SURVEY OF FORMOSAN SUGAR REFINERY PRACTICE
WITH REGARD TO THE POSSIBILITY OF PRODUCING
BY-PRODUCT POWER TO SELL TO UTILITY

by

LUN JU WEI

B. S. M. E., National Taiwan University, 1950

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE COLLEGE
OF AGRICULTURE AND APPLIED SCIENCE

1955
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>GENERAL DESCRIPTION OF TAIWAN SUGAR CORPORATION</td>
<td>1</td>
</tr>
<tr>
<td>A BRIEF SUMMARY OF THE TAIWAN SUGAR MANUFACTURING PROCESS</td>
<td>3</td>
</tr>
<tr>
<td>Defecation Process</td>
<td>3</td>
</tr>
<tr>
<td>Principle of defecation process</td>
<td>8</td>
</tr>
<tr>
<td>Principle of Double Carbonation Process</td>
<td>8</td>
</tr>
<tr>
<td>CALCULATIONS ON STEAM CONSUMPTION AND ITS HEAT BALANCE IN A SUGAR FACTORY</td>
<td>10</td>
</tr>
<tr>
<td>Introduction</td>
<td>10</td>
</tr>
<tr>
<td>Defecation Process</td>
<td>14</td>
</tr>
<tr>
<td>Carbonation Process</td>
<td>24</td>
</tr>
<tr>
<td>CALCULATION OF HEAT BALANCE BASED ON AN EXAMPLE OF ACTUAL OPERATING DATA OF A FORMOSAN SUGAR FACTORY</td>
<td>26</td>
</tr>
<tr>
<td>DESIGN OF A PLANT LAYOUT FOR THE DEFECATION PROCESS WITH GRINDING CAPACITY OF 1,000 METRIC TONS PER DAY</td>
<td>32</td>
</tr>
<tr>
<td>THE SUGAR INDUSTRY AND ITS BY-PRODUCTS</td>
<td>32</td>
</tr>
<tr>
<td>STUDY OF A POWER PLANT FOR A SUGAR FACTORY WITH A GRINDING CAPACITY OF 2,000 TONS OF CANE PER DAY</td>
<td>35</td>
</tr>
<tr>
<td>Introduction</td>
<td>35</td>
</tr>
<tr>
<td>Steam Turbine Drive for Mills</td>
<td>39</td>
</tr>
<tr>
<td>By-product Power</td>
<td>41</td>
</tr>
<tr>
<td>Possible Arrangements</td>
<td>48</td>
</tr>
<tr>
<td>Estimated Value of Power to Utility</td>
<td>56</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>59</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>63</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>64</td>
</tr>
</tbody>
</table>
INTRODUCTION

The sugar industry is the largest and most important industry in Formosa. It yields about 60 per cent of the total foreign currency of all exported Formosan goods, and about one-sixth of the population depend directly or indirectly on it for a living (1). It has a considerable influence on the economic structure of Formosa. The Taiwan Sugar Corporation produced about 880,000 tons of sugar during the year 1953 (1).

The purpose of this research was to obtain pertinent data and make a preliminary evaluation of the by-product power generating resources of a typical Formosan sugar factory and the most advantageous means for exploiting these resources in the national interest.

GENERAL DESCRIPTION OF TAIWAN SUGAR CORPORATION

Before the end of the World War II, the Formosan sugar industry consisted of Nitto Kogyo Sugar Mfg. Co., Ltd., Taiwan Sugar Mfg. Co., Ltd., Meiji Sugar Mfg. Co., Ltd., and Ensuike Sugar Mfg. Co., Ltd. These four sugar companies altogether owned forty-two modern factories. The attack of the allied air force during the Pacific War inflicted heavy damages on thirty-six of them, and only eight factories escaped from the bombardments.

Upon taking over the management from the Japanese, the Chinese government immediately set up a supervisory committee whose function was to keep the sugar industry in continuous oper-
ation and to prepare for reorganizing the industry. On May 1, 1946, the Taiwan Sugar Corporation was formed. The four former Japanese companies were merged into the Corporation as its four district branches and the sugar factories were rehabilitated and reduced to 36 in number. The total capitalization was then three billion Taiwan Dollars, and was divided between the National Resources Commission and the Provincial government of Formosa at a ratio of six to four.

In August 1946, the Corporation was ordered to place its shares on the open market as a parallel policy to the government stabilization program. At the same time, the local shareholders of the former Japanese sugar companies also became shareholders of this Corporation. The necessary reorganization was carried out in September 1948. As a result of the currency reform introduced by the Provincial government in June, 1949, the total capitalization was revalued at 600 million New Taiwan Dollars.

In July 1950, the four district branches were superseded by the five district branches of Pingtung, Tsungyeh, Hsinying, Huwei, and Taichung as agencies to supervise the operation of the sugar factories in their respective districts. In the meantime, the Tangtze factory and the Wuji factory were merged into the Taichung district factory, and the factories at Hsinchu, Miaoli, Chusan, and Hengshung were closed in July 1951. There are now thirty sugar factories in operation.

In January 1951, a new unit of the company named the Agricultural Engineering office was formed. This replaced the former unit of AMOMO (Agricultural Machinery Operation and Management Office).
To supply compost manure for cane fertilization, a plan for a Farm Animal Breeding Station was put forth by the company in July 1952, and the preparatory work was started in the former Hsinchu factory.

A recent creation is the Taiwan Molasses Corporation which is to be jointly owned and operated by the Taiwan Sugar Corporation and the Japanese merchants so as to insure a market for the Taiwan Sugar Corporation.

The sugar factories and other organizations of Taiwan Sugar Corporation (TSC), Formosa, are listed in Table 1 (2), and the distribution of the Taiwan Sugar Corporation sugar factories and other organization is shown in Fig. 1 (2).

A BRIEF SUMMARY OF THE TAIWAN SUGAR MANUFACTURING PROCESS

Defecation Process

The cane is cut by hand or machine and is brought to the mill where it is cut into small pieces in a mechanical cutter and then shredded (Figs. 2 and 3). It is then passed through several sets of rolls, at a pressure of from 300 to 600 tons, which squeeze the juice from the cane. Louisiana mills pioneered in the use of turbine drives (Schmertz, 3). Some of the Formosan sugar mills pioneered in the use of electric motor drives for the mills to replace reciprocating steam-engine drives (4). However, most of the mills still use steam-engine drives.

The mixed juice is heated, strained, and then heated again.
<table>
<thead>
<tr>
<th>No. District</th>
<th>Unit Name</th>
<th>Manager</th>
<th>Location</th>
<th>Type of Product</th>
<th>Equipment</th>
<th>Year Founded</th>
<th>Establishment Year</th>
<th>Alcohol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HSU Sugar Factory</td>
<td>E. H. Cheung</td>
<td>Yiting</td>
<td>Brown Sugar</td>
<td></td>
<td>1900</td>
<td>1900</td>
<td>Alcohol</td>
</tr>
<tr>
<td>2</td>
<td>Leung Sugar Factory</td>
<td>T. Ma</td>
<td>Yiting</td>
<td>White Sugar</td>
<td></td>
<td>1900</td>
<td>1900</td>
<td>Alcohol</td>
</tr>
<tr>
<td>3</td>
<td>PCSugar Factory</td>
<td>Y. C. Chan</td>
<td>Yiting</td>
<td>White Sugar</td>
<td></td>
<td>1900</td>
<td>1900</td>
<td>Alcohol</td>
</tr>
<tr>
<td>4</td>
<td>Tai Sugar Factory</td>
<td>Y. C. Chan</td>
<td>Yiting</td>
<td>White Sugar</td>
<td></td>
<td>1900</td>
<td>1900</td>
<td>Alcohol</td>
</tr>
<tr>
<td>5</td>
<td>TSW Sugar Factory</td>
<td>T. Y. Cheung</td>
<td>Chiayi</td>
<td>White Sugar</td>
<td></td>
<td>1900</td>
<td>1900</td>
<td>Alcohol</td>
</tr>
<tr>
<td>6</td>
<td>TW Sugar Factory</td>
<td>T. Y. Cheung</td>
<td>Chiayi</td>
<td>White Sugar</td>
<td></td>
<td>1900</td>
<td>1900</td>
<td>Alcohol</td>
</tr>
<tr>
<td>7</td>
<td>HSU Sugar Factory</td>
<td>E. H. Cheung</td>
<td>Yiting</td>
<td>White Sugar</td>
<td></td>
<td>1900</td>
<td>1900</td>
<td>Alcohol</td>
</tr>
<tr>
<td>8</td>
<td>Leung Sugar Factory</td>
<td>T. Ma</td>
<td>Yiting</td>
<td>White Sugar</td>
<td></td>
<td>1900</td>
<td>1900</td>
<td>Alcohol</td>
</tr>
<tr>
<td>9</td>
<td>PCSugar Factory</td>
<td>Y. C. Chan</td>
<td>Yiting</td>
<td>White Sugar</td>
<td></td>
<td>1900</td>
<td>1900</td>
<td>Alcohol</td>
</tr>
<tr>
<td>10</td>
<td>Tai Sugar Factory</td>
<td>Y. C. Chan</td>
<td>Yiting</td>
<td>White Sugar</td>
<td></td>
<td>1900</td>
<td>1900</td>
<td>Alcohol</td>
</tr>
<tr>
<td>11</td>
<td>TSW Sugar Factory</td>
<td>T. Y. Cheung</td>
<td>Chiayi</td>
<td>White Sugar</td>
<td></td>
<td>1900</td>
<td>1900</td>
<td>Alcohol</td>
</tr>
<tr>
<td>12</td>
<td>TW Sugar Factory</td>
<td>T. Y. Cheung</td>
<td>Chiayi</td>
<td>White Sugar</td>
<td></td>
<td>1900</td>
<td>1900</td>
<td>Alcohol</td>
</tr>
</tbody>
</table>

Table 1. Taiwan Sugar Corporation sugar factories and other organizations.

Excluding the railway kilometers of former Ilihsia Sugar Factory.
Fig. 1 Distribution of Taiwan Sugar Corporation sugar factories and other organizations
The defecation or clarification of the juice is accomplished by means of lime and heat. The acidity of the juice is neutralized by milk of lime and its temperature is raised to the boiling point. It is then passed through the subsider to separate the clarified juice from the mud, and thus impurities are removed. The mud is passed through the Oliver-filter and the resulting filtrate or press-juice is then sent back to the mixed juice receiver. The precipitates retained in the press, called filter-press cake, are discarded or used for fertilizing the cane fields. The clarified juice is passed through multiple-effect evaporators where it is concentrated. Following this procedure, the juice is sent to vacuum pans where sucrose or sugar is crystallized out. The mixture of crystallized sugar and syrup is centrifuged to get A sugar and first molasses. The first molasses is returned to a second vacuum pan and it is processed the same as before to get B sugar and second molasses. The mixture of A and B sugar is packed into bags (B White Crystal, or Raw Sugar) for shipment to refining plants. Second molasses is introduced into a third vacuum pan to get C sugar and final molasses. C sugar is mixed with syrup and is returned to the first and second vacuum pans. Final molasses is used to manufacture alcohol, yeast, and other chemicals. Bagasse, which flows from the fourth mill, is used as fuel for firing the boilers. It can also be used as raw material for celotex-type bagasse-board, structural-type bagasse-board, and paper pulp (4).
Fig. 2 and Fig. 3.
Fig. 2 Flow sheet with defecation process in Taiwan sugar factory, Formosa
Fig. 3 Flow sheet in defecation process with grinding capacity of 1,000 metric tons of cane per day.
Principle of Defecation Process

Defecation or subsiding is the process in which the impurities (colloids) in the juice are precipitated by liming, and allowed to settle out under the force of gravity. It will be obvious that such a process is feasible only when there is a definite difference in specific weight of the materials to be separated. After defecation is complete, there will remain three zones:

1. The scum, floating on top of the juice.
2. The clear juice itself.
3. The mud beneath the clear juice zone (Tromp, 5).

