinating to consider global patterns of microbial communities. This new type of informa-

tion will inform analyses of global plant disease risk as well, through analysis of pathogens,

themselves, and the other microbes which influence pathogens’ short-term fitness and long-

term adaptation, and the induced and acquired resistance status of plants. One of the

most important challenges will be optimizing use of this data to help us in our long battle
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with plant pathogens that damage crops and invade new ecosystems. Meeting this goal will

also require continuing analyses of well-known but under-studied relationships such as the

relationship between disease severity and losses in plant productivity and fitness8.
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Figure 1.1: Primary data types and their use in disease risk prediction across spatial and
temporal scales. Prediction models are often used with small field or plot weather data to
make determinations about risk at a single ’point’. These risk estimates can then be plotted
with estimates for other points for a more complete regional or global risk map. Given the
predictor variables, no further relationship is assumed between points for such an analysis.
Other types of analyses, such as risk neighborhoods and weighted network models, provide
ways to incorporate direct risk effects from surrounding areas.
Moisture and temperature most often are useful in local small-scale predictions due to vari-
ance. Wind patterns are useful when dispersal by wind over longer distances is important.
Pathogen occurrence at the local level determines whether disease can occur. Dispersal,
by wind, water or other methods are useful for models in this example for illustrating re-
gional or global movement and risk. High or low host abundance can influence inoculum
loads on a point or field scale. Regional or global abundance and connectivity are useful for
determining the risk of movement and infection by a pathogen through the population.
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Figure 1.2: Hypothetical landscapes illustrating how maps of climate, historical disease, and
host distributions can be used to produce disease risk maps for a continuous variable for a
raster data format. Darker and lighter shading indicate higher and lower values of variables,
respectively. NA indicates information is not available for that area. The first column
illustrates a scenario where disease risk increases with increasing values of a climate variable
once a threshold level of the climate variable has been reached. The second column illustrates
a scenario where historical disease distribution has been assessed in some geopolitical units
and is used as a direct estimate of future disease risk. The third column illustrates a scenario
where disease risk rises rapidly with host availability and reaches a plateau. The lower part
of the figure illustrates approaches for preparing combined-factor disease risk maps from
single-factor disease risk maps. The limiting factor approach is based on identifying the
lowest risk level among the factors at each point. The highest risk factor approach is
based on identifying the highest risk level among the factors at each point. The weighted
factor approach is based on weighting factors depending on their known importance or the
coincidence with which they were estimated. In this example, the different risk types were
weighted equally when information was available. When enough is known about the system,
combined-factor disease risk maps can be developed using mechanistic models.
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Figure 1.3: Neighborhood risk models can be used to incorporate the influence of neighboring
areas in disease risk maps, as illustrated in these hypothetical risk landscapes. Darker and
lighter shading indicate higher and lower values of variables, respectively. Where areas of
high risk (dark) meet low risk (light) the risk is estimated to be a function of both areas as
a gradient rather than a sharply defined line between areas of risk.
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Chapter 2

Using Metamodels to Adapt Hourly
Time-Step, Field or Plot Scale
Models to Monthly Time-Step,
Global Scale Models

2.1 Introduction

Many plant disease forecasting models exist for purposes of assisting in disease control efforts

by producers28,82–84. The majority of models developed by plant disease epidemiologists

emphasize short-term forecasting models because they are most useful to the majority of

stakeholders interested in management decisions. The models I have developed are useful

for long-term decision-making for research resource allocations, and other policy decisions

where it may be necessary to look several years into the future across large areas (e.g.,

countries, continents, or global). Due to the detailed input data required by most disease

forecasting models, weather data availability may be a limiting factor for disease risk models

in some areas. I have adapted an existing disease forecasting model for large-scale, long-term

decisions about policy and research priorities using readily-available gridded weather data

sets such as WorldClim42 or CRU CL 2.085. This framework for disease forecasting allows

use of available weather data sets when quick responses are needed to address problems such

as exotic pathogen introductions, or long-term problems such as potential changes in risk
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under climate change.

Potato late blight (causal agent Phytophthora infestans (Mont.) De Bary.) forecasting

models recognize the importance of temperature and moisture in disease development, but

use different combinations of these variables for forecasting. The earliest of these types

of predictive models that was useful for predicting late blight risk were the Dutch Rules

postulated by Van Everdingen in 192686. Since then many different models have been de-

veloped for late blight infection in many different regions. Wallin developed a system to

predict initial late blight and the subsequent spread using relative humidity and tempera-

ture to calculate seasonal accumulation of disease severity values, numbers assigned based

on specific combinations of intervals of relative humidity greater than 90% and the average

temperature during those periods87. The Blitecast system is based on daily rainfall and

maximum and minimum temperatures to forecast late blight occurrence88. Fry et al. devel-

oped SimCast which included modifications to include cultivar resistance89. Grünwald et

al. further refined the SimCast model for potato varieties with moderate to high resistance

and validated it in a highland tropic setting, which demonstrates that it is possible to apply

a model developed in a temperate climate more broadly82. Hijmans et al. estimated the

number of sprays globally necessary to control late blight by developing a method to utilize

two disease forecast models, Blitecast and SimCast, with a climate database in a geographic

information system (GIS)39.

