

MODELING AND ANALYSIS OF TELEMENTAL HEALTH SYSTEMS WITH PETRI NETS

by

RYAN AESCHLIMAN

B.S. Industrial & Manufacturing Systems Engineering, Kansas State University, 2015

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2015

Approved by:

Major Professor

Dr. David Ben-Arieh

Copyright

RYAN AESCHLIMAN

2015

Abstract

Telemental health systems, a form of telemedicine, use electronic communication media

to provide patients in remote locations access to psychological and psychiatric specialists. The

structure of telemental health systems has a major impact on their performance. Discrete-event

simulations offer useful results concerning capacities and utilization of specific resources.

Simulation, however, cannot provide theoretical properties of analyzed systems. Petri net

representations of systems can overcome this shortfall, offering a wide range of easily-analyzed

and useful properties. Their ability to model resource conflict, parallel activities, and failure

modes fits nicely with the reality of telemental health systems. Analysis of behavioral properties

of Petri nets can provide meaningful information for system analysts. The most useful properties

include net boundedness, liveness, and non-reachability of certain undesirable states. The thesis

discusses methods to find all these properties. Specifically, it provides property-preserving net

reductions to facilitate analysis of boundedness and liveness and describes an integer

programming model to solve reachability and coverability problems.

Moreover, this thesis outlines a simulation analysis of synchronous and asynchronous

telemental health systems. The paper then describes a Petri net model of a generic telemental

health delivery system. The paper subjects the model to an integer programming model and net

reduction. The integer programming model indicated that the number of resources in the system

remains static, full utilization of resources at a given time is possible, conflict over resources is

possible, and improper work prioritization is possible within the model. Net reduction and

analysis with open-source software showed that the model is bounded and live. These results can

aid telemedicine system architects in diagnosing potential process issues. Additionally, the

methods described in the paper provide an excellent tool for further, more granular analysis of

telemedicine systems.

iv

Table of Contents

List of Figures .. vi

List of Tables ... viii

List of Symbols and Abbreviations.. ix

Chapter 1 - Introduction .. 1

Chapter 2 - The Challenges of Telemedicine ... 3

2.1 – Telemedicine Basics .. 3

2.1.1 – Areas of Weakness for Telemedicine ... 4

2.1.2 – Structure of Telemedicine ... 6

2.1.3 – Gauging the Effectiveness of Telemedicine ... 8

2.1.4 – Key Roles in Telemedicine Systems ... 9

2.1.5 – The Telemedicine Process .. 11

2.2 – Simulating Telemedicine Systems ... 18

2.2.1 – Modeling Synchronous Systems ... 19

2.2.2 – Simulation Results .. 25

Chapter 3 - An Introduction to Petri Nets ... 29

3.1 – Petri Net Fundamentals .. 29

3.1.1 – Petri Net Mechanics .. 29

3.1.2 – A Mathematical Definition of Petri Nets .. 33

3.2 – State Transition Equations ... 33

3.3 – Petri Net Properties .. 35

3.3.1 – Reachability .. 36

3.3.2 – Coverability ... 37

3.3.3 – Boundedness/Safeness .. 37

3.3.4 – Liveness .. 38

3.3.5 – Fairness ... 39

3.3.6 – Controllability ... 39

3.3.7 – Conservativeness ... 40

3.4 – Solving the Reachability Problem ... 40

3.4.1 – The Reachability Tree ... 41

3.4.2 – A Binary Integer Programming Approach .. 44

3.4.3 – Disproving Reachability with the State Transition Equations 48

3.5 – Determining Petri Net Boundedness .. 50

3.5.1 – Using the Coverability Graph to Determine Boundedness 50

3.5.1 – Model Simplification with Boundedness-Preserving Net Reductions 51

Chapter 4 - Modeling .. 56

4.1 – Modeling Synchronous Telemedicine Systems ... 58

4.1.1 – Patient Enrollment .. 58

4.1.2 – Session Preparation ... 60

v

4.1.3 – The Therapy Session ... 64

4.1.4 – Session Follow-Up .. 65

4.1.5 – Initial Marking .. 68

4.2 – Modeling Asynchronous Telemedicine Systems ... 68

4.2.1 – Patient Enrollment .. 69

4.2.2 – Hub-Side Session Preparation ... 70

4.2.3 – The Day of the Therapy Session ... 70

4.2.4 – Hub-Side Session Follow-Up ... 71

4.2.5 – Spoke-Side Session Follow-Up .. 72

4.2.6 – Initial Marking .. 72

4.3 – Modeling the Incidence Matrix .. 73

Chapter 5 - Analyzing Telemedicine Systems .. 76

5.1 – Reachability ... 76

5.1.1 – Analysis Goals and Undesirable States ... 76

5.1.2 – Implementing the Binary Integer Programming Model .. 77

5.1.3 – BIP Model Results .. 78

5.2 – Boundedness .. 80

5.2.1 – Net Transformations ... 80

5.2.2 – Software Analysis Results .. 84

5.2.3 – Petri Net Liveness ... 84

Chapter 6 - Conclusion ... 85

Appendix A - Complete Representation of Petri Net Models .. 93

Appendix B - R Code to Disprove Reachability ... 99

vi

List of Figures

Figure 2.1- CBOC Locations in New Mexico and Southern Colorado Image Source: (Google,

2015) ... 12

Figure 2.2-Structure of an Individual and Synchronous Telemental Health Session 16

Figure 2.3– Structure of an Individual Asynchronous Telemental Health System 17

Figure 2.4- The first part of the independent referral process .. 20

Figure 2.5– The second part of the independent referral process ... 20

Figure 2.6– Simultaneous preparatory events for the synchronous individual session 22

Figure 2.7 – The completion of the preparatory activities and session itself for the individual

synchronous model ... 23

Figure 2.8– Immediate follow-up from the session in the individual synchronous model........... 23

Figure 2.9– Wrap-up activities for the individual synchronous session 24

Figure 2.10 – Final simulation closure logic for the individual synchronous session 24

Figure 2.11– Employee utilization for the synchronous individual model. 26

Figure 2.12 – Times for the synchronous individual model by number of scheduled appointments

 ... 28

Figure 3.1- A very basic Petri net with three places (circles) and two transitions (rectangles).... 30

Figure 3.2 – Four possible markings arising from an initial marking given in the top-left box ... 32

Figure 3.3– Sample Petri net for reachability analysis ... 37

Figure 3.4– An example of a safe (1-bounded) Petri net .. 38

Figure 3.5– A live Petri net ... 39

Figure 3.6– A Petri net exhibiting several types of fairness ... 39

Figure 3.7– Example Petri net for coverability graph construction .. 42

Figure 3.8– Coverability graph of the net in figure 3.7 .. 42

Figure 3.9– Coverability graph of the net in figure 3.3 .. 43

Figure 3.10 – Combining transitions in series .. 52

Figure 3.11– Combining places in series .. 53

Figure 3.12 – Removing self-loop places ... 53

Figure 3.13 – Consolidating a circuit .. 54

Figure 3.14 – Consolidating parallel places .. 54

file://imsefiles.imse.ksu.edu/health/Tele_Medicine/Ryan's%20Thesis/RyanAeschliman2015.docx%23_Toc417646215
file://imsefiles.imse.ksu.edu/health/Tele_Medicine/Ryan's%20Thesis/RyanAeschliman2015.docx%23_Toc417646216
file://imsefiles.imse.ksu.edu/health/Tele_Medicine/Ryan's%20Thesis/RyanAeschliman2015.docx%23_Toc417646216
file://imsefiles.imse.ksu.edu/health/Tele_Medicine/Ryan's%20Thesis/RyanAeschliman2015.docx%23_Toc417646217
file://imsefiles.imse.ksu.edu/health/Tele_Medicine/Ryan's%20Thesis/RyanAeschliman2015.docx%23_Toc417646218

vii

Figure 3.15 – Consolidating parallel transitions ... 54

Figure 4.1– Telemedicine Phase 1: Patient Enrollment (Outgoing Arcs Omitted) 59

Figure 4.2 – Phase 2: Session Preparation .. 62

Figure 4.3 – Phase 3: Therapy Session ... 64

Figure 4.4 – Phase 4: Session Follow-Up ... 67

Figure 4.5 – Phase 1: Patient Enrollment – Asynchronous .. 69

Figure 4.6 – Phase 2a: Hub-Side Session Preparation .. 70

Figure 4.7 – Phase 2b: Spoke-Side Preparation and Phase 3: Therapy Session 71

Figure 4.8 – Phase 4a: Hub-Side Session Follow-Up ... 71

Figure 4.9 – Phase 4b: Spoke-Side Session Follow-Up ... 72

Figure 4.10 – Incidence Matrix for the Synchronous Model .. 74

Figure 4.11- Incidence Matrix for the Asynchronous Model ... 75

Figure 5.1 – Synchronous Petri net with several potential reductions denoted in circles 81

Figure 5.2 - Synchronous Petri net with three subnets consolidated .. 82

Figure 5.3- Synchronous Petri net with all dummy places eliminated ... 83

Figure 5.4 - Synchronous Petri net with additional places removed .. 83

Figure 5.5 – Synchronous Petri Net with parallel places consolidated ... 84

Figure 6.1- Complete Petri Net Representation of Synchronous Individual Telemental Health

System ... 93

Figure 6.2 – Complete Petri Net Representation of Asynchronous Individual Telemental Health

System ... 94

viii

List of Tables

Table 2.1– Tasks and their times in the individual synchronous model 25

Table 2.2– Resource utilization for the synchronous individual model 27

Table 3.1 – Formal Definition of Petri Nets ... 33

Table 3.2 – List of terms used in BIP formulation ... 46

Table 4.1– Transitions in Telemedicine Phase 1: Patient Enrollment .. 60

Table 4.2– Places Introduced in Telemedicine Phase 1: Patient Enrollment 60

Table 4.3 – Transitions in Phase 2: Session Preparation .. 63

Table 4.4 – Places Introduced in Phase 2: Session Preparation .. 63

Table 4.5 – Transitions in Phase 3: Therapy Session ... 65

Table 4.6 – Places Introduced in Phase 3: Therapy Session ... 65

Table 4.7 - Transitions in Phase 4: Session Follow-Up .. 67

Table 4.8 - Places Introduced in Phase 4: Session Follow-Up ... 67

Table A.1 – List of All Transitions in Synchronous Telemental Health Petri Net Formulation .. 95

Table A.2 – List of All Places in Synchronous Telemental Health Petri Net Formulation 96

Table A.3 – List of All Transitions in Asynchronous Telemental Health Petri Net Formulation 97

Table A.4 – List of All Places in Asynchronous Telemental Health Petri Net Formulation 98

ix

List of Symbols and Abbreviations

Symbol Subject Interpretation

GP Telemedicine General Practitioner

BIP Mathematical

Programming

Binary Integer Programming

Expo(10) Simulation An Exponential Distribution with a Mean of 10

Minutes

PN Petri Net Definition Petri Net

P Petri Net Definition Set of Places in a Petri Net

T Petri Net Definition Set of Transitions in a Petri Net

m Petri Net Definition Number of Places in a Petri Net

n Petri Net Definition Number of Transitions in a Petri Net

F Petri Net Definition Set of All Arcs in a Petri Net

M0 Petri Net Definition Initial Marking

A PN Incidence Matrix Petri Net Incidence Matrix

aij PN Incidence Matrix Entries in A

A
-
 PN Incidence Matrix Input Incidence Matrix

aij
-

PN Incidence Matrix Entries in A
-

r PN Incidence Matrix Rank of A

A11, A12, A21, A22 PN Incidence Matrix Subsets of the A Matrix Broken Down by Rank

uk PN State Equation Step k Control Vector. Index j May Also Be Used

d PN State Equation Total Number of Steps in an Analysis

Md PN State Equation Marking After d Steps

ω PN Coverability Graph Infinite Marking in Reachability Graph

Mf Reachability BIP Model Target Marking

X Reachability BIP Model Sum of Some Number of Control Vectors

K Reachability BIP Model Reachability Search Depth in Steps

Bf PN Reachability

Analysis

A Set of Linearly Independent Solutions y to the

Equation Ay = 0

z PN Reachability

Analysis

Set of Integers Used to Form a Linear

Combination of Bf Such That Bfz Equals the

Change in Tokens From the Original to the Target

Marking

1

Chapter 1 - Introduction

Telemedicine, “the use of electronic information and communications technologies to

provide and support clinical health care when distance separates the participants” (Institute of

Medicine, 1996), offers powerful tools to deliver care to underserved populations and allow

doctors to make the best use of their time. Generally, telemedicine systems involve a specialized

provider at a “hub” site using some form of electronic media to deliver care to a patient at a

remote “spoke” site.

While telemedicine has found applications in dermatology, optometry, and even surgery,

mental health services such as psychology and psychiatry currently stand as a field with some of

the greatest potential for effective telemedicine (Locatis & Ackerman, 2013). Applying

telemedicine to psychiatry or psychology results in a practice known as telemental health. One

standard defines telemental health simply as “the practice of mental health specialties at a

distance,” aiming to capture as wide a variety of media as possible (Grady et al., 2011).

 Despite its strengths, telemedicine has several areas of weakness. Clinical effectiveness

concerns and cries for larger sample sizes lie firmly within the realm of healthcare, but system-

related concerns can be at least partially resolved with the application of effective models.

Chapter two provides a detailed discussion of telemedicine.

Discrete event simulation can provide a valuable tool for examining specific systems.

Good simulation models can provide valuable insight regarding system capacity and employee

utilization. Simulations excel at showing how systems should behave on average, but do not do

so well at diagnosing potential failure modes and examining how systems can behave given

enough time.

2

 Petri nets, a modeling tool with roots in computer science and graph theory, can provide a

solution to these shortcomings. Chapter three discusses Petri nets in depth. A diverse set of Petri

net properties can model a host of failure modes, ranging from deadlocks to resource scarcity to

unbounded queue growth to any sort of generally undesirable system state. Integer programming

models can indicate if specific failure modes are possible given an initial system configuration

(Bourdeaud'huy, Hanafi, & Yim, 2007), while a combination of Petri net reduction methods and

analysis with software can root out deadlocks and unbounded growth.

 Telemental health systems lend themselves well to representation by Petri nets. Chapter

four presents a Petri net model for a generic telemedicine system. Chapter five applies the

analytic techniques from chapter three to this net and reveals the results of the analysis.

Generally, telemental health systems that follow the general format laid out in chapter four will

not suffer from deadlocks or unbounded growth. Moreover, resources levels will remain static

and the system will not clear itself out prematurely. Telemedicine systems can potentially

struggle with conflict over employee time, inequitable treatment prioritization, and full employee

utilization.

 Used together, the methods mentioned in this thesis offer a powerful suite of analytic

tools to gauge the effectiveness and stability of telemental health systems. To appreciate their

usefulness, however, one must begin with the motivation behind this mode of analysis. The next

chapter presents this rationale and lays out the groundwork for modeling telemental health

systems with Petri nets.

3

Chapter 2 - The Challenges of Telemedicine

Telemedicine can manifest itself as both a powerful tool and an administrative quagmire.

Consequently, it has been the subject of much research in recent years. Numerous papers probe

the pros, cons, and general challenges of the technique, while others lay out promising system

configurations. This chapter discusses this body of work and presents a standard set of

components for telemedicine systems.

 2.1 – Telemedicine Basics

Telemedicine in the broadest sense has a surprisingly long history and can be traced all

the way back to the advent of telephone lines in the 1870’s, although its current manifestation

did not appear until the 1960’s (Sang Goo, Mun, Jha, Levine, & Ro, 2000).

 Distance stands as a major barrier between mental health care providers and potential

patients (Rabinowitz, Brennan, Chumbler, Kobb, & Yellowlees, 2008). Potential patients living

in rural or traditionally underserved communities where care providers feel they cannot cost-

effectively distribute their time stand at the greatest loss. Telemedicine can shrink this distance

and provide treatment to those in far-flung locations. For example, a system for proving expert

consultations via radio for Health Aids in remote parts of Alaska has had great success (Sang

Goo et al., 2000). Similarly, a project in rural Kansas to directly provide child psychological

services via telemedicine helped doctors meet a significant need (Spaulding, 2010).

 Moreover, telemental health may be superior to face-to-face care in cases where the

patient suffers from paranoia, PTSD, or another condition where “distance” between the patient

and doctor helps the patient open up and cope. In-home telemental health can let providers

examine patient’s living environment firsthand and potentially lead to better diagnoses. Finally,

4

telemedicine allows providers to examine facial expressions in more detail than face-to-face

conversations allow (Rabinowitz et al., 2008).

Proponents of telemedicine frequently cite its cost-effectiveness. One analysis used a

queuing network model to conclude that, generally, telemedicine makes financial sense when it

is effective and care providers are relatively expensive to utilize. It makes less sense when

administrative staff is relatively expensive, conventional systems work well, or the financial risk

of mistreating patients is very large. In all cases, telemedicine should be a supplement to face-to-

face healthcare services – no organization should serve all of its patients with telemedicine

(Tarakci, Sharafali, & Ozdemir, 2007).

 2.1.1 – Areas of Weakness for Telemedicine

 Telemedicine research lacks in some areas. Some authors contend larger samples sizes

and more diverse populations will yield more telling feasibility studies (Rabinowitz et al., 2008).

