GENESIS AND COMPARISON OF MAMMALIAN BLOOD PLATELETS

by

THOMAS EDWARD NIGHTINGALE
A. B., Kansas State University, 1964

A MASTER'S REPORT

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Zoology

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1966

Approved by:

[Signature]
Major Professor
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISTORY</td>
<td>1</td>
</tr>
<tr>
<td>COMPARATIVE ASPECTS</td>
<td>2</td>
</tr>
<tr>
<td>MEGAKARYOCYTES</td>
<td>4</td>
</tr>
<tr>
<td>PLATELETS</td>
<td>6</td>
</tr>
<tr>
<td>Morphology</td>
<td>6</td>
</tr>
<tr>
<td>Chemical Character</td>
<td>7</td>
</tr>
<tr>
<td>Enumeration</td>
<td>8</td>
</tr>
<tr>
<td>Life Span of Platelets</td>
<td>9</td>
</tr>
<tr>
<td>PLATELET DYNAMICS</td>
<td>10</td>
</tr>
<tr>
<td>Platelet Production</td>
<td>10</td>
</tr>
<tr>
<td>Platelet Removal</td>
<td>12</td>
</tr>
<tr>
<td>PLATELET FUNCTION</td>
<td>14</td>
</tr>
<tr>
<td>PLATELET PATHOLOGY</td>
<td>17</td>
</tr>
<tr>
<td>Quantitative</td>
<td>17</td>
</tr>
<tr>
<td>Qualitative</td>
<td>19</td>
</tr>
<tr>
<td>Morphologic</td>
<td>20</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>21</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>22</td>
</tr>
</tbody>
</table>
The mammalian blood platelet was first described by A. Donne in 1842, when he stated that "there exist in the blood, red and white globules and little globules or "globulins" (Tocantins 1948). Zimmerman, in 1846, believed "elementarblaschen" were precursors of red blood corpuscles, though he remarked on their tendency to gather in clumps (Tocantins 1948). The platelet was alternately described as a product of leukocyte destruction, bacteria, granular masses, or precursors of red blood corpuscles (Osler 1905; Tocantins 1948), until Bizzozero in 1882 observed the circulation of platelets in living animals (Tocantins 1948). This work by Bizzozero was corroborated by Howell in 1884 (Tocantins 1948).

At a medical meeting in Baltimore, a report was presented by a Professor Kemp who found that defibrinated blood refused to clot, and the platelets disappeared (Osler 1905). At the same meeting, it was reported by a Doctor Boggs that platelets and coagulation were associated since the addition of pure platelets to fibrinogen produced rapid coagulation, while the addition of leukocytes brought about a very slow coagulation (Osler 1905).

Wright (1910) carried out an extensive program which proved the derivation of platelets from megakaryocytes in several mammals. Duke (1910) associated platelets with hemorrhagic disease and described two criteria, (the bleeding and coagulation time), for determining the severity of the diseases.
COMPARATIVE ASPECTS

Comparative studies of platelets and their premammalian homologues, the thrombocyte, are relatively scarce in the literature. This dearth is not due to a lack of knowledge of their existence, since Bedson (1923) stated his belief that mammalian platelets and avian thrombocytes were homologous, although the nuclei of the platelets were supposedly lost prior to maturation, just as with the red corpuscles. Wright (1910) reported that megakaryocytes were found only in mammals, but made no reference to corresponding cells in premammals. Jordan (1933) noted spindle cells in certain polychaetes and cyclostomes which he considered to be lymphocytes. In this same study Jordan found similar fusiform lymphocytes in the blood of hagfish and lampreys, but made no mention of platelets or thrombocytes.

Forkner (1929) characterized thrombocytes as about the size of a lymphocyte, irregular in shape, and possessing a nucleus which often appears vacuolated. He commented on their tendency to clump in a manner similar to mammalian platelets. This paper stood alone until 1962 when Shirakawa undertook a survey of the coagulation mechanisms of fish, turtles, alligators, skates, sharks, birds and humans. This investigator utilized morphology, staining characteristics (for glycogen content), and thrombocyte behavior during clotting to show the similarities in the coagulation process.

Until the late 1950's, many of the reports concerned with comparative studies of the hematologic make-ups of various animals dealt only with the erythrocytes and leukocytes. Some investigators described platelet morphology, a few made platelet counts, but most simply ignored the platelets. Among the workers who performed platelet counts, Mayerson (1930) found
621,000 per cu. mm. for the dog; Lawrence (1947) gave 422,000 per cu. mm. as the average number found in cats; Casey (1936) reported 583,000 per cu. mm. for adult male rabbits; and Salvidio (1960) reported 416,000 per cu. mm. for a colony of mixed rabbit breeds. Two groups of workers investigated sex differences in platelet counts and arrived at an impasse. Cameron (1949) found that male albino rats had higher platelet counts than females (673,000 per cu. mm. vs. 531,000 per cu. mm.), while Ottis (1952) noted that female golden hamsters had more platelets than males (742,000 per cu. mm. vs. 638,000 per cu. mm.).

Didisheim (1959) conducted a study of the coagulation properties of blood from eight mammalian and two avian species. While this study was designed to compare the clotting and coagulation factors, it also pointed out the fact that the differences in platelet function are relatively insignificant among mammals.