The reaction which takes place upon adding the lime to the juice is as follows:

\[
C_{12}H_{22}O_{11} + Ca(OH)_2 \rightarrow C_{12}H_{22}O_{11} \cdot CaO + H_2O
\]
Sugar Lime Calcium Monosaccharate (Soluble at room temperature)

\[
C_{12}H_{22}O_{11} + 2Ca(OH)_2 \rightarrow C_{12}H_{22}O_{11} \cdot 2CaO + 2H_2O
\]
Calcium Disaccharate

\[
C_{12}H_{22}O_{11} + 3Ca(OH)_2 \rightarrow C_{12}H_{22}O_{11} \cdot 3CaO + 3H_2O
\]
Calcium Trisaccharate (Insoluble after heating)

Precipitate

Principle of Double Carbonation Process

The double carbonation process consists of the following steps:
First carbonation: This produces a precipitate of \(\text{CaCO}_3 \) which absorbs the impurities of the juice.

Second carbonation: This reduces the amount of lime in the juice, accelerates the reaction and produces a second precipitate of \(\text{CaCO}_3 \) preparatory to filtration. Sulphitation of the filtrated juice from the second carbonation is practiced in order to remove the lime still remaining in the filtrated juice and also to bleach the juice.

Except for these two steps, the carbonation process of sugar refining is nearly the same as the defecation process.

From 7 to 10 per cent by volume of milk of lime of 35.7 degrees Brix (weight per cent of total solid in the solution) is added to the juice which has been warmed to about 133 degrees F (45 degrees C). The first carbonation is then conducted precisely, using a DuPont test paper to keep the pH of the juice between 10.5 to 11.0 for good filtrability. The juice is next warmed to a temperature of nearly 130 degrees F (55 degrees C) and is then filter-pressed. The second carbonation proceeds continuously, that is, the first carbonated juice is then carbonated continuously to a pH of about 8.0. The juice is finally heated to 158 degrees F (70 degrees C) preparatory to filtration. Before discharging from the tank, the juice should be gassed by \(\text{SO}_2 \) for a few seconds to prevent deleterious action occluded in the precipitates (6).

Adding lime and \(\text{CO}_2 \) gas results in the carbonation reaction according to the equation:
Ca(OH)$_2$ + CO$_2$ \rightarrow CaCO$_3$ + H$_2$O

Lime CO$_2$ gas Precipitate

The flow sheet of a carbonation process factory is shown in Fig. 4.

CALCULATIONS ON STEAM CONSUMPTION AND ITS HEAT BALANCE IN A SUGAR FACTORY

Introduction

To study the performance of a sugar factory, it is necessary to determine the steam consumption of the various components of the plant. Steam consumption means the amount of steam used for the various processes. As the first step, the necessary amount of steam for each part of a factory is calculated. From the results of the calculation, the necessary amount of steam for a whole factory is determined. Generally speaking, the average steam consumption in sugar factories is nearly 55 to 70 per cent of the weight of cane (4). Steam consumption is expressed as the necessary amount of steam in lb/hr or kg/hr.

The heat balance is the tabulation of the amount of heat absorption and heat liberation by material in the various processes. However, the sugar industry is different from most chemical industries. In the sugar industry, the sugar is extracted from the raw material (cane), but no chemical reaction and no absorption or liberation of heat of reaction takes place. In the
Fig. 4 Flow sheet of a carbonation process
heat balance of the sugar factory, the incoming heat is mainly supplied by the steam which heats the juice; and the outgoing heat is the heat loss from juice due to cooling and radiation. At the same time, heat converted into mechanical energy, for example, in turbines and pumps, is also considered. Therefore the heat balance in the sugar factory is the steam heat balance.

Tromp (5) divided steam heat balance into three definite stages:

(a) The boiler heat balance.
(b) The heat balance of live steam consumers.
(c) The heat balance of exhaust steam consumers.

Exhaust steam coming from turbines and pumps is used for the heating and boiling of juices.

The steam consumption and heat balance have a close relation. From the heat balance, the steam consumption, the heat loss, and the efficiencies will be known. This information will be the guide to lowered steam consumption and to an improved heat economy in the factory.

In the sugar factory, if fuel is purchased, the fuel cost will comprise most of the process cost. The bagasse is available as fuel in the sugar factories. In the past it was satisfactory to burn the bagasse as fuel. However, at present, the bagasse is valuable as raw material for various kinds of chemical products, such as paper pulp and bagasse-board. Therefore, it is desirable to save a great amount of the bagasse by partly burning coal as an auxiliary fuel. Economy in the use of heat and steam is important in plant operation.

There are two methods for saving fuel:

(a) Heat recovery from stack gases by the installation of
economizers, superheaters, and air preheaters.

(b) Reduction of steam consumption by (1) the use of more efficient components in the plant layout, such as multiple-effect evaporators, (2) more efficient operation of existing components such as the turbine-driven prime mover for the mills, and (3) utilization of the available heat of the vapor for evaporated juices.

The experimental data in the following calculations come from "A Handbook for the Taiwan Sugar Industry" (4) and the operation data of the Taiwan sugar factories.

General Assumptions

1. Grinding capacity: 1,000 tons of cane per day.
 \[1,000 \times 1,000\]

2. Grinding capacity per hour: \(-\) = 41,600 kg/hr.
 \[\frac{24}{24}\]

3. Cane fiber: 12.8 per cent of cane.

4. Cane fiber: 56.0 per cent of bagasse.
 \[12.8\]

5. Ratio of bagasse to cane: \(\frac{56.0}{12.8}\) = 22.9 per cent.

6. Ratio of mixed juice (Bx. 15) to cane: 105 per cent.

7. Weight of mixed juice: 41,600 x 1.05 = 43,600 kg/hr.

8. Water added to dilute juice for clarification: In defecation process, 2 per cent of mixed juice; in carbonation process, 10 per cent of mixed juice.

9. Thin juice:

 Defecation process: 43,600 x 1.02 = 44,470 kg/hr.

 Carbonation process: 43,600 x 1.10 = 47,960 kg/hr.

10. Syrup (Bx. 63): 43,600 x \(-\) = 10,400 kg/hr.
 \[\frac{63}{63}\]
Defecation Process

A. Steam consumption in each part.

1. Mill House

Assume:

(a) 1 - cane carrier; 2 - cane cutters; 1 - crusher with two rolls; 1 - shredder; 4 - mill with three rolls; 1 - bagasse carrier.

(b) Cane cutters, shredder, and bagasse carrier are driven by motors; cane carrier is driven by vertical steam engine.

Calculated Horsepower and Steam Requirements:

(a) Horsepower for crusher: 18 hp/ton of cane fiber/hr
Horsepower for single mill: 22 hp/ton of cane fiber/hr
Horsepower for crusher: 41.6 x 0.128 x 18 = 96 hp
Horsepower for mill: 41.6 x 0.128 x 22 x 4 = 470 hp
Total horsepower: 96 + 470 = 566 hp
Steam consumption of Corliss steam engine used to drive mill and crusher: 13 kg/hp-hr

Total steam consumption of Corliss engine:
566 x 13 = 7,350 kg/hr

Horsepower of vertical steam engine used to drive cane carrier: 15 hp
Steam consumption of vertical steam engine: 36 kg/hp-hr
Total steam consumption of vertical engine:
15 x 36 = 540 kg/hr

In summary, steam consumption in the mill house is:
For crusher and mills: 7,350 kg steam/hr
For cane carrier: 540 kg steam/hr

2. Clarification House

Assume single-batch liming system, continuous subsider to separate mud from clarified juice, and Oliver filter to filter out the mud. Except for juice heating and evaporating, no steam is consumed in the clarification house.

(1) Juice Heater (exhaust steam heater)

The mixed juice is heated from 25° C to 43° C in the vapor heaters by means of the vapor juice from the fourth evaporator.

To heat mixed juice from 43° C to 103° C requires:

\[43,600 \times 0.90 \times (103 - 43) = 2,350,000 \text{ kcal/hr}\]

Assume:

- Exhaust pressure of steam, 0.4 kg/cm\(^2\) gage.
- Temperature of condensed water, 85° C.

Steam consumption of juice heater: \[\frac{2,350,000}{643 - 85} = 4,220 \text{ kg/hr}\]

Enthalpy of steam = 643 k-cal/kg, and specific heat of juice = 0.9

(2) Evaporator

Assume four effect evaporators and exhaust steam at 0.4 kg/cm\(^2\) gage (temperature 109° C, latent heat 534 k-cal/kg). Conditions in each effect evaporator are as shown in Table 2.

Table 2. Conditions in each evaporator.

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure or vac.</td>
<td>0.13 kg/cm(^2) gage</td>
<td>180 mm</td>
<td>420 mm</td>
<td>660 mm</td>
</tr>
<tr>
<td>Absolute pres. kg/cm(^2)</td>
<td>(vacuum)</td>
<td>(vac.)</td>
<td>(vac.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.13</td>
<td>0.79</td>
<td>0.46</td>
<td>0.13</td>
</tr>
<tr>
<td>Boiling point ° C</td>
<td>102</td>
<td>93</td>
<td>80</td>
<td>55</td>
</tr>
<tr>
<td>Latent heat k-cal/kg</td>
<td>538</td>
<td>543</td>
<td>551</td>
<td>565</td>
</tr>
</tbody>
</table>
Calculation of specific heat of the juice in each evaporator.

According to "Abraham Formula" (7),

\[
\text{Brix} \quad \text{Brix} \\
C = \left(1 - \frac{----}{100}\right) + 0.3 \times \frac{x}{100} = 1 - 0.007 \times (\text{Brix})
\]

where \(C \) = specific of the juice; \(\text{Brix} \) = Brix of the juice.

