Generation of Efficient Compilers
by Application of
Single-Threading, Control Binding and Lambda-Lifting Techniques

by

Kok Hui Chong

B.A., Coe College, Cedar Rapids, IA, 1987

--

A MASTER'S THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

Approved By:

[Signature]

Dr. David A. Schmidt
Acknowledgements

I would like to express my gratitude and appreciation to Professor David A. Schmidt for his guidance, assistance, and advice.

I wish to thank Professor Elizabeth A. Unger and Professor Massaki Mizuno for being on my examination committee and teaching me interesting courses during my stay at the Kansas State University.

Finally, I would like to thank my wife Bee Choo and my parents for their patience and encouragement during my graduate study.
Table of Contents

Table of Contents ... iii

Chapter 1: Introduction ... 1

Chapter 2: Typed Lambda Calculus and Rewriting Rule Schemes 4
 2.1 Typed Lambda Calculus .. 4
 2.2 Rewriting Rule Schemes ... 5
 2.2.1 Definition .. 5
 2.2.2 The Rewriting Rule Schemes 6
 2.3 Rewriting Strategies ... 7
 2.3.1 Call-by-value ... 7
 2.3.2 Call-by-name .. 8

Chapter 3: Single-Threading, Control Binding and Lambda-Lifting 9
 3.1 Single-Threading .. 9
 3.2 Control Binding .. 14
 3.3 Lambda-Lifting .. 18

Chapter 4: Implementation of Compiler Generator System (Phase I) ... 21
 4.1 Organization of Compiler Generator System 22
 4.2 Scanner, Parser and Type-Checker 23
 4.2.1 Scanner ... 23
 4.2.2 Parser and Type Checker 24
 4.3 Single-Threading .. 25
 4.4 Control Binding ... 25
 4.5 Lambda-Lifting ... 27
 4.6 Eta-Reduction .. 29
 4.7 Pretty Printer ... 29

Chapter 5: Implementation of Compiler Generator System (Phase II) ... 31
 5.1 Augmented System ... 31
 5.2 Run-Time Rules and Compiled-Time Rules 32
 5.3 Scanner, Parser and Type Checker 33
 5.4 Experimental Portion .. 34
 5.4.1 Single-Threading ... 35
 5.4.2 Extended Control Binding 35
 5.4.3 Lambda-Lifting ... 39
 5.5 Eta-Reduction ... 39
Chapter 6: Results

6.1 Single-Threading, Lambda-Lifting and Control Binding

6.2 Control Binding, Single-Threading and Lambda-Lifting

6.3 Control Binding, Lambda-Lifting and Single-Threading

6.4 Lambda-Lifting, Single-Threading and Control Binding

6.5 Lambda-Lifting, Control Binding and Single-Threading

6.6 Summary

Chapter 7: Evaluators

7.1 Compiled-Time Evaluator

7.2 Run-Time Evaluator

Chapter 8: Conclusions

References

Appendix A: Source Files
Chapter 1

Introduction

As the practical value of **denotational semantics** becomes better understood, it has become obvious that the implementation of a language can be guided by its semantic definition [5]. In other words, it is feasible to derive a compiler from the semantics of a language. If one makes a comparison between a conventional handwritten compiler and a compiler generated from a semantic definition, one finds that it is easier to produce an **error-free** compiler using the semantic definition, although it first requires writing the semantic definition of the language. A drawback with the early work in this area is that the derived compilers ran slower than the handwritten ones. This is because the existing compiler generating systems that process lambda-calculus-style denotational semantics [8] are hindered by the slow processors that generate inefficient target code.

One possible way around this problem is to develop new machine architectures that are better suited to the implementation of functional languages. However, the dark side of following this approach is that it is not economically feasible; the existing machines use Von Neumann architecture must be wastefully discarded and replaced with the new ones. Fortunately, software solutions come to the rescue. Clues presented by the domains and valuation functions in the semantic definitions open new avenues for researchers to transform a denotational definition of a programming
language into an easily implementable form to generate more efficient compilers [4]. As the search for solutions continues in this direction, several promising techniques have been formulated to improve the efficiency of the generated target language. Among these techniques, we considered single-threading, control binding and lambda-lifting [4,6,7,8]. Although these techniques seem to improve the efficiency of the generated target language, no efforts have been conducted to tie together these techniques to maximize their effectiveness.

The motivation of this research is to fill in the gap. Since the order in which these techniques are employed affects their performances, we need a system which enables us to intermix them in various orders and capture their best ordering. Following this idea, we designed and implemented these techniques in separate modules and tested them with individual lambda calculus expressions. After these independent modules have been successfully built, their interfaces were properly defined so that they can be glued together in any order and executed. The order which we eventually pick will be the order which yields the smallest and best result. As the next step of the research, the augmented system is applied to a set-of-equations semantic definition. The output from the augmented system together with a compile-time evaluator form a compiler. With these efforts, we hope we can open a new dimension of automatically generated compilers that look like and are run as efficiently as hand-written ones.

The compiler generator system is primary used to generate efficient compilers from imperative language definitions. This is due to the fact that the techniques which are incorporated in the system are useful for processing semantics of imperative languages that use storage. Besides that, the system can also be applied to some kinds of functional programs where parameters are passed in a sequential fashion.
There are two obvious limitations to the system. First, it requires language definitions which use eager evaluation. Second, it cannot handle conversion of functional program parameters to variables in many cases.

Contents of Thesis

In the next chapter we give a review of the typed lambda calculus and rewriting rule schemes. The concepts of Single-Threading, Control Binding and Lambda-Lifting are presented in Chapter 3. Chapter 4 and 5 discuss work that was done in the research. These chapters show the structure of the system and how the individual components were implemented. Results are given in Chapter 6. Chapter 7 talks about the compile-time and run-time evaluators. Finally, Chapter 8 contains conclusions. The source code for the compiler generator system is contained in appendix A.
Chapter 2

Typed Lambda Calculus and Rewriting Rule Schemes

2.1. Typed Lambda Calculus.

In the denotational semantics framework, the denotation of a program is usually a mathematical value, such as a number of a function [5]. Denotations are expressed in a simple language called the lambda calculus. The lambda calculus has only a few syntactic constructs and a simple semantics. Despite its simplicity, it is sufficient to express the meaning of most all programming languages (e.g. PASCAL, LISP, SMALLTALK). Since our compiler generator system processes semantics definitions encoded in the lambda calculus, understanding the system will require some knowledge of the lambda calculus. FIGURE 2-1 shows the concrete syntax of the typed lambda calculus. The domain (type) calculus includes first order domains (e.g., nat, bool, iden, store, cmd, expr and numeral), and function space domains (e.g., (nat->nat), ((iden->store)->nat)). Our choices of constants is arbitrary. Constants can be built-in functions (e.g., update, access and plus), natural numbers (e.g., zero, one and two) or booleans (e.g., true and false).

Based on the concrete syntax above, we give three samples of typed lambda calculus expressions:

(a). \(\text{(times (plus one) two) four} \)
A lambda expression is itself a kind of "program" that can be "computed" by rewriting it into a normal form. The rewriting is called a reduction, and the rewriting is done by rewriting rule schemes.

2.2. Rewriting Rule Schemes.

A rewriting rule is a form \(L =\Rightarrow R \). An expression \(E \) is rewritten by the rule when a subexpression of \(E \) matches \(L \). The matched subexpression in \(E \) is replaced by \(R \).

Before we give examples, we need some definitions.

2.2.1. Definition.

(i) A lambda abstraction is an expression of the form \(\text{lam } i : T . E \text{ mal} \). Expression (b) in section 1.1 is an example.

(ii) A lambda expression is closed if every identifier \(i \) within it appears within a lambda abstraction \(\text{lam } i : E \text{ mal} \). Expression (b) is closed because the only identifiers in it are \(s \) and \(i \), and they reside within the abstraction (\(\text{lam } i . \text{lam} \).
s. B). An expression that is not closed is open. As we will see in section 2.3, implementing an open expression is a nuisance and we normally try to avoid it.

(iii) An innermost lambda abstraction is a lambda abstraction which contains no other proper lambda abstractions. The lambda abstraction \((\text{lam } s . (\text{access i } s) \text{ mal})\) in expression (b) in section 1.1. is an example.

(iv) A redex is an expression whose structure matches the left hand side of a rewriting rule [5].

(iv) A normal form is an expression which contains no redexes [5].

2.2.2. The rewriting rule schemes.

(i) Eta rule. The Eta rule eliminates redundant lambda abstraction.

Definition: \((\text{lam } x. E x) \Rightarrow E \text{ if } x \text{ is not free in } E\).

(ii) Alpha rule. The alpha rule is a name changing rule. It enables us to change the name of the formal parameter of a lambda abstraction, as long as it is done consistently. Let \(E[e/x]\) represent the expression constructed by substituting all free occurrences of \(x\) in \(E\) by \(e\).

Definition: \((\text{lam } x. E) \Rightarrow (\text{lam } y. E[y/x]) \text{ if } y \text{ is not free in } E\).

(iii) Beta rule. The beta rule enables us to apply a lambda abstraction to an argument by making a new instance of the body of the abstraction and substituting the argument for free occurrences of the formal parameter.

Definition: \((\text{lam } x. E) \ e \Rightarrow E[e/x]\).

(iv) Delta rule. The delta rule is a form of rewrite rule for built-in functions. The functionality of this rule is very similar to that of the beta rule.

Definition: \(f \ e1 \ \ldots \ \en \Rightarrow [en/xn] \ \ldots \ [e1/x1] \ E\)
where \(f \) is defined as \(f x_1 \ldots x_n \Rightarrow E \).

From the implementation point of view, the 'execution' of a lambda calculus expression is by rewriting. A reduction proceeds by repeatedly selecting a redex and rewriting it [4]. Following the convention, we use the symbol \(\Rightarrow \) to denote that one-step reduction has been performed. In the expression (a) above, there is one redex, namely

\[
((\text{plus one}) \text{two})
\]

as it matches the left hand side of the delta-rule plus \(a \ b \Rightarrow a + b \)

If the delta rule is applied, the expression is reduced to

\[
\Rightarrow ((\times \text{three}) \text{four}) .
\]

Notice that the action created a new redex which can further be reduced by the delta-rule times \(a \ b \Rightarrow a * b \) to a normal form

\[
\Rightarrow \text{twelve}.
\]

2.3. Rewriting Strategies.

There are different strategies for rewriting an expression. Two of the strategies we consider here are call-by-value and call-by-name. The rewriting strategy that we use is call-by-value.

2.3.1. Call-by-value.

In call-by-value, arguments to the beta and alpha rules are evaluated at the point of call. For this reason, it is sometimes called an eager rewriting strategy. The evaluated arguments are used to initialize the formal parameters of the rules. Since the evaluated arguments are usually smaller, using this rewriting strategy can minimize run-time memory usage. For example:

\[
\begin{align*}
\text{(lam x. plus x x) (plus 3 4)} & \Rightarrow \text{(lam x. plus x x) 7} \\
\text{\Rightarrow plus 7 7} & \Rightarrow 14.
\end{align*}
\]
2.3.2. Call-by-name.

In call-by-name, arguments to the beta and alpha rules are not evaluated at the point of call. Consequently, it is sometimes called a lazy rewriting strategy. Each occurrence of the formal parameter is replaced textually by the unevaluated actual parameter. Since some arguments are not used in the body of an abstraction, using this rewriting strategy can save effort of evaluating unused arguments. For example:

\[
\begin{align*}
&\text{(lam x. if true (time 2 3) x) (fac 100)} \\
=> &\text{ if true (times 2 3) (fac 100)} \\
=> &\text{ times 2 3} \\
=> &\text{ 6.}
\end{align*}
\]

We have just finished a tutorial session about the typed lambda calculus and the rewiring rule schemes. Our next step is to denote the meaning of a typical imperative language using the typed lambda calculus. This also leads us to the discussion of the partial evaluation techniques.
Chapter 3

Single-Threading, Control Binding and Lambda-Lifting

Since the concepts of Single-Threading, Control Binding and Lambda-Lifting form the main ingredients for our research, we devote this chapter to do a cursory inspection of these topics.

As presented in detail in Schmidt [5,6,8], single-threading is the sequential processing property of a programming language’s semantic definition. A semantic definition is said to be single-threaded if its store argument can be replaced by access rights to a single global variable while preserving the operational properties of the semantic definition. We believe that by exploiting this property in the definition, better and more efficient implementation can be generated from it. Statically checkable, syntactic criteria [8] for verifying that an expression is single-threaded in its use of a store argument are summarized in the following paragraphs.

Definition.

An expression is:

(i) trivial if it is an identifier.

(ii) active if it is not properly contained in an abstraction.
The Syntactic Criteria.

In this section, the letter S denotes a store-typed domain while the letters $D, D1$ and $D2$ denote any domains, for example, store, nat, bool and etc. We write $e:D$ to state that expression e belongs to domain D.