In 1960, Woodside examined the carbohydrates of human and bovine platelets. He found the total bound carbohydrates of the human platelet to be 3.5% of the dry weight while for the bovine platelet it was 8.8% of the dry weight. Considerable glycogen was present in both, and the monosaccharides were nearly alike, in both kind and quantity.

Adelson (1960) reported on platelet survival in dogs and humans under normal and abnormal conditions such as a hypocoagulable state produced by dicumarol and a hypercoagulable condition induced by the injection of epinephrine. He found the life span, production and destruction patterns were very similar in both species.
The study of the platelet necessitates at least a survey of the megakaryocyte, which Wright (1910) proved to be the source of the platelets.

The megakaryocyte was named by Howell (1890) when he observed a teased out cell which was surrounded by vesicle-like bodies which were secreted by the large cell. Since the material dissolved in the plasma, Howell believed that it may have been utilized for nourishment of the blood-forming cells. While this work of Howell's was concerned with the function of the giant cells of the marrow, he unwittingly published an account of platelet production and utilization.

Early workers variously believed blood platelets to be precipitates from the plasma, extrusion products of the red corpuscles, fragmentation products of leukocytes, formed from the lymph follicles via fragmentation, precursors of red corpuscles, or a definite and independent type of cell (Wright 1910; Bedson 1923). The last of these was proven to be correct by Wright (1910).

Confirming the findings of Wright, Bunting (1909) then went on to study the dynamics of platelet production by megakaryocytes (sic). Both Wright and Bunting describe the process of platelet production as one in which the megakaryocytes extend pseudopodia into the blood vessels of the bone marrow where portions of the pseudopodia become detached and are carried into circulation.

The process of megakaryocyte maturation has been examined by Robuck (1947) and Diggs (1962) who both view the process as taking place in four stages: a) Megakaryoblast which derives from the primitive hemocytoblast or reticulum cell, has a diameter of up to fifty micra, and a round or
bilobed nucleus. The cytoplasm is nongranular and basophilic. b) The pro-
megakaryocyte is larger (up to eighty micra), the nucleus begins to divide,
and the cytoplasm begins to show evidence of granulation, especially in the
nuclear area. c) The early megakaryocytic form demonstrates numerous areas
where the granules have begun to concentrate, leaving clearer areas of cyto-
plasm surrounding them. These granular clusters are often seen at the
periphery of the cell in pseudopodial processes. d) The metamegakaryocyte,
or dividing form of the megakaryocyte, exhibits demarcation membranes between
the daughter nuclei, each of which assumes a dense form. These daughter
nuclei to which the authors refer are actually the granular portions of the
platelets, since the platelets do not have a nucleus.

Bond (1962), using tritiated thymidine in adult rats, was able to trace
DNA synthesis in unrecognizable megakaryocyte precursors in the bone marrow.
From calculations based on this procedure, he estimated the life span from
the earliest recognizable megakaryoblast to megakaryocytic disintegration
to be forty hours.

When Howell first observed megakaryocytic division in 1890, he believed
it to be a direct (amitotic) division. However, Bond (1962) showed the
synthesis of DNA in megakaryocytes, and Garcia (1964) using the histogram
technique, presented evidence of a polyploid sequence from 2 N to 64 N,
with lines at 16 N, 32 N, and 64 N to support the nearly simultaneous
replication of chromosomal sets as could be expected in multipolar mitosis.

The location of the functioning megakaryocyte has been the subject of
many investigations beginning with Howell (1937), when he found that in
adult life the megakaryocytes are concentrated in the marrow and lungs,
with the maximum of their activity in platelet production in the lungs.
Fidlar (1941) refuted the observations of Howell, but offered no view of his own. Evidence to support the tenant of Howell was found by Scheinin (1962), when he sampled blood from the pulmonary artery and pulmonary veins of numerous humans with lung and chest pathology. He found a significant difference in the number of megakaryocytes entering and leaving the lungs, which he interprets as a sign of platelet production in the lungs.

Generally, the megakaryocytes are found in the fetus at about two and one half months, and may be found widely dispersed throughout the body (Sharnoff 1960). In later embryonic life they are more prevalent in the liver (Ackerman 1960) and lungs (Sharnoff 1960). In adults they are found in the bone marrow, spleen and lungs (Smith 1952; Bond 1962).

PLATELETS

Morphology The circulating platelet is a small, thin disc without processes (Zucker 1954). Electron microscopy reveals comparatively simple mitochondria, some granular bodies which may be derived from the mitochondria, and Golgi bodies, all in the central granulomere of the cytoplasm (Ferguson 1934; Rinehart 1955; Castaldi 1962). The surrounding hyalomere is distinct only in that it lacks any of the proceeding elements (Braunsteiner 1954). The membrane of the platelet is single and rather dense (Rodman 1962).

While the platelet is normally two to four micra in diameter and seven to eight cubic micra in volume (Olef 1937), Detwiler (1962) and McDonald (1966) reported that platelets decrease in size approximately twenty-five percent between youth and aged states.
Alterations in the shape of the platelet other than those associated with viscous metamorphosis and pathological conditions have been studied by Zucker (1954) while she was studying the effects of various anticoagulants. She found that morphological variations could be either permanent or reversible, and depended on temperature, osmotic pressure and type of anticoagulant used.

Chemical Character Research into platelet chemistry has only developed in the past decade and is still filled with doubts and conflicting reports.