<table>
<thead>
<tr>
<th>Evaporator</th>
<th>Brix</th>
<th>Specific heat</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>15</td>
<td>0.90</td>
</tr>
<tr>
<td>II</td>
<td>20</td>
<td>0.85</td>
</tr>
<tr>
<td>III</td>
<td>30</td>
<td>0.80</td>
</tr>
<tr>
<td>IV</td>
<td>40</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Assume:

Temperature of inlet juice: 95° C

Steam consumption in evaporators: \(W \) kg/hr

Quantity of evaporated water in each effect evaporator:

\(X_1, X_2, X_3, \) and \(X_4. \)

Quantity of evaporated water = thin juice - syrup

\[= 44,470 - 10,470 = 34,070 \text{ kg/hr} \]

\[
534 W = 44,470 \times 0.90 (102 - 95) + 538 X_1 \\
538 X_1 + (44,470 - X_1) \times 0.85 (102 - 93) = 543 X_2 \\
543 X_2 + (44,470 - X_1 - X_2) \times 0.80 (93 - 80) = 551 X_3 \\
551 X_3 + (44,470 - X_1 - X_2 - X_3) \times 0.75 (80 - 55) = 564 X_4
\]

and \(X_1 + X_2 + X_3 + X_4 = 34,070 \)

Simplified:

\[
\begin{align*}
X_1 &= 0.993 W - 520 \\
X_2 &= 0.969 W + 120 \\
X_3 &= 0.918 W + 960 \\
X_4 &= 0.800 W + 2,400
\end{align*}
\]

\[3.680 W + 2,960 = 34,070\]

Therefore \(W = 8,450 \text{ kg/hr}, \) and

\[
\begin{align*}
X_1 &= 7870 \text{ kg/hr}, \quad X_2 = 8,310 \text{ kg/hr}, \quad X_3 = 8,730 \text{ kg/hr}, \\
X_4 &= 9,160 \text{ kg/hr}
\end{align*}
\]
3. Boiling and Crystallization House

(1) Boiling of sugar in vacuum pans

Assume a three-vacuum pan system which mixes A sugar and B sugar as commercial sugar, i.e., B White Crystal (BWC), and uses C sugar as seed sugar for A and B sugar when boiling. Before boiling, molasses is diluted to Bx. 66 (see Fig. 2 and Fig. 3). Conditions in each step of boiling are as shown in Table 3.

Table 3. Conditions in each boiling.

<table>
<thead>
<tr>
<th>Steps of boiling</th>
<th>Sugar</th>
<th>Massecuite</th>
<th>Molasses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water%:Purity%:Brix:Purity%:Brix:Purity%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st step (produces B White Crystal)</td>
<td>0.1:99.3:92.0:86.1:82.0:66.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd step (produces B White Crystal)</td>
<td>0.2:99.3:94.0:78.0:84.0:54.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd step (produces seed sugar)</td>
<td>2.5:90.0:99.0:60.0:93.0:31.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The weight of the massecuite will always be the sum of the sugar crystals plus the weight of the molasses.

Let

- Pur. sug. = purity of sugar
- Pur. mas. = purity of massecuite
- Pur. mol. = purity of molasses
- \(X \) = per cent of sugar in crystal form present in massecuite

Prinsen Geerligs (Tromp, 5) long ago established the following formula:

\[
100 \text{ Pur. mas.} = \text{Pur. sug.} \times X + \text{Pur. mol.} (100 - X)
\]

and the formula can also be written:

\[
X = \frac{\text{Pur. mas.} - \text{Pur. mol.}}{\text{Pur. sug.} - \text{Pur. mol.}} \times 100
\]

Per cent of sugar in crystal form present in massecuite.
1st step: \(\frac{86.1 - 66.1}{99.3 - 66.1} \times 100 = 60\% \)

2nd step: \(\frac{78.0 - 54.0}{99.3 - 54.0} \times 100 = 53\% \)

3rd step: \(\frac{60.0 - 31.0}{90.0 - 31.0} \times 100 = 49.2\% \)

The amount of evaporated water in each step of boiling is as shown in Table 4.

Table 4. The amount of evaporated water in each boiling.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Solid</th>
<th>Brix</th>
<th>Contained water</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st step</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syrup</td>
<td>5,220#</td>
<td>60.0</td>
<td>8,700</td>
</tr>
<tr>
<td>C sugar</td>
<td>750#</td>
<td>97.5</td>
<td>770</td>
</tr>
<tr>
<td>1st massecuite</td>
<td>5,970#</td>
<td>92.0</td>
<td>6,490</td>
</tr>
</tbody>
</table>

Evaporated water = \((8,700 + 770) - 6,490 = 2,980 \text{ kg/hr}\)

2nd step

<table>
<thead>
<tr>
<th>Subject</th>
<th>Solid</th>
<th>Brix</th>
<th>Contained water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syrup</td>
<td>1,000#</td>
<td>60.0</td>
<td>1,670</td>
</tr>
<tr>
<td>1st molasses</td>
<td>1,140#</td>
<td>65.0</td>
<td>1,760</td>
</tr>
<tr>
<td>C sugar</td>
<td>470</td>
<td>97.5</td>
<td>480</td>
</tr>
<tr>
<td>2nd massecuite</td>
<td>2,610#</td>
<td>94.0</td>
<td>2,800</td>
</tr>
</tbody>
</table>

Evaporated water = \((1,670 + 1,760 + 480) - 2,800 = 1,100 \text{ kg/hr}\)

3rd step

<table>
<thead>
<tr>
<th>Subject</th>
<th>Solid</th>
<th>Brix</th>
<th>Contained water</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st molasses</td>
<td>1,240#</td>
<td>65.0</td>
<td>1,900</td>
</tr>
<tr>
<td>2nd molasses</td>
<td>1,220#</td>
<td>65.0</td>
<td>1,880</td>
</tr>
<tr>
<td>3rd massecuite</td>
<td>2,460#</td>
<td>99.0</td>
<td>2,500</td>
</tr>
</tbody>
</table>

Evaporated water = \((1,900 + 1,880) - 2,500 = 1,280 \text{ kg/hr}\)

Operation data of the Taiwan Sugar Corporation.

Steam consumption in vacuum pans for boiling is shown in Table 5.
Table 5. Steam consumption in vacuum pans.

<table>
<thead>
<tr>
<th>Step</th>
<th>Evaporated</th>
<th>Boiling factor</th>
<th>Steam consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st step</td>
<td>2,980</td>
<td>1.10*</td>
<td>3,280</td>
</tr>
<tr>
<td>2nd step</td>
<td>1,110</td>
<td>1.15*</td>
<td>1,280</td>
</tr>
<tr>
<td>3rd step</td>
<td>1,280</td>
<td>1.20*</td>
<td>1,540</td>
</tr>
<tr>
<td>Total</td>
<td>5,370 kg/hr</td>
<td>6,100 kg/hr</td>
<td></td>
</tr>
</tbody>
</table>

* Operation data of the Taiwan Sugar Corporation.

(2) Vacuum Pans

Each vacuum pan, after boiling and after massecuite flows out, is washed by live steam for 15 minutes, using 4 kg/cm² gage pressure live steam (diameter of a steam pipe 1 ⅛ inches). To calculate steam consumption for washing, assume the massecuite of a vacuum pan is 15 KL, and specific weight of the massecuite at 60 degrees C, Bx. 85 is approximately 1.45, i.e., 1.45 kg/L. Therefore, each vacuum pan has 1.45 x 15,000 = 22,000 kg of masseouite. Total weight of massecuite = 5,970 + 2,610 + 2,460 = 11,040 kg/hr. Necessary number of vacuum pans for boiling per hour = ------ = 0.50 set/hr. By the method given in "A Handbook for the Taiwan Sugar Industry" (4),

\[
W = 199 \, A_t \sqrt{\frac{P}{V}}
\]

where \(W \) = steam consumption kg/sec
\(A_t \) = nozzle area, 0.00131 m² (1 ⅛" diameter pipe)
\(P \) = pressure of live steam, 5 kg/cm² absolute pressure
\(V \) = specific volume of steam, 0.38 cu m/kg at 5 kg/cm² absolute pressure

Therefore, \(W = 199 \times 0.0013 \times \sqrt{\frac{5}{0.38}} = 0.95 \) kg/sec

Therefore, steam consumption = 0.95 x 15 x 60 x 0.50 = 430 kg/hr
(3) Heating of Molasses

Live steam at 3.5 kg/cm² gage pressure is directly introduced into molasses tanks to heat molasses from 40 degrees C to 70 degrees C to reduce viscosity.

\[
\begin{align*}
\text{1st molasses} & \quad = \frac{2,380}{0.82} = 2,900 \text{ kg/hr} \\
\text{2nd molasses} & \quad = \frac{1,220}{0.84} = 1,450 \text{ kg/hr} \\
\text{Exhaust molasses} & \quad = \frac{1,240}{0.93} = 1,340 \text{ kg/hr} \\
\text{Total molasses} & \quad = 5,690 \text{ kg/hr}
\end{align*}
\]

Assume: Specific heat of molasses: 0.58
Specific heat of liquid: 1.00
Steam at 3.5 kg/cm² gage pressure, temperature 147 degrees C, has a latent heat of 507 k-cal/kg. Therefore,

\[
\text{steam consumption} = \frac{5,690 \times 0.58 (70 - 40)}{507 + 1.0 (147 - 70)} = 170 \text{ kg/hr}
\]

(4) Centrifugals

Using 40-inch by 20-inch centrifugals each served by a steam pipe of 3/4-inch diameter, the steam consumption per second for washing is calculated as follows:

\[
W = 199 A_t \sqrt{\frac{P}{V}}
\]

where \(A_t = 0.000345 \text{ m}^2 \), \(P = 5 \text{ kg/hr} \), and \(V = 0.38 \text{ cu m/kg} \). Therefore, \(W = 199 \times 0.000345 \times \sqrt{\frac{5}{0.38}} = 0.25 \text{ kg/sec}, \text{ or } 15 \text{ kg/min} \).

In the defecation factory, steam is introduced into A sugar and B sugar only two minutes. Steam consumption in centrifugals is as shown in Table 6.
Table 6. Steam consumption in centrifugals.

<table>
<thead>
<tr>
<th>Massecuite</th>
<th>No. of centrifugals</th>
<th>Time for introducing steam</th>
<th>Steam consumption, kg/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>A sugar</td>
<td>305</td>
<td>22</td>
<td>660</td>
</tr>
<tr>
<td>B sugar</td>
<td>300</td>
<td>10</td>
<td>300</td>
</tr>
</tbody>
</table>

Total steam consumption = 960 kg/hr

(5) Drying of Sugar

Assume steam consumption for drying sugar is 0.5 per cent of sugar produced. Because commercial sugar consists of A sugar and B sugar, the weight of sugar is calculated as follows.

\[
\text{Weight of sugar} = \frac{5,970 \times 0.60 + 2,610 \times 0.53}{0.993} = 5,000 \text{ kg/hr}
\]

Steam consumption = 5,000 x 0.005 = 25 kg/hr

4. Vacuum Pumps

The necessary horsepower for vacuum pumps in defecation process sugar factory is nearly 25 hp. Assume rate of steam consumption is 21 kg/hp-hr.

Steam consumption = 25 x 21 = 530 kg/hr

5. Steam for Reciprocating Pumps

(1) Accumulator pump: 1.5 hp
(2) Mixed juice pump: 6.5 hp
(3) Mud pump: 1.7 hp
(4) Thin juice pump: 6.6 hp
(5) Syrup pump: 1.6 hp
(6) Molasses pump: 1.0 hp
(7) Condensate pump: 4.6 hp
Total horsepower of the seven kinds of pumps is 23.5 hp but for safety, use 25 hp. Assume the rate of steam consumption is 36 kg/hp-hr.

Steam consumption = 25 x 36 = 900 kg/hr

6. Power House

Assume necessary power per ton of cane is 7.5 kwhr per ton of cane in the defection process sugar factory, and the rate of steam consumption for driving the generator is 20 kg/kwhr.