An expression E is single-threaded in its domain S if:

(i) E is $i:D$ or $c:D$.

(ii) E is $(\text{lam } i: D1. E1): D1 -> D2$, $E1$ is single-threaded, and

 if $D1 = S$, then all active S-typed identifiers in $E1$ are $i:S$;

 if $D1 <> S$, then $E1$ has no active S-typed expressions.

(iii) E is $(E1 E2): D2$, $E1$ and $E2$ are single-threaded, and

 if $D2 = S$, then if both $E1$ and $E2$ contain one or more active S-typed expressions, then all of the active S-typed expressions in E must be occurrences of the same identifier $i:S$;

 if $D2 <> S$, then all occurrences of active S-typed expressions in E must be occurrences of the same identifier $i:S$.

In order to understand the above criteria better, it is best to study some examples.

(a) $(\text{lam } s1. \text{lam } s2. s1)$

 This expression fails to satisfy condition (ii). The problem arises when an expression outside the lambda abstraction $\text{lam } s2. s1$ updates the s-typed identifier 's1'. The s-typed identifier 's1' in the abstraction will not be able to see the change and thus generates unexpected results when it is used.

(b) $(\text{lam } i. \text{access } i \ s0)$

 This expression fails to satisfy condition (ii). The reason is similar to the one
mentioned in (a).

(c) \((\text{update } [[A]] (\text{access } [[A]] \text{ s0}) (\text{update } [[A]] \text{ zero s0}))\)

This expression fails to satisfy condition (iii). The active s-typed subexpressions, namely s0 and \((\text{update } [[A]] \text{ zero s0})\) clash if the expression is evaluated from right to left. After the subexpression \((\text{update } [[A]] \text{ zero s0})\) is evaluated, a new s-typed value is created, say s1. The presence of 's0' in \((\text{access } [[A]] \text{ s0})\) violates the sequential processing property of the expression.

(d) \(\text{access } [[A]] (\text{update } [[A]] \text{ zero s0})\)

This expression does not satisfy condition (iii) although the expression standalone is single-threaded. This is because the expression can appear within a larger expression and cause a problem, for example, the expression \((\text{update } [[A]] (\text{access } [[A]] (\text{update } [[A]] \text{ one s0})) \text{ s0})\). The subexpression \((\text{update } [[A]] \text{ one s0})\) creates a local s-typed value which will disappear right after the operator 'access' has used it.

(e) \(\text{lam i . lam n . lam s . ((\text{update } i) n) s} \text{ mal mal mal}\)

This expression is single-threaded because it satisfies all three conditions.

(f) \((\text{update } [[B]] \text{ two}(\text{update } [[A]] \text{ one s0}))\)

This expression is single-threaded because it satisfies all three conditions.

Single-Threaded Language Definition. The abstract syntax of a simple while-loop language is given in FIGURE 3-1. To study the meaning of the while-loop language, we map its syntactic structures to its mathematical entities through a denotational semantics for the language. These entities are defined by the semantic algebras shown in FIGURE 3-2. In FIGURE 3-3, the semantic algebras are used to give meaning to the syntax via valuation functions.
It is important to be able to recognize that the definition of FIGURE 3-3 is indeed a definition of a sequential, imperative language because the semantic store argument is treated in a sequential fashion when passed as a parameter. That is, any program is translated by the definition into a single-threaded lambda expression. To make the point clearer, let us study the result of translating program P[[A:=0; B:=A+1.]] using the definition in FIGURE 3-3.

\[P[[A:=0; B:=A+1.]] = C[[A:=0; B:=A+1]] \]

\[= \text{lam s. } C[[B:=A+1]] (C[[A:=0]] s) \]

\[= \text{lam s. } C[[B:=A+1]] \left(\text{lam s. update } [[A]] (\text{lam s. zero } s) s \right) s \]

\[= \text{lam s. } \left(\text{lam s. update } [[B]] (\text{lam s. access } [[A]] s) \text{ plus } (\text{lam s. one } s) s \right) \left(\text{lam s. update } [[A]] (\text{lam s. zero } s) s \right) s \]

The resultant expression is single-threaded because it satisfies the criteria above. This suggests that the individual instances of the store argument can be replaced by access rights to a single global variable. A semantic definition whose store argument can be replaced by access rights to a single global variable while preserving operational properties is said to be single-threaded (in its store). The criteria defined by Schmidt [8] are sufficient conditions for the single-threading property to hold for a denotation of a program.

After we have detected that a semantic definition is single-threaded in its store argument, we can transform the semantic definition into one which uses a global store variable. The technique defined in [7] goes as follows:

(i) For the Store algebra, replace domain \(s:\text{Store}=D \) by the variable declaration \(\text{var } s:\text{Store}=D \) and transform:

\[\text{destruction operations } c:A1^*,...,An^*\text{Store}->E, E<>\text{Store. defined as } (c\ a1,...,an,s)=e \text{ to } c:A1^*,...,An^*\text{Unit}->E, \text{ defined as } (c\ a1.....an,())=e1. \text{ Any occurrences of } s \text{ in } e \text{ are replaced by } (). \]
Abstract syntax:
P: Program
C: Command
E: Expression
B: Boolean-expr
I: Identifier
N: Numeral

P ::= C.
C ::= C1; C2 | I := E | if B then C1 else C2 | while B do C
E ::= E1 + E2 | I | N

FIGURE 3-1

Semantic algebras:
I. Truth values
 Domain t: Tr = B
 Operations
 true: Tr
 false: Tr
 not: Tr -> Tr

II. Natural numbers
 Domain n: Nat = N
 Operations
 zero, one, ...: Nat
 plus: Nat * Nat -> Nat
 equals: Nat * Nat -> Tr

III. Store
 Domain s: Store = Identifier -> Nat
 Operations
 newstore: Store
 newstore = lam i. zero
 access: Identifier -> Store -> Nat
 access i s = s(i)
 update: Identifier -> Nat -> Store -> Store
 update i n s = lam j. j equalid i -> n [] s(j)

FIGURE 3-2
P: Program -> Store -> Store
P[[C.]] = C[[C]]

C: Command -> Store -> Store
C[[C1; C2]] = lam s. C[[C2]](C[[C1]]s)
C[[I:=E]] = lam s. update [[I]] (E[[E]]s) s
C[[if B then C1 else C2]] = lam s. B[[B]]s -> C[[C1]]s [] C[[C2]]s
 where wh = lam s. B[[B]]s -> wh (C[[C]]s) [] s

E: Expression -> Store -> Nat
E[[E1+E2]] = lam s. E[[E1]]s plus E[[E2]]s
E[[I]] = lam s. access [[I]] s
E[[N]] = lam s. N[[N]]

B: Boolean-expr -> Store -> Tr (omitted)
N: Numeral -> Nat (omitted)

FIGURE 3-3

construction operations c:A1*,...,*An*Store->Store, defined as (c a1,...,an,s)=e to c:A1*,...,*An*Unit->Unit, defined as (c a1,...,an,(j)=(s:=e).
The result is the value (j).

(ii) Replace all occurrences of Store-typed identifiers s that appear in the semantic equations and operations by (j).

The transformed language of FIGURE 3-3 is represented in FIGURE 3-4.
The store argument is no longer copied into an expression during reductions. Instead, (j)-values are used. We assume that the (j)-values are the control markers, that is, they give permission to subexpressions to evaluate.

3.2. Control Binding.

If we translate the program P[[A:=0; B:=A+1.]] using the definition in FIGURE 3-4, we get:
Store module

\[
\text{var } s : \text{Store} = \text{New} + \text{Upd} \\
\text{where } \text{New} = \text{Upd} = \{ () \}
\]

Operations

\[
\text{newstore: Unit} \\
\text{newstore} = (s := \text{inNew}())
\]

\[
\text{access: Identifier*Unit} \rightarrow \text{Nat} \\
\text{(access } i ()) = \text{eval } i s
\]

\[
\text{update: Identifier*Nat*Unit} \rightarrow \text{Unit} \\
\text{(update } i n ()) = (s := \text{inUpd}(i, n, s))
\]

Valuation functions:

\[
\text{P: Program} \rightarrow \text{Unit} \rightarrow \text{Unit} \\
\text{P}[[C]] = C[[C]]
\]

\[
\text{C: Command} \rightarrow \text{Unit} \rightarrow \text{Unit} \\
\text{C}[[\text{if } B \text{ then } C1 \text{ else } C2]] = \text{lam}().C[[C2]](\text{C}[[C1]]()) \\
\text{C}[[\text{while } B \text{ do } C]] = \text{lam}().\text{wh}() \\
\text{where } \text{wh} = \text{lam}().B[[B]() \rightarrow \text{wh}(\text{C}[[C]]()) [] ()} \\
\text{C}[[I:=E]] = \text{lam}().\text{update }[[I]](\text{E}[[E]]())()
\]

\[
\text{E: Expression} \rightarrow \text{Unit} \rightarrow \text{Nat} \\
\text{E}[[E1+E2]] = \text{lam}().\text{E}[[E1]]() + \text{E}[[E2]]() \\
\text{E}[[I]] = \text{lam}().\text{access }[[I]]() \\
\text{E}[[N]] = \text{lam}().\text{N}[[N]]
\]

\[
= \text{lam}().(\text{lam}().\text{update }[[B]](\text{lam}().\text{access }[[A]]())()) + \text{lam}().\text{one}()()) \\
(\text{lam}().\text{update }[[A]](\text{lam}().\text{zero}())())()
\]

Notice that the definition in FIGURE 3-4 produces program denotations that contain a large number of combinations of the form (lam().M)() (expressions that manipulate the global variable). These combinations can be optimized out of the denotation before run-time. That is, we want to remove occurrences of lam () and () from the definition. The program will be translated to lambda expression without all the (lam
(. E)() forms. The technique of Control Binding defined in [7] is used to serve this purpose. The technique used on a language definition goes as follows:

For a valuation function A such that each equation for A has the form $A[[A_i]] = \lambda . E_i$, replace all occurrences of

$\lambda . E_i$ with E_i.

$A[[A]]()$ in E_i with $A[[A]]$.

$A[[A]]$ not in combination with $()$ by ($\lambda . A[[A]]$).

FIGURE 3-5 gives the definition of FIGURE 3-4 after control binding. (Note: Control binding is also performed on the Store algebra.) Notice that almost all of the λ () and () values have disappeared.

\[
\begin{align*}
P[[C_\cdot]] &= C[[C]] \\
C[[C_1; C_2]] &= C[[C_1]]; C[[C_2]] \\
C[[I:=E]] &= \text{update} [I] E[[E]] \\
C[[\text{if } B \text{ then } C_1 \text{ else } C_2]] &= B[[B]] \rightarrow C[[C_1]] \downarrow C[[C_2]] \\
C[[\text{while } B \text{ do } C]] &= \text{wh} \\
& \quad \text{where } \text{wh} = B[[B]] \rightarrow C[[C]]; \text{wh } \text{[] (} \\
C[[\text{skip}]] &= () \\
E[[E_1+E_2]] &= E[[E_1]] + E[[E_2]] \\
E[[I]] &= \text{access } [I] \\
E[[N]] &= N[[N]]
\end{align*}
\]

\text{(the expression } E_1; E_2 \text{ abbreviates } \lambda . E_2 E_1 \text{)}

FIGURE 3-5

The resultant language definition in FIGURE 3-5 is very useful because it can be used to derive a code generator. As one will see, the task can be easily accomplished. Figure 3-6 illustrates how we can apply the semantic notation in Figure 3-5 to translate a program to its denotation.
The result in Figure 3-6 is almost machine code. Without much effort, we can transform the resultant expression in Figure 3-6 into its postfix form and obtain:

```
zero
[[A]]
update
[[A]]
access
one
plus
[[B]]
update
```

Notice that there is a striking resemblance between the postfix expression defined above and the hypothetical stack machine code given below:

```
pushconst zero
pushid [[A]]
do update
pushid [[A]]
do access
pushconst one
do plus
pushid [[B]]
do update
```

Notice that the stack code does not carry any store arguments but lets the "do access" and "do update" manipulate the store instead. (The store is a fixed machine component.) In reality, this is exactly what a conventional stack code which runs on a Von Neumann architecture would do.
As mentioned above, the conversion of a lambda calculus expression from one form into another is the fundamental operation of our implementation. Obviously, the efficiency of this implementation cannot be ignored. In fact, this important aspect has been taken very seriously and a technique called lambda-lifting has been designed to serve the purpose.

3.3. Lambda-Lifting.

Lambda-lifting transforms a program into an equivalent form that uses supercombinators [6].

