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Abstract 

Sorghum distillers dried grains with solubles (DDGS), canola and camelina meals are the 

main co-products resulting from grain-based ethanol or oil production. The main objective of this 

research was to study physicochemical properties of proteins isolated from DDGS, canola and 

camelina meals and their adhesion performance. Acetic acid-extracted sorghum protein (PI) from 

DDGS had superior adhesion performance in terms of dry, wet and soak adhesion strength 

compared to acetic acid-extracted sorghum protein (PF) from sorghum flour and aqueous 

ethanol-extracted sorghum protein (PII) from DDGS. PI had a significantly higher wet strength 

(3.15 MPa) than PII (2.17 MPa), PF (2.59 MPa), and soy protein without modification (1.63 

MPa). The high content of hydrophobic amino acids in PI (57%) was likely the key factor 

responsible for high water resistance.  

Canola protein was extracted from canola meal and modified with different 

concentrations of NaHSO3 (0 to 15 g/L) during protein isolation. Unmodified canola protein 

showed the highest wet shear strength of 3.97 MPa cured at 190 °C. Adhesion strength of canola 

protein fractions extracted at pH 5.5 and pH 3.5 (3.9-4.1 MPa) was higher than the fraction 

extracted at pH 7.0. NaHSO3 slightly weakened adhesion performance of canola protein; 

however, it improved handling and flow-ability due to breaking of disulfide bonds in proteins. 

Albumin, globulin, and glutelins were isolated from camelina meal. Adhesion 

performance of globulin fraction behaved better than glutelin fraction. The greatest wet shear 

strength of globulin was 3.3 MPa at curing a temperature of 190 °C. Glutelin had a more protein 

aggregation compared with globulin, as indicated by higher crystallinity and thermal stability, 

and dense protein aggregate. This compact structure of glutelins may partially contribute to 

lower adhesion strength as compared to globulin. 
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strength of globulin was 3.3 MPa at curing a temperature of 190 °C. Glutelin had a more protein 

aggregation compared with globulin, as indicated by higher crystallinity and thermal stability, 
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Chapter 1 - Introduction 

 1.1 Background 

Shoes, cars, airplanes, self-adhesive notes/envelopes, wood composites, and plasters are a 

few of the many products featuring adhesive. More than 20 billion pounds of adhesives and 

resins are consumed annually in the United States (DWN 200). Currently, a majority of 

adhesives are manufactured from petroleum-based materials such as phenol-formaldehyde, urea-

formaldehyde, and melamine-formaldehyde. However, petroleum is non-renewable, and fossil 

fuels are subject to depletion. Growing concern also exists regarding the effects of increased 

petroleum usage on the environment and human health since petroleum-based adhesives are not 

biodegradable and pollute soil and groundwater when they are disposed (CPC Aeroscience, 

2005). Formaldehyde emission from urea-formaldehyde adhesives also causes health problems 

for humans with common symptoms from acute exposure being irritation of the throat, nose, 

eyes, and skin. The International Agency for Research on Cancer (IARC) also reclassified 

formaldehyde from “probably carcinogenic to humans” to “carcinogenic to humans” 

(Environmental Health, 2008).  

Continued development and adoption of protein-based adhesives, especially soy-based wood 

adhesives, have cost-saving advantages and increased environmental benefits for various lumber 

products, including wood panel products (plywood, veneer, oriented strand board, particleboard 

and medium-density fiberboard), engineered lumber, green framing lumber and wood pallets. 

Protein-based adhesives offer a safe alternative to formaldehyde in plywood adhesives. 

Soy-based adhesive is one of the most popular bio-degradable adhesives currently under 

development because of its unique advantages, such as high gluing strength, biodegradability, 

renewability, ability to be easily handled, and suitability for hot and cold press temperatures. Soy 

protein fraction glycinin is proven to be the main contributor to adhesive bonding strength, 

especially wet strength of soy protein isolate adhesive. Adhesives with high amounts of glycinin 

showed higher dry and wet adhesion strengths because of a greater content of hydrophobic 

amino acids than other soy protein fractions (Mo et al, 2004; Wang et al, 2005). Adhesive made 

from β subunit with high content of hydrophobic amino acids also exhibited greater water 

resistance than α α' and β-conglycinin adhesives (Mo et al, 2011). The limitations of soy-based 

adhesive may include high viscosity and low water resistance. The high viscosity and low water 
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resistance of protein-based adhesives could be alternated through chemical modifications.  The 

principles of these modifications include unfolding the protein compact structure using 

detergents to expose as many functional groups as possible, especially hydrophobic groups, 

available for the wood substrate; inducing cross-linking reactions among protein through cross-

linker to form the protein complex having more entanglement during curing; introducing specific 

groups to soy protein, thus contributing to adhesion improvement. 

Even though soy-based adhesives are advantageous and renewable, the price of soy bean 

largely depends on the price of raw material (e.g., soybean, soy flour, etc.); therefore, it is 

necessary to find alternatives for soy-based adhesives. The price of soybean fluctuates based on 

demand and weather. For example, United States’ export bids of soybean prices, FOB Gulf, in 

August 2012 averaged $661 per ton, up $17 from July 2012. Due to the 2012 drought in the 

United States, strong demand and yield losses of soybean boosted prices to record highs (USDA 

2012).  

Compared to soy-based adhesives, little research has been conducted on sorghum, canola, 

and camelina protein-based adhesives. Grain sorghum is the third most important cereal crop in 

United States and fifth in the world, and the United States is the number-one producer and 

exporter of sorghum (Texas Tech University 2009). Approximately 10 million acres of sorghum 

are harvested and utilized mainly as animal feed in United States each year, and approximately 

35% of the country’s sorghum crop is used for ethanol production (U.S. Grain Council 2011). 

Distillers dried grains with solubles (DDGS) are a co-product of the distillation and dehydration 

process during ethanol production (Bonnardeaus 2009). DDGS contains approximately 30 to 

40% of protein and serves as an inexpensive source of protein. More than 700 million lb of 

sorghum protein was available from DDGS in 2009, when sorghum production was 500 million 

bushels in the United States (Feed Outlook/FDS-10i/September 14, 2010). Sorghum protein is 

believed to be the most hydrophobic protein among vegetable proteins due to its unique amino 

acids profile. 

Canola ranks as the third-largest oilseed crop produced worldwide after soy and palm. As an 

important edible and industrial oil source, canola production rapidly increased worldwide from 

30.1 million metric tons (MT) in 2008-2009 to approximately 58.4 MT in 2010-2011 (USDA 

Oilseeds 2012). Canola meal, a byproduct of canola oil extraction, contains 30 to 50% protein on 

a dry basis among different hybrids. As a promising candidate for biobased products with 
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industrial applications, canola protein has been studied extensively for biodegradable thermal 

plastics (Wäsche et al 1998) and films (Manamperi et al 2010); however, little information is 

available regarding canola protein as an adhesive. As another oil seed, camelina is a new crop in 

the United States. Camelina meal, the by-product of camelina oil production, typically contains 

40% crude protein, a maximum of 12% crude fiber, less than 15% residual oil, and a small 

portion of vitamins (Sampath 2009). Both canola and camelina proteins have considerable 

amounts of hydrophobic amino acids. The availability and hydrophobic property of sorghum, 

canola, and camelina proteins make them potential candidates for being used as adhesives. To 

better understand such potential, additional work on protein physicochemical properties and 

adhesion performance are needed. The investigation of adhesive potential for these three 

vegetable proteins is a pioneer work. 

 1.2 Research objectives 

The overall objective of this research was to investigate the potential of sorghum, canola, 

and camelina proteins for use as adhesives. Specific objectives of this research were:  

a) To compare adhesive performance of sorghum protein extracted using various methods 

and sources and to characterize physicochemical properties of proteins, including amino acid 

composition and rheological, and thermal and morphological properties. 

b) To characterize physicochemical properties of canola protein and to evaluate adhesion 

performance of canola protein modified with sodium bisulfite. 

c) To characterize physicochemical properties of canola protein fractions and to evaluate 

adhesion performance of canola protein fractions modified with sodium bisulfite. 

d) To characterize extracting properties and physicochemical properties of camelina 

protein. 

e) To evaluate adhesion performance of camelina proteins. 

 1.3 Related Current and Previous Research 

 1.3.1 Sorghum, canola and camelina proteins chemistry 

Sorghum proteins: Protein functionality is derived from the protein’s structure. 

Understanding structural and molecular properties of the sorghum protein may be of use in 

characterizing functional properties of isolated proteins. 
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Sorghum (Sorghum bicolor L. Moench) grain has protein content varying from 6 to 18% 

with an average of 11% (Lasztity 1996).Similar to other cereals proteins, such as wheat, corn, 

rice and soybean, sorghum grain proteins were fractionated into albumin (soluble in water), 

globulin (soluble in dilute salt solutions), glutelin (soluble in acids or bases) and prolamin 

(karfrins) (soluble in nonpolar solvents such as aqueous alcohols) proteins, respectively, based 

on their solubility with the classical work of Osborne. Prolamins usually account for 77-82% of 

the total protein in sorghum and are the major storage protein in sorghum (Shewry and Tatham 

1990), while sorghum protein has approximately 30% of the other three protein fractions of 

albumin, globulin and glutelin (Belton et al 2006). In this research, our attention focused on the 

major protein fraction, kafirins proteins. 

Based on differences in molecular weight (MW), extractability and structure, kafirins are 

further classified into four subunits: α-kafirins, β-kafirins, γ-kafirins, and δ-kafirins (Shull et al 

1991). By comparing subunit structures of zein (70% ethanol soluble proteins in maize), MW 23 

and 25 kDa karfirn poly-peptides were electrophoretically similar to α-zein while demonstrating 

similar extractability, thus requiring relatively high concentrations of alcohol to be solubilized 

(40-90%). Similarly, β-kafirins were with MW of 16, 18 and 20 kDa, and γ-kafirins showed MW 

of 28 kDa, respectively (Shull et al 1991). Wang et al (2009) studied karfirins in DDGS with Lab 

on a chip Electrophoresis extracted and found that α-kafirins were resolved by electrophoresis 

into two closely-spaced bands of approximately 25 kDa and 23 kDa (α1 and α2). Belton et al 

(2006) stated that α -kafirins comprised about 80–84% of the total fraction in vitreous sorghum 

endosperms and 66–71% in opaque endosperms. They are resolved by SDS-PAGE into two 

bands of MW approximately 25 kDa and 23 kDa. β-kafirins is one kind of protein with the MW 

range around 18 kDa. Wang et al (2009) found that β- kafirins have a lower molecular weight 

than α kafirins and were resolved at 18 kDa, as indicated by the first peak in the molecular 

weight analysis curve. Watterson et al (1993) reported that β-kafirins accounted for 

approximately 7–8% of total kafirins in vitreous endosperm tissue, but 10–13% in opaque 

endosperm tissue. However, the same group identified three major components of MW 15 kDa, 

17 kDa and 18 kDa as β-zeins (Shull et al 1991). This contrasts with a recent report which 

indicated that only a single β-kafirins gene was present (Chamba et al 2005), agreeing with the 

presence of a single β-zein gene in maize (Coleman and Larkins 1999). The gene reported by 

Chamba et al (2005) encodes a mature protein of 172 amino acids (Mw 18,745), including 16 
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methionines (9.3 mol%) and 10 cysteines (5.8 mol%). The sequence shows a high level of 

identity with b-zein which has a similar content of methionine residues (11.4 mol%).  

Wang et al (2009) reported that only faint bands for γ kafirins could be observed with a 

molecular weight of 28 kDa, and bands with a molecular weight of 46 kDa were kafirin dimer. 

The γ-kafirins are unique among prolamins in that they are readily soluble in water as reduced 

subunits; hence, the γ-zein of maize was initially described as reduced soluble protein by Wilson 

et al (1981). However, they are insoluble in the native state due to their presence in polymers 

stabilized by inter-chain disulphide bonds. Watterson et al (1993) have reported that γ-kafirins 

account for 9-12% of the total kafirins fraction in vitreous endosperms and 19-21% in opaque 

endosperms. 

Because of the similarity of solubility property, it is commonly accepted that sorghum 

kafirin is similar to zeins obtained from corn in terms of structure (both are soluble in 70% 

ethanol). In corn grain, δ-zeins of maize comprise components of Mw approximately 14,400 and 

21,100 which are encoded by single genes (Coleman and Larkins 1999). The δ -zeins can be 

detected by SDS-PAGE, and the corresponding δ-kafirin has not yet been identified at the 

protein level. In sorghum, there is no report regarding the detection of δ-kafirins, so karfirn 

obtained from sorghum may differ from karfirns extracted from corn. 

Canola proteins: Canola, also known as rape, oilseed rape, rapa, or rapeseed, has 40% oil 

and 17-26% protein content and ranks third-largest, after soybeans and palm, for oilseed crop 

produced worldwide. Canola meal, which is a by-product of canola oil extraction, contains up to 

50% of protein (dry basis). Worldwide production of canola increased rapidly from 30.1 million 

metric tons (MT) in 2008–2009 to approximately 58.4 MT in 2010–2011 (USDA Oilseeds). 

Even though canola proteins possess a well-balanced amino acid composition, the meal is not 

used in human food applications due to the presence of glucosinolates (which interfere with 

thyroid function, thus reducing growth), erucic acid (which has potential to produce toxic effects 

in the heart), phytates (which strongly bind polyvalent metal ions such as zinc and iron and make 

them unavailable for metabolism), and phenolics (which are bitter flavored and make protein 

products darker in color).  

The four protein groups of albumins, prolamins, glutelins and globulins can be fractionated 

with the classical work of Osborne. Canola proteins are also differentiated into 12S, 7S, and 2S 

fractions according to corresponding sedimentation coefficient in Svedberg units (S) which 
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indicates speed of sedimentation of a macromolecule in a centrifugal field (Aider 2011). Two 

major storage canola proteins, napin (2S) and cruciferin (12S), constitute 20% and 60% of total 

protein in mature seeds, respectively (Hoglund et al 1992), and have very complicated protein 

compositions. Napin, which belongs to albumin storage proteins, is a highly basic protein with 

an isoelectric point of pH 11, exhibiting molecular weights from 12.5 to 14.5 KDa (Monsalve et 

al 1990). Disulfide bonds are the main force stabilizing the napin protein structure; they 

comprise two disulphide-linked polypeptide chains (Krzyzaniak et al 1998). Cruciferin belongs 

to globulin storage protein, has a hexamer structure comparable to soy glycinin protein (Berot et 

al 2005), and is a neutral protein with an isoelectric point around pH 7.2 and a molecular weight 

of around 300 KDa (Schwenke et al 1983). Both covalent (disulfide bonds) and non-covalent 

bonds dominate cruciferin protein structure (Wu and Muir 2008).  

Camelina proteins: Compared to extensive research on sorghum and canola, very little 

research has been conducted on camelina, and its agronomic potential remains largely unknown. 

Camelina sativa, usually referred to as camelina, gold-of-pleasure, or false flax, and occasionally 

wild flax, linseed dodder, German sesame, and Siberian oilseed, is a flowering plant in the 

family of Brassicaceae, which includes mustard, cabbage, rapeseed, broccoli, cauliflower, kale, 

brussels sprouts. Camelina originated from Northern Europe and Central Asia more than 3000 

years ago and currently can be found in states located in the northern of the United States, such 

as Montana and Wyoming.  

 1.3.2 Sorghum, canola and camelina proteins isolations 

Sorghum protein fractions: Based on solubility properties, flour protein fractions that are 

albumin (soluble in water), globulins (soluble in dilute salt solutions), prolamins (kafirins) 

(soluble in alcohol), and glutelins (soluble in acids or bases) were extractable (Jamunathan et al 

1975). Kafirins are the major fraction in sorghum protein, which account for 77-82% of the total 

protein in sorghum (Shewry and Tatham 1990). To develop methods for karfirins isolation is 

more beneficial. Intensive work has been conducted on karfirins extraction from sorghum with 

most extractants consisting of alcohols such as ethanol and tert-butanol or acetic acid (Taylor et 

al 2005). Emmambux and Taylor (2003) described a method widely used for karfirins extraction 

that involved milled sorghum first being mixed with a solution of 70% (w/w) absolute ethanol in 

distilled water and reducing agents such as sodium metabisulphite and sodium hydroxide. The 
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mixture was stirred at 70 °C for 1h. After centrifugation and solvent evaporation overnight in a 

fume cupboard, the protein suspension was acidified to approximately pH 5 with 1M HCl to 

precipitate the protein. The dry purified kafirins was obtained through defatting with hexane and 

freeze-dried. Da-Silva and Taylor (2004) extracted kafirins from sorghum bran, a co-product of 

sorghum dry milling, with 70% ethanol combined with reducing reagent such as sodium 

hydroxide and sodium metabisulfite at a ratio of 1:5 (w/w) bran to extractant with vigorous 

stirring at 70 °C for 1hr. The extraction rate of 15.9-26.7% of the total protein was achieved. 

Because aqueous ethanol at elevated temperature is highly inflammable and not acceptable 

to certain religions and ter-butanol is considered slightly dangerous. Taylor et al (2005) 

developed a novel method to extract kafirins from sorghum with glacial acetic acid. Acetic acid 

appears to be effective on account of its low dialectic constant (6.1), which enables it to dissolve 

hydrophobic proteins such as kafirins. Sorghum flour was mixed with pure glacial acetic to 

solubilize the karfirins in sorghum and protein was precipitated by pH adjustment with saturated 

NaOH. Because the reaction was exothermic, this process was conducted in an ice water mixture 

(10°C) to ensure temperature of the mixture was held at 25°C. Wet karfirns were collected 

through centrifuge and the glacial acetic acid and resulting sodium acetate salt was removed by 

dialysis against distilled water. Recovery of kafirins could be up to 89.7%. 

Wang et al (2009) extracted karfirins from sorghum DDGS with various extraction methods, 

including acetic acid, HCl-ethanol, and NaOH-ethanol under reducing conditions. Results 

showed that acetic acid and NaOH-ethanol produced protein with both higher yield and purity 

than karfirins isolated with HCl-ethanol protocol. 

Canola protein fractions: Previous studies presented many canola protein isolation 

methods, such as the classical Osborne method, alkaline dissolution followed with acid 

precipitation method, membrane technology, and enzymatic hydrolysis followed by membrane 

filtration method, etc. (Tessier et al 2006; Ghodsvali et al 2005; Klocheman et al 1997; 

Manamperi et al 2008). According to previous studies, canola proteins are isolatable at a large 

range of pH values, indicating canola protein has more than one isoelectric points (pI) 

(Predroche et al 2004; Lönnerdal et al 1972). Therefore, canola protein can be fractionated 

according to both the Osborne method and multiple pIs. Manamperi et al (2008) extracted four 

protein fractions of albumins, globulins, prolamins, and glutelins with both conventional and 

modified Osborne sequences from canola meal flour with 45.0% protein content to indicate the 
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effect of different protein fractions isolating sequences on protein extracting and functional 

properties. In the conventional Osborne method, protein fractions were isolated according to the 

order of albumins, globulins, prolamins, and glutelins. When using modified Osborne method, 

isolation order was changed into globulins, albumins, prolamins, and glutelins. With the 

conventional Osborne procedure, 32.4% of albumins, 20.9% of globulins, 12.9% of glutelins and 

5.3% of prolamins were isolated, respectively. When using modified Osborne method, albumins 

and glutelins yields decreased around 32%, and yield of globulins and prolamins increased by 

22.7% and 65.7%, separately. It is worth noting that 27.8% and 36.1% of protein was left in the 

pellet after isolating, indicating that very large quantities of protein in canola meal were not 

successfully extracted. 

Besides the Osborne method, another very common method of isolating canola protein is 

using alkaline solution to solubilize canola protein, followed by protein precipitation at the 

isoelectric point (PI) with HCl (Wäsche et al 1998). In this study (Wäsche et al 1998), canola 

meal was added to the alkaline solution with specific solid/liquid ratio and stirred for a period of 

time to solubilize the protein in canola meal. The mixture was centrifuged to separate solubilized 

protein and pellet. The pH of the supernatant was adjusted with dilute acids to precipitate the 

protein, and the protein was separated through centrifuging. Optimum pH values for maximizing 

canola protein recovery rate could vary from 3.5 to 5.5 among different canola varieties 

(Pedroche et al 2004; Tzeng et al 1988). In many studies, more than one PI of canola protein was 

reported. Manamperi et al (2010) also reported that canola protein fractions precipitated 

sequentially from pH 11 to 3 with increments of 1 pH unit, and that fractions behaved differently 

with respect to functional properties such as thermal, rheological, and mechanical properties. 

Lonnerdal and Janson (1972) found that the basic napin protein fraction was known to have a PI 

close to pH 11, and suggested that the PI of other canola protein fractions was located between 

pH 4 and 8. Predroche et al (2004) extracted two canola protein fractions from Brassica carinata 

defatted meal sequentially at pH 3.5 and pH 5.5. 

Membrane technology was also applied for canola protein preparation. Generally, a built-in 

peristaltic pump drew the protein solution from a sample container and pumped it through the 

hollow fiber cartridge. The membrane was chosen based on molecular weight of the protein to be 

isolated, and pressure in the cartridge was controlled by a back-pressure valve at the outlet. The 

retentate was returned to the same container. The sample flowed continuously through 
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ultrafiltration unit until its volume decreased to 1:10 original volume. The concentrated sample 

was washed with distilled water and dried. Ghodsvali et al (2005) used the membrane technology 

(the membrane used had a nominal molecular weight cutoff of 10 kDa and an area of 0.1 m
2
) to 

extract canola protein from defatted canola meals. The final protein isolates had protein content 

higher than 80% and accounted for approximately 50% of the nitrogen in the  canola meals. 

Among the methods mentioned previously, the procedure to use alkaline solution to 

solubilize canola protein followed by protein precipitation at the isoelectric point (PI) with HCl 

is most common because it is relatively simple and protein yield is high. This method was used 

for sorghum protein isolation in this research. 

Camelina protein fractions: Compared with sorghum or canola, the volume of research on 

camelina protein is very small. However, the large volume of research on other genetically-

related oil seeds proteins, such as canola, mustard, etc. (all are within the flowering plant family 

Brassicaceae) has served as a framework for studying the isolating property of camelina proteins. 

Research on canola protein is abundant and was previously demonstrated in the above section. 

Sadeghi and Bhagva (2009) extracted mustard protein in alkaline solution and performed 

detoxification with activated carbon treatment. Briefly, defatted mustard meal was mixed with 

0.1 M NaCl in a ration 1:15 (w/v), and the pH of the mix was adjusted to pH 11 with 2N NaOH 

solution. The mixture was continuously shaken for 30 min at room temperature, followed by 

centrifugation to separate out the pellet. The protein was in the supernatant. It was precipitated 

by adjusting pH value to 7.0 and could be separated out by centrifugation. With this procedure, 

approximately 49-56% of the protein in original meal was isolated. 

 1.3.3 Adhesion performance of sorghum, canola and camelina proteins and protein 

modification 

Protein based adhesives: Little to no research on sorghum, canola and camelina protein-

based adhesives is available. However, extensive studies on soy-based adhesives provide clues as 

to the potential of sorghum, canola and camelina proteins as adhesives. 

The mature soybean consists of 38% protein, 30% carbohydrate, 18% oil and 14% moisture, 

ash and hull (Sun 2005). In the early 1900s, soy protein, extracted from dehulled soybean flakes, 

showed great potential for adhesives, as shown in its first public disclosure in 1928 (Keimel 

1994). Recently, environmental concerns and regulations have increasingly caused soy protein 
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adhesives to be re-applied in many industrial fields such as paper coating, texture paints, 

cosmetics, printing inks, plastics, textiles, particleboard, fiberboard, plywood, and many others.  

Two predominant storage proteins account for 80% of the total protein content in soybean:  

glycinin (11S) and β-conglycinin (7S), (Peng et al 1984). 11S is a hexameric protein with a 

molecular weight of approximately 360 kDa, composed of five different types of subunits: 

A1aB1b, A2B1a, A1bB2, A5A4B3, and A3B4 (Staswick et al 1984). Each subunit contains one acidic 

polypeptide and one basic polypeptide, linked by a disulfide bridge. 11S has relatively high 

cysteine content with 18-20 intra- and intermolecular disulfide bonds (Kella et al 1986). β-

Conglycinin (150-200 kDa) is a trimer, consisting of three subunits: α', α, and β. These subunits 

are non-covalently associated by hydrophobic interaction and hydrogen bonding without 

disulfide bonds (Thanh and Shibasaki 1978). Inherent differences in structure and molecular 

properties of 11S and 7S globulins result in varied functional properties of soy protein, such as 

solubility, thermal and morphological properties, and adhesion performance (Saio and Watanabe 

1978; Ning and Villta 1994; Mo et al 2004; Zhang and Sun 2008; Zhang and Sun 2010). To date, 

soy protein has been studied for adhesion properties in forms of soy protein isolate, pure 7S 

globulin and 11S globulin suspension, mixture of 7S and 11S with different ratio, or 7S subunits 

(α, α', and β) and 11S subunits (acidic, basic subunits) (Qi et al 2011). 11S mainly contributes to 

adhesion strength, especially wet strength of soy protein isolate adhesive. Adhesives made from 

11S had higher adhesion strength and water resistance than those made from 7S protein (Mo et al 

2004; Wang et al 2005). In addition, due to larger amounts of hydrophobic amino acids in basic 

subunits from 11S protein, the basic subunits had higher water resistance than acidic subunits 

(Mo et al 2006). Adhesive made from β subunit with higher content of hydrophobic amino acids 

also displayed greater water resistance than α α' and β-conglycinin adhesives (Mo et al 2011). 

Protein-based adhesives modification to improve water resistance: Much has been done 

to improve water resistance of soy protein adhesive, making it suitable for exterior-bonded wood 

products. First, understanding soy protein structure is crucial to the successful modification of 

soy protein since protein structure closely related to protein’s functional properties such as 

solubility, viscosity, gelling properties, and adhesion performance. Soy protein is characterized 

by a complex three-dimensional structure of highly ordered amino acids, with hydrophobic 

groups buried inside and hydrophilic groups exposed outside in nature (Horton et al 1996). The 

protein structure is primarily stabilized by hydrogen bonding, electrostatic interactions, van der 
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Waals forces and hydrophobic interactions (non-covalent bond), and covalent disulfide bonds. 

This highly ordered structure could cause insufficient contact area and limited functional groups 

available to the wood substrate, especially hydrophobic groups, detrimental to protein adhesion 

strength. Therefore, in order to function as an excellent protein adhesive, internal interactions 

among proteins should be destabilized, exposing as much functional groups as possible, 

especially hydrophobic groups. Many unfolding agents and reducing agents were utilized to 

disrupt internation interactions among soy proteins, such as alkaline, urea, SDS, cationic 

detergent, and NaHSO3. 

Denaturation agents: Alkali, such as sodium hydroxide, is most commonly used to unfold 

and denature protein molecules. Water resistance of soy protein was improved by alkali 

treatment under moderate conditions (pH 10.0 and 50 ºC) (Hettiarachchy et al 1995). Urea was 

also used to denature protein structure because it interacts actively with hydroxyl groups of soy 

protein and then breaks down hydrogen bonding, resulting in the unfolded protein structure. 