Others argue that telemedicine needs to focus more research on the clinical outcomes of

telemedicine as well as its economic justification (Krupinski et al., 2006).

Rabinowitz (Rabinowitz et al., 2008) argues that more research must be done on the

impact of telemedicine in rural areas, particularly in terms of patient satisfaction. In particular,

patient satisfaction measurement requires better methodologies before it can be confidently used

in decisions. While studies have increasingly attempted to measure patient satisfaction, results

may have an upward bias due to methods commonly used (Zhang, McClean, Jackson, Nugent, &

Cleland, 2013). Notably, many studies include an “after” survey without a corresponding

“before” survey to obtain baseline satisfaction.

The organizational structure of telemedicine systems acts as a deterrent to providers.

Lasierra et. al. offers a particularly telling case study of an asynchronous teledermatology system

5

that ultimately failed. They note that successful programs need support from organizational

leadership and buy-in from providers. Additionally, the program used actually took more person-

hours to resolve each case. Lack of integration with the hospital’s healthcare information system

and a need for some providers to work outside of normal hours to perform consultations made

the program unpopular (Lasierra, Alesanco, Gilaberte, Magallón, & García, 2012).

Accurate diagnosis of patients can be difficult with telemedicine. While the ability to

review video data and potentially gather more patient information can help in some cases, the

lack of direct eye contact inherent in many video messaging systems and other problems require

an unfamiliar change of tactics in diagnosis (Grady et al., 2011). Grady goes on to discuss how

video quality can positively impact this. While beneficial, better-quality equipment also

adversely affects the already high startup cost of telemedicine systems.

Telemedicine hinges on patient involvement to find success, but often that involvement

gets stymied by lack of patient knowledge regarding telemedicine. Literature and the author’s

experience indicates that, no matter how well-engineered a telemedicine system appears to be, it

cannot be successful without an engaged and informed patient base. This “alignment with

learning processes” extends to both the patients and providers; organizations must be dynamic

and quickly adopt potential improvements in the rapidly developing world of telemedicine

(Cegarra-Navarro, Sanchez, & Cegarra, 2012).

One concern telemedicine prompts involves the care provider’s ability to generate rapport

with patients. Relationship building allows for much more open and effective treatment and

patient/provider interaction (Grady et al., 2011); consequently, designers of telemedicine systems

should build the system with effective interactions in mind. The authors of Grady’s work note

6

some challenges with this as well – in particular, the expanded geographic of providers’ range of

care may result in providers interacting with patients beyond their current “cultural competency.”

 2.1.2 – Structure of Telemedicine

 The most intuitive way to deliver telemedicine involves simply setting up a video camera

or phone call with the provider on one end and the patient on the other. The provider resides at a

centralized “hub site” – often a large regional hospital, while the patient connects at a

“spoke site.” Spokes can be smaller hospitals, local clinics, or even the patient’s home. A

telemedicine system will usually have numerous spoke sites.

This simple configuration requires the patient and provider to be available at the same

time, earning it the designation of “synchronous” telemedicine. While traditional, synchronous

telemedicine aims to remotely provide services that fundamentally look like traditional

healthcare, asynchronous, or “store-and-forward,” telemedicine offers an entirely new paradigm

for healthcare delivery. In asynchronous telemedicine, patients and providers do not

communicate in real time. Rather, the patient gathers or generates health data, often with the

assistance of a nurse or hospital administrator, and sends it electronically to the specialist. The

specialist then reviews the data at their convenience, prepares recommendations, and sends them

back to the patient (Yellowlees et al., 2011).

 Store-and-forward telemedicine intuitively makes sense for specialties that function like

this anyway, such as radiology, or specialties where the data needed for a diagnosis can be

effectively summarized and conveyed digitally, such as dermatology (Yellowlees et al., 2011).

 Researchers at the University of California-Davis developed an asynchronous procedure

for telemental health services in 2011. The process involves patients recording a half-hour

interview with a nurse asking questions prepared by a specialist. The specialist then reviews the

7

interview and makes treatment recommendations. While the process may take longer overall to

complete, it makes better use of specialists’ time and provides them with flexibility. This

technique also allows for better record-keeping since entire interviews already have electronic

recordings ready (Yellowlees et al., 2011).

Asynchronous telemedicine represents a significant departure from the stakeholder

responsibilities found in more “traditional” telemedicine. Administrators have different tasks,

patients take on more responsibility, and specialists spend more of their time doing things only

specialists can do (Yellowlees et al., 2011).

Store-and forward telemental health can offer a cost savings over face-to-face healthcare

as well. Psychiatric visits have three major components: data collection, data analysis, and

treatment planning (Butler & Yellowlees, 2012). Traditionally, all three phases are the burden of

the psychiatrist. However, data collection and much of the accompanying clerical work can be

executed adequately well by a nurse or staff member, allowing better utilization of providers’

valuable time.

A massive literature review from Laurant et al. indicates that, given the very limited

amount of available data, nurses can provide similar quality care to what doctors can perform,

with similar health outcomes (Laurant et al., 2005). While the authors note that cost advantages

in salary are offset by the greater number of tests and services nurses utilize, the limited number

of tests inherent in mental healthcare mitigates this drawback. Ultimate cost savings depend

highly on context, however. Moreover, some patients actually experience higher patient

satisfaction when served by nurses if they consider their cases to be fairly minor and the nurses

are able to spend more time than doctors performing consultations.

8

Interestingly, simply having nurses fill some roles traditionally filled by doctors in

healthcare systems does not guarantee a decrease in the workload of doctors. Laurant et al.’s

research indicates that doctors may hold on to the delegated responsibilities and spend time

doing tasks more efficiently done by nurses. The authors recommend systems include “active

steps” to ensure doctors spend their time doing things only doctors can do (Laurant et al., 2005).

A 2012 study by Butler and Yellowlees in California found that, while store-and-forward

systems have a higher variable cost, synchronous systems have a higher fixed cost. This results

in a breakeven point in larger systems serving approximately 250 patients (Butler & Yellowlees,

2012). Consequently, larger operations should consider synchronous telemedicine while smaller

endeavors should turn an eye to asynchronous systems. This fixed cost savings comes partly

from hardware requirements. One study found that good-quality store-and-forward care can be

delivered with “pro-sumer,” that is, expensive-hobbyist-quality, audiovisual equipment available

for much less than the professional-grade hardware needed for a good synchronous system (Odor

et al., 2011).

Asynchronous telemedicine works. A 2010 feasibility study in California provided

clinical evidence that psychiatrists can comfortably diagnose axis I and II disorders with this

model. In fact, the providers actually recommended mediation adjustments and long-term

treatment plans for 95% of participants (Yellowlees et al., 2010). Despite the success of the

model, Yellowlees recommends asynchronous telemedicine as a low-cost supplement to face-to-

face meetings, rather than a replacement.

 2.1.3 – Gauging the Effectiveness of Telemedicine

With telemedicine subject to such a high degree of scrutiny, accurate and simple metrics

to determine the effectiveness of programs becomes absolutely essential. Locatis and Ackerman

9

suggest three “principles” to model the effectiveness of telemedicine: congruency, fidelity, and

reliability. Specifically, they argue that telemedicine procedures should be fundamentally similar

to face-to-face procedures, should gather the same types and quality of data as what could be

gathered face-to-face, and should transfer the data to care providers as well as if it were face-to-

face (Locatis & Ackerman, 2013).

Additionally, patient satisfaction can be measured with a few key metrics (Zhang et al.,

2013). Specifically, a good patient-satisfaction survey analyzes how changes in telemedicine

methodology impacts patient-provider relationships, pinpoints communication issues, and

captures patient opinions regarding the failures and limitations of telemedicine service.

 Software effectiveness is also a popular topic of research. One proposed metric for

evaluating the effectiveness of software and system quality for store-and-forward telemedicine

systems places “freedom from risk”, reliability, and security as the three absolutely essential

qualities in any system (von Wangenheim, von Wengenheim, Hauck, McCaffery, & Buglione,

2012). Reliability in the context of telemedicine systems refers to the system’s ability to act as

intended in a variety of circumstances and over a variety of time periods.

Literature appears lacking in studies that examine telemedicine from a traditional process

engineering perspective. Doctor utilization and capacity in telemedicine systems, while

occasionally mentioned, lack a large body of research behind it. Consequently, this area is ripe

for research and modeling.

 2.1.4 – Key Roles in Telemedicine Systems

Telemental health systems require people to function. Examinations of telemental health

systems from both experience at the New Mexico Veteran’s Administration Hospital and

literature (Laurant et al., 2005; Tarakci et al., 2007) reveal that telemedicine systems typically

10

require work from seven different roles to function. The list below denotes these roles and

provides a brief description of each.

 The Patient – With the patient being the reason the entire system exists, most telemental

health systems seek to serve as many patients as possible without compromising quality

of care. Patients interact with the system at spoke sites.

 The Specialist – The specialist is a health provider with specialized knowledge. They

work at the hub site. Telemedicine systems aim to help patients access specialists by

eliminating geographical constraints between patient and provider and, in the case of

asynchronous telemedicine, minimizing the administrative work specialists need to do

and freeing up more of their time to serve patients. In the case of a telemental health

system, the specialist is typically a psychologist or psychiatrist.

 The Nurse – This role can be performed by any spoke site staff member capable of

responding to patient emergencies and generally interacting with and answering questions

for the patient. While this role will most often be filled by a nurse, small spoke sites may

use a general practitioner.

 Hub Site Administrator – This administrative assistant works at the hub site and is in

charge of managing the entire telemedicine program, keeping track of patient data,

enrolling patients, and preparing the specialist for upcoming appointments.

 Spoke Site Administrator – The spoke site administrator gets patients checked in and

checked out of appointments. Generally this will be one of many duties (most unrelated

to the telemedicine program) the person filling this role performs. That said, successful

telemedicine implementation requires coordination at both the hub and spoke sites,

making this role critical (Grady et al., 2011).

11

 Hub Site Technology Specialist – Larger telemedicine operations may have a person in

charge of setting up audiovisual equipment for appointments. Smaller operations or

operations with uncomplicated equipment may have the specialist fulfill this role.

 Spoke Site Technology Specialist – Spoke sites need someone on-hand to deal with

equipment issues as they arise. This person may be a dedicated information technology

coordinator with many duties around the site. Alternatively, the role could be filled by the

nurse or a spoke site administrator.

These roles are not mutually exclusive – one person may handle administrative work,

technology needs, and care provision. Similarly, these roles are scalable. Large systems may

have multiple providers, administrators, and technology specialists working together.

 2.1.5 – The Telemedicine Process

While most telemedicine systems feature fairly straightforward processes from a patient’s

perspective, the background processes and administrative overhead take a significant amount of

effort and can be some of the key reasons why telemedicine systems fail. Consequently, good

analysis hinges on a solid representation of the entire treatment cycle. Telemental health systems

can be decomposed into four major phases: patient enrollment, session preparation, the session

itself, and session follow-up. While the character of each of these phases can vary from system to

system, the basic building blocks and tasks that must be completed are the same.

This telemedicine model arose from a generalization of the synchronous telemental

health process the New Mexico VA Hospital uses. In their system, several psychiatrists,

psychologists, and social workers do their jobs in the central VA Hospital in Albuquerque.

Patients travel to Community-Based Outpatient Centers (CBOCs) in sites all across New

12

Mexico, as shown in the figure below. There they establish a connection with providers in

Albuquerque, receive their care, and leave. The next few paragraphs summarize this process in

more detail.

Figure 2.1- CBOC Locations in New Mexico and Southern Colorado

Image Source: (Google, 2015)

Systems begin with an enrollment phase. During this time, the specialist must process

and review incoming referrals. Upon approval, administrators (typically at the hub site) will

generate a record and schedule a series of appointments. Any preparatory work prior to the day

of the appointment occurs during this phase. Enrollment is typically a transient phase; while

other phases may be repeated, enrollment usually needs to occur just once.

13

Session preparation includes all routine tasks that need to be completed on the day of an

appointment before it begins. The patient’s arrival at the spoke site often triggers this series of

processes. Initial paperwork at the spoke site and check-in procedures take up administrative

time. Some of this information may be transmitted to the hub site. Rooms at the spoke and hub

site need to be prepared and complex telemedicine systems may require technology specialists at

the spoke and hub to establish a connection or set up audiovisual equipment. The specialist and

hub administration also work to gather and review patient data prior to the appointment in order

to provide effective care.

The session itself stands as the third stage in the telemedicine process. With everyone set

up and prepared, the specialist at the hub site uses video equipment to deliver psychiatric or

psychological care to a patient at the spoke site. A nurse or general practitioner will remain on-

hand or sit in on the session at the spoke site to assist the patient as needed.

When the session completes, the process enters the fourth phase: session follow-up. The

specialist begins by recommending treatment options, writing prescriptions, and doing

paperwork as required. During this time, the nurse/general practitioner can answer any questions

the patient may have and forward feedback to the specialist. The specialist sends all

recommendations to the spoke site, often via the hub administrator. The patient then works with

spoke administration to pick up their treatment, fill any prescriptions, and checkout. The process

then returns to just before phase two, where the patient will check in for their next appointment

and the cycle begins again. A visualization of this process can be found on figure 2.2 on page 16.

The synchronous model described above is not the only way to deliver telemental health.

Some authors have proposed a store-and-forward methodology that can provide psychiatrists and

14

psychologists with more flexibility in performing their duties (Butler & Yellowlees, 2012). Even

so, this system still goes through the four main phases, as described below.

Enrollment in sessions remains exactly the same as in synchronous telemedicine. The

specialist must approve any referrals and then administrators at the hub site take care of clerical

work and scheduling.

Some time later, the session preparation phase begins. The hub administration gathers

patient data and prompts the specialist to prepare for an upcoming therapy session. The specialist

then uses this information to generate a set of questions for the patient to answer on camera.

They pass these questions on to hub administrators who send this to their counterparts at the

spoke site the patient will visit. This ends the first half of session preparation, which occurs

exclusively at the hub site. The spoke picks up the workflow for the second half of preparation.

The second half occurs the day of the session and may be a few days before the first half of

preparation. The day begins by the patient checking in with spoke administration. Meanwhile,

the spoke site technology specialist prepares the room for therapy. They do not need to establish

a live connection; any input from the specialist comes prerecorded.

The session begins when ready. A nurse or general practitioner sits down with the patient

and asks them the questions prepared by the specialist. A video camera records both parties. The

specialist does not need to be available during this time – hence the asynchronous label. When

the program prepared by the specialist comes to an end, nurse and patient leave the room,

signaling the end of the session. The patient may check out at this time and go home.

The follow-up phase begins immediately after when spoke administrators send the

recorded patient responses back to the hub site for examination by the specialist. At their

15

convenience, the specialist then looks over the recorded patient responses and develops a

treatment plan. The specialist gives this plan to hub administrators who send it to the spoke site.

Depending on the nature of the treatment, the patient may need to return to the spoke site

and check-in briefly with spoke administration. In some cases, they may meet with the nurse or

general practitioner to receive more detailed instructions. With treatment in-hand, the patient

checks out with the spoke specialist and exits the system. This marks the end of the treatment

process until the specialist prepares the next round of questions for the patient’s next

appointment. Figure 2.3 on page 17 shows a flowchart of this asynchronous process.

16

Spoke Clinic Coordinator

Hub Clinic Coordinator

General Practitioner

Specialist

Spoke Clinic Tech

Hub Clinic Tech

Review primary care
provider’s referral to

therapy
[expon (10)]

Enroll patient in
therapy session

[expon(10)]

 Prepare Handouts,
Scans Patient ID Card,

escorts patient to room
[expon(5)]

Prepare AV
Equipment in Room

[expon. (10)]

Prepare AV
Equipment for

Specialist
[expon. (10)]

Prepares specialist
for session. Gathers
patient information.

[expon(5)]

Prepares for Session
[expon(20)]

Runs Session
[60 min.]

Runs session and
stays in room with

patients during
session

[60 min.]

Session follow-up.
paperwork, billing,

recommends
additional treatment

[expon(20)]

Stays after session
attend to patient

needs,
paperwork
[expon(8)]

Processes specialist’s
recommendations and sends to

spoke site
[expon(10)]

Check out patient
and provide follow-
up and treatment.

[expon(5)]

Synchronous Individual Session

Figure 2.2-Structure of an Individual and Synchronous Telemental Health Session

17

Spoke Clinic Coordinator

Hub Clinic Coordinator

General Practitioner

Specialist

Spoke Clinic Tech

Reviews primary
care provider’s

referral to group
therapy

[expon (10)]

Enrolls patient in
therapy

[expon(10)]

Checks In patient,
Prepare material, Scan
Patient ID Card, escort

patient to room
[expon(5)]

Prepare AV
Equipment in Room

[expon. (10)]

Watch and record
response to

specialist questions
[expon. (60 min.)]

Prepares specialist
for session. Gathers
patient information.

[expon(5)]

Processes
specialist’s

recommendations
and sends to spoke

site
[expon(10)]

Checks out patients
and provides follow-
up and treatment.