A supercombinator is a closed lambda-abstraction such that all lambda-abstractions within it are also closed. For example,

\[(\text{lam } x : \text{nat. plus } ((\text{lam } y : \text{nat. } 1) x)\]

is a supercombinator, but

\[(\text{lam } x : \text{nat. plus } y x)\]

is not because y is free in the expression. In the implementation, handling free variables is a nuisance because a symbol table must be maintained to remember the values of the free variables. Furthermore, each such expression must have its own symbol table. The process of transforming the supercombinators into names and easy-to-implement rewrite rules to supercombinators are called lambda lifting. For example, the supercombinator above can be named 0, and the rules:

$1 \ y \Rightarrow y$

$0 \ x \Rightarrow \text{plus } (1 \ 1) \ x$

are generated.

The algorithm from [4] which does the conversion is summarized below:

While there are more lambda abstractions do
BEGIN

1) Choose any lambda abstraction which has no inner lambda abstractions in its body.

2) Take out all its free variables as extra parameters.

3) Give an arbitrary name to the lambda abstraction. Following the convention, we use $0, \$1, \2 and so on as names for supercombinators.

4) Replace the occurrence of the lambda abstraction by name applied to the free variables.

5) Compile the lambda abstraction and associate the name with the compiled code.

END

Using this algorithm (Chapter 4 puts this algorithm to work), we can convert the semantic equations for C and E in Figure 3-3 so that the right hand side of the equations consist only of supercombinators and their arguments. See figure 3-7. The rewriting rules for the supercombinators is given in Figure 3-8.

\[
P[[C.]] = C[[C]]
\]
\[
C[[C1; C2]] = \$0 \ C[[C1]] \ C[[C2]]
\]
\[
C[[I:=E]] = \$1 \ [I] \ E[[E]]
\]
\[
C[[if B\ then\ C1\ else\ C2]] = \$2 \ B[[B]] \ C[[C1]] \ C[[C2]]
\]
\[
C[[while\ B\ do\ C]] = \text{fix} \ (\$3 \ B[[B]] \ C[[C]])
\quad \text{where} \ \text{fix} \ g = g \ (\text{fix} \ g)
\]
\[
E[[E_1+E_2]] = \$4 \ E[[E_1]] \ E[[E_2]]
\]
\[
E[[E_1-E_2]] = \$5 \ E[[E_1]] \ E[[E_2]]
\]
\[
E[[I]] = \$6 \ [I]
\]
\[
E[[N]] = \$7 \ N[[N]]
\]

FIGURE 3-7

19
In FIGURE 3-8, the frequent occurrences of the store argument \((s)\) make the implementation of the lambda-lifted definition more inefficient than we like. For example, if the program \(C[[A:=0; B:=A+1]]\) is translated using the definition in FIGURE 3-7 and FIGURE 3-8, the resultant expression looks as follow:

\[
P[[A:=0; B:=A+1.]] \\
= C[[A:=0; B:=A+1]] \\
= $0 C[[A:=0]] C[[B:=A+1]] \\
= $0 $1 [[A]] E[[0]] $1 [[B]] $4 E[[A]] E[[1]] \\
= $0 $1 [[A]] $7 N[[0]] $1 [[B]] $4 $6 [[A]] $7 N[[1]] \\
= ($1 [[B]] $4 $6 [[A]] $7 N[[1]]) ($1 [[A]] $7 N[[0]] s) \\
= ($upd [[B]] (($6 [[A]] s) plus ($7 N[[1]] s) s) ($upd [[A]] ($7 N[[0]] s) s) \\
= ($upd [[B]] (($6 [[A]] s) plus one) s) ($upd [[A]] zero s)
\]

We have seen three optimization techniques, each does something different. We want to put them together to see if we can get all their advantages in one system. But the order in which they should be applied is not known. Consequently, our goal in the Chapters that follow is to conquer this unknown.
Chapter 4

Implementation of Compiler Generator System

Phase I

The compiler generator system is implemented entirely in Standard ML, a language developed at University of Edinburgh [3]. Standard ML is a functional and interactive programming language. We used a version that runs on a VAX 11/780 operating under Berkeley 4.3 UNIX and on a SUN 3/60 operating under SunOS 4.0.

This and the next chapter describe how the techniques described in Chapter 3 are implemented. The order in which they are presented will correspond to the one presented in Chapter 3. We also point out ways to handle problems that arise during the work of automating these techniques. The discussion will not go into details about the source code.
4.1. Organization of Compiler Generator System.

Conceptually, the compiler generator system operates in phases. Each phase transforms a source language definition from one form into another. The initial design of the compiler generator system is sketched in FIGURE 4-1. Since the ordering of single-threading, control binding and lambda-lifting has not been decided, double-headed arrows are used. The order which we use for our discussion here is applying single-threading first, control binding second and lambda-lifting last.

![Diagram](attachment:image.png)

FIGURE 4-1

Notice that the input to this system is not a language definition as one might expect. Instead, a typed lambda calculus expression is used. We do this for couple of reasons.
First, the system is easier to build and understand if it is to process a single typed lambda calculus expression. Second, the existing system will be extended in Chapter 5 to process a set-of-equations semantic definition. For these reasons, we choose to use the expression

\[\text{lam } i : \text{id} \text{en} \text{. lam } s : \text{store} \text{. ((access } i) s) \text{ mal mal} \]

as our example input throughout this chapter.

4.2. Scanner, Parser and Type-Checker.

These three modules perform a service found in most all of compilers: they break up the input into its constituent pieces and create a derivation tree from them. The derivation tree has the typing information attached to each of its nodes. This version of the derivation tree is sufficiently informative for the implementation of the rest of the system.

4.2.1. Scanner.

The scanner module is the simplest one. It processes a string of characters one at a time and produces a list of strings as its output. An example should make the point clear. If the input to this module is a string that looks as follows:

"lam i : iden . lam s : store . ((access i) s) mal mal"

then the output would look like:

['"lam"','"i"','"":"','"iden"','."'','"lam"','"s"','"":"','"store"','"."','"("','"("','"access"','
"i"','")"','"s"','")"','"mal"','".mal"']

Although it seems hard to read, this list of strings is useful input for the parser.
4.2.2. Parser and Type Checker.

These two modules are implemented as one because it improves efficiency. While the parser is building the tree, the type checker performs its task at the same time.

The parser is coded from the concrete syntax for the typed lambda calculus. The parser reads a list of strings from the scanner and determines whether the input program the list represents is syntactically well-formed. While the parser is doing its job, the tree the parser builds is being type checked. Any ill-formed syntax or typing will be reported. (No error recovery is included.) The parse tree output corresponding to the input list seen above is depicted in FIGURE 4-2.

FIGURE 4-2
The parse tree may be viewed as a graphical representation of the derivation [1]. Each interior node of the parse tree is labeled either by a 'lam' or 'Ξ' and each leaf of the parse tree is labeled either by an 'idenfy' or 'const'. Following the convention, the interior nodes are sometimes called nonterminals while the leaves are sometimes called terminals. Unlike the regular terminals and nonterminals, they are tagged with typing information. The typing information are represented by trees as well. All constants or operators must have their types defined in a predefined environment if they are not explicitly defined in the input expression. Hence, the type for 'access' will be retrieved from the predefined environment when this module is involved.

We systematically automated the single-threading criteria and global variable transformation technique presented in the previous chapter. The first stage verifies that the lambda calculus expression is single-threaded and the second stage transforms the single-threaded expression. The implementation of the first stage progresses in a bottom-up fashion, that is, the leaves of the tree will first be verified before their roots. For example, the identifiers 's' and 'i', and the operator 'access' will be the first to be verified. If there are no offending leaves, their roots will be verified next. This similar process continues until the root of the whole tree is encountered and verified. The tree in FIGURE 4-2 is indeed single-threaded in its 'store' argument. The tree is unaltered after the first stage is completed. Following the transformation technique in section 3.1, stage two transforms the single-threaded tree in one traversal. FIGURE 4-3 shows the result.

4.4. Control Binding.

The technique of control binding we described earlier handles a-set-of equations
semantic definition. To do control binding on a single lambda calculus expression, some adjustments must be made. (Note: In Chapter 5, control binding on a language definition will be presented.) The newly adjusted technique is as follow,

Step 1. Rewrite all occurrences of (lam (). E) () to E.

Step 2. If all uses of operator c in E has the form (c E1,...En ()), rewrite each use of c to (c E1,...,En).

FIGURE 4-4 shows the resultant tree after the technique is enforced on the tree in FIGURE 4-3. Notice that the corresponding type tags are altered accordingly. (Although it seems wasteful to do that since the typing information is no longer
4.5. Lambda-Lifting.

Up till now, the tree still has the 'lam' operators it started with. As we pointed out earlier, the presence of the 'lam' is undesirable and we must make them disappear. The presentation that follows describes the solution, lambda-lifting, one linearized trees. In section 4.7, we talk about the module which does linearization.

After the tree in FIGURE 4-2 is linearized, it looks as follows:

\[
\text{lam}\ i.\ \text{lam}\ s.\ ((\text{access}\ i)s)
\]

Although the type tags are not shown, they are still properly maintained in the implementation. Let us now put the lambda-lifting algorithm to work in a stepwise
fashion. For easy reference, all the steps are numbered so that they correspond to the ones in the algorithm.

After the tree in FIGURE 4-4 is fed through the linearization module, it enters the first iteration of the lambda-lifting loop. The following steps occur:

1) choose lam s. ((access i)s)
2) construct (lam i. lam s. ((access i)s))i
3) let 0 represent lam i. lam s. ((access i)s)
4) construct lam i. (0 i)
5) define (((0 i) s) = ((access i)s)

After the first iteration of the loop is completed, we have:

$$((\$0\ i)\ s) = ((\text{access}\ i)s)$$

$$\text{lam}\ i.\ (\$0\ i)$$

As there remains one more lambda abstraction, the second iteration the following:

1) choose lam i. (0 i)
2) construct lam i. (0 i) (no change)
3) let 1 represents lam i. (0 i)
4) construct 1
5) define (1 i) = (0 i)

The lifting terminates and we end up with the following expression and rule system:

$$((\$0\ i)\ s) = ((\text{access}\ i)s)$$

$$(1 i) = (0 i)

1

Clearly, the rule (1 i) = (0 i) is redundant. We can apply the eta-rule defined section 2.2 to simplify it to

$$\$1 = \$0$$
Having done so, 1 itself is redundant, and 1 can be replaced wherever it occurs by 0, giving:

$$((\text{\$0 \ i}) \ s) = ((\text{access i})s)$$

0.

We name $((\text{\$0 \ i}) s) = ((\text{access i})s)$ as a rewriting rule and the standalone 0 as an expression to be evaluated. As we will discover later, it is a little too general to call this rule a rewriting rule. A more specific term is essential to distinguish it from yet another set of rewriting rules. For this reason, we call this rule a compile-time rule. On the other hand, the rule for the 'access' is called a run-time rule. A more complete coverage of these rules can be found in Chapter 5.

4.6. Eta-Reduction.

Through the example given the previous section, we see the need to incorporate eta-reduction in our compiler generator system. Eta-reduction was implemented as an independent module. The input to this module is a list of rewriting rules. For instance, if the list

$$[(((\text{\$0 \ i}) s),((\text{access i})s)), ((\text{\$1 \ i}), (\text{\$0 \ i}))]$$

is fed through this module, the output would look as follows:

$$[(((\text{\$0 \ i}) s),((\text{access i})s))].$$

The redundant rewriting rule which does nothing has been optimized out of the list by eta-reduction.

4.7. Pretty Printer

The pretty printer analyses the rewriting rules and prints them in such a way that the structure of the rules become clearly visible. It is more of a debugging tool rather
than a necessary component to the system. The module processes the tree in FIGURE 4-2 and produces a linearized tree similar to the one presented in section 4.6. Without this module, it will be hard to make the presentation in section 4.6. as clear as is.

The discussion in the next chapter covers the process of augmenting the existing system to one which processes a set-of-equations semantic definition. The order in which the modules are presented is similar to the one you see in this chapter.
The system as described so far processes only a single typed lambda calculus expression. In this chapter, attention will be focused on augmenting the existing modules so that, together, they can process an arbitrary set-of-equations semantic definition. Since an equation $\text{lhs} = \text{rhs}$ can be viewed as a pair of expression, set-of-equations semantic definition is just a list of pairs of lambda calculus expressions. One can subsequently select a pair and break it into its two constituent parts (expressions) before they are processed. As a result, the existing system processes equations as pairs of lambda calculus expressions. Although there are some modification necessary, they are minor.

5.1. Augmented System.

The design of the augmented system in FIGURE 5-1 looks similar to the one presented in FIGURE 4-1. The key difference is this system takes the run-time and compile-time rules as its input rather than a single typed lambda calculus expression. Since the rules play a key role in helping us understanding the system, the discussion in section 5.2 is devoted to them.

The run-time and compile-time rules are indistinguishable. However, their underlying operational behaviors are quite distinct. In the denotational semantics framework, the terms "semantic algebra" and "valuation functions" are used for the run-time and compile-time rules respectively. As one might expect, these rules will look very similar to the ones defined in FIGURE 4-2 and FIGURE 4-3, only this time they are defined in an easily implementable form. The corresponding rules are defined in FIGURE 5-2 and FIGURE 5-3 respectively.