Power consumption = 41.6 x 7.5 = 312 kw; use 320 kw

Steam consumption = 320 x 20 = 6,400 kg/hr

B. Heat Balance of Steam

(1) Boiler Heat Balance

<table>
<thead>
<tr>
<th>%</th>
<th>Output k-cal/hr</th>
<th>Input k-cal/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,620 kg/hr Bagasse, Heating value: 2,500 k-cal/kg</td>
<td>21,553,620</td>
<td></td>
</tr>
<tr>
<td>23,090 kg/hr Feed water, Temp 85° C</td>
<td>1,962,650</td>
<td></td>
</tr>
<tr>
<td>23,090 kg/hr Live steam, 8 kg/cm(^2), 662 k-cal/kg</td>
<td>65 15,285,580</td>
<td></td>
</tr>
<tr>
<td>Loss in combustion, radiation, stack, and others</td>
<td>35 8,230,690</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100 23,516,270</td>
<td>23,516,270</td>
</tr>
</tbody>
</table>

(2) Heat Balance of Live Steam System

<table>
<thead>
<tr>
<th>Output k-cal/hr</th>
<th>Input k-cal/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>23,090 kg/hr Live steam, 8 kg/cm(^2), 662 k-cal/kg</td>
<td>15,285,580</td>
</tr>
<tr>
<td>Mill steam engine, heat converted to work, 566 hp</td>
<td>362,810</td>
</tr>
<tr>
<td>Mill steam engine, condensation and other losses</td>
<td>544,220</td>
</tr>
<tr>
<td>Cane carrier steam engine, heat converted to work, 15 hp</td>
<td>9,610</td>
</tr>
<tr>
<td>Cane carrier steam engine, condensation and other losses</td>
<td>28,840</td>
</tr>
<tr>
<td>Vacuum pump, heat converted to work, 25 hp</td>
<td>16,000</td>
</tr>
</tbody>
</table>
Vacuum pump, condensation and other losses
Reciprocating steam pump, heat converted to work, 25 hp
Reciprocating steam pump, condensation and other losses
Power generating, heat converted to work, 320 kw
Power generating, condensation and other loss
13,658 kg/hr Exhaust steam
0.4 kg/cm², 643 k-cal/kg
Vacuum pans, 430 kg/hr
Heating of molasses, 170 kg/hr
Centrifugals, 960 kg/hr
Drying, 25 kg/hr
Steam for boiling, 5,112 kg/hr
Radiation and other loss, 673 kg/hr

<table>
<thead>
<tr>
<th>Output k-cal/hr</th>
<th>Input k-cal/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>48,000</td>
<td></td>
</tr>
<tr>
<td>16,000</td>
<td></td>
</tr>
<tr>
<td>48,000</td>
<td></td>
</tr>
<tr>
<td>275,520</td>
<td></td>
</tr>
<tr>
<td>275,520</td>
<td></td>
</tr>
<tr>
<td>8,782,120</td>
<td></td>
</tr>
<tr>
<td>8,782,120</td>
<td></td>
</tr>
<tr>
<td>284,660</td>
<td></td>
</tr>
<tr>
<td>112,540</td>
<td></td>
</tr>
<tr>
<td>635,520</td>
<td></td>
</tr>
<tr>
<td>16,550</td>
<td></td>
</tr>
<tr>
<td>3,384,140</td>
<td></td>
</tr>
<tr>
<td>445,530</td>
<td></td>
</tr>
<tr>
<td>15,285,580</td>
<td>15,285,580</td>
</tr>
</tbody>
</table>

(3) Heat Balance of Exhaust Steam System

<table>
<thead>
<tr>
<th>Output k-cal/hr</th>
<th>Input k-cal/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,658 kg/hr Exhaust steam, 0.4 kg/cm², 643 k-cal/kg</td>
<td>8,782,120</td>
</tr>
<tr>
<td>Juice heating, 4,220 kg/hr</td>
<td>2,713,470</td>
</tr>
<tr>
<td>Evaporating, 8,450 kg/hr</td>
<td>5,433,360</td>
</tr>
<tr>
<td>Boiling, 988 kg/hr</td>
<td>635,290</td>
</tr>
<tr>
<td>Total</td>
<td>8,782,120</td>
</tr>
<tr>
<td></td>
<td>8,782,120</td>
</tr>
</tbody>
</table>

C. Distribution of Steam Consumption

Based on calculation of steam consumption and heat balance of steam, necessary steam required in each part of the defecation process sugar factory is as shown in Table 7.
Table 7. Steam consumption in the defecation process.

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Steam consumption: kg/hr</th>
<th>Steam consumption: lb/hr</th>
<th>% of total</th>
<th>lb steam per lb of cane in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill steam engine</td>
<td>1,190</td>
<td>2,618</td>
<td>5.15</td>
<td>2.86</td>
</tr>
<tr>
<td>Cane carrier steam engine</td>
<td>40</td>
<td>88</td>
<td>0.17</td>
<td>0.10</td>
</tr>
<tr>
<td>Vacuum pumps</td>
<td>87</td>
<td>191</td>
<td>0.37</td>
<td>0.21</td>
</tr>
<tr>
<td>Reciprocating steam engine</td>
<td>75</td>
<td>165</td>
<td>0.33</td>
<td>0.18</td>
</tr>
<tr>
<td>Generator mover</td>
<td>670</td>
<td>1,474</td>
<td>2.90</td>
<td>1.61</td>
</tr>
<tr>
<td>Heating of molasses</td>
<td>170</td>
<td>374</td>
<td>0.74</td>
<td>0.41</td>
</tr>
<tr>
<td>Vacuum pans</td>
<td>430</td>
<td>946</td>
<td>1.86</td>
<td>1.03</td>
</tr>
<tr>
<td>Centrifugals</td>
<td>960</td>
<td>2,112</td>
<td>4.16</td>
<td>2.31</td>
</tr>
<tr>
<td>Drying</td>
<td>25</td>
<td>55</td>
<td>0.11</td>
<td>0.06</td>
</tr>
<tr>
<td>Heating</td>
<td>4,220</td>
<td>9,284</td>
<td>18.22</td>
<td>10.14</td>
</tr>
<tr>
<td>Evaporating</td>
<td>8,450</td>
<td>18,590</td>
<td>36.60</td>
<td>20.51</td>
</tr>
<tr>
<td>Boiling</td>
<td>6,100</td>
<td>13,420</td>
<td>26.42</td>
<td>14.66</td>
</tr>
<tr>
<td>Radiation and other loss</td>
<td>673</td>
<td>1,461</td>
<td>2.91</td>
<td>1.62</td>
</tr>
<tr>
<td>Total</td>
<td>23,090</td>
<td>50,798</td>
<td>100.00</td>
<td>55.50</td>
</tr>
</tbody>
</table>

In summary, steam and power requirements in the defecation process of a sugar factory with the grinding capacity of 1,000 tons per day are:

Steam consumption = 23,090 kg/hr, or 50,798 lb/hr

Power consumption = 320 kw

Carbonation Process

Using the same procedure of calculation as in the defecation process, the heat balance of a typical Formosan sugar factory with the carbonation process is determined.

The distribution of steam consumption is shown in Table 8.
Table 8. Steam consumption in the carbonation process.

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Steam consumption</th>
<th>% of total</th>
<th>lb steam per lb of cane in %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/hr</td>
<td>lb/hr</td>
<td></td>
</tr>
<tr>
<td>Mill steam engine</td>
<td>1,190</td>
<td>2,618</td>
<td>4.44</td>
</tr>
<tr>
<td>Cane carrier steam engine</td>
<td>40</td>
<td>88</td>
<td>0.15</td>
</tr>
<tr>
<td>CO2 pump and vacuum pump</td>
<td>220</td>
<td>484</td>
<td>0.82</td>
</tr>
<tr>
<td>Reciprocating steam engine</td>
<td>100</td>
<td>220</td>
<td>0.37</td>
</tr>
<tr>
<td>Electric power</td>
<td>750</td>
<td>1,650</td>
<td>2.79</td>
</tr>
<tr>
<td>Filter press</td>
<td>540</td>
<td>1,188</td>
<td>2.01</td>
</tr>
<tr>
<td>Vacuum pan</td>
<td>565</td>
<td>1,243</td>
<td>2.11</td>
</tr>
<tr>
<td>Heating of molasses</td>
<td>215</td>
<td>473</td>
<td>0.80</td>
</tr>
<tr>
<td>Centrifugals</td>
<td>1,500</td>
<td>3,300</td>
<td>5.59</td>
</tr>
<tr>
<td>Drying</td>
<td>30</td>
<td>66</td>
<td>0.11</td>
</tr>
<tr>
<td>Juice heating</td>
<td>4,840</td>
<td>10,648</td>
<td>18.04</td>
</tr>
<tr>
<td>Evaporating</td>
<td>9,330</td>
<td>20,536</td>
<td>34.78</td>
</tr>
<tr>
<td>Boiling</td>
<td>6,760</td>
<td>14,372</td>
<td>25.20</td>
</tr>
<tr>
<td>Radiation and other loss</td>
<td>750</td>
<td>1,650</td>
<td>2.79</td>
</tr>
<tr>
<td>Total</td>
<td>26,830</td>
<td>59,026</td>
<td>100.00</td>
</tr>
</tbody>
</table>

In summary, steam and power requirements in the carbonation process of a sugar factory with the grinding capacity of 1,000 tons of cane per day are:

Steam consumption = 26,830 kg/hr, or 59,026 lb/hr

Power consumption = 360 kw

Comparison of steam consumption and power consumption between the defecation process and the carbonation process, each with a grinding capacity of 1,000 tons of cane per day, is shown in Table 9.

From Table 9, the steam consumption and power consumption in the carbonation process are higher by 16.2 per cent and 12.5 per cent respectively than in the defecation process. However, the carbonation process produces better sugar than the defecation-
Table 9. Comparison of steam consumption between the defecation and carbonation process.

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Defecation</th>
<th>Carbonation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam consumption</td>
<td>23,090 kg/hr or</td>
<td>26,830 kg/hr or</td>
</tr>
<tr>
<td></td>
<td>50,798 lb/hr</td>
<td>59,026 lb/hr</td>
</tr>
<tr>
<td>1 lb steam per 1 lb cane in %</td>
<td>55.5%</td>
<td>64.5%</td>
</tr>
<tr>
<td>Bagasse consumption</td>
<td>8,620 kg/hr or</td>
<td>10,018 kg/hr or</td>
</tr>
<tr>
<td></td>
<td>18,964 lb/hr</td>
<td>22,040 lb/hr</td>
</tr>
<tr>
<td>1 lb bagasse per 1 lb cane in %</td>
<td>20.72%</td>
<td>24.08%</td>
</tr>
<tr>
<td>Power consumption</td>
<td>320 kw</td>
<td>360 kw</td>
</tr>
<tr>
<td>Power per ton of cane</td>
<td>7.5 kwhr</td>
<td>8.5 kwhr</td>
</tr>
</tbody>
</table>

The carbonation process produces B White Crystal sugar (BWC) with pol. 99.5 and moisture less than 0.20 per cent, while the defecation process produces Superior White Crystal sugar (SWC) with pol. 98.5 and moisture less than 0.5 per cent.

CALCULATION OF HEAT BALANCE BASED ON AN EXAMPLE OF ACTUAL OPERATING DATA OF A FORMOSAN SUGAR FACTORY

The heat balance of the Huwei first factory of Huwei district sugar factory, Formosa, in 1953-1954 crop is shown in the following. The factory uses the defecation process. The heat balance is based on the actual operating data of the Huwei first factory.