Other models that forecast plant disease risk for large regions for risk analysis and

planning have been developed. Margosian et al. created models to predict the connectivity

of the American agricultural system for pathogen movement19. This model is based on a

network analysis of the amount of host available on a county basis using USDA National

Agriculture Statistics Services data19. Magarey et al. developed the NAPPFAST Internet

system for weather-based mapping of plant pathogens, a system which uses generic templates

to help the user make a disease risk map when biological information regarding the pathogen

of interest may be limited18.
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Short-term disease forecasting models mainly rely upon fine scale (e.g., hourly or sub-

hourly) weather data for input. These data are often easily collected locally or provided

through outreach efforts which make these models easy to use. Grünwald et al. noted that in

the Toluca Valley of Mexico, because conditions are typically conducive to late blight, using

a rain gauge was the only necessity in predicting fungicide applications using their fungicide

units table, something local farmers could easily do. Daily or monthly time step weather

data are readily available for large scales (e.g. continental or global) data sets, and climate

data associated with climate change scenarios are often provided as monthly averages. There

are two ways to overcome this. One possibility is to estimate fine scale weather data based

on coarser scale weather data. However, this approach may not be feasible for monthly

weather data to create a fine scale data set such as hourly; this approach is commonly

referred to as “weather data downscaling”. Alternatively, new metamodels that predict

disease risk directly based on coarser resolution weather data can be developed using large

fine resolution weather data sets for model development and testing.

In response to this need, I have developed a metamodel which adapts an existing potato

late blight forecasting model, SimCast, for use with weather data with a large, monthly,

time step. SimCast was developed to predict the number of fungicide applications needed

for management with a contact, non-systemic pesticide89. SimCast estimates the disease risk

based on hourly temperature (T) and relative humidity (RH) inputs. Blight units, a measure

of disease risk, are accumulated each hour when RH is greater than 90%. The interaction

of temperature and cultivar resistance determine the blight unit value accumulated.

My overall objective was to evaluate the impact of adapting the SimCast model to predict

the risk of late blight based on daily and monthly weather data. My first objective for this

project was to develop disease prediction models based on daily and monthly weather means

and compare to results based on hourly weather data. The second objective was to compare

the blight unit predictions of models constructed from weather data sets specific to potato

growing regions with models constructed with a data set that represents a broad range
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climate types. The third objective was to compare late blight risk predictions based on

hourly, daily, and monthly weather averages to observed late blight severity data sets from

four countries.

2.2 Materials and Methods

The first objective was to develop disease prediction models for use with coarse scale weather

data and compare to fine-scale model output. To do this, I needed a data set with wide

geographic coverage, hourly reporting, and extensive data quality control. To meet these

criteria, I used the National Climatic Data Center Hourly United States Weather Obser-

vations (HUSWO) 1990-1995 CD-ROM90 containing hourly, georeferenced weather obser-

vations from 262 National Weather Service stations nationwide (Figure 2.2). Data from

the 247 stations reporting hourly temperature, relative humidity, and precipitation were

selected. Blight units for each location were predicted for susceptible and resistant cultivars

using the table from Grünwald et al.82.

Figure 2.1: Locations of weather stations within the US Hourly Weather Station Weather
Observation data set. Alaska, Hawaii, Guam, and Puerto Rico are not shown but were
included in construction and validation data sets.

Daily and monthly weather average data sets were created from the hourly observations.
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Because SimCast reports blight units as daily values no further modifications to the blight

units were necessary to create daily blight unit values. To create monthly blight unit values,

SimCast blight unit values were averaged to create a daily average blight unit value for

every location for all 12 months for each year of the data.

I developed two generalized additive models (GAM)91 that use daily or monthly time

step weather data to predict daily or monthly blight unit accumulation, respectively. The

MGCV package92–94 was used to construct these models in R. Subsets of daily weather

averages with 236,653 observations, monthly weather averages with 7,773 observations were

created. Corresponding blight unit data sets from 1990 through 1992 calculated from hourly

weather data using SimCast and averaged to daily or monthly values were created.

The model SimCast Daily Means used daily time step weather to predict daily blight

unit accumulation and had the form

zi ∼ f(xi, yi, k = w) + εi (2.1)

where z is the response variable, blight units, f(x, y) is the smoothed function of the inter-

action of temperature and relative humidity, w is 150. The second model, SimCast Monthly

Means, used monthly time step weather values to predict the average daily blight unit

accumulation for a given month and had the same form as SimCast Daily Means.

The first form of model validation was to create a data subset for the same locations

during a different set of years than the construction data set, from 1993 to 1995, and then

to correlate the performance of SimCast Daily Means and “observed” blight unit estimates

from SimCast. SimCast Monthly Means outputs were also compared to monthly blight unit

values created from averaging SimCast blight unit estimates to create monthly time step

data using Pearson’s correlation.

The second objective was to compare the performance of these models when constructed

from weather data sets more or less specific to potato growing regions. A map from Hijmans

et al. was used to determine the location HUSWO station locations within potato growing

regions in the US95. Weather stations in the potato growing areas or within a distance of
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10 kilometers were selected and a subset of weather data from these stations was created

for use in GAM model construction as detailed in objective one.

The third objective was to compare SimCast Daily Means and SimCast Monthly Means

output to disease severity observations from several countries. For the third objective, late

blight severity and hourly weather data from 19 cultivar, site-year combinations in Israel,

Mexico, Peru, and United States were provided by the International Potato Center (CIP).

SimCast was used to predict blight units using these weather data. At locations where there

were two different heights for weather stations collecting data, the weather station closest to

50cm above the ground was selected based on the weather station placement in Grünwald

et al.82. Daily and monthly time step data were created for use with SimCast Daily Means

and SimCast Monthly Means, respectively. SimCast Daily Means and SimCast Monthly

Means were used to predict blight units for each of the 19 cultivar, site-year locations, and

the areas under the disease progress curve (AUDPC)3, were calculated from disease severity

observations for each location. Linear regression was used to find the fit of SimCast Daily

Means and SimCast Monthly Means output to the SimCast output based on hourly data,

and the fit to the AUDPC for each location.