The basic idea of our implementation is to subsequently extract and process each individual rule from a set of rules. Inside each module, these rules are subsequently broken down into a left-hand and right-hand expressions. These expressions are then processed in turn. Consequently, the modules are unaware of the fact that they are
Run-Time Rules:

\[((\text{plus} \ m) \ n) = m + n \]
\[((\text{times} \ m) \ n) = m \times n \]
\[(\text{pred} \ n) = n - 1 \]
\[(\text{eq}0 \ n) = n = 0 \]
\[(((\text{if true}) \ f) \ g) = f \]
\[(((\text{if false}) \ f) \ g) = g \]
\[\text{empty} = s := \lambda i . \text{zero} \]
\[(\text{access} \ i \ s) = s(i) \]
\[(((\text{update} \ i) \ n) \ s) = s := [i \rightarrow n]s \]

FIGURE 5-2

Compile-Time Rules:

\[(\text{SC} ((; \ cl) \ c2)) = \lambda s . ((\text{SC} \ c2) ((\text{SC} \ cl) s)) \]
\[(\text{SC} ((:= \ i) \ e)) = \lambda s . (((\text{update} \ i) ((\text{SE} \ e) s)) s) \]
\[(\text{SC} ((+ \ e1) \ e2)) = \lambda s . (((\text{plus} ((\text{SE} \ e1) s)) ((\text{SE} \ e2) s)) s) \]
\[(\text{SE} (\# \ n)) = \lambda s . (\text{SN} n) \]
\[(\text{SE} (@ \ i)) = \lambda s . ((\text{access} \ i) s) \]
\[(\text{SN} 0) = \text{zero} \]
\[(\text{SN} 1) = \text{one} \]
\[(\text{SN} 2) = \text{two} \]
\[(\text{SN} 3) = \text{three} \]
\[(\text{SN} 4) = \text{four} \]
\[(\text{SN} 5) = \text{five} \]

FIGURE 5-3

processing a set of rules.

5.3. Scanner, Parser and Type Checker.

Although the ideas presented in section 4.2 can still be applied, some minor modifications are required. It is best explained by an example. Consider the following rule:

\[(\text{SE} (@ \ i)) \text{ mal} = \lambda s : \text{store . (access i) s} \text{ mal}. \]
The operators 'E', '@' and 'access' are treated as built-in functions. Their corresponding types are $(expr \rightarrow store \rightarrow nat)$, $(iden \rightarrow expr)$ and $(iden \rightarrow store \rightarrow nat)$. A predefined environment is used to record the definitions of these built-in functions. However, the presence of the undefined identifier 'i' in the right-hand side expression causes trouble. In order to successfully process the entire rule, the right-hand expression must be informed of the type of the identifier 'i'. For this reason, we installed a temporary environment in the type checker. The environment serves as a communication channel between the left-hand and right-hand expressions. In this case, the information it sends is the type for the identifier 'i'. After the entire rule has been processed, the extra parameter 'i' is removed because it is no longer needed. Through this module and the pretty printer module, the linearized trees shown in FIGURE 5-2 and FIGURE 5-3 are generated.

5.4. Experimental Portion.

Recall that the goal of our research is to study the interaction of single-threading, lambda-lifting and control binding. Since we have three techniques to consider, we have six models to study, each of which consists of a unique combination of the three techniques. Since all models are executed in a similar manner, our plan is to study one of them here in detail. In Chapter 6, we give a more comprehensive examination of the results from the experiment. The model we present here is:

```
Single-Threading
  | V
Extended Control Binding
  | V
Lambda Lifting
```
5.4.1. Single-Threading.

We begin with detecting single-threadingness on the rules on FIGURE 5-2 and FIGURE 5-3. Not surprisingly, the single-threading module defined in section 4.3 can be applied directly without any alteration. The detections of single-threadedness of the left-hand and right-hand expressions can be performed independently. Any expression that fails to satisfy the single-threading criteria will be reported to the user. If the rules satisfy the conditions for single-threading, they are transformed to ones which use the control markers. FIGURE 5-4 and FIGURE 5-5 show the resultant rules. Notice that all occurrences of the single-threaded store arguments are replaced by the ()-values.

Run-Time Rules:

((plus m) n) = m+n
((times m) n) = m*n
(pred n) = n-1
(eq0 n) = n=0
(((if true) f) g) = f
(((if false) f) g) = g
empty = s:=lam i . zero
((access i) ()) = s(i)
(((update i) n) ()) = s:=[i|->n]s

FIGURE 5-4

5.4.2. Extended Control Binding.

The single-threaded rules contain a large number of control markers. Naturally, our goal in this section is to optimize them out of the rules. Based on our current implementation of control binding, applying the technique defined in section 3.2 directly means a large portion of the code would have to be modified. In order to minimize the changes required on the module, we simply extend the technique.
Compile-Time Rules:

\[(\text{\$C (\text{\(\right ;\text{c1} \right \) c2})) = \text{\(\text{\(\lambda\)} () . ((\text{\$C c2}) ((\text{\$C c1}) ())))\)}\]

\[(\text{\$C (\text{\(\right :=\text{\(\right i\)} \right \) e}) = \text{\(\text{\(\lambda\)} () . (\text{\((\text{\text{update}\ i}) ((\text{\$E e}) ())))\)} ()))\]

\[(\text{\$C ((\text{\(\right +\right e1\) e2})) = \text{\(\text{\(\lambda\)} () . (\text{\((\text{\text{\text{plus}} ((\text{\$E e1}) ())))\)} ((\text{\$E e2}) ())))\)}\]

\[(\text{\$E (\# n)) = \text{\(\text{\(\lambda\)} () . (\text{\$N n})\)}\]

\[(\text{\$E (\text{\(\right \&\right i\)) = \text{\(\text{\(\lambda\)} () . (\text{\((\text{\text{access}\ i}) ())\)}\)}\]

\[(\text{\$N 0) = \text{\text{zero}}\]

\[(\text{\$N 1) = \text{\text{one}}\]

\[(\text{\$N 2) = \text{\text{two}}\]

\[(\text{\$N 3) = \text{\text{three}}\]

\[(\text{\$N 4) = \text{\text{four}}\]

\[(\text{\$N 5) = \text{\text{five}}\]

FIGURE 5-5

The extended control binding technique consist of two parts. The first part is intended to rearrange the rules. They are rearranged so that the second part can used them to exploit the maximum power of the new control binding technique. The extended technique is summarized below:

Part I.

Every operator \(op\) whose rules have

\(op\ a1...an \Rightarrow \text{\(\text{\(\lambda\)} x1...\text{\(\lambda\)} xn. \text{\(\lambda\)} () . E\)}\]

transform the rules to

\(op\ a1...an, x1...xn () \Rightarrow E\)

Part II

For all rules of the form

\(op\ a1...an, x1...xn () \Rightarrow E\)

from **Part I**,

1) transform the rules to

\(op\ a1...an, x1...xn \Rightarrow E\)

2) for all occurrences of \(op\) in \(E\) do:

 a) if the occurrence is applied to an argument (), eliminate ()

 b) if the occurrence is not applied to an argument (), enclose it by the new combinator \&%1, whose rewriting rule is:
If the rules in FIGURE 5-4 and FIGURE 5-5 are run through Part I of the module, they are transformed into ones that look like in FIGURE 5-6 and FIGURE 5-7. Note that all outermost lambda abstractions have disappeared.

Run-Time Rules:

- \((\text{plus } m) \ n) = m+n\)
- \((\text{times } m) \ n) = m*n\)
- \((\text{pred } n) = n-1\)
- \((\text{eq0 } n) = n=0\)
- \((\text{if true } f) \ g) = f\)
- \((\text{if false } f) \ g) = g\)
- \(\text{empty} = s:=\text{lam} \ i . \text{zero}\)
- \((\text{access } i) \ ()) = s(i)\)
- \((\text{update } i) \ n \ ()) = s:= \{i|->n\} s\)

FIGURE 5-6

Compile-Time Rules:

- \((\text{if c1 c2}) \ ()) = ((\text{c2}) (\text{c1}))\)
- \((\text{if c1 c2}) \ ()) = ((\text{update } i) \ ((\text{access } i) \ ()))\)
- \((\text{plus } e1 e2) \ ()) = (\text{plus} \ ((\text{access } i) \ (()))\)
- \((\text{@ i}) \ ()) = ((\text{access } i) \ ())\)
- \((\text{zero}) \ ()) = \text{zero}\)
- \((\text{one}) \ ()) = \text{one}\)
- \((\text{two}) \ ()) = \text{two}\)
- \((\text{three}) \ ()) = \text{three}\)
- \((\text{four}) \ ()) = \text{four}\)
- \((\text{five}) \ ()) = \text{five}\)

FIGURE 5-7

Part II of the module is used to eliminate the frequent occurrences of the \((\text{-value})\).

The results are shown in FIGURE 5-8 and FIGURE 5-9.

Control binding on the expression

\[((\text{c2}) (\text{c1}))\)
Run-Time Rules:
((plus m) n) = m+n
((times m) n) = m*n
(pred n) = n-1
(eq0 n) = n=0
(((if true) f) g) = f
(((if false) f) g) = g
empty = $s:=\text{lam } i . \text{zero}$
((access i) = s(i)
((update i) n) = s=[i|->n]s
((%1 c) ()) => c

FIGURE 5-8

Compile-Time Rules:
($\text{C} ((; c1) c2)) = ((%1 ($\text{C} c2)) ($\text{C} c1))
($\text{C} ((:= i) e)) = ((\text{update } i) ((\text{E} e))
($\text{C} ((+ e1) e2)) = ((\text{plus} (\text{E} e1)) (\text{E} e2))
($\text{E} (\# n)) = ($\text{N} n)
($\text{E} (@ i)) = (\text{access } i)
($\text{N} 0) = \text{zero}
($\text{N} 1) = \text{one}
($\text{N} 2) = \text{two}
($\text{N} 3) = \text{three}
($\text{N} 4) = \text{four}
($\text{N} 5) = \text{five}

FIGURE 5-9

is of special importance. Since the argument (($\text{C} c1) ()) to the leftmost C is not a
()-value, we are forced to use rule 3 in part II. As a result, the C is enclosed with a
new run-time combinator. The rule for the new combinator is grouped together with
the run-time rules. Note that not all ()-values have disappeared. The ()-value in (($\%1
c) ()) => c is needed as it gives permission for c to gain control of the global store
variable. (We will have more to say about this in section 6.2.)
5.4.3. Lambda-Lifting.

Doing lambda-lifting on sets of rules is simple. Like the single-threading module, the lambda-lifting module can be applied directly without any changes. Lambda-lifting the left-hand and right-hand expressions are independent processes. Recall that doing lambda-lifting eliminates lambda abstraction and generates new rules. The rule systems in FIGURE 5-8 and FIGURE 5-9 do not contain any lambda abstraction. No new rules are created.

5.5. Eta-Reduction.

For the same reason we saw in Chapter 3, the eta reduction module is also installed in the augmented system. After the reduction is performed on the rules in FIGURE 5-8 and FIGURE 5-9, they remain unaltered because no redundant rules were found.

We have just completed a tour of the various phases of the compiler generator system. The system is capable of doing partial evaluation on a set-of-equations semantic definition. The resultant rule systems are smaller and run more efficiently. Nevertheless, to complete the process of generating a compiler, a compile-time evaluator must be built. The evaluator is generic because it is capable of evaluating any given set of rules written in the typed lambda calculus. One can execute the output from the evaluator in various ways. Two of the possible ways are discussed in Chapter 7.
Chapter 6

Results

As mentioned in the previous chapter, there are six ways to order the single-threading, control binding and lambda-lifting modules. In order to justify which ordering works the best, each of the orderings were tested with the same set of test data. The output from these tests are then compared. The best ordering will be the one which yields the smallest result. In the previous chapter, we studied how one of these tests was conducted. The remaining five tests can be carried out in the similar manner. The results are posted in sections 6.1 through 6.5. Section 6.6 gives a summary.

By comparison, the results in FIGURE 6-1 and 6-2 seem much larger than the ones in FIGURE 5-8 and 5-9. This is simply because some of the rules in FIGURE 6-2 possess the ()-value. Moreover, new rules were created in FIGURE 6-2 through the process.