This factory has two independent line assemblies of grinding mill equipment, designated A tandem and B tandem in Fig. 5, and a total grinding capacity of 3,200 tons of cane per day. The flow sheet for the defecation process is shown in Fig. 5. The actual operating data are given in the following.
Fig. 5. Flow sheet of process for defecation in the Huwei First Factory of the Taiwan Sugar Corporation.
Actual Operating Data

1. Grinding quantity
 Through 1953-1954 crop = 323,396,970 kg/period
 Each day = 3,121,464 kg/day
 Polarization (sugar content) of cane = 13.17 per cent
 Cane fiber = 12.82 per cent

2. Bagasse
 Weight % cane = 22.59%; pol. of bagasse = 1.79% of bagasse
 Moisture = 40.92% of bagasse

3. Mixed juice = weight % cane = 102.03 per cent

4. Cake
 Weight % cane = 2.92%; pol. of cake = 2.17% of cake

5. Density and purity of juices

<table>
<thead>
<tr>
<th>Juices</th>
<th>Brix</th>
<th>Pol. (%)</th>
<th>Purity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed juice</td>
<td>15.33</td>
<td>13.14</td>
<td>85.71</td>
</tr>
<tr>
<td>Clarified juice</td>
<td>15.02</td>
<td>13.17</td>
<td>87.68</td>
</tr>
<tr>
<td>Filtered juice</td>
<td>11.34</td>
<td>9.36</td>
<td>82.54</td>
</tr>
<tr>
<td>Mixed clarified juice</td>
<td>14.83</td>
<td>12.91</td>
<td>87.02</td>
</tr>
<tr>
<td>Raw sugar syrup</td>
<td>58.42</td>
<td>46.08</td>
<td>87.00</td>
</tr>
</tbody>
</table>

6. Temperature of juices

<table>
<thead>
<tr>
<th>Vapor heater</th>
<th>Brix</th>
<th>Pol. (%)</th>
<th>Purity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet</td>
<td>15.33</td>
<td>13.14</td>
<td>85.71</td>
</tr>
<tr>
<td>Outlet</td>
<td>14.83</td>
<td>12.91</td>
<td>87.02</td>
</tr>
</tbody>
</table>

7. Conditions at each evaporator

<table>
<thead>
<tr>
<th>Evaporator</th>
<th>Vacuum (inches)</th>
<th>Steam or vapor temp. (°F)</th>
<th>Latent heat (Btu/lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.0</td>
<td>212.0</td>
<td>970.0</td>
</tr>
<tr>
<td>II</td>
<td>5.0</td>
<td>202.2</td>
<td>976.2</td>
</tr>
<tr>
<td>III</td>
<td>15.0</td>
<td>177.03</td>
<td>991.3</td>
</tr>
<tr>
<td>IV</td>
<td>20.0</td>
<td>161.49</td>
<td>1,001.4</td>
</tr>
<tr>
<td>Last juice</td>
<td>26.6</td>
<td>120.6</td>
<td>1,024.0</td>
</tr>
</tbody>
</table>
8. Conditions in each boiling

<table>
<thead>
<tr>
<th>Steps of boiling</th>
<th>Sugar</th>
<th>Massecuite</th>
<th>Molasses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water %</td>
<td>Purity %</td>
<td>Brix</td>
</tr>
<tr>
<td>1st step</td>
<td>0.57</td>
<td>97.35</td>
<td>95.0</td>
</tr>
<tr>
<td>2nd step</td>
<td>5.0</td>
<td>81.0</td>
<td>99.6</td>
</tr>
</tbody>
</table>

Using the same procedure of calculation as in the previous calculation, the heat balance of heaters, evaporators, and vacuum pans was determined.

The heat balance of the boilers is shown in the following:

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Quantity for firing, kg/period</th>
<th>Heating value k-cal/kg</th>
<th>Heating value k-cal/period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagasse</td>
<td>64,053,296</td>
<td>2,710²</td>
<td>173,584,432,160</td>
</tr>
<tr>
<td>Coal</td>
<td>--</td>
<td>4,500</td>
<td>--</td>
</tr>
<tr>
<td>Wood</td>
<td>25,000</td>
<td>2,500</td>
<td>62,500,000</td>
</tr>
<tr>
<td>Total</td>
<td>64,078,296</td>
<td></td>
<td>173,646,932,160</td>
</tr>
</tbody>
</table>

Heating value of bagasse fired per ton of cane =

\[\frac{173,646,932,160}{323,396.97} = 537,256 \text{ k-cal/ton of cane} \]

\[= 537,256 \times 3.968^3 = 2,131,832 \text{ Btu/ton of cane} \]

1 This factory produces raw sugar with pol. 96.70 and moisture 0.57% in order to export for refining, and uses the two-vacuum-pan system.

2 According to the empirical formula for the heating value of bagasse employed by the former Japanese Taiwan Sugar Mfg. Co. (8). Thus heating value of bagasse = 4,666 (1 - moisture of bagasse) = 4,666 (1 - 0.4092) = 2,710 k-cal/kg.

3 1 k-cal = 3.968 Btu.
Actual use of feed water measured by flowmeter

<table>
<thead>
<tr>
<th>Average number of boilers in use</th>
<th>Steam evaporation ton/hr per boiler</th>
<th>Feed water flow rate ton/hr</th>
<th>Feed water flow rate ton/ton of cane/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-600 Tsunekichi Boiler</td>
<td>1.5</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>L-600 Takuma Boiler</td>
<td>3</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>B & W boiler</td>
<td>2</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H-600 boiler = 325 psig, 625°F, temp. of feed water = 95°C = 203°F

Temp. of furnace = 1325°F

Heat absorbed by the boiler =

\[0.208 \times 2,200 \times (1,325 - (203 - 32)) = 529,000 \text{ Btu/ton of cane}\]

L-600 boiler = 120 psig, 341.25°F, temp. of feed water = 95°C = 203°F

Temp. of furnace = 1,190°F

Heat absorbed by the boiler =

\[0.208 \times 2,200 \times (1,190 - (203 - 32)) = 466,000 \text{ Btu/ton of cane}\]

B & W boiler = 120 psig, 341.25°F, temp. of feed water = 95°C = 203°F

Temp. of furnace = 1,190°F

Heat absorbed by the boiler =

\[0.123 \times 2,200 \times (1,190 - (203 - 32)) = 276,000 \text{ Btu/ton of cane}\]

Total heat absorbed by the boilers = 1,271,000 Btu/ton of cane

Boiler efficiency = 1,271,000/2,131,832 = 0.60 = 60%

The heating value of the steam for the turbo-generator was calculated as follows.

Steam at 300 psig, 625°F, enthalpy = 1,327.4 Btu/lb
Steam after isentropic expansion to 10 psig, 240°F, enthalpy = 1,141.4 Btu/lb

Assume over-all engine efficiency is 60 per cent.

Steam consumption = \(\frac{3,413}{0.60} \times (1,327.4 - 1,141.4) = 30.6\) lb/kwhr

Power consumption per ton of cane during 1953-1954 crop = 9.21 kwhr

Power supply to second factory = 3.54 kwhr

Power sold to Taiwan Electric Company = 1.63 kwhr

Total = 14.38 kwhr

Enthalpy of steam = 30.6 \times 14.38 \times 1,327.4 = 583,000 Btu/ton of cane

Equivalent heating value of power used = 3,412 \times 14.38 = 49,200 Btu/ton of cane

Enthalpy of exhaust steam = 30.6 \times 14.38 \times 1,141.4 = 50,200 Btu/ton of cane

The distribution of the live steam and the exhaust steam is shown in Table 10 and Table 11, respectively.

Table 10. Distribution of enthalpy of live steam.

<table>
<thead>
<tr>
<th>Enthalpy consumption at</th>
<th>Enthalpies</th>
<th>Per cent of total enthalpy consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbo-generator</td>
<td>583,000</td>
<td>39.6</td>
</tr>
<tr>
<td>Mill engine and pump</td>
<td>726,000</td>
<td>49.4</td>
</tr>
<tr>
<td>Boiling</td>
<td>105,167</td>
<td>7.2</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>56,843</td>
<td>3.8</td>
</tr>
<tr>
<td>Total</td>
<td>1,471,000</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Table 11. Distribution of enthalpy of exhaust steam.

<table>
<thead>
<tr>
<th>Entalpy consumption at</th>
<th>Enthalpies : Btu/ton of cane</th>
<th>Per cent of total enthalpy consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st juice heater</td>
<td>127,000</td>
<td>12.3</td>
</tr>
<tr>
<td>2nd juice heater</td>
<td>191,564</td>
<td>18.5</td>
</tr>
<tr>
<td>Evaporator</td>
<td>483,000</td>
<td>46.8</td>
</tr>
<tr>
<td>Boiling</td>
<td>220,843</td>
<td>21.4</td>
</tr>
<tr>
<td>Heat loss</td>
<td>10,000</td>
<td>1.0</td>
</tr>
<tr>
<td>Total</td>
<td>1,032.407</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Work of turbo-generator = 49,200 Btu/ton of cane

Work of mill engine and pump = 78,000 Btu/ton of cane

Therefore, heat loss from live steam is

\[1,471,000 - 49,200 - 78,000 - 1,032,407 = 311,400\ Btu/\text{ton of cane}\]

DESIGN OF A PLANT LAYOUT FOR THE DEFEICATION PROCESS WITH GRINDING CAPACITY OF 1,000 METRIC TONS PER DAY

The plant was designed, based on the previous "Calculation of the Steam Consumption and its Heat Balance for the Defecation Process," (Fig. 6). The plant consists of three floors, e.g., first, second, and third floors. These drawings are self-explanatory and represent the very careful planning as to location and arrangement of all equipment.

THE SUGAR INDUSTRY AND ITS BY-PRODUCTS

The problem of the disposition and the utilization of waste materials is one of the major functions of the Sugar Experiment Station. The sugar industry, in common with most heavy industries,
Fig. 6, part 1 and part 2.
Fig. 6. Plant layout in defecation process with grinding capacity of 1,000 metric tons of cane per day.
Note:
Box A indicates floor A; B is floor 2.
1-2 indicates floor 1 from floor 2.

Fig. 6. Plan layout in deflection process with grinding capacity of 1,000 metric tons of cane per day.
is beset with large volumes of effluents and waste materials. The disposition of these wastes presented no particular difficulty in the past. They were simply dumped on adjacent land or discharged directly into nearby streams. The slogan "by-products instead of waste products" is heard throughout the industry (Van Hook, 9). The discovery of by-products is an important part of the research program of the Sugar Experiment Station. Uses made of products that once were waste products are listed below.

1. Bagasse
 a. Fuel for firing the boilers
 b. Raw material for manufacturing paper pulp
 c. Raw material for manufacturing celotex-type bagasse-board and structural bagasse-board

2. Molasses
 a. Raw material for manufacturing alcohol and other chemicals
 b. Raw material for manufacturing yeast
 c. Raw material for manufacturing feed yeast for pigs and chickens

3. Cake
 a. Used as fertilizer for the farms.

The distribution of the products from cane is shown in Table 12 and Fig. 7. These data are derived from the previous calculations on the defecation process sugar factory.
Table 12. Distribution of products from cane, 41,600 kg of cane per hour

<table>
<thead>
<tr>
<th>Product</th>
<th>Quantity (kg/hr)</th>
<th>Per cent cane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar</td>
<td>5,000</td>
<td>12.0</td>
</tr>
<tr>
<td>Bagasse</td>
<td>9,600</td>
<td>23.0</td>
</tr>
<tr>
<td>Molasses</td>
<td>1,340</td>
<td>3.2</td>
</tr>
<tr>
<td>Cake</td>
<td>1,040</td>
<td>2.5</td>
</tr>
<tr>
<td>Impurities</td>
<td>620</td>
<td>1.5</td>
</tr>
<tr>
<td>Moisture</td>
<td>24,000</td>
<td>57.8</td>
</tr>
<tr>
<td>Total</td>
<td>41,600</td>
<td>100.0</td>
</tr>
</tbody>
</table>

STUDY OF A POWER PLANT FOR A SUGAR FACTORY WITH A GRINDING CAPACITY OF 2,000 TONS OF CANE PER DAY

Introduction

From Table 7 the following data were obtained for 1,000 tons per day grinding capacity, and the heat balance diagram is as shown in Fig. 8.