2.3 Results

2.3.1 SimCast Daily Means and SimCast Monthly Means Fit

Objective 1: Disease prediction models were developed based on daily and monthly weather

means and compared to results based on hourly weather data. The model fit for construction

and validation data sets for susceptible cultivars exhibited little difference (Table 3.1). For

both the construction and validation set predicted blight unit values were under predicted

by the GAMs when compared to SimCast output. The fit of both SimCast Daily Means

and SimCast Monthly Means was similar (Figure 2.4, Figure 2.5). SimCast Daily Means

under predicts the number of blight units that will be accumulated when compared to

daily blight unit estimates from SimCast based on hourly weather data. SimCast Monthly
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Means exhibits a positive relationship with monthly averaged blight unit values (Table 3.2).

Results from potato growing regions were similar with a slightly better fit and lower AIC

value (Table 2.3.1). Results were similar for models for resistant potato varieties (data not

shown).

Figure 2.2: Fitted GAM surface for SimCast Daily Means. The smoothed interaction of
relative humidity and temperature predicts blight units using daily weather data values.
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Figure 2.3: Fitted GAM surface for SimCast Monthly Means. The smoothed interaction of
relative humidity and temperature predicts blight units using monthly weather data values.

2.3.2 Comparison when using potato growing areas only to con-
struct GAM

Objective 2: compare the performance of these models when constructed from weather data

sets more or less specific to potato growing regions and seasons versus the whole weather

data set. The models showed little difference in performance when created from the whole

US weather data set or just potato growing regions of the US. SimCast Daily Means tended
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Table 2.1: Goodness of fit of SimCast Daily Means and SimCast Monthly Means for con-
struction and validation data sets. Results for susceptible cultivars are shown, resistant
cultivar models were similar.

Daily Model Predictions Monthly Model Predictions

R2 GCVa AICb p-value R2 GCV AIC p-value

All US 0.62 1.69 795995 <0.01 0.78 0.24 10882 <0.01
US potato regions 0.66 1.35 48314 <0.01 0.83 0.138 1314 <0.01

aGeneralized Cross Validation score, and bAkaike Information Criterion are used in model
selection, a lower score indicates a better model fit.

Figure 2.4: Boxplots of SimCast Daily Means fit when plotted by SimCast predictions based
on hourly weather data, validation dataset (L) and construction dataset (R).

to under predict more than SimCast Monthly Means. Similarly the application of a model

created using the whole US data set when applied to just potato growing regions showed

little difference from a model created using the whole US data set and applied to the whole

US.
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Figure 2.5: Boxplots of SimCast Monthly Means fit when plotted by SimCast predictions
based on hourly weather data, validation dataset (L) and construction dataset (R). Hourly
data from SimCast was averaged for a month and then data from SimCast Monthly Means
was plotted against this to test fit.

Table 2.2: Pearson’s correlation score of SimCast Daily Means and SimCast Monthly Means
blight unit predictions with SimCast predictions. SimCast predicts blight units using hourly
weather data. SimCast Daily Means and SimCast Monthly Means predict blight units based
on daily and monthly weather data respectively.

Daily Monthly

Construction Validation Construction Validation

All US 0.82 0.84 0.89 0.89
US Potato growing regions 0.76 0.74 0.91 0.91

2.3.3 Comparison of late blight risk predictions to AUDPC values

The third objective was to compare late blight risk predictions based on hourly, daily, and

monthly weather averages to observed late blight severity data sets from several countries.

SimCast Daily Means and SimCast Monthly Means produce blight unit estimates which

have a positive relationship with the AUDPC of late blight observations in Israel, Mexico,

Peru, and the US. The blight units predicted by SimCast have an of R2-value of 0.31
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and p>0.01 for SimCast blight units and R2-value of 0.27 and p>0.01 for blight units

predicted by SimCast Daily Means when regressed on AUDPC values calculated from field

observations.

Figure 2.6: SimCast and SimCast Daily Means blight units fitted to AUDPC values from
several field plot trials.
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2.4 Discussion

SimCast Daily Means and SimCast Monthly Means predictions were closely correlated to

output from SimCast using hourly time step weather data estimated from daily time step

weather. SimCast Daily Means and SimCast Monthly Means follow the same trend as

SimCast predictions but underpredict slightly. However, there is a significant relationship (p

< 1e-16) between the blight units predicted by SimCast and blight units predicted by both

SimCast Daily Means and SimCast Monthly Means respectively. SimCast Daily Mean’s

greater under-prediction than SimCast Monthly Means could be due to the lack of the

influence of having multiple days of high RH and T together. SimCast Monthly Means

would capture this because it uses a monthly average. The monthly data used to construct

SimCast Monthly Means has less variability in it due to the effects of averaging. These two

factors could contribute to underprediction.

Even though the models based only on potato-growing regions had slightly higher R-

squared and lower AIC values, they represent smaller variety of climate types and the

performance is similar to the models created using the whole US data set. Because of

the similar performance between models constructed from data representing the whole US

climate data set or a subset of potato growing regions, I chose to use the models constructed

using the whole US weather data set. I felt that this approach represented a broader type

of climates and was more suitable for use with global predictions.

The SimCast model as originally described by Fry et al.89, and modified by Grünwald

et al.82 includes a table of fungicide units which are used in conjunction with blight units

to calculate the number of fungicide applications necessary to control late blight. These

fungicide units are based on chlorothalonil, a contact fungicide, which degrades over time

and washes off with precipitation89. With the increasing use of systemic fungicides, such

as mefanoxam or metalaxyl, fungicide unites will not be relevant for all scenarios. Because

blight units capture the biological aspects of the disease, they are useful when comparing

different areas for late blight risk rather than calculating the amount of fungicide applied
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to control disease. In cases where the environment is always conducive, fungicide units are

useful for predicting the number of sprays. The purpose of these metamodels however is to

predict the level of relative risk based on environmental parameters, T and RH.

The number of fungicide applications possibly could be calculated using only blight

units in the original SimCast model but more often it was a combination of blight units

and fungicide units which indicated a fungicide application was necessary89. Also, a new

fungicide unit table which accounts for reduced efficacy of the fungicide in the plant based on

time since the last application could be derived for use with systemic fungicides. Combining

these two measures could be used to create estimates of fungicide applications necessary to

control late blight.