As shown in FIGURE 6-3 and FIGURE 6-4, the results contain a large number of ()-values. The reason is simple: without the presence of the ()-value, it is useless to do the control binding. Since the single-threading module generates the ()-value, it must always be executed before the control binding module.
Run-Time Rules

\[
\begin{align*}
((\text{plus} \ m) \ n) & \Rightarrow m+n \\
((\text{times} \ m) \ n) & \Rightarrow m*n \\
(\text{eq} \ 0 \ n) & \Rightarrow n=0 \\
(\text{pred} \ n) & \Rightarrow n-1 \\
(((\text{if true}) \ f) \ g) & \Rightarrow f \\
(((\text{if true}) \ f) \ g) & \Rightarrow g \\
\text{empty} & \Rightarrow s:=\text{lam} \ . \ zero \\
(\text{access} \ i) & \Rightarrow s(i) \\
((\text{update} \ i) \ n) & \Rightarrow s:=i\rightarrow n\text{s}
\end{align*}
\]

FIGURE 6-1

Compile-Time Rules

\[
\begin{align*}
(\text{\$C} \ ((; \ c1) \ c2)) & \Rightarrow ((\text{\$0} \ c2) \ c1) \\
((\text{\$0} \ c2) \ c1) & \Rightarrow ((\text{\$C} \ c2) ((\text{\$C} \ c1) \ ())) \\
(\text{\$C} \ (:= \ i \ e)) & \Rightarrow ((\text{\$1} \ i \ e) \\
(\text{\$1} \ i \ e) & \Rightarrow ((\text{update} \ i) ((\text{\$E} \ e) \ ())) \\
(\text{\$E} \ ((+ \ e1) \ e2)) & \Rightarrow ((\text{\$2} \ e1 \ e2) \\
((\text{\$2} \ e1 \ e2) & \Rightarrow ((\text{plus} ((\text{\$E} \ e1) \ ())) ((\text{\$E} \ e2) \ ())) \\
(\text{\$E} \ (# \ n)) & \Rightarrow (\text{\$3} \ n) \\
(\text{\$E} \ (@ \ i)) & \Rightarrow (\text{\$4} \ i) \\
(\text{\$4} \ i) & \Rightarrow (\text{access} \ i) \\
(\text{\$3} \ 0) & \Rightarrow \text{zero} \\
(\text{\$3} \ 1) & \Rightarrow \text{one} \\
(\text{\$3} \ 2) & \Rightarrow \text{two} \\
(\text{\$3} \ 3) & \Rightarrow \text{three} \\
(\text{\$3} \ 4) & \Rightarrow \text{four} \\
(\text{\$3} \ 5) & \Rightarrow \text{five}
\end{align*}
\]

FIGURE 6-2

The results are same as the ones in section 6.2.

Although the results in FIGURE 6-5 and 6-6 are closest to the ones in FIGURE 5-8 and 5-9, they are not smaller, however. This is simply because the resultant rules con-
Run-Time Rules

\[(\text{plus } m \ n) \Rightarrow m + n\]
\[(\text{times } m \ n) \Rightarrow m \times n\]
\[(\text{eq0 } n) \Rightarrow n = 0\]
\[(\text{pred } n) \Rightarrow n - 1\]
\[(\text{if true } f \ g) \Rightarrow f\]
\[(\text{if true } f \ g) \Rightarrow g\]
\[\text{empty } \Rightarrow \text{s:=lami.zero}\]
\[(\text{access } i \ ()) \Rightarrow s(i)\]
\[(((\text{update } i \ n) \ ()) \Rightarrow s:=[i\rightarrow n]s\]

FIGURE 6-3

Compile-Time Rules

\[\text{((C ; cl) c2))} \Rightarrow ((\text{C c2}) ((\text{C c1}) \ ()))\]
\[\text{((C (:= i e)) \ ())} \Rightarrow (((\text{update i}) ((\text{E e}) \ ())) \ ())\]
\[\text{((E (+ e1 e2)) \ ())} \Rightarrow ((\text{plus ((E e1) \ ())) ((E e2) \ ()))\]
\[\text{((E (# n)) \ ())} \Rightarrow ($N n)\]
\[\text{((E (@ i)) \ ())} \Rightarrow ((\text{access i}) \ ())\]
\[\text{($N 0) \Rightarrow \text{zero}\]
\[\text{($N 1) \Rightarrow \text{one}\]
\[\text{($N 2) \Rightarrow \text{two}\]
\[\text{($N 3) \Rightarrow \text{three}\]
\[\text{($N 4) \Rightarrow \text{four}\]
\[\text{($N 5) \Rightarrow \text{five}\]

FIGURE 6-4

tain a few more rules for new combinators.

6.5. Lambda-Lifting, Control Binding and Single-Threading.

By comparison, the results in FIGURE 6-7 and 6-8 appear to be the biggest. Ordering
the modules in this manner clearly produced the worst results.

After briefly examining the results from all six test cases, we learned a few important
things. First, the single-threading module must come before the control binding
module. This is because the success of the control binding module is totally dependent upon the ()-values produced by the single-threading module. Second, the control binding module should come before the lambda-lifting module. The reason is that the control binding module eliminates all outermost lambda abstractions in the right-hand expression of the rules without introducing any new combinators. But, lambda-lifting eliminates abstractions by introducing new combinators. Based on these factors, we
Run-Time Rules

(((plus m) n)) => m+n
(((times m) n)) => m*n
(eq0 n) => n=0
(pred n) => n-1
(((if true) f) g) => f
(((if false) f) g) => g
empty => s:=lami.zero
((access i) ()) => s[i]
(((update i) n) ()) => s:=[i|->n]s

Compile-Time Rules

($C ((; c1) c2)) => (($0 c2) c1)
(((($0 c2) c1) ()) => (($C c2) (($C c1) ()))
($C ((:= i) e)) => (($1 i) e)
(((($1 i) e) ()) => (((update i) (($E e) ()) ())
($E (((+ e1) e2)) => (($2 e1) e2)
(((($2 e1) e2) ()) => ((plus (($E e1) ()) (($E e2) ())
($E (# n)) => ($3 n)
(((3 n) ()) => ($N n)
($E (@ i)) => ($4 i)
(((4 i) ()) => ((access i) ()))
($N 0) => zero
($N 1) => one
($N 2) => two
($N 3) => three
($N 4) => four
($N 5) => five

conclude that it is best to order the single-threading module first, control binding second and lambda-lifting last.
Chapter 7

Evaluators

In this chapter, the concepts of the compile-time and run-time evaluators are introduced. Conceptually, the purpose of an evaluator is to apply rewriting rules to its argument until a normal form is reached. FIGURE 7-1 shows the data flow of the compile-time and run-time evaluators.

The purpose of a compile-time evaluator is to perform compile-time computations that are encoded in a set-of-equations language definition. Examples of compile-time computations are translation to intermediate code, symbol table building, type checking, and constant folding. The input argument to the evaluator is the program to be compiled. The compile-time evaluator uses the "compile-time rules". (see FIGURE 5-9.) The rewriting rules and the expression to be evaluated are represented by trees. An easy way to convert the expression to one that uses tree structure is to run it through the parser. The central idea of our implementation of the evaluator is to play a tree matching game. Each subexpression in the expression is matched against the left-hand expression of the rule. If a match is found, the subexpression is replaced by the right-hand expression of the rule. Using these techniques repeatedly, each subexpression is simplified as far as possible until a normal form is formed. As an example, suppose the
The evaluator is to evaluate the expression:

$C ((;((:= A) #0)) ((:= B) @A))$.

Using the compile-time rules in FIGURE 5-9, the evaluator makes the following reductions:

$\Rightarrow \%1 (C ((:= B) @A)) (C (: A #0))$
$\Rightarrow \%1 (update B (E @A)) (C (: A #0))$
$\Rightarrow \%1 (update B (access A)) (C (: A #0))$
$\Rightarrow \%1 (update B (access A)) (update A (E #0))$
$\Rightarrow \%1 (update B (access A)) (update A (N 0))$
$\Rightarrow \%1 (update B (access A)) (update A zero)$

The reductions proceed from the left to right; the left subtree is reduced first before
the right subtree. The resultant normal form expression contains a few run-time operators; they are \(%1 \), update and access. They cannot be simplified any further because they are run-time-dependent store algebras. The operator \(%1 \) is special and section 7.2 clarifies it.

If one uses the compile-time rules in FIGURE 5-3, the translation of the program above would be the expression

\[
\text{lam s. (lam s. update B (lam s. access A s) s) (lam s. update A (lam s. zero) s)}
\]

Notice that the resultant expression contains a large number of trivial bindings of the form \((\text{lam s.} E)s\). Thus, we have justified that inefficient code would be generated if an unevaluated compiled-time rules like the one in FIGURE 5-3 is used.

7.2. Run-Time Evaluator.

The purpose of the run-time evaluator is to perform run-time computations. The input argument to the evaluator is the output from the compile-time evaluator. The run-time evaluator uses the "run-time rules". (see FIGURE 5-8.) The run-time evaluator has not been implemented. A general notion of how it works is provided here. Let us consider the expression

\[
%1 \ (\text{update B (access A)}) \ (\text{update A zero}).
\]

The operator \(%1 \) in it is sometimes called a "control structure" for it distributes control to its arguments. The subexpressions \((\text{update B (access A)})\) and \((\text{update A zero})\) are arguments to this operator. The operator \(%1 \) first grants the control to its rightmost argument. The leftmost argument gains the control after the rightmost argument has released it. The run-time evaluator uses the following simplification strategy when evaluating the expression above using the run-time rules in FIGURE 5-8.

\[
%1 \ (\text{update B (access A)}) \ (\text{update A zero}) \ \Rightarrow \ %1 \ (\text{update B (access A)}) \ () \ \Rightarrow \ (A, \ zero)
\]
The values () are the simplified results from the update operations. The values <> and <(B, zero),(A, zero)> are the initial and final state of the global store variable respectively.

There are two ways to implement the run-time evaluator. Using software to simulate the global store variable is one of the possible ways. Under this approach, the store variable is implemented as a list of identifier-number pairs. The update operation concatenates a new pair to the list. The access operation lookups the value for a given identifier from the list. It is not an ideal approach, although it is less expensive to implement the evaluator this way.

A more practical approach would be to design a machine which treats the global store variable as its primary storage. Using this approach, the operators update and access can be encoded as primitive machine instructions. As a result, we gain a faster implementation this way. Is it an ongoing research topic to design a machine that matches semantic definitions.
Chapter 8

Conclusions

An automated tool for compiler generation has been developed. Most of the work was devoted to making it capable of performing partial evaluation. Partial evaluation in a form of compile-time simplification make use of the techniques of single-threading, control binding and lambda-lifting. Through this research, we discovered that one can get the best results by applying single-threading first, control binding second, and lambda-lifting last. Another desirable feature which is also included in the system is the ability to perform type checking and parsing. Thus, a language designer who uses the system need not check by hand the well-definedness of a language.

Virtually any denotational definition can be implemented by the system. Besides that, the generated compilers are small and the compiled programs run faster. But most important is the fact that it is an automated system that produces correct compilers from a language's formal specifications.

Although users of the generated compilers are forced to deal with programs written in the typed lambda calculus, there are ways to avoid this. Peyton Jones proposed algorithms which allow one to translate a high-level functional program into one which uses the lambda calculus [4]. By doing this, the lambda calculus is viewed as an intermediate language between the high level language program and the concrete implementation. In our framework, the concrete implementation can be treated as our
compiler generator system. Consequently, the users do not have to deal with the lambda calculus.
References

Appendix A

This appendix contains listings of the source files for the compiler generator system.

Type.sml
Pretty_Print.sml
Scan_Parse_Type.sml
St_Trans.sml
CbPartI.sml
CbPartII.sml
Lam_Lifting.sml
Eta.sml
Main.sml
Evaluator.sml
Lang_Def
(* File name: Type.sml

Date completed: 4-1-89

Purpose: This file contains user-defined data types.

Input: None

Output: None *)

==================================
Declaration of Data Types
==================================

datatype data_type = nat| booll| store| iden| cmd| numeral| expr|
func of data_type * data_type;

datatype tree = lam of tree * tree * data_type| apply of tree * tree * data_type|
idenfy of string * data_type| const of string * data_type;

datatype constant = a_const| not_const| unused;

datatype enviroment = typelist of (string * constant * data_type) list;

datatype free_id_list = ids of (string * data_type) list;

datatype rewrite_rules = rule of (tree * tree) list;

datatype lifted_table = ttable of int * rewrite_rules;

System.Control.Print.printDepth := 50;
Purpose: To analyse the rewriting rules and prints them in such a way that the structure of the rules become clearly visible.

Input: A pair of lists. The first list corresponds to the Run-Time Rules and the second list corresponds to the Compiler-Time Rules.

end
end

in
 let val dummy = output std_out ("run-time rules" + "n-------------------n") in
 let val dummy = print_rw rn_rules in
 let val dummy = output std_out ("compile-time rules" + "n-------------------n") in print_rw tr_rules
 end
 end
end
end;

Date completed: 4-1-89

Purpose: This file handles the scanning, parsing and type-checking.

Input: A pair of lists of strings. The first list corresponds to the Run-Time Rules and the second list corresponds to the Compiler-Time Rules.