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Net steam consumption</th>
<th>Live steam supplied</th>
<th>Exhaust steam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/hr</td>
<td>lb/hr</td>
<td>kg/hr</td>
</tr>
<tr>
<td>Mill steam engine</td>
<td>1,190</td>
<td>2,618</td>
<td>7,350</td>
</tr>
<tr>
<td>Cane carrier steam engine</td>
<td>40</td>
<td>88</td>
<td>540</td>
</tr>
<tr>
<td>Vacuum pumps</td>
<td>87</td>
<td>191.4</td>
<td>530</td>
</tr>
<tr>
<td>Reciprocating steam pumps</td>
<td>75</td>
<td>165</td>
<td>900</td>
</tr>
<tr>
<td>Generator prime mover</td>
<td>670</td>
<td>1,474</td>
<td>6,400</td>
</tr>
<tr>
<td>Heating of molasses</td>
<td>170</td>
<td>374</td>
<td></td>
</tr>
<tr>
<td>Vacuum pans</td>
<td>430</td>
<td>946</td>
<td></td>
</tr>
<tr>
<td>Centrifugals</td>
<td>960</td>
<td>2,112</td>
<td></td>
</tr>
<tr>
<td>Drying</td>
<td>25</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Heating</td>
<td>4,220</td>
<td>9,284</td>
<td></td>
</tr>
<tr>
<td>Evaporating</td>
<td>8,450</td>
<td>18,590</td>
<td></td>
</tr>
<tr>
<td>Boiling</td>
<td>6,100</td>
<td>13,420</td>
<td></td>
</tr>
<tr>
<td>Radiation and other loss</td>
<td>673</td>
<td>1,480.6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23,090</td>
<td>50,798.0</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 7 Distribution of products from cane
Fig. 8Heat balance of defecation process sugar factory (1,000 tons of cane per day)
For 1,000 tons of cane per day, the steam consumption is calculated as 23,090 kg/hr and is very close to the actual operating value of 22,600 kg/hr for 1,000 tons of cane per day in the Huwei First Factory of the Taiwan Sugar Corporation. Therefore the data of Table 7 were used as the basis for calculations.

It is found that power plants for the sugar industry differ little from power plants for any other industry. There are three factors to be considered in sugar industry power plants.

1. The sugar industry offers a relatively new field for the application of the steam turbine drive; that is, in the sugar factory the steam turbine can be used not only as a direct prime mover for the sugar mills themselves but also for the shredders and cane knife sets. For the mill drives, the steam turbine compares favorably with any form of electric drive because of its lower cost, its better operating characteristics, and its fewer complications. The turbine can also effect a saving in maintenance cost for various reasons. One is the absence of oil in the exhaust steam, thereby saving in time needed for cleaning of the boiler, evaporator, and juice heater tubes. Another advantage worth mentioning is the fact that the turbines have an automatic forced free lubrication system, and therefore do not require the constant attention of an operator to oil cups and lubricators, as would be normally required in the case of reciprocating engine types of drive.
2. A sugar refinery, because of its requirement for low-pressure steam in refining processes, provides an opportunity for the generation of by-product power. This may be accomplished by delivering boiler steam to turbo-generators and extracting all or some of this steam at low pressure for use in the refinery.

3. A problem is often present due to the sugar contamination of condensate returns to boilers from the refinery. The presence of sugar in the boiler water causes priming and carry-over to the turbines. Aside from the physical deposits of sugar, an acid is formed in the boiler tubes which is highly corrosive. Therefore feed-water treatment is very important.

Steam Turbine Drive for Mills

Because the application of steam turbines to drive mills is new, there have been very little data published on this subject. Schmertz (3) had an opportunity to observe and study a number of installations in Louisiana and has developed the following data which will be of help to the owner or engineer who is contemplating the installation of turbines.
Table 13. Steam consumption for mill turbine.

<table>
<thead>
<tr>
<th>Names of factories</th>
<th>Tons cane</th>
<th>Width of mills: per 24 hrs (inches)</th>
<th>Hp/ton of fiber/hr/mill: average</th>
<th>Hp/ton of fiber/hr/mill: peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Westfield-1st & 2nd mills</td>
<td>2,330</td>
<td>72</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Westfield-3rd & 4th mills</td>
<td>2,330</td>
<td>72</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Lula 4th mill</td>
<td>2,100</td>
<td>60</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>Greenwood-1st & 2nd mills</td>
<td>2,400</td>
<td>72</td>
<td>18</td>
<td>--</td>
</tr>
<tr>
<td>Evan Hall 4th mill</td>
<td>3,800</td>
<td>78</td>
<td>17</td>
<td>--</td>
</tr>
<tr>
<td>Evan Hall 5th mill</td>
<td>3,800</td>
<td>78</td>
<td>19</td>
<td>--</td>
</tr>
</tbody>
</table>

Note: For all four factories, fiber content average at 15 per cent, maceration 18-19 per cent, roll speed about 50 feet per minute, extracted sucrose 91 to 92 per cent.

After careful consideration of the above data, Schmertz concluded that turbine capacity should be selected on the basis of 24 horsepower per ton of fiber per hour per mill for the future maximum conditions.

Mechanical drive turbines are made in two types. One is the single-stage, as usually used for pump or cane knife drives, and the other is the multistage type which is usually used for mill drives. The steam consumption and the water rates of single-stage (25- to 28-inch wheels) and multistage (28-inch wheels) for 400-hp turbines operating at 3,600 rpm with 125 psig initial pressure, dry and saturated, and 10 psig exhaust pressure, as found by Schmertz, are shown in Table 14.
Table 14. Steam consumption for mechanical-drive turbine.

<table>
<thead>
<tr>
<th>Type of turbine</th>
<th>Water rate (\text{lb steam per hp-hr})</th>
<th>Total steam flow (\text{lb steam per hr})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single stage</td>
<td>40</td>
<td>16,000</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>12,000</td>
</tr>
<tr>
<td>Multistage</td>
<td>32</td>
<td>12,800</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>9,120</td>
</tr>
</tbody>
</table>

The steam consumption of the multistage turbine is about the same as that of Corliss engines, even at part load, while the steam consumption of the single-stage turbine is higher. Therefore the use of multistage turbines for mill drives is strongly recommended. Furthermore, the multistage turbine steam consumption is as good as that of the Corliss engine, even at an initial pressure as low as 85 or 95 psig.

Based on the foregoing:

Horsepower required for crusher = 18 hp/ton of cane fiber/hr
Horsepower required for mill = 24 hp/ton of cane fiber/hr
Horsepower for crusher = \(2,000 \times 0.128 \times 16/24 = 192 \) hp
Horsepower for mill = \(2,000 \times 0.128 \times 24 \times 4 = 1026 \) hp
Total hp = 192 + 1,026 = 1,218 hp

Employing three sets of 400-horsepower mechanical drive multistage turbines with initial pressure 125 psig, exhaust pressure 10 psig, the average load = \(400 \times 3 \times 0.6 = 720 \) hp. Therefore, total average steam consumption = \(38 \times 720 = 27,360 \text{ lb/hr} \).

By-product Power

Early in 1947, Farrar (10) mentioned that paper mills, pulp
mills, sugar mills, and textile finishing plants are good examples of industries that use large amounts of steam in their cookers, digesters, and driers, as well as for space heating. It is usually found that by-product power can be generated at a cost lower than the purchase price of power from a utility.

Table 15 shows the distribution of the live steam and the exhaust steam for a grinding capacity of 2,000 tons of cane per day using the defecation process.

Table 15. Steam consumption.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Net steam lb/hr at 125 psig</th>
<th>Live steam lb/hr at 125 psig</th>
<th>Exhaust steam lb/hr at 10 psig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill steam engine, 1,200 hp</td>
<td>5,236</td>
<td>32,340</td>
<td>27,104</td>
</tr>
<tr>
<td>Cane carrier steam engine, 30 hp</td>
<td>176</td>
<td>2,376</td>
<td>2,200</td>
</tr>
<tr>
<td>Vacuum pump, 50 hp</td>
<td>382</td>
<td>2,332</td>
<td>1,950</td>
</tr>
<tr>
<td>Reciprocating steam pump, 50 hp</td>
<td>330</td>
<td>3,960</td>
<td>3,630</td>
</tr>
<tr>
<td>Generator prime mover, 320 kw</td>
<td>2,948</td>
<td>28,160</td>
<td>25,212</td>
</tr>
<tr>
<td>Heating of molasses</td>
<td>748</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum pan</td>
<td>1,892</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrifugal</td>
<td>4,224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drying</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating</td>
<td>18,568</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaporating</td>
<td>37,180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiling</td>
<td>26,840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation and other loss</td>
<td>2,960</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>101,600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use of exhaust steam at 10 psig is as follows:

- Juice heating: 18,568
- Evaporating: 37,180
- Boiling: 4,347

Total: 60,095 lb/hr
From "Water Rates of Steam Turbines in Sizes from 500 kw to 7,500 kw," by Helander (1), the over-all engine efficiencies of 1,500-kw, 3,000-kw, and 6,000-kw turbines at 600 psig, 750 degrees F, and 1 psia exhaust pressure, and a 1,500-kw turbine at 300 psig, 625 degrees F, and 1 psia exhaust pressure, were found to be 66.8 per cent, 71.4 per cent, 75.1 per cent, and 69 per cent, respectively.

Using 600-psig, 750-degree F steam for a 1,500-kw, a 3,000-kw, and a 6,000-kw turbine, and 300-psig, 625-degree F steam for a 1,500-kw turbine, steam consumptions were calculated as follows.

For reversible adiabatic expansion, steam conditions at the turbine are shown in the following figure.

\[
\begin{align*}
W_f &= \text{steam flow} \\
&= 600 \text{ psig} \\
&= 750^\circ F
\end{align*}
\]

\[
\begin{align*}
h &= \text{enthalpy, Btu/lb} \\
l \text{psia} &= 899 \\
(1) &= 1,379 \\
(2) &= 1,086 \\
125 \text{ psig} &= h = 1,220 \\
10 \text{ psig} &= h = 899
\end{align*}
\]

For the actual turbines, using the approximate over-all engine efficiencies given above, the following steam requirements were calculated.