SimCast lends itself well to being adapted to models like SimCast Daily Means and

SimCast Monthly Means because it is based on a table of values that indicate likely disease

risk, blight units. Other systems for which this approach might work well include leaf spot of

peanut, causal agent Cercosporidium personatum 96, and fire blight of pear and apple, causal

agent Erwinia amylovora 97 because of their model structure similarity to SimCast. Both

use thresholds which, when crossed for defined time periods trigger a response in the model.

Adapting systems that use time steps other than hourly would be a similar approach. The

original model would need to be used to create disease risk or severity estimations that had

corresponding weather data. This combination would then need to be averaged to daily or

monthly values as desired and GAMs created to use coarse scale weather data.

Methods do exist to estimate fine-scale weather data using algorithms such as described

by Cesaraccio et al.98, though this method requires more calculation and detailed informa-

tion regarding the time of year, and sunrise and sunset times. Map results must then be

interpolated to create a complete surface. Hijmans et al. used an approach similar to this

to estimate the number of fungicide applications necessary to control late blight globally39.

However, this approach required time intensive calculations to estimate hourly time step

weather values from daily weather observations for use in SimCast and Blitecast.
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The use of monthly time step weather data for model input as described in this paper

gives greater flexibility in the data formats that may be used. Text files can be used to

generate specific point or plot disease severity estimates or environmental raster layers can

be used to generate maps as output. Additionally, models capable of using daily and monthly

weather data further extend the usefulness of these models.

Tools such as CLIMEX63, GARP99, and BIOCLIM100 are commonly used to predict

species distributions using climate data in conjunction with presence/absence data. These

tools use climate similarity to match areas that may be suitable for a species to become

established, based on presence and absence data for the species of interest. Tools such

as SimCast, and SimCast Daily and Monthly Means are based on known responses of P.

infestans to weather and by extrapolation, climate.

Scaling issues occur when trying to model epidemics using weather data that covers large

areas or spans of time because disease is driven by localized events. Rainfall patterns or

the previous crop in an agricultural field may result in disease development, but rainfall

or previous crop data may be too fine to be detectable at a larger spatial resolution grid

cell sizes. This would lead to a missed risk prediction at a large scale when using a model.

Similarly, when weather data is averaged it removes the extreme events that may trigger

disease development, thus disease may occur due to events that are below the temporal

resolution threshold of detection for the model.

Using coarser spatial scale data has been examined in other applications and found to

be useful as well. Guisan et al. examined the effects of environmental layer grain size on

species distribution models101. As spatial resolution coarsened there was an overall decrease

in model performance. However, an improvement, no change, or degradation of the models’

performance can be obtained using coarse grain environmental layers, other confounding

factors beyond grain size appear to play a role. The species being modeled, and the region

being mapped both affected the model performance as the grain coarsened. As the models

were applied across greater spatial scales, interactions that occurred at a plot-level scale did
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not necessarily occur or in some cases other interactions began to occur that affected the

model output.

This type of modeling, using only weather data, to map risk can be combined with

other methods of disease risk prediction. Margosian et al. present a network model which

illustrates the connectivity of the US agricultural landscape19. Using GIS methods, these

types of data could be combined for a more complete picture of host interconnectedness and

disease risk. Where both climate and connectivity indicate high risk, there may be “hot

spots” for disease to spread quickly.

Other approaches have been taken to model disease risk over large areas. Magarey et al.

developed the NAPPFAST Internet system for weather-based mapping of plant pathogens,

however, this system uses generic templates rather than being tailored from risk models

specific to a particular disease18. Thomas et al. created a weather-based information sys-

tem for commercial growers in California, Washington, Oregon, Idaho, and Arizona which

integrated ground-based weather data and plant-growth measurements to determine disease

and insect risks40. A model to predict wheat head scab or head blight, caused by Fusarium

spp., has been deployed on the Internet as a map indicating risk of wheat scab to assist in

timing fungicide applications28.

This type of metamodel is useful for modeling the effects of climate change on plant

disease because of the coarse temporal and spatial resolution of climate change data, even

when downscaled. It also will be useful for modeling large-scale disease risk relatively quickly

since the computing power required to use coarser temporal and spatial scales is much less

than fine-resolution data models. Estimates of relative risk can quickly be generated for a

given area and further investigation can be pursued if necessary.
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Chapter 3

Application of Metamodels for
Estimating Global Disease Risk:
Potato Late Blight Now and in the
Future

3.1 Introduction

At least 800 million people have too little access to food4. Plant diseases such as late blight

of potato, proximate cause Phytophthora infestans (Mont) de Bary, can cause losses of crops

further intensifying this problem. It is estimated that US$5 billion are lost due to late blight

on an annual basis102. Late blight can be controlled through chemical applications103 and

planting resistant potato varieties and other cultural practices including planting dates to

avoid wet weather and mixtures54,104.

Many plant pathogens exhibit a strong relationship with weather patterns. Infectious

plant disease occurs due to the interaction of three factors, a favorable environment, a

susceptible host, and a competent pathogen (and vector if needed)3. This is known as the

disease triangle by plant pathologists. Because the environment, or weather, has such a

strong influence on plant disease, disease forecasting models are typically constructed using

weather observations as input variables.

The interaction of plant pathogens with the host and environment make plant disease
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models less straightforward than most animal or insect presence, absence or population

models. Plant pathogens, especially fungi and oomycetes, have optimal temperature and

moisture requirements for disease to occur. While temperature data is often widely available,

moisture data used for plant disease prediction models, usually relative humidity, is not as

commonly available.

Because of the important role that environment plays in plant disease development,

climate change is likely to affect plant disease6,36,37 and the impact of plant disease on crop

production15. Projections and estimations of the effect of future climate on plant disease

are common6,15,36,37,105. However, creating predictions for the effect of climate change on

plant disease are complicated due to issues of scale22,106.