The carbohydrate content of human platelets is 8.5% of the dry weight and consists of glycogen (Daniell 1959), a sulfated mucopolysaccharide believed to be chondroitin sulfate (Odell 1956), and numerous monosaccharides (Anderson 1953). The nitrogen content has been found to be 13.4% (Green 1954). Lipids present in platelets account for approximately 16% of their weight (Eriksen 1939). Fractionation of the lipids has revealed five phospholipid components: lecithin, sphingomyelin, inositol, phosphatidylethanolamine and phosphatidylserine (Marcus 1958; Marcus 1960; Marcus 1961; Troup 1960; Woodside 1963).

Platelet enzymes are numerous (Koppel 1954; Marcus 1964; Zucker 1959a), although wide variations have been reported in quantitative studies (Geisler 1963), and in sites of activity (Koppel 1954).

Several investigators have examined antigens associated with platelets, and have found groups which can be differentiated as clearly as the ABO groups for erythrocytes (Baldini 1962). Ducos (1960) and Yunis (1963) believe that all blood group antigens which have been described for erythrocytes are present in platelets, while Ebbe (1961a; 1962b) goes further to include histocompatibility and platelet specific antigens also.
It has been demonstrated that platelets are able to actively bind substances such as serotonin, histamine, epinephrine and norepinephrine (Sano 1959a; Sano 1959b), but under physiological conditions it seems that only serotonin plays a constructive role in hemostasis (Sano 1959b). Additional substances are found adsorbed on the surface of the platelet, and some workers consider this adsorption to be an active metabolic process (Hjort 1955; Adelson 1960).

Enumeration Platelet counts may be made by direct or indirect methods or a combination of these, depending upon the laboratory preference. The two most widely used direct methods are those of Rees and Ecker (1923) and Brecher (1953). These involve an actual count of the platelets in a hemocytometer, and for the Brecher technique, a phase contrast microscope. The indirect methods in use are those of Dameshek (1932) and Olef (1935), which are basically the same, in that they both involve determination of the platelet-red corpuscle ratio, then the enumeration of the erythrocytes in a hemocytometer. Variations of the preceding techniques have been used to find the platelet volume (Olef 1937) and the relative proportions as to size (Olef 1936; Arensburger 1955).

The figures for platelet counts in humans must be viewed cautiously since such wide ranges have been reported, partly due to techniques and possibly due to the site from which the sample was obtained. Rees and Ecker (1923) report an average count of 240,000 per cu. mm. The Brecher-Cronkite method (1953) yields counts which average 250,000 per cu. mm. Arensburger (1955) reports a mean of 310,000 per cu. mm. The "normal" ranges for these procedures all go from 140,000 up to 340,000 or 440,000 per cu. mm. For the indirect method of Dameshek (1932) the range is from 500,000 to 900,000 per cu. mm., while Olef (1932) found a mean of 514,000 per cu. mm., with extremes of 437,000 and 586,000 per cu. mm.
Changes in platelet numbers have been found to be related to various factors. Elevated platelet counts have been noted following surgery and fractures (Williams 1957), following strenuous exercise and relocation to a higher altitude (Tocantina 1938). Decreased platelet levels have been reported to obtain during the fourteen days prior to the onset of menstruation, with a return to normal after the onset (Pohle 1939). No significant changes have been reported in the platelet count during normal pregnancy other than a slight decrease during the first stage of labor and during the first two days postpartum (Jennings 1963).

Life Span of Platelets Estimates of platelet life span have been based on radioisotope labeling in three procedures: 1) the rate of platelet regeneration in animals made thrombocytopenic (Duke 1911; Klinman 1961); 2) length of survival of labeled platelets (Leekwa 1956; Adelson 1957); and 3) the length of time after whole body irradiation until the platelets disappeared from the peripheral circulation (Lawrence 1947; Craddock 1955; Odell 1961b).

Of these three, the length of platelet survival has been the most widely used. The preferred technique is to inject the label into a donor, then "harvest" the labeled platelets after a suitable time for incorporation and fixation of the label, then inject the platelets into a recipient and follow the radioactivity level in platelet aliquots (Adelson 1957).

While there is no "correct" method prescribed for determination of the life span, certain pitfalls must be avoided if the results are to be meaningful. Some attempts at in vitro labeling were in error since the excessive handling of the platelets seems to have damaged them (Mueller 1953). Heyesel (1961) used C14 serotonin as a label, but his later work in 1962.
corroborated by Zucker (1962), showed that serotonin could be exchanged between platelets and serotonin depots. This exchange was also noted by Grossman (1962), when he used P^{32} orthophosphate. The last and most unpredictable category of interferences includes the effects of drugs and the postoperative state (Adelson 1960a), and platelet isoimmunization (Cohen 1961).

The life span which seems most acceptable is in the realm of eight to nine days (Lookam 1956; Adelson 1963), or nine to eleven days (Ans 1958).

Perhaps a more useful criterion for platelets would be the platelet viability index devised by Baldini (1960b) to compare the clot retraction ability of platelets, but this procedure needs standardization.

PLATELET DYNAMICS

Platelet Production While it has long been known that platelets derive from megakaryocytes, the factors regulating the production of both these cells have remained a question up to very recent times.