Zhang and Hua (2007) reported that wettability and adhesive properties of 7S and 11S were 

improved under 1 M urea modification. Similar to urea, guanidine hydrochloride was also 

proven to enhance protein hydrophobicity and adhesion strength (Huang and Sun 2000a; Zhong 

et al 2002). Sodium dodecyl sulfate (SDS) is the anionic detergent which  dissociates the protein 

by disrupting hydrophobic and electrostatic bonds. The reaction possible could move various 

inside hydrophobic side chains outward where they could interact with hydrophobic moieties of 

detergent molecules and form micelle-like regions. Previous studies showed that 0.5% 

concentration of SDS could enhance water resistance and adhesion strength of soy protein 

adhesive (Huang and Sun 2000b; Mo et al 2004). 

In addition, the glycinin component in soy protein has 18-20 both inter and intramolecular 

disulfide bonds, while only two disulfide bonds per mole exist in β-conglycinin (Koshiyama 

1972; Kella et al 1986). The presence of disulfide bonds in glycinin protein molecules 

significantly contributes to the functional properties difference between glycinin and 

conglycinin, such as structural integrity, protein stability, or thermal properties. Reducing agents 

such as sulfites, bisulfites and sulfates, cleaved inter- and intra-disulfide bonds in protein 

molecules, thus increasing protein molecule flexibility, solubility, surface hydrophobicity, and 

decreasing viscosity (Babajimopoulos et al 1983; Kella et al 1986; Kalanathy et al 1996). Many 

previous studies have revealed insignificant or negative effects of Na2SO4, Na2SO3 and NaHSO3 
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modification on adhesion properties of soy protein adhesive (Kalapathy et al 1996; Zhang and 

Sun 2008; Zhang and Sun 2010). Kalanathy et al (1996) stated that counteracting effects existed 

between increased hydrophobicity of soy protein and decreased effective wood-protein 

interfacial area because of the conversion of SH to –SSO3 groups in soy protein. Therefore, 

adhesion strength and water resistance of soy protein was reduced. Zhang and Sun (2008 2010) 

also reported that negative effects of NaHSO3 exerted adhesiveness of pure glycinin and β-

conglycinin globulin, respectively. However, Qi et al (2011) investigated the effect of NaHSO3 

on physicochemical properties of soy protein fractions including 7S-rich soy protein, 11S-rich 

soy protein, and soy protein fractions with various 7S/11S ratios through in situ chemical 

modification in soy flour-water extract, and discovered that a viscous cohesive soy protein 

system with high solid content and good flowability was obtained through sodium bisulfite 

modification during the acid precipitation process. The modified soy protein adhesive had 

excellent adhesion strength and water resistance. In order to compete with commonly used 

synthetics adhesive resins (60-70% solid content) in the market, protein-based adhesive systems 

have to possess the following characteristics: high solid content, good flowability, and excellent 

mechanical strength. Low spread rate and reduced curing time can be achieved at high solid 

content of adhesives. 

Crosslinking agent: Besides destabilizing the protein structure, another principle involved in 

soy protein adhesion strength improvement is the induction of more entanglement and the 

formation of a more compact protein complex during thermo setting through the cross-linking 

agent.  This cured protein structure could maintain complex structure better  than unmodified 

protein adhesives during water soaking by reducing penetration of water molecules into the 

interface of protein and wood. A number of functional groups of protein on amino acid side 

chains are available for the chemical/crosslinking reaction such as Carboxyl, hydroxyl, amino, 

disulfide, imidazole, indole, phenolic and sulfhydryl groups (Feeney 1977). Rogers et al (2004) 

reported that 1,3-dichloro-2-propanol could induce cross-linking of soy protein through the 

reaction among functional groups and improve soy protein adhesive performance. Zhong and 

Sun (2007) reported the physical cross-linking reaction between Polyamide-epichlorohydrin 

(PAE) and soy protein which was reversible and could be manipulated by environmental ionic 

strength. This complexation formation contributed to the largely improved adhesive strength. 

Epoxies are active cross-linking agents for alkaline soy adhesives and improve adhesive strength 
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and durability (Lambuth 1989; Huang 2007). Liu and Li (2007) developed modified soy protein 

adhesives along with two steps modification. Soy protein isolate (SPI) was first modified by 

maleic anhydride (MA) to form MA-grafted SPI (MPSI). Then polyethylenimine (PEI) was used 

to modify MSPI. The optimum formula of modified SPI was made from 20% PEI and 80% 

MSPI, which gave a dry strength 6.8% MPa and boiling strength of 1.5% MPa. In addition, the 

crosslinking reaction between soy-based adhesive and formaldehyde or its derivatives has also 

been studied (Wang et al 2007; Qi and Sun 2010). Wang et al (2007) reported that wet strength 

of soy protein was improved by 115% at optimum concentration of glutaraldehyde (20mM).  

Introducing specific functional groups: Another concept of soy protein adhesive 

modification is to introduce specific groups to soy protein molecules which may contribute to 

adhesion strength and water resistance and reduce the groups detrimental to adhesion 

performance. Soy protein is known to contain approximately 20 amino acids attached to the side 

chain of the protein molecule through the functional groups. These functional groups, such as 

OH, -NH2, -COOH, -SH, can be used as “reaction bridges” connecting soy protein molecules 

and specific groups. Mussel protein, often served as a strong and water-resistant adhesive, 

contains a high amount of 3, 4-dihydroxyphenyl-alanine (DOPA) and mercapto (-SH) -

containing cysteine. Liu and Li (2002) successfully grafted DOPA-like phenolic functional 

groups to soy protein and the soy protein was proven to be transformed to a strong and water-

resistant adhesive system. Increasing the free mercapto group content in soy protein also greatly 

increased adhesion strength and water resistance (Liu and Li 2004). Yamamoto (2000) and Yu 

(1998) reported that amino acid lysine could enhance adhesion strength of soy protein as well. In 

Zhu’s study (2006), adhesive performance was reduced when the –NH2 groups were substituted 

with –COOH (hydrophilic) groups at pH 7.6, while adhesion strength was improved when –NH2 

was replaced with –CH3 (hydrophobic groups). 

Adhesive blends: A short-term solution for researchers reducing dependence on 

petrochemicals and increasing adhesion performance of soy protein is adhesive blends. Extensive 

research has been done to incorporate soy flour and soy protein in the following resins: phenol 

formaldehyde, urea formaldehyde, Polyamide-epichorohydrin (PAE) polyvinyl alcohol, 

polyvinyl acetate resin (Zhong and Sun 2007; Zhong et al 2007; Kumar et al 2002). The blend 

system had reduced raw material cost, formaldehyde emission, but enhanced adhesion 

performance. This concept has been used successfully in industrial fields. Steele et al (1998) 
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developed blends of soy protein and phenolic resins that cured rapidly at room temperature with 

excellent water resistance and reduced formaldehyde emissions which could be used for finger 

jointing green lumber. As much as 70% of PF can be replaced by soy protein-based adhesive 

with comparable physical properties for oriented and random strandboard (Hse et al 2001; 

Wescott and Frihart, 2004). In a study by Zhong and Sun (2007), blends adhesives (soy protein 

isolate/PF= 100/20) had the same level of adhesion strength as commercial PF adhesive and not 

only reduced formaldehyde usage, but also had economic advantages. Qi and Sun (2010) studied 

the reaction between soy protein adhesive and urea formaldehyde resin and found that blends of 

SP/UF at ratio of 60/40 had largely reduced apparent viscosity and improved flowability. Wet 

strength was also enhanced significantly as compared to pure UF resin. Conversely, in order to 

promote reaction with synthetic polymers, soy protein must be unfolded to expose its available 

functional groups for the reaction with other adhesive resin. Various hydrolysis methods have 

been used to unfold soy proteins (Yang et al 2006; Frihart and Wescoott 2004), but these 

methods have not been able to overcome high viscosity, low concentration of soy protein, low 

water resistance, and short pot life. 

This research focuses on destabilizing protein structure to expose functional groups as much 

as possible, especially hydrophobic groups. Decreasing protein adhesive’s viscosity is another 

concern. All concerns considered, NaHSO3 was selected as adhesive modifier for this research.  
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Chapter 2 -  Adhesive performance of sorghum protein extracted 

from sorghum DDGS and flour
1
 

 2.1 Abstract 

Distillers dried grains with solubles (DDGS) is the primary co-product from grain-based 

ethanol production. The objective of this research was to compare adhesive performance of three 

types of sorghum proteins: acetic acid-extracted sorghum protein from DDGS (PI), aqueous 

ethanol-extracted sorghum protein from DDGS (PII) and acetic acid-extracted sorghum protein 

from sorghum flour (PF). Physicochemical properties including amino acid composition and 

rheological, thermal and morphological properties also were characterized. Results showed that 

PI had the best adhesion performance in terms of dry, wet and soak adhesion strength, followed 

by PF and PII. Wet strength of PI at a concentration of 12% protein assembled at 150 °C was 

3.15 MPa, compared to 2.17 MPa and 2.59 MPa for PII and PF, respectively. DSC thermograms 

indicated that PF protein isolates contained higher levels of carbohydrates than PI and PII; such 

non-protein contaminants in the PF could be the reason for its lower adhesion strength than PI. In 

addition, PI may have more hydrophobic amino acids aligned at the protein-wood interface than 

PII, which could explain the greater water resistance of PI. Optimum sorghum protein 

concentration and pressing temperature for maximum adhesion strength was 12% and 150 °C. PI 

had a significantly higher wet strength (3.15 MPa) than unmodified soy protein (1.63 MPa for 

soy protein). The high percentage of hydrophobic amino acids in PI (57%) was likely a key 

factor in the increased water resistance of PI as compared to soy protein (36% hydrophobic 

amino acids). These results indicated that sorghum protein has huge potential as an alternative to 

petroleum-based adhesives. 

 2.2 Introduction 

In the United States, approximately 20 billion pounds of adhesives and resins are used 

annually in plywood, particleboard, lamination, and various composites for construction, 

                                                 

1
 Results have been published as a peer-reviewed paper. Li, N., Wang, Y., Tilley, M., Bean, S., Wu, X., Sun, S. X., 

& Wang, D. (2011). Adhesive performance of sorghum protein extracted from sorghum DDGS and flour. J. Polym. 

Environ. 19, 755-765. 
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packaging, furniture, etc. (DWN 2008). These adhesives are derived mostly from petroleum-

based chemicals such as phenol-formaldehyde and urea-formaldehyde resins. Formaldehyde-

based adhesives dominated the adhesive market in the mid-20th century due to long shelf lives 

and water resistance (Kumar et al 2008). However, due to finite petroleum resources, non-

uniform distribution of these resources, volatile prices, and environmental concerns, the adhesive 

industry is increasingly interested in bio-based adhesives. Various natural resources, including 

animal glues, fish glues, casein and vegetable protein glues, starch glues, and blood albumen 

glues have been used in the wood industry. Several new technologies have been investigated to 

explore adhesive potential of various biomaterials, including tannins, lignins, carbohydrates, 

unsaturated oils, liquefied wood rice bran, soy protein, and organisms (Pizzi 2006; Smith and 

Callow 2006; Wang 2007). Soy protein isolates (SPI) gained much attention over the last century 

as bio-based and renewable materials. Much research also has been conducted on the use of soy 

proteins as adhesives in recent years (Wang 2006; Qi and Sun 2010),
 
with a majority of this work 

focusing on the improvement of water resistance through increased hydrophobicity of soy 

proteins via chemical modification (Wu et al 2007). 

Isolated sorghum proteins, another bio-based material, have been shown to produce 

biodegradable films and been used as extenders in plywood adhesives and other low-cost 

adhesives, wallboard and packaging materials (Buffo et al 1997; Ramos et al 1984; Rooney and 

Waniska 2000). Soy proteins containing a mixed content of hydrophilic and hydrophobic amino 

acids are less hydrophobic than sorghum kafirins (Icoz et al 2005). It is speculated that sorghum 

proteins may also have similar functions as soy proteins used as adhesives and, therefore, may 

provide better water resistance than soy protein when used as adhesive.  

Grain sorghum is the third most important cereal crop in the United States and fifth in the 

world. The United States is the number-one producer and exporter of sorghum (Texas Tech 

University 2009). In the United States each year, approximately 10 million acres of sorghum are 

harvested and used mainly as animal feed, and approximately 25% of the sorghum crop is used 

for ethanol production (U.S. Grain Council 2010). DDGS) are a co-product of the distillation and 

dehydration process during ethanol production (Bonnardeaux 2009). DDGS contains 

approximately 30 to 40% of protein and serves as an inexpensive source of protein. More than 

700 million lbs. of sorghum protein would have been available from DDGS in 2009 when 

sorghum production was 500 million bushels in the United States (Feed Outlook 2010).  
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Kafirins (prolamins) are the main components in sorghum protein, accounting for 

approximately 70 to 90% of total storage protein (Hamaker et al 1995). Several methods have 

been investigated for extracting kafirins from sorghum flour or bran for food and other uses. 

Based on solubility, kafirins can be extracted from sorghum or DDGS with alcohol (Wong et al 

2009; El Nour et al 1998; Emmambux and Taylor 2009; Taylor et al 1984), acetic acid (Taylor et 

al 2005), or alkaline sodium borate/SDS buffers (Zhao et al 2008; Hamaker et al 2003; Park and 

Bean 2003). Wang et al. (2009) extracted sorghum protein from DDGS with NaOH-ethanol, 

acetic acid and HCl-ethanol, and found that using acetic acid and NaOH-ethanol as extraction 

solvents was more efficient for protein extraction than others tested.  Building on this work, the 

objective of this study was to compare adhesive performance of sorghum protein extracted using 

different methods and to characterize physicochemical properties of proteins, including amino 

acid composition and rheological, thermal and morphological properties.  

 2.3 Materials and methods 

 2.3.1 Materials 

             Sorghum DDGS with 14.4% moisture content (wet base) was provided by White Energy 

(Russell, Kan.). Decorticated sorghum grains were provided by USDA-ARS Center for Grain 

and Animal Health Research (Manhattan, Kan.). Sodium metabisulfite, sodium sulfite, glacial 

acetic acid, ethyl alcohol and petroleum ether were purchased from Fisher Scientific (Pittsburgh, 

PA). Absolute ethanol was purchased from Aaper Alcohol and Chemical Co. (Shelbyville, Ky.). 

Soy protein isolates (SPI) were provided by Bio-Materials and Technology Lab (Kansas State 

University, Manhattan, Kan.). Cherry wood samples with dimensions of 127 mm (length) × 50 

mm (width) × 5 mm (thickness) were provided by Veneer One (Oceanside, NY). 

 2.3.2 Protein extraction using acetic acid 

        Acetic acid-extracted sorghum protein was prepared according to the method described by 

Taylor et al. (2005). Sorghum DDGS was milled with a cyclone sample mill (Udy Corp., Fort 

Collins, Colo.) into a powder with a particle size of <0.5 mm and then presoaked in four volumes 

of 0.5% (w/w) sodium metabisulfite for 16 h at 70 rpm agitation in a Gyromax 939 XL incubator 

shaker (Amerex Instruments, Inc., Lafayette, Calif.). After soaking, samples were centrifuged 

(Thermo IEC, Needham Heights, Mass.) at 3500 × g for 10 min and the supernatant discarded. 
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Pellets remaining after centrifugation were then mixed with five volumes of glacial acetic acid 

and stirred for 1 h. The mixture was centrifuged at 3500 × g for 10 min and the supernatant was 

decanted through a six-layer cheesecloth to remove the topmost oil layer. The pH of the 

supernatant was slowly adjusted to 5.0 with 50% (w/v) NaOH in a beaker placed in an ice water 

bath. The mixture was kept overnight at 4°C and then centrifuged at 3500 × g for 10 min. The 

precipitates were rinsed and washed with distilled water by centrifuging at 3500 × g for 10 min 

three times and then oven-dried at 49°C. The protein was defatted three times by mixing with a 

5-fold weight of petroleum ether followed by shaking in the incubator shaker at 70 rpm for five 

min and centrifuging at 3500 × g for 10 min, then kept under a fume hood overnight to evaporate 

the solvent.  

 2.3.3 Protein extraction using ethanol 

The ethanol extract method described by Emmambux et al. (2003) was used. Milled 

sorghum DDGS was mixed with 10-fold 70% ethanol, 0.35% NaOH (w/v) and 0.5% sodium 

metadisulfite (w/v). The mixture was placed in a water bath at 70°C, stirred for 1 h, and then 

centrifuged at 3500 × g for 10 min. Ethanol content in the supernatant was diluted to 40% and 

the suspension was put in a freezer at -20°C overnight. The suspension was centrifuged at 3500 × 

g for 10 min and the precipitates were rinsed and washed three times with distilled water and 

oven-dried overnight at 49°C. The product was defatted following the procedure described 

previously and milled into powder.  

 2.3.4 Chemical analysis 

Protein content was measured using nitrogen combustion via a LECO FP-2000 nitrogen 

determinator (St. Joseph, Mich.) according to AOAC method 990.03 (1995). Nitrogen was 

converted to protein using a factor of 6.25. Fat content was determined using the Soxhlet 

petroleum-ether extraction method according to AOAC method 920.39C for cereal fat and 

expressed as weight percentage on dry basis (1995). Crude fiber was determined according to 

AOCS-approved procedure Ba 6a-05 (1996).  

 2.3.5 Amino acid composition analysis  

Samples were weighed and placed in approximately 0.5 ml of 6 N HCl solution along 

with the internal standard and hydrolyzed at 110 °C for 20 h. An aliquot, typically 10 or 20 µl, 
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was then diluted to 250 µl with 0.4 M borate buffer to dilute the sample and raise the pH. After 

precolumn derivatization with o-phthalaldehyde (OPA) and 9-fluorenylmethyl chloroformate 

(FMOC), 1 µl of this diluent was injected into an HPLC system with a C18 column (Hypersil 

AA-ODS, 2.1 × 200 mm, 5 µm). Mobile phase A was 20 mM sodium acetate buffer with 

0.018% (v/v) triethylamine, 0.05 mM EDTA, and 0.3% tetrahydrofuran, pH adjusted to 7.2 using 

acetic acid. Mobile phase B was 100 mM sodium acetate:acetonitrile:methanol (20:40:40, v/v). 

Elution conditions went from 100% A to 60% B in 17 min at 0.45 mL/min. Amino acid 

derivatives were detected with a fluorescent detector at 340/450 nm (excitation/emission) for 

primary amino acids and 266/305 nm for secondary amino acids. Human serum albumin was 

used as a control, and norvaline and sarcosine were used as internal standards. 

 2.3.6 Rheological properties 

Rheological measurements of sorghum protein suspension with different concentrations 

were performed using a Bohlin CVOR 150 rheometer (Malvern Instruments, Southborough, 

Mass.) with a CP 4/40 cone and plate fixture (4° cone angle, 40-mm cone diameter). Distance 

between cone and plate was set to 150 µm for all measurements. Experiments were conducted 

under steady shear flow at 23°C. Shear rates ranged from 10 to 240 s
-1

 at 10 s
-1

 increment. All 

experiments were done in duplicate, and average values were reported. 

 2.3.7 Morphological properties 

A model CM 100 transmission electron microscopy (FEI Company, Hillsboro, Ore.) was 

operated at 100 kV. Protein samples (3% in acetic acid, w/w) were absorbed for approximately 

30 s at room temperature onto Formvar/carbon-coated 200-mesh copper grids (Electron 

Microscopy Sciences, Fort Washington, Pa.) and stained with 2% (w/v) uranyl acetate (Ladd 

Research Industries, Inc., Burlington, Vt.) for 60 s at room temperature before being viewed by 

transmission electron microscopy (TEM). 

 2.3.8 Differential Scanning Calorimetry (DSC) 

Thermal transition properties of protein samples were measured with a TA Instruments 

DSC Q200 V24.4 instrument (TA Instruments, New Castle, Del.) that was calibrated with 

indium and zinc before making official measurements. Samples of sorghum proteins weighing 

approximately 10 to 15 mg were measured in a hermetic aluminum pan under a nitrogen 
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atmosphere with a gas flow rate of 50 mL/min. All samples were heated from 25 to 280°C at a 

heating rate of 10 °C/min in an inert environment. All experiments were performed in duplicate.  

 2.3.9 Wood specimen preparation 

Cherry wood samples were preconditioned in a controlled-environment chamber (Model 

518, Electro-tech systems, Inc., Glenside, Pa.) for 7 d at 25 °C and 50% relative humidity (RH). 

Sorghum proteins suspended in acetic acid at different concentrations and stirred with a magnetic 

stirrer for three hours were brushed separately along the edges of two pieces of cherry wood, 

with an application area of 127 mm × 20 mm, until the entire area was completely covered. 

Approximately 0.06 g of adhesive was applied on each piece and controlled using a pipette and 

consistent brushing procedure. The brushing and setting procedure followed the method 

described by Mo et al. (2004). The two pieces of suspension-brushed cherry wood were allowed 

to rest open at room temperature for 15 min, and then were assembled and pressed at a pressure 

of 3.57 MPa at 130°C, 150°C or 170°C for 10 min, respectively, using a hot press (Model 3890 

Auto ‘M’, Carver Inc., Wabash, Ind.). 

 2.3.10 Mechanical properties 

After pressing, the glued-wood assemblies were conditioned at 23°C and 50% RH for 

two days and then cut into 5 127 mm (length) × 20 mm (width) × 5 mm (thickness) specimens. 

The cut specimens were conditioned for another five days at 23 °C and 50% RH before the dry 

test. Three adhesion strengths were tested: dry strength, soak strength, and wet strength. Wood 

specimens for dry strength testing were prepared and tested using an Instron (Model 4465, 

Canton, Mass.) according to ASTM Standard Method D2339-98 (2002). Crosshead speed of 

Instron for adhesion strength testing was 1.6 mm/min. Tensile strength at maximum load was 

recorded as adhesion strength. Reported results are an average of five samples. 

Water resistance was determined by measuring wet and soak strengths according to 

ASTM Standard Methods D1183-96 (2002) and D1151-00 (2002), respectively. Preconditioned 

specimens were soaked in tap water at 23 °C for 48 h and then tested immediately for wet 

strength. For the soak strength test, specimens were soaked in tap water at 23 °C for 48 h and 

then conditioned at 23°C and 50% RH for an additional seven days before testing. 
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 2.3.11 Statistical analysis 

With the exception of the mechanical property evaluation which required an average of 

five samples, all experiments were carried out in duplicate. Data were analyzed using the 

analysis of variance (ANOVA) and least-significant difference (LSD) at the 0.05 level, according 

to procedures in the SAS statistical software package (SAS Institute 2005, Cary, N.C.).  

 2.4 Results and discussions 

 2.4.1 Chemical composition of sorghum protein from DDGS and sorghum flour 

Chemical composition of sorghum protein extracted under various methods is 

summarized in Table 1. The purity of ethanol-extracted protein (PII) (93.05%) was higher than 

that of acetic acid-extracted sorghum protein from DDGS (PI) (87.77%). When using acetic acid 

as buffer to extract protein from DDGS, NaOH solution was used to adjust the pH value to 5 in 

order to precipitate the protein. During this step, sodium acetate salt could be formed, which may 

explain why PI had lower purity than PII when the formed sodium acetate salt was not washed 

out completely (Taylor et al 2005).  In addition, more protein was extracted from DDGS than 

directly from sorghum flour (PF) (71.82%), possibly due to a strong association between protein 

and non-protein components in sorghum flour, such as carbohydrate, as was the case for 

sorghum protein extraction conducted by Wang et al. (2009). However, protein purities were 

lower than values reported by Wang et al. (2009).  

Table 2.2.1 Chemical composition of sorghum DDGS, sorghum flour, and sorghum 

proteins 

Type of raw materials Composition of extracted protein (%, dry basis) 

Protein Lipids Crude fiber 

DDGS 30.84 8.95 5.27 

Sorghum flour 8.70 1.18 1.25 

PI
1
    87.77b

4
 1.40b 0.79b 

PII
2 

93.05a 2.60a 0.97a 

PF
3 

71.82c 2.30a 0.84b 

1
PI=acetic acid-extracted sorghum protein from DDGS. 
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2
PII=ethanol-extracted sorghum protein from DDGS. 

3
PF=acetic acid-extracted sorghum protein from sorghum flour. 

4
Means in the same column followed by different letters are significantly different at P<0.05. 

 2.4.2 Amino acid composition  

Results of amino acid analysis are shown in Table 2.2. Compared to results in Table 2.1, 

protein purities for the three proteins calculated based on accumulation of total amino acids were 

much lower than values obtained by the LECO FP-2000 nitrogen determinator (St. Joseph, 

Mich.) method. Lower accumulation of total amino acids could be attributed to the existence of 

non-protein nitrogen in DDGS or sorghum flour (Hamaker et al 1995; Yousif and El Tinay 

2001), or destruction of tryptophan and cysteine by the liquid HCl hydrolysis assay during the 

amino acid composition test. Because the total amount of amino acids did not include tryptophan 

and cysteine, estimates of total protein and concentration would be slightly lower than the true 

number shown in Table 2.2. This difference in protein could also be due to the nitrogen 

conversion factor, 6.25, in approved methods, but some good data states the conversion factor for 

sorghum should be 5.8 (Mosse et al 1988). 

 Table 2.2 also shows that molar concentration of glutamic acid, leucine and asparagine 

in DDGS was decreased by 6.89%, 10.65%, and 29.79%, respectively, compared to sorghum 

flour. However, isoleucine, lysine, methionine, tyrosine, arginine, threonine, glycine, and 

histidine in DDGS increased by a greater extent, from 10.65% to 152.92%, among which 

histidine, lysine, methionine and threonine are essential amino acids. The increase of essential 

amino acids during the fermentation process improved sorghum protein’s nutritional value and 

was partly due to the usage of yeast during fermentation (Yousif and El Tinay 2001; Cookman 

and Glatz 2009).  
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Table 2.2 Molar percentages of amino acids of different proteins 

Amino acids (%) PI
1
  PII

2
 PF

3
 DDGS Sorghum SPI

4
 

Aspartic (ASX) 5.2b
5
 4.9b 4.4b 5.2b 5.6b 8.5a 

Glutamine (GLX)  20.1a 18.4ab 17.7ab 11.7c 16.7b 16.2b 

Serine (SER) 5.7b 6.2b 6.3ab 6.4ab 6.5ab 7.1a 

Histidine (HIS)  1.2a 1.4ab 0.6ab 2.2a 1.4ab 2.0ab 

Glycine (GLY)  2.3b 2.8b 2.1b 7.0a 6.1a 7.6a 

Threonine (THR)  3.1c 3.0c 3.4bc 4.6a 3.7b 4.6a 

Alanine (ALA)  16.6a 16.9a 16.9a 14.7b 14.6b 6.6c 

Arginine (ARG)  1.5e 1.5e 2.3d 3.8b 2.9c 7.7a 

Tyrosine (TYR)  3.4a 3.3a 3.5a 2.3b 0.9c 2.5b 

Valine (VAL)  4.7c 4.8c 5.1b 5.7a 5.3b 5.0bc 

Methionine (MET)  0.4d 0.5e 0.7d 1.4a 0.8c 1.2b 

Phenylalanine (PHE)  4.9ab 4.9ab 5.1a 4.4c 4.4c 4.5bc 

Isoleucine (ILE) 4.3bc 4.3bc 4.5b 4.5b 4.0c 4.9a 

Leucine (LEU)  16.7a 16.8a 16.8a 13.4b 14.2b 8.4c 

Lysine (LYS) 0.2de 0.0e 0.6d 3.0b 2.2c 6.9a 

Proline (PRO)  9.7a 10.3a 10.0a 9.7a 10.8a 6.3b 

T-AA (%, m/m) 100a 100a 100a 100a 100a 100a 

T-protein (%, w/w) 67.2a 69.9a 52.1b 22.4c 6.20d 67.3a 
1
PI=acetic acid-extracted sorghum protein from DDGS. 