[expon(5)]

Asynchronous Individual Session

Prepare questions
for the session
 [expon. (15)]

Views patient
responses and

prepares further
treatment

[60 + expon (10)]

Sends recorded
responses to
Specialist and

Checks out Patient
[expon. (10)]

Communicate
specialist’s

questions to Spoke
[expon (5)]

Process specialist
recommendations
and treat patient

[expon (20)]

Checks In patient, Scan
Patient ID Card, escort

patient to room
[expon(5)]

Figure 2.3– Structure of an Individual Asynchronous Telemental Health System

18

 2.2 – Simulating Telemedicine Systems

Telemental health systems lend themselves well to discrete event simulation (Lach &

Vazquez, 2004). Medical settings tend to offer the intrinsic structure and clearly defined

responsibilities that make modeling them this way both simple and accurate. Moreover,

variability can be easily included in the model to capture the unpredictability of treatment times

and patient behavior.

Early work with the New Mexico VA called for baseline data and theoretical results

easily obtainable with a simulation model. The simulation aims to measure utilization of the

hardware and employees that make telemedicine systems work, as well as predict the maximum

capacity of such a system given a set number of employees. The model works by tracking the

flow of a theoretical object through the system. This object merely triggers events and is a

“token” with no physical analog. If anything, the token signifies the flow of paperwork through

the system. As the paperwork progresses, it summons employees, patients, and resources to aid

in its forward march. The simulation tracks how long these resources receive use as well as how

long the paperwork takes to get from referral to a treated patient.

The simulation requires service time distributions for each task. Due to geographic

constraints, measured service times proved impractical to obtain. Instead, the average times

presented in the following sections are estimates determined reasonable by the New Mexico VA.

The simulation assumes exponential distributions as a safe choice for most service times due to

their convenient properties and moderate levels of variability.

The next few sections look at simulations of this nature in depth and lay out exactly how

to create a discrete-event simulation model for telemedicine systems.

19

 2.2.1 – Modeling Synchronous Systems

Arena, the simulation software from Rockwell Software used to model this system, bases

its logic off of four key “blocks” or actions: queue, seize, delay, and release. Paperwork enters a

queue to wait for attention from a resource, seizes that resource when it becomes available, uses

or delays that resource for a period of time, and releases that resource when finished. For

example, the spoke site administrator could have a pile (queue) of clinical recommendations

from a therapist to distribute one day. The administrator would deal with the top paper in the

stack, work on it for a time, then move on to the next paper in the stack when complete. The

paperwork then proceeds through many more queues until finally leaving the system at a dispose

block. The simulation basically “sees” this process from the paperwork’s point of view.

The model assumes that only one specialist, hub administrator, spoke administrator,

spoke nurse or general practitioner, pair of technology specialists, and set of spoke telemedicine

equipment can be occupied at any given time. These numbers can be tailored to each spoke site

in application. For flexibility, the simulation tracks the room and equipment as a separate

resource.

The most basic and intuitive telemedicine systems fall into the category of synchronous

individual, where a single patient at a time meets with a provider in a remote location in real-

time. The simulation creates one patient at a time at a specified rate and sees how the system

performs over a day (480 minutes). This “day by day” model paints an accurate picture of steady

state operations.

The model begins with a queue representing the referral review process, as shown in

figures 2.4 and 2.5 on the next page. Since this process occurs independently of the actual care

delivery, the simulation has a separate series of events modeling them. The model assumes that

20

for every four patients that have appointments on a given day, one patient needs to have their

referral reviewed and enrollment performed. A separate “create” block generates these cases one

at a time, according to an interarrival time that varies with the number of patients scheduled that

day. In fact, the interarrival time on this block is precisely equal to the interarrival rate of regular

patients times four. After arrival, the two queues proceed to their own dispose block for the

“paperwork” to leave the system. The dispose block ends the process. The referral entities do not

interact with the appointment execution side of the simulation except to use the specialist and

hub administrator’s time.

Figure 2.4- The first part of the independent referral process

Figure 2.5– The second part of the independent referral process

While not connected to the system directly, the enrollment process still requires the time

of the specialist and spoke administrator to complete. Neither operation happens instantly, so

both delay for time following an exponential distribution with a mean of 10 minutes (henceforth

abbreviated as expo(10) minutes) each.

For the primary treatment phase of the telemental health process, the simulation begins

with a “create” block that generates patients one at a time. The first patient arrives at time zero

(8:00 AM), and the next arrives at a precise time determined by the desired number of patients

scheduled. For example, if the clinic is supposed to serve two patients, the interarrival time is

Create

“referral”

Queue

Referral

Seize

Specialist

Delay

expo(10)

Release

Specialist

Queue

enrollment

Seize

hubAdmin

Delay

expo(10)

Release

hubAdmin

Dispose

“referral”

21

240 minutes, while a clinic serving eight patients daily would have an interarrival time of exactly

60 minutes.

The output of the create block uses an “alter” block to add one to the number of patients

available to seize for appointments. The patient cases proceed to an “alter” block which adds

one to the number of “appointment” resources the simulation will attempt to complete. A

“duplicate” block then creates four additional copies of the patient’s case, allowing the

simulation to execute the next four tasks simultaneously.

As patients congregate to the spoke site, they must check in. Each one seizes a patient

resource, spoke site staff, and an appointment resource. It delays them all for expo(5), then

releases the patient and spoke site staff for other tasks. It keeps the appointment resource seized;

it will not release it until the entire appointment process is complete, effectively keeping the

same appointment from happening twice.

The second copy of the original group goes to the spoke site technology specialist. The

copy seizes the employee as well as the AV equipment at the spoke site. The simulation delays

for expo(10) to model the time the spoke tech specialist needs to prepare the room at the spoke

site and set up the connection to the hub site. At that point, the employee is free to go, but the

AV equipment remains unavailable until the completion of the group therapy session. The third

copy triggers the hub site tech specialist to spend expo(10) establishing the connection on the

other side.

The fourth and final copy travels immediately to a hub site staff person, who takes

expo(5) to gather up-to-date information on the patients and transfer that information to the

specialist. The specialist then takes expo(20) researching and preparing for the upcoming

session.

22

Queue

check in

Seize

patient

Appointment

spokeAdm

Delay

expo(5)

Release

patient

spokeAdm

Create

“paperwork”
Queue

Queue

spoketechsetup

Seize

spoketech

avEquip

Delay

expo(10)

Release

spoketech

Queue

Queue

hubtechsetup

Seize

hubtech

Delay

expo(10)

Release

hubtech

Queue

Queue

prepSpecialist

Seize

hubAd

Delay

expo(5)

Release

hubAd

Queue Queue

specialistResearch

Seize

specialist

Delay

expo(20)

Release

specialist

Alter

patient (+1)

Alter

appointment (+1)

Duplicate

Figure 2.6– Simultaneous preparatory events for the synchronous individual session

23

Figure 2.7 – The completion of the preparatory activities and session itself for the

individual synchronous model

The four copies empty into queues which feed into a “match” block which bars progress

until all four tasks are complete. When that occurs, all four copies proceed at once. Three simply

get disposed, but the first, the original, goes on to trigger the start of the group session. The main

event requires exactly 60 minutes of simultaneous time from the patient, a general practitioner

(GP)/nurse (to sit in on the session and serve as an in-person point of contact for patients), and

the specialist (virtually present through a teleconferencing or telemedicine service). At the end of

the session, the simulation releases only the AV equipment; the people involved in the session

have follow-up work to do. Figure 2.7, below, shows this simple part of the simulation.

Upon the completion of the session, general practitioner/nurse takes expo(8) minutes

after the session to talk to patients, answer questions, and collect feedback. They send their notes

to the specialist when complete. At the same time, the specialist then takes expo(20) minutes to

prepare follow-up from the session and recommend further treatment, if necessary. The

simulation releases them as they give their follow-up to hub site staff. Figure 2.8 illustrates this.

Queue

session

Seize

patient

GP

specialist

Delay

60

Release

avEquip
Match

Dispose

3

Delay

expo(8)

Release

GP

Delay

expo(20)

Release

Specialist

Duplicate Match
Dispose

1

Figure 2.8– Immediate follow-up from the session in the individual synchronous model

24

When the match block allows the simulation to progress (that is, when the specialist and

general practitioner complete their follow-up work), the hub site staff takes expo(10) to send that

follow-up to the spoke site. Finally, the patient takes expo(5) minutes of a spoke site staff

member’s time to receive follow-up instructions. Figure 2.9 shows this logic.

After this, the patients are free to go. A “duplicate” block makes a copy of each patient

and sends it to the “duplicate” block at the start of figure 3 via a “delay” block that holds each

patient for 2280 minutes. In more intuitive terms, after the appointments, patients wait a week

(minus the time of the appointment itself) and go on to their next one. Since the simulation only

lasts a day, this means the patients are effectively gone. That said, this construction also grants

flexibility for later variations of the model that look at larger timeframes. On the other side of the

duplicate block, the simulation releases the appointment and permanently reduces the number of

available appointments by one. Figure 2.10 shows this part of the simulation.

Figure 2.10 – Final simulation closure logic for the individual synchronous session

Release

Appointment

Alter

Appointment (-1)
Duplicate

Delay

2280

Dispose

Queue

followupHubCC

Seize

hubAdm

Delay

expo(10)

Release

hubAdm

Queue

giveTreatment
Seize

spokeAd

Delay

expo(5)

Release

spokeAd

patient

Figure 2.9– Wrap-up activities for the individual synchronous session

25

The model runs for 200 replications, each lasting one eight-hour day (480 minutes). At

the end of each day, the queues and statistics get reset; each day is independent of every other

day. The table below summarizes the general structure of the model.

Table 2.1– Tasks and their times in the individual synchronous model

Action Time Actor Assumptions

Referral Review 10 min Specialist Occurs 25% as often as appointment

execution. No patient is turned away.

Enrollment in

Program/Session

10 min

Hub Admin

Check-In 5 min Spoke Admin, Patient

Room Technology

Preparation

10 min Spoke Technology

Specialist, Room

Hub-Side Video

Preparation

10 min Hub Technology

Specialist

Gather Materials for

Specialist

5 min Hub Admin

Prepare for Session 20 min Specialist

Run Session 60 min Patient, Nurse/GP,

Specialist, Room

Answer Patient

Questions/Follow-Up

8 min Nurse/GP

Prescribe Treatment

and other Follow-Up

20 min Specialist

Send Treatment to

Spoke

10 min Hub Admin

Check-Out 5 min Spoke Admin

 2.2.2 – Simulation Results

 Arena performed 200 replications individual synchronous telemental health model for

each of several varying patient scheduling levels. Essentially the model scheduled some number

of potential appointments and tracked how many the available staff could actually fulfill in the

26

allotted time. The simulation tracked the utilization of staff members and physical resources

while also gauging the number of appointments that could be completed in that time. Figure

2.11, below, shows how employee and resource utilization changes as the number of enrolled

patients increases and table 2.2 provides those numbers directly.

Figure 2.11– Employee utilization for the synchronous individual model.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 10 20 30 40 50

P
e

rc
e

n
t

Em
p

lo
ye

e
 U

ti
liz

at
io

n

Number of Scheduled Patients Per Week

Employee Utilization Against Number of Scheduled Appointments
for Synchronous Individual Telemedicine

Spoke CC

Specialist

GP

Hub CC

SpokeTech

HubTech

AV Equip

27

Table 2.2– Resource utilization for the synchronous individual model

patients Spoke CC Specialist GP Hub

CC

SpokeTech HubTech AV Equip

5 1.89% 22.87% 14.11% 5.34% 2.15% 2.36% 19.95%

10 4.09% 43.69% 28.34% 8.34% 4.25% 4.45% 38.40%

15 5.94% 63.87% 42.32% 11.39% 6.44% 6.61% 57.52%

20 7.59% 83.28% 54.69% 13.21% 8.27% 8.37% 78.57%

25 8.84% 94.29% 60.25% 16.95% 10.14% 10.92% 95.03%

30 10.04% 97.35% 60.14% 18.20% 10.53% 12.74% 99.60%

35 10.63% 98.02% 59.20% 19.30% 10.13% 14.67% 99.98%

40 11.81% 98.34% 57.94% 20.38% 9.63% 17.36% 100.00%

The AV Equipment and Specialist approach 100% utilization at 30 scheduled

appointments per week. The general practitioner approaches 60% utilization after 25

appointments per week. Synchronous individual telemedicine systems with one specialist have

an effective limit of about 25 appointments per week, or five per day. This leaves roughly three

hours per day for non-session activities the specialist needs to complete, such as reviewing

referrals, preparing for sessions, and performing follow-up. Figure 2.12, on the next page, details

the waiting times for certain processes in this model and shows how it varies as the number of

scheduled patients increases.

28

Figure 2.12 – Times for the synchronous individual model by number of scheduled

appointments

In the figure above, “Patient Total” refers to the total time for the patient from their

arrival to when they leave the building. “Session”, “Spoke Tech Setup”, and “Specialist

Research” refer to the waiting time to execute those steps of the process. “Wait after check-in”

plus “session” shows to how long patients have to wait after checking in before their

appointment starts. Note how the wait times remain about constant until the four appointments

per day mark, after which they start rising. The average patient waits for thirty to fifty minutes

after checking in before their session begins, but beyond that the simulation processes patients at

a fairly reasonable rate. These realistic times help validate the model and indicate it provides a

reasonable approximation of similarly configured telemedicine systems.

0.00

50.00

100.00

150.00

200.00

250.00

0 10 20 30 40 50

W
ai

t
ti

m
e

 in
 M

in
u

te
s

Number of Scheduled Appointments

Wait and Flow Times for the Synchronous
Individual Model

Patient Total

Session

Wait after check-in

Spoke Tech Setup

Specialist Research

29

Chapter 3 - An Introduction to Petri Nets

Petri nets model systems of discrete events, such as telemedicine processes. They can act

as powerful tools for modeling telemedicine system reliability and effectively predict if

workflows can get “derailed” during a typical day’s operations. While valuable, their use has

largely remained limited to the computer science and manufacturing fields. This section

discusses the basic principles and properties of Petri nets. Readers familiar with their use may

skip to Chapter 4: Modeling for a thorough description of how Petri nets can model telemedicine

systems.

 3.1 – Petri Net Fundamentals

Petri nets model systems of events and specialize in capturing concurrency, conflict, and

preconditions for actions. They first appeared in Dr. Carl Adam Petri’s 1962 Ph.D. thesis,

“Communication with Automata,” and have been the subject of an entire body of research since

then (Girault & Valk, 2003).

 3.1.1 – Petri Net Mechanics

 Rooted in graph theory, Petri nets take a simple assembly of nodes and arcs and apply a

unique set of rules and mechanics to model a wide array of systems. Tadao Murata’s 1989 paper

“Petri Nets: Properties, Analysis and Applications” offers an excellent introduction to these

mechanics and still serves as a reference in many contemporary papers (Murata, 1989). Most of

the discussion in the following section paraphrases Murata’s work.

Petri nets have two basic components: places and transitions. Transitions represent

actions. They usually require inputs to “fire”, consume those inputs, and usually generate outputs

upon firing, which in turn may become inputs for other transitions. Rectangles denote transitions

30

in visual representations, with arrows pointing into the rectangle symbolizing inputs and arrows

pointing out of the rectangle symbolizing outputs.

 Places represent conditions. Places may be marked with some number of “tokens”, which

denote the state of that condition. Firing transitions consumes tokens if they receive input from a

place, and add tokens if they output into a place. Graphically, circles denote places, and a dot (or

number of dots) inside the circle indicates the number of tokens. Outgoing arrows are inputs for

transitions, and incoming arrows are outputs for transitions. Note that these arcs (arrows) always

link transitions to places and vice versa. Places are never linked to other places, and transitions

are never linked to other transitions. A place with an arc from the place to a transition is called an

“input place” for that transition. A place with an arc to the place from a transition is called an

“output place” for the transition. For Petri nets without weighted arcs, transitions cannot fire

unless all their input places contain at least one token. Figure 3.1, below, shows places,

transitions, input arcs, and output arcs in a very basic net. The leftmost place has one token in it.

Firing the leftmost transition would remove that token from the leftmost place and add a token to

the center place.

Figure 3.1- A very basic Petri net with three places (circles) and two transitions (rectangles)

All Petri nets have an initial marking, that is, a list of the number of tokens on each place

at the beginning of analysis. Initial markings may have a strong impact on the eventual properties

of the system and most net properties depend heavily on them.

 Putting this all together results in a model capable of portraying any combination of any

number of states of readiness, called a “marking”, and examining how performing actions within

the system impacts the system’s state and capabilities. Each transition that fires changes the

31

marking. A firing sequence refers to a series of transitions that fire in a specified order. Places

have no artificial constraint on the number of tokens they can contain, so a single initial marking

could generate an infinite number of different firing sequences in some nets.

The example in figure 3.2, on the next page, illustrates firing sequences and conflict. Box

number one shows a Petri net. Transition one (t1) has on input arc. Its input place has one token

in it, so t1 it can fire. In Petri net terminology, t1 is “enabled”. Firing t1 results in the marking in

box number two. Transition one removes one token from its input place and puts one token on

each of its two output places. With the marking in number two, both t2 and t3 are enabled and

either one may be fired. Firing t2 results in the marking in number 3a. Transition 2 removes one

token from both of its input places and puts one token in its output place. Firing t3 yields the

marking in number 3b, where the transition takes one token from its input place and puts one

token on its output place. Firing either t2 or t3 while in marking number 2 disables the other

transition; the two transitions are in conflict.