Models representing plant, pathogen and weather interactions are frequently constructed

to predict disease risk for tactical, within season, or strategic between season, short-term

control purposes in agricultural or horticultural settings. Somewhat less frequently models

are constructed for long-term management decisions e.g. breeding programs, or strategic

research prioritization8. Ordinarily short-term, tactical within-season models focus on a

small spatial scale, field or small region or area. Long-term decisions are made for large

regions, countries or continents and the time-period upon which they are based is months

or years, not days or weeks.

Efforts to create plant disease risk models for application to large temporal and spatial

scales have been developed for different uses. Hijmans et al. mapped global potato late blight

severity, predicting the number of fungicide applications necessary to control disease. They

found that the estimated number of fungicide sprays in many areas did not correlate to the

observed sprays39. It was then easy to identify areas that could benefit from host resistance

and increased access to fungicides using maps. Magarey et al. developed the NAPPFAST

system to map exotic pests risk and identify the potential for establishment, possible entry

points, pathway analysis and commodity risk assessment18. In a similar fashion Margosian

et al. created a network model to analyze the connectivity of the American agricultural
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landscape to assess plant disease risk by analyzing host connectivity19. Maps generated by

these two aforementioned methods are useful for quarantine efforts when a new pathogen

is detected, spread can be predicted, and pathogen movement across a large landscape

understood.

Climate change effects are likely to be observed on a long time line relative to most

crop-production, short-term, tactical within-season plant disease models; the effects will

take years to be observed. Climate change model outputs are a larger time-step (e.g.,

monthly) relative to output from short-term plant disease models (e.g. daily). Breeding

programs and other research efforts require long-term decisions. Climate change will likely

affect these decisions.

The Intergovernmental Panel on Climate Change (IPCC) developed long-term climate

change scenarios107. The scenarios are used in analyses of possible climate change impacts

and options to mitigate climate change. Because of the complexity of future greenhouse

gas (GHG) emissions, different scenarios were developed to provide alternative images of

what might occur with future climate conditions. It is highly unlikely that any one of the

emission scenarios will be the actual outcome107.

Four qualitative storylines were developed which the scenarios, or families, are based on.

The A1B storyline and scenario family describes a future with very rapid economic growth,

global population that peaks mid-century and declines thereafter, and new more efficient

technology that is rapidly introduced where similar improvement rates apply to all energy

sources and end use technologies107.

Climate models, based on well-established physical principles have been demonstrated

to reproduce recent climate observations and past climate changes. Atmospheric-Ocean

General Circulation Models provide credible quantitative estimates of future climate change,

particularly at continental and larger scales. Several climate models exist with differing

values for atmosphere, ocean, sea ice, coupling, and land features. For a table of selected

model features I refer the reader to Table 8.1 in Randall et al.108.
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Nearly 200 wild potato species occur in the Americas109. These relatives of cultivated

potatoes (Solanum tuberosum) can be a valuable genetic resource for cultivated potato

breeding programs110. Phytophthora infestans and closely related Phytophthora andina are

capable of infecting these wild potato species, causing disease. Climate change could lead

to increased disease pressure on wild potato species in areas where resistance to late blight

may not occur in the wild populations but inoculum is present from cultivated potato fields.

Because of data availability issues and the large time-steps at which long-term decisions

are made most tactical decision models may not be appropriate because of the small time-

step that is often required for use with these models. One way of dealing with this issue

is through the use of metamodels. Metamodels are “a model of the model”111. Using this

method I created two metamodels based on the version of SimCast89 modified by Grünwald

et al.82, see SimCast Daily Means, and SimCast Monthly Means, for more on the model

development (Section 2.2).

Simcast Daily Means and Simcast Monthly Means models were created for use with

coarse temporal scale weather data in response to a lack of the fine-scale weather data often

required for plant disease risk evaluations. These models use daily and monthly resolution,

respectively, for temperature and relative humidity to predict ’blight units’, a measure of

potato late blight risk from SimCast. The applications of larger-than field scale models are

typically different than traditional in-field, or within-season models8. Large scale disease

risk predictions such as those generated by SimCast Monthly Means are useful for policy

decisions or making research decisions for future efforts.

3.2 Objectives

My objectives were to map global late blight risk under current and climate change scenarios

for resistant and susceptible varieties. Once these maps were generated I used them to

extract data and evaluate changes in disease risk globally and for locations where wild

potato species are indigenous, and for changes in disease risk for countries where chronic
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malnutrition is experienced.

3.3 Materials and Methods

10 arc minute (344 km2) current climate observations, mean temperature and relative hu-

midity, from 1961 to 1990 were downloaded from the University of East Anglia Climatic

Research Unit (CRU), website: http://www.cru.uea.ac.uk, as gridded datasets85. Raster

files with empty cell values were created in R using the Raster package112 and then monthly

data were extracted from the CRU data and used to create monthly global climate surfaces

for mean temperature and relative humidity observations.

Future climate scenario A1B data downloaded from the World Climate Research Pro-

gramme’s (WCRP’s) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-

model dataset website: http://www-pcmdi.llnl.gov/ipcc/info_for_analysts.php,113

were downscaled to 10 arc minutes for three global climate change models, MIROC3.2

(hires), INM-CM3.0, and GISS-AOM were provided by Robert Hijmans, University of Cal-

ifornia at Davis. Mean temperature was calculated from maximum and minimum tem-

perature. Late blight risk was estimated using SimCast Monthly Means for the 1950-2000

average, current conditions, and three future 20-year time periods, 2000-2020, 2040-2060 and

2080-2100. For each month of each year, the average temperature and relative humidity of

the three climate models was generated in R using the Raster package112.