2
PII=ethanol-extracted sorghum protein from DDGS. 

3
PF=acetic acid-extracted sorghum protein from sorghum flour. 

4
SPI=soy protein isolates. 

5
 Means in the same row followed by different letters are significantly different at P<0.05 

Different amino acid compositions were detected in extracted sorghum kafirins as 

compared to DDGS and sorghum flour. Increases in glutamic acid, alanine, tyrosine and leucine 

were observed in extracted kafirins, while histidine, glycine, threonine, arginine, methionine and 

lysine decreased extensively compared with DDGS and sorghum flour. Similar results were also 

reported by Cookman et al. (2009). Four major classes of proteins in sorghum are glutelins, 

kafirins, albumins, and globulins (Youssef 1998), and each class has distinct amino acid profiles 

(Yousif and El Tinay 2001; Skoch et al 1970; Wu and Wall 1980). For instance, Yousif and 

Tinay reported that albumin and globulin proteins of sorghum had higher levels of lysine 
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compared to kafirins (Yousif and El Tinay 2001). This is most likely why isolated kafirins 

showed different amino acid content compared with sorghum flour and DDGS.   

Amino acids can be classified into groups according to polarity, structure, nutritional 

requirements, and metabolic fate. Based on hydrophobicity, amino acids can be grouped into 

hydrophobic (non-polar amino acids) and hydrophilic (polar amino acids) types (Kyte and 

Doolittle 1982). Alanine, methinine, phenylananine, isoleucine, leucine, and proline belong to 

hydrophobic amino acids and accounted for 57.32% to 59.04% in three extracted sorghum 

protein kafirins (Table 2.3). These values were higher than numbers reported by Mokrane et al. 

(2010), who reported a range of hydrophobic amino acids from 45% to 50% in sorghum protein. 

This difference may be attributed to varying sorghum sources or measurement methods. Amino 

acid compositions can affect adhesive performance of protein-based adhesives (Liu and Li 2004; 

Zhao et al 2009; Kamino 2001), which will be discussed in detail in the next section.  

Table 2.3 Hydrophilcity properties of amino acids in different proteins 

Amino acids 

 (% of total) 
PI

1 
PII

2 
PF

3 
DDGS Sorghum SPI

4 

Hydrophobic
6
 57.32a

5 
58.49a 59.04a 53.79a 54.1a 36.89b 

Hydrophilic
7
 42.68b 41.51b 40.96b 46.21b 45.9b 63.11a 

1
PI=acetic acid-extracted sorghum protein from DDGS. 

2
PII=ethanol-extracted sorghum protein from DDGS. 

3
PF=acetic acid-extracted sorghum protein from sorghum flour. 

4
SPI=soy protein isolates. 

5
Means in the same row followed by different letters are significantly different at P<0.05.

 

6
Hydrophobic amino acid=alanine, methinine, phenylalanine, isoleucine, leucine and proline. 

7
Hydrophilic amino acid=lysine, tyrosine, arginine, threonine, glycine, histidine, serine, 

glutamine and asparagine. 

 2.4.3 Rheological properties 

Rheological properties of extracted proteins are shown in Figure 2.1. The maximum 

viscosity was 1 Pa·s, approximately 1,000x the viscosity of water, meaning that the sorghum 

protein suspensions had good flowability properties. Apparent viscosity increased as protein 

concentration increased, and viscosity decreased as shear rate increased, indicating that sorghum 

proteins in suspension showed shear thinning properties which can be expressed by the 

Herscher-Bulkley model: nK  0 where 0  is the yield stress (N/m
2
),   is the shear stress 
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(N/m
2
),   is the shear rate (s

-1
), and n and K are the flow behavior index and consistency index, 

respectively. The method of least squares was used to find the best-fitting equation: Estimate a 

0  (= 01 ) by extrapolating the plot   vs  , plotting ln  vs ln  , and getting 1K and 1n from 

linear regression by using Microsoft Excel. Then, 1K  and 1n are reinserted into the equation and 

ln   vs ln n is plotted to get 02  and 2K from linear regression. Finally, 01  and 02  are 

compared until 01 = 02 , then 0  (= 01 ), K (= 1K  = 2K ), and n (= 1n ) are obtained. Values of 0 , 

n, and K are summarized in Table 2.4.  

Table 2.4 Rheological parameters of sorghum proteins with different concentrations: yield 

stress (τ0, N/m2), flow behavior index (n), consistency index (K) 

Rheological 

parameters 

PI
1
  PII

2
   PF

3
 

8% 10% 12% 16%  8% 10% 12% 16%  8% 10% 12% 16% 

τ0 0.20 0.10 0.10 0.20  0 0 0 0  0.01 0.10 0.40 4.00 

n 0.55 0.49 0.60 0.61  0.63 0.53 0.69 0.64  0.49 0.57 0.61 0.83 

K 0.38 0.65 0.96 0.87  0.08 0.09 0.27 0.25  0.83 0.96 0.96 1.21 

1
PI=acetic acid-extracted sorghum protein from DDGS. 

2
PII=ethanol-extracted sorghum protein from DDGS. 

3
PF=acetic acid-extracted sorghum protein from sorghum flour. 
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Figure 2.1 Shear behavior of sorghum proteins. Curves from top to bottom are sorghum 

adhesives with 8, 10, 12, and 16% protein concentrations, respectively. PI=acetic acid-extracted 

sorghum protein from DDGS, PII=ethanol-extracted sorghum protein from DDGS, and 

PF=acetic acid-extracted sorghum protein from sorghum flour. 

 2.4.5 Morphological properties  

Microstructures of protein dispersions are displayed in Figure 2.2. Protein particles in 

suspension were evenly distributed, and PI and PF had larger particles than PII. The 

configuration of PI may differ from PII. PI may have more hydrophobic amino acids aligned at 

the interface than PII, and additional hydrophobic amino acids in PII may have been wrapped 

inside the particle. Some small particles surrounded the protein particle of the PF. Carbohydrate, 

including starch, was not fermented and remained in the sorghum flour. The strong association 
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between protein and non-protein could have resulted in some non-protein residue remaining in 

the protein extract, as indicated by small particles present in the protein suspension made from 

sorghum flour protein. 
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 PI-1                                                     PI-2 

                      

PII-1                                                   PII-2 

                      

PF-1                                                   PF-2 

                      
 

Figure 2.2 TEM micrographs of sorghum proteins at 3% solid content. Magnification: PI-1-PF-1, 

× 5800; PI-2-PF-2, × 92k. Scale bar represents 500 and 100 µm for × 5800 and × 92k 

magnifications, respectively. 

 2.4.6 DSC thermal transition properties 

     As shown in Figure 2.3, the DSC thermogram of PF exhibited extensive differences as 

compared to curves for PI and PII.  A sharp and strong endothermic peak at approximately 57.9 
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°C was observed for PF, while only trivial endothermic peaks around 63.8 °C and 62.5 °C were 

detected for PI and PII, respectively. The endothermic peak shown near this temperature range 

has been firmly related to starch gelatinization (Aboubacar and Hamaker 1999; Kelsall et al 1999; 

Zhan et al 2006). The strong signal at 57.9 °C observed in PF indicated more starch in the PF, 

whereas PI and PII have less starch content, as evidenced by tiny peaks; these results also can be 

reflected by lower protein purity of PF, shown in Table 1. PF also exhibited another endothermic 

peak with a temperature of 110.5 °C, probably representingt protein denaturization. No peaks 

were observed around 110.5 °C in PI and PII, indicating that protein in sorghum DDGS already 

had been denatured during the fermentation process.  Current results also confirmed previous 

results reported by Zhao et al. (2008) and Wang et al. (2009), who suggested that protein cross-

linkage and denaturation occurred during fermentation. Strong exothermic peaks that occurred 

with the onset temperature around 176.3 °C, 184.8 °C, and 164.1 °C for PI ,PII, and PF, 

respectively, may be attributed to protein aggregation, as suggested by Mo et al. (2004). Protein 

aggregation may have a negative effect on adhesion performance when considering that 

mechanical strength decreased significantly at the assembling temperature of 170 °C as 

compared to 150 °C and 130 °C for PI and PF (Table 5). During protein aggregation, the exposed 

functional groups in sorghum protein-based adhesives that bonded with wood surface probably 

refolded again, resulting in weak bonding capacity between adhesives and wood surface. 

However, aggregation properties of sorghum protein need further study to determine conclusive 

results. 
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Figure 2.3 Thermograms of sorghum proteins; PI=acetic acid-extracted sorghum protein from 

DDGS, PII=ethanol-extracted sorghum protein from DDGS, and PF=acetic acid-extracted 

sorghum protein from sorghum flour. 

 2.4.7 Mechanical properties of sorghum protein 

Sorghum protein concentration, pressing temperature, extraction methods and protein 

sources all had significant effects on adhesion properties of sorghum protein (Table 2.5). In 

general, wood failure occurred in almost all dry and soaked samples, indicating that bonding 

strengths between cherry wood and sorghum adhesives were stronger than the mechanical 

strength of cherry wood when resisting shear force. However, adhesives failure, not wood failure, 

was observed for wet samples. To data, adhesion strength of sorghum protein increased as 

sorghum protein concentration increased, and adhesion strength virtually leveled off when 

protein concentration increased to 16%. Increasing pressing temperature from 130 °C to 150 °C 

had a positive effect on protein adhesion strength, while increasing temperature to 170 °C had 

different effects on adhesion properties of three distinct sorghum protein isolates. PI and PF with 

12% concentration exhibited a decrease in wet strength from 3.15 and 2.59 MPa to 1.92 and 1.19 

MPa, respectively, as pressing temperature increased from 150 °C to 170 °C. However, for PII 

with a concentration of 12%, wet strength increased to 2.51 from 2.17MPa as pressing 

temperature increased to 170 °C from 150 °C. If further increasing the pressing temperature of 

PII to 190 °C, its dry, soak and wet strength decreased to 4.21, 4.07 and 1.33 MPa, respectively 
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(Dates were not listed in Table 2.5). PI had better adhesion performance in terms of wet, dry and 

soak strength than that of the PII and PF, especially for wet strength. For example, wet strength 

for PI was 3.15 MPa at a pressing temperature of 150 °C and a concentration of 12%, compared 

with 2.17 MPa for PII and 2.59 MPa for PF. 

Adhesion between proteins and wood surfaces occurs as the protein spreads, wets and 

penetrates the porous wood structure to achieve mechanical interlocking, physical attraction, and 

chemical bonding between wood and protein during the setting period, followed by 

entanglements and cross-link through physical attraction and chemical bonding between protein 

and wood and between protein and protein during thermal setting procedure (Wang et al 2006b). 

With increasing protein concentration, more protein is available to bond with wood and deliver 

greater strength. However, as protein concentration increases beyond optimum levels (>16%), 

protein-protein interaction could dominate the protein-wood interaction, resulting in uneven 

distribution of proteins or insufficient exposure of hydrophobic groups at the wood surface. As a 

result, limited contribution to adhesion performance improvement was observed when protein 

concentration reached 16%. Increasing press temperature had marked effects on solvent 

evaporation, immobilization of protein molecules, and possibility of chemical and physical 

interaction between proteins and wood surface. Conversely, when higher temperatures were 

applied to adhesives with high protein concentrations, more hydrophobic amino acids were 

available for hydrophobic interaction, leading to greater protein cohesion but possible detriment 

to the bonding ability between protein and wood (Wang et al 2007).  

Lower protein purity (Figure 2.3, PF) and small non-protein particles surrounding the PF 

(Figure 2.2, PF-2) extracted from sorghum flour could explain why adhesive strengths were 

lower than PI extracted from DDGS. Smaller particles of PII make contact surface area between 

protein and protein not as great as PI and PF. Furthermore, as explained in the section on 

morphological properties, PI may have more hydrophobic amino acids aligned at the interface 

than PII, whereas more hydrophobic amino acids in PII may have been wrapped inside the 

particle, accounting for the increased water resistance of PI. 
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Table 2.5 Adhesion performance of sorghum protein adhesives 

Extraction methods Wet strength (MPa)  Dry strength (MPa)   Soaked strength (MPa) 

8% protein content 130 ºC 150ºC 170 ºC  130 ºC 150ºC 170 ºC  130 ºC 150ºC 170 ºC 

 
PI

1
 1.21+ 0.15 1.71+ 0.08 1.23+ 0.22  4.82+ 0.43 4.85+ 0.42 5.52+ 0.23  4.07+ 0.16 4.70+ 0.32 4.51+ 0.08 

 
PII

2
 1.22+ 0.10 1.27+ 0.07 1.81+ 0.10  4.07+ 0.32 4.01+ 0.39 4.07+ 0.36  3.63+ 0.28 3.73+ 0.17 3.91+ 0.17 

 
PF

3
  1.71+ 0.26 1.67+ 0.09 1.44+ 0.08  4.69+ 0.28 4.52+ 0.13 4.51+ 0.25  4.08+ 0.29 4.22+ 0.11 4.18+ 0.16 

10% protein content            

 
PI

1
 1.89+ 0.09 2.32+ 0.16 1.44+ 0.08  5.05+ 0.27 5.49+ 0.30 5.25+ 0.19  4.93+ 0.18 4.90+ 0.21 4.32+ 0.08 

 
PII

2
 1.32+ 0.14 1.70+ 0.15 1.85+ 0.18  5.18+ 0.07 4.62+ 0.08 4.85+ 0.19  4.79+ 0.08 4.54+ 0.32 4.61+ 0.26 

 
PF

3
  1.63+ 0.14 1.88+ 0.13 1.19+ 0.07  4.68+ 0.21 4.42+ 0.29 4.17+ 0.10  4.14+ 0.05 4.32+ 0.21 4.06+ 0.10 

12% protein content            

 
PI

1
 2.89+ 0.18 3.15+ 0.11 1.92+ 0.10  5.08+ 0.26 5.05+ 0.17 4.78+ 0.39  4.26+ 0.13 4.42+ 0.26 4.92+ 0.48 

 
PII

2
 1.61+ 0.10 2.17+ 0.04 2.51+ 0.13  4.95+ 0.29 5.02+ 0.14 4.98+ 0.13  4.23+ 0.15 4.33+ 0.35 4.61+ 0.28 

 
PF

3
  2.23+ 0.13 2.59+ 0.07 1.19+ 0.14  4.70+ 0.25 4.52+ 0.16 4.49+ 0.17  4.43+ 0.12 4.35+ 0.12 4.35+ 0.06 

16% protein content            

 
PI

1
 3.01+ 0.10 3.29+ 0.19 1.32+ 0.10  5.16+ 0.20 5.08+ 0.30 4.85+ 0.30  4.95+ 0.17 4.71+ 0.29 4.50+ 0.14 

 
PII

2
 1.49+ 0.10 1.92+ 0.09 2.42+ 0.14  4.95+ 0.19 5.13+ 0.13 4.85+ 0.10  4.90+ 0.08 5.10+ 0.15 5.44+ 0.17 

 
PF

3
  2.36+ 0.22 2.45+ 0.10 1.13+ 0.04  5.00+ 0.14 5.23+ 0.08 4.36+ 0.12  4.90+ 0.20 4.89+ 0.27 4.22+ 0.24 

1
PI=acetic acid-extracted sorghum protein from DDGS, 

2
PII=ethanol-extracted sorghum protein from DDGS, 

3
PF=acetic acid-

extracted sorghum protein from sorghum flour. 
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 2.4.8 Comparison of sorghum protein and soy protein isolates (SPI) adhesives 

To date, soy protein-based adhesives are considered the most promising bio-based 

adhesives to partially replace petroleum-based adhesives because of their excellent adhesion 

performance on wood and other materials, as reported by Wool and Sun (2005). Table 6 

compares adhesion performance between soy protein isolates (SPI) and various sorghum kafirin 

proteins (PI, PII, PF) at a concentration of 12%. Sorghum protein showed excellent water 

resistance, which commonly has been the biggest challenge for soy protein adhesives. For 

instance, wet strength of PI adhesive (2.89, 3.15 and 1.92 MPa) was much higher than those of 

unmodified soy protein adhesives (1.61, 1.63 and 1.98 MPa) under pressing temperatures of 

130ºC, 150ºC and 170ºC, respectively. 

Amino acid composition and overall hydrophobicity of proteins are essential factors 

affecting protein adhesive performance. As shown in Tables 2 and 3, large differences in amino 

acid composition between sorghum proteins and soy protein were observed. In terms of total 

hydrophobic amino acids, sorghum protein was much higher (about 58 mol %) than soy protein 

(~37 mol %). Hydrophobic protein adhesives repelled water when assembled cherry wood 

samples were soaked, ensuring interaction between the wood boards and boundaries formed by 

protein adhesives. Wood surfaces remained intact. Conversely, hydrophilic protein adhesives 

may absorb water when applied on cherry wood board, thus destroying cohesion between 

adhesives and wood surface. Furthermore, cross-linking among kafirins may offer another reason 

why sorghum protein adhesives had better water resistance than soy protein. Kafirins are known 

to cross-link significantly when heated (Belton et al 2006; Shull et al 1991) and may have done 

so when the adhesives were heated.  
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Table 2.6 Comparison of adhesion performance of sorghum protein adhesives and soy 

protein isolates at 12% protein concentration 

Hot press condition 
Sorghum protein (MPa) 

SPI
4
 (MPa) 

PI
1
 PII

2
 PF

3
 

Wet strength     

130 ºC 2.89+ 0.18 1.61+ 0.10 2.23+ 0.13 1.61 

150 ºC 3.15+ 0.11 2.17+ 0.04 2.59+ 0.07 1.63 

170 ºC 1.92+ 0.10 2.51+ 0.13 1.19+0.14 1.98 

Dry strength     

130 ºC 5.08+ 0.26 4.95+ 0.29 4.70+ 0.25 4.55 

150 ºC 5.05+ 0.17 5.02+ 0.14 4.52+ 0.16 5.29 

170 ºC 4.78+ 0.39 4.98+ 0.13 4.49+ 0.17 4.88 

Soaked strength     

130 ºC 4.26+ 0.13 4.23+ 0.15 4.43+ 0.12 4.17 

150 ºC 4.42+ 0.26 4.33+ 0.35 4.35+ 0.12 4.35 

170 ºC 4.92+ 0.48 4.61+ 0.28 4.35+ 0.06 4.42 

1
PI=acetic acid-extracted sorghum protein from DDGS. 

2
PII=ethanol-extracted sorghum protein from DDGS. 

3
PF=acetic acid-extracted sorghum protein from sorghum flour. 

4
SPI=soy protein isolates. 

Another advantage of sorghum protein used as adhesive compared to soy protein is that 

sorghum protein adhesives need less energy than soy protein adhesive when assembling the 

wood board using a hot press method. Results have shown that 150 ºC for sorghum protein was 

the optimum temperature, whereas soy proteins typically need 170 ºC or higher to achieve 

maximum strength (Table 2.6).   

However, some challenges are notable for the use of sorghum protein isolates as adhesives. 

First, finding a low-cost solvent to dissolve isolated sorghum kafirins for adhesive use was 
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difficult; in contrast, uniform suspension of soy proteins can be obtained by mixing soy protein 

with water. In addition, the lower efficiency of sorghum protein recovery and complicated 

extraction procedures compared with soy protein are a concern.  Further research is needed to 

improve extraction of sorghum proteins. 

 2.5 Conclusions 

Sorghum protein extracted from sorghum DDGS and sorghum flour with different 

methods had distinct adhesion performances. Results showed that PI had the best adhesion 

performance, followed by PF and PII, especially for wet strength. The wet strength of PI at a 

12% concentration assembled at 150°C was 3.15 MPa, compared to 2.17 MPa for PII and 2.59 

MPa for PF. Low protein purity caused by non-protein materials of PF may be the primary cause 

for lower adhesion strength than PI. In addition, PI may have more hydrophobic amino acids 

aligned at the interface than PII, thus explaining the greater water resistance of PI. Optimum 

sorghum protein concentration and pressing temperature for maximum adhesion strength is 12% 

and 150 °C. Compared with soy protein-based adhesives, PI had advantages such as significantly 

higher water resistance and lower energy input. These results indicate that sorghum protein 

displays huge potential as an alternative to petroleum-based adhesives.   
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Chapter 3 - Physicochemical properties and adhesion performance 

of canola protein modified with sodium bisulfite
2
 

 3.1 Abstract 

The objective of this research was to study adhesion properties of sodium bisulfite 

(NaHSO3)-modified canola protein. Protein was extracted from canola meal through alkali 

solubilization and acid precipitation methods, then modified with different concentrations of 

NaHSO3 (0g/L to 15 g/L) during the isolation process. As NaHSO3 concentration increased, 

canola protein purities decreased. Amino acid profiles showed that hydrophobic amino acids in 

canola protein constituted only 27% of total protein, indicating that canola protein is mostly 

hydrophilic. Reducing effects of NaHSO3 were exerted on canola protein through the breaking of 

disulfide bonds in both its cruciferin and napin components, as reflected by the protein 

electrophoresis profile, DSC data, and morphological images. Wet protein isolates were used as 

adhesives. The greatest wet shear strength of canola protein adhesive without modification was 

3.97 MPa with 100% wood cohesive failure (WCF), observed at a curing temperature of 190 °C. 

NaHSO3 had slight weakening effects on adhesion performance of canola protein. Canola protein 

modified with 3g/L NaHSO3 exhibited wet shear strength similar to the control at 190 °C and 

higher strength at 150 °C and 170 °C. The NaHSO3 modification significantly improved 

handling and flowability of canola protein adhesives. 

 3.2 Introduction 

In the current market, prominent commercial adhesives for wood composites are 

petroleum-based resins such as phenol-formaldehyde (PF), urea-formaldehyde (UF), melamine-

formaldehyde (MF) and isocyanates. To alleviate issues with limited petroleum resources and 

environmental pollution, many efforts have been made to develop bio-based adhesives, including 

soybean protein adhesive, lignins, animal glue, and blood-based adhesives, of which soy protein 

                                                 

2
 Results have been published as a peer-reviewed paper. Li, N., Qi, G., Sun, X. S., Stamm, M. J., & Wang, D. 

(2012). Physicochemical properties and adhesion performance of canola protein modified with sodium bisulfite. J. 

Am. Oil Chem. Soc. 89:897-908. 

 



 

37 

 

is one of the most promising and most investigated (Wool and Sun 2005). Another concern has 

been raised, however, about competition between bio-based products and human food and 

animal feed. Consequently, researchers should explore other renewable resources with adhesive 

potential.   

Canola, also known as rape, oilseed rape, rapa, or rapeseed, has 40% oil and 17-26% 

protein content and ranks as the third-largest oilseed crop produced worldwide after soybeans 

and palm. Worldwide production of canola increased rapidly from 30.1 million metric tons (MT) 

in 2008–2009 to approximately 58.4 MT in 2010–2011 (USDA 2011). Although canola proteins 

possess a well-balanced amino acid composition, the meal is not used in human food 

applications due to the presence of glucosinolates (which interfere with thyroid function, thus 

reducing growth), erucic acid (which has potential to produce toxic effects in the heart), phytates 

(which strongly bind polyvalent metal ions such as zinc and iron and make them unavailable for 

metabolism), and phenolics (which are bitter flavored and make protein products darker in 

color). Napin (2S), cruciferin (12S), and oleosin are major components in canola protein and 

constitute 20%, 60%, and 8%, respectively, of the total protein in mature seeds (Hoglund et al 

1992). High-value use of canola protein has been studied. Isolated canola proteins, another bio-

based material, have been shown to be capable of producing biodegradable materials such as 

films (Sung-Ae et al 2010) and thermal plastics (Manamperi et al 2010), but reports on 

application of canola protein for biodegradable adhesives are limited. Narayanamurti et al. (1943) 

studied rapeseed (canola) protein-formaldehyde dispersions as plywood adhesives and found that 

optimum curing conditions for canola protein-based adhesives require a temperature of 120 °C, 

pressure of 1.38 MPa, and time of 10-15 min. Optimum data for shear strength of canola protein 

adhesives was 1.92 MPa with wood failure rate of 30% in dry shear strength and 1.38 MPa with 

0% wood failure in wet shear strength. 

Technical challenges for protein-based adhesives are high viscosity, low water resistance, 

and short pot life. Studies on soy protein adhesives focus on improving water resistance by using 

modifiers, such as denaturants, cross-linking agents, and reducing agents. In the study by Qi and 

Sun (2011), soy protein adhesive with high solid content and excellent water resistance was 

extracted directly from soy flour slurries and modified with sodium bisulfite (NaHSO3) using 

acid precipitation. Sodium bisulfite (NaHSO3) functions as a reducing agent to modify protein-

based adhesives by cleaving disulfide bonds in protein. It also is capable of lowering viscosity of 
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wet protein isolates, as well as improving soy protein’s properties of flowability, solubility, and 

hydrophobicity (Zhang and Sun 2011). Similar to soy protein, cruciferin and napin canola 

protein fractions contain disulfide linkages among protein polypeptides, and the napin protein 

structure is stabilized mainly by disulfide bonds; therefore, it is speculated that canola protein 

may also have functions similar to soy protein adhesives and adhesion performance could be 

improved by NaHSO3 treatment. Preliminary results revealed that when sodium bisulfate 

concentration was over 20 g/L, adhesion strength decreased significantly. Therefore, NaHSO3 

concentrations of 0, 3, 6, 9, or 15 g/L were evaluated in this research. 

A limitation of previous studies on canola protein adhesive was that purity of the protein 

isolate was as low as 47.5% (Narayanamurti et al 1943). The objective of this research was to 

study adhesion property of high purity canola protein extracted from canola meal and modified 

with different concentrations of NaHSO3, as well as characterizing physicochemical properties of 

the protein, such as amino acid composition and electrophoresis profile, and thermal, rheological, 

and morphological characteristics. 

 3.3 Materials and Methods 

 3.3.1 Materials 

Canola meal with 11.0% moisture content (wb) was purchased from Planet Natural 

(Bozeman, Mont.). Sodium bisulfite (NaHSO3), hexanes, hydrochloric acid (HCl), sodium 

thiocyanate (NaSCN), 2-mercaptoethanol (Me-SH), and propylene glycol (PG) were purchased 

from Sigma Aldrich (St. Louis. Mo.). Cherry wood veneers with dimensions of 50 × 127 × 5 mm 

(width × length × thickness) were provided by Veneer One (Oceanside, N.Y.). 

 3.3.2 Canola Protein Extraction  

Protein was isolated from canola meal as described by Manamperi et al (2010), with 

modifications. Canola meal was first dried overnight in an oven at 49 °C. Dried canola meal was 

milled with a cyclone sample mill (Udy Corp., Fort Collins, Colo.) into powder to ensure that 

particle size of the meal was <0.25 mm. Then, dried and milled canola meal was defatted with 

hexane at a solid/liquid ratio of 1:10 (w/v) for 2 h at room temperature in three cycles. The 

defatted meal was placed in a fume hood overnight to remove residual hexane. The defatted and 

dried canola meal was mixed with distilled water at the solid/liquid ratio of 1:12 (w/v), and the 
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slurry was presoaked for 1 h with stirring. Then, NaHSO3 was added to the slurry in 

concentrations of 0, 3, 6, 9, or 15 g/L separately on the basis of water volume, and the pH value 

of the slurry was adjusted to 12 with 6 mol/L NaOH solution. The slurry was stirred for another 

2 h at room temperature to solubilize the protein in canola meal. The slurry mixture was 

centrifuged at 12,000 × g for 15 min, and the supernatant was decanted through a six-layer 

cheesecloth to remove impurities on top of the supernatant. The pH value of the supernatant was 

then slowly adjusted to 3.5 with 2 mol/L HCl solution to precipitate the protein. The mixture was 

centrifuged again at 12,000 × g for 15 min to isolate wet canola protein. A portion of the wet 

protein was used as adhesive and the remainder was freeze-dried and ready for physicochemical 

analysis.  