Output: The Run-Time Rules and Compiler-Time Rules. Each rule is represented by a pair of parse trees.*)

Print				Error				Message

exception error;

fun found_error message =
 let val dummy = output std_out ("n---- "+message"n"") in
 raise error
 end;

Scanning

fun reverse word ans =
 if word = nil then
 ans
 else
 let val str = hd word in
 reverse (tl word) (str::ans)
 end;

fun gather_word strlst word =
 if strlst = nil then
 nil
 else let val token = hd strlst in
 if token = " " then
 (implode (reverse word nil))::gather_word (tl strlst) nil
 else
 gather_word (tl strlst) (token::word)
 end;

fun scan str =
 let val strlst = explode str in
 gather_word strlst nil
fun load_env empty_env =
 let val typelist(empty_list) = empty_env in

 ("update", a_const, func(iden,func(nat,func(store,store))))::
 ("access", a_const, func(iden,func(store,nat)))::
 ("empty", a_const, store)::
 ("$C", a_const, func(cmd,func(store,store))))::
 ("$E", a_const, func(expr,func(store,nat))))::
 ("$N", a_const, func(numeral,nat))::
 ("$I", a_const, func(expr,iden))::
 ("@", a_const, func(iden,expr))::
 ("#", a_const, func(nat,expr))::
 ("\n", a_const, func(cmd,func(cmd,cmd))))::
 (":\=", a_const, func(iden,func(expr,cmd)))::
 ("\+=", a_const, func(expr,func(expr,expr))))::

 ("plus", a_const, func(nat,func(nat,nat))))::
 ("times", a_const, func(nat,func(nat,nat))))::
 ("eq0", a_const, func(nat,booll))::
 ("pred", a_const, func(nat,nat))::
 ("if", a_const, func(booll,func(func(nat,nat),func(func(nat,nat)))))::
 ("Yop", a_const, func(func(nat,nat),func(nat,nat))))::

 ("A", a_const, iden)::("B", a_const, iden)::("C", a_const, iden)::
 ("X", a_const, iden)::("Y", a_const, iden)::("Z", a_const, iden)::

 ("0", a_const, numeral)::("1", a_const, numeral)::
 ("2", a_const, numeral)::("3", a_const, numeral)::
 ("4", a_const, numeral)::("5", a_const, numeral)::
 ("6", a_const, numeral)::("7", a_const, numeral)::
 ("8", a_const, numeral)::("9", a_const, numeral)::

 ("zero", a_const, nat) :: ("one", a_const, nat) ::
 ("two", a_const, nat) :: ("three", a_const, nat) ::
 ("four", a_const, nat) :: ("five", a_const, nat) ::
 ("six", a_const, nat) :: ("seven", a_const, nat) ::
 ("eight", a_const, nat) :: ("nine", a_const, nat) ::
 ("true", a_const, booll) :: ("false", a_const, booll)::

(*The following constants won't be here if the run time evaluator is implemented*)

("s(i)", a_const,nat) :: ("s:=i->n)s", a_const,store) ::
("m+n", a_const,nat) :: ("m^n", a_const,nat) ::

58
("n=0", a_const, booll) :: ("n-1", a_const, nat) ::
("s:=lami.zero", a_const, store) ::
empty_list
end;

Update Environment
Try to define the same identifier with more than one data type is forbited

fun update_env(list,id,typed) =
 if list = nil then
 (id, not_const, typed)::nil
 else
 let val (str, const_or_id, data_type) = hd list in
 if (id = str) then
 if (typed = data_type) then
 list
 else
 found_error ("identifier ""*id*"" has already been""*"" defined ...")
 else
 hd list::update_env(tl list,id,typed)
 end;

Access Environment
Try to access the data type for an undefined identifier is forbited

fun access_env(list,id) =
 if list = nil then
 found_error ("identifier ""*id*"" is undefined...")
 else
 let val (str, const_or_id, data_type) = hd list in
 if id = str then
 (const_or_id, data_type)
 else
 access_env(tl list,id)
 end;

Converting String To Datatype

fun str_to_datatype rest =
 let val typed = hd rest in
 let val rest = tl rest in
 if typed = "nat" then (nat, rest)
 else if typed = "booll" then (booll, rest)
 else if typed = "store" then (store, rest)
 else if typed = "iden" then (iden, rest)
 else if typed = "cmd" then (cmd, rest)
else if typed = "numeral" then (numeral, rest)
else if typed = "expr" then (expr, rest)
else if typed = "" then
(* a function type *)
 let val (type1, rest1) = str_to_datatype rest
 in
 if hd rest1 = "->" then
 let val (type2, rest2) = str_to_datatype (tl rest1)
 in
 (func(type1, type2), tl rest2)
 end
 else
 found_error "syntax_err... missing ')'"
 end
 else
 found_error "syntax_err... missing '->'
 end
 end
end;

===

Parse and Type Check
===

fun parse_type [] type_list = found_error "no input" |
 parse_type (word::rest) type_list =
 if word = "lam" then
 let val id = (hd rest) in
 if (hd(tl rest)) = ":" then
 let val (typed, rest) = str_to_datatype(tl(tl rest))
 in
 let val type_list = update_env(type_list, id, typed)
 in
 if hd rest = "." then
 let val (subjree, treejype, rest2, typejist) =
 parsejype rest typejist
 in
 let val (subjree2, treejype2, rest2, typejist) =
 parsejype rest2 typejist
 in
 let val func(argjype, resultjype) =
 treejype
 in
 if argjype = treejype2 then
 if hd rest2 = "" then
 (apply(subjree, subjree2, resultjype),
 CO
)
 else
 found_error "syntax_err... missing ')'"
 end
 else
 found_error "syntax_err... missing '..'
 end
 end
 end
 end
 end
 else
 found_error "syntax_err... missing ":"
 end
 end
 end
 else
 found_error "syntax_err... missing '->'
 end
 else
 if word = "(" then
 let val (subjree1, treejype, rest1, typejist) =
 parse_type rest typejist
 in
 let val (subjree2, treejype2, rest2, typejist) =
 parse_type rest1 typejist
 in
 let val func(arg_type, result_type) =
 treejype1 in
 if arg_type = treejype2 then
 if hd rest2 = "" then
 (apply(subjree1, subjree2, result_type),
 CO
)
 else
 found_error "syntax_err... missing ')'
 end
 end
 end
 end
 end
 else
 found_error "syntax_err... missing ']'"
 end
 end
else if word = "" then
 let val (subjree1, treejype, rest1, typejist) =
 parse_type rest typejist
 in
 let val (subjree2, treejype2, rest2, typejist) =
 parse_type rest1 typejist
 in
 let val func(arg_type, result_type) =
 treejype1 in
 if arg_type = treejype2 then
 if hd rest2 = "" then
 (apply(subjree1, subjree2, result_type),
 CO
)
 else
 found_error "syntax_err... missing ')'
 end
 end
 end
 end
end

===
result_type, tl rest2, type_list)
else
 found_error "syntax_err ... missing ")'"
else
 found_error "type error ...
end
end
end
else
 let val (const_or_id, tree_type) = access_env(type_list, word)
 in
 if const_or_id = not_const then
 (idenfy(word, tree_type), tree_type, rest, type_list)
 else
 (const(word, tree_type), tree_type, rest, type_list)
 end
end

end
end

fun spt(str_list, type_list) =
 let val type_list = load_env (typelist type_list) in
 let val (typed_tree, tree_type, not_used, type_list) =
 parse_type (scan(str_list)) type_list in
 (typed_tree, tree_type, type_list) in
 end
 end
end;
Implementation of The Single-Threading Criteria

fun sgl_thrd (lam(ttree1, ttree2, ddata_type)) =
 let val (st, const_or_id, stid, stexpr) = sgl_thrd (ttree2) in
 if st then
 let val func(datatype1, datatype2) = ddata_type in
 if datatype1 = store then
 if stid <> "no_active" then
 let val idenfy(id, t) = ttree1 in
 if id = stid then
 (true, unused, "no_active", "no_active")
 else
 (false, unused, "unused", "unused")
 end
 else
 (true, const_or_id, stid, stexpr)
 end
 else
 (true, const_or_id, stid , stexpr)
 end
 else
 (false, unused, "unused", "unused")
 end
else
 (false, unused, "unused", "unused")
end

sgl_thrd (apply(ttree1, ttree2, ddata_type)) =
 let val (st1, const_or_id1, stid1, stexpr1) = sgl_thrd (ttree1) in
 let val (st2, const_or_id2, stid2, stexpr2) = sgl_thrd(ttree2) in
 if st1 andalso st2 then
 if ddata_type = store then
if (stexpr1 <> "no_active") andalso
 (stexpr2 <> "no_active") then
 if (stexpr1 = stexpr2) andalso
 (const_or_id1 = not_const) then
 (true, const_or_id1, stexpr1, "apply")
 else
 (false, unused, "unused", "unused")
 else
 (true, const_or_id2, stdid2, "apply")
 end
else
 if (stexpr1 <> "no_active") andalso
 (stexpr2 <> "no_active") then
 if (stexpr1 = stexpr2) andalso
 (const_or_id1 = not_const) then
 (true, const_or_id1, stexpr1, stexpr1)
 else
 (false, unused, "unused", "unused")
 end
 else if (stexpr1 = "no_active") andalso
 (stexpr2 <> "no_active") then
 if stexpr2 = "apply" then
 (false, unused, "unused", "unused")
 else
 if const_or_id2 = not_const then
 (true, const_or_id2, stexpr2, stexpr2)
 else
 (false, unused, "unused", "unused")
 end
 end
 else (true, unused, "no_active", "no_active")
 else (false, unused, "no_active", "no_active")
end

sgl_thrd (idenfy(s, ddata_type)) =
 if ddata_type = store then
 (true, not_const, s, s)
 else (true, not_const, "no_active", "no_active")
 end
sgl_thrd (const(s, ddata_type)) =
 if ddata_type = store then
 (true, a_const, s, s)
 else (true, a_const, "no_active", "no_active");

Performs Global Variable Transformation

fun transform (lam(ttree1, t:tree2, ddata_type)) =
 let val idenfy(id, t) = ttree1 in
 if t = store then

63
(lam(const ("()", t), transform (ttree2), ddata_type))
else
(lam(ttree1, transform(ttree2), ddata_type))
end|

transform (apply(ttree1, ttree2, ddata_type)) =
(apply(transform(ttree1), transform(ttree2), ddata_type))|

transform (idenfy(s, ddata_type)) =
if ddata_type = store then
const ("()", ddata_type)
else
idenfy(s, ddata_type)|

transform everything_else = everything_else;

Transform Single-Threaded Rules

fun trans_rw [] = []
trans_rw((lhs,rhs)::rest) =
 let val lhs = transform(lhs) in
 let val rhs = transform(rhs) in
 (lhs,rhs)::trans_rw(rest)
 end;
end;

Main Entry to The Single-Threading Check

fun st_trans(rn_rules,tr_rules) =

 let
 fun st_rw_rule [] = true
 | st_rw_rule((lhs,rhs)::rest) =
 let val (st,unl,un2,un3) = sgl_thrd(rhs) in
 if st then
 st_rw_rule(rest)
 else
 found_error ((pretty_print rhs)"" is not single-threaded")
 end
 in
 let val ok = (st_rw_rule rn_rules) andalso (st_rw_rule tr_rules) in
 (trans_rw rn_rules, trans_rw tr_rules)
 end;
 end;
end;
Purpose: Implement Part I of the extended control binding technique.

Input: A pair of lists. The first list corresponds to the Run-Time Rules and the second list corresponds to the Compiler-Time Rules.

Output: The Run-Time Rules and Compiler-Time Rules. Each rule is represented by a pair of parse trees. The rules are transformed. *)

<table>
<thead>
<tr>
<th>Special Lambda-Lifting Technique</th>
</tr>
</thead>
</table>

```plaintext
fun find_bind_id rhs = 
  case rhs of 
    lam(ttreel,ttree2,ddatatype) => ttreel::find_bind_id ttree2 
  | everything_else => [];
```

```plaintext
fun find_rhs rhs = 
  case rhs of 
    lam(ttreel,ttree2,ddatatype) => find_rhs ttree2 
  | found_rhs => found_rhs;
```

```plaintext
fun apply_lhs(lhs,[]) = lhs 
  | apply_lhs(lhs,rhs::rest) = 
    let val (apply(ttreel,ttree2,ddatatype)) = lhs in 
      let val func(angs,ans) = ddatatype in 
        apply_lhs(apply(lhs,rhs,ans),rest) 
      end 
    end;
```

(*) Convert Rule E1 => LAM (E2 TO E1) (E2 => E2).*)

```plaintext
fun nlifting(rn_rules,tr_rules) = let 
  fun new_lift [] = [] 
  | new_lift ((lhs,rhs)::rest) = 
    let val iden_list = find_bind_id rhs in
```

65
let val new_rhs = find_rhs rhs in
 (apply_lhs(lhs, iden_list), new_rhs)::new_lift rest
end
end in
(new_lift rn_rules, new_lift tr_rules) end;
Purpose: Implement part II of the extended control binding technique.