(1) 3,000-kw straight condensing turbine:

\[
\begin{align*}
W_f &= 600 \text{ psig} \\
&= h = 1,379 \\
&= 1 \text{ psia} \\
&= h = 1,019
\end{align*}
\]

\[
h = 1,379 - 0.714(1,379 - 899)/(0.97 \times 0.98) = 1,019
\]
Throttle flow, \(W_f = \frac{3,000 \times 3,413}{0.714(1379 - 899)} \times \frac{3,000 \times 3,413}{1,379 - 1,036} = 30,000 \text{ lb/hr} \)

(2) 1,500-kw noncondensing turbine

Assume generator efficiency is 97 per cent and turbine mechanical efficiency is 98 per cent. Then

\[
\text{average internal efficiency} = \frac{66.8}{0.97 \times 0.98} = 70\%
\]

For estimating performance of noncondensing turbine, 67 per cent was used.

\[
W_f(1,379 - 1,272) = \frac{1,500 \times 3,413}{0.97 \times 0.98} = 5,383,280
\]

Therefore \(W_f = 50,300 \text{ lb/hr} \)

(3) 3,000-kw noncondensing, single extraction turbine

27,360 pounds of steam per hour were to be extracted at 125 psig for the mill turbines.

\[
\text{Average internal efficiency} = \frac{71.4}{0.97 \times 0.98} = 75\%
\]

For estimating the performance of the extraction turbine, 73 per cent was used.
\[h_1 = 1,379 - 0.73(1,379 - 1,220) = 1,263 \\
\[h_2 = 1,379 - 0.73(1,379 - 1,086) = 1,165 \\
Work done, throttle to extraction point (1)
\[= W_f (1,379 - 1,263) = 116 W_f \\
Work done, extraction point (1) to exhaust pres
\[= (W_f - 27,360) \times (1,263 - 1,165) = 98 W_f - 2,681,280 \\
Total work
\[= 214 W_f - 2,681,280 \\
Total work = 214 W_f - 2,681,280 = (3,413 \times 3,000)/(0.97 \times 0.98)
\[= 10,766,560 \\
Therefore \ W_f = 13,447,840/214 = 63,000 \text{ lb/hr} \\
(4) 6,000-kw double extraction condensing turbine
27,360 pounds of steam per hour are to be extracted at 125 psig for the mill turbines, and 24,955 pounds per hour are to be extracted at 10 psig for process.
\[W_f \\
600 \text{ psig} \\
h=1,379 \\
\[125 \text{ psig} \\
h=1,257 \\
\[10 \text{ psig} \\
h=1,153 \\
1 \text{ psia} \\
h=1,009 \\
Average internal efficiency = 0.751/(0.98 \times 0.97) = 79\% \\
For estimating performance of extraction turbine, 77 per cent was used.
\[h_1 = 1,379 - 0.77 (1,379 - 1,220) = 1,257 \\
\[h_2 = 1,379 - 0.77 (1,379 - 1,086) = 1,153 \\
\[h_3 = 1,379 - 0.77 (1,379 - 399) = 1,009 \\

Work done, throttle to extraction point (1)

\[= \left(W_f - 27,360 \right) \times \left(1,257 - 1,153 \right) = 104 \ W_f - 2,845,440 \]

Work done, extraction point (1) to extraction point (2)

\[= \left(W_f - 27,360 \right) \times \left(1,153 - 1,009 \right) = 144 \ W_f - 7,533,360 \]

Total work \[= \frac{370 \ W_f - 10,378,800}{370 \ W_f} \]

Total work \[= 370 \ W_f - 10,378,800 = \frac{\left(6,000 \times 3,413 \right)}{\left(0.97 \times 0.98 \right)} \]

\[= 21,553,100 \text{ Btu/hr} \]

Therefore, throttle flow \[W_f = \frac{31,911,900}{370} = 88,200 \text{ lb/hr} \]

Without extraction, \[W_f = \frac{6,000 \times 3,413}{0.751 \times (1,379 - 899)} = 57,000 \text{ lb/hr} \]

(5) 1,500-kw noncondensing turbine

Initial pressure 300 psig, initial temperature 625° F, exhaust pressure 10 psig. For reversible adiabatic expansion, enthalpy at 10 psig is 1,105 Btu/lb.

Average internal efficiency \[= \frac{69}{\left(0.97 \times 0.98 \right)} = 71\% \]

For estimating performance of noncondensing turbine 68 per cent was used.

\[
\begin{align*}
W_f & \\
300 \text{ psig} & \hspace{1cm} 10 \text{ psig} \\
h = 1,327 & \hspace{1cm} h = 1,174 \\
& \\
1,327 - 0.68(1,327 - 1,105) & = 1,174 \\
& \\
\text{Work} & = \frac{W_f(1,327 - 1,174)}{0.97 \times 0.98} \\
& = 5,383,280 \text{ Btu/hr} \\
& \\
\text{Throttle flow} & = W_f = 35,000 \text{ lb/hr} \\
\end{align*}
\]
The calculation of the size of the condenser required is shown in the following. To determine the over-all coefficient of heat transfer for a surface condenser, it was assumed that the tubes would be 1-inch, 18-gauge Admiralty metal, the steam-side coefficient would be 2,000 Btu per hour per degree temperature difference, the scale coefficients would be 2,000 Btu per hour degree on each side, and the water-side coefficient would be 1,800 Btu per hour degree. Standard dimensions of a 1-inch condenser tube are a wall thickness of 0.049 inch and an inside diameter of 0.902 inch, the mean tube diameter is 0.951 inch, and thermal conductivity k is 63.

McAdams (12) gives the following equation to determine the over-all coefficient of heat transfer.

\[
\frac{1}{U} \frac{dA}{dA} \frac{Xw \, dA}{kw \, dA} \frac{dA}{hd \, dA} \frac{dA}{h'' \, dA''}
\]

where

- \(U \) = over-all coefficient of heat transfer
- \(kw \) = thermal conductivity for tube wall
- \(Xw \) = thickness of tube wall
- \(A \) = area of heat transfer surface; \(A'' \) on colder side;
- \(A' \) on warmer side
- \(h \) = individual coefficient between fluid and surface
- \(h' \) is based on \(A' \) and \(t' \); \(h'' \) is based on \(A'' \) and \(t'' \);
- \(hd \) is for scale

The area ratios in the above equation can be replaced by diameter ratios. On a basis of 1 square foot of outer surface, one obtains

\(U = 446 \, \text{Btu/(hr)}(\text{sq ft of outside surface})(\text{deg F}) \).
The saturated temperature in a condenser at 1 psia is 101.74°F. Temperature of cooling water was assumed to be: inlet, 70°F; outlet, 80°F.

Let \[\Delta t_m = \text{mean temperature difference} \]
\[\Delta t_m = \frac{(101.74 - 70) - (101.74 - 80)}{\ln \frac{31.74}{21.74}} = 27^\circ \]

Q is \(m(\Delta h) \), which for 3,000 kw is \(30,000 \times (1,019 - 69.7) \)
\[= 28,980,000 \text{ Btu/hr} \]

Then, using these values for the 3,000-kw straight condensing turbine, the equation \(A = \frac{Q}{U \Delta t_m} \) gives an area of 2,420 square feet of heat transfer surface of condenser. As a margin of safety, a value of 2,600 square feet was used.

For the 6,000-kw double extraction condensing turbine, \(Q \) is \(57,000 \times (1,009 - 69.7) = 53,523,000 \text{ Btu/hr} \), giving an area of 4,500 square feet of heat transfer surface for the condenser. As a margin of safety, a value of 5,000 square feet was used.

Possible Arrangements

Existing plant (Fig. 9, Existing plant).

Requirement of refinery:

- 125 psig steam, saturated: 101,600 lb/hr
- 10 psig steam: 60,100 lb/hr
- Power for refinery from plant turbine: 640 kw
- Total fuel consumption, 172,428,000 Btu/hr (at 65% boiler efficiency)

No excess by-product power generation
Fig. 9 Existing plant
Case I

Suppose that two 1,500-kw, 600-psig, 750-degree F topping turbines, plus boilers are used, turbines to exhaust 101,600 lb/hr of 125 psig steam to refinery. These turbines are used to produce by-product power. Power requirement of the refinery is still to be met by the existing two 320-kw plant turbines (Fig. 10).

Requirement of refinery:

<table>
<thead>
<tr>
<th>Description</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 psig, 750°F steam</td>
<td>101,600 lb/hr for noncondensing turbine during refinery operation</td>
</tr>
<tr>
<td>125 psig, steam exhausted from noncondensing turbine</td>
<td>101,600 lb/hr</td>
</tr>
<tr>
<td>10 psig, steam</td>
<td>60,100 lb/hr</td>
</tr>
<tr>
<td>Power for refinery from plant turbine</td>
<td>640 kw</td>
</tr>
<tr>
<td>Fuel consumption</td>
<td>164,000,000 Btu/hr for refinery and noncondensing turbine (at 75% boiler efficiency)</td>
</tr>
<tr>
<td>Power for high-pressure boiler-feed pump, fans, etc.</td>
<td>150 kw</td>
</tr>
<tr>
<td>By-product power to be sold</td>
<td>2,880 kw</td>
</tr>
<tr>
<td>Cost of high-pressure boiler, not installed</td>
<td>$437,500</td>
</tr>
<tr>
<td>Cost of turbine-generator (noncondensing), not installed</td>
<td>$180,000</td>
</tr>
</tbody>
</table>

Case II

Suppose that mill turbines and motor drives are to be used to replace steam engine drives.

To produce by-product power, suppose that one 3,000-kw noncondensing turbine, exhaust pressure 10 psig, with extraction
Fig. 10 Case I
at 125 psig is to be used to supply 27,360 lb/hr of steam to run mill turbines which are to exhaust to process at 10 psig.

Assume that new 125 psig, saturated steam boilers are to be used for supplying 32,432 lb/hr steam to process (Fig. 11).

Requirement of refinery:

- 600 psig, 750°F, steam: 63,000 lb/hr for noncondensing turbine during refinery operation
- 125 psig, steam extracted from noncondensing turbine: 27,360 lb/hr for mill turbine
- 10 psig, steam exhausted from noncondensing turbine: 34,640 lb/hr to process
- 10 psig, steam exhausted from mill turbines: 27,360 lb/hr to process
- 125 psig, saturated steam from 125 psig boilers: 32,432 lb/hr
- Power to refinery: 738 kw
- Fuel consumption of high-pressure boilers: 101,400,000 Btu/hr (at 75% boiler efficiency)
- Fuel consumption of low-pressure boilers: 44,240,000 Btu/hr (at 75% boiler efficiency)
- Total fuel consumption: 145,670,000 Btu/hr for grinding season
- Power for high-pressure-boiler-feed pump, fans, etc.: 100 kw
- Power for low-pressure-boiler-feed pump, fans, etc.: 15 kw
- By-product power to be sold: 2,147 kw during grinding season
- Cost of 600 psig boilers generating 63,000 lb/hr, not installed: $300,000
- Cost of turbine-generator (noncondensing), not installed: $185,000
Fig. II Case II
Cost of 125 psig boilers generating 32,432 lb/hr, not installed $90,000

Case III

Suppose that electric motor drives are to be used to replace all steam engine drives in the refinery.

To produce by-product power, suppose that two 300-psig, 625°F, 1,500-kw noncondensing turbines are to be employed and that these are to deliver 63,000 lb/hr steam to process at 10 psig.

Assume that new 125-psig, saturated steam boilers are to be used to supply 32,432 lb/hr steam to process (Fig. 12).