The predict function from the R Raster package was used to predict late blight risk for

both observed and future predictions using the SimCast Monthly Means fitted GAM surface

to generate raster file outputs112.

A map of worldwide potato growing areas, provided by Robert Hijmans and CIP, was

used to remove non-potato production areas from SimCast Monthly Means global blight

unit predictions.

A file of potato growing seasons was provided by Robert Hijmans. Potato growing

seasons were calculated using the ECOCROP 1 database114 and a R script to predict the

44

http://www.cru.uea.ac.uk
http://www-pcmdi.llnl.gov/ipcc/info_for_analysts.php


first day of the month in which the planting date produced the highest yield. Growing

seasons were assumed to be three months long. Blight units were summed at a moving

three month interval beginning with January, February and March for the January growing

season, and so on to generate a summary late blight risk value for 12 growing seasons.

The potato growing season raster file was converted to a polygon shape file and individual

growing season polygon selections were created. The growing season summary blight unit

files were clipped by the appropriate growing season polygon. This resulted in separate

raster layers that represented blight units for each three-month growing season only. These

were then stacked to create output maps of global late blight risk or used to extract risk

values for different countries or locales for further analysis.

A map potato priority was provided by CIP. Potato priority was determined by produc-

tion area (hectares) for each country in relation to the respective country’s population. A

map of malnutrition values based on FAO’s estimates115 of chronic malnutrition was also

provided by CIP. These two shape files were used to determine countries with high potato

priority and high malnutrition for further analysis.

A shape file based on surveys of wild potato species occurrence in the Americas was

provided by Robert Hijmans and CIP. This map was used to create a file of species richness

using Diva-GIS v.5116. The species richness file was used with the SimCast Monthly Means

results as a mask of wild potato species occurrence and as a measure of where late blight

risk changes in relation to the areas of greatest wild potato species richness.

3.4 Results

3.4.1 Changes in global late blight risk

Global late blight risk in current potato growing regions increases slightly from the 1961-

1990 climate conditions to the 2000-2020 time period predictions. From the 2000-2020 time

period to to 2060-2080 time period late blight in current potato growing regions decreases by

2%. From 2040-2060 to 2080-2100, late blight in current potato growing regions is reduced
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by 4% (Table 3.1). For resistant varieties late blight units are reduced from 522332 for the

1961-1990 time period to the 2040-2060 time period in which blight units total 252958, a

-107% drop in risk for resistant cultivars. The amount of blight units accumulated does

change. However, the same general patterns in relative risk can be observed time periods.

That is, areas of high late blight risk do not become extremely low risk compared to other

high risk areas and vice-versa.

Under all climate time-periods used, late blight risk is greatest in south-east Brazil,

northern Europe, especially United Kingdom and Ireland, south-eastern Africa and Mada-

gascar, parts of the Himalayas, north-east Asia, and the Highland Tropics of South America.

These areas were confirmed by personal communication with Greg Forbes (Centro Interna-

tial de la Papa), Robert Hijmans (University of California at Davis), and Eduardo Mizubuti

(Universidade Federal de Viçosa).

Table 3.1: Cumulative blight units and percentage change from previous time period of sum
of blight units for each of the climate time periods. Blight units89,117 are an indicator of
late blight risk. Future climate scenario A1B data downscaled to 10 arc minutes for three
global climate change models, MIROC3.2 (hires), INM-CM3.0, and113 113 were provided by
Robert Hijmans, University of California at Davis.

Sum Blight Units Change

1961-1990 489400
2000-2020 495174 1.1%
2040-2060 485469 -2.0%
2080-2100 466007 -4.0%

3.4.2 Changes in late blight risk for countries with chronic mal-
nutrition and high potato priority

Countries with a high priority for potato production and having high levels of chronic

malnutrition are predicted to have high levels of late blight risk. Only Pakistan remains

relatively low when compared with the other countries with chronic malnutrition and high

potato priority (Figure 3.7).
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Changes in late blight risk from 1961-1990 to 2040-2060 for the countries with high

potato priority and chronic malnutrition differed. Late blight risk in Malawi and Bolivia

is to projected decrease by greater than 10% while Nepal is projected to experience the

greatest increase in late blight risk, 18% more blight units to 180 blight units (Table 3.2,

Figure 3.8). Future climate scenario A1B data downscaled to 10 arc minutes for three global

climate change models, MIROC3.2 (hires), INM-CM3.0, and GISS-AOM113 were provided

by Robert Hijmans, University of California at Davis.

Table 3.2: Change of total of blight units for time periods of 1961-1990 and 2040-2060 in
countries with high potato priority and chronic malnutrition (Hunger) expressed as per-
centage of population chronically malnourished. Blight units89,117 are an indicator of late
blight risk. Future climate scenario A1B data downscaled to 10 arc minutes for three global
climate change models, MIROC3.2 (hires), INM-CM3.0, and GISS-AOM113 were provided
by Robert Hijmans, University of California at Davis.

Blight Units

Country 1961-1990 2040-2060 Change Hunger

Bangladesh 140 143 2.0% 37%
Bolivia 83 73 -12.2% 23%
China 126 123 -2.4% 13%
Columbia 296 313 6.0% 12%
India 103 94 -9.1% 22%
Kenya 88 88 0.5% 41%
Korea, DPR 288 271 -5.8% 48%
Madagascar 341 351 2.7% 39%
Malawi 256 204 -20.3% 37%
Nepal 153 180 18.0% 21%
Pakistan 18 17 -7.9% 19%
Peru 117 128 9.1% 19%
Rwanda 253 270 6.6% 37%
Uganda 228 226 -1.0% 28%
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3.4.3 Changes in late blight risk for areas with wild potato species
present

Late blight risk for areas of South America where the greatest wild potato species richness

occurs decreases slightly under the future climate scenario used in this study. However, a

shift occurs, areas of greater wild potato species richness are at higher risk than areas of

lower species richness under climate change effects (Figure 3.8).