 3.3.3 Chemical Analysis 

Protein content was measured by combustion via a LECO FP-2000 nitrogen determinator 

(St. Joseph, Mich.) according to AOAC method 990.03 (1995). Nitrogen was converted to 

protein using a factor of 6.25. Fat content was determined through the Soxhlet petroleum-ether 

extraction method according to AOAC method 920.39C for cereal fat and expressed as weight 

percentage on a dry basis (1995). Crude fiber was determined according to AOCS-approved 

procedure Ba 6a-05 (1996).  

 3.3.4 Electrophoresis (SDS-PAGE)  

SDS-PAGE was performed on a 4% stacking gel and 12% separating gel with a 

discontinuous buffer system as described by Laemmli (1970). A canola protein sample was 

mixed with a sample buffer containing 2% SDS, 25% glycerol, and 0.01% bromphenol blue. To 

study disulfide bonds in canola protein, SDS-PAGE under both reducing (2-mercaptoethonal) 

and non-reducing conditions were carried out. A total of 8 µg of protein was applied to sample 

wells. Molecular weight standards (14.4-97.4 kDa) were run with the samples. Electrophoresis 

was performed at 40 mA and 150 V for 120 min. The gel was stained in 0.25% Coomassie 

brilliant blue R-250 and destained in a solution containing 10% acetic acid and 40% methanol. 

Densitometry was obtained by analyzing the gel image using the Kodak 1D Image Analysis 

software, version 4.6 (Kodak, Rochester, N.Y.). 
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 3.3.5 Amino Acid Composition Analysis 

Amino acid composition was analyzed following the procedure described by Li et al 

(2011). Approximately 100 mg for each sample were weighed, placed in 0.5 mL of 6 N HCl 

solution along with the internal standard, and hydrolyzed at 110 °C for 20 h. An aliquot, 

typically 10 or 20 µl, was then made up to 250 µL with 0.4 M borate buffer to dilute the sample 

and raise the pH. After precolumn derivatization with o-phthalaldehyde (OPA) and 9-

fluorenylmethyl chloroformate (FMOC), 1 µL of this diluent was injected into an HPLC system 

with a C18 column (Hypersil AA-ODS, 2.1 × 200 mm, 5 µm). Mobile phase A was 20 mM 

sodium acetate buffer with 0.018% (v/v) triethylamine, 0.05 mM EDTA, 0.3% tetrahydrofuran, 

and pH adjusted to 7.2 using acetic acid. Mobile phase B was 100 mM sodium 

acetate:acetonitrile:methanol (20:40:40, v/v). Elution conditions progressed from 100% A to 

60% B in 17 min at 0.45 mL/min. Amino acid derivatives were detected with a fluorescent 

detector at 340/450 nm (excitation/emission) for primary amino acids and 266/305 nm for 

secondary amino acids. Human serum albumin was used as a control, and norvaline and 

sarcosine were used as internal standards. 

 3.3.6 Rheological Properties 

Apparent viscosities of isolated canola proteins with 30% solid content (wb) were 

determined using a Bohlin CVOR 150 rheometer (Malvern Instruments, Southborough, Mass.) 

with a CP 4/40 cone and plate fixture (4° cone angle, 40-mm cone diameter). Distance between 

cone and plate was set to 150 µm for all measurements. Experiments were conducted under 

steady shear flow at 23 °C, and shear rates ranged from 10-240 s
-1

 in increments of 10 s
-1

. All 

experiments were done in duplicate, and average values were reported. 

 3.3.7 Transmission Electron Microscopy (TEM) 

A model CM 100 TEM (FEI Company, Hillsboro, Ore.) was operated at 100 kV. Canola 

protein isolates were first dissolved in distilled water with a solid concentration of 0.01% (W/W). 

The pH value of the mixture was adjusted to 12 to dissolve the protein isolates, and then was 

lowered to 3.5 to precipitate the protein isolate by imitating protein isolation conditions. 

Prepared protein samples were absorbed for approximately 30 s at room temperature onto 

Formvar/carbon-coated 200-mesh copper grids (Electron Microscopy Sciences, Fort 
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Washington, Pa.) and stained with 2% (w/v) uranyl acetate (Ladd Research Industries, Inc., 

Burlington, Vt.) for 60 s at room temperature before being viewed by TEM. 

 3.3.8 Scanning Electron Microscopy (SEM) 

           A Hitachi S-3500 N (Hitachi Science System, Ibaraki, Japan) SEM was used to observe 

the microstructure of dried canola protein isolate powder. The ground protein powder was 

affixed to an aluminum stub with two-sided adhesive tape and coated with an alloy of 60% gold 

and 40% palladium with a sputter coater (Desk II Sputter/Etch Unit, Moorestown, N.J.). SEM 

images of the protein isolates were performed with operation conditions at an accelerating 

voltage of 5 kV. 

 3.3.9 Differential Scanning Calorimetry (DSC) 

Thermal transition properties of protein samples were measured with a DSC Q200 V24.4 

instrument (TA Instruments, New Castle, Del.) that was calibrated with indium and zinc before 

making official measurements. Samples of dry canola proteins weighing approximately 7–10 mg 

were measured in a hermetic aluminum pan under a nitrogen atmosphere with a gas flow rate of 

50 mL/min. All samples were heated from 25 °C to 280 °C at a heating rate of 10 °C/min in an 

inert environment. All experiments were performed in duplicate.  

 3.3.10 Wood specimen preparation 

Cherry wood samples were preconditioned in a controlled-environment chamber (Model 

518, Electro-tech systems, Inc., Glenside, Pa.) for 7 d at 25 °C and 50% relative humidity (RH). 

Canola protein adhesives, isolated with different methods, were brushed separately along the 

edges of two pieces of cherry wood with an application area of 127 mm × 20 mm until the 

entire area was completely covered. The adhesive amount applied on each piece was 

approximately 0.06 g (dry basis). The brushing and setting procedure followed the method 

described by Mo et al. (2004). Brushed areas of the two pieces were assembled together at room 

temperature for 15 min, then pressed at a pressure of 3.57 MPa at 150 °C, 170 °C, or 190 °C for 

10 min using a hot press (Model 3890 Auto ‘M’, Carver Inc., Wabash, Ind.). 
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 3.3.11 Mechanical Properties 

After pressing, the glued-wood assemblies were conditioned at 23 °C and 50% RH for 

two days, then cut into five specimens, each measuring 127 mm (length) × 20 mm (width) × 5 

mm (thickness). The cut specimens were conditioned for an additional five days at 23 °C and 

50% RH before the dry test. Three adhesion strengths were tested: dry strength, soak strength, 

and wet strength. Wood specimens for dry strength testing were prepared and tested using an 

Instron (Model 4465, Canton, Mass.) according to ASTM Standard Method D2339-98 (2002). 

The crosshead speed of Instron for adhesion strength testing was 1.6 mm/min, and adhesion 

strength was recorded as tensile strength at the maximum load. Reported results are an average 

of five samples. 

Water resistance was determined by measuring wet and soak strengths according to 

ASTM Standard Methods D1183-96 (2002) and D1151-00 (2002), respectively. Preconditioned 

specimens were soaked in tap water at 23 °C for 48 h and then tested immediately for wet 

strength. For the soak strength test, specimens were soaked in tap water at 23 °C for 48 h and 

then conditioned at 23°C and 50% RH for an additional seven days before testing. 

 3.3.12 Statistical Analysis 

Data from the mechanical property evaluation were taken from an average of five 

samples. Data from experiments carried out in duplicate were analyzed through analysis of 

variance (ANOVA) and least significant difference (LSD) at the 0.05 level according to 

procedures in the SAS statistical software package (SAS Institute 2005, Cary, N.C.).  

 3.4 Results and Discussion 

 3.4.1 Chemical Composition of Canola Protein and Canola Meal  

NaHSO3-modified canola protein recovery rate and partial proximate composition are 

summarized in Table 3.1. The protein recovery rate from canola meal increased slightly from 

31.33% to 34.37% as the NaHSO3 concentration increased from 0 g/L to 15 g/L. Moisture 

content of extracted canola protein isolates after centrifuging increased as NaHSO3 concentration 

increased, implying that the water bonding capacity of protein isolates increased due to the 

existence of NaHSO3. Water bonding capacity in isolated canola protein could affect adhesion 

performance, which will be discussed in the Mechanical Properties section.  



 

43 

 

Defatted canola meal contained approximately 49.3% protein. A higher purity of dried 

canola protein isolates was found in the control canola protein (CP-0, 87.30%). When NaHSO3 

concentration increased from 0 g/L to 15 g/L, isolated canola protein purity decreased from 

87.30% to 84.47%. Impurities, such as lipids and crude fibers, were detected in small amounts in 

all isolated proteins. Other impurities are speculated to be phenolic compounds or glucosinolates 

which cannot be removed with regular extraction methods (Frank and Kazimierz 1984).  

Table 3.1 Recovery rate and partial proximate composition of canola meal and protein isolates 

produced by modification with various concentrations of NaHSO3.  

Canola protein 

samples 

Protein 

recovery 

(%, db) 

Moisture 

content 

(%, db) 

 

Composition of protein 

sources  (%, db) 

Protein Lipids Fiber 

D-CM
1
 --   49.26c 0.89a 8.62a 

CP
2
-0 31.33 72.64b

3
  87.30a 0.22b 0.05b 

CP-3 34.37 72.85b  86.46a 0.22b 0.03b 

CP-6 33.71 77.8a  83.90b 0.33b 0.01b 

CP-9 32.89 76.61a  84.84b 0.29b 0.02b 

CP-15 34.06 77.78a  84.47b 0.24b 0.01b 

1
D-CM: Defatted canola meal 

2
CP: Canola protein modified by 0, 3, 6, 9, 15 g/L NaHSO3 

3
Means in the same column followed by different letters are significantly different at P<0.05 

 3.4.2 Amino Acid Composition 

The amino acid composition in NaHSO3-modified canola protein is shown in Table 2. 

Canola protein purities based on the total sum of amino acids were much lower than values 

obtained by the nitrogen combustion method. The difference could be attributed to non-protein 

nitrogen in the canola meal and protein isolates. Krishnamoorthy reported that the concentration 

of non-protein nitrogen in isolated canola protein could be up to 26.8% (Krishnamoorthy et al 

1982). Another reason for the difference may be the destruction of tryptophan and cysteine by 

liquid HCl hydrolysis assay during the amino acid composition analysis. Because the total 

amount of amino acids did not include tryptophan and cysteine, estimates of total protein and 

concentration would be slightly lower than the true number, as shown in Table 2.  
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Amino acid composition (Table 3.2) is comparable to published data (Slominski et al 

1999); however, relatively huge differences in glutamate, serine, and glycine content were 

noticed, possibly because of varied canola varieties. Table 2 also shows that amounts of aspartate, 

tyrosine, methionine, and phenylalanine in isolated canola protein were greater than those in 

canola meal, whereas glutamate and lysine content were lower. The decrease in lysine content 

during canola protein extraction was also observed by Shahidi et al. (1992) and attributed to 

formation of lysinoalanine in the alkaline extractant. Four classes of proteins in canola meal are 

extractable: glutelins, prolamins, albumins, and globulins (Manamperi et al 2007). Each class 

may have different amino acid profiles. Only portions of albumins, glutelins, and globulins are 

extractable with alkaline extraction (Manamperi et al 2007) which is most likely why isolated 

canola proteins showed distinct amino acid content than canola meal.   

Amino acids can be classified into groups according to polarity, structure, nutritional 

requirements, and metabolic fate. Based on hydrophobicity, amino acids can also be grouped into 

hydrophobic (non-polar) and hydrophilic (polar) types. Alanine, methionine, phenylananine, 

isoleucine, leucine, and proline belong to the hydrophobic group and account for 27.68% to 

27.92% of canola protein isolates (Table 3.2). a previous study has demonstrated that amino acid 

compositions can affect adhesive performance of protein-based adhesives (Li et al 2011). Further 

discussion will occur in detail in the next section.  
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Table 3.2 Amino acid compositions of canola meal and canola protein isolates modified with 

NaHSO3 at various concentrations. 

Amino 

acid (Mol %) 
D-CM

1
 

CP
2
 modified with NaHSO3 

CP-0 CP-3 CP-6 CP-9 CP-15 

Aspartate 8.44 10.54 10.42 10.27 10.48 10.22 

Glutamate 22.37 20.79 20.48 20.52 21.12 20.91 

Serine 5.47 5.42 5.47 5.44 5.40 5.39 

Histidine 3.32 3.03 3.06 3.11 3.03 3.04 

Glycine 6.07 6.25 6.24 6.19 6.23 6.18 

Threonine 5.45 5.00 4.97 4.92 4.72 4.78 

Alanine 5.40 5.26 5.35 5.31 5.20 5.27 

Arginine 6.95 7.01 6.87 7.02 6.91 7.05 

Tyrosine 3.23 3.81 3.85 3.91 3.80 3.87 

Valine 6.05 5.97 5.94 5.87 5.83 5.82 

Methionine 1.74 1.97 2.10 2.17 2.15 2.12 

Phenylalanine 5.00 5.62 5.54 5.54 5.58 5.54 

Isoleucine 5.80 5.77 5.78 5.76 5.70 5.78 

Leucine 8.86 9.11 9.15 9.14 9.06 9.06 

Lysine 5.85 4.46 4.77 4.83 4.79 4.97 

T-AA (%) 100 100 100 100 100 100 

T-protein (%) 34.84 65.76 65.45 63.67 63.67 63.45 

Hydrophobic
3
 26.80 27.72 27.92 27.92 27.68 27.76 

Hydrophilic
4
 73.20 72.28 72.08 72.08 72.32 72.24 

1
D-CM: Defatted canola meal 

2
CP: Canola protein modified by 0, 3, 6, 9, 15 g/L NaHSO3 

3
Hydrophobic: Alanine, methinine, phenylalanine, isoleucine, leucine and proline 

4
Hydrophilic: Lysine, tyrosine, arginine, threonine, glycine, histidine, serine, glutamine and 

asparagine 
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 3.4.3 Rheological Properties 

Viscosity is an important physical property that governs behavior of wood adhesives. 

Low viscosity allows for easy handling and good flowability on wood surfaces. Apparent 

viscosity decreased as shear rate increased (Figure 3.1), indicating that canola protein isolates 

showed shear thinning properties. Unmodified canola protein adhesive exhibited maximum 

viscosity around 9,000 Pa.s. Apparent viscosities of modified proteins decreased notably as 

NaHSO3 concentration increased, thus improving handling and flowability of canola protein. 

Minimum apparent viscosity of approximately 1,200 Pa.s was observed at NaHSO3 

concentration of 15 g/L (Figure 3.1). The apparent viscosity of protein is manipulated by 

intermolecular interaction, such as electrostatic interactions and disulfide bonds (Cheng 2004). 

As a reducing agent, NaHSO3 could break disulfide bonds among polypeptides, dissociating 

canola protein into smaller subunits. As a result, weakening protein-protein interactions reduced 

the apparent viscosity of NaHSO3-canola protein adhesives. 
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Figure 3.1 Shear rate dependence of apparent viscosity of canola protein adhesives with 30% 

solid content (wb) modified with NaHSO3 at various concentrations. 

 3.4.4 Morphological Properties  

TEM images of NaHSO3-canola proteins are displayed in Figure 3.2. In unmodified 

canola protein, irregular, highly dense protein clusters were observed as a mixture of spherical 

and rod-shaped clusters with diameters from 30 to 250 nm (Figure 3.2 A). The protein clusters 

were dissociated into smaller protein aggregates when canola protein was treated with NaHSO3. 

Their diameters decreased as NaHSO3 concentration increased (Figure 3.2 B-E), with the 

exception of 6 g/L NaHSO3 (Figure 3.2 C). In this sample, branch-like materials dispersed 

among the small protein particles probably were non-protein substance, which may also explain 

the lower purity than other samples (Table 3.1). 
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Figure 3.2 TEM images of canola meal and canola protein adhesives modified with NaHSO3 at 

various concentrations: 0g/L NaHSO3 (A); 3g/L NaHSO3 (B); 6g/L NaHSO3 (C); 9g/L NaHSO3 

(D); 15g/L NaHSO3 (E). Magnification: × 64k. Scale bar represents 100 nm. 

 

The highly dense protein clusters in the control canola protein (Figure 3.2 A) indicated 

that strong protein aggregation occurred in the sample. Most of the surface of protein aggregates 

is considered hydrophilic because the hydrophobic portion is buried through protein aggregation 
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(Sun et al 2008). Reduced protein aggregation was achieved in NaHSO3-modified canola protein 

by breaking disulfide bonds between proteins and introducing negatively charged groups (SO3
–
) 

to protein molecules (Sun et al 2008). As a result, some hydrophobic groups could be exposed on 

the canola protein surface, followed by the aggregates dissociation process. Exposing more 

hydrophobic groups can be beneficial for adhesion performance of canola protein. 

SEM images (Figure 3.3) showed that, in defatted canola meal (top left), protein granules 

with a diameter of approximately 12 μm were wrapped with fibers or another non-protein 

component. For the unmodified canola protein sample (Figure 3.3 A), a loosely cross-linked 

protein network with non-uniform size pores was observed; this fairly rough surface can 

probably be attributed to strong protein aggregation among canola protein molecules. In contrast, 

NaHSO3-modified canola protein exhibited a regular and smooth surface due to less extensive 

protein aggregation (Figure 3.3 B-E). 
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Figure 3.3 SEM images of canola meal and canola protein adhesives modified with NaHSO3 at 

various concentrations: Canola meal, ×5000; 0g/L NaHSO3 (A,×200; a, ×5000); 3g/L       

NaHSO3 (B,×200; b, ×5000); 6g/L NaHSO3 (C,×200; c, ×5000); 9g/L NaHSO3 (D,×       

200; d, ×5000); 15g/L NaHSO3 (E,×200; e, ×5000). 
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 3.4.5 SDS-PAGE  

In the absence of ME (Figure 3.4 A-E), two major components in native canola protein, 

cruciferin (12S) and napin (2S), were observed with polypeptides’ molecular weights ranging 

from 17 to 55 kDa. Cruciferin subunits were composed of bands with MW above 20 kDa, and 

napin subunits had 17 and 12 kDa bands (Wu and Muir 2008). In modified canola protein 

samples, intensity of polypeptide bands at 17 kDa changed insignificantly at NaHSO3 

concentrations in the range of 3-9 g/L (Figure 4 B-D); however, bands almost disappeared when 

the concentration of NaHSO3 was 15 g/L (Figure 3.4 E), and density of smaller polypeptides at 9 

kDa increased concomitantly, indicating the presence of disulfide bonds in napin protein 

molecules. Reducing effects of NaHSO3 on protein can break disulfide linkage and dissociate the 

protein into smaller polypeptide chains. A concentration of 15 g/L was apparently needed to 

completely break disulfide bonds in napin. Reducing effects of NaHSO3 could also be observed 

by attenuated bands at 55 kDa, belonging to cruciferin subunits stabilized by disulfide bonds, and 

intense bands at 30 kDa, belonging to disassociated polypeptides (Uruakpa and Arntfield 2006).  

In addition, high molecular weight canola protein aggregates were observed on top of the 

resolving gel in the absence of ME. Some bands remained in the presence of ME (Figure 3.4 F-

J), suggesting that these protein aggregates were stabilized by other covalent bands in addition to 

disulfide bonds.  
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Figure 3.4 Non-reducing SDS-PAGE pattern of NaHSO3-modified canola protein in the absence 

of 2-mercaptoethanol (lane A-E) and reducing SDS-PAGE pattern in the presence of 2-

mercaptoethanol (lane F-J): 0g/L NaHSO3 (lane A, F); 3g/L NaHSO3 (lane B, G); 6g/L NaHSO3 

(lane C, H); 9g/L NaHSO3 (lane D, I); 15g/L NaHSO3 (lane E, J). 

  3.4.6 Differential Scanning Calorimetry (DSC) 

In DSC thermograms of NaHSO3 -modified canola proteins (Figure 3.5), the first 

endothermic peak at approximately 65 °C was ascribed to water evaporation. The broad 

endothermic peak was attributed to thermal denaturation of two major canola proteins: cruciferin 

and napin (Manamperi et al 2010). As shown in Table 3.3, both denaturation temperature (Td) 

and enthalpy (∆H) of canola protein were obviously affected by NaHSO3. The Td decreased 

gradually as the NaHSO3 concentration increased, from 124 °C for unmodified CP to 115 °C for 

CP treated with 15 g/L NaHSO3. Meanwhile, enthalpy of CP decreased by 30% after 

modification with 15 g/L NaHSO3. Destabilized canola protein indicated that the reducing 

properties of NaHSO3 were exerted on protein polypeptide chains connected by disulfide bonds; 

NaHSO3 could dissociate compact canola cruciferin and napin to a less stable protein 

structure/conformation. Results were consistent with CP SDS-PAGE data, demonstrating that 

disulfide bonds were cleaved in modified CP.  
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Figure 3.5 DSC thermograms of canola protein modified with NaHSO3 at various 

concentrations.  
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Table 3.3 Thermal transition characterization of canola proteins modified with NaHSO3 at 

various concentrations. 

 

Canola protein 

samples 

Endothermic peak  Exothermic peak 

Td (°C) ∆H (J/g)  T (°C) ∆H (J/g) 

CP
1
-0 124.45a

2
 22.26a  201.81a 19.02a 

CP-3 119.85a 17.44b  211.10a 21.59a 

CP-9 117.70a 16.73b  201.22a 7.74b 

CP-15 115.49a 14.95b  206.24a 9.07b 

                        1
CP: Canola protein modified by 0, 3, 9, 15 g/L NaHSO3 

                       2
Means in the same column followed by different letters are significantly different at                                

               P<0.05
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The DSC thermogram was also characterized by an exothermic peak above 200 °C, 

which was considered to be the aggregation of exposed canola protein subunits. Li et al. (2011) 

reported that the exothermic peak with an onset temperature of 170 °C was probably related to 

protein aggregation and significantly decreased adhesion strength of sorghum protein at a 

pressing temperature of 170 °C. In this research, the exothermic peak was above 200 °C and, 

considering that the ignition point of wood is approximately 240 °C, the plywood was not 

assembled at pressing temperatures above 200 °C. Furthermore, when CP was treated with 

NaHSO3 above a concentration of 9 g/L, one more exothermic peak appeared at temperatures 

higher than 220 °C (results not shown). NaHSO3 could release smaller subunits by breaking 

existing disulfide bonds in cruciferin and napin. These subunits may have a different protein 

thermal aggregation process than unmodified canola protein adhesive. 

 3.4.7 Mechanical Properties of Canola Protein Adhesives 

Both NaHSO3 concentration and curing temperature had significant effects on wet 

adhesion properties of canola protein adhesives (Table 3.4). In general, 100% wood cohesive 

failure (WCF) was observed with all dry and soaked plywood specimens at curing temperatures 

of 150 °C to 190 °C, indicating that bonding strength between wood and canola protein 

adhesives was stronger than mechanical strength of the wood at dry and soaked conditions. Only 

partial WCF happened to the wet assembled plywood samples (Table 3.4), however, and the 

percentage of WCF for samples varied greatly with NaHSO3 concentration and curing 

temperature.  

As shown in Table 3.4, increasing the curing temperature from 150 °C to 190 °C 

improved wet adhesion performance of the canola protein, but had almost no effect on soak or 

dry strength. Optimum wet strength occurred at 190 °C for all unmodified and NaHSO3-

modified canola protein adhesives. Curing temperatures higher than 190 °C were not applied 

because the wood was overheating and darkening at this curing temperature. Also, higher 

temperature consumes more energy, thus increasing mill production costs. Wet adhesion strength 

of canola protein adhesives improved as curing temperature increased, as reflected by wet shear 

strength and WCF rate. At a curing temperature of 170 °C, wet shear strength of unmodified 

canola adhesive was 2.23 MPa, an increase of 14% compared with the curing temperature of 150 

°C. The increase was small compared with the drastic improvement at a curing temperature of 
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190 °C, which demonstrated wet shear strength of 3.79 MPa, an increase of 78%. Canola protein 

modified with NaHSO3 at various concentrations showed a similar trend. In addition, 0% WCF 

was observed in assembled plywood specimens when the curing temperature was 150 °C and 

170 °C. Different levels of WCF, from 40-100%, existed in both unmodified and NaHSO3-

modified canola protein adhesives at a curing temperature of 190 °C.  

NaHSO3 had a negative effect on adhesion performance of canola protein adhesives 

under a curing temperature of 190 °C and almost no effect when cured at 150 or 170 °C. Wet 

shear strength decreased slightly as concentration of NaHSO3 increased from 0g/L to 6 g/L, then 

increased slightly as NaHSO3 concentration rose from 9 g/L to 15 g/L. Wet shear strength 

remained lower than that of unmodified canola protein adhesives. Optimum wet shear strength of 

canola protein adhesive (3.97 MPa) is higher than commercial urea-formaldehyde-based veneer 

adhesive (3.46 MPa) (Zhong et al 2007). The WCF rate decreased from 100% to 40% as 

NaHSO3 concentration increased from 0 g/L to 15 g/L, further reflected by insignificant negative 

effects of NaHSO3 on the water resistance of canola protein adhesives. Furthermore, at curing 

temperatures of 150 °C and 170 °C, adhesion improvement applies only at levels of NaHSO3 

from 0 and 3% g/L and all other levels of modification show little differences in mean values 

obtained, which can be attributed to reduced viscosity and improved flowability of NaHSO3-

modified canola proteins, as has been previously detailed in the section on rheological properties.  

The weakening effect of NaHSO3 on adhesion performance was also observed on soy 

protein adhesives (Zhang and Sun 2010). NaHSO3 can cleave disulfide bonds in soy proteins to 

form R-SH groups. During the reducing reaction, some sulfhydryls resulting from deoxidization 

are blocked as a sulfonate group (RS-SO3
–
); therefore, negative effects of NaHSO3 can be 

attributed to this extra negative RS-SO3
– 

group that bonded with water through formation of a 

chemical bond in the protein adhesive, stimulating hydrophilic behavior and causing the RS-

SO3
– 

group to absorb more water and disrupt the continuous adhesive matrix, an action that is 

detrimental to its wet shear strength. Cruciferinciferin and napin are known to have disulfide 

bonds, especially in the polypeptide chains of napin fraction, which are mainly held together by 

disulfide bridges (Schwenke 1994).  Consequently, the induced extra negative RS-SO3
– 

group is 

one of the reasons that NaHSO3 decreases adhesion strength of canola protein adhesives.  

Amino acid composition and hydrophobic properties of proteins are also essential factors 

in protein adhesive performance (Li et al 2011). Hydrophobic protein adhesives may have 
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repelled water when the assembled cherry wood samples were soaked, thus ensuring that 

interaction between the wood boards and boundaries formed by protein adhesives and wood 

surfaces remained intact. Conversely, hydrophilic protein adhesives may absorb water when 

applied on cherry wood board, potentially destroying cohesion between adhesives and the wood 

surface. Theoretically, proteins with more hydrophobic amino acids are good candidates for bio-

adhesives; however, canola protein adhesives with relatively low amounts of hydrophobic amino 

acids (~27%) (Table 3.2) had excellent water resistance (3.97 MPa) compared with sorghum 

protein (~58%, 3.15 MPa) and soy protein (~37%, 1.63MPa) (Li et al 2011). This is probably 

due to alteration of amino acids’ hydrophobic property at high temperatures. Weak, dispersed 

canola protein adhesive was cured into a rigid, solid state when heat was applied. Its 

hydrophobic property may have changed during this process; however, mechanism of the change 

should be investigated.   
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Table 3.4 Effect of NaHSO3 concentrations and curing temperatures on adhesion properties of canola protein adhesives.  