Requirement of refinery:

<table>
<thead>
<tr>
<th>Steam Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 psig, 625°F, steam</td>
<td>63,000 lb/hr for noncondensing turbines during refinery operation</td>
</tr>
<tr>
<td>125 psig, saturated steam</td>
<td>32,432 lb/hr from 125 psig boilers for process</td>
</tr>
<tr>
<td>10 psig, steam</td>
<td>60,100 lb/hr for process, exhaust from turbines</td>
</tr>
<tr>
<td>Power for refinery</td>
<td>1,633 kw</td>
</tr>
<tr>
<td>Fuel consumption</td>
<td>97,400,000 Btu/hr for high-pressure boiler (at 75% boiler efficiency)</td>
</tr>
<tr>
<td>Fuel consumption</td>
<td>44,240,000 Btu/hr for low-pressure boiler (at 75% boiler efficiency)</td>
</tr>
<tr>
<td>Total fuel consumption</td>
<td>141,640,000 Btu/hr</td>
</tr>
</tbody>
</table>

Power for high-pressure boiler-feed pump, fans, etc. 80 kw

Power for low-pressure boiler-feed pump, fans, etc. 15 kw
Cost of 600 psig boilers generating 64,000 lb/hr, not installed $230,000

Cost of turbine (noncondensing), not installed $165,000

Cost of 125 psig boilers generating 32,432 lb/hr, not installed $90,000

Estimated Value of Power to Utility

<table>
<thead>
<tr>
<th>Load factor</th>
<th>0.90</th>
<th>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel cost 13,500 Btu/kwhr at 20 cents/million Btu</td>
<td>0.27 cents</td>
<td>0.27 cents</td>
</tr>
<tr>
<td>Capital charges</td>
<td>175 x 13 x 100</td>
<td>0.22 cents</td>
</tr>
<tr>
<td></td>
<td>8760 x 0.90 (load factor)</td>
<td>0.49 cents</td>
</tr>
</tbody>
</table>

Let sale value of power be 0.25 cents/kwhr if sold as dump power during the six-months period in which the refinery operates.

Let sale value of power to utility be 0.50 cents/kwhr if sold as firm power throughout the year at 0.90 load factor.

Let sale value of power to utility be 0.70 cents/kwhr if sold to aid utility solely during period of low availability of hydroelectric power.

Case I

Assume that existing 125 psig, steam boilers must be replaced, and that fuel consumption of a new 125 psig, base boiler generating 101,600 lb/hr is 149,300,000 Btu/hr (at 75% boiler efficiency).
Estimate of cost of 600 psig, boilers $437,500

Estimate of cost of turbine (non-condensing) $180,000

Estimate of cost of 125 psig, boilers with capacity equivalent to that of 600 psig, boilers $280,000

Increment of investment over investment for 125 psig boilers $337,500

Assume by-product power is sold only during the six-months period in which the refinery operates, and the power-generating capacity of a utility is not enough to supply the demand for it.

Fuel charges against by-product power

\[
14,700,000 \times 20 \times 8760 \times 0.5 \times 0.9
\]

\[
= 1,000,000 \times 100
\]

\[
= 14,700,000 \text{ Btu/hr}
\]

\[
164,000,000 - 149,300,000
\]

\[
= 14,700,000 \text{ Btu/hr}
\]

\[
= 11,600
\]

Annual return from by-product power sold (sale value 0.7 cents/kwhr)

\[
2,880 \times 0.70 \times 8760 \times 0.5 \times 0.9
\]

\[
= 79,400
\]

Net annual return from increment of investment = $67,800

Capitalized value of annual return = $67,800/0.15 = $452,000

Capitalized value of return on investment - added cost of boilers and turbines (not installed) = $114,500

Case II

Estimate of cost of 600 psig, boilers: $300,000

Estimate of cost of turbine (non-condensing) $185,000

Estimate of cost of supplementary 125 psig, boilers $90,000

Estimate of boiler cost using only 125 psig, boilers $280,000
Increment of investment over cost of 125 psig boilers

$$\text{Fuel saved} = 149,300,000 - 145,670,000 = 3,630,000 \text{ Btu/hr}$$

$$\text{Value of fuel saved} = \frac{3,630,000 \times 20 \times 8760 \times 0.5 \times 0.9}{1,000,000 \times 100}$$

$$= \$2,900$$

Annual return from by-product power sold (sale value 0.7 cents/kwhr)

$$\frac{2,147 \times 0.70 \times 8760 \times 0.5 \times 0.9}{100} = \$59,400$$

Net annual return from increment of investment = $62,300

Capitalized value of annual return = $62,300/0.15 = $416,000

Capitalized value of return on investment - added cost of boilers and turbines (not installed) = $121,000

Case III

Estimate of cost of 300 psig, boilers $230,000

Estimate of cost of turbine (non-densing) $165,000

Estimate of cost of 125 psig, boilers $90,000

Estimate of cost of base boilers $280,000

Increment of investment over cost of 125 psig boilers $205,000

$$\text{Fuel saved} = 149,300,000 - 141,640,000 = 7,660,000 \text{ Btu/hr}$$

$$\text{Value of fuel saved} = \frac{7,660,000 \times 20 \times 8760 \times 0.5 \times 0.9}{1,000,000 \times 100}$$

$$= \$6,040$$

Annual return from by-product power sold (sale value 0.7 cents/kwhr)

$$\frac{972 \times 0.70 \times 8760 \times 0.5 \times 0.9}{100} = \$26,500$$
Net annual return from increment of investment = $32,940
Capitalized value of annual return = $32,940/0.15 = $220,000
Capitalized value of return on investment - added cost of boilers and turbines (not installed) = $15,000

CONCLUSIONS

The demand for steam in the sugar refinery is heavy and the demand for power is light. Therefore there is an opportunity to produce by-product power and sell the excess amount of power to a utility. This may be accomplished by delivering high-pressure boiler steam to turbo-generators and extracting all or some of this steam at low pressure for use in the refinery. This was not attractive in the past in Formosa due to the small demand for electricity.

Due to the rapid increase of new industries and population in Formosa, the demand for power is increasing day by day. Most of the power plants of the Taiwan Electric Company are hydro-electric power plants. For three or four months of the year, the shortage of rain causes a shortage of power-generating capacity in the Taiwan Electric Company. During these months, and for an additional two or three months, a typical Formosan refinery is capable of delivering excess by-product power and supplying this power to the Taiwan Electric Company at a rate which might prove attractive.

The heat balance of a typical Formosan sugar refinery has been worked out and used as a basis for studying three cases.
wherein by-product power is to be generated for sale to the Taiwan Electric Company.

For preliminary studies to determine the feasibility of a Formosan sugar refinery selling by-product power to a utility, the sale value of power was assumed as follows: Dump power sale value, .25 cents/kwhr; firm year-round power sale value, .50 cents/kwhr; peak load power sale value, .70 cents/kwhr.

Case I represents one means of obtaining by-product power for six months annually during the grinding season from two 1,500-kw turbo-generators. In this case, assuming that power can be sold at .70 cents/kwhr, the estimated capitalized gain for generating by-product power during the grinding season is $114,500 in excess of the increment of investment in turbines and boilers alone, that is, not including installation and other associated costs, required for the generation of salable by-product power. This increment of investment is in excess of the cost of 125-psig boilers with capacity equivalent to that of the 600-psig boiler used for generating by-product power.

In Case II, the mill steam engines are replaced by mill turbines, the steam consumption of which has been assumed less than that of the mill steam engines. Also, steam drives are replaced by electric motor drives. To produce by-product power, one 3,000-kw extraction noncondensing turbine is installed for use during the grinding season. Assuming that power can be sold for 0.7 cents per kwhr, the capitalized gain for generating by-product power during the six-months grinding season is $121,000 in excess of the increment of investment in turbines and boilers.
alone, that is, not including installation and the associated costs required for generating salable by-product power.

In Case III, electric motor drives replaced all steam drives in the refinery. For producing by-product power, two 1,500-kw noncondensing turbines were assumed to be installed. Assuming that power can be sold for 0.7 cents per kw-hr, the capitalized gain for generating by-product power during the six-months grinding season is $15,000 in excess of the increment of investment in turbines for boilers alone, that is, not including installation and the associated costs required for generating salable by-product power.

For sales values of power of .25 cents/kw-hr and .50 cents/kw-hr, the generation of by-product power for sale to a utility was found not to be economical. Further study is needed since the data presented on costs are preliminary estimates only and do not include all items of expense.

It was found economical to generate by-product power to sell to a utility only if one could assume that the utility, due to lack of water power, would need the additional capacity provided in the form of by-product power and would be willing to pay in the neighborhood of 7/10 cents per kw-hr for the power purchased by it. The coincidence of the period of refinery operation with the period of low water for hydroelectric power favored the assumption that this requirement might be satisfied.

Case II provided more efficient refinery operation due to the use of mill turbines in the place of mill steam engines. It
reduced leakage steam 4,980 lbs per hour. Insofar as the economic factors could be evaluated, this case gave the optimum cost condition. This case also provides the advantages of neatness and cleanliness obtainable with the electric motor drives and the mill turbine drives in the refinery.
ACKNOWLEDGMENT

The author hereby acknowledges with thanks the invaluable assistance received from Professor Linn Helander and Professor R. E. Crank in the preparation of this thesis.
REFERENCES

(3) Schmertz, P. "How to Select Turbines for Mill Drive." The Sugar Journal, April, May, June, 1951.

SURVEY OF FORMOSAN SUGAR REFINERY PRACTICE WITH REGARD TO THE POSSIBILITY OF PRODUCING BY-PRODUCT POWER TO SELL TO UTILITY

by

LUN JU WEI

B. S. M. E., National Taiwan University, 1950

ABSTRACT OF

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE COLLEGE OF AGRICULTURE AND APPLIED SCIENCE

1955
In the sugar refinery, if fuel is purchased, the fuel cost comprises most of the process cost. The bagasse is available as fuel in the sugar factories. In the past it was satisfactory to burn the bagasse as fuel. However, at present, the bagasse is valuable as raw material for various kinds of chemical products, such as paper pulp and bagasse-board. Therefore it is desirable to save a great amount of the bagasse, and thus the heat economy and minimum steam consumption must be considered as important considerations in plant operation.

The first step in analyzing the possibilities of improving the fuel economy of a plant is to develop what is known as a heat balance of the plant. This is simply an accounting of the disposition of the energy in the fuel burned, such that wastages may be detected and stopped.

The heat balance in the sugar refinery is the steam heat balance, and is divided into three definite parts for calculation purposes.

(a) The boiler heat balance.
(b) The heat balance of live steam consumers.
(c) The heat balance of exhaust steam consumers.

A heat balance of a typical Formosan sugar refinery has been worked out, and is presented in this thesis. The heat balance has been used as a basis for making preliminary predictions of the possibility of effecting economies in the utilization of fuel by the use of high-pressure boilers and modern steam turbines to produce electrical power as a by-product for sale to a utility.
Three different cases were studied. It was found that it may be economical to generate by-product power to sell to a utility only during the six-months grinding season.

Case II provided more efficient refinery operation due to the use of mill turbines in the place of steam engines. To produce by-product power, one 3,000-kw extraction noncondensing turbine was employed for use during the grinding season. Insofar as the economic factors could be evaluated, this case gave the optimum cost condition. This case also provided the advantages of neatness and cleanliness obtainable with the electric motor drives and the mill turbine drives in the refinery.

Due to the rapid increase of new industries and population in Formosa, the demand for power is increasing day by day, but the power generating capacity of the Taiwan Electric Company is not enough to supply the demand. Therefore there is a possibility of producing by-product power in the sugar refinery for sale to a utility.