Table 3.3: Blight units observed from November through April in South America where
wild potato species are found. Blight units89,117 are an indicator of late blight risk. Future
climate scenario A1B data downscaled to 10 arc minutes for three global climate change
models, MIROC3.2 (hires), INM-CM3.0, and GISS-AOM113 were provided by Robert Hij-
mans, University of California at Davis.

Blight Units 1961 to 1990 2000 to 2020 2040 to 2060 2080 to 2100

0 to 5 135 135 134 107
5 to 10 130 130 128 128
10 to 15 108 113 112 113
15 to 20 50 52 54 57

Total 423 430 428 405

3.5 Discussion

From the data sets used, it appears that late blight risk in current potato growing areas

will increase in the near future and then decrease. Decreases in late blight risk, the sum of

all annual blight units for potato growing areas, are exhibited between the three predicted

climate model based results. The weather data observations from 1961-1990 could predict

a different level of blight units because it is the average of one set of weather observations.

The predicted climate data are averages of three climate model outputs and this may have

a smoothing effect on the data, removing extreme observations. However, this does remove

areas where the models are not in agreement as to weather patterns and the blight unit

patterns are similar to what the observed weather data predicted. It appears that late
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blight risk is not as affected for resistant varieties as for susceptible varieties. Resistant

varieties decrease by a sum total of -236363 blight units per growing season between the

1961-1990 growing season and the 2040-206 growing season.

Most countries where chronic malnutrition is a problem experience a decrease or very

slight increase in late blight risk. The exception, Nepal, experiences an increase of 27

blight units (15%), respectively, by 2060. The global decrease in the amount of blight units

accumulated does not occur in all areas.

There is a shift in late blight risk in areas where wild potato species are found in South

America. Most wild potato species are found in the tropical highlands109. The grid cell size

of 10 arc minutes is coarse for the changes of elevation that occur in montane regions and

may not adequately detect the nuances of weather affected by peaks and valleys.

The assumptions were that the rainy season when these plants are actively growing

would not change. Precipitation is the most difficult weather variable to predict under

climate change. I did not have any reason to anticipate that it would change for this area.

However, the alpine regions where most of these species are found are difficult to accurately

represent at a 10 arc minute spatial resolution due to rapid changes in elevation. It would

be beneficial to use .5 arc second data for this area only to see what effects may occur.

While computationally impractical for the entire global dataset, such an approach could be

used a smaller subset such as a region of interest.

The factors used to predict late blight risk are weather factors. The models that were

used to predict future scenarios predict climate. Climate data represent weather means, but

not the typical variation of weather. Late blight risk will likely be affected differently across

years as a result of changing weather patterns not represented by climate.

The model only predicts risk under conditions when inoculum is present. Therefore, it is

an indicator of the the host and environment interaction only in the presence of inoculum.

For areas where inoculum loads are low but environmental conditions are favorable, the

model will incorrectly predict an elevated risk. Because this model cannot account for an
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increase in risk as inoculum builds over the growing season, the values are a simple sum of

a growing season three months long, as determined to be optimal for potato yield. Future

modifications could include a function that would cause risk to increase as the time passed;

a growth curve model could be applied here. The inoculum from one month would lead

to a higher initial level in the following month. This approach would not account for high

inoculum loads early in the growing season followed by lower loads because of the temporal

resolution being used. The assumptions only allow for an increasing inoculum load.

Another effect caused by inoculum load that this model is not capable of predicting

includes a ”risk neighborhood”. As inoculum loads increase nearby this will increase risk

in other areas with a conducive environment and susceptible host. Spatio-temporal models

such as those developed by Skelsey et al. are being developed that can model regional

interactions of inoculum loads58 . However, the time-frame in which these models work is

much shorter than the time-frame for which SimCast Monthly Means was designed.

In areas where irrigation is used, this model will not be appropriate, because growing

season was based on a rainfed potato crop. This could exclude areas where irrigation is

used to raise potatoes. Because SimCast Monthly Means is based on SimCast, a model

which is successful in areas of high-humidity and rainfall, it might not be suitable for semi-

arid potato growing environments such as potato-producing areas of the Pacific-Northwest

(Idaho, Oregon, and Washington)118. A different model that uses similar variables as Hen-

derson et al. could be incorporated and applied to only applicable semi-arid areas where

potatoes are grown118.

Even using an ”optimistic” climate change scenario such as the A1b scenario we see

changes in late blight risk. With the framework that is now in place it will be possible to

quickly make comparisons with other emission scenarios to see what effects higher fossil fuel

emissions could have on late blight.

It could be possible to use this metamodel to estimate late blight risk based on daily or

monthly data to estimate late blight risk using remotely sensed satellite data to continuously
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update blight risk. This type of information could provide real time late blight risk at a

glance, globally.

Metamodels like SimCast Monthly Means give plant pathologists new tools for the on-

going battle with plant disease. The ability to quickly estimate relative risk globally using

readily available weather data is a useful tool. Previously efforts to do this were compu-

tationally and time intensive. SimCast Monthly Means is capable of producing localized

results in a few minutes and a global estimate for one month in about an hour. Further ad-

vances hopefully will improve the model accuracy in the future by incorporation of potential

shifts in potato growing areas due to climate change giving a more complete estimate of the

impact that late blight may have on potato in years to come.