32

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

Figure 3.2 – Four possible markings arising from an initial marking given in the top-left

box

Petri nets model discrete-event systems and are vaguely similar in nature to discrete-

event simulations. That said, they have a few absolutely critical differences. While discrete-event

simulations rely on time as an integral part of their simulation logic, Petri nets have no

conception of time whatsoever. Discrete-event simulations are, by nature, stochastic, while Petri

nets are deterministic. Analysis with discrete-event simulation tends to focus on numerical

output, while Petri-net analysis yields qualitative properties. Finally, while events in simulations

will occur after some period of time, Petri Nets are permissive, meaning that enabled transitions

do not have to fire (Peterson, 1981). For these reasons, the two tools have very different uses.

While discrete-event simulation offers an excellent way to model a specific telemedicine system,

find system bottlenecks, predict output and capacity, and measure cycle-times, Petri nets

generate more generalized results, revealing system properties applicable to any system with a

similar configuration.

33

 3.1.2 – A Mathematical Definition of Petri Nets

Formal definitions of Petri nets have varied somewhat over the past 30 years. This paper

will use a simplified definition heavily based on Murata’s work (Murata, 1989):

Table 3.1 – Formal Definition of Petri Nets

 A Petri net is a 4-tuple PN = (P, T, F, M0), where:

 P = {p1, p2, p3, … , pm} is a finite set of places,

 T = {t1, t2, t3, … , tn} is a finite set of transitions,

 F ⊆ (P X T) ∪ (T X P) is a set of arcs,

 M0 : P → {0, 1, 2, 3, … } is an initial marking.

 P ∩ T = Ø and P ∪ T ≠ Ø

 Mathematically, Petri Nets are bipartite directed graphs, where places and transitions

make up the two partitions of the set of vertices (Girault & Valk, 2003).

 Murata includes another term, W, representing arc weights. The nets in this paper do not

use any weights; all arcs have an effective weight of one. Consequently, the formal definition

omits this term for simplicity.

 3.2 – State Transition Equations

 While a graphical representation may be the most intuitive way to express a Petri net,

other forms are more amiable to computer analysis. Petri nets may be modeled as a series of

equations most compactly shown in an incidence matrix. This matrix, often denoted in literature

as A, has the dimensions n x m, where n is the number of transitions and m is the number of

places in the net. An entry aij within A denotes the net change in token number in place j after

firing transition i (Murata, 1989). For example, a value of +1 at a23 means that transition two

34

places one token on place three, while a -1 would mean that the transition consumes one token

from place three as an input.

 Note that this matrix can be decomposed into the difference between two simpler

matrices. Murata defines aij
+
 as the weight of the output arc from transition i to place j and aij

-
 as

the weight of the input arc from place j to transition i. Taking aij
+
 - aij

-
yields aij, the net change in

tokens after firing the transition.

 The change in tokens in all places from firing one transition is simply the row of the A

matrix corresponding to that transition. It can be mathematically isolated by multiplying the

transpose of A by the “control vector” uk, which is a column vector with a number of rows equal

to the number of transitions, in the same order as in A. A single control vector contains only ones

or zeroes. A one in the vector represents firing the corresponding transition one time. For

example, a control vector where the first entry is a one and the rest are zeroes represents firing

the first transition once. A number of firing vectors can be added to one another and multiplied

by the transpose of A to capture the effect of several transitions firing in some sequence. A three

in the control vector denotes that the corresponding transition fires thrice in the firing sequence,

for example. Note that this technique cannot detect if transitions are enabled and captures no

information regarding the order of the firing – this poses a fundamental constraint on the

usefulness of this analytic technique.

 The marginal change in tokens found by multiplying the transpose of A by either uk or the

sum of d control vectors can be added to the initial marking M0 (or some other marking M) to

find the marking Md resulting from the firing sequence in uk. This relationship goes by several

terms in literature, the simplest of which is the state equation. Equation 1, on the next page,

shows the general form of the state equation:

35

 𝑀𝑑 = 𝑀0 + 𝐴𝑇 ∑ 𝑢𝑘
𝑑
𝑘=1 (1)

 While this opens the door to some powerful forms of analysis, doing so inflicts the model

with a few restrictions. Consolidating all input and output information into one number results in

a loss of information that may allow some transitions to fire inappropriately. Most notably is the

inability of the model to handle self-loops, where one transition has a given place as both an

input and an output. However, a simple change to the Petri net can handle most self-loop

problems. If a transition has a self-loop, the event it represents may be possible to model with

two transitions instead: one representing the start of the event, and one representing the end.

These two transitions interact with the same place, but one only uses the place as an input while

the other uses it as an output. While useful, these dummy transitions also make the net larger

than it needs to be for other types of analysis.

 3.3 – Petri Net Properties

 Compared to other modeling tools, Petri Nets stand out due to their simplicity and power.

Unfortunately, basic Petri Net theory has no concept of time. Events modeled by transitions are

assumed to happen instantaneously. The only constraint on the firing order of transitions is if

they are “enabled”, that is, if all input places to the transition contain tokens. Petri nets do not

force enabled transitions to fire, however; this property is known as “permissiveness”. Since

Petri nets are permissive and do not account for time, they lack the specific predictive power of

something like a discrete-event simulation.

 This weakness becomes a strength, however, when one uses Petri nets to examine the

long-term behavior of various system configurations. A number of Petri net properties model

desirable or undesirable system behaviors. The following sections contain a sampling of those

36

most relevant to telemental health, adapted from Tadao Murata’s 1989 paper on basic Petri net

theory (Murata, 1989).

 3.3.1 – Reachability

Given an initial marking, does some firing sequence exist that can produce some other,

given marking? This property is useful for both troubleshooting the accuracy of the model as

well as analyzing ways the system could potentially behave. Reachability analysis proves very

powerful for diagnosing potential failure modes (Henry, Layer, & Zaret, 2010).

For example, consider the Petri net on the next page in figure 3.3. Suppose the net

represents a chemical storage facility and transition three represents some catastrophic chemical

reaction caused by storing two chemicals next to each other. Naturally, designing the system or

choosing an initial marking that prevents transition three from firing is desirable. This can be

accomplished by performing reachability analysis for any state that has a token in both place D

and place E. For this initial marking, a state where D and E are both marked is not reachable.

Transition 1 can generate an infinite number of tokens in place A and B, but firing transition 2 to

put a token on place E also removes a token from place E. Since D has only one token and no

way of regaining it upon its loss, a marking where D and E are marked is not reachable.

Returning to the hypothetical example, this net could symbolize a procedure to remove a set

amount of chemical D from a dangerous spot before moving in a new chemical E nearby. Note

that having more tokens in D in the initial marking makes undesirable markings reachable.

37

1 B 2 C

3 EA

D

Figure 3.3– Sample Petri net for reachability analysis

Strictly speaking, reachability tests all places in the entire marking for strict equality. In

the example above, this would mean asking the question “does there exist a marking where

places A, B, C, D, and E all contain exactly one token?”, or something similar to it.

 3.3.2 – Coverability

Given an initial marking and a target marking, does some firing sequence exist that can

produce a marking that, in each place in the net, contain a number of tokens greater than or equal

to the number of tokens in that place in the target marking? This property is like a looser version

of reachability, where strict equality to the target marking get replaced by a “greater than or

equals to” sign. From an analysis perspective, this property can test for undesirable behaviors

with less work than reachability. For example, a coverability analysis could ask the question

“does there exist in the above Petri net a marking where D and E have at least one token and all

other places have at least zero tokens?” This statement captures all possible markings where

transition three could be enabled and is a much more powerful result than one particular marking

not being reachable.

 3.3.3 – Boundedness/Safeness

Given an initial marking, what is the maximum number of tokens that can appear on any

place at any time? For unbounded nets, this number is infinity. For bounded nets, this number is

38

some integer. If this number is one, the net can be called “safe”. This property conveniently

models upper bounds on necessary system capacity. The net figure 3.3 is unbounded, since

transition one can be fired an infinite number of times. The net below, in figure 3.4, is safe.

Transition 1 can fire one time, after which transition 2 can fire one time. While the total number

of tokens in the net increases, no place ever ends up with more than one token, making the upper

bound for number of tokens on each place equal to one.

1 B 2 C

3 EA

F

Figure 3.4– An example of a safe (1-bounded) Petri net

 3.3.4 – Liveness

Given an initial marking, does some firing sequence exist that fires any number of

transitions any number of times? If a net is live, then it is free of deadlocks and any transition can

eventually be fired after reaching any marking reachable from the initial marking. Liveness can

be examined on a transition-by-transition basis as well. A live transition can be eventually fired

in some firing sequence from any given marking, while a dead transition can never be fired in

any firing sequence.

 Limited forms of liveness exist for transitions. L1-liveness means the transition can be

fired at least once given an initial marking. L2-liveness means it can be fired some integer

number of times. L3-liveness means that it can be fired an infinite number of times, and L4-

liveness means that it can be fired at least once given any arbitrary initial marking.

39

 The examples in figures 3.3 and 3.4 are both reach partial or full deadlocks after which

transition two can no longer fire. The net below in figure 3.5, however, is live for any initial

marking. Transition one is L4-live and transitions two and three are L3-live.

1 A 2 B 3

Figure 3.5– A live Petri net

 Liveness is a very strong property and can be difficult to prove for complicated nets. That

said, it also should appear in nets that represent systems that process an essentially infinite

resource or cycle around to perform the same actions over and over again.

 3.3.5 – Fairness

Two transitions have a bounded-fair relationship if neither can fire an infinite number of

times without the other firing. A firing sequence is unconditionally fair if it is either finite or if

every transition in the net appears an infinite number of times. The net in figure 3.6, below,

illustrates both types of fairness. Transitions one and two have a bounded-fair relationship since

transition one cannot fire until transition two fires and vice versa. The firing sequence 1-2-1-2…

is unconditionally fair and infinite.

1 A 2 B

A

Figure 3.6– A Petri net exhibiting several types of fairness

 3.3.6 – Controllability

 Is “any marking reachable from any other marking”? Controllability is another strong

property but can be very useful. The Petri net in figure 3.5 is completely controllable since

transitions can be fired to produce any arbitrary marking on places A and B.

40

 3.3.7 – Conservativeness

Does the number of tokens in the net remain constant? If so, a net is conservative.

Alternatively, places may be assigned weights (including a weight of zero) to account for

concurrency or other modeling features. A Petri net with weighted places is conservative if,

regardless of the firing sequence, the weighted sum of tokens remains constant. The net in figure

3.6, above, shows conservativeness since it will always contain exactly one token. Adding a

second place (call it C) in parallel to place B and then assigning each a weight of ½ would also

maintain conservativeness.

While modeling systems with Petri nets proves moderately useful for clarifying system

logic in and of itself, analytic techniques to determine the properties of Petri nets really make the

tool shine. In particular, variants on reachability, coverability, and boundedness can be used to

model undesirable situations in business processes that can be rooted out with the help of Petri

nets. The rest of this section outlines mathematical techniques to prove or disprove these

properties for Petri nets.

 3.4 – Solving the Reachability Problem

 The reachability property of Petri nets can prove useful for determining the long-term

health and stability of the system. One may identify a few undesirable states, develop a marking

to model each one, and determine if the markings are reachable.

 Using reachability to diagnose potential failure modes works well in numerous fields.

One paper applies a reachability and coverability analysis to cybersecurity, modeling potential

attacks as transitions and security vulnerabilities and exploits as places (Henry et al., 2010).

Given an initial marking that represents an existing set of vulnerabilities, a search for reachable

41

states eventually lists all the vulnerabilities that could be reached using existing footholds to

open other vulnerabilities.

 3.4.1 – The Reachability Tree

The reachability tree is one of the most traditional methods of determining the reachable

states of Petri nets (Peterson, 1981). It can be used to determine reachability, coverability, and

boundedness. This makes the reachability tree an excellent tool for analyzing workflows.

The reachability tree is a graphical representation of all states reachable from some initial

marking. The tree takes the initial marking as a root node and creates an arc for each enabled

transition. The markings resulting from the firing of each enabled transition then make up the

next layer of the tree and the process repeats. If some places have strictly more tokens in the new

marking than in the old and the new marking covers the old, the tree is unbounded and can get a

potentially infinite number of tokens. Consequently, this tree can grow infinitely if the net is live

and new markings can always be reached.

A simple workaround for this problem exists and is known as a coverability graph

(Murata, 1989). Short of simply enumerating each reachable state, the coverability graph

summarizes a potentially infinite number of markings by terminating a branch when it reaches a

marking that covers a previous marking. Transitions enabled in the covered marking are enabled

in the marking that covers it, meaning that the net can potentially loop around again and again,

covering that marking an infinite number of times. This loop gets marked in the tree and the

branch terminates. Places that have an infinitely growing number of tokens in this loop get

denoted with “ω” number of tokens.

A net is bounded if no ω appears in the graph. A transition in a net is at least L1-live if it

appears as an arc in the coverability graph (Murata, 1989).

42

As an example, consider the Petri net in figure 3.7, below. The coverability graph of this

net can be found in figure 3.8 directly below. In this simplified notation, the letters in the circles

represent one token in the given place, such that “A, C, E, E” signals one token on place A, one

on place C, and two on place E. In its initial marking, both transitions one and three can fire,

leading to two branches on the graph. Firing one or three from the initial marking does not

prevent later firing the other. However, firing transition one first enables transition two to fire.

Firing transition two prevents later firing of three and vice versa. Transitions two and three can

be said to be “in conflict” at this point. Every transition has an arc in the coverability graph,

making them all at least L1-live. No ω appears in the graph, indicating the net is bounded.

Specifically, the net is 2-bounded since the firing sequence (t1,t2) puts two tokens on place E.

1 B 2 C

3 EA

D

F

E

Figure 3.7– Example Petri net for coverability graph construction

F,D,E

A,B,D,E

1

A,C,E,E

2

F3

A,B

1

3

Figure 3.8– Coverability graph of the net in figure 3.7

 The figure on the next page shows the coverability graph for figure 3.3, the Petri net used

to discuss reachability. The ω following some letters indicates that those places could potentially

have an infinite number of tokens and hence any arbitrary marking can be covered by another

43

with more tokens on those places. For example, firing transition one from the initial marking will

result with one token on places A, B, and D. Transition one can then be fired infinitely more

times to put infinitely more tokens on places A and B. D will only ever hold one token. In this

net, transition three is not live and the net is unbounded since the ω symbol appears in the graph.

D Aω,Bω,D1 Aω,Bω,C,E2 1

Figure 3.9– Coverability graph of the net in figure 3.3

 The coverability graph offers a convenient way to summarize even infinitely-sized

reachability trees for small Petri nets. Even with this space-saving assumption, however,

formulating coverability graphs for moderately-sized Petri nets can take a large amount of

memory and time.

Numerous software packages offer a convenient set of tools to model Petri net

reachability trees. While a substantial number of software options exist, many date back to the

1990’s, lack vibrant user bases, have poorly-designed user interfaces, require uncommon

operating systems, or simply are not easy for those unfamiliar with Petri nets and computer

science to use (Bonet, Llado, Puigjaner, & Knottenbelt, 2007; Thong, 2015).

For this analysis, the Platform Independent Petri net Editor tool (PIPE) offered the most

appealing set of features. PIPE is an open source, free-of-charge analysis tool developed at

Imperial College in London, England and available online (Dingle, Knottenbelt, & Suto, 2009).

The user community actively supports the software and it features a wide range of tools. PIPE

can quickly classify nets, includes a simulation tool, can determine if nets are bounded and

deadlock-free, and even constructs graphical depictions of the coverability graph. Additionally,

44

PIPE’s intuitive user interface makes it appropriate for those with limited familiarity with Petri

nets.

Unfortunately, the sheer size of many Petri nets, including the one used later in this

analysis (see Chapter Four: Modeling), results in a “state space explosion” (Murata, 1989).

Adding a few more places to a large net can frequently cause massive additions to the

reachability tree. Large coverability graphs cannot be easily generated with software like PIPE

on a typical personal computer. Computational complexity poses no small problem for Petri net

analysis. In fact, the problems of determining reachability, coverability, boundedness, and

liveness in a general Petri net all require exponential space (Bourdeaud'huy et al., 2007; Jones,

Landweber, & Lien, 1977; Yen, 2008). Consequently, this thesis turns its attention to techniques

capable of traversing the massive solution space of these problems within a reasonable amount of

time.

 3.4.2 – A Binary Integer Programming Approach

The incidence matrix representation of a Petri net provides a seemingly convenient way

to model the reachability problem. Intuitively, one could simply take an incidence matrix and

target marking and solve for a control vector to reach that marking. Unfortunately, the power of

the state equation has some severe limitations. A target marking Mf is reachable from the initial

marking if some feasible firing sequence exists that can generate that marking. Therefore, a

feasible solution for the state equation for the sum of uk would appear to quickly determine

reachability. While this condition is necessary for reachability, a phenomenon called spurious

solutions prevents the condition from being sufficient (Miyazawa, Tanaka, & Sekiguchi, 1996).

Solving for the sum of uk yields a vector of nonnegative integers indicating the number of times

each transition fires. Unfortunately, this vector cannot be decomposed simply into an ordered

45

firing sequence, nor does it check if each transition in the sequence is enabled. While a solution

generates a sequence of transitions, a firing sequence of enabled transitions may not exist.