Fidlar (1941) suggested the possibility of a hormonal regulatory mechanism. Greer (1948) was unsuccessful in attempts to correlate adrenocorticotropin administration and levels of circulating platelets. Adams (1949) conducted a series of experiments in which he removed the adrenals, hypophysis and spleen from rabbits, mice and rats. His findings ruled out the adrenals and spleen as controlling factors, but showed some correlation between the hypophysis and the number of megakaryocytes in the bone marrow.

Three papers were published in 1951 dealing with idiopathic thrombocytopenic purpura, a disease in which there is an abundance of megakaryocytes in the bone marrow, yet a thrombocytopenic state obtains with no apparent
cause. The first suggests a humoral destructive mechanism (Stefanini); the second, by Evans, suggests that an immune reaction is the basis for this illness; while Harrington demonstrated a thrombocytopenic factor in the plasma of most idiopathic thrombocytopenic patients he examined. These three authors propose some sort of destructive mechanism which maintains platelets at a reduced level, but has no suppressive effect on the megakaryocytes. Attacking the problem from another angle, Schulman (1960) found a factor in normal plasma which stimulates platelet production by the megakaryocytes. This factor was lacking in persons with chronic thrombocytopenia.

Using exchange transfusion, it was possible for Matter (1960) to reduce platelet levels to ten per cent of normal, and to follow the subsequent thrombopoiesis. After a latent period of two days, there was an increase of platelets in circulation, and a return to normal levels by the seventh day after the thrombopoiesis began. Odell (1961a) was also able to inject serum from platelet-depleted rats into normal rats and bring about a substantial increase in the platelet levels (up to 167% of normal). He postulated that the increase was due to a stimulatory agent in the donor serum. Odell (1962) experimented with several foreign agents such as soluble egg albumin and powdered glass to produce thrombocytosis. These materials did promote platelet production, and the serum from these animals was also effective in increasing platelet production in recipients.

Once the serum was shown to contain thrombopoietic abilities, fractionation was undertaken by several persons; the work of Cheng (1962) and Steinberg (1962) seem to be the most noteworthy. These two papers present
almost identical results, inasmuch as both authors found separate megakaryocyte and platelet regulators which are associated with components of serum albumin.

While many workers were turning to chemical methods for platelet control mechanisms, a few were still utilizing the biological approach. Williams (1957) ruled out the corticoid responses to stress as affecting platelet level and production; Sharnoff (1960) suggested that stress might stimulate the right ventricle to act upon the megakaryocytes in the lungs and thus increase the number of platelets; and Conney (1962) was able to extract a protein-rich substance from bovine spleens which elevated platelet levels of mice and rabbits without any change in the megakaryocyte numbers.

Odell (1964) published a review of the recent progress in platelet production factors along with the conclusion that there are natural humoral agents and secondary processes which respond to foreign agents.

Platelet Removal The factors relating to the fate of platelets, other than their consumption in blood coagulation, may be discussed in four main categories: 1) external factors; 2) deposition on the endothelium; 3) immune processes; 4) senescence.

Manipulation of the external factors has been accomplished by diet (Orma 1959; Mustard 1962b), oral and injectable administration of substances such as heparin and warfarin (Adelson 1963), thrombin (DeRobertis 1953), endotoxin (Duke 1912; Roy 1962), and India ink (Salvidio 1960); and smoking (Mustard 1962b). Of the preceding, the dietary factors give variable results; the effect of drugs depends somewhat upon dosage; thrombin exerts a lytic effect upon platelets; and smoking results in a shortened platelet survival time for an unexplained reason.
Cronkite (1957) proposed that intact platelets or a sulfa-rich macro-
molecule from platelets played a part in lining small vessels, thereby aiding
in maintenance of endothelial integrity. In his examination of endothelial
membranes from the aorta and coronary arteries of swine, Mustard (1962b)
found thrombi which had become covered with endothelium and incorporated
into the intima.

The evidence for implication of platelets in immune responses has
become strong in recent years largely due to work by Stefanini and co-workers
(1952) who first detected an agglutinin in the serum of patients with
hypoplastic anemia. Later work by the same group (1953a) showed this
agglutinin to be a beta-globulin which interfered with the functional
activity of platelets. However, Tullis (1956) found this platelet antibody
to be a gamma-globulin. Further work by Stefanini (1953b) revealed the
presence of two naturally occurring platelet agglutinins in humans. Schulman
(1961) noted that an isoagglutinin provoked by a mismatched platelet antigen
destroyed platelets in sensitized individuals.

From the scant amount of literature on the subject of platelet senescence,
it seems that this topic has been the subject of more armchair biology than
actual study. Olaf (1936) stated that older platelets were larger, while
Detwiler (1962) believed that older platelets decrease in size and clot
retracting ability, but that there is no appreciable ATP decrease accom-
spanying the aging process. What changes take place in the platelet as it ages if any,
are still the subject of controversy.

Stefanini (1951b) stated that the spleen played no role in platelet
survival time nor sequestration, although Vasquez (1960) supported the
sequestration of platelets in the spleen of patients with idiopathic thrombocytopenic purpura. In a comprehensive study, Aster (1964a; 1964b) showed that platelet removal occurs in the spleen when the platelets are "loaded" with relatively small amounts of isoantibody, while the heavily-laden platelets are removed and quickly destroyed in the liver. He believed this pattern of destruction obtains under normal conditions.

PLATELET FUNCTION

The primary functions of the platelet are hemostasis and synereisis. While the platelet may be found associated with coagulation, numerous workers have produced platelet-free clots (Howell 1914; Marcus 1953; Troup 1960).