Canola 

protein 

samples 

Wet strength (MPa)  Soak strength (MPa)  Dry strength (MPa) 

150 °C 170 °C 190 °C  150 °C 170 °C 190 °C  150 °C 170 °C 190 °C 

CP-0 
1.95±1.07 

0% WCF
2
 

2.23±0.45

0% WCF 

3.97±0.53

100% 

WCF 

 

4.76±0.36

100% 

WCF 

5.45±0.23

100% 

WCF 

5.24±0.21

100% 

WCF  

 

4.63±0.57

100% 

WCF 

5.15±0.33

100% 

WCF 

5.44±0.12

100% 

WCF 

CP-3 
2.34±0.14 

0% WCF 

2.86±0.10

0% WCF 

3.92±0.05

70% 

WCF 

 

5.43±0.07

100% 

WCF 

5.80±0.44

100% 

WCF 

5.74±0.15

100% 

WCF 

 

5.78±0.32

100% 

WCF 

5.08±0.35

100% 

WCF 

5.40±0.37

100% 

WCF 

CP-6 
2.37±0.06 

0% WCF 

2.78±0.12

0% WCF 

3.33±0.11

60% 

WCF 

 

5.22±0.16

100% 

WCF 

5.53±0.35

100% 

WCF 

5.35±0.17

100% 

WCF 

 

5.06±0.21

100% 

WCF 

5.15±0.21

100% 

WCF 

5.15±0.26

100% 

WCF 

CP-9 
2.39±0.19 

0% WCF 

2.85±0.13

0% WCF 

3.39±0.15

40% 

WCF 

 

4.98±0.17

100% 

WCF 

5.44±0.48

100% 

WCF 

5.56±0.08

100% 

WCF 

 

5.17±0.13

100% 

WCF 

5.40±0.12

100% 

WCF 

4.98±0.39

100% 

WCF 

CP-15 
2.76±0.16 

0% WCF 

2.77±0.11

0% WCF 

3.79±0.08

40% 

WCF 

 

5.33±0.29

100% 

WCF 

5.21±0.15

100% 

WCF 

5.21±0.27

100% 

WCF 

 

5.40±0.51

100% 

WCF 

5.21±0.41

100% 

WCF 

5.02±0.08

100% 

WCF 

 1
CP: Canola protein modified by 0, 3, 9, 15 g/L NaHSO3 

2
WCF: Wood cohesive failure 
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 3.5 Conclusions 

Canola protein was extracted from defatted meal slurry modified with varying NaHSO3 

concentrations and by using the alkali solubilization-acid precipitation method. As concentration 

of NaHSO3 increased, canola protein recovery increased but canola protein purities decreased. 

Even though canola protein had a low content of hydrophobic amino acids, water resistance was 

excellent when used as a wood adhesive. NaHSO3 had slight weakening effects on adhesion 

performance of canola protein, resulting from counterbalanced effects on adhesion performance: 

positive effects of good flowability and negative effects of induced extra charges (RS-SO3
–
) in 

NaHSO3-modified samples. Canola protein modified with 3g/L NaHSO3 had wet shear strength 

comparable to the control but significantly improved flowability and handling. 
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Chapter 4 - Effects of Sodium Bisulfite on Physicochemical and 

Adhesion Properties of Canola Protein Fractions
3
 

 4.1 Abstract 

This study focused on the potential of using canola protein fractions as bio-degradable 

wood adhesives. Native and sodium bisulfite (NaHSO3)-modified canola protein fractions 

isolated successively at different pH values (7.0, 5.5, and 3.5) were used as adhesives. Wood 

specimens were assembled with adhesives at a pressure of 2 MPa at 150 °C, 170 °C, or 190 °C 

for 10 min. Adhesion performance of adhesives were evaluated by wet, soak, and dry shear 

strength. Physicochemical properties such as extractability, electrophoresis profiles, thermal, 

rheological, and morphological properties were also characterized. Results showed that canola 

protein had the highest protein yield and purity at pH 5.5. Electrophoresis profile proved that 

NaHSO3 cleaved disulfide bonds in canola protein. The NaHSO3 could induce extra charges 

(RS-SO3
-
) on the protein surface leading to reduced apparent viscosity. Thermal analysis implied 

that the thermal transition temperature of canola protein decreased with modification of 

NaHSO3. Canola protein adhesives showed excellent dry and soak shear strength with 100% 

wood cohesive failure in all curing temperatures. Wet adhesion strength of native and modified 

canola protein fraction adhesives at pH 5.5 and pH 3.5 (3.9-4.1 MPa) was higher than fractions at 

pH 7.0. NaHSO3 had insignificant effects on adhesion performance of canola protein adhesives 

but notably improved handling and flow-ability properties of canola protein adhesives.  

 4.2 Introduction 

Since the last few decades, biobased adhesives have been popular research topics due to 

deepening deficiencies of petroleum resources as well as environmental pollution and health 

concerns caused by synthetic petroleum resins. Natural resources, including soy, casein, starch, 

sorghum, and wheat gluten, are extensively investigated as alternative adhesives (Wool and Sun 

                                                 

3
 Results have been published as a peer-reviewed paper. Li, N., Qi, G., Sun, X. S., & Wang, D. (2012). Effects of 

sodium bisulfite on the physicochemical properties and adhesion performance of canola protein fractions. J. Polym. 

Environ. 20:905-915. 
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2005). Canola ranks as the third-largest oilseed crop produced worldwide after soy and palm. 

Canola meal, a byproduct of canola oil extraction, contains 30 to 50% protein on a dry basis 

among different hybrids. Studies show that canola protein is used mainly for animal feed instead 

of human food due to anti-nutritional factors in canola meal (Aider and Barbana 2010).  

Two major storage canola proteins, napin and cruciferin, constitute 20% and 60% of total 

protein in mature seeds, respectively (Hoglund et al 1992), and have very complicated protein 

compositions. Napin, which belongs to albumin storage proteins, is a highly basic protein with 

an isoelectric point of pH 11, and it exhibits molecular weights from 12.5 to 14.5 KDa [5]. 

Disulfide bonds are the main force stabilizing napin protein structure by comprising two 

disulphide-linked polypeptide chains (Krzyzaniak et al 1998). Cruciferin belongs to globulin 

storage protein, has a hexamer structure like soy glycinin protein (Berot et al 2005), and is a 

neutral protein with an isoelectric point around pH 7.2 and a molecular weight around 300 KDa 

(Schwenke et al 1983). Both covalent (disulfide bonds) and non-covalent bonds dominate 

cruciferin protein structure (Wu and Muir 2008).   

The most common method of isolating canola protein is the use of alkaline solution to 

solubilize canola protein, followed by protein precipitation at the isoelectric point (PI) with HCl 

(Wäsche et al 1998). Optimum pH values for maximizing the canola protein recovery rate varies 

from 3.5 to 5.5 among canola varieties (Pedroche et al 2004; Tzeng et al 1988). In many studies, 

more than one PI of canola protein was reported. Lonnerdal and Janson (1972) found that the 

basic napin protein fraction was known to have a PI close to pH 11, and they suggested that the 

PI of other canola protein fractions was located between pH 4 and 8. Predroche et al. (2004) 

extracted two protein fractions from Brassica carinata defatted meal, related to rapeseed, 

sequentially at its two PI: pH 3.5 and pH 5.5. Manamperi et al (2010) also reported that canola 

protein fractions precipitated sequentially from pH 11 to 3 with increments of 1 pH unit and that 

fractions behaved differently with respect to functional properties such as thermal, rheological, 

and mechanical properties. 

A promising candidate for biobased products with industrial applications, canola protein 

has been studied extensively for uses such as biodegradable thermal plastics (Manamperi et al 

2010), films (Wäsche et al 1998), and surfactants; however, little information is available 

regarding canola protein as an adhesive. Previous research revealed that canola protein and 

NaHSO3-modified canola protein extracted at pH 3.5 displayed excellent adhesion properties 
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important to adhesion, as high as 3.97 MPa with 100% wood cohesive failure for wet shear 

strength at optimum curing temperature (Li et al 2011). Because canola protein fractions are 

isolatable within a large range of pH values, these fractions may have different properties. The 

objective of this study was to investigate adhesive behavior of native canola protein fractions and 

NaHSO3-modified canola protein fractions isolated sequentially at pH values of 7.0, 5.5, and 3.5, 

and then characterize their physicochemical properties, such as chemical and amino acid 

composition; protein electrophoresis profiles; and thermal, rheological, and morphological 

properties. Extractability and physicochemical properties of canola protein fractions at pH values 

higher than 7.0 or lower than 3.5 were not studied in this research because only trace amounts of 

canola protein can be precipitated in these ranges according to preliminary studies. Based on 

previous study, 0 and 6 g/L NaHSO3 were applied to modify protein adhesive fractions in this 

research because 6 g/L is optimum to improve handling property without notable damage to 

adhesion properties of canola protein adhesive (Li et al 2011). 

 4.3 Materials and Methods 

 4.3.1 Materials 

 Canola meal with 11.0% moisture content, produced after canola seed was cold screw 

pressed, was purchased from Planet Natural (Bozeman, Mont.). Sodium bisulfite (NaHSO3), 

hexanes, hydrochloric acid (HCl), sodium hydroxide (NaOH), sodium thiocyanate (NaSCN), 2-

Mercaptoethanol (Me-SH), and propylene glycol (PG) were purchased from Sigma Aldrich (St. 

Louis, Mo.). Cherry wood veneers with dimensions of 50 × 127 × 5 mm (width × length × 

thickness) were provided by Veneer One (Oceanside, N.Y.). 

 4.3.2 Canola Protein Fraction Preparation  

The canola protein fraction was isolated from canola meal using the method described by 

Manamperi et al (2010) with various modifications. Canola meal was first milled into powder 

with a cyclone sample mill (Udy Corp., Fort Collins, Colo.) to ensure a particle size of <0.25 

mm and then dried and milled canola meal was defatted with hexane at a solid/liquid ratio of 

1:10 (w/v) for 2 h at room temperature in three cycles. The defatted meal was placed in a fume 

hood overnight to remove residual hexane. The defatted and dried canola meal was mixed with 
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distilled water at the solid/liquid ratio of 1:12 (w/v), and the slurry was presoaked for 1 h with 

stirring. Then, NaHSO3 was added to the slurry in concentrations of 0 g/L and 6 g/L separately 

on the basis of water volume. The pH value of the slurry was adjusted to 12 with 6 mol/L NaOH 

solution and the slurry was stirred for an additional 2 h at room temperature to solubilize the 

protein in canola meal. The slurry mixture was centrifuged at 12000 × g for 15 min, and the 

supernatant was decanted through a six-layer cheesecloth to remove impurities on top of the 

supernatant. The pH value of the supernatant was then slowly adjusted to 7.0 with 2 mol/L HCl 

solution to precipitate the protein fraction at pH 7.0. The mixture was centrifuged at 12000 × g 

for 15 min to isolate the wet protein fraction. After centrifugation, the pH value of the 

supernatant was adjusted to 5.5 with the same HCl solution, followed by centrifugation in the 

same condition to isolate wet protein fraction at pH 5.5. Wet protein fraction at pH 3.5 was 

isolated by adjusting the pH value of the supernatant to 3.5 with the same HCl solution, followed 

by centrifugation at 12000 × g for 15 min. A portion of the wet protein was used as adhesive and 

for rheological property study and the rest of the wet protein was freeze-dried for 

physicochemical analysis.  

 4.3.3 Chemical Analysis 

Protein content was measured by combustion via a LECO FP-2000 nitrogen determinator 

(St. Joseph, Mich.) according to AOAC method 990.03 (1995). Nitrogen was converted to 

protein using a factor of 6.25. Fat content was determined through the Soxhlet petroleum-ether 

extraction method according to AOAC method 920.39C for cereal fat and was expressed as 

weight percentage on dry basis (1995). Crude fiber was determined according to AOCS-

approved procedure Ba 6a-05 (1996).  

 4.3.4 Amino Acid Composition Analysis 

Approximately 100 mg of each sample was weighed and placed in 0.5 ml of 6 N HCl 

solution along with the internal standard and hydrolyzed at 110 °C for 20 h. An aliquot, typically 

10 or 20 µl, was then made up to 250 µl with 0.4 M borate buffer to dilute the sample and raise 

the pH. After precolumn derivatization with o-phthalaldehyde (OPA) and 9-fluorenylmethyl 

chloroformate (FMOC), 1 µl of this diluent was injected into an HPLC system with a C18 
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column (Hypersil AA-ODS, 2.1 × 200 mm, 5 µm). Mobile phase A was 20 mM sodium acetate 

buffer with 0.018% (v/v) triethylamine, 0.05 mM EDTA, and 0.3% tetrahydrofuran, and pH was 

adjusted to 7.2 using acetic acid. Mobile phase B was 100 mM sodium 

acetate:acetonitrile:methanol (20:40:40, v/v). Elution conditions went from 100% A to 60% B in 

17 min at 0.45 mL/min. Amino acid derivatives were detected with a fluorescent detector at 

340/450 nm (excitation/emission) for primary amino acids and 266/305 nm for secondary amino 

acids. Human serum albumin was used as a control, and norvaline and sarcosine were used as 

internal standards. 

 4.3.5 Electrophoresis (SDS-PAGE)  

SDS-PAGE was performed on a 4% stacking gel and 12% separating gel with a 

discontinuous buffer system according to the method described by Laemmli (1970). A canola 

protein sample was mixed with a sample buffer containing 2% SDS, 25% glycerol, and 0.01% 

bromphenol blue. To study disulfide bonds in canola protein, SDS-PAGE was carried out under 

reducing (2- mercaptoethanol) and non-reducing conditions. A total of 8 µg of protein was 

applied to sample wells and molecular weight standards (14.4-97.4 kDa) were run with the 

samples. Electrophoresis was performed at 40 mA and 150 V for 120 min. The gel was stained in 

0.25% Coomassie brilliant blue R-250 and destained in a solution containing 10% acetic acid 

and 40% methanol. Densitometry was obtained by analyzing the gel image using Kodak 1D 

Image Analysis software, version 4.6 (Kodark, Rochester, N.Y.). 

 4.3.6 Differential Scanning Calorimetry (DSC) 

Thermal transition properties of protein samples were measured with a TA Instruments 

DSC Q200 V24.4 instrument (TA Instruments, New Castle, Del.) calibrated with indium and 

zinc before making official measurements. Samples of dry canola proteins weighing 

approximately 7 to 10 mg were measured in a hermetic aluminum pan under a nitrogen 

atmosphere with a gas flow rate of 50 mL/min. All samples were heated from 25 to 280 °C at a 

heating rate of 10 °C/min in an inert environment. All experiments were performed in duplicate.  
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 4.3.7 Rheological Properties 

Apparent viscosities on isolated canola proteins were performed with a Bohlin CVOR 

150 rheometer (Malvern Instruments, Southborough, Mass.) with a CP 4/40 cone and plate 

fixture (4° cone angle, 40-mm cone diameter). Distance between cone and plate was set to 150 

µm for all measurements and experiments were conducted under steady shear flow at 23 °C. 

Shear rates ranged from 10 to 240 s
-1

 in increments of 10 s
-1

. All experiments were done in 

duplicate, and average values were reported. 

 4.3.8 Scanning Electron Microscopy 

A Hitachi S-3500 N (Hitachi Science System, Ibaraki, Japan) SEM was used to observe 

the microstructure of dried canola protein isolate powder. Ground protein powder was affixed to 

an aluminum stub with two-sided adhesive tape and coated with an alloy of 60% gold and 40% 

palladium with a sputter coater (Desk II Sputter/Etch Unit, Moorestown, N.J.). SEM images of 

protein isolates were performed with operating conditions at an accelerating voltage of 5 kV. 

 4.3.9 Wood Specimen Preparation 

Cherry wood samples were preconditioned in a controlled-environment chamber (Model 

518, Electro-tech systems, Inc., Glenside, Pa.) for 7 d at 25 °C and 50% relative humidity (RH). 

Canola protein adhesives isolated with different methods were brushed separately along the 

edges of two pieces of cherry wood, with an application area of 127 mm × 20 mm, until the 

entire area was completely covered. The adhesive amount applied to each piece was 

approximately 0.06 g (dry basis). The brushing and setting procedure followed the method 

described by Mo et al. (2004). The brushed areas of the two pieces were assembled together at 

room temperature for 15 min, then pressed at a pressure of 2 MPa at 150 °C, 170 °C, or 190 °C 

for 10 min using a hot press (Model 3890 Auto ‘M’, Carver Inc., Wabash, Ind.). 

 4.3.10 Mechanical Properties 

After pressing, the glued-wood assemblies were conditioned at 23 °C and 50% RH for 2 

d, then cut into five specimens, each measuring 127 mm (length) × 20 mm (width) × 5 mm 
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(thickness) specimens. The cut specimens were conditioned again for another 5 d at 23 °C and 

50% RH before the dry test. Three adhesion strengths were tested: dry strength, soak strength, 

and wet strength. Wood specimens for dry strength testing were prepared and tested using an 

Instron (Model 4465, Canton, Mass.) according to ASTM Standard Method D2339-98 (2002). 

Crosshead speed of Instron for adhesion strength testing was 1.6 mm/min. Tensile strength at the 

maximum load was recorded as adhesion strength; reported results are an average of five 

specimen measurements. 

Water resistance was determined by measuring wet and soak strengths according to 

ASTM Standard Methods D1183-96 (2002) and D1151-00 (2002), respectively. Preconditioned 

specimens were soaked in tap water at 23 °C for 48 h and then tested immediately for wet 

strength. For the soak strength test, specimens were soaked in tap water at 23 °C for 48 h and 

then conditioned at 23 °C and 50% RH for an additional 7 d before testing. 

 4.3.11 Statistical Analysis 

Data for the mechanical property evaluation were an average of five samples. Data of 

experiments carried out in duplicate were analyzed using the analysis of variance (ANOVA) and 

least significant difference (LSD) at the 0.05 level according to procedures in the SAS statistical 

software package (SAS Institute 2005, Cary, NC).  

 4.4 Results and discussion 

 4.4.1 Chemical Composition of Canola Protein Fraction Adhesives 

Partial proximate compositions and recovery rates of native and NaHSO3-modified 

canola protein fraction adhesives isolated at different pH values are summarized in Table 4.1. 

Protein content in defatted canola meal was approximately 49.3%, which coincides with a 

previous report (Aider and Barbana 2011). Total native protein recovery rate from canola meal 

was 31.45%, which increased slightly to 33.10% when the canola protein was modified with 6 

g/L NaHSO3, perhaps because the protein matrix was broken down by NaHSO3 and became 

easier to extract (Choi et al 2008). 
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For native canola protein isolates, the largest fraction (52.1%, based on total extracted 

protein) was precipitated at a pH of approximately 5.5, followed by pH 7.0 (36.7%) and pH 3.5 

(11.23%). The presence of NaHSO3 significantly rearranged weight distribution of isolated 

canola protein fractions. Only 6.4% canola protein was precipitated at pH 7.0. The most protein 

fraction was still extracted at pH 5.5, but protein fraction recovery rate increased from 52.1% to 

78.1%. Canola protein yield isolated at pH 3.5 also increased by 4% compared to the native 

protein. NaHSO3 could bring extra negative groups on the protein surface (RS-SO3
–
), as 

suggested by Kalapathy et al. (1996); consequently, the isoelectric point (pI) of canola protein 

decreased, pH 7.0 was pushed farther away from the isoelectric point when NaHSO3 was used, 

and a smaller amount of canola protein was extracted.  

Purity of NaHSO3-modified canola protein fractions was lower than native fractions, thus 

agreeing with Blaicher et al (1983). The highest purity for both native and NaHSO3-modified 

canola protein fractions was obtained at pH 5.5, which is close to the isoelectric point of canola 

protein (Manamperi et al 2010), followed by fractions isolated at pH 3.5 and pH 7.0. Impurities 

such as lipids and crude fibers were detected in small amounts in all extracted protein fractions. 

Other impurities were speculated to be phenolic compounds or glucosinolates which can bond 

with canola protein and be extracted with the protein during acid precipitation (Blaicher et al 

1983). Glucosinolates may account for up to 10% of the total isolated rapeseed protein (Blaicher 

et al 1983; Sosulski and Dabrowski 1984). In this research, most phenolic compounds were 

precipitated out at pH 7.0, which is partially attributed to the lowest purity of canola protein at 

pH 7.0.  

In addition, canola proteins isolated with 6 g/L NaHSO3 exhibited higher moisture 

content than native protein fractions (Figure 4.1), implying that water bonding capacity increased 

due to the presence of NaHSO3. 

 

Table 4.1 Recovery rate and partial proximate composition of canola meal and protein fractions 

isolated at different pH values and modified with various concentration of NaHSO3. 
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Canola 

protein 

samples 

 pH  

Chemical composition 

of protein extracted at 

different pH (%, db) 
 

Protein 

fraction 

recovery 

(%,db) 

Protein 

recovery 

(%, db) 
Protein Lipids Fiber 

D-CM
1
   49.26b

2
 0.89a 8.62a    

CP-0
5
 

7.0  84.91a 0.15b 0.04b  36.66
3
 

31.45
4
 5.5  94.59a 0.25b 0.01b  52.11 

3.5  89.09a 0.20b 0.01b  11.23 

         

CP-6
6
 

7.0  79.71a 0.35b 0.09b  6.40 

33.10 5.5  86.14a 0.18b 0.02b  78.16 

3.5  84.22a 0.16b 0.07b  15.44 

1
Defatted canola meal. 

2
Means in the same column followed by different letters are significantly different at p<0.05. 

3
Based on total extracted canola protein. 

4
Based on total protein in canola meal. 

5
Native canola protein fractions. 

6
NaHSO3-modified canola protein fractions at 6g/L. 
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Figure 4.1 Moisture content (wet basis) of isolated wet canola protein modified with NaHSO3 at 

various concentrations. 

 4.4.2 Amino Acid Composition of Canola Protein Fraction Adhesives 

Amino acid profiles of native and NaHSO3-modified canola protein fractions are 

summarized in Table 4.2. Canola protein exhibited a different amino acid profile than canola 

meal, which can be attributed to the protein extraction method used in this study. Four kinds of 

proteins present in canola protein are glutelins, prolamins, alumins, and globulins, each of which 

may have a distinct amino acid profile; however, with alkaline solubilization and acid 

precipitation methods, only parts of the total protein, such as glutelins, were extractable 

(Manamperi et al 2007).  

Amino acid profiles of canola proteins extracted at different pH values also varied 

significantly. Canola protein fractions at pH 3.5 had higher glutamate content compared with 

fractions at pH 5.5 and 7.0, but the fraction at extraction pH 7.0 had higher amounts of aspartete, 

threonine, alanine, arginine, tyrosine, valine, phenylalanine, isolecucine, and lysine than the 

other two fractions. Amino acid profiles of canola proteins at pH 5.5 were characterized as an 

intermediate position between pH 7.0 and 3.5. Based on hydrophobicity, amino acids can be 

grouped into hydrophobic (non-polar amino acid) and hydrophilic (polar amino acid) types. 

Alanine, methinine, phenylananine, isoleucine, leucine, and proline belong to hydrophobic 
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amino acids, and they accounted for 25.69% to 28.17% of canola protein fractions. A previous 

study demonstrated that amino acid compositions could affect adhesive performance of protein-

based adhesives (Li et al 2011), which will be discussed in detail in the next section. 

Compared to Table 4.1, net canola protein (sum of amino acid content) was lower than 

values obtained through the LECO FP-2000 nitrogen determinator (St. Joseph, Mich.) method. 

The first possible explanation for this is that some non-protein nitrogen was in the protein 

isolates; one report noted that non-protein nitrogen could be up to 26.8% of canola protein 

(Krishnamoorthy et al 1982). A second possibility is that not all amino acids were detectable 

because tryptophan and cysteine could be destroyed by the liquid HCl hydrolysis assay during 

the amino acid composition test (Albin et al 2000). Thirdly, the nitrogen conversion factor could 

be a value other than 6.25. Some reports have suggested that the conversion factor for oilseed 

protein, such as flaxseed, should be 5.41 (Oomah and Mazza 1995). 
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Table 4.2 Amino acid compositions of native and NaHSO3-modified canola protein adhesives 

extracted at different pH. 

Amino acid 

(% of total)  

Native CP
1
 fraction 

extracted at different pH 

 

CP
1
 fraction modified with 

NaHSO3 (6g/L) at 

different pH 

 

D-CM
2
 

pH 7.0 pH 5.5 pH 3.5 pH 7.0 pH 5.5 pH 3.5 

Aspartate 9.21 8.78 8.15 

 

9.88 9.79 8.24 

 

8.44 

Glutamate 22.14 24.01 26.97 20.02 21.60 25.73 22.37 

Serine 5.35 5.27 5.32 5.56 5.25 5.06 5.47 

Histidine 3.30 3.35 3.48 3.24 3.15 3.41 3.32 

Glycine 6.05 5.99 5.95 6.04 5.99 6.33 6.07 

Threonine 4.79 4.50 4.37 5.18 4.76 4.19 5.45 

Alanine 5.27 5.08 4.86 5.46 5.16 4.78 5.40 

Arginine 6.95 6.73 6.67 7.19 6.97 7.30 6.95 

Tyrosine 3.77 3.41 2.75 4.10 3.69 2.89 3.23 

Valine 5.73 5.67 5.52 5.85 5.94 5.58 6.05 

Methionine 2.07 2.12 2.14 2.23 2.21 2.19 1.74 

Phenylalanine 5.48 5.34 4.94 5.45 5.53 5.04 5.00 

Isoleucine 5.62 5.54 5.27 5.75 5.82 5.37 5.80 

Leucine 9.15 8.92 8.58 9.28 8.97 8.31 8.86 

Lysine 5.13 5.30 5.04 4.76 5.19 5.59 5.85 

T-AA (%) 100 100 100 100 100 100 100 

T-protein (%) 65.19 70.09 69.57 64.16 66.92 60.32 34.84 

Hydrophobic
3
 27.59 26.99 25.78  28.17 27.69 25.69  26.80 

Hydrophilic
4
 72.41 73.01 74.22  71.83 72.31 74.31  73.20 

1
Canola protein. 

2
Defatted canola meal. 

3
Alanine, methinine, phenylalanine, isoleucine, leucine and proline. 

4
Lysine, tyrosine, arginine, threonine, glycine, histidine, serine, glutamine and asparagine. 
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 4.4.3 Electrophoresis (SDS-PAGE)  

Figure 4.2 shows the polypeptides composition of native (A-C) and NaHSO3-modified 

(D-F) canola proteins extracted at three distinct pH values (7.0, 5.5, and 3.5) under non-reducing 

conditions. For native canola protein fractions, two major protein fractions were detected: 

cruciferin (12S), with a molecular weight above 20 kDa, and napin (2S), with molecular weights 

of 12 and 17 kDa (Wäsche et al 1998; Lonnerdal and Janson 1972). The bands corresponding to 

these two protein fractions intensified as the extraction pH decreased from 7.0 to 3.5. 

Meanwhile, bands observed on top of the stacking and resolving gel, considered to the high 

molecular weight protein aggregates, faded as extraction pH decreased. In the presence of ME, 

these high molecular weight bands gradually attenuated and eventually disappeared in a sample 

with pH 3.5, indicating disulfide bonds involved in stabilizing the protein polypeptides chain 

structure (Figure 3). On the other hand, remaining bands in pH 7.0 on top of the reducing 

electrophoresis were assumed to be either protein aggregates stabilized by other covalent bonds 

or contaminates that precipitated simultaneously with the protein extractions, as mentioned in 

Table 4.1.  