Circumventing this problem requires a more sophisticated approach. Literature is rich

with highly efficient solutions to the reachability problem for specific classes of Petri nets

(Khomenko & Koutny, 2007; Li, Sun, Gao, Gu, & Zheng, 2011). Nets with conflicting

transitions and strictly L2-live transitions, such as the nets used later in this analysis, are too

complex to use most of these techniques. Instead, this paper uses a binary integer programming

(BIP) model proposed by Bourdeaud’huy, Hanafi, and Yim (Bourdeaud'huy et al., 2007). While

not the only algorithm capable of performing general reachability analysis (Mayr, 1984), BIP

models can be easy to implement and easy to change, providing a great deal of flexibility.

This model provides elegant answers to several of the challenges of the general

reachability problem. The formulation used for analysis of this model is below.

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 0 (2)

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

 ∑ 𝐴 ∙ 𝑢𝑗
𝑘−1
𝑗=1 − 𝐴− ∙ 𝑢𝑘 ≥ −𝑀0 , ∀ 𝑘 ∈ [1, 𝐾] (3)

 ∑ 𝐴 ∙ 𝑢𝑘 = 𝑀𝑓 − 𝑀0 𝐾
𝑘=1 (4)

 𝑛 ∙ ∑ 𝑢𝑘𝑡 ≥ ∑ 𝑢(𝑘+1)𝑡 , ∀ 𝑛
𝑡=1

𝑛
𝑡=1 𝑘 ∈ [1, 𝐾] (5)

 𝑢𝑘𝑡 𝑖𝑠 𝑏𝑖𝑛𝑎𝑟𝑦 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, 𝑡

Symbols in this model are the same as those discussed previously. The BIP formulation

includes two new symbols, however. The constant K is the search depth, discussed in the next

paragraph. The matrix A
-
 is the input incidence matrix. In this binary matrix, a one as element

(i,j) represents that the transition in the row i takes the place in column j as input. These symbols

can be found on the next page, in table 3.2.

46

Table 3.2 – List of terms used in BIP formulation

Symbol Meaning

K Number of steps in analysis. This analysis uses 500.

uk The control vector for a single step. This formulation broadens it to include any

number of transitions in one step as long as all of them are enabled. The index j may

also be used.

A The incidence matrix

A
-

The input incidence matrix. Instead of aij
+
 - aij

-
, each element is just aij

-
. This matrix

represents the places that must have tokens for a transition to fire.

M0 The initial marking

Mf The target marking; the marking being tested for reachability

n The number of transitions. This model has 18

The model uses a step-based approach to save computation time. A step consists of a

number of transition firings that may happen simultaneously and is represented by a control

vector consisting of all transitions enabled at a given marking. This leverages the natural

parallelism of the Petri net to pare down the model and improve run times. The downside to this

approach is the finite number of steps the model can consider at a time. The depth of the search

in steps, denoted as K, must be set by the analyst.

The feasible solution for the model is a set of single-step control vectors in the order in

which they fire. This model solves the problem of spurious solutions; all transitions that fire are

enabled. If the model has no feasible solution, then the target marking Mf is not reachable within

the tested number of steps. Note that this means the model cannot prove a state is not reachable

in general; rather, it can only disprove reachability within a given number of steps.

The model uses an intuitive approach to solve the reachability problem and each

constraint serves a straightforward purpose. Constraint (3) wards off spurious solutions by

ensuring that, for every step, the transitions in the control vector are all enabled in the marking

47

generated by all the previous control vectors. Specifically, the marking created from the sum of

all prior control vectors times the incidence matrix and added to the initial marking must have

more tokens in each place than the vector representing the needed inputs for the next control

vector. It does this with a new matrix called the input incidence matrix: a matrix composed of aij
-

that denotes only if place j has an input arc to transition i. Two transitions in conflict (that is, one

firing would disable the other) cannot fire in the same step under this constraint. All transitions

selected in a step must all be able to take the needed number of tokens from their input places

before any other transition places tokens on an output place.

The state equation is found in constraint (4), where the incidence matrix times the sum of

all the control vectors must equal the change between the target marking and the initial marking.

For reachability, this constraint has a hard equality requirement. For the coverability problem,

however, a greater-than-or-equal-to sign can be substituted. This gives the model the power to do

two things. First, the model can consider solutions that cover the target marking rather than meet

it exactly. Second, the model can practically disregard places if the target marking has no upper

bound for them. This allows the model to test for certain subsets of a partial reachability or

coverability problem; one may wish to test a few places for markings above a certain threshold

but ignore the others.

Constraint (4) can also prove partial reachability in a more general sense by simply

iterating the constraint fewer times. Instead of evaluating every place, the model can include this

constraint for just a few, relevant places. This allows the model to check for precise equality

(rather than coverability) for a subset of places at the cost of making non-reachability more

difficult to prove.

48

Constraint (5) and the binary decision variable constraint take care of housekeeping.

Specifically, constraint (5) ensures that any empty steps (where the control vector is entirely

zero) get moved to the end of the set of control vectors. Most target markings will be reachable

in less than 500 steps, and once reached, the model fills the remaining control vectors with “do

nothings”. This constraint aids in readability and also allows certain types of objective functions

to be used.

The objective function of the model has little use and does not highly affect the outcome

of the modeling. Feasibility or infeasibility is the main goal of analysis for reachability, so the

objective function only adds extra information that may or may not be interesting. The authors

propose several alternative objective functions, ranging from a meaningless function to merely

ensure feasibility, to more complex functions that seek to find reachable states in as few steps as

possible. While the objective function does not aid in reachability analysis, it can point to the

fastest way to reach the target marking. The precise nuances of this firing sequence depend on

the objective function in question. That said, these objective functions also increase run time and

may prove unwieldy for large nets.

Notably absent from the formulation is a constraint mandating that only one transition

fire per step. The binary restriction on the decision variables prevents reentry, where a transition

fires multiple times in a step, but concurrence is allowed. The absence of this constraint allows

for the step-based approach discussed earlier.

 3.4.3 – Disproving Reachability with the State Transition Equations

While the finite step limit makes the unreachability of states impossible to prove with the

binary integer programming model, Murata offers a convenient formulation to mathematically

49

disprove reachability, allowing confirmation for what Bourdeaud’huy’s model suggests (Murata,

1989).

 The technique stems from the state equation. The full proof can be found in Murata’s

work, but in practice, the existence of a nonzero solution for z in the equation below is “a

sufficient condition for nonreachability”. In other words, the difference in tokens between the

initial and target marking must be a “linear combination of the row vectors of Bf”:

 𝑀𝑓 − 𝑀0 = 𝐵𝑓
𝑇𝑧 (6)

 In the above equation, 𝑀𝑓 − 𝑀0 represents the marginal change in tokens between the

initial marking and target marking. The variable z is an (m-r) x 1 column vector, where m is the

number of places in the net and r is the rank of the incidence matrix A.

The matrix Bf can be derived from a concatenation of the identity matrix and the product

of two specific subsets of the incidence matrix. Specifically, A can be decomposed as shown in

equation 7, where the variables above and to the left of the matrix indicate the dimensions of

each submatrix.

 𝐴 =

𝑚 − 𝑟 𝑟

[
𝐴11 𝐴12

𝐴21 𝐴22
]

𝑟

 𝑛 − 𝑟
 (7)

From this, the matrix Bf can be given as follows:

 𝐵𝑓 = [𝐼𝑚−𝑟 ∶ −𝐴11
𝑇 (𝐴12

𝑇)−1] (8)

The term 𝐼𝑚−𝑟 represents an (m-r) x (m-r) identity matrix. In essence, Bf represents a set

of linearly independent solutions y to the equation Ay = 0. If the change in the marking is

orthogonal to everything in that set of solutions, then the target marking is reachable. Equation 9,

below, describes this relationship.

 𝐵𝑓(𝑀𝑓 − 𝑀0) = 0 (9)

50

Unfortunately, the technique in equation 9 still suffers from spurious solutions. Its

contrapositive in equation 6, however, can prove nonreachability definitively.

This analysis can be performed in the software R. Appendix 2 contains sample code from

an implementation of this technique.

This analysis only works for strict reachability, since it just considers the whole of one

marking at a time. Since partial reachability and coverability both concern only a portion of all

possible markings, this process would need to be repeated possibly infinite times to enumerate

every possible marking that satisfies a given partial reachability or coverability condition.

Inability to theoretically disprove reachability poses little problem. The Bourdeaud’huy

model can disprove reachability within an arbitrarily large number of steps, and many real-world

systems will likely have some sort of manual “reset” periodically where the starting state returns

to the initial state. As such, these systems can be engineered to avoid undesirable states for long

enough to render them a nonissue.

 3.5 – Determining Petri Net Boundedness

To keep workloads to a reasonable level for employees, system boundedness is a useful

property. Boundedness implies that for a given initial marking, no place can ever reach an

infinite number of tokens. Keeping tokens to a finite level ensures that work will not multiply out

of control. This both troubleshoots potential system issues and validates the construction of

models that should be theoretically bounded.

 3.5.1 – Using the Coverability Graph to Determine Boundedness

Evaluation of the coverability graph can quickly determine system boundedness.

Reachability trees enumerate every possible marking, so an unbounded Petri net yields an

51

unbounded reachability tree. Coverability graphs provide a more practical tool, as one merely

needs to search the graph for markings containing an ω. This method suffers the same pitfalls as

discussed above, however. This technique cannot be practically implemented for very large

graphs due to computational limitations. Thankfully, the next section describes methods to

circumvent this problem.

 3.5.1 – Model Simplification with Boundedness-Preserving Net Reductions

While the reachability tree offers the simplest method to determine system boundedness

and liveness, state explosion makes direct analysis in this vein impossible for large nets.

Consequently, researchers have developed several methods of Petri net reduction that generate

smaller nets while preserving interesting properties of the original, such as boundedness

(Chuanliang, 2010; Hyung, Favrel, & Baptiste, 1987; Murata & Koh, 1980; Suzuki & Murata,

1983).

Fundamentally, a net transformation involves changing a “reducible subnet” (Hyung et

al., 1987). This transformation can take two forms. The first is consolidation of all the elements

in the subnet into a single “macroplace” or “macrotransition”. This place or transition represents

the entire subnet. All arcs into any place or transition in the subnet become arcs into the

macroplace or macrotransition. The same holds true for arcs leading out of the subnet. The

second type of transformation involves simply removing the subnet entirely.

 While the transformations described later in this section maintain the properties of

boundedness and liveness, they do not necessarily maintain proper interpretation of the Petri net.

Consolidating several places together may result in a macroplace that has no intuitive meaning in

the real-world interpretation of the net. Consequently, net transformations of this type work best

52

to simply find properties of more complex nets, rather than condense nets down for easier

interpretation.

The list below describes some of these boundedness-preserving net reductions as they

apply to Petri nets without weighted arcs, as well as examples loosely or directly adapted from a

number of papers (Hyung et al., 1987; Murata & Koh, 1980; Suzuki & Murata, 1983):

 Two transitions with an unmarked place between them that only interacts with those two

transitions and where the only path from the first to the second transition goes through

that place can be reduced by combining the two transitions into one. The reducible subnet

consists of two transitions and the place sandwiched between them. This consolidated

transition can be called a “macrotransition” (Hyung et al., 1987). Murata calls this

“Fusion of Series Transitions”, or “FST” (Murata & Koh, 1980). Figure 3.10, below,

illustrates this change. The unnamed place in the middle interacts only with transitions

one and two, so it gets removed and the two places get consolidated. Input places to

either transition in the original net become inputs for the new transition, and the same

goes for output places.

1 2

B

CA

D

1

B

CA

D

Figure 3.10 – Combining transitions in series

 Similarly, two places with a transition between them where the first is unmarked and

outputs only to that transition can be merged into one place. Again, the only path from

the first transition to the second must run directly through the transition. The reducible

53

subnet consists of the two places and the transition between them. Some literature calls

the result of this union a “macroplace” (Hyung et al., 1987). Murata describes this as a

“Fusion of Series Places” or “FSP” (Murata & Koh, 1980). Figure 3.11 shows this

process. The unnamed place in the middle of the net gets removed and places A and B get

consolidated. All input transitions to A or B (from anywhere other than the removed

transition) become inputs to the new place. The same holds true for output transitions.

A

1

B

2

3

4

A

1

2

3

4

Figure 3.11– Combining places in series

 A marked place with a self-loop to one or more transitions can be removed if it has a

marking greater than the number of transitions that it inputs into. This only works if the

self-loop is not the only input to any of the transitions. This can be called an “Elimination

of Self-loop Places” or “ESP” (Murata & Koh, 1980). Figure 3.12 illustrates this

alteration, as the place between transitions one and two receives removal.

1 BA

2 DC

1 BA

2 DC

Figure 3.12 – Removing self-loop places

 A circuit where some number of unmarked places are each connected by a series of

transitions in a circuit can be reduced to a single macroplace, as shown in figure 25. The

54

circuit including places A and B gets consolidated into a single place A’. All input

transitions to any place in the circuit become input places for A’, and any output

transitions for any place in the circuit become output places for A’.

B

A

1 2

A’

1 2

3

4

3

4

Figure 3.13 – Consolidating a circuit

 Places in parallel can be consolidated, as per the illustration in figure 3.14. In this case,

places A and B get merged into place A’. Murata calls this “Fusion of Parallel Places”, or

“FPP” (Murata & Koh, 1980).

1

A

B

2C D 1 A’ 2C D

Figure 3.14 – Consolidating parallel places

 Transitions in parallel can be consolidated like transitions one and two in figure 3.15.

This can be called a “Fusion of Parallel Transitions”, or “FPT” (Murata & Koh, 1980).

2

B

1

A3 4 B1'A3 4

Figure 3.15 – Consolidating parallel transitions

55

While most work focuses on reduction of the graphical representation of Petri nets, it is

possible to reduce nets based on their incidence matrix (Medina-Marin, Seck-Tuoh-Mora,

Hernandez-Romero, & Quezada-Quezada, 2013). This means that large nets can be easily

reduced by computer programs without tedious effort on the part of modelers. That said, current

research in reduction via the incident matrix has yet to rival the body of research on graphical

reduction. This area offers significant opportunities for further work.

56

Chapter 4 - Modeling

Telemental health systems can be easily decomposed into a handful of fundamental

components which can be modeled as a Petri net. The approach belies several advantages. First

of all, telemedicine systems feature significant amounts of parallelism that can be easily captured

as Petri net. Next, the finite resources of telemedicine systems mean that Petri nets’ ability to

capture conflict works well. Telemedicine systems can be very complex, with information and

signals moving all over the network and many actors waiting for dependent events. Finally, the

fundamental diversity of system organization and treatment time among different providers

makes general results quite useful. Petri nets do not consider time and can offer more generalized

results than discrete-event simulations. Petri nets reachability analysis offers an excellent way to

diagnose potential failure modes or generally undesirable states for telemedicine systems.

Boundedness analysis can also determine if workloads stay at a manageable level.

Petri nets prove to be excellent modeling tools for telemedicine systems. Some research

has already attempted to model aspects of telemedicine with Petri nets. One study develops a

predictive maintenance tool using Petri nets for pacemaker hardware that can be implemented

with telemedicine (Yang, 2004). Another study applies Petri nets to the software applications of

telemedicine, using their analytic potential to engineer a solution to collaborative synchronous

software deadlocks (Bouillon, 2003). Despite these applications, the business practices and care

procedures of telemedicine remain a ripe field for the application of Petri net modeling and

analysis.

This section discusses the specific nuances of using Petri nets to model telemedicine

systems and provides an example of a generalized system. While individual systems may have

57

variations on the ensuing model, the basic elements and their dependencies on each other should

remain fairly consistent across implementations.

The model uses transitions to symbolize the actions involved in a telemedicine delivery

process. To avoid self-loops and allow for the construction of a useful incidence matrix, some

processes split into two transitions. The first marks the start of the process, while the second,

called a dummy transition in this paper, signals the end.

The model has three types of places that represent three different things. Regular places

signal completion of a step in the process and readiness for the next step. Dummy places lie right

before dummy transitions and signal that a step is in-progress. Finally, resource places represent

the availability of patients and staff. Whenever an action or series of sequential actions directly

involves them, the corresponding transition uses their place as an input. Whenever they finish

that action or series of actions, the final transition in that series uses their place as an output. If a

patient or staff member is needed for just one task at a time, this setup forms a self-loop. Self-

loops cause analysis problems but can be mitigated by using a dummy transition to model the

task as two transitions representing the start and end of the job.

The number of tokens in each patient or staff place in the initial marking represents the

maximum number of patients or staff available to execute steps in the telemedicine process.

When a transition requires the time of a patient or staff member, their corresponding place loses

a token until the completion of that event. In this way, the Petri net can model the availability of

staff and capture deadlocks or conflict caused by their absence. That said, deadlocks captured

this way may not be absolute in practice since the system is fundamentally controlled by people

that have the common sense that Petri nets lack.

58

In practice, one person may fill multiple roles, or one role may be filled by several

people. In the former case, consolidating the appropriate places can accurately model the system

(although the addition of dummy transitions may be necessary to avoid self-loops). In the latter,

simply adding tokens to the initial marking to symbolize the number of people filling the role can

capture having several people fill one role.

 As discussed in chapter 2, telemental health systems can be decomposed into four major

phases: patient enrollment, session preparation, the session itself, and session follow-up. Most

systems will execute the patient enrollment phase once per patient, but will repeat the other three

phases some number of times. While enrollment may occur several times in some systems,

further analysis will assume that enrollment is a transient phase that must only occur once per

patient.