Figure 3.1: Map one of four of susceptible potato cultivar global late blight risk. Global
late blight risk from 1961 to 1990 for a susceptible potato cultivar, expressed as the sum
of blight units for the highest yielding three month growing season per locality for potato
growing areas only. Blight units89,117 are an indicator of late blight risk. Gridded weather
data from New et al.85 was used to create climate surfaces for use with SimCast Monthly
Means.
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Figure 3.2: Map two of four of susceptible potato cultivar global late blight risk. Global late
blight risk from 2000 to 2020 for a susceptible potato cultivar, expressed as the sum of blight
units for the highest yielding three month growing season per locality for potato growing
areas only. Blight units89,117 are an indicator of late blight risk. Future climate scenario
A1B data downscaled to 10 arc minutes for three global climate change models, MIROC3.2
(hires), INM-CM3.0, and GISS-AOM113 were provided by Robert Hijmans, University of
California at Davis.
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Figure 3.3: Map three of four of susceptible potato cultivar global late blight risk. Global late
blight risk from 2040 to 2060 for a susceptible potato cultivar, expressed as the sum of blight
units for the highest yielding three month growing season per locality for potato growing
areas only. Blight units89,117 are an indicator of late blight risk. Future climate scenario
A1B data downscaled to 10 arc minutes for three global climate change models, MIROC3.2
(hires), INM-CM3.0, and GISS-AOM113 were provided by Robert Hijmans, University of
California at Davis.
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Figure 3.4: Map four of four of susceptible potato cultivar global late blight risk. Global late
blight risk from 2080 to 2100 for a susceptible potato cultivar, expressed as the sum of blight
units for the highest yielding three month growing season per locality for potato growing
areas only. Blight units89,117 are an indicator of late blight risk. Future climate scenario
A1B data downscaled to 10 arc minutes for three global climate change models, MIROC3.2
(hires), INM-CM3.0, and GISS-AOM113 were provided by Robert Hijmans, University of
California at Davis.
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Figure 3.5: Global late blight risk from 2040 to 2060 for a resistant potato cultivar, ex-
pressed as the sum of blight units for the highest yielding three month growing season
per locality for potato growing areas only. Blight units89,117 are an indicator of late blight
risk. Future climate scenario A1B data downscaled to 10 arc minutes for three global cli-
mate change models, MIROC3.2 (hires), INM-CM3.0, and GISS-AOM113 were provided by
Robert Hijmans, University of California at Davis.
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Figure 3.6: Change in global late blight risk from the 1961-1990 time period to projected
2040 to 2060 climate conditions for a susceptible cultivar, expressed as the sum of blight
units for the highest yielding three month growing season per locality for potato growing
areas only. Blight units89,117 are an indicator of late blight risk. Future climate scenario
A1B data downscaled to 10 arc minutes for three global climate change models, MIROC3.2
(hires), INM-CM3.0, and GISS-AOM113 were provided by Robert Hijmans, University of
California at Davis.
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Figure 3.7: Change in blight units normalized by area for countries with malnutrition and
a high priority on potato production, from 1961-1990 conditions to 2040-2060 predictions.
Values may change due to shifts in potato production area suitability and climate suitability
changes. Future climate scenario A1B data downscaled to 10 arc minutes for three global
climate change models, MIROC3.2 (hires), INM-CM3.0, and GISS-AOM113 were provided
by Robert Hijmans, University of California at Davis. Malnutrition data is from FAO115

and provided courtesy of CIP.
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Figure 3.8: Late blight risk to wild potato species found in South America. Potato species
richness is the number of wild potato species observed in a grid cell neighborhood. Species
in Central and North America were excluded from these observations. Blight units89,117 are
an indicator of late blight risk. Wild potato species occurrence and future climate scenario
A1B data downscaled to 10 arc minutes for three global climate change models, MIROC3.2
(hires), INM-CM3.0, and GISS-AOM113 were provided by Robert Hijmans, University of
California at Davis.
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Figure 3.9: Map one of four of late blight risk to wild potato species. Late blight risk to
wild potato species for 1961-1990 time period for the months of November through April.
Blight units89,117 are an indicator of late blight risk. Wild potato species occurrence and
future climate scenario A1B data downscaled to 10 arc minutes for three global climate
change models, MIROC3.2 (hires), INM-CM3.0, and GISS-AOM113 were provided by Robert
Hijmans, University of California at Davis.
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Figure 3.10: Map two of four of late blight risk to wild potato species. Late blight risk
to wild potato species for the 2000-2020 time period for the months of November through
April. Blight units89,117 are an indicator of late blight risk. Wild potato species occurrence
and future climate scenario A1B data downscaled to 10 arc minutes for three global climate
change models, MIROC3.2 (hires), INM-CM3.0, and GISS-AOM113 were provided by Robert
Hijmans, University of California at Davis.
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Figure 3.11: Map three of four of late blight risk to wild potato species. Late blight risk
to wild potato species for the 2040-2060 time period for the months of November through
April. Blight units89,117 are an indicator of late blight risk. Wild potato species occurrence
and future climate scenario A1B data downscaled to 10 arc minutes for three global climate
change models, MIROC3.2 (hires), INM-CM3.0, and GISS-AOM113 were provided by Robert
Hijmans, University of California at Davis.
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Figure 3.12: Map four of four of late blight risk to wild potato species. Late blight risk
to wild potato species for the 2080-2100 time period for the months of November through
April. Blight units89,117 are an indicator of late blight risk. Wild potato species occurrence
and future climate scenario A1B data downscaled to 10 arc minutes for three global climate
change models, MIROC3.2 (hires), INM-CM3.0, and GISS-AOM113 were provided by Robert
Hijmans, University of California at Davis.
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Appendix A

Supplementary Maps

Figure A.1: Blight unit severity normalized by area for countries with malnutrition and a
high priority on potato production. Countries with high priority for potato production have
a high ratio of hectares of potato production to population. Symbols are relative in size
to the percent of a particular country’s population which suffers chronic malnutrition. The
People’s Democratic Republic of Korea, and Malawi both experience much malnutrition.
Columbia is the lowest shown around 12% chronic malnutrition. Data from FAO115 and
International Potato Center (CIP), Lima, Peru.

71



Figure A.2: Global map of areas where potato is known to be grown from International
Potato Center (CIP), Lima, Peru, database on global potato production. Data provided by
CIP.
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