In fulfilling their role in hemostasis, the platelets exhibit three properties: 1) adhesiveness, 2) aggregation, and 3) agglutination. Ferguson (1934) described the adherence of platelets to a foreign substance with the subsequent morphologic changes from spherical to stellate. The time required for a platelet to adhere to an abnormal surface was found to be one to two seconds (O'Brien 1963). Since the adherence of platelets to a foreign surface is virtually an instantaneous process, it may be a physical rather than a chemical reaction (Spelt 1962). Spelt later (1963) proposed the adhesion to be due to an alteration of the membrane, such as a realignment of the phospholipid molecules and the release of certain platelet contents. One of the substances released could be ADP, which has been shown to cause aggregation of platelets (Mustard 1964; Davey 1964). Another adhesion-promoting substance is connective tissue (Zucker 1962).

As the form of the individual platelets becomes altered, a point is reached
at which separate platelets are no longer distinct due to fusion or agglutination (Zucker 1949; Kjaerheim 1962).

Upon contacting a wetable supporting surface, numerous pseudopodes form after a few seconds and the granulomeres move into the center. After a few minutes the hyalomere spreads into a thin layer and disintegrates, leaving the granulomere which has condensed, to form the retraction center of the fibrin net (Ferguson 1934; Braunsteiner 1954; Castaldi 1962; Rodman 1962). This process has been named viscous metamorphosis and may be related to the release of some platelet factor, such as lipid or serotonin, which is involved in hemostasis (Castaldi 1962).

It has been shown by Quick (1947) and Ware (1948) that platelets are concerned with the total conversion of prothrombin to thrombin, and to a lesser degree with the speed of this reaction (Ware 1948). Quick (1947) visualizes the process as one in which the platelets activate a thromboplastin precursor which in turn, along with calcium, will convert prothrombin to thrombin.

The second broad aspect of platelet function, syneresis or spontaneous retraction of a clot, has been examined from many angles since it was first delineated by Tocantins (1934). In 1936, Tocantins described the formation of fibrin needles with the platelets attached to them "resembling rain drops on a telegraph wire." The platelets which he viewed then proceeded to undergo viscous metamorphosis. At the same time the fibrin needles became bent, twisted and more closely knit. While Tocantins noted that the platelets must be intact and capable of agglutination to produce syneresis, he did not propose the means of accomplishing this. Zucker (1949) produced small puncture wounds which were later excised in toto, fixed, sectioned
and stained. He found fibrin strands in the central portions of the wounds, with a mixture of fibrin and platelets near the margins. In a similar procedure performed on arterioles of rabbit mesentery, Kjaerheim (1962) found that the platelets produced plugs which had some fibrin strands near the surface but none in the interior; therefore, he disagreed with the belief of Howell (1914) that fibrin forms a rigid meshwork.

Since it has been shown that the platelets are responsible for syneresis, the next question to be considered is how this occurs. Stefanini (1953a) suggested, since intact platelets are required for syneresis, that there might be some specific component in the hyaluronate which is necessary. Jackson (1959) qualified Stefanini's theory to include viable platelets only, and later Detwiler (1962) conducted a study which revealed that clot retracting ability decreased with platelet age. He theorized that this reduction might be due to an impairment of the platelet's ability to metabolize glucose for ATP production. O'Brien (1963) reported that platelets contain as much ATP as a muscle cell, and that thrombin catalyzes the conversion of ATP to ADP. Thus, with this finding by O'Brien, we have an energy source and a catalyst to give us a means of accomplishing the "work" which the platelets perform. Work by Conley (1960) demonstrated that platelets play an active role in clot retraction. The morphological changes associated with viscous metamorphosis are believed to be intimately associated with the contraction of fibrin strands, but Conley was unable to explain the exact chemical or biological reactions.

Secondary functions which have been ascribed to platelets include the maintenance of vascular integrity (Hirsch 1951; Cronkite 1957); the adhesion to foreign substances such as bacteria, endotoxin and India ink (Salvidio 1960; Roy 1962); and the adsorbance of vasoconstrictive substances (Sano 1951a).
PLATELET PATHOLOGY

The pathological conditions associated with platelets are few in number and largely unexplained. While the descriptions which will follow will be categorized as to quantitative, qualitative and morphologic abnormalities, there is always some occasion for the overlap of multiple conditions.

Quantitative Thrombocytopenia is the condition in which there is an abnormally high platelet count for an extended period of time, as opposed to temporary conditions which may be accompanied by thrombocytosis. Thrombocytopenia, a rare condition, is sometimes seen in conjunction with chronic myelocytic leukemia (Minet 1925) and erythremia (Dameshek 1940). The highest platelet counts found were in the range of 3,000,000 to 6,000,000 per cu. mm. (Dameshek 1940). It is not known if there is any qualitative platelet abnormality associated with thrombocytopenia.

Transient thrombocytosis, often associated with the presence of many small easily agglutinating platelets, has been found in infectious diseases (Olef 1936) and following surgery (Williams 1957).

The literature dealing with thrombocytopenic states is voluminous and ranges from naturally occurring thrombocytopenic purpura to experimentally induced thrombocytopenia. While purpura hemorrhagica has long been known as an affliction of man, Duke (1912) was the first to quantify the disease when he noted that 40,000 platelets per cu. mm. seemed to be the point below which bleeding tendency is noted.