The 55 kDa protein bands of 12S globulin disappeared in NaHSO3-modified canola 

protein, indicating that the reducing effects of NaHSO3 were exerted on polypeptides linked by 

disulfide bonds. Also, densities of napin bands at 14 kDa that were connected by disulfide bonds 

decreased when the canola protein was treated by NaHSO3 (Figure 4.2). In the reducing SDS-

PAGE of native and NaHSO3-modified canola protein (Figure 4.3), all polypeptides stabilized by 

disulfide bonds in cruciferin and napin were dissociated into smaller polypeptide chains, as 

previously mentioned.  
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Figure 4.2 Non-reducing SDS-PAGE pattern of native and NaHSO3-modified canola protein 

extracted at different pH. Native canola protein: pH 7.0 (lane A); pH 5.5 (lane B); pH 3.5 (lane 

C); 6g/L NaHSO3-modified canola protein: pH 7.0 (lane D); pH 5.5 (lane E); pH 3.5 (lane F). 

 

Figure 4.3 Reducing SDS-PAGE pattern of native and NaHSO3-modified canola protein 

extracted at different pH. Native canola protein: pH 7.0 (lane A); pH 5.5 (lane B); pH 3.5 (lane 

C); 6g/L NaHSO3-modified canola protein: pH 7.0 (lane D); pH 5.5 (lane E); pH 3.5 (lane F). 
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 4.4.4 Differential Scanning Calorimetry (DSC) 

DSC thermograms of native and NaHSO3-modified canola protein fractions are presented 

in Figure 4.4. Two major broad endothermic peaks occurred for both native and modified canola 

proteins isolated at pH 7.0 and 5.5, whereas samples at pH 3.5 were characterized by 

endothermic and exothermic peaks. The first endothermic peak was due to canola protein 

thermal denaturation; denaturation temperature (Td) and total enthalpy (Peak area, ∆H) increased 

as pH decreased from 7.5 to 5.5 and 3.5 (Table 3.3). Results were attributed to the fact that more 

compact and thermally stable protein structure exists close to the isoelectric point. The reducing 

effect of NaHSO3 caused thermal stability of canola protein to decrease, as reflected by the 

decreased Td in modified canola protein fractions; however, only slight change occurred in the 

∆H, indicating that conformation of modified protein fraction was insignificantly altered by 6 

g/L NaHSO3 modification.  

 

Figure 4.4 DSC thermograms of native and NaHSO3-modified canola protein adhesives 

extracted at different pH. 

The second endothermic peak in the samples isolated at pH 7.5 and 5.5 was accompanied by the 

exothermic heat effect of protein aggregation, which was also reported by Krzyzaniak et al. [6], 

making precise calculation of endothermic transition enthalpy difficult. As shown in SDS-PAGE 

results, high molecular weight of protein aggregates or non-protein contaminates were observed 
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in protein samples extracted at pH 7.5 and pH 5.5. Because of this result, it is assumed that the 

endothermic peak was to break down protein aggregates or non-protein materials. As for native 

and NaHSO3-modified canola protein at pH 3.5, the exothermic peak that appeared around 200 

°C was assumed to be an aggregation of exposed canola protein subunits. Similar exothermic 

peaks were also reported in soy protein and sorghum protein (Li et al 2011; Mo et al 1999). The 

subunits released in modified canola protein through breaking disulfide bonds may have different 

protein aggregation processes than native canola protein, as shown in Figure 4.4.  

Table 4.3 Thermal transition characterization of native and NaHSO3-modified canola protein 

adhesives extracted at different pH. 

CP
1
 modified with 

NaHSO3 (g/L) 

Endothermic peak  

 

Exothermic peak 

Td (°C) ∆H (J/g) Ta (°C) ∆H (J/g) 

0g/L       

pH-7.0 113.00a
2
 16.22a    

pH-5.5 117.17a 22.16a    

pH-3.5 116.58a 20.81a  198.89a 18.91b 

6g/L      

pH 7.0 110.97a 17.14a    

pH 5.5 113.13a 19.28a    

pH 3.5 112.62a 22.93a  213.50a 47.84a 

1
CP: Canola protein. 

2
Means in the same column followed by different letters are significantly different at p<0.05. 
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 4.4.5 Rheological Properties 

Viscosity of protein-based adhesives is an important physical property that governs 

handling and flow-ability properties as well as adhesive behavior. Apparent viscosity of native 

and NaHSO3-modified canola protein fraction adhesives isolated at different pH values is 

presented in Figure 4.5. All canola protein adhesives exhibited shear-thinning behavior. 

Apparent viscosity of all canola protein fractions is much lower than that of the total canola 

protein accumulated at pH 3.5. Although viscosity of native canola protein fraction isolated at 

pH 7.0 is slightly lower than the protein fraction isolated at pH 5.5, when the pH value decreased 

to 3.5, viscosity decreased significantly. Most canola protein extracted at pH 5.5 showed the 

highest apparent viscosity close to the isoelectric point, where intermolecular interaction was the 

strongest.  

As explained previously, the isoelectric point of the NaHSO3-modified canola protein 

shifted to a lower value. When extracted at pH 7, the product yield decreased from 36% to only 

6%, and the sample displayed a diluted state (high moisture content) with fairly low viscosity 

(weak protein-protein interaction). The highest viscosity was observed at pH 5.5 (strongest 

protein-protein interaction), indicating that the reduced isoelectric point was still close to pH 5.5. 

A similar phenomenon was observed in soy protein. The soy protein sample became more and 

more solid and plug-like when it was extracted around its isoelectric point, rather than assuming 

the liquid viscous state when soy protein was precipitated away from its isoelectric point (Liu et 

al 2007). In addition, apparent viscosity of modified canola protein at pH 5.5 was much lower 

than native samples at pH 5.5 because of disulfide bond breakage induced by NaHSO3, resulting 

in weak protein intermolecular interaction.  
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Figure 4.5 Shear rate dependence of apparent viscosity of native and NaHSO3-modified canola 

protein adhesives extracted at different pH.  

 4.4.6 Morphological Properties 

Microstructure images of both native and NaHSO3-modified canola protein fraction 

adhesives are shown in Figure 6. Native canola protein isolated at pH 7.5 exhibited a coarse 

surface with many holes (marked with arrows) on protein particles (Figure 6 A). In protein 

fractions isolated at pH 5.5 and 3.5, more compact and smoother particle surfaces were observed 

(Figure 6 B, C). The holes observed in canola proteins at pH 7.5 may be the water sublimating 

during freezing, indicating that at this pH, canola protein had higher water hydration properties 

than other protein fractions. The rough surface suggested a weaker protein-protein interaction 

under the grinding procedure. At pH 5.5 and 3.5, which are closer to the isoelectric point of 

canola protein, canola protein had the lowest water hydration ability and the strongest protein-

protein interaction, resulting in compact protein particles, as shown in Figure 6 C. 
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The NaHSO3-modified canola protein isolated at pH 7.0 showed a rougher, more 

fluctuating surface as well as several larger pores than native samples isolated at the same pH 

value. As mentioned previously, the isoelectric point of NaHSO3-modified canola protein 

fraction shifted to lower pH values; therefore, the pH value of 7.0 was even farther from the 

canola protein isoelectric point with the presence of NaHSO3, resulting in abundant negative 

charges on the surface of protein isolates. These negative charges led to strong electrostatic 

repulsion among protein particles, reflected by the porousness of protein particles. A similar 

trend was observed in native canola protein fractions isolated at the same pH value. As the 

isolation pH value decreased to 5.5 and 3.5, which were closer to the protein isoelectric point, 

extracted canola protein fractions exhibited much smoother surfaces and more compact structure 

as a result of stronger protein-protein interaction. 
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Figure 4.6 SEM images of native and NaHSO3-modified canola protein fraction adhesives 

extracted at different pH. Native canola protein fractions: pH 7.0 (A, × 5000); pH 5.5 (B, × 

5000); pH 3.5 (C, × 5000).  6g/L NaHSO3-modified canola protein fractions:  pH 7.0 (D, × 

5000); pH 5.5 (E, × 5000); pH 3.5 (F, × 5000). 
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 4.4.7 Adhesion Properties of Canola Protein Fraction Adhesives 

Mechanical shear adhesion strengths of native and NaHSO3-modified canola protein 

fraction adhesives isolated at different pH values are summarized in Table 4.4. Curing 

temperature, extraction pH value, and NaHSO3 concentration had significant effects on adhesion 

properties of canola protein. In general, 100% wood cohesive failure (WCF) was observed in all 

dry and soaked plywood specimens at curing temperatures from 150 °C to 190 °C. Wet strength 

of canola protein adhesives decreased significantly and only partial WCF was observed for 

specimens cured at 170 °C and 190 °C (Table 4.4). 

Increasing curing temperature is known to have marked effects on solvent evaporation, 

immobilization of protein molecules, and the possibility of chemical and physical interaction 

between proteins and the wood surface. Wet shear strength of canola protein adhesive improved 

as curing temperature increased, and the best water resistance of canola protein adhesives 

occurred at 190 °C in all samples. Canola protein fractions isolated at different pH values 

exhibited varied adhesion performance, as well. Under a curing temperature of 190 °C, native 

canola protein fractions isolated at pH 7.0 had an insignificantly reduced wet strength of 3.83 

MPa, but a lower degree of WCF. NaHSO3-modified canola protein fraction adhesives at 

different pH values displayed similar trends. The isoelectric point of canola protein was proven 

to have an approximate pH of 5.5, at which point protein fractions had the strongest protein-

protein interaction, resulting in higher adhesion strength during the curing process. On the 

contrary, at pH 7.0, the protein had redundant charges on its surface because this pH point is far 

from the isoelectic point; therefore, the protein-water interaction was preferred over the protein-

protein interactions during the water-soaking process and the adhesive had lower wet strength.  

NaHSO3 could break disulfide bonds in the canola protein (napin and cruciferin), 

lowering apparent viscosity and improving flow-ability as well as handle-ability of canola 

protein fraction adhesives, thus improving adhesion performance. Conversely, accompanying the 

disulfide bonds cleavage are SO3
–
 groups that are induced on the protein surface as sulfonate 

groups (RS-SO3
–
) to prevent sulfhydryls (R-SH) formation. The formed RS-SO3

–
 groups could 

enhance protein interaction with water and decrease the effective wood-protein interfacial area 

due to the presence of ions (Kalapathy et al 1996). Hence, 6 g/L NaHSO3-modified canola 
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protein fraction adhesives had insignificantly lower wet strength (approximately 3.8 MPa, 100% 

WCF) compared with native protein fractions because of counterbalance between the two effects 

at a curing temperature of 190 °C.  

In a previous study (Li et al 2011a), wet strength of total native canola protein 

accumulated at pH 3.5 was 3.9 MPa at a curing temperature of 190 °C, but the protein adhesive 

also exhibited extremely high viscosity and poor flow-ability. As for canola protein fraction 

adhesives isolated at pH 5.5 and 3.5 at curing temperature of 170 °C, wet strength was 3.1 and 

3.4 MPa, respectively, and was further increased to 3.7 MPa for 6 g/L NaHSO3-modified canola 

protein fraction isolated at pH 5.5. These results were much higher than adhesion performance 

for total accumulated canola protein when cured at the same temperature (2.2 MPa, 0% WCF) 

(Li et al 2011a). Also, their flow-ability was significantly better than total accumulated canola 

protein. These results demonstrated the remarkable improvement in adhesion performance of 

canola protein fractions curing at 170 °C. 

Both amino acid composition and hydrophobicity of proteins are essential factors 

affecting adhesive performance of proteins. Research has reported that a higher hydrophobic 

amino acid content was beneficial to improved water resistance of soy protein/sorghum protein 

(Li et al 2011b). However, in this study, a canola protein adhesive with relatively low 

hydrophobic amino acid content (~27%) (Table 2) also exhibited excellent water resistance (4.04 

MPa, 100% WCF) compared with soy protein (~37%, 1.63 MPa, 0% WCF) and sorghum protein 

(~58%, 3.15 MPa, 0% WCF) (Li et al 2011b). 

 4.5 Conclusions 

Canola protein-based adhesives were developed and showed great potential as bio-based 

adhesives. Dry and soak wood specimens had 100% wood failure, indicating good adhesion 

performance. Wet specimens showed partial wood specimens only at high curing temperatures of 

170 and 190 °C. Modifier NaHSO3 did not improve adhesive properties of canola protein but 

greatly improved flow-ability and handle-ability. NaHSO3 functionalized canola protein adhesive 

as the reducing agent and decrease of molecular weight, thermal transition temperature, and 

apparent viscosity of canola protein directly proved its reducing effect. Future work can focus on 
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lowering canola protein adhesive’s curing temperature to make this adhesive more 

environmentally friendly.  
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Table 4.4 Effect of NaHSO3 concentration and curing temperature on adhesion properties of native and NaHSO3-modified canola 

protein adhesives extracted at different pH.  

CP
1
 fraction 

modified with 

NaHSO3 (g/L) 

 

pH 

Wet strength (MPa)  Soak strength (MPa)  Dry strength (MPa) 

150 °C 170 °C 190 °C  150 °C 170 °C 190 °C  150 °C 170 °C 190 °C 

0 (g/L) 

7.0 
2.15±0.14 

0%WCF
2
 

2.87±0.15 

0%WCF 

3.83±0.17 

50%WCF 

 

 

5.44±0.50 

100%WCF 

5.55±0.43 

100%WCF 

5.57±0.31 

100%WCF 

 

 

5.23±0.33 

100%WCF 

5.75±0.23 

100%WCF 

5.40±0.16 

100%WCF 

5.5 
2.22±0.20 

0%WCF 

3.11±0.09 

0%WCF 

4.04±0.15 

100%WCF 

(severe) 

 

 

 

5.57±0.22 

100%WCF 

5.08±0.51 

100%WCF 

5.64±0.15 

100%WCF 

 

 

5.38±0.54 

100%WCF 

5.87±0.14 

100%WCF 

5.70±0.07 

100%WCF 

3.5 
2.39±0.16 

0%WCF 

3.41±0.21 

0%WCF 

4.07±0.16 

100%WCF 

(severe) 

 

 

 

5.32±0.12 

100%WCF 

5.64±0.23 

100%WCF 

5.43±0.28 

100%WCF 

 

 

5.60±0.18 

100%WCF 

5.19±0.35 

100%WCF 

5.28±0.47 

100%WCF 

6 (g/L) 

7.0 
2.25±0.06 

0%WCF 

3.52±0.18 

0%WCF 

3.54±0.14 

40%WCF 

 

 

5.28±0.38 

100%WCF 

5.48±0.24 

100%WCF 

5.36±0.22 

100%WCF 

 

 

5.33±0.25 

100%WCF 

5.22±0.43 

100%WCF 

5.18±0.28 

100%WCF 

5.5 
2.42±0.22 

0%WCF 

3.74±0.13 

40%WCF 

3.89±0.08 

100%WCF 

 

 

5.42±0.19 

100%WCF 

5.89±0.38 

100%WCF 

5.49±0.35 

100%WCF 

 

 

5.66±0.30 

100%WCF 

5.76±0.09 

100%WCF 

5.56±0.20 

100%WCF 

3.5 
2.55±0.15 

0%WCF 

3.03±0.12 

0%WCF 

3.87±0.09 

100%WCF 

 

 

5.63±0.17 

100%WCF 

5.22±0.51 

100%WCF 

5.12±0.24 

100%WCF 

 

 

5.34±0.13 

100%WCF 

5.38±0.29 

100%WCF 

5.54±0.33 

100%WCF 

1
CP: Canola protein. 

2
WCF: wood cohesive failure. 
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Chapter 5 - Isolation and characterization of protein fractions 

isolated from camelina meal 

 5.1 Abstract 

Camelina is a new oil crop in North America. Camelina meal, a by-product of the 

camelina oil extraction process, typically contains 10-15% residual oil and 40% crude protein. 

As camelina oil demand increaseS, utilization of camelina protein for value-added products is 

critical to food and biotechnology industries; however, few researches have been conducted on 

camelina proteins. In this study, camelina protein fractions — albumin, globulin, and glutelins — 

were isolated from camelina meal using three different methods: the Osborne sequence (S2), a 

modified Osbrone sequence plus a degumming step (S1), and the isolation method without a 

degumming step (S0). Proteins’ physicochemical properties, including solubility, amino acids 

profiles, molecular weight (MW), thermal and morphological properties, were also characterized. 

Results showed that S1 (88.20%) harvested more protein than S0 (84.05%) and S2 (76.52%). 

Glutelin was the major fraction (64.64%), followed by globulin (17.67%), and albumin (10.54%) 

in camelina. Essential amino acids accounted for approximately 40% of the total amino acids in 

camelina protein. High molecular weight aggregates stabilized by covalent bonds in glutelin and 

albumin fractions, as shown in SEC, are closely related to larger size protein aggregates observed 

in TEM images.  

 5.2 Introduction 

Camelina sativa, also known as camelina, gold-of-pleasure, false flax, wild flax, linseed 

dodder, or German sesame, is an important and ancient oil plant originated from Germany 

around 600 B.C. (Budin et al 1995). In North America, camelina is a new oil crop possibly 

introduced as a weed in flax. Camelina is an annual summer or wintering plant with a short 

mature period (85-100 days) (Budin et al 1995; Sampath 2009).  

In general, camelina contains 29.9-38.3% oil, 23-30% protein, 10% carbohydrates, and 

6.6% ash, depending on the variety and variations of soil composition and environment (Budin et 

al 1995; Sampath 2009). Camelina oil contains up to 90% unsaturated fatty acid, of which 
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approximately 33.6% is α-linolenic acid (18:3, omega-3), which is lower than flaxseed (45.1%) 

but far exceeds canola (6.6%), soybean (7.2%), and sunflower (0%) (Budin et al 1995). High 

omega-3 content in camelina offers an opportunity to supply the growing demand for good-

quality edible oils. Camelina oil also shows great potential as a source of biodiesel; in particular, 

it can be used to produce jet fuels that, compared to petroleum-based jet fuel, reduces greenhouse 

gas emissions up to 80% (Shonnard et al 2010). Camelina meal is a by-product of the oil 

extraction process from camelina seed that typically contains 10-15% residual oil, 40% crude 

protein, 5% minerals, 10-12% crude fiber, and a small portion of vitamins (Sampath 2009). As 

edible oil demands and biodiesel production increase, utilization of camelina protein for value-

added products is critical to food and biotechnology industries. 

Compared with other oilseeds such as canola, flaxseed, or soybean, camelina is less 

investigated for its protein. However, protein isolation technologies applied to other oil seeds 

provided a framework for recovering proteins from camelina. According to previous studies, 

oilseeds usually contain mixed or heterogeneous proteins comprising different protein fractions 

(Manamperi et al 2008; Ayad 2010). Manamperi et al (2008) used the Osborne method to isolate 

and characterize four protein fractions from canola meal: albumins (water-soluble), globulins 

(5% NaCl-soluble), prolamins (70% ethanol-soluble), and glutelins (0.1 N NaOH-soluble). 

Results indicated a protein recovery rate of 78.6%, among which albumins were the major 

fraction (38.7%), followed by globulins (22.0%), glutelins (10.3%), and prolamins (7.6%). These 

protein fractions were characterized with varied functional properties. Prolamins showed higher 

fat absorption property, whereas globulins were characterized by better emulsifying activity. 

Ayad (2010) also used the Osborne method to isolate flaxseed protein fractions from defatted 

flaxseed meal, and 38.1% of albumin, 27.9% of globulin, and 22.45% of glutelin were extracted. 

This preliminary study showed that camelina proteins are a mixture of protein fractions 

of albumins, globulins, and glutelins with varied solubility. Therefore, the objective of this 

research was to study camelina protein fractions isolation processes and to characterize their 

physicochemical properties, including solubility, morphological characteristics, and thermal 

properties as well as amino acid profiles.  
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 5.3 Materials and methods 

 5.3.1 Materials 

Camelina meal (CM) with 15% lipid (db), 32.4% crude protein (db), and 11.0% moisture 

content (wb) was purchased from Montana Gluten Free Processors (Belgrade, Mont.). Meal 

pellets emerged from a screw oil press at approximately 80 
o
C. Hexanes, Bradford assay kit, 

hydrochloric acid (HCl), and sodium hydroxide (NaOH) were purchased from Fisher Scientific 

(Fair Lawn, N.J.). 

 5.3.2 Camelina meal defatting 

Camelina meal with particle size <0.5 mm was obtained by using a cyclone sample mill 

(Udy Corp., Fort Collins, Colo.). Camelina meal was then defatted with hexane at a solid/liquid 

ratio of 1:10 (w/v) for 2 hr at room temperature in three cycles. The defatted camelina meal 

(DCM) was placed in a fume hood with a very thin layer (around 2 mm) for 24 hr to evaporate 

residual hexane.  

 5.3.3 Maximum solubility pH of glutelin  

A standard curve was created first. Standard protein solutions were prepared using 0, 0.10, 

0.25, 0.50, 0.75, and 1.00 mg protein/mL bovine serum albumin (BSA), and absorption readings 

of the solutions were measured with a BioMate 3 UV-Vis Spectrophotometer (Madison, Wis.) at 

595 nm. The readings and known protein concentrations were interpolated in the calibration 

curve, as shown in Figure 5.1, and the standard curve was used to determine protein 

concentration in solutions tested in this study by spectrophotometer readings. The standard curve 

in Figure 5.1 was reliable only in the range from 0.0 to 1.0 mg/mL of protein, and protein 

contents of the samples studied in this part of the experiment remained in this range.  
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Figure 5.1 Standard curve of net absorbance versus BSA concentration. 

 

Based on a preliminary test to determine at which pH camelina glutelin protein has 

maximum solubility, 10 g DCM was mixed in 1000 ml distilled water for 1 h, then adjusted to a 

pH of 10 using 2 N NaOH and stirred for 2 h. 5 mL of the slurry was collected and centrifuged it 

at 12,000 × g for 15 min, then decanted the supernatant through a six-layer cheesecloth to 

remove impurities. All centrifugation conditions mentioned in this paper were identical unless 

otherwise indicated. The pH of the remaining slurry samples was adjusted to 10.5, 11.0, 11.5, 

12.0, 12.5, and 13.0 with 2 N of NaOH, then stirred for 2 h. Slurry was collected and centrifuged 

from each pH point. At the specified pH points, 100 uL of each supernatant was mixed with 3 

mL Bradford reagent for 10 min at room temperature; then the sample was ready for testing by a 

BioMate 3 UV-Vis Spectrophotometer (Madison, Wis.) at 595 nm. Each sample was measured 

in triplicate.  

 5.3.4 Solubilities of protein fractions in camelina meal  

 5.3.4.1. Glutelin 

10 g of DCM was mixed with 1000 g distilled water, adjusted pH to 12 with 2 N NaOH, 

stirred for 2 h, and centrifuged the slurry. The pH of the supernatant dropped from 12 to 1.0 in 
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increments of 0.5. 5 mL of the mixture was collected at each pH point, centrifuged the sample, 

and used the supernatants to measure protein content. 

 5.3.4.2. Albumin 

10 g of DCM was mixed with 500 g distilled water for 2 h, with stirring followed by 

centrifugation. The pH of the supernatant initially dropped to 6.0, then from 6.0 to 1.0 with 2 N 

HCl in increments of 0.5. 5 mL of the mixture was collected at each pH point, centrifuged the 

sample, and measured protein content of the supernatants. 

 5.3.4.3. Globulin 

10 g DCM was mixed with 500 g of 5% NaCl solution for 2 h and stirred and centrifuged 

the slurry. The pH of the supernatant initially dropped to 6.0, then from 6 to 1.0 with 2 N HCl in 

increments of 0.5. 5 mL of the mixture was collected at each pH point, centrifuged the sample, 

and measured protein content of the supernatants. 

 5.3.5 Camelina protein fractions isolation process 

 5.3.5.1. Osborne method  

This extraction method is named sequence 2 (S2) (Figure 5.2A). Camelina protein 

fractions were isolated from DCM according to the Osborne fractionation scheme (Osborne 

1924). Based on preliminary testing, three protein fractions, albumin, globulin, and glutelin, can 

be isolated with distilled water, 5% NaCl solution, and NaOH solution, respectively. Prolamin 

was not studied because only trace amounts exist in DCM.  

DCM was mixed with distilled water at the solid/liquid ratio of 1:30 (w/v) for 2 h, then 

samples were centrifuged and residues were collected for further camelina protein fractions 

isolation. Both water-soluble gum and albumin were in the supernatant, so this was designated 

this as the degumming step. Because partial gum could be precipitated out with albumin due to 

the sticky nature, investigation of the degumming steps from albumin with the centrifuging 

technique could not be conducted. The pH of the supernatant was slowly adjusted to 3.0 with 2 N 

HCl, then centrifuged to precipitate the albumin fraction. Residues mentioned above were re-

suspended in 5% NaCl at a solid/liquid ratio of 1:30 (w/v). The slurry was adjusted to pH 8.0 

using 2 N NaOH and stirred for 2 h. After centrifuging, resulting residues were collected for 

further glutelin fraction extraction. The supernatant was adjusted to pH 3.0 with 2 N HCl and 
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centrifuged to produce globulin 2. The residues were re-suspended in water at the solid/liquid 

ratio of 1:30 (w/v) and the pH was adjusted to 12 using 2N NaOH and continuous stirring for 2 

h. Then the slurry was centrifuged and the supernatant adjusted to pH 4.5 to precipitate glutelin 2 

proteins separated by centrifugation. All camelina protein fractions were washed with distilled 

water for three cycles, freeze-dried, and ground into powder for further analysis.  

 5.3.5.2. Modified Osborne method 

This extraction method is named sequence 1 (S1) (Figure 5.2B). The main difference 

from the Osborne sequence was that the glutelin fraction was isolated after albumin but before 

globulin. Protein isolates extracted with this method were named globulin 1 and glutelin 1, 

respectively.  

 5.3.5.3. Camelina protein extraction without degumming  

This extraction method is named sequence 0 (S0). Protein isolation schemes of S0 are 

presented in detail in Figure 5.2C and D and produced globulin 0 and glutelin 0, respectively.  
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Figure 5.2 Flowchart of camelina protein fractions extraction procedure. A: Osborne method. B: 

Modified Osborne method. C: Camelina glutelin fraction extraction without degumming. D: 

Camelina globulin fraction without degumming.  
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 5.3.6 Chemical analysis  

Moisture content was measured with the V30 Compact Volumetric KF Titrator 

(Columbus, Ohio). Carbon (C), hydrogen (H), nitrogen (N), and sulfur (S) content were 

measured with a PerkinElmer 2400 Series II CHNS/O Elemental Analyzer (Shelton, Conn.). 

Nitrogen was converted to protein using a factor of 6.25. All tests were performed in duplicate.   

 5.3.7 Amino acid composition analysis  

Amino acids profiles in camelina proteins were measured by the method described by Li 

et al (2011 a). Approximately 100 mg of each sample was weighed and placed in 0.5 mL of 6 N 

HCl along with the internal standard and hydrolyzed at 110 °C for 20 h. An aliquot, typically 10 

or 20 µl, was then made up to 250 µl with 0.4 M borate buffer to dilute the sample and raise the 

pH. After precolumn derivatization with o-phthalaldehyde (OPA) and 9-fluorenylmethyl 

chloroformate (FMOC), 1 µl of this diluent was injected into an HPLC system with a C18 

column (Hypersil AA-ODS, 2.1 × 200 mm, 5 µm). Mobile phase A was 20 mM sodium acetate 

buffer with 0.018% (v/v) triethylamine, 0.05 mM EDTA, 0.3% tetrahydrofuran, and pH adjusted 

to 7.2 using acetic acid. Mobile phase B was 100 mM sodium acetate:acetonitrile:methanol 

(20:40:40, v/v). Elution conditions progressed from 100% A to 60% B in 17 min at 0.45 mL/min. 