 4.1 – Modeling Synchronous Telemedicine Systems

Synchronous telemental health systems exhibit a high degree of parallelism for individual

patients; consequently, Petri net models describe their behavior quite well. The remainder of this

section goes over each of the four phases in treatment as they pertain to synchronous telemental

health systems. A full version of the net developed can be found in Appendix 1.

 4.1.1 – Patient Enrollment

 Telemental health processes begin with a referral for the patient to begin therapy. As

such, the Petri net representation of a telemental health system begins with place 1: referrals

received. The number of tokens on this place represents the number of referrals for service. This

place has no input arcs, so the number of patients in the system should remain static for the

purposes of the model. Transition 1: referral review takes one token from place 1 as an input and

59

one token from resource place 3: specialist. It outputs one token to dummy place 1: referral

review in progress. Dummy transition 1: finish referral review takes this single place as input,

returns a token to resource place 3 to indicate the readiness of the specialist, and puts one token

on place 2: referral approved. This model assumes that all referrals result in approval of further

treatment.

 When the referral receives approval and a token lies in resource place 4: hub site

administrator, transition 2: patient enrollment becomes enabled. Firing it puts one token in

dummy place 2: enrollment in progress. Firing dummy transition 2: finish enrollment takes a

token from dummy place 2, returns a token to resource place 4 (the hub administrator), and puts

tokens on places three through six in the next phase of the net.

 In short, enrollment requires only the specialist and hub site administrator to execute.

Both are available by the end of the process. The number of times this process can be done

corresponds to the number of referrals awaiting review, that is, the number of tokens in place 1.

Figure 4.1 and tables 4.1 and 4.2, below, show how these places come together.

p
1

t
1

p
2

dt
2

rp
3

rp
4

dp
2

t
2

dp
1

dt
1

Figure 4.1– Telemedicine Phase 1: Patient Enrollment (Outgoing Arcs Omitted)

60

Table 4.1– Transitions in Telemedicine Phase 1: Patient Enrollment

Transition Number Process Name Input Places Output Places

Transition 1 Referral Review p1, rp3 dp1

Dummy Transition

1

Finish Referral Review dp1 p2, rp3

Transition 2 Patient Enrollment p2, rp4 dp2

Dummy Transition

2

Finish Enrollment dp2 p3, p4, p5, p6, rp4

Table 4.2– Places Introduced in Telemedicine Phase 1: Patient Enrollment

Place Number Place Name

Place 1 Referrals Received

Dummy Place 1 Referral Review in Progress

Place 2 Referral Approved

Dummy Place 2 Enrollment in Progress

Resource Place 3 Specialist

Resource Place 4 Hub Site Administrator

 4.1.2 – Session Preparation

 The completion of enrollment readies the model to split into four different paths that may

be completed concurrently. Dummy transition 2 places one token each on places three through

six, discussed in turn below.

 Place 3: patient may arrive represents the time about an hour or so prior to an

appointment where the patient may come check in. Transition 3: check-in takes one token from

this place as input in addition to one token from resource place 1: patient and one token from

resource place 5: spoke site administrator. Transition 3 outputs one token to dummy place 3:

check-in in progress. Dummy transition 3: finish check-in takes dummy place 3 as input, and

returns a token to resource place 5, freeing the spoke site administrator. The patient should

61

proceed directly to the appointment before doing any other task, so the corresponding token is

not returned. Finishing check-in also puts a token on place 8: patient ready for session. Places

eight through eleven indicate completed preparation that must be marked to enable the session.

 Place 4: session scheduled is an output node from the completion of enrollment. This

place begins the series of preparatory events on the specialist’s side. One token on place 4 and

another token on resource place 4 (the hub site administrator) enables transition 4: specialist

priming. In this transition, the hub site administrator gathers patient data and records to hand off

to the specialist. Firing transition 4 places a token on dummy place 4: priming in progress, which

is an input place for dummy transition 4: finish priming. Dummy transition 4 returns a token to

the hub site administrator’s place and puts a token on place 7: patient data acquired. If the

specialist’s place has a token, this enables transition 7: specialist preparation, where the

specialist reviews patient data, writes questions if necessary, and generally prepares for the

interview. Firing transition 7 puts a token on place 9: specialist ready for session. The specialist

remains occupied waiting for the session to start.

 Place 5: hub space reserved is an output node from enrollment completion. Transition 5:

AV preparation (hub) takes place 5 as input, as well as resource place 6: hub site technology.

Rather than the person who manages the technology, this place represents the actual equipment

itself and the number of tokens in its initial marking indicates the number of rooms or computers

available for scheduling. When looking at resource utilization purely from the scope of

telemedicine, the room always has slightly utilization than the technology specialists and

receives use at about the same time, so modeling them as one in the same proves useful for

condensing the model. Firing transition 5 puts a token on place 10: hub technology ready and

62

symbolizes the work needed to set up the AV equipment and associated physical assets for the

appointment.

 Place 6: spoke space reserved starts a series of places and transitions nearly identical in

function to that started by place 5. Place 6 enables transition 6: AV preparation (spoke), which

also takes a token from resource place 7: spoke site technology and puts a token on place 11:

spoke technology ready. For both this and transition 5, the AV equipment does not become

available until after the appointment.

 With all the preparatory work completed, phase two of the telemedicine system reaches

its conclusion and phase three begins. Figure 4.2 and tables 4.3 and 4.4, below, show how these

pieces come together.

dt
2

p
3

t
3

p
4

t
4

p
5

t
5

p
6

t
6

p
7

t
7

p
8

p
9

P
10

P
11

rp
1

rp
3

rp
4

rp
5

rp
6

rp
7

dp
3

dt
3

dp
4

dt
4

Figure 4.2 – Phase 2: Session Preparation

63

Table 4.3 – Transitions in Phase 2: Session Preparation

Transition Number Process Name Input Places Output Places

Dummy Transition

3

Finish Check-In dp3 p8, rp5

Transition 4 Specialist Priming p4, rp4 dp4

Dummy Transition

4

Finish Priming dp4 p7, rp4

Transition 5 AV Preparation (Hub) p5, rp6 p10

Transition 6 AV Preparation (Spoke) p6, rp7 p11

Transition 7 Specialist Preparation p7, rp3 p9

Table 4.4 – Places Introduced in Phase 2: Session Preparation

Place Number Place Name

Place 3 Patient May Arrive

Dummy Place 3 Check-In in Progress

Place 4 Session Scheduled

Dummy Place 4 Priming in Progress

Place 5 Hub Space Reserved

Place 6 Spoke Space Reserved

Place 7 Patient Data Acquired

Place 8 Patient Ready for Session

Place 9 Specialist Ready

Place 10 Hub Technology Ready

Place 11 Spoke Technology Ready

Resource Place 1 Patient

Resource Place 2 Nurse

Resource Place 5 Spoke Site Administrator

Resource Place 6 Hub Site Technology

Resource Place 7 Spoke Site Technology

64

 4.1.3 – The Therapy Session

 While fairly simple to model, the session itself is the most important piece of any

telemedicine system. Transition 8: therapy session represents the appointment where the patient

and doctor connect via some form of audiovisual equipment. The patient must be checked in and

available (ensured by a token existing on place 8), the specialist must be prepared and available

(place 9), and rooms and equipment in both the hub site and spoke site must be prepared and

available (places 10 and 11) for the session to begin. In addition to places 8 through 11,

transition 8 needs input from resource place 2: nurse. This employee works with the patient at

the spoke site to handle any difficulties that arise.

 When transition 8 fires and the session completes, the rooms and AV equipment become

available again, indicated by output arcs to resource places 6 and 7. Additionally, the session

outputs to two places that represent the beginning of the fourth phase of the system. Figure 4.3,

below, as well as tables 4.5 and 4.6 show the components of this part of the process.

p
8

t
8p

9

P
10

P
11

rp
2

rp
6

rp
7

Figure 4.3 – Phase 3: Therapy Session

65

Table 4.5 – Transitions in Phase 3: Therapy Session

Transition Number Process Name Input Places Output Places

Transition 8 Therapy Session p8, p9, p10, p11,

rp2

p12, p13, rp6, rp7

Table 4.6 – Places Introduced in Phase 3: Therapy Session

Place Number Place Name

Resource Place 2 Nurse

 4.1.4 – Session Follow-Up

 The fourth and final stage of the telemedicine process is follow-up from the therapy

session. Place 12: session done (hub), an output place from the session’s transition, enables

transition 9: specialist follow-up when it has a token on it. Transition 9 encompasses all post-

session activity by the specialist, including consolidating notes, developing treatment

recommendations, and making drug prescriptions if necessary. Firing transition 9 frees the

specialist, putting a token back on resource place 3, and also puts a token on place 14: specialist

follow-up complete.

 Concurrent to all this, place 13: session done (spoke) also acts as an output place for the

session. When it has a token, it enables transition 10: patient follow-up, which represents all

action between the patient and nurse immediately after the session. During this time, the patient

may ask questions of the nurse if necessary, the nurse may elaborate on instructions from the

specialist, and any last-minute notes can be sent to the specialist. Firing transition 10 puts a

token back on the nurse’s place to indicate the end of their role and also puts a token on place

15: patient follow-up complete.

66

 When both the hub and spoke site complete their immediate follow-up (that is, both place

14 and 15 have tokens), transition 11: follow-up processing can fire. This transition also requires

input from the hub site administrator’s place. This short step simply involves consolidating all

data from the hub and spoke sites, preparing treatment for the patient, and sending that

information back to the spoke site. Firing transition 11 puts a token on dummy place 11: follow-

up processing in progress, which enables dummy transition 11: finish follow-up processing. This

dummy transition has two output places. The first frees the hub administrator by returning a

token to resource place 4. The second puts a token on place 16: specialist follow-up sent.

 A token in place 16 enables the final set of actions. If the spoke administrator is

available, transition 12: check-out takes one token from resource place 5 and one token from

place 16. Firing this transition puts a token on dummy place 12: check-out in progress, which

enables dummy transition 12: finish check-out. Firing this final dummy transition frees the

patient and spoke administrator by putting tokens on resource places 1 and 5. The system is now

ready to begin the next appointment of the patient, so dummy transition 12 also outputs to places

3-6 to enable the telemental health system to start again in phase two, the session preparation.

The follow up stage can be seen in figure 4.4, with tables 4.7 and 4.8 describing the components

of this segment.

67

p
3

p
4

p
5

p
6

t
8

t
9

t
10

P
13

P
14

P
15

P
16

P
12

t
11

t
12

rp
1

rp
2

rp
3

rp
4

rp
5

rp
6

rp
7

dp
12

dt
12

dp
11

dt
11

Figure 4.4 – Phase 4: Session Follow-Up

Table 4.7 - Transitions in Phase 4: Session Follow-Up

Transition Number Process Name Input Places Output Places

Transition 9 Specialist Follow-Up p12 p14, rp3

Transition 10 Patient Follow-Up p13 p15, rp2

Transition 11 Follow-Up Processing p14, p15, rp4 dp11

Dummy Transition

11

Finish Follow-Up

Processing

dp11 p16, rp4

Transition 12 Check-Out p16, rp5 dp12

Dummy Transition

12

Finish Check-Out dp12 p3, p4, p5, p6, rp1, rp5

Table 4.8 - Places Introduced in Phase 4: Session Follow-Up

Place Number Place Name

Place 12 Session Done (Hub)

Place 13 Session Done (Spoke)

Place 14 Specialist Follow-Up

Complete

Place 15 Patient Follow-Up Complete

Dummy Place 11 Follow-Up Processing in

Progress

Place 16 Specialist Follow-Up Sent

Dummy Place 12 Check-Out in Progress

68

In all, the model has 29 places and 18 transitions, including dummies and resources.

 4.1.5 – Initial Marking

 The initial marking used in later analysis represents a fairly typical situation for a

telemental health system just starting up. The discrete-event simulation in Chapter 2 revealed

that a telemedicine system with one provider working at full utilization can handle

approximately 25 patients a week. Consequently, the initial marking for the Petri net model

includes 25 tokens in the patient resource place, and 25 tokens in the “referrals received” place.

Additionally, it places one token in each of the other six resource places, indicating one available

nurse, specialist, and so on. No other places are marked. That said, this marking contains the

tokens needed to eventually fire every transition at least 25 times.

 4.2 – Modeling Asynchronous Telemedicine Systems

Asynchronous telemental health systems feature all of the same basic components that

synchronous systems have but arrange them slightly differently. In contrast to the high level of

parallelism within individual patient cases found in synchronous systems, asynchronous systems

have lots of parallelism between cases. In other words, synchronous systems have multiple actors

working on one patient at the same time, while asynchronous systems have those same actors

working on different cases at the same time. As previously discussed, this provides a high degree

of flexibility and allows specialists to best use their time.

The consequence of this setup is a much more linear processing scheme for asynchronous

systems, as well as more subdivisions of the process. Activity on a patient’s case passes back and

forth between hub and spoke sites and never occurs in both at the same time. Session preparation

69

and session follow-up both have subcomponents that occur exclusively at the hub and spoke.

Moreover, boundaries between these subdivisions can imply some delay time. Unlike in the

synchronous system, where all activities after enrollment happen as quickly in succession as

possible, there may be a delay of a day or two between phases. As long as response times are

reasonably timely, this freedom to do actions when convenient can improve the utilization of

employees.

The following sections describe the phases of the asynchronous system in-depth. Since

much of the net is similar to the synchronous model, much of the explanation will be shortened

for the sake of brevity.

 4.2.1 – Patient Enrollment

 The asynchronous system begins with patient enrollment. This section of the net is

actually identical to its counterpart in the synchronous system, with the exception of the output

of dummy transition 2. A full description of that system can be found on page 59. Regardless,

figure 4.5 below details this part of the process.

p
1

t
1

p
2

dt
2

rp
3

rp
4

dp
2

t
2

dp
1

dt
1

Figure 4.5 – Phase 1: Patient Enrollment – Asynchronous

70

 4.2.2 – Hub-Side Session Preparation

Since the model is asynchronous, the process requires action by the hub administrator in

resource place 4 to gather information. They pass this off to the specialist in resource place 3.

They generate a set of questions and hand them back to the hub administrator to send to the

spoke site. Figure 4.6 shows these processes.

p
3

t
3

p
4

t
4

rp
3

rp
4

dp
3

dt
3

dp
4

dt
4

p
5

t
5

dp
5

dt
5

Figure 4.6 – Phase 2a: Hub-Side Session Preparation

 4.2.3 – The Day of the Therapy Session

When the patient (resource place 1) checks in, the spoke administrator in resource place

5 and the spoke technology specialist in resource place 6 both have work to do checking in the

patient and setting up the room. They can complete these in parallel. When both are ready and

the nurse in resource place 2 is available, the session (transition 8) can begin. The nurse reads

the patient the questions prepared by the specialist and the patient answers on camera. Afterward,

the nurse must complete follow-up work. The spoke administrator then checks out the patient

and sends the recorded responses back to the hub site. Figure 4.7 on the next page shows this.

71

t
6

t
7

p
7

t
8p

6

p
8

dt
8

dp
8 p

9
t
9

rp
1

rp
2

rp
5

rp
6

dp
9

dt
9

dp
6

dt
6

Figure 4.7 – Phase 2b: Spoke-Side Preparation and Phase 3: Therapy Session

 4.2.4 – Hub-Side Session Follow-Up

After receiving patient responses, the specialist in resource place 3 must examine those

responses and recommend treatment. The specialist passes this recommendation off to the hub

administrator in resource place 4, and they send those responses back to the spoke site. Figure

4.8 captures this part of the process.

rp
3

rp
4

p
10

t
10

dp
10

dt
10

p
11

t
11

dp
11

dt
11

Figure 4.8 – Phase 4a: Hub-Side Session Follow-Up

72

 4.2.5 – Spoke-Side Session Follow-Up

The process ends with the patient (resource place 1) checking in once again with the

spoke administrator (resource place 5). The patient then meets with the nurse briefly to receive

instructions or medication and checks out again with the spoke administrator. Figure 4.9 depicts

the final leg of the process.

P
14

t
14

rp
1

rp
2

rp
5

dp
14

dt
14

p
13

t
13

dp
13

dt
13

P
12

t
12

dp
12

dt
12

Figure 4.9 – Phase 4b: Spoke-Side Session Follow-Up

In all, the model has 33 places and 27 transitions, including dummies and resources.

 4.2.6 – Initial Marking

 Just like the synchronous model, the asynchronous Petri net representation of a

telemedicine system has an initial marking that represents the start of the system. Place 1 and

resource place 1 have 25 tokens each that represent patients, while each other resource place has

one token to symbolize a single staff member.

73

 4.3 – Modeling the Incidence Matrix

 The state transition equation provides an extremely useful tool for analyzing the behavior

of Petri nets, as discussed in the previous chapter. However, using this tool requires an incidence

matrix. This matrix happens to have a rank of 17 for the synchronous model. The reachability

analysis in the next chapter will use this fact. The incidence matrices for both synchronous and

asynchronous telemedicine systems can be found on the next two pages.