Primary thrombocytopenic purpura and idiopathic thrombocytopenic purpura are the two most common names for the syndrome characterized by a thrombocytopenic state developing in the absence of any apparent underlying disorder, and accompanied by an abundance of megakaryocytes in the bone
marrow (Schulman 1961). The mechanism of bleeding in this disease is known only in part: 1) the coagulation defect is associated with deficiency of a platelet enzyme necessary to enhance the conversion of prothrombin to thrombin (Quick 1947); 2) there is poor clot retraction, with decrease in adhesiveness, rigidity and contractility of the clot (Quick 1947); and 3) there is apparent failure to form a platelet plug in severed blood vessels (Zucker 1949).

The initiating cause is unknown. Many patients with this disorder have a substance in their circulating blood plasma capable of agglutinating normal platelets and of producing thrombocytopenic purpura upon transfusion into normal human subjects (Harrington 1951; Stefanini 1953a). Early work into the nature of the causative agent led to the discovery that thrombocytopenia, which could be extracted from the liver and/or spleen of patients with idiopathic thrombocytopenic purpura, would reduce the number of platelets in the circulating blood of rabbits (Treland 1938; Ottensook 1941; Rose 1941). Later workers tried to relate decreased platelet production (Dameshek 1946), and accelerated platelet destruction (Stefanini 1951), both under humoral control, as the primary cause of idiopathic thrombocytopenic purpura. The fact that the antiplatelet plasma factor is an antibody was proposed by Evans (1951), then categorized into groups by Stefanini (1953b), and found to be a gamma globulin by Stefanini (1953a) and Tullis (1956). Dausset (1961) felt that the gamma globulin may actually emit from the platelets themselves, although this seems to be somewhat speculative.

The pathogenesis of idiopathic thrombocytopenic purpura has been variously proposed as a virus infection which was responsible for the development of a hetero-platelet agglutinin, or an effect of the active lytic processes of red cells and platelets (Adelson 1952), and finally, as a result of widespread
intravascular coagulation with the deposition and accumulation of precipitated fibrin (Thun 1963).

The relation of the spleen to this disease remains obscure and the relief occasioned by splenectomy has not been satisfactorily explained (Harrington 1951; Stefanini 1951; Stefanini 1953a; Schulman 1960). Temporary relief of bleeding tendency may be obtained by transfusion of platelet-rich blood (Hirsch 1951; Hirsch 1952; Jackson 1959).

Secondary or symptomatic thrombocytopenic purpura is characterized by the reduction of platelets due to involvement of the bone marrow by infiltration with foreign cells (Wintrobe 1933) or tissues (Zucker 1959b); by hypoplasia or even complete aplasia due to irradiation (Lawrence 1947; Craddock 1955); by drug intoxications as with heparin (Fidlar 1949), or dextran (Stetson 1951; Adelson 1955; Langdell 1955; Rose 1959); endotoxin (Roy 1962); and India ink (Salvidio 1960).

Qualitative Deficiencies in platelet function are grouped under the heading of thrombocytopathy (Braunstein 1956). A reduction in the quality of the platelets as in thrombocytopenic purpura or Glanzmann's thrombasthenia is very rare. This disease is characterized by a normal platelet count, bleeding time and coagulation time, but a possible structural defect (vasculization) and abnormal pseudopod formation upon contacting a movable surface (MacFarlane 1941; Braunstein 1956).

While a hypercoagulable state has been exhibited by various workers due to stress (Cannon 1914a; Friedman 1958; DeLong 1959), diet (Uhley 1959; Connor 1962) and drugs (Cannon 1914a; Cannon 1914b; Weiner 1948), platelets have been implicated only to the extent that during thrombocytic states there are an increased number of small, easily agglutinating platelets (Olej 1936).
which provide a relatively large surface area for the transport of accessory clotting factors (Toecantins 1938; Sano 1959a; Sano 1959b).

Morphologic Accompanying idiopathic thrombocytopenic purpura and leukemia, large atypical, monogranular platelets which have been dubbed "giant platelets" may be seen (Rebuck 1947; Lewis 1957). Platelets lacking cytoplasm are found during periods of active regeneration (Bunting 1911). Braunsteiner (1954) reported that platelets exhibiting defective pseudopod formation were seen in the presence of exogenous platelet damaging agents, and were possibly due to an inherent defect in the platelets which he was unable to identify.
Acknowledgement

The author wishes to express a sincere appreciation to Assistant Professor Charles H. Lockhart of the Department of Zoology for his invaluable assistance as counselor and teacher.
BIBLIOGRAPHY

Aas, K. A. and Gardner, F. H.

Ackerman, C. A. and Knouff, R. A.

Adams, E.

Adelson, E. and Stefanini, M.

Adelson, E., Crosby, W. H. and Roeder, W. H.

Adelson, E., Rheingold, J. J. and Crosby W. H.

Adelson, E., Rheingold, J. J., Parker, O., Buenaventura, A. and Crosby, W. H.

Adelson, E., Rheingold, J. J. and Crosby, W. H.

Anderson, B. and Odell, T. T., Jr.

Arensburger, K. E.

Aster, R. H. and Jandl, J. H.
Aster, R. H. and Jandl, J. H.

Baldini, M., Costea, N. and Dameshek, W.