Amino acid derivatives were detected with a fluorescent detector at 340/450 nm 

(excitation/emission) for primary amino acids and 266/305 nm for secondary amino acids. 

Human serum albumin was used as a control, and norvaline and sarcosine were used as internal 

standards.  

 5.3.8 Fourier transform infrared spectroscopy  

Fourier transform infrared (FTIR) data were collected in the region of 400 to 4000 cm
-1

 

with a PerkinElmer Spectrum 400 FT-IR/FT-NIR spectrophotometer (Shelton, Conn.). 

Transmission spectra of 32 scans of each sample were collected at a resolution of 1 cm
-1

 in the 

reflectance mode. All samples were tested with duplications. Information on fat, carbohydrates, 

and protein in samples was given by absorptions. Because the objective of using FTIR was also 

to determine relative amounts of α-helix and β -sheet secondary structure protein, a band shape 

of each peak resolved by deconvolution needed to be produced that would allow peak area 

determination as a method of quantitative analysis. Fourier self-peak deconvolution (FSD), the 

most widely used tool, was used to identify the α-helix and β -sheet in protein amide I region, 
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and modeling by Peak Fitting Wizard tool with Gaussian function with OriginLab-Origin 8.0 

data analysis and graphing software was also used (Northampton, Mass.) to obtain areas of 

individual protein forms. The α-helix and β-sheet content ratio was described as the ratio of peak 

areas (Wetzel et al 2003; Yu et al 2005).  

 5.3.9 Transmission electron microscopy  

Transmission electron microscopy (TEM) was obtained using a model CM 100 TEM 

(FEI Company, Hillsboro, Ore.) operated at 100 kV. Camelina protein isolates were first 

dissolved in distilled water with a solid concentration of 0.05% (w/w). Prepared protein samples 

were absorbed for approximately 30 s at room temperature onto Formvar/carbon-coated 200-

mesh copper grids (Electron Microscopy Sciences, Fort Washington, Pa.) and stained with 2% 

(w/v) uranyl acetate (Ladd Research Industries, Inc., Burlington, Vt) for 60 s at room 

temperature before being viewed by TEM. 

 5.3.10. Thermal gravimetric analysis 

Thermal Gravimetric Analysis (TGA) of camelina proteins was conducted with a TGA 

instrument (TGA 7, Perkin-Elmer, Norwalk, Conn.) in a nitrogen atmosphere. Approximately 10 

mg of ground powder was weighed into a platinum cup and scanned from 25 to 900 °C at a 

heating rate of 10 °C /min. Maximum degradation rate was calculated as mass (%) at peak 

temperature divided by peak temperature. 

 5.3.11 Size exclusion chromatography 

Size exclusion chromatography (SEC) analysis was conducted as described by Bean et al 

(2006). In specific, a high-performance liquid chromatography (HPLC) system (1100, Agilent, 

PaloAlto, Calif.) with a 300mm × 7.8mm BioSep-4000 column and security guard columns 

(Phenomonex, Torrance, Calif.) was used. The mobile phase was a pH 7 sodium phosphate 

buffer (50 mM) with 1% SDS added. Column temperature was maintained at 25 °C, and flow 

rate was 1 mL/min. Samples for SEC analysis were re-dissolved in a pH 7 sodium borate buffer 

(12.5 mM) plus 1% SDS with or without 2% β-ME at a constant final protein concentration of 5 

mg/L. Standard proteins BSA (66kDa), carbonic anhydrase (29kDa), and glutathione (307.3 Da) 

were analyzed to estimate molecular weight distribution of camelina protein fractions separated 

by SEC.  
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 5.3.12 Statistical analysis 

Data from experiments carried out in duplicate were analyzed through analysis of 

variance (ANOVA) and least significant difference (LSD) at the 0.05 level according to 

procedures in the SAS statistical software package (SAS Institute 2005, Cary, N.C.).  

 5.4. Results and discussion 

 5.4.1 Camelina protein solubilities and precipitation properties  

According to Figure 5.2, net absorbance at 595 nm showed a linear relationship with 

bovine serum albumin (BSA) at concentration from 0.0 to 1.0 mg/ml. The linear relationship is 

expressed by equation (1) with R
2
 of 0.999:  

 10226.088901.0  XY  

where Y is absorbance at 595 nm and X is protein concentration (mg/ml). As shown in Figure 5.3, 

solubility of glutelin displayed high sensitivity to pH values. Solubility of glutelin increased 

slightly from pH 10.0 to pH 11.0, then reached its highest value around pH 12.0; therefore, pH 

12 was recommended for camelina glutelin solubilization.  
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Figure 5.3 Effect of pH on glutelin solubility. 

The purpose of characterizing precipitation properties of camelina proteins was to 

identify the protein’s minimum solubility pH (MS-pH). As shown in Figure 5.4, albumin and 
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glutelin fractions exhibited a typical U-shaped solubility profile, whereas the globulin fraction 

showed a step shape. Lowest protein solubility was observed in the pH range from 2.5 to 3.0 for 

albumin fraction and pH 4.0-5.0 for glutelin fraction. In the globulin fraction, protein 

concentration decreased significantly from pH 6.93 to pH 4.0, then leveled off from pH 1.0 to 

4.0. In this case, the MS-pH s of camelina protein fractions were considered to be pH 3.0, 4.0-5.0, 

and 3.0 for albumin, glutelin, and globulin, respectively.  
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Figure 5.4 Effect of pH on the precipitation property of camelina protein fractions. 

 5.4.2 Partial proximate analysis and elemental composition of camelina proteins  

Table 5.1 shows the partial proximate and elemental compositions of camelina fractions. 

Residual protein that was not successfully extracted was also indicated. The DCM consisted of 

approximately 38.12% crude protein. In all three isolation methods, glutelin (48.32 to 64.64%) 

was the major fraction in protein, followed by globulins (13.03-17.67%) and albumins (10.54%).  

 More protein isolates were recovered with S0 (48.67%) than with S1 (41.54%) and S2 

(36.86%); however, protein purity with S0 (57%-70%) was far lower than that of S1 (81-87%) 

and S2 (83-86%), which could be attributed to the presence of gum in S0. Similarly, albumin 

fraction showed lower protein purity (56.57%) than globulin and glutelin fractions (81-87%) due 

to gum, which was extracted along with the albumin protein and consequently led to low protein 

purity. In addition, more pure globulin 2 and glutelin 1 fractions were extracted than globulin 0 

and glutelin 0, indicating that the presence of gum negatively affected not only protein purity but 

also protein yield. The DCM-water slurry was very thick and sticky when those gums presented, 

possibly causing inefficient solublilization of protein in the slurry and resulting in lower protein 

extraction yield. More glutelin was extracted in S1 than in S2, which can be attributed to the 

effect of NaCl. As described in similar studies, NaCl could negatively affect protein solubility in 

specific pH ranges. Carbonaro et al (1997) found that lower solubility of fava bean, lentil, and 
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chickpea proteins (all proteins had a MS-pH around pH 4.0) in NaCl at pH above 7.5 or with pH 

from 1.0 to 3.0 could be ascribed to increased hydrophobic interaction. Hydrophobic interactions 

are the driving force for protein-protein aggregation, leading to protein insolubilization. Markkar 

et al (2008) also reported that recovery of Jatropha protein decreased with the presence of NaCl 

at pH 10 or 11 due to an increase in ionic strength and the resulting increase in hydrophobic 

interaction, or, perhaps, due to the “salting out” effect of NaCl on protein resulting from 

competition between charged proteins and salt ions for necessary water for solvation (Badifu and 

Akubor 2001). In contrast, Carbonaro et al (1997) indicated that the shielding of charged groups 

of dry bean by NaCl resulted in increased electrostatic repulsive force that reduced protein 

aggregation and therefore improved solubility. In this research, camelina glutelin 2 was 

solubilized at pH 12, which is far away from its MS-pH (pH 4.0), with the presence of NaCl, 

resulting in glutelin 2’s lower recovery rate due to strong ionic strength and protein aggregations 

driven from increased hydrophobic forces, as described by Markkar et al (2008).     

Some protein remained in the residues: 3.45% for S1 and 5.86% for S2. Furthermore, the 

sum of isolated pure proteins (%) and un-extracted proteins in residues (%) was not 100%; 

instead, the sum was 97.24% for S1 and 91.89% for S2, implying that part of the protein was lost 

during the extraction process. 

Elemental compositions of camelina proteins varied from different protein fractions 

(Table 5.1). Glutelin and albumin fractions contained higher C (42.33-49.22%), H (6.30-7.21%), 

and S (2.03-2.34%) contents than globulins (31.08-39.51%, 4.55-5.78%, and 1.62-1.75%, 

respectively). The sulfur in protein is known from the side-chains of amino acids methionine and 

cysteine (Brosnan and Brosnan 2006). Higher sulfur content in albumin and glutelins indicated 

higher methionine or cysteine content in amino acids profiles of camelina protein (Table 2). A 

carbon content of 31.45% is preferred for protein stability (Rajasekaran et al 2011). Li et al 

(2009) stated that carbon content in protein was negatively correlated to protein abundance, and 

amino acids with a high number of carbon atoms in their side-chains consumed more energy for 

synthesis. Hydrogen contributes protein structure, stability, and molecular recognition as the 

form of hydrogen bonds. Hydrogen bonding and the hydrophobic effect were believed to be the 

two main forces stabilizing proteins (Pace 2009). The core of most protein structures is 

composed of secondary structures such as alpha α and β sheet. This satisfies hydrogen-bonding 
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potential between main chain carbonyl oxygen and amide nitrogen buried in the hydrophobic 

core of the protein (Hubbard and Kamran Haider 2010).  
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Table 5.1 Partial proximate and elemental compositions of camelina meal and protein isolates fractions produced by different 

isolation sequences.  

Camelina 

protein 

samples 

Moisture 

content       

(%, db) 

Weight of 

isolates 

compared to 

DCM 

(%,db) 

Protein 

content 

 (%, db) 

Weight of 

protein  

compared to 

DCM (%, db) 

Weight of 

protein  

compared to 

TP
a
 in DCM 

(%, db) 

Elemental composition of protein 

sources  (%, db) 

C H N S 

DCM
b
 9.35 a

c
  38.12    45.31 b 6.92 a 6.10a f 2.12 c 

Albumin 7.30 e 7.10 h 56.57  4.02  10.54  42.33 c 6.30 b 9.05 e 2.27 ab 

Globulin 0 7.20 e 10.66 g 57.56  6.14  16.10  31.08 e 4.55 e 9.21 e 1.75 d 

Glutelin 0 8.73 c 30.91 d 70.81  21.89  57.42  45.92 b 6.71 ab 11.33 d 2.22 b 

Globulin 1 6.57 f 6.13 i 81.00  4.97  13.03  37.96 d 5.54 cd 12.96 c 1.62 e 

Glutelin 1 6.87 g 28.31 e 87.04  24.64  64.64  49.22 a 7.12 a 13.93 a 2.34 a 

Globulin 2 6.14 h 7.75 h 86.93  6.74  17.67  39.51 d 5.78 c 13.91 a 1.70 de 

Glutelin 2 7.54 d 22.01 f 83.68  18.42  48.32  46.03 b 6.71 ab 13.39 b 2.03 c 

Residue 1 9.03 b 40.30 b 8.55  3.45  9.04  27.76 f 3.91 f 1.37 h 0.94 g 

Residue 2 9.03 b 48.11 a 12.18  5.86  15.37  39.15 d 5.35 d 1.95 g 1.26 f 

Sum of S0  48.67 a  32.04  84.05      

Sum of S1  41.54 b  33.62  88.20      

Sum of S2  36.86 c  29.17  76.52      
a
 Total protein. 

b
 Defatted camelina meal. 

c 
Means in the same column followed by different letters are significantly different at P<0.05. 
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 5.4.3 Amino Acid Composition 

Sixteen kinds of amino acids were detected and quantified in camelina proteins (Table 

5.2). Tryptophan and cysteine were not detected because they were destroyed by the liquid HCl 

hydrolysis assay during the test, which may be one reason why the total sum of amino acids was 

lower than the protein content obtained by the nitrogen combustion method (Table 5.1). 

Tryptophan and cysteine in camelina amino acids accounted for only 1.15% and 2.12%, 

respectively, so it should not be the only explanation (Zubr 2002). Another reason may be the 

presence of non-protein nitrogen (NPN) in camelina. Although no published data are available 

on NPN content in camelina, NPN is very common in oilseeds. NPN content in soy, rape, and 

sunflower is up to 12.3%, 29.0%, and 15.4%, respectively, using 1% trichloroacetic acid as the 

extracting buffer (Bhatty and Finlayson 1973). 

Camelina proteins are characterized by high glutamate (18.46-19.23%), aspartate (9.68-

11.83%), leuicne (8.14-9.17%), arginine (7.60-8.57%), and phenylalanine (5.08-6.84%) content, 

but low ornithine (0%), methionine (1.68-2.46%), histidine (2.84-3.04%), and tyrosine (3.58-

4.02%) content. Globulins showed lower levels of lysine, methionine, threonine, alanine, and 

glycine and higher levels of leucine, phenylalanine, valine, and aspartate amino acids. Notably, 

methionine, a sulfur-containing amino acid, is higher in glutelins than globulins, attributing to 

high sulfur content in glutelins. Compared with globulins, albumin had lower levels of isoleucine, 

leucine, phenylalanine, valine, and lysine, but amino acids of lysine, threonine, alanine, serine, 

and glycine in albumin exceed globulins. Furthermore, albumin exhibited lower levels of 

histidine, leucine, methionine, glutamate, and arginine and higher lysine, threonine, and aspartate 

amino acids than glutelins.  

Amino acids were classified into groups according to physical, chemical, and structural 

properties. Nutritionally, camelina proteins contained approximately 40% of essential amino 

acids which cannot be synthesized by human and many farm animals, and approximately 60% of 

nonessential amino acids which can be produced in humans and animals. The percentage of 

essential amino acids in camelina is lower than in canola protein (42%) (Li et al., 2011 a), 

sorghum protein (48%) (Li et al 2011 b), and soy protein (49%) (Khorasani et al 1990). Amino 

acids are critical for metabolism and growth of humans and animals. Dietary requirement is the 

amount of protein or its constituent amino acids that must be supplied in the diet to satisfy 
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metabolic demand and achieve nitrogen equilibrium. In most cases, dietary requirements are 

greater than metabolic demand because of factors that influence efficiency of protein use; i.e., 

net protein utilization, digestion, and absorption. Lysine (4.12-5.88%) in all camelina protein 

fractions and phenylalanine (5.08-6.50%) in DCM, albumin, and glutelins are lower than World 

Health Organization (WHO) standards for children at 0.5 years old (lysine, 6.4%; phenylalanine, 

5.9%), but all essential amino acid contents in camelina protein meet or exceed WHO amino acid 

requirement standards for children over one year old and adults (WHO Technical Report Series 

935 2007).  

Based on hydrophobicity, amino acids can be grouped into hydrophobic (non-polar) and 

hydrophilic (polar) types. Hydrophobic amino acids have side-chains that do not prefer an 

aqueous environment. Betts and Russell (2003) reported that these amino acids are generally 

buried within the hydrophobic core of the protein or within the lipid portion of the membrane. 

Among detected amino acids, alanine, methionine, phenylananine, isoleucine, and leucine belong 

to the hydrophobic group and account for approximately 26.34 to 28.40% of camelina protein 

fractions (Table 5.2). Albumin showed the lowest hydrophobic property, whereas globulin 2 was 

the most hydrophobic. Hydrophobic properties of camelina proteins are comparable to canola 

protein (26%), but lower than soy protein (37%) and sorghum protein (57%) (Li et al 2011a). 
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Table 5.2 Amino acid compositions of DCM, canola meal, and camelina protein isolates fractions. 

  

Amino acid (% 

of total)  
albumin globulin 0 glutelin 0 globulin 1 glutelin 1 globulin 2 glutelin 2 DCM

a
 

Canola 

meal
b
 

Essential  

Histidine 2.84 2.97 3.02 3.04 3.04 3.00 3.02 2.90 3.32 

Isoleucine* 4.70 4.99 4.85 4.96 5.01 4.93 5.16 4.94 5.80 

Leucine* 8.14 9.21 8.66 9.14 8.93 9.37 9.12 8.32 8.86 

Lysine   5.88 4.42 5.41 4.36 5.05 4.12 5.93 5.93 5.85 

Methionine* 1.85 1.83 2.14 1.68 2.27 1.73 2.46 1.70 1.74 

Phenylalanine* 5.77 6.50 5.60 6.64 5.63 6.84 5.41 5.08 5.00 

Threonine 5.35 4.74 5.14 4.78 5.05 4.73 5.81 5.26 5.45 

Valine 5.75 6.09 5.71 6.09 5.77 6.11 5.84 5.63 6.05 

 T
c
-essential 40.29 40.75 40.54 40.69 40.75 40.85 42.74 39.75 42.07 

           

Non- 

essential 

Alanine* 5.87 5.36 5.78 5.29 5.62 5.22 6.26 5.68 5.40 

Aspartate 11.45 11.56 9.97 11.19 9.70 11.83 9.68 9.84 8.44 

Glutamate 18.46 19.23 19.11 19.03 19.24 18.92 15.65 19.94 22.37 

Serine 6.41 5.98 6.12 5.91 6.02 5.92 6.44 6.09 5.47 

Arginine 7.71 7.60 8.42 8.16 8.53 7.77 8.09 8.57 6.95 

Glycine 6.24 5.88 6.13 5.95 6.12 5.79 6.46 6.40 6.07 

Tyrosine 3.58 3.63 3.93 3.79 4.02 3.71 4.69 3.73 3.23 

Ornithine   0 0 0 0 0 0 0 0 0 

 T
c
-nonessential 59.71 59.24 59.46 59.31 59.25 59.15 57.26 60.25 57.93 

  

T
c
-AA 100 100 100 100 100 100 100 100 100 

T
c
-protein  46.35 51.05 61.84 67.38 68.91 76.10 72.07 34.13 34.84 

* Hydrophilic amino acids. 
a
 Defatted camelina meal. 

 b
 Li, et al., 2011 a. 

c
 Total. 
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 5.4.4 Size exclusion chromatography (SEC) 

Molecular weight (MW) distributions of camelina protein fractions were characterized 

with SEC in the presence and absence of reducing agents (Figure 5.5 A). Under non-reducing 

conditions for all protein samples, three major peaks were detected at 8 min, 8.75 min, and 9.5 

min. The major peak was around 66 kDa, except in glutelin 2 fraction which exhibited a major 

peak at approximately 9.5 min with MW of less than 29 kDa. Globulin 0 and globulin 2 showed 

stronger peak intensity than globulin 1 at MW around 66 kDa, indicating more protein subunits 

with larger MW presented in globulin 0 and 1. This difference in MW among globulins may be 

ascribed to effects of the initial protein isolating conditions and sequences. As stated in the 

protein isolation steps, globulin 0 and globulin 2 were extracted with 5% NaCl solution, whereas 

globulin 1 was extracted from the pellets already treated with NaOH solution. Some NaOH 

residue could have remained when performing globulin 1 isolation, so the globulin 1 fraction 

was extracted as a result of the combined action of both NaCl and NaOH. In addition, both 

albumin and glutelin fractions had a small peak around 5 min, indicating the presence of the high 

MW protein subunits. However, this peak was barely detected in globulin fraction except 

globulin 1, which also could be attributed to the combined action of both NaCl and NaOH in the 

globulin 1 fraction. 

 In the presence of a reducing agent (Figure 5.5 B), intensity of the peak around 66 kDa 

decreased significantly and shifted to MW lower than 29 kDa, indicating that disulfide-bonded 

cross-linked subunits were presented in all protein fractions. The high intensity of the peak at 66 

kDa in globulin 0 and 2 fractions proved they contained more disulfide linkages; however, 

according to Tables 5.1 and 5.2, more sulfur content and methionine amino acids were detected 

in glutelin fraction, which should have translated into a larger number of disulfide bonds than the 

globulin fraction. Many studies have shown that glutelin from corn and wheat is composed of a 

high level of subunits linked by disulfide bonds (Nielsen et al 1970; Masci et al 1998). The 

reason for this may be that NaOH could destroy cystine and cleave disulfide bonds during 

extraction (Nielsen et al 1970; Tecson et al 1971), thus leading to reduced disulfide bonds in 

glutelin fraction. Furthermore, large MW peaks around 5 min were still detected under the 

reducing condition, indicating that protein aggregates were stabilized by covalent bonds other 

than disulfide bonds in those protein fractions.   
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Figure 5.5 Size exclusion chromatography separations of camelina proteins at non-reducing (A) 

and reducing conditions (B). 
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5.4.5 Fourier transform infrared spectroscopy  

As shown in Figure 5.6A, typical oil absorption bands localized at 1710 and 1745 cm
-1

 

(C=O stretching) and at 2853, 2924 and 3006 cm
-1

 (C-H stretching) were detected in the spectra 

of DCM ( Guillén and Cabo 1997). The significant diminishment or disappearance of these 

bands indicated only trace to low oil content in the isolated protein fractions. Absorptions in the 

range of 900 to 1250 cm
-1

 related to the C-O stretching vibrations in polysaccharides were 

detected for all samples with different intensities. Consistent with previous results, albumin and 

proteins extracted with S0 with low protein purities (Table 5.1) had higher peak intensity at 1050 

cm
-1

, indicating absorption of polysaccharides, than other fractions. Camelina seed was reported 

to contain polysaccharides, and polysaccharides in camelina seeds showed good water-binding 

capacity and were capable of aiding seed germination in dry environments (Grady and Nleya 

2010). 

Protein units give rise to nine characteristic absorption bands, namely, aimde A, B, and I-

VII, among which the amide I and II bands are the most prominent vibrational bands of the 

protein backbone (Kong and Yu 2007). The peptide bond of protein is unique in containing C=O, 

C-N, and N-H. The amide I absorption contains contributions from primarily C=O stretching 

vibration (80%) with a minor C-N stretching vibration, whereas the amide II absorption appears 

to arise from N-H bending vibrations (60%) coupled with C-N stretching vibrations (40%) 

(Jackson and Mantsch 1995). Peaks at 1630 cm
-1

 and 1520 cm
-1

 are dominated by camelina 

protein secondary structures amide I and amide II, respectively (Yu et al 2005). After 

deconvolution, the α-helix in amide I was shown at frequency 1650 cm
-1

 for all protein samples 

(Figure 5.6 B). Absorptions of β-sheet were in the frequency range of 1626 to 1637 cm
-1

. 

Interestingly, absorption peaks for globulin fractions were at higher frequencies than those of 

glutelin and albumin fractions and DCM. The ratio of α-helix and β-sheet in amide I was 

quantified by the peak area (Table 5.3). DCM showed higher α-helix and β-sheet ratio (1.12) 

than other samples, and the lowest ratio existed in albumin fraction (0.84). Glutelin exhibited a 

higher α-helix and β-sheet ratio (1.03-1.05) than globulin (0.91-1.00), indicating higher α-helix 

portion in the glutelin fraction.  
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Figure 5.6 FTIR analysis of camelina meal and proteins (A) and α-helix, β-sheet identification in 

amide I (B). 
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Table 5.3 Fourier self-peak deconvolution of amide I. 

Camelina protein 

samples 

Amide I 

α-helix β-sheet 
 

Frequency 

(cm-1) 
area 

Frequency 

(cm-1) 
area 

area ratio of 

 α-helix / β-sheet 

CM
a
 1650 1.16 1630 1.04 1.12 

Albumin 1650 1.09 1630 1.29 0.84 

Globulin 0 1650 1.12 1634 1.12 1.00 

Glutelin 0 1650 0.66 1628 0.64 1.03 

Globulin 1 1650 1.54 1637 1.70 0.91 

Glutelin 1 1650 0.39 1626 0.39 1.00 

Globulin 2 1650 1.98 1635 2.18 0.91 

Glutelin 2 1650 0.42 1630 0.40 1.05 

 

a
 Camelina meal. 
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 5.4.6 Morphological properties 

TEM images of camelina protein fractions are presented in Figure 5.7 at 130,000x 

magnification. Albumin showed a spherical shape with diameters from 10 nm to 85 nm (Figure 

5.7 A), which is bigger than globulins (Figures 5.7B, D, and F) and glutelins (Figures 5.7 C, E, 

and G) on average. All globulins isolated with various methods exhibited a spherical shape with 

similar diameters of around 10 nm (Figures 5.7 B, D, F, and distributed uniformly. In the 

glutelins (Figures 5.7 C, E, and G), irregular and highly dense protein clusters were observed that 

comprised a mixture of spherical and rod-shaped clusters with diameters from less than 10 nm to 

several hundred nanometers. In short, bigger protein aggregates were exhibited in albumin and 

glutelin fractions compared with globulin fractions.  

Generally, aggregates of proteins may arise from several mechanisms and may be 

classified in numerous ways, including soluble/insoluble, covalent/non-covalent, 

reversible/irreversible, and native/denatured, thus influencing the amount of aggregate produced 

during the cell culture and purification process. As shown in the SEC section, high MW subunits 

stabilized by covalent bonds were observed in all glutelin fractions, which may contribute to the 

larger size of protein aggregates. Cromwell et al (2006) concluded that more disulfide bonds 

played an important role in protein aggregates and resulting compact protein structures, but 

glutelin fractions contained fewer disulfide bond-linked subunits than globulin fractions (Figure 

5.5A), indicating that disulfide bonds were insignificant in these larger aggregate formations. 

Moreover, oxidation of tyrosine may also result in covalent aggregation through the formation of 

bityrosine (Cromwell et al 2006). In the amino acid profiles of camelina protein (Table 5.2), 

glutelins contained more tyrosine than globulins, leading to the possibility that more covalent 

bonds could be formed through oxidation. Albumin fraction contained less tyrosine than 

globulins, suggesting that oxidation of tyrosine may play an insignificant role in protein 

aggregation.  

Protein aggregation is known to affect physiological and pharmacokinetic properties. 

Some protein deposition diseases such as body myositis, light-chain deposition disease and 

cataracts, and Alzheimer’s disease are related to protein aggregation (Fink 1998). Protein 

aggregation and, ultimately, precipitation — which results from environments such as 
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shear/shaking, temperature, pH, and protein concentration during drug production, storage and 

delivery processes — are also concerns with protein-based drugs (Frokjaer and Otzen 2005). 
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Figure 5.7 TEM images of DCM and camelina proteins: albumin (A,×130,000); globulin 0 (B, ×130,000); glutelin 0 (C, ×

130,000); globulin 1 (D, ×130,000); glutelin 1 (E, ×130,000); globulin 2 (F, ×130,000); glutelin 2 (G, ×130,000). 



 

112 

 

 5.4.7 Thermal gravimetric analysis 

TGA and derivative thermogravimetry (DTG) curves are presented in Figure 5.8 as the 

weight loss (%) and derivative weight loss rate (%/min), respectively, and as a function of 

sample temperature in range of 25 °C to 900 °C. The degradation of camelina protein fractions 

underwent two to four stages with different final mass of retention residues. Noncombustible 

residues are inorganic materials. Albumin showed four stages followed by globulin 0 and 

glutelin 0, 1, and 2 with three stages and globulin 1 and 2 with two stages, indicating that 

albumin had more complicated compositions. 