Input: A pair of lists. The first list corresponds to the Run-Time Rules and the second list corresponds to the Compiler-Time Rules.

Output: The Run-Time Rules and Compiler-Time Rules. Each rule is represented by a pair of smaller parse trees. *)

(* Rewrite (LAM () .E) () to E *)

fun stepl(lam(ttreel, ttree2, ddatatype)) =
 let val (dummy1, dummy2, ttree2) = stepl(ttree2) in
 (ttreel, ttree2, lam(ttreel, ttree2, ddatatype))
 end|

stepl(apply(ttreel, ttree2, ddatatype)) =
 let val (ttreel1, ttree12, ttree1) = stepl(ttreel) in
 let val (dummy1, dummy2, ttree2) = stepl(ttree2) in
 let val ttree = apply(ttreel, ttree2, ddatatype) in
 case ttree11 of
 const(oprt,oprt_type) => if (oprt = "()") andalso (ttreel1 = ttree2) then
 (ttree12, ttree12, ttree12)
 else (ttree, ttree, ttree)
 everything_else => (ttree, ttree, ttree)
 end end end|

stepl(ttree) = (ttree, ttree, ttree);

fun apply_stepl Q = Q
 | apply_stepl ((lhs,rhs)::rest) =
 let val (unused1, unused2, lhs) = stepl lhs in
 let val (unused1, unused2, rhs) = stepl rhs in
 ((lhs,rhs)::apply_stepl rest)
 end
 end;

(* File name : CbPartII.sml
Date completed: 4-1-89
Purpose: Implement part II of the extended control binding technique.
Input: A pair of lists. The first list corresponds to the Run-Time Rules and the second list corresponds to the Compiler-Time Rules.
Output: The Run-Time Rules and Compiler-Time Rules. Each rule is represented by a pair of smaller parse trees. *)

Step No. 1 of Extended Control Binding Technique

(* Rewrite (LAM () .E) () to E *)

fun stepl(lam(ttreel, ttree2, ddatatype)) =
 let val (dummy1, dummy2, ttree2) = stepl(ttree2) in
 (ttreel, ttree2, lam(ttreel, ttree2, ddatatype))
 end|

stepl(apply(ttreel, ttree2, ddatatype)) =
 let val (ttreel1, ttree12, ttree1) = stepl(ttreel) in
 let val (dummy1, dummy2, ttree2) = stepl(ttree2) in
 let val ttree = apply(ttreel, ttree2, ddatatype) in
 case ttree11 of
 const(oprt,oprt_type) => if (oprt = "()") andalso (ttreel1 = ttree2) then
 (ttree12, ttree12, ttree12)
 else (ttree, ttree, ttree)
 everything_else => (ttree, ttree, ttree)
 end end end|

stepl(ttree) = (ttree, ttree, ttree);

fun apply_stepl Q = Q
 | apply_stepl ((lhs,rhs)::rest) =
 let val (unused1, unused2, lhs) = stepl lhs in
 let val (unused1, unused2, rhs) = stepl rhs in
 ((lhs,rhs)::apply_stepl rest)
 end
 end;

Step No. 2 of Extended Control Binding Technique

67
(* If All Uses of 'oprt' in The LHS of Rewrite Rules Have The
Form (oprt e1 .. en ()) => rhs Then
1. Alter All Uses of The 'oprt' in The LHS of Rewrite Rules to (oprt e1 .. en) => rhs.
2. All Uses of () To The 'oprt' in The RHS Also Disappear.
3. All Uses of The 'oprt' That Are Lacking The () in RHS Are Enclosed
 By A New Combinator. *)

fun insert_list(oprt_new,d,0) =
 (oprt_new,d)::[]|
 insert_list(oprt_new,dl,(oprt_old,d2)::rest) =
 if oprt_new = oprt_old then
 ((oprt_old,d2)::rest)
 else
 ((oprt_old,d2)::insert_list(oprt_new,dl,rest));

fun get_info(ttree,list) =
 let fun go_get_info(ttree,list) =
 case ttree of
 lam(ttree1,ttree2,ddatatype) => go_get_info(ttree2,list)
 | apply(ttree1,ttree2,ddatatype) =>
 let val (listl,oprtl,depthl) = go_get_info(ttree1,list) in
 let val (list2,oprt2,dummy) = go_get_info(ttree2,listl) in
 if oprt2 = "()" then
 let val list = insert_list(oprtl,depthl+1,list2) in
 (list,"dummy",0)
 end
 else
 (list2,oprtl,depthl+1)
 end
 end
 | const(oprt,ddatatype) => (list,oprt,0)
 | idenify(oprt,ddatatype) => (list,"dummy",0)
 in
 let val (list,dummy1,dummy2) = go_get_info(ttree,list) in
 list
 end
 end
 in
 let val (list,dummy1,dummy2) = go_get_info(ttree,list) in
 list
 end
 end;
else
 retrieve_info(oprt_new,rest);

fun mk_rn_cbnt(apply(ttreel,ttree2,ddatatype),c,cbnt) =
 let
 fun find_type ttree =
 case ttree of
 lam(ttreel,ttree2,dttype) => dttype
 | apply(ttreel,ttree2,dttype) => dttype
 | const(ttreel,dttype) => dttype
 | idenfy(ttreel,dttype) => dttype
 in
 let val typel = find_type ttree1 in
 let val type2 = flnd_type ttree2 in
 let val cbnt_type = func(typel,func(type2,typel)) in
 let val c = c + 1 in
 let val cbnt_name = makestring c in
 (apply(apply(const(cbnt_name,cbnt_type),ttreel,func(type2,typel)),ttree2,typel),
 0,c,(apply(apply(const(cbnt_name,cbnt_type),idenfy("c",typel),
 func(type2,typel)),const("()",type2,typel),idenfy("c",typel))::cbnt)
 end
 end
 end
 end
 end
 in
 case ttree of
 lam(ttreel,ttree2,ddatatype) =>
 let val (ttree2,d,c,cbnt) = bind_tree(ttree2,list,c,cbnt) in
 (lam(ttreel,ttree2,ddatatype),0,c,cbnt)
 end
 | apply(ttreel,ttree2,ddatatype) =>
 let val (ttree1,d1,c,cbnt) = bind_tree(ttree1,list,c,cbnt) in
 (apply(ttreel,ttree2,ddatatype),0,c,cbnt)
 end
 end
 end;

fun bind_tree(ttree,list,c,cbnt) = (* c = count , cbnt = runtime combinator *)

 let fun adjust_type(d,ddatatype)=
 if d=2 then
 let val func(ang,ans)=ddatatype in
 ans
 end
 else
 let val func(ang,ans)=ddatatype in
 func(ang,adjust_type(d-1,ans))
 end
 in
 case ttree of
 lam(ttreel,ttree2,ddatatype) =>
 let val (ttree2,d,c,cbnt) = bind_tree(ttree2,list,c,cbnt) in
 (lam(ttreel,ttree2,ddatatype),0,c,cbnt)
 end
 | apply(ttreel,ttree2,ddatatype) =>
 let val (ttree1,d1,c,cbnt) = bind_tree(ttree1,list,c,cbnt) in
 (apply(ttreel,ttree2,ddatatype),0,c,cbnt)
 end
 end
 end;

69
let val (ttree2,d2,c,cbnt) =
 bind_tree(ttree2,list,c,cbnt) in
 if d1 = 0 then
 (apply(ttree1,ttree2,ddatatype),0,c,cbnt)
 else
 if (d1 = 1) then
 if ttree2 = const("()",store) then
 (ttree1,0,c,cbnt)
 else
 (* mk_cb returns -> tree,0,c,cbnt *)
 mk_rn_cbnt(apply(ttree1,ttree2,ddatatype),c,cbnt)
 else
 (apply(ttree1,ttree2,adjust_type(dl,ddatatype)),dl-1,c,cbnt)
end
end

|const(oprt,ddatatype) =>
 let val (oprt,d) = retrieve_info(oprt,list) in
 if d>0 then
 (const(oprt,adjust_type(d+l,ddatatype)),d,c,cbnt)
 else
 (ttree,d,c,cbnt)
end
|idenfy(oprt,ddatatype) =>
 (ttree,0,c,cbnt)
end

fun get_info_rw(0,list) = list
|get_info_rw((lhs,rhs)::rest,list)=
 let val list = get_info(lhs,list) in
 let val list = get_info(rhs,list) in
 get_info_rw(rest,list)
end
end;

fun bind_tree_rw(0,list,c,cbnt,rules) = (c,cbnt,rules) |
bind_tree_rw((lhs,rhs)::rest,list,c,cbnt,rules) =
let val(lhs,unused1,c,cbnt) = bind_tree(lhs,list,c,cbnt) in
let val(rhs,unused2,c,cbnt) = bind_tree(rhs,list,c,cbnt) in
bind_tree_rw(rest,list,c,cbnt,(lhs,rhs)::rules)
end
end;

fun get_bind (rn_rules,tr_rules) =
fun ct_bind(rn_rules, tr_rules) =
 let
 fun apply_step2(rn_rules, tr_rules) =
 let
 fun cat([], rn_rules) = rn_rules
 | cat(hdd::rest,rn_rules) = cat(rest,hdd::rn_rules)
 in
 let val bind = get_bind(rn_rules, tr_rules) in
 let val (c, cbnt, rn_rules) = bind_tree_rw(rn_rules, bind, 0, nil, nil) in
 let val (c, cbnt, tr_rules) = bind_tree_rw(tr_rules, bind, c, cbnt, nil) in
 (reverse (cat(cbnt, rn_rules)) nil, reverse tr_rules nil)
 end
 end
 end
 in
 let val rn_rules = apply_step1 rn_rules in
 let val tr_rules = apply_step1 tr_rules in
 apply_step2(rn_rules, tr_rules)
 end
 end
 end
end;
Purpose: Implement the lambda-lifting algorithm.

Input: A pair of lists. The first list corresponds to the Run-Time Rules and the second list corresponds to the Compiler-Time Rules.

Output: The Run-Time Rules and Compiler-Time Rules. Each rule is represented by a pair of parse trees. The rules have no lambda operators but may be augmented with new rules.*)

(* Function build_abst Takes Out All Innermost Lambda Abstractions's Free Variables As Extra Parameters. *)

fun build_abst(ttree1, ttree2, ddatatype, ids []) = (ttree2, ids [])

 build_abst(ttree1, ttree2, ddatatype, ids (head::list)) =
 let val s1 = case ttree1 of
 idenfy(s, ddatatype1) => s|
 const(s, ddatatype1) => s|
 everything_else => "will_not_happen" in

 let val (s2, ddatatype2) = head in
 if s1 = s2 then
 (* s2 already has a binding identifier *)
 build_abst(ttree1, ttree2, ddatatype, ids list)
 else
 (* build new binding identifier for s2 *)
 let val new_type = func(ddatatype2, ddatatype) in
 let val ttree2 = (lam(idenfy(s2, ddatatype2), ttree2, new_type)) in
 let val (ttree2, list) = build_abst(ttree1, ttree2, new_type, ids list) in
 (apply(ttree2, idenfy(s2, ddatatype2), ddatatype), list)
 end
 end
 end
end;

(* Function search_free Searches Free Variables in The Innermost Lambda Abstraction and Records Them in A List Called free_ids *)
fun search_free(ttree,free_ids) =
 case ttree of
 lam(ttree1, ttree2, ddatatype) =>
 let val (ttree2, free_ids) = search_free(ttree2, free_ids) in
 let val ttree2 = (lam(ttree1, ttree2, ddatatype)) in
 build_abst(ttree1, ttree2, ddatatype, free_ids)
 end
 end
 |apply(ttree1, ttree2, ddatatype) =>
 let val (ttree1, free_ids1) = search_free(ttree1, free_ids) in
 let val (ttree2, free_ids2) = search_free(ttree2, free_ids1) in
 (apply(ttree1, ttree2, ddatatype), free_ids2)
 end
 end
 |idenfy(s, ddatatype) =>
 let val ids list = free_ids in
 (idenfy(s, ddatatype), ids((s, ddatatype)::list))
 end
 |const(s, ddatatype) => (const(s, ddatatype), free_ids);

fun beta_abst ttree =
 let val (new_tree, empty_list) = search_free(ttree, ids[]) in
 new_tree
 end;

(* Function set_rule Construct A New Rewrite Rule *)

fun set_rule(lam(ttree1, ttree2, ddatatype), lhs, rhs) =
 let val func(type1,type2) = ddatatype in
 let val new_lhs = apply(lhs, ttree1,type2) in
 set_rule(ttree2, new_lhs, rhs)
 end
 end)

set_rule(new_rhs, lhs, rhs) = (lhs,new_rhs);