Baldini, M., Ebee, S. and Bridges, J. M.

Bedson, S. P.

Bond, V. P., Feinendegen, L. E., Odartchenko, N. and Gottier, H.

Braunsteiner, H., Fellinger, K. and Pakesch, F.

Braunsteiner, H. and Pakesch, F.

Brecher, G., Schneiderman, M. and Cronkite, E. P.

Bunting, C. H.

Bunting, C. H.

Cameron, D. G. and Watson, G. M.

Cannon, W. B. and Gray, H.
Factors affecting the coagulation of blood. II. The hastening or retarding of coagulation by adrenalin injections. Am. J. Physiol. 34: 232-242, 1914a.

Cannon, W. B. and Gray, H.
Factors affecting the coagulation of blood. II. The hastening or retarding of coagulation by adrenalin injections. Am. J. Physiol. 34: 243-250, 1914b.
Cannon, W. B. and Mendenhall, W. L.

Casey, A. E., Roesahn, P. D., Hu, Ch'Unan-K'Un and Pearce, L.

Cheng, F. H. and Steinberg, B.

Cohen, P., Gardner, F. H. and Barnett, G. O.

Conley, C. L.

Connor, W. E.

Cooney, D. P. and Blatt, W. F.

Cradock, C. G., Jr., Adams, W. S., Perry, S. and Lawrence, J. S.

Croukite, E. P., Bond, V. F., Robertson, J. S. and Paglia, D. E.

Dameshek, W.

Dameshek, W. and Henstell, H. H.
Dameshek, W. and Miller, E. B.

Daniell, E. W.

Davey, M. G. and Landen, H.

Dausset, J., Colombani, J. and Colombani, M.
Study of the leukopenias and thrombocytopenias by the direct anti-globulin consumption test on leukocytes and/or platelets. Blood, 18: 672-690, 1961.

DeLong, E., Uhley, H. N. and Friedman, M.

DeRobertis, E., Paseyro, P. and Reissig, M.

Detwiler, T. G., Odell, T. T. Jr. and McDonald, T. P.

Didisheim, P., Hatteri, K. and Lewis, J.

Diggs, L. W.

Ducos, J., Brousse, J. and Ruffie, J.

Duke, W. W.

Duke, W. W.

Duke, W. W.
Ebbe, S., Baldini, M. and Dameshek, W.

Ebbe, S., Baldini, M. and Dameshek, W.

Erickson, E. N., Williams, H. H., Arvin, I. and Lee, P.

Evans, R. S. and Kong, C.

Ferguson, J. H.

Fidlar, E. and Waters, E. T.

Fidlar, E. and Jaques, L. B.

Forkner, C. E.

Friedman, M., Rosenman, R. H. and Carroll, V.

Garcia, A. M.

Geisler, P. H., Issaifides, I. A. and Eichman, M. F.

Greer, M. A. and Brown, B. R.
Grossman, C. K., Kohn, R. and Koch, R.

Harrington, W. J., Minnich, V., Hollingsworth, J. W. and Moore, C. V.

Heyssel, R. M.

Heyssel, R. M., Brill, A. B. and Moore, H.

Hirsch, E. O. and Gardner, F. H.

Hjort, P., Rapaport, S. I. and Owren, P. A.

Howell, W. H.
Observations upon the occurrence, structure, and function of the giant cells of the marrow. J. Morphol. 4: 117-130, 1890.

Howell, W. H.
The clotting of blood as seen with the ultramicroscope. Am. J. Physiol. 35: 143-149, 1914.

Howell, W. H. and Donahue, D. D.

Jackson, D. P., Sorensen, D. K., Cronkite, E. P., Bond, V. P. and Fliedner, T. M.

Jennings, J. A.

Jordan, H. E.

Kjaerheim, A. and Hovig, T.
Repeated plasmapheresis of blood donors as a source of platelets.

Koppel, J. L. and Olin, J. H.

Langdell, R. D., Adelson, E., Furth, F. W. and Crosby, W. H.
Dextran and prolonged bleeding time. Results of a sixty-gram one-liter
infusion given to one hundred sixty-three normal human subjects.

Lawrence, J. S. and Valentine, W. N.
The blood platelet: The rate of their utilization in the cat. Blood,

Leekma, C. H. W. and Cohen, J. A.
Determination of the life span of human blood platelets using labeled

Lewis, J. H., Burehenal, J. H., Ellison, R. L., Ferguson, J. E., Palmer, J. H.,
Murphy, M. L. and Zucker, M. B.
Studies of hemostatic mechanisms in leukemia and thrombocytopenia.

McDonald, T. P., Odell, T. T., Jr. and Gosslee, D. G.

MacFarlane, R. G.
10: 1-29, 1941.

Marcus, A. J. and Spae T. H.
Platelet phosphatides: Their separation, identification and clotting

Marcus, A. J., Ullman, H. L. and Wolfman, M.

Marcus, A. J., Ullman, H. L. and Ballard, H. S.

Marcus, A. J. and Zucker-Franklin, D.
Enzyme and coagulation activity of subcellular platelet fractions.

A study of thrombopoiesis in induced acute thrombocytopenia. Blood,
Mayersen, H. S.

Minot, G. R. and Buckman, T. E.

Mueller, J. F.
Pathological physiology of mammalian blood platelets utilizing P32
561, 1953.