74

p1 dp1 p2 dp2 p3 dp3 p4 dp4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 dp11 p16 dp12 rp1 rp2 rp3 rp4 rp5 rp6 rp7

t1 -1 1 0 -1 0 0 0 0

dt1 0 -1 1 0 1 0 0 0 0

t2 0 0 -1 1 0 -1 0 0 0

dt2 0 0 0 -1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

t3 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 0

dt3 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

t4 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

dt4 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

t5 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

t6 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

t7 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

t8 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 1 1 0 0 0 0 0 0 -1 0 0 0 1 1

t9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 1 0 0 0 0

t10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 1 0 0 0 0 0

t11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 1 0 0 0 0 0 -1 0 0 0

dt11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 1 0 0 0

t12 0 -1 1 0 0 0 0 -1 0 0

dt12 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 1 0 0

Figure 4.10 – Incidence Matrix for the Synchronous Model

75

p1 dp1 p2 dp2 p3 dp3 p4 dp4 p5 dp5 p6 dp6 p7 p8 dp8 p9 dp9 p10 dp10 p11 dp11 p12 dp12 p13 dp13 p 14 dp14 rp1 rp2 rp3 rp4 rp5 rp6

t1 -1 1 0 -1 0 0 0

dt1 0 -1 1 0 1 0 0 0

t2 0 0 -1 1 0 -1 0 0

dt2 0 0 0 -1 1 0 1 0 0

t3 0 0 0 0 -1 1 0 -1 0 0

dt3 0 0 0 0 0 -1 1 0 1 0 0

t4 0 0 0 0 0 0 -1 1 0 -1 0 0 0

dt4 0 0 0 0 0 0 0 -1 1 0 1 0 0 0

t5 0 0 0 0 0 0 0 0 -1 1 0 -1 0 0

dt5 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

t6 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0

dt6 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

t7 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

t8 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

dt8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

t9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

dt9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

t10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

dt10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 1 0 0 0

t11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 -1 0 0

dt11 0 -1 1 0 0 0 0 0 0 0 0 1 0 0

t12 0 -1 1 0 0 0 0 -1 0 0 0 -1 0

dt12 0 -1 1 0 0 0 0 0 0 0 1 0

t13 0 -1 1 0 0 0 -1 0 0 0 0

dt13 0 -1 1 0 0 1 0 0 0 0

t14 0 -1 1 0 0 0 0 -1 0

dt14 0 0 0 0 1 0 -1 1 0 0 0 1 0

Figure 4.11- Incidence Matrix for the Asynchronous Model

76

Chapter 5 - Analyzing Telemedicine Systems

While simply modeling telemental health systems with Petri nets has some value in and

of itself, the true power of the tool comes from its analysis. This chapter applies the analytic

techniques discussed in Chapter 3 to the model built in Chapter 4.

 5.1 – Reachability

Reachability in practice tests whether undesirable system states can be reached from a

given starting state. These states could range from failure modes, to potential deadlocks, to states

that simply cause personal or political problems. The following section captures some of the

most glaring possible issues in telemedicine systems and their corresponding Petri net marking

representations.

 5.1.1 – Analysis Goals and Undesirable States

 Reachability analysis for Petri nets can have one of two major roles. The first is model

verification. Most telemedicine systems will not spontaneously make their doctors disappear into

thin air, so a Petri net modeling telemedicine systems should not let that happen. Confirming this

helps confirm the validity of the model and usefulness of other results.

 The second and far more interesting goal of reachability analysis is to predict possible

system behavior. States where employees have massive piles of work to accomplish may be very

real but undesirable. Testing systems for this can highlight problems and potentially reveal

systematic changes to stop them.

 Telemedicine systems feature a number of these undesirable states. The list below

describes their characteristics and what they look like when modeled in a Petri net.

77

1. An empty net, where all tokens somehow get consumed. More generically, any situation

where the net is dead.

2. Growing resources. The number of patients and staff available should be bounded by the

initial marking. Markings where more than these numbers become available imply a

problem with the model.

3. Situations where all patients and providers are occupied. This state actually is not terribly

undesirable, as it signals a high degree of utilization and parallelism.

4. Partial deadlock situations where one of the seven resource places loses all its tokens and

cannot regain them. Alternatively, markings where zero tokens exist in the resource

places and dummy places.

5. Conflict situations where an employee could be needed at several transitions at once.

6. Situations where many tokens reside in phase 1 of the net after a large number of steps.

This is essentially the fairness property discussed earlier.

Variations on reachability analysis or coverability analysis can test the model for the

existence of all these states. The next section explains how to execute this analysis.

 5.1.2 – Implementing the Binary Integer Programming Model

The BIP model discussed in the previous chapter proves very useful for determining the

reachability of the undesirable states considered above. The application of the BIP model in the

paper uses a 500-step search depth: enough steps to allow transitions to fire modeling 25 patients

enrolling, attending sessions, and checking out. The model opts for a very simple objective

function that accepts the first feasible solution found.

78

Implemented in optimization programming language (OPL) using IBM’s CPLEX solver

and a base search depth of 500 steps, the model can detect infeasible solutions in as little as 30

seconds, although it can take much longer for more complex markings. The search depth of 500

steps provides ample time for the model to find a feasible solution. Thanks to the model’s

definition of “step” that allows multiple enabled transitions to fire in one step, this depth

provides more than enough time for each transition in the model to fire 25 times, effectively

providing all 25 patients the opportunity to complete a session from enrollment to check-out.

 5.1.3 – BIP Model Results

This tool provides a convenient way to test several of the undesirable markings for

reachability and coverability. The results can be found below:

1. The empty net, where no tokens exist in any place, is unreachable within 500 steps. This

is a pure reachability problem where the model seeks a value of 0 tokens in each place.

Application of the equations disproving reachability in Murata’s work, discussed in

chapter three, confirms that the empty net is truly unreachable from the initial marking

(Murata, 1977).

2. Growing resource situations, where more tokens appear in a place in some marking than

in the initial marking, are all unreachable within 500 steps. This is a coverability

problem, where the resource under consideration in the target marking has a value of its

starting value plus one (this equals two in most cases) and all other places have a value of

zero. The zero allows any value of the variable to occur in the target marking, since any

feasible value should be greater than or equal to zero.

3. Situations where all employees and patients become occupied are reachable. This

problem is a partial reachability problem where the model only checks if the resource

79

places have exactly zero tokens. It accomplishes this by selectively iterating the second

constraint representing the state transition equation.

4. Partial deadlock situations where a given resource disappears, that is, where no tokens

exist in their resource place or any of the places indicating that they are busy, are not

reachable within 500 steps. This is a partial reachability problem where the model checks

if the resource place and all the places where that person is occupied have exactly zero

tokens. Unfortunately, the models used cannot definitively disprove reachability

sometime after 500 steps.

5. Situations where conflicts over resources exist are reachable. Specifically, with the initial

marking it is possible to reach situations where the specialist, hub site administrator, and

spoke site administrator must choose between doing one of several tasks and delaying the

others. Patients, nurses, and technology specialists do not have any conflict situations in

the model. These are partial coverability problems, where the model checks if all

transitions that have the resource place for specialists and administrators as inputs are

enabled.

6. Situations where a large number of tokens could remain at the start of the net after quite

some time are reachable within 500 steps. The model could spend all 500 steps moving

one token into the repeating portion of the net and simply running that one patient over

and over again. The permissive nature of Petri nets makes this a reality, although this

problem is not likely to occur in practice.

The time needed to evaluate certain markings for reachability can take over two hours in

this model. Thankfully, Bourdeaud’huy et. al. (2006) noted a useful change to the model that

does not significantly degrade performance. Specifically, the authors of the model propose

80

relaxing the binary constraint on the decision variables. This relaxation to a linear-programming

model opens the door to comparatively rapid analysis with the simplex method. As with all linear

relaxations of integer problems, however, the nearest integer solution to a linear program result

may not be feasible. Regardless, an LP-relaxation still may find a result in the ballpark of a

feasible solution.

 5.2 – Boundedness

 Ensuring Petri net boundedness serves to both validate the model and diagnose potential

failure modes. For places that represent some finite quantity (such as the number of nurses),

unbounded token growth would indicate a problem with the model. For places that represent a

work queue, token proliferation represents an undesirable workload and boundedness ensures

that this workload remains manageable in practice.

Determining the boundedness of a net typically involves generating the reachability tree

of the net (Murata, 1989). As discussed already, this cannot be quickly accomplished for large

nets, even with software. The net generated in the previous chapter is far too large for software

like PIPE to analyze (Bonet et al., 2007; Dingle et al., 2009). However, with the smaller instance

of the net found via the net transformations described below, PIPE can easily solve for

boundedness.

 5.2.1 – Net Transformations

 The synchronous individual can be reduced according to the model described in the

following steps. These steps correspond to transformations described in literature (Hyung et al.,

1987) and explained in chapter three.

81

1. Remove place 2, referral approved, and consolidate dummy transition 1 and transition 2

into one transition. This new “macrotransition” takes dummy place 1 and the hub

administrator as input and has the specialist and dummy place 1 as output. Remove place

7, patient data acquired, and consolidate dummy transition 4 and transition 7 as above.

Also remove place 16, specialist follow-up sent, and consolidate dummy transition 11

and transition 12 as before. Figure 5.1, below, shows the net before these changes.

Consolidated transitions and deleted places appear in circles.

Figure 5.1 – Synchronous Petri net with several potential reductions denoted in circles

2. Remove places between two transitions where the first seizes a resource and the next

immediately releases it. In this instance, there exists a path from the first transition to the

second and a path from the second transition to the first. Defining the reducible subnet to

include just the non-resource place and the two transitions it lies between allows for

reductions similar to those above. These changes result in the removal of the place and

the consolidation of the two transitions on either side. Additionally, the resource place

remains connected and marked to the new “macrotransition” via a self-loop. This

82

transformation works for dummy place 1, dummy place 2, dummy place 3, dummy place

4, dummy place 11, and dummy place 12. Figure 5.2, below, shows these changes.

Figure 5.2 - Synchronous Petri net with three subnets consolidated

3. The net generated from the previous reductions invites several more promising changes.

With the exception of resource places, the final transition in the net before it loops back

to the beginning of the session preparation phase has two input places that meet the

requirements for removal stated above. This change can be seen in figure 5.3, on the next

page. At this point, the net becomes abstract enough to make interpretation of markings

difficult.

83

Figure 5.3- Synchronous Petri net with all dummy places eliminated

4. Step five leaves two places that each have one input from the transition loosely

representing the session and one output to the final transition. These places can be

merged together, representing a “session complete” state in a very general sense. Figure

5.4 shows this change and figure 5.5 shows the Petri net that results from these changes.

Figure 5.4 - Synchronous Petri net with additional places removed

84

Figure 5.5 – Synchronous Petri Net with parallel places consolidated

While more reductions can be made, those listed above are all that prove necessary for PIPE

to perform a boundedness analysis.

 5.2.2 – Software Analysis Results

PIPE’s analysis determined that the reduced net is bounded. Since the transformations

used preserve boundedness, the full net is also bounded. This means that the process is limited

and, given a fixed demand for telemedicine services, cannot generate an infinite number of

patient cases, paperwork trails, or appointments.

 5.2.3 – Petri Net Liveness

 The set of transformations used to reduce the model for analysis of boundedness also

preserve the property of deadlock-freeness. While a fairly low level of liveness (Murata, 1989),

deadlock-freeness nevertheless guarantees that the telemedicine system modeled by the net never

comes to a complete and unresolvable standstill.

85

Chapter 6 - Conclusion

Telemedicine, particularly telemental health, can provide solutions to some of the most

pressing needs of today’s world. By eliminating geographical barriers that would otherwise

prevent patients from accessing specialists, doctors with valuable insight can extend their

effective range to use their education in the best way possible. Moreover, telemental health can

potentially provide care that is better than available face-to-face treatment in certain situations.

Telemental health faces some challenges, however. Further studies of the clinical

ramifications of telemental health, as well as the development of effective measurements to

gauge system quality, must occur before widespread adoption. Other hurdles relate to system

implementation involve ensuring actors become familiar with the system’s complexities. Since

telemental health can come in both synchronous and asynchronous varieties, clearly

communicating the interactions and dependencies of the process becomes essential for effective

operation. Both types of system configuration have their advantages and disadvantages, with

asynchronous telemedicine costing a little less to setup but injecting more complexity and

unconventional wisdom into the system.

Despite the differences between synchronous and asynchronous modes, most

telemedicine systems have the same basic components. The major actors include patients,

specialists, nurses/general practitioners, administrators at the spoke and hub site, and technology

specialists at the hub and spoke. Systems go through four distinct phases: a transient enrollment

phase, session preparation, therapy, and session follow-up.

Telemedicine systems lend themselves well to discrete-event simulation. A simulation

implemented in chapter one indicated that a basic system of similar structure to that of the New

Mexico VA Hospital’s telemental health system, with one of each major employee (that is, one

86

specialist, one nurse, one set of administrators, and one set of technology specialists) can serve

about 25 patients per week before the specialist has no time remaining for other tasks. While

useful for analyzing specific system configurations with given demands and service rates,

discrete-event simulation provides little insight into theoretic system properties or possible long-

term behavior of telemedicine systems.

Petri nets, on the other hand, can provide useful insight into the more abstract behavior of

systems. This tool flaunts its computer science pedigree with its ability to model concurrency,

conflict, and preconditions in complex systems with ease. Petri nets boast a wide range of

theoretical properties and excel at modeling long-term behavior and potential failure modes. In

particular, reachability, coverability, boundedness, and liveness stand out for their potential use

in the analysis of telemedicine systems. Analyzing Petri nets for these properties proves

straightforward as well. Binary integer programming provides a powerful tool for modeling and

solving the reachability and coverability problem in nets, while boundedness and liveness can be

determined using a combination of property-preserving net transformations and open-source

software.

Telemental health systems can be easily modeled as Petri nets. Using transitions to model

actions in the system, places to track the progress of a patient’s appointment, and other places to

model the availability of the different system actors results in a useful model that captures many

of the conflicts inherent in telemedicine systems. The model is adaptable; minor changes in

dependencies, extra steps, or varying numbers of employees can all be accommodated with only

minor changes to the model.

Reachability analysis can provide very useful results for the system. Certain markings

can be identified that represent system failure modes. The binary integer programming model

87

accepts these markings as input, as well as the incidence matrix of the Petri net representing the

system. A feasible model indicates that a state is reachable within a certain number of firings.

Analysis indicated that an empty net, the appearance of extra employees, and partial deadlocks

where employees disappear are all unreachable within 500 steps. Application of more traditional

state equations confirmed this for any arbitrary number of steps for the first two assertions.

Situations of full utilization of all employees, conflict over employee time, and preferential

treatment of one case are all reachable.

Testing the model for boundedness both confirms that the Petri net matches predicted

system behavior and can diagnose potential exploding workloads. While raw Petri net

interpretations of telemedicine systems prove too large for software such as PIPE to process,

boundedness-and-liveness-preserving net reductions can alleviate this problem. Software

analysis of a reduced version of a Petri net representing a synchronous telemedicine system

revealed the model offered both boundedness and liveness. Consequently, telemedicine systems

similar in design to the one described in chapter 4 should pose no problems relating to deadlocks

or massively expanding workloads.

 Continued applications of Petri nets in telemedicine stands as a rich area of further

research. The simulation models discussed in chapter 1 of this paper can, with minor changes,

offer perspective into the potential of group telemedicine for certain types of therapy. In group

telemedicine, several patients attend a single group therapy session facilitated by a specialist at a

remote location. While not appropriate for treating all conditions, this method can offer unique

benefits to patients while also further extending the effective capacity of care providers. While

promising, having multiple patients attend one session can further complicate the Petri net

representation of the model and merits further examination with the tools used in this paper.

88

 The Petri net tools used for the analysis in this work serve as the foundation for numerous

variations on basic Petri nets. Time Petri nets, stochastic Petri nets, colored Petri nets, and other

contemporary models increase the complexity of the model but may also help iron out

assumptions made by the models in this paper (Girault & Valk, 2003). Further analysis of

telemedicine systems using these more advanced tools may provide meaningful results tailored

for individual systems.

 Moreover, S-invariants, T-invariants, and their application in finding structural properties

of Petri nets (Murata, 1989) represent a substantial body of work in Petri net theory that may find

use in telemedicine. While they can lack the accessibility and immediately intuitive appeal of

other forms of analysis, these powerful properties may yield faster or stronger results than the

analytic techniques presented in chapter 3.

 In short, this thesis presents a collection of tools for system analysis using Petri nets and

applies these tools to generalized telemental health systems of similar construction to a real-

world organization. Reachability, boundedness, and liveness analysis all offer meaningful results

for telemedicine system architects and can guide the formation of stable, efficient systems.

Finally, these tools can serve as a starting point for further research into the use of Petri nets in

telemedicine.

89

References

Bonet, P., Llado, C. M., Puigjaner, R., & Knottenbelt, W. J. (2007). PIPE v2.5: A Petri net tool

for performance modeling. 23rd Latin American Conference on Informatics, San Jose, Costa

Rica.

Bouillon, Y. (2003). Model-based approach to control over concurrency in interactive CSCW

applications: Application to telemedicine. Annals of Telecommunications - Annales Des

Télécommunications, 58(5), 766-81.