(* Function lam_lift Gives Supercombinator A Name And Constructs
New Supercombinator Definition and Tree *)

fun lam_lift(ttree,table) =
 case ttree of
 lam(ttree1, ttree2, ddatatype) =>
 let val ttable(num, rule list) = table in
 end
 end
let val func(type1,type2) = ddatatype in
 let val name = "$"*makestring num in
 let val new_lhs = apply(const(name, ddatatype),ttree1,type2) in
 let val (lhs,rhs) = set_rule(ttree2, new_lhs, new_lhs) in
 (const(name, ddatatype),(ttable(num+1, rule((lhs,rhs)::list)))
 end end end
end

|apply(ttree1, ttree2, ddatatype) =>
 let val (ttree1, table) = lam_lift(ttree1, table) in
 let val ttree2 = lam(ttree1, ttree2, ddatatype) in
 (apply(ttree1, ttree2, ddatatype), table)
 end
end

|everything_else => (everything_else, table);
in

case rw_rule of
 [] => []
 [(lhs,rhs)::rest =>
 let val (lhs,ttable(num,rule list)) = dt_sc(lhs,ttable(num,rule [])) in
 let val (rhs,ttable(num,rule list)) = dt_sc(rhs,ttable(num,rule list)) in
 (lhs,rhs)::cons (reverse list nil) num rest
 end
 end
 end;

Main Entry To The Lambda-Lifting Algorithm

fun lam_lifting(rn_rules,tr_rules) =
 let val rn_rules = dt_sc_rw(0,rn_rules) in
 let val tr_rules = dt_sc_rw(0,tr_rules) in
 (rn_rules,tr_rules)
 end
end;

75
Perform Eta Reduction on Rewrite-Rule

<table>
<thead>
<tr>
<th>Perform</th>
<th>Eta Reduction on Rewrite-Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>fun extract ttree =</td>
<td></td>
</tr>
<tr>
<td>case ttree of</td>
<td></td>
</tr>
<tr>
<td>apply(ttree1,ttree2,ddatatype) =></td>
<td></td>
</tr>
<tr>
<td>let val (opr,ttree1) = extract ttree1 in</td>
<td></td>
</tr>
<tr>
<td>(opr,apply(ttree1,ttree2,ddatatype))</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>const(opr,ddatatype) => (opr, const("dummy", ddatatype))</td>
<td></td>
</tr>
<tr>
<td>anything_else => ("dummy", anything_else);</td>
<td></td>
</tr>
<tr>
<td>fun build(opr1,opr2,ttree) =</td>
<td></td>
</tr>
<tr>
<td>case ttree of</td>
<td></td>
</tr>
<tr>
<td>apply(ttree1,ttree2,ddatatype) =></td>
<td></td>
</tr>
<tr>
<td>let val ttree1 = build(opr1,opr2,ttree1) in</td>
<td></td>
</tr>
<tr>
<td>apply(ttree1,ttree2,ddatatype)</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>const(opr,ddatatype) =></td>
<td></td>
</tr>
<tr>
<td>if opr = opr2 then</td>
<td></td>
</tr>
<tr>
<td>const(opr1,ddatatype)</td>
<td></td>
</tr>
<tr>
<td>else</td>
<td></td>
</tr>
<tr>
<td>const(opr,ddatatype)</td>
<td></td>
</tr>
<tr>
<td>anything_else => anything_else;</td>
<td></td>
</tr>
<tr>
<td>fun is_safe(opr1,opr2,ttree) =</td>
<td></td>
</tr>
<tr>
<td>case ttree of</td>
<td></td>
</tr>
<tr>
<td>apply(ttree1,ttree2,ddatatype) => safe(opr1,opr2,ttree1)]</td>
<td></td>
</tr>
<tr>
<td>const(opr,ddatatype) =></td>
<td></td>
</tr>
<tr>
<td>if opr = opr2 then</td>
<td></td>
</tr>
</tbody>
</table>
true
else
false|

anything_else => false;

fun reduce (opr1,opr2,[])=[]
reduce (opr1,opr2,(lhs,rhs)::rest) =
let val new_lhs = build(opr1,opr2,lhs) in
 (new_lhs,rhs)::(reduce(opr1,opr2,rest))
end;

fun ok_reduce (opr1,opr2,[])=false|
ok_reduce (opr1,opr2,(lhs,rhs)::rest) =
let val ok = is_safe(opr1,opr2,lhs) in
 if ok then
 ok
 else
 ok_reduce(opr1,opr2,rest)
end;

fun do_eta [] = []
do_eta((lhs,rhs)::rest) =
let val (opr1,new_lhs) = extract lhs in
 let val (opr2,new_rhs) = extract rhs in
 if (new_lhs = new_rhs) then
 if ok_reduce(opr1,opr2,rest) then
 do_eta (reduce(opr1,opr2,rest))
 else
 ((lhs,rhs)::do_eta rest)
 else
 (new_lhs,rhs)::do_eta rest
 end
 end
end;
(* File : Main.sml

Date completed : 4-1-89

Purpose: Main module to invoke the compiler generator system.

Input : A pair of lists. The first list corresponds to the
Run-Time Rules and the second list corresponds to
the Compiler-Time Rules. The rules are represented
by a pair of strings.

rule is represented by a pair of parse trees. The
rules are partially evaluated. *)

fun strip_lam lf_tree =
 case lf_tree of
 lam(ttree1,ttree2,ddatatype) => strip_lam ttree2
 apply(ttree1,ttree2,ddatatype) => (apply(ttree1,ttree2,ddatatype),ddatatype)
 idenfy(str,ddatatype) => (idenfy(str,ddatatype),ddatatype)
 const(str,ddatatype) => (const(str,ddatatype),ddatatype);

fun conv [] = []
 | conv((left_str,right_str)::rest) =
 let val (lf_tree,dummy1,type_list) = spt(left_str,[]) in
 let val (lf_tree,t_lf) = strip_lam(lf_tree) in
 let val (rt_tree,t_rt,type_list) = spt(right_str,type_list) in
 if t_lf = t_rt then
 (lf_tree,rt_tree)::conv rest
 else
 found_error ((pretty_print lf_tree)"=>"(pretty_print rt_tree)
 "Type incompatible of lhs and rhs")
 end
 end
 end
 end;

fun main(rn_rules,tr_rules) =
 let val rn_rules = conv rn_rules in
 let val tr_rules = conv tr_rules in
 let val dummy = output std_out ("0--------0 cb lift0"--------0) in
 let val (rn_rules,tr_rules) =
 ct_bind(nlifting(lam_lifting(st_trans(rn_rules,tr_rules)))) in
 end
 end
end

78
doprint(do_eta rn_rules, do_eta tr_rules)
end
end
end
end;

79
(* File name : Evaluator.sml

Date completed : 4-1-89

Purpose: To implement the compile-time evaluator to perform compile-time computations.

Input : 1) The compile-time rules
 2) Program to be compiled.

Output : Compiled program. *)

(* Each Subexpression Is Matched Against The Left-Hand Expression Of The Rule. The Return Is Either True or False. *)

fun match(lhs,ttree,tenv) =
 case lhs of
 apply(t11,t12,dtype1) =>
 let val (found,tenv) =
 case ttree of
 apply(t21,t22,dtype2) =>
 let val (found,tenv) = match(t11,t21,tenv) in
 if found then
 match(t12,t22,tenv)
 else
 (found,tenv)
 end
 |anything_else => (false,tenv)
 in
 (found,tenv)
 end
 |const(oprtl,dtype1) =>
 let val (found,tenv) =
 case ttree of
 const(oprtl2,dtype2) =>
 if oprtl=oprtl2 then
 (true,tenv)
 else
 (false,tenv)
 |anything_else => (false,tenv)
 in
 (found,tenv)
 end
 |identifier => (true,(identifier,ttree)::tenv);

(* If A Match Is Found, The Subexpression Is Replaced By The*
Right-Hand Expression Of The Rule. *)

fun replace(rhs,tenv) =
 let
 fun do_replace(identifier,[]) = found_error (pretty_print rhs"" is an illegal rhs rule ")
 |do_replace(identifier,(old,new)::rest) =
 if identifier=old then
 new
 else
 do_replace(identifier,rest)
 in
 case rhs of
 apply(ttree1,ttree2,dtype) =>
 let
 val ttree1 = replace(ttree1,tenv) in
 let
 val ttree2 = replace(ttree2,tenv) in
 apply(ttree1,ttree2,dtype)
 end
 end
 |const(oprt,dtype) => const(oprt,dtype)
 |identifier => do_replace(identifier,tenv)
 end;

fun match_rule(nil,ttree) = ttree
 |match_rule((lhs,rhs)::rest,ttree) =
 let
 val (found,tenv) = match(lhs,ttree,nil) in
 if found then
 replace(rhs,tenv)
 else
 match_rule(rest,ttree)
 end
 end
 end;

Main Entry To The Compile-Time Evaluator

fun eval(tr_rule,prog) =
 let
 val ttree = match_rule(tr_rule,ttree) in
 case ttree of
 apply(ttree1,ttree2,dtype) =>
 match_rule(tr_rule,apply(keep_eval ttree1,keep_eval ttree2,dtype))
 |everything_else => everything_else
 end
 end
 let
 val (ttree,d1,d2) = spt(prog,Q) in
 pretty_print(keep_eval ttree)
 end
 end;

81
Run-Time Rules

(* Natural Numbers *)

main ((("lam m : nat . lam n : nat . ((plus m) n) mal mal ", "m+n ") ::

("lam m : nat . lam n : nat . ((times m) n) mal mal ", "m*n ") ::

("lam n : nat . (eq0 n) mal ", "n=0 ") ::

("lam n : nat . (pred n) mal ", "n-1 ") ::

("lam f : (nat -> nat) . lam g : (nat -> nat) . (((if true) f) g) mal mal ", "f") ::

("lam f : (nat -> nat) . lam g : (nat -> nat) . (((if false) f) g) mal mal ", "g") ::

("lam f : (nat -> nat) . lam n : nat . ((Yop f) n) mal mal ", "(f ((Yop f) n)) ") ::

(* store *)

("empty ", "s:=lam.zer0 ") ::

("lam i : iden . lam s : store . ((access i) s) mal mal ","s(i) ")::

("lam i : iden . lam n : nat . lam s : store . ((update i) n) s) mal mal mal ", "s:=[i]->n]s " (:i:))

Compile-Time Rules

(* $C: cmd -> store -> store *)

("lam c1 : cmd . lam c2 : cmd . ($C ((; c1) c2)) mal mal ", "lam s : store . (($C c2) ((
$C \ c1 \ s \) \) \) \ mal \ ")::

("\lam \ i \ : \ iden . \ \lam \ e : \ expr . (\ SC ((\ := \ i \) \ e)) \ mal \ mal \ " , \ "lam \ s : \ store . (((\ update \ i) ((\ SE e) s)) s) \ mal \ ")::

(* $E: \ expr \ -> \ store \ -> \ nat \ *)

("\lam \ e1 : \ expr . \ \lam \ e2 : \ expr . (\ SE ((+ e1) e2)) \ mal \ mal \ " , \ "lam \ s : \ store . ((plus ((\ SE e1) s)) ((\ SE e2) s)) \ mal \ "\)::

("\lam \ n : \ numeral . (\ SE (\ # n)) \ mal \ " , \ "lam \ s : \ store . (\ $N n) \ mal \ ")::

("\lam \ i : \ iden . (\ SE (\ @ i)) \ mal \ " , \ "lam \ s : \ store . ((access \ i) s) \ mal \ "\)::

(* $N: \ numeral \ -> \ nat \ *)

("(\ $N 0) \ " , \ "zero \ ")::("(\ $N 1) \ " , \ "one \ ")::("(\ $N 2) \ " , \ "two \ ")::("(\ $N 3) \ " , \ "three \ ")::("(\ $N 4) \ " , \ "four \ ")::("(\ $N 5) \ " , \ "five \ ")::("(\ $N 6) \ " , \ "six \ ")::("(\ $N 7) \ " , \ "seven \ ")::("(\ $N 8) \ " , \ "eight \ ")::("(\ $N 9) \ " , \ "nine \ ")::[]));
Generation of Efficient Compilers
by Application of
Single-Threading, Control Binding and Lambda-Lifting Techniques

by

Kok Hui Chong

B.A., Coe College, Cedar Rapids, IA, 1987

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1989
Abstract

The semantics definition of a language can be used to generate an error-free compiler. A drawback with the early work in automated compiler generation is that the generated compilers ran slower than the handwritten ones. Clues presented by the domains and valuation functions in the semantic definitions can be used to transform a denotational definition of a programming language into a more efficient form. Among the techniques which improve the efficiency of the generated compiler are Single-Threading, Control Binding, and Lambda-Lifting.

The motivation of this research is to tie together these techniques in the right order to maximize their effectiveness. We designed and implemented a compiler generator system which enables us to intermix these techniques in any order. Virtually any denotational definition can be implemented by the system. The output from the system together with a compile-time evaluator form a correct and efficient compiler.

As a result of testing the system with the semantics definition of a typical imperative language, we concluded the best results are obtained by applying Single-Threading first, Control Binding second and Lambda-Lifting last.