Mustard, J. F. and Murphy E. A.
Blood platelet economy during moderate and intensive therapy. Blood,

Mustard, J. F., Geissinger, H. D., Robinson, G. A., Rowsell, H. C., Murphy,
E. A., McCarter, M. and Riddell, F.

Mustard, J. F., Hagar, B. H., Rowsell, H. C. and MacMillan, R. L.
Effect of adenosine nucleotides on platelet aggregation and clotting

O'Brien, J. R.
The mechanism and prevention of platelet adhesion considered in relation

Odell, T. T., Jr. and Anderson, B.
Isolation of a sulfated mucopolysaccharide from blood platelets of

Odell, T. T., Jr., McDonald, T. P. and Detwiler, T. C.
Stimulation of platelet production by serum of platelet-depleted rats.

Odell, T. T., Jr.
Platelet labeling with radioisotopes and in vivo platelet survival,
pp 643-649, in Blood Platelets: Henry Ford Hospital International

Odell, T. T., Jr. and McDonald, T. P.
Effects of various agents on blood platelet production. Blood, 20:
769, 1962.

Odell, T. T., Jr., McDonald, T. P. and Howden, F. L.
Native and foreign stimulators for platelet production. J. Lab. &

Olef, I.
The enumeration of blood platelets. J. Lab. & Clin. Med. 20: 416-
436, 1935.
Olef, I.

Olef, I.

Orms, E., Rhodes, D. N. and Keys, A.

Osler, W.

Otensek, F. and Lee, F. C.

Ottis, K. and Tauber, O. E.

Pohle, F. J.

Quick, A. J.

Rebuck, J. W.

Rees, H. M. and Ecker, E. E.

Rineshart, J. F.

Rodman, N. F., Jr., Mason, R. G., McDevitt, N. B. and Brinkhous, K. M.

Rose, H., Jr., and Boyer, L. B.
Ross, S. W. and Ebert, R. V.

Roy, A. J., Djerassi, I., Neitlich, H. and Farber, S.

Salvidio, E. and Crosby, W. H.

Sano, I., Kakimoto, Y. and Taniguchi, K.

Sano, I., Kakimoto, Y., Taniguchi, K. and Takesasa, M.

Scheinin, T. M. and Koineviemi, A. P.

Schulman, I., Pierce, M., Lukens, A. and Currimbhoy, Z.

Sharnoff, J. G. and Scardino, V.

Shirakawa, M. and Lewis, J. H.

Smith, E. B. and Butcher, J.

Spaet, T. H., Cintron, J. and Spivack, M.
Spaet, T. H. and Cintron, J.

Stefanini, M., Chatterjea, J. B., Dameshek, W., Zannos, L. and Santiago, E. P.

Stefanini, M. and Chatterjea, J. B.

Stefanini, M., Dameshek, W. and Adelson, E.

Stefanini, M., Dameshek, W., Chatterjea, J. B., Adelson, E. and Madnicoff, I. B.

Stefanini, M., Plitman, G. I., Dameshek, W., Chatterjea, J. B. and Madnicoff, I. B.

Stefanini, M.

Steinberg, B. and Martin, R. A.

Stetson, C. A.

Taub, R. N., Rodriguez-Erdmann, R. and Dameshek, W.

Tocantins, L. M.

Tocantins, L. M.
Tocantins, L. M.

Tocantins, L. M.

Troland, C. E. and Lee, F. C.

Troup, S. B., Reed, G. F., Marinetti, G. V. and Swisher, S. N.

Tullis, J. L.

Vasquez, J. J. and Lewis, J. H.

Ware, A. G., Fahey, J. L. and Seegers, W. H.

Weiner, M., Zeltmacher, K., Reich, C. and Shapiro, S.

Williams, J. A. and Warren, R.

Wintrobe, M. M. and Buel, M. V.

Woodside, E. E. and Kocholaty, W.

Woodside, E. E., Therriault, D. G. and Kocholaty, W.

Wright, J. H.
Yunis, E. J. and Yunis, J. J.

Zucker, H. D.

Zucker, M. B. and Borrelli, J.

Zucker, M. B. and Borrelli, J.

Zucker, M. B., Lay, A. B., Borrelli, J., Mayer, K. and Fiermat, J.

Zucker, M. B., Zumoff, B. and Hellman, L.
OSMESIS AND COMPARISON OF MAMMALIAN BLOOD PLATELETS

by

THOMAS EDWARD NIGHTINGALE
A. B., Kansas State University, 1964

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Zoology

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1966

Approved by:

Major Professor
This report is a compilation of literature dealing with the subject of mammalian blood platelets.

The report begins with a brief history of platelets from the time they were first publicly described until they were shown to be associated with hemorrhagic diseases. Then the platelets and their pre-mammalian homologue, the thrombocyte are described and compared.

The origin of platelets from megakaryocytes is discussed, along with a review of the factors which have been proposed for megakaryocyte maturation and platelet production. Data concerning platelet morphology and chemical character is presented, along with resumes of studies from classic experimentally induced thrombocytopenia to the present era of radioisotope use to determine production, enumeration and life span of platelets.

An account of the role of platelets in hemostasis and syneresis during normal and abnormal conditions is presented. Quantitative and qualitative platelet dyscrasias are described. Since idiopathic thrombocytopenic purpura is the most common and best described platelet-related affliction of humans, this ailment is examined in some detail.