Bourdeaud'huy, T., Hanafi, S., & Yim, P. (2007). Mathematical programming approach to the

Petri nets reachability problem. European Journal of Operational Research, 177(1), 176-

197. doi:10.1016/j.ejor.2005.10.060

Butler, T., & Yellowlees, P. (2012). Cost analysis of store-and-forward telepsychiatry as a

consultation model for primary care. Telemedicine and E-Health, 18(1), 74-7.

doi:10.1089/tmj.2011.0086

Cegarra-Navarro, J. -., Sanchez, A. L. G., & Cegarra, J. L. M. (2012). Creating patient e-

knowledge for patients through telemedicine technologies. Knowledge Management

Research & Practice, 10(2), 153-63. doi:10.1057/kmrp.2011.47

Chuanliang, X. (2010). Property analysis of Petri net reduction. Second International Symposium

on Networking and Network Security (ISNNS 2010), , 250-3.

Dingle, N. J., Knottenbelt, W. J., & Suto, T. (2009). PIPE2: A tool for the performance

evaluation of generalised stochastic Petri nets. Performance Evaluation Review, 36(4), 34-9.

doi:10.1145/1530873.1530881

Girault, C., & Valk, R. (2003). Petri nets for systems engineering Springer-Verlag Berlin

Heidelberg.

Google. (2015). Map of CBOCs in New Mexico. Retrieved from

https://www.google.com/maps/search/CBOC+in+New+Mexico/@34.1662325,-

106.0260685,7z/data=!3m1!4b1

Grady, B., Myers, K. M., Nelson, E., Belz, N., Bennett, L., Carnahan, L., . . . Voyles, D. (2011).

Evidence-based practice for telemental health. Telemedicine and E-Health, 17(2), 131-148.

doi:10.1089/tmj.2010.0158

Henry, M., Layer, R., & Zaret, D. (2010). Coupled Petri nets for computer network risk analysis.

International Journal of Critical Infrastructure Protection, 3(2), 67-75.

doi:10.1016/j.ijcip.2010.05.002

90

Hyung, L. K., Favrel, J., & Baptiste, P. (1987). Generalized Petri net reduction method. IEEE

Transactions on Systems, Man and Cybernetics, 17(2), 297-303.

doi:10.1109/TSMC.1987.4309041

Institute of Medicine. (1996). In Field M. J. (Ed.), Telemedicine: A guide to assessing

telecommunications in health care. Washington, DC: National Academy Press.

Jones, N. D., Landweber, L. H., & Lien, Y. E. (1977). Complexity of some problems in Petri

nets. Theoretical Computer Science, 4(3), 277-99. doi:10.1016/0304-3975(77)90014-7

Khomenko, V., & Koutny, M. (2007). Verification of bounded Petri nets using integer

programming. Formal Methods in System Design, 30(2), 143-76. doi:10.1007/s10703-006-

0022-1

Krupinski, E., Dimmick, S., Grigsby, J., Mogel, G., Puskin, D., Speedie, S., . . . Yellowlees, P.

(2006). Research recommendations for the American telemedicine association.

Telemedicine and E-Health, 12(5), 579-589. doi:10.1089/tmj.2006.12.579

Lach, J. M., & Vazquez, R. M. (2004). Simulation model of the telemedicine program.

Proceedings of the 2004 Winter Simulation Conference, , 2012-17.

Lasierra, N., Alesanco, A., Gilaberte, Y., Magallón, R., & García, J. (2012). Lessons learned

after a three-year store and forward teledermatology experience using internet: Strengths

and limitations. International Journal of Medical Informatics, 81(5), 332-43.

doi:10.1016/j.ijmedinf.2012.02.008

Laurant, M., Reeves, D., Hermens, R., Braspenning, J., Grol, R., & Sibbald, B. (2005).

Substitution of doctors by nurses in primary care. Cochrane Database of Systematic

Reviews, (2), CD001271. doi:10.1002/14651858.CD001271.pub2

Li, D., Sun, X., Gao, J., Gu, S., & Zheng, X. (2011). Reachability determination in acyclic Petri

nets by cell enumeration approach. Automatica, 47(9), 2094-8.

doi:10.1016/j.automatica.2011.06.017

Locatis, C., & Ackerman, M. (2013). Three principles for determining the relevancy of store-

and-forward and live interactive telemedicine: Reinterpreting two telemedicine research

reviews and other research. Telemedicine and E-Health, 19(1), 19-23.

doi:10.1089/tmj.2012.0063

Mayr, E. W. (1984). An algorithm for the general Petri net reachability problem. SIAM Journal

on Computing, 13(3), 441-60. doi:10.1137/0213029

91

Medina-Marin, J., Seck-Tuoh-Mora, J. C., Hernandez-Romero, N., & Quezada-Quezada, J. C.

(2013). Petri net reduction rules through incidence matrix operations. 25th European

Modeling and Simulation Symposium, EMSS 2013, , 496-503.

Miyazawa, I., Tanaka, H., & Sekiguchi, T. (1996). Classification of solutions of matrix equation

related to parallel structure of a Petri net. Proceedings 1996 IEEE Conference on Emerging

Technologies and Factory Automation.ETFA '96, , 446-52. doi:10.1109/ETFA.1996.573746

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

77(4), 541.

Murata, T. (1977). State equation, controllability, and maximal matchings of Petri nets. IEEE

Transactions on Automatic Control, 22(3), 410-14. doi:10.1109/TAC.1977.1101509

Murata, T., & Koh, J. Y. (1980). Reduction and expansion of live and safe marked graphs. IEEE

Transactions on Circuits and Systems, 27(1), 68-7. doi:10.1109/TCS.1980.1084711

Odor, A., Yellowlees, P., Hilty, D., Parish, M. B., Nafiz, N., & Iosif, A. (2011). PsychVACS: A

system for asynchronous telepsychiatry. Telemedicine and E-Health, 17(4), 299-303.

doi:10.1089/tmj.2010.0159

Peterson, J. L. (1981). Petri net theory and the modeling of systems. Englewood Cliffs, NJ:

Prentice-Hall, Inc.

Rabinowitz, T., Brennan, D., Chumbler, N., Kobb, R., & Yellowlees, P. (2008). New directions

for telemental health research. Telemedicine and E-Health, 14(9), 972-976.

doi:10.1089/tmj.2008.0119

Sang Goo, L., Mun, S. K., Jha, P., Levine, B. A., & Ro, D. (2000). Telemedicine: Challenges and

opportunities. Journal of High Speed Networks, 9(1), 15-30.

Spaulding, R. (2010). Cost savings of telemedicine utilization for child psychiatry in a rural

Kansas community. Telemedicine and E-Health, 16(8), 867-871. doi:10.1089/tmj.2010.0054

Suzuki, I., & Murata, T. (1983). A method for stepwise refinement and abstraction of Petri nets.

Journal of Computer and System Sciences, 27(1), 51-76. doi:10.1016/0022-0000(83)90029-

6

Tarakci, H., Sharafali, M., & Ozdemir, Z. (2007). Optimal staffing policy and telemedicine.

Association for Information Systems - 13th Americas Conference on Information Systems,

AMCIS 2007: Reaching New Heights, 1, 226-232.

92

Thong, W. (2015). A survey of Petri net tools. Lecture Notes in Electrical Engineering, 315,

537-551. doi:10.1007/978-3-319-07674-4_51

von Wangenheim, C. G., von Wengenheim, A., Hauck, J. C., McCaffery, F., & Buglione, L.

(2012). Tailoring software process capability/maturity models for telemedicine systems.

18th Americas Conference on Information Systems 2012, AMCIS 2012, 3, 2472-2480.

Yang, S. K. (2004). A Petri net approach to remote diagnosis for failures of cardiac pacemakers.

Quality and Reliability Engineering International, 20(8), 761-76. doi:10.1002/qre.599

Yellowlees, P., Odor, A., Parish, M., Iosif, A., Haught, K., & Hilty, D. (2010). A feasibility

study of the use of asynchronous telepsychiatry for psychiatric consultations. Psychiatric

Services, 61(8), 838-40. doi:10.1176/appi.ps.61.8.838

Yellowlees, P., Odor, A., Patrice, K., Parish, M. B., Nafiz, N., Iosif, A., & Hilty, D. (2011).

Disruptive innovation: The future of healthcare? Telemedicine and E-Health, 17(3), 231-

234. doi:10.1089/tmj.2010.0130

Yen, H. (2008). Concurrency, synchronization, and conflicts in Petri nets. Lecture Notes in

Computer Science, 5148, 33-35. doi:10.1007/978-3-540-70844-5_4

Zhang, S., McClean, S. I., Jackson, D. E., Nugent, C., & Cleland, I. (2013). Patient satisfaction

evaluation of telemedicine applications is not satisfactory. XIII Mediterranean Conference

Onf Medical and Biological Engineering and Computing, 41, 1140. doi:10.1007/978-3-319-

00846-2_282

93

Appendix A - Complete Representation of Petri Net Models

p
1

t
1

p
2

dt
2

p
3

t
3

p
4

t
4

p
5

t
5

p
6

t
6

p
7

t
7

p
8

t
8

p
9

t
9

P
10

t
10

P
11

P
13

P
14

P
15

P
16

P
12

t
11

t
12

rp
1

rp
2

rp
3

rp
4

rp
5

rp
6

rp
7

dp
12

dt
12

dp
11

dt
11

dp
3

dt
3

dp
4

dt
4

dp
2

t
2

dp
1

dt
1

Figure 6.1- Complete Petri Net Representation of Synchronous Individual Telemental Health System

94

p
1

t
1

p
2

dt
2

t
6

p
3

t
3

t
7

p
4

t
4

p
7

t
8p

6

p
8

dt
8

dp
8 p

9

P
14

t
9

t
14

rp
1

rp
2

rp
3

rp
4

rp
5

rp
6

dp
14

dt
14

dp
9

dt
9

dp
6

dt
6

dp
3

dt
3

dp
2

t
2

dp
1

dt
1

dp
4

dt
4

p
5

t
5

dp
5

dt
5 p

10
t

10
dp
10

dt
10

p
13

t
13

dp
13

dt
13

p
11

t
11

dp
11

dt
11

P
12

t
12

dp
12

dt
12

Figure 6.2 – Complete Petri Net Representation of Asynchronous Individual Telemental Health System

95

Table A.1 – List of All Transitions in Synchronous Telemental Health Petri Net

Formulation

Transition Number Process Name Input Places Output Places

Transition 1 Referral Review p1, rp3 dp1

Dummy Transition 1 Finish Referral Review dp1 p2, rp3

Transition 2 Patient Enrollment p2, rp4 dp2

Dummy Transition 2 Finish Enrollment dp2 p3, p4, p5, p6, rp4

Transition 3 Check-In p3, rp1, rp5 dp3

Dummy Transition 3 Finish Check-In dp3 p8, rp5

Transition 4 Specialist Priming p4, rp4 dp4

Dummy Transition 4 Finish Priming dp4 p7, rp4

Transition 5 AV Preparation (Hub) p5, rp6 p10

Transition 6 AV Preparation

(Spoke)

p6, rp7 p11

Transition 7 Specialist Preparation p7, rp3 p9

Transition 8 Therapy Session p8, p9, p10, p11, rp2 p12, p13, rp6, rp7

Transition 9 Specialist Follow-Up p12 p14, rp3

Transition 10 Patient Follow-Up p13 p15, rp2

Transition 11 Follow-Up Processing p14, p15, rp4 dp11

Dummy Transition

11

Finish Follow-Up

Processing

dp11 p16, rp4

Transition 12 Check-Out p16, rp5 dp12

Dummy Transition

12

Finish Check-Out dp12 p3, p4, p5, p6, rp1,

rp5

96

Table A.2 – List of All Places in Synchronous Telemental Health Petri Net Formulation

Place Number Place Name

Place 1 Referrals Received

Dummy Place 1 Referral Review in Progress

Place 2 Referral Approved

Dummy Place 2 Enrollment in Progress

Place 3 Patient May Arrive

Dummy Place 3 Check-In in Progress

Place 4 Session Scheduled

Dummy Place 4 Priming in Progress

Place 5 Hub Space Reserved

Place 6 Spoke Space Reserved

Place 7 Patient Data Acquired

Place 8 Patient Ready for Session

Place 9 Specialist Ready

Place 10 Hub Technology Ready

Place 11 Spoke Technology Ready

Place 12 Session Done (Hub)

Place 13 Session Done (Spoke)

Place 14 Specialist Follow-Up Complete

Place 15 Patient Follow-Up Complete

Dummy Place 11 Follow-Up Processing in Progress

Place 16 Specialist Follow-Up Sent

Dummy Place 12 Check-Out in Progress

Resource Place 1 Patient

Resource Place 2 Nurse

Resource Place 3 Specialist

Resource Place 4 Hub Site Administrator

Resource Place 5 Spoke Site Administrator

Resource Place 6 Hub Site Technology

Resource Place 7 Spoke Site Technology

97

Table A.3 – List of All Transitions in Asynchronous Telemental Health Petri Net

Formulation

Transition Number Process Name Input Places Output Places

Transition 1 Referral Review p1, rp3 dp1

Dummy Transition 1 Finish Referral Review dp1 p2, rp3

Transition 2 Patient Enrollment p2, rp4 dp2

Dummy Transition 2 Finish Enrollment dp2 p3, rp4

Transition 3 Specialist Priming p3, rp4 dp3

Dummy Transition 3 Finish Priming dp3 p4, rp4

Transition 4 Prepare Session p4, rp3 dp4

Dummy Transition 4 Finish Preparation dp4 p5, rp3

Transition 5 Send Recorded Session p5, rp4 dp5

Dummy Transition 5 Recorded Session Sent dp5 p6, rp4

Transition 6 Check-In p6, rp1, rp5 dp6

Dummy Transition 6 Finish Check-In dp6 p7, rp5

Transition 7 AV Preparation (Spoke) p6, rp6 p8

Transition 8 Patient Views Session p7, p8, rp2 dp8

Dummy Transition 8 Finish Session dp8 p9, rp2, rp6

Transition 9 Send Patient Responses p9, rp5 dp9

Dummy Transition 9 Finish Sending Responses dp9 p10, rp1, rp5

Transition 10 Review Responses p10, rp3 dp10

Dummy Transition 10 Finish Reviewing Responses dp10 p11, rp3

Transition 11 Send Recommendations p11, rp4 dp11

Dummy Transition 11 Finish Sending Recommendations dp11 p12, rp4

Transition 12 Check-In (treatment) p12, rp1, rp5 dp12

Dummy Transition 12 Finish Check-In (treatment) dp12 p13, rp5

Transition 13 Administer Treatment p13, rp2 dp13

Dummy Transition 13 Finish Administering Treatment dp13 p14, rp2

Transition 14 Check-Out Patient p14, rp5 dp14

Dummy Transition 14 Finish Check-Out dp14 p3, rp1, rp5

98

Table A.4 – List of All Places in Asynchronous Telemental Health Petri Net Formulation

Place Number Place Name

Place 1 Referrals Received

Dummy Place 1 Referral Review in Progress

Place 2 Referral Approved

Dummy Place 2 Enrollment in Progress

Place 3 Session Scheduled

Dummy Place 3 Patient Data Gathering in Progress

Place 4 Patient Data Gathered

Dummy Place 4 Session In Preparation

Place 5 Session Prepared

Dummy Place 5 Sending Session Recording

Place 6 Patient May Arrive

Dummy Place 6 Check-In in Progress

Place 7 Patient Ready

Place 8 AV Equipment Ready

Dummy Place 8 Session in Progress

Place 9 Session Complete

Dummy Place 9 Sending Patient Responses

Place 10 Patient Responses Sent

Dummy Place 10 Response Review in Progress

Place 11 Recommendations Made

Dummy Place 11 Sending Recommendations

Place 12 Recommendations Sent

Dummy Place 12 Check-In (treatment) in Progress

Place 13 Patient Ready for Treatment

Dummy Place 13 Treatment in Progress

Place 14 Treatment Complete

Dummy Place 14 Check-Out in Progress

Resource Place 1 Patient

Resource Place 2 Nurse

Resource Place 3 Specialist

Resource Place 4 Hub Site Administrator

Resource Place 5 Spoke Site Administrator

Resource Place 6 Spoke Site Technology

99

Appendix B - R Code to Disprove Reachability

incidence <- array(c(-

1,1,0,-1,0,0,0,0,0,-

1,1,0,1,0,0,0,0,0,0,-

1,1,0,-1,0,0,0,0,0,0,-

1,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-

1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,-

1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-

1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-

1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-

1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-

1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-

1,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-

1,-1,-1,-1,1,1,0,0,0,0,0,0,-

1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-

1,0,1,0,0,0,0,0,0,1,0,-

1,0,1,0,0,0,0,1,0,-1,-

1,1,0,0,0,0,0,-1,0,-

1,1,0,0,0,0,1,0,-

1,1,0,0,0,0,-1,0,0,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,-

1,1,0,0,0,1,0,0),dim = c(29,18))

incidence = t(incidence)

testmark1 =

c(0,0)

initialmark =

c(25,0,25,1,1,1,1,1,1)

u <- ginv(incidence)%*%t(testmark1-initialmark)

y <- qr(incidence)

y$rank

#(make sure incidence matrix not transposed for these)

A11 <- incidence[1:17,1:(29-17)]

A12 <- incidence[1:17,13:29]

B <- cbind(diag(12),-t(A11)%*%ginv(t(A12)))

z <- t(ginv(B))%*%t(t(testmark1-initialmark))