In the first stage, the mass of protein samples decreased from 3% to 7.5% from 25 °C to 

around 150 °C, which could be ascribed to evaporation of both the free water and physically 

absorbed water in samples (Figure 5.8A). In this stage, maximum mass loss occurred to albumin, 

indicating that albumin had the highest water absorption ability, possibly because among 

camelina protein fractions, albumin fraction had the most hydrophilic nature (about 73% of 

hydrophilic amino acids) (Table 5.2). Hydrophilic amino acids side-chains are known to be 

either charged or polar, and both are capable of attracting water molecules involved in the 

formation of hydrogen bonds. They are also predominantly found on the exterior surfaces 

proteins (King 2011). The second peak at 206.4 °C in albumin was probably ascribed to the 

degradation of water-soluble gum which coexisted with albumin, as mentioned previously. 

Similarly, peaks with similar temperature were also observed in globulin 0 and glutelin 0 

fractions extracted without the degumming procedure. In addition, the larger mass loss at 

206.4 °C in globulin 0 indicated a high content of gum, which is consistent with the low protein 

purity of globulin 0 shown in Table 5.1. Notably, peaks were detected around 280-290 °C in all 

glutelin reactions, probably due to thermal breakage of weak non-covalent or covalent bonds.  

The major peaks observed around 356 °C in all the protein fractions are believed to be 

protein degradation (Figure 5.8B), a process that involves broken intermolecular and 

intramolecular hydrogen bonds and electrostatic bonds, decomposition of protein side-chains, 

and rupture of weak bonds such as C-N, C (O)-NH, C (O)-NH2, and NH2 (Mo et al 2011). 

Glutelins had a lower degradation peak (around 348 °C) than globulins (around 352 °C), with the 

exception of glutelin 2 (356 °C). As explained previously, NaCl increased ionic strength and 

resulted in enhanced hydrophobic interactions, thus improving thermal stability of globulins and 
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glutelin 2 in terms of the higher degradation peak. Besides, molecular conformation can also 

affect the protein degradation rate. Again, the globulin fraction had higher mass retention at 

approximately 350 °C (64.66-66.42%), which also suggested higher thermal stability.
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Figure 5.8 Thermogravimetric (A) and derivative thermogravimetric (B) curves of camelina 

proteins. 
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 5.5. Conclusions  

Physicochemical properties of camelina protein fractions, including solubility and 

precipitation abilities, amino acid profiles, molecular weight distributions, secondary 

structures, morphological properties, and thermal properties, varied in different protein 

fractions. The MS-pH of albumin, globulin, and glutelin were found at pH 3.0, 3.0, and 4.5-

5.0, respectively. S0 extracted the highest amounts of protein isolates but the lowest protein 

purities due to the gum.  S1 was more effective than S0 and S2 in terms of protein recovery 

and purities. Essential amino acids accounted for approximately 40% of total amino acids, 

and essential amino acid profiles met or exceeded WHO standards for children over one year 

old and adults. Camelina proteins had 26-28% hydrophobic amino acids, which is lower than 

canola, soy, and sorghum proteins. Glutelins exhibited higher α-helix and β-sheet ratios 

(1.03-1.05) than globulin fractions (0.91-1.00) and albumin (0.84).  

Studying the camelina protein isolation process and its physicochemical properties is 

vital to understanding its unique functionality, and thus exploring its applications in food and 

industrial areas such as biodegradable adhesives, plastics, or films. 
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Chapter 6 - Adhesion property of camelina protein fractions 

isolated with different sequences 

 6.1 Abstract 

The objective of this study was to investigate adhesion performance of different 

camelina protein fractions as affected by protein extraction methods. Physicochemical 

properties including electrophoresis profile, rheological, thermal and morphological 

properties, and crystallization were also studied. Two camelina protein fractions, globulin and 

glutelins, were isolated from defatted camelina meal using three different methods (S0, S1, 

S2). Results showed that the gums negatively affected both the protein yield and adhesion 

performance and needed to be removed through degumming step. Dry adhesion strength of 

camelina protein adhesives exhibited nearly 100% wood cohesive failure at the curing 

temperature from 150 to 190 °C except glutelin 2 and globulin 0. The overall adhesion 

performance of globulin fraction behaved better than glutelin fraction. The greatest wet shear 

strength of globulin 1 and 2 was around 3.3 MPa, curing at 190 °C. The wet shear strength of 

glutulin 2 was inferior to glutelin 1 due to negative effects from NaCl. Glutelin had higher 

protein aggregation than globulin, as indicated by higher crystallinity, higher thermal stability, 

and dense protein aggregate. This compact structure of glutelins may partially contribute to 

lower adhesion strength than globulin. 

 6.2 Introduction 

Camelina, a member of the mustard family and a distant relative to canola, is known 

in North America primarily as a weed, but as "gold of pleasure" to ancient European 

agriculturists. Camelina monocultures occurred in the Rhine River Valley as early as 600 

BC. The crop was widely grown in Eastern Europe and Russia until the early 1940's with 

some production lasting up to the 1950's. Today, camelina is produced in Slovenia, Ukraine, 

China, Finland, Germany, Austria, and the United States (Montana and Wyoming). 

(http://www.montanaglutenfree.com/omegamontana-camelina-oil.html). Camelina contains 

http://www.montanaglutenfree.com/omegamontana-camelina-oil.html


 

117 

 

30-38% oil. Current interests of camelina mainly focus on application of camelina oil. 

Camelina has high levels of polyunsaturated fatty acids (90%), among which 38% are linoleic 

acids (18:3, omega-3) (Putnam 1993), suggesting camelina is a good candidate for high 

quality edible oils. Camelina oil also shows great potential as sources of biodiesel. Camelina-

derived synthetic fuel has been used to power a variety of military and commercial aircrafts 

(http://www.gizmag.com/f-22-raptor-biofuel-flight/18218/). Increased interest in camelina 

oil-based biodiesel or fuel will trigger the spread of intentional planting of camelina, leading 

to greater availability of the byproducts such as camelina meal which is co-product from the 

camelina oil extraction process.  

Camelina meal typically contains 40% crude protein, a maximum of 12% crude fiber, 

less than 15% residual oil, and a small portion of vitamins (Sampath 2009). Currently, 

camelina meal is mainly used as additives for animal feed as protein or omega-3 supplement 

resource (Ryhanen et al 2007, Rokka et al 2002). Besides animal feed, utilization of camelina 

protein as value-added products is critical to food and industrial application. Preliminary data 

indicated that the amino acid profile of camelina protein is similar to canola protein which 

displayed potential as an alternative to conventional petroleum-based adhesives (Li et al 

2011a, Li et al 2011b). Therefore, the hypothesis is made that camelina protein may also have 

comparable adhesion properties to canola protein. In addition, soybean (oil seed) is one of the 

most promising and investigated bio-based adhesives over the last few decades (Qi et al 2011, 

Qi et al 2012, Mo et al 2011), reinforcing the worldwide conflict between bio-based products 

and the human food.   

According to previous research, three protein fractions were extractable from 

camelina mel: albumin, globulin, and glutelin, using classical or modified Osborne protein 

fractionation method (Osborne 1924). The objective of the research was to study adhesion 

performance of camelina protein fractions isolated with different methods. Albumin fraction 

was not studied because it is water soluble and has strong swallowing properties, resulting in 

http://www.gizmag.com/f-22-raptor-biofuel-flight/18218/
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poor adhesion performance. The protein electrophoresis profile, rheological, thermal and 

morphological properties, and crystallization were also investigated.  

 6.3 Materials and Methods 

 6.3.1 Materials 

Camelina meal (CM) with 15% lipid (db), 32.4% crude protein (db), and 11.0% 

moisture content (db) was purchased from Montana Gluten Free Processors (Belgrade, 

Mont.).  Meal pellets was produced with a screw oil press at a temperature around 170 
o
F. 

Hexanes, Bradford Assay, hydrochloric acid (HCl), and sodium hydroxide (NaOH) were 

purchased from Fisher Scientific (Fair Lawn, N.J.). Cherry wood veneers with dimensions of 

50 × 127 × 5 mm (width × length × thickness) were provided by Veneer One (Oceanside, 

N.Y.). 

 6.3.2 Camelina Protein Fractions Isolation Process 

Osborne Method: This extraction method is named as sequence 2 (S2). Camelina 

protein fractions were isolated from defatted camelina meal (DCM) according to Osborne 

fractionation scheme (Osborne 1924). Camelina meal with particle size <0.5 mm was 

obtained by using a cyclone sample mill (Udy Corp., Fort Collins, Colo.). Then, camelina 

meal was defatted with hexane at a solid/liquid ratio of 1:10 (w/v) for 2 hr at room 

temperature in three cycles. The DCM was placed in a fume hood with a very thin layer 

(around 2 mm) for 24 hr to evaporate residual hexane.  

Figure 5.2 A illustrates the Osborne fractionation scheme. The DCM was mixed with 

distilled water at the solid/liquid ratio of 1:30 (w/v). The slurry was stirred for 2 hr, and then 

centrifuged at 12,000 × g for 15 min. Residues were collected for further camelina protein 

fractions isolation, and the supernatant containing water soluble protein or polysaccharides 

was discarded. Both the water soluble gum and albumin could be removed from this 

procedure, so this step was named the degumming step. Residues were re-suspended in 5% 

NaCl at the solid/liquid ratio of 1:30 (w/v). The slurry was adjusted to pH 8.0 using 2 N 
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NaOH and stirred for 2 hr. After centrifuging at 12,000 × g for 15 min, resulting residues 

were collected for further glutelin fraction extraction. The supernatant was adjusted to pH 3.0 

with 2 N HCl and then centrifuged at 12,000 × g for 15 min to produce globulin 2. Residues 

were re-suspended in water with volume ratio 1:30 and adjusted pH to 12 using 2 N NaOH. 

After continuous stirring for 2 hr, the slurry was centrifuged (12,000 × g, 15 min) and the 

supernatant was adjusted to pH 4.5 to precipitate glutelin 2 proteins and collected by 

centrifuge (12,000 × g, 15 min). Partial protein isolates were directly used as adhesives and 

the rest were freeze-dried and grinded for further study.  

Modified Osborne Method:  This extraction method is named as sequence 1 (S1). 

Camelina protein fractions were isolated from DCM according to modified Osborne 

fractionation scheme (Osborne 1924). The main difference compared to Osborne sequence 

was that glutelin fraction was isolated preceding globulin. Protein isolates extracted with this 

method were named as globulin 1 and glutelin 1, respectively. This isolation sequence was 

presented in a flow chart (Figure 5.2 B). 

Camelina Protein Extraction without Degumming: This extraction method is 

named as sequence 0 (S 0). Two batches of DCM with particle size less than 0.5 mm were 

mixed with 5 % NaCl solution at pH 8 and NaOH solution at pH 12, respectively, to 

solubilize these two protein fractions. Protein isolates extracted with this method were named 

globulin 0 and glutelin 0, respectively. Flow charts in Figure 5.2 C and D are presented to 

illustrate the procedure.   

 6.3.3 Chemical Analysis 

Moisture content was measured using the V30 Compact Volumetric KF Titrator 

(Columbus, Ohio). Nitrogen (N) content was measured via a PerkinElmer 2400 Series II 

CHNS/O Elemental Analyzer (Shelton, Conn.). Nitrogen was converted to protein using a 

factor of 6.25. All tests were performed with duplications. 
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 6.3.4 SDS-PAGE Gel Electrophoresis  

SDS-PAGE was performed on a 4% stacking gel and 12% separating gel with a 

discontinuous buffer system, as described by Laemmli (1970). A camelina protein sample 

was mixed with a buffer containing 2% SDS, 25% glycerol, and 0.01% bromphenol blue. To 

determine the disulfide bonds in camelina protein, SDS-PAGE was carried out under both 

reducing (2-mercaptoethonal) and non-reducing conditions. A total of 8 µg of protein was 

applied to sample wells. Molecular weight standards (14.4-97.4 kDa) were run with the 

samples. Electrophoresis was performed at 40 mA and 150 V for 120 min. The gel was 

stained in 0.25% Coomassie brilliant blue R-250 and destained in a solution containing 10% 

acetic acid and 40% methanol.  

 6.3.5 Rheological Properties 

Apparent viscosities on isolated camelina proteins were performed using a Bohlin 

CVOR 150 rheometer (Malvern Instruments, Southborough, Mass.) with a CP 4/40 cone and 

plate fixture (4° cone angle, 40-mm cone diameter). Distance between cone and plate was set 

to 150 µm for all measurements. Experiments were conducted under steady shear flow at 23 

°C. Shear rates ranged from 10-240 s
-1

 in increments of 10 s
-1

. All experiments were done in 

duplicate, and average values were reported. 

 6.3.6 Differential Scanning Calorimetry (DSC) 

Thermal transition properties of protein samples were measured with a DSC Q200 

V24.4 instrument (TA Instruments, New Castle, Del.) calibrated with indium and zinc before 

making official measurements. Samples of dry camelina proteins weighing approximately 7–

10 mg were measured in a hermetic aluminum pan under a nitrogen atmosphere with a gas 

flow rate of 50 mL/min. All samples were heated from 25 °C to 280 °C at a heating rate of 10 

°C/min in an inert environment. All experiments were performed in duplicate.  
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 6.3.7 Degree of crystallinity of camelina protein  

Degree of crystallinity of dry camelina protein adhesives was studied with wide-

angle X-ray diffraction (WAXD) technique. WAXD experiments were carried out at the 

advanced polymers beamline (X27 C), National Synchrotron Light Source, Brookhaven 

National Laboratory, in Upton, N.Y. Details of the experimental setup at the X27 C beamline 

have been reported elsewhere (Chu and Hsiao 2001). The wavelength used was 0.13714 

nm. A 2D MAR-CCD (MAR USA, Inc.) X-ray detector was used for data collection. Data 

was collected from diffraction angle 5.0 to 35.0° (2θ). Crystallinity was estimated from an 

integrated diffraction intensity profile as the ratio of total crystal peak diffraction intensity to 

total diffraction intensity. A peak-fitting process was employed with Igor Pro 6.20 

(WaveMetrics Inc. Lake Oswego, Ore.). The d-spacing between crystal lattice planes was 

estimated with Bragg equation (1): 

             1sin2 d  

Where d is the space between crystal lattice planes, λ is the wavelength, and 2Θ is the 

diffraction angle. 

 6.3.8 Scanning Electron Microscopy (SEM) 

A Hitachi S-3500 N (Hitachi Science System, Ibaraki, Japan) SEM was used to 

observe the microstructure of dried camelina protein isolates powder. Ground protein powder 

was affixed to an aluminum stub with two-sided adhesive tape and coated with an alloy of 

60% gold and 40% palladium with a sputter coater (Desk II Sputter/Etch Unit, Moorestown, 

N.J.). SEM images of protein isolates were performed with operation conditions at an 

accelerating voltage of 5 kV. 

 6.3.9 Wood specimen preparation 

Cherry wood samples were preconditioned in a controlled-environment chamber 

(Model 518, Electro-tech systems, Inc., Glenside, Pa.) for 7 d at 25 °C and 50% relative 

humidity (RH). Canola protein adhesives, isolated with different methods, were brushed 
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separately along the edges of two pieces of cherry wood with an application area of 127 mm 

× 20 mm until the entire area was completely covered. The adhesive amount applied on each 

piece was approximately 0.06 g (dry basis). The brushing and setting procedure followed the 

method described by Mo et al (2004). The brushed areas of the two pieces were assembled 

together at room temperature for 15 min, then pressed at a pressure of 2.0 MPa at 150 °C, 170 

°C, or 190 °C for 10 min using a hot press (Model 3890 Auto ‘M’, Carver Inc., Wabash, 

Ind.). 

 6.3.10 Mechanical Properties 

After pressing, the glued-wood assemblies were conditioned at 23 °C and 50% RH for 

2 days, then cut into five specimens, each measuring 127 mm (length) × 20 mm (width) × 5 

mm (thickness). The cut specimens were conditioned for another five days at 23 °C and 50% 

RH before the dry test. Three adhesion strengths were tested: dry strength, soak strength, and 

wet strength. Wood specimens for dry strength testing were prepared and tested using an 

Instron (Model 4465, Canton, Mass.) according to ASTM Standard Method D2339-98 

(2002). The crosshead speed of Instron for adhesion strength testing was 1.6 mm/min, and 

adhesion strength was recorded as tensile strength at the maximum load. Reported results are 

an average of five samples. 

Water resistance was determined by measuring wet and soak strengths according to 

ASTM Standard Methods D1183-96 (2002) and D1151-00 (2002), respectively. 

Preconditioned specimens were soaked in tap water at 23 °C for 48 h and then tested 

immediately for wet strength. For the soak strength test, specimens were soaked in tap water 

at 23 °C for 48 h and then conditioned at 23°C and 50% RH for an additional seven days 

before testing. 

 6.3.11 Statistical Analysis 

Data from the mechanical property evaluation were taken from an average of five 

samples. Data from experiments carried out in duplicate were analyzed through analysis of 
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variance (ANOVA) and least significant difference (LSD) at the 0.05 level according to 

procedures in the SAS statistical software package (SAS Institute 2005, Cary, N.C.).  

 6.4 Results and Discussion 

 6.4.1 Camelina protein yield and protein content  

As shown in Table 6.1, S0 extracted more dry protein isolates (41.57% of globulin 

and glutelin) than those of S1 (34.44%) and S2 (29.76), which could be attributed to the 

existence of water soluble gums contamination in S0. Noted that S0 was without degumming 

steps, and the camelina meal-water slurry was very thick and sticky when those gums 

presented. Partial gums could possibly be co-extracted with proteins, resulting in higher 

protein yield as well as lower protein purity in S0. In the case of S1 and S2, no significant 

difference was observed on protein purity (P<0.05). However, adhesive yield (dry) varied 

greatly based on isolation methods. S1 yielded less globulin (6.13%) than that of S2 (7.75%), 

which may be because that partial globulin 1 had already been co-isolated with glutelin 1, 

leading to low globulin 1 yield in S1. Preliminary tests indicated that camelina globulin 

fraction was partial soluble at high pH (above pH 11). Similar phenomena was also reported 

by Sun regarding phaseolus globulin (Sun, 1975). On the other hand, S1 extracted more 

glutlein (glutelin 1, 28.31%) than that of S2 (glutelin 2, 22.01%), which could be ascribed to 

the negative effect of NaCl on protein solubility. Glutelin 2 was isolated from camelina meal 

pellets where it had been previously treated with NaCl for globulin extraction; therefore, 

glutelin 2 was unavoidably affected by the remaining NaCl. Makkar et al (2008) reported that 

NaCl negatively affected protein solubility by increasing the ionic strength in solutions, 

resulting in increased hydrophobic interaction among protein molecules and decreased 

protein solubility.    

Table 6.1 Camelina protein adhesive yield and protein purity.  

Camelina 

protein 

samples 

Wet adhesive 

yield (db %) 

Solid content    

(db %) 

Dry adhesive 

yield (db %) 

Protein 

purity 

(db %) 

Globulin 0 130.00 b
1
 8.20 b 10.66 57.56 e 
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Glutelin 0 150.78 a 20.50 a 30.91 70.81 d 

Globulin 1 81.19 d 7.55 b 6.13 81.00 c 

Glutelin 1 149.00 a 19.00 a 28.31 87.01 a 

Globulin 2 107.64 c 7.20 b 7.75 86.93 a 

Glutelin 2 117.7 bc 18.70 a 22.01 83.68 b 
1
Means in the same column followed by different letters are significantly different at 

P<0.05 

 6.4.2 SDS-PAGE  

Reducing and non-reducing SDS-PAGE was performed to study subunit distribution 

and disulfide bonds in each camelina protein fractions. Figure 6.1 presents the electrophoresis 

of camelina protein under non-reducing condition. Dominant protein components in glutelin 

fraction (Figure 6.1 A, C, and E) were distributed at MW around 50, 30, 22 and 15 KDa. 

While major protein subunits in globulin (Figure 6.1 B, D, and F) were detected at MW 

around 50, 30, and 25 KDa, the faint band appeared at 15 KDa. Bands at 50 KDa were almost 

faded by the addition of reducing agent, as shown in Figure 6.2, indicating that the formation 

of disulfide bonds was one contributor for camelina protein aggregation. The intensified 

bands at 25 kDa under reducing condition were considered to result from the reduction of 

those aggregations (Figure 6.2). In addition, low MW bands at 15 kDa disappeared under the 

reducing condition and concomitant intensified bands are lower than 10 kDa, suggesting 

again the presence of disulfide bonds in camelina protein. Globulin had higher density of 

bands at 50 kDa and lower density of bands at 15 kDa than glutelin fraction, illustrating that 

disulfide bonds play an important role in stabilizing high molecular weight protein 

aggregates. It is reported that NaOH could destroy cystine and cleave disulfide bonds during 

glutelin extraction from corn or rice (Nielsen et al 1970; Tecson et al 1971). Therefore, 

glutelin extracted from camelina meal may also reduce disulfide bonds due to NaOH effects. 

Similar to canola protein, molecular weight distribution of camelina protein fractions under 

reducing condition was in the range of 6 kDa to 30 kDa (Manamperi et al 2008), which is 

much smaller than soy proteins (23kDa to 85 kDa) (Qi et al 2011).  
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In addition, small amounts of high molecular weight protein aggregates on top of the 

resolving gel were also observed under non-reducing condition (Figure 6.1). In the presence 

of reducing agent, those aggregates were faded completely in globulin fractions (Figure 2 B, 

D, and F), while trivial amounts still remained in glutelin fraction, suggesting that those 

glutelin protein aggregates were stabilized by other covalent bonds besides disulfide bonds. 

Similar protein aggregates were also detected in canola protein glutelin fraction and soy 

protein under the reducing condition (Manamperi et al 2008; Qi et al 2011). Those high 

molecular weight aggregates may affect physicochemical properties of camelina protein 

which will be further discussed. 

 

Figure 6.1 Non-reducing and reducing SDS-PAGE patterns of camelina protein fractions. A: 

Glutelin 2. B: Globulin 2. C: Glutelin 1. D: Globulin 1. E: Glutelin 0. F: Globulin 0.  
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Figure 6.2 Reducing SDS-PAGE of camelina protein fractions. A: Glutelin 2. B: Globulin 2. 

C: Glutelin 1. D: Globulin 1. E: Glutelin 0. F: Globulin 0.  

 6.4.3 Rheological Properties 

Rheological properties, which are related to adhesives’ flowability and wetting 

properties, of camelina protein adhesives were presented in Figure 6.3 as apparent viscosity. 

Apparent viscosity decreased as shear rate increased, indicating shear thinning behavior to 

camelina protein adhesives. In general, glutelins (2500-8200 Pa.s) exhibited higher apparent 

viscosity than those of globulins (300-1600 Pa.s) because stronger aggregation, which could 

be illustrated in SDS patterns (Figure 6.1 2) and SEM images (Figure 6.6), in glutelins. 

Glutelin 2 fraction showed highest apparent viscosity due to maximum protein aggregation 

(Figure 6.1 and 6.2). Positive effects of protein aggregation on apparent viscosity was well 

documented. Kumar (2002) stated that high viscosity soybean proteins resulted from 

increased intermolecular interactions due to unfolded (aggregated) protein molecules. Rullier 

et al (2008) and Le Floch-Fouéré et al (2009) also indicated that interfacial rheology of 

protein mainly depends on the aggregation state or strength of protein-protein interactions. In 

addition, both glutelin 0 and globulin 0 showed lower apparent viscosities than glutelins and 

globulins, respectively, which could be ascribed to the presence of gums in these two 

fractions. 
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Figure 6.3 Apparent viscosity of camelina protein adhesives. 

 6.4.4 Thermal properties 

Figure 6.4 shows thermal properties of camelina globulin and glutelin fractions. All 

samples presented a board denaturation endothermic peak and a following large exothermic 

peak which is related to protein aggregation. Camelina glutelin had the denaturation 

temperature (Td) in the range of 131 °C - 141 °C, while the globulin fraction denatured at 115 

°C – 140 °C under different extraction conditions, suggesting glutelins were more thermal 

stable than globulins in camelina. Glutelin 2 had Td around 141 °C, possibly due to the salt 

effect with increased hydrophobic interaction and protein thermal stability (Fitzsimons et al 

2007). This speculation was also in agreement with SDS-PAGE patterns (Figure 6.1 and 6.2), 

where glutelin 2 contained large amounts of high molecular weight protein aggregates, thus 

intensifying protein’s stability. 

Protein denaturation during thermal treatment involves the breakage of 

intramolecular bonds (covalent and non-covalent) by absorbing heat. Conversely, denatured 

(unfolded) protein molecules also favored the aggregation/association among each other 
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through formation of new intermolecular bonds, giving rise to an exothermic process in DSC 

thermogram, as shown in Figure 6.5. Similar protein aggregation exotherm peak was also 

observed in other proteins such soy protein, sorghum, canola protein, whey protein and pea 

storage protein (Marshall and Zarins 1989; Mo et al 2004; Li et al 2011a; Li et al 2011b; 

Fitzsimons et al 2007; Bacon et al 1989). Without the degumming step, globulin 0 and 

glutelin 0 began to aggregate around 150 °C, which may be related to their contamination 

(gum) with the exothermic peak around 150 °C (result not shown). The onset temperature of 

protein aggregation in globulin 1 and 2 (158 °C -178 °C) was much lower than the glutelin 1 

(199 °C). However, glutelin 2 had the reduced onset protein aggregation temperature around 

166 °C. Results were consistent with previous studies regarding denaturation and aggregation 

process of whey protein (Fitzsimons et al 2007). Fitzsimons reported that aggregation 

temperature of whey proteins was moved to progressively lower temperature as salt 

concentration increased from 80 to 100 Mm, confirming that salt promotes aggregation of 

denatured protein. 
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Figure 6.4 DSC thermogram of dry camelina protein adhesives. 

 6.4.5 Crystallinity of camelina protein adhesives 

The WAXD pattern and crystallinity of camelina proteins were shown in Figure 6.5 

and Table 6.1, respectively. Sharp peaks observed at diffraction angles of 24.4° and 28.2° 

(2θ) in all globulins and glutelin 2 fractions could be ascribed to crystallization of NaCl 

(Sulyanov et al 2003) because partial NaCl would be co-extracted with globulins and glutelin 

2 during the isolation process. Two peaks observed around 7.9-9.01° (peak 1) and 17.5° 

(peak 2) (2θ) with corresponding d-spacing of 7.0-9.01Å and 4.43-4.54Å, respectively, were 

related to protein crystallization (Table 6.2). Interestingly, diffraction angles for the two 

peaks of glutelins were lower than globulins, indicating that glutelins had shorter d-spacing 

between crystal lattice planes (Table 6.2). Similar, but not identical, diffraction patterns were 

also observed on soy protein or silk protein, where diffraction angles were 8.7-8.8° and 19-

19.6° (2θ) (Ki et al 2007; Zhou et al 2007), respectively. The discrepancy may be ascribed to 

different protein species or varied X-ray test conditions (λ). Interpretations on the two peaks 

are still in controversy. Sets of papers stated that both peak 1 (2θ=8.7-9.0° corresponding to 
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d=9.7-10.1 Å) and peak 2 (2θ=19.6-20.6° corresponding to d=4.3-4.5 Å) were identical to β-

sheet crystalline (Ki Chang 2007; Kim et al 2004; Valluzzi and Jin 2004); while, in contrast, 

Drummy et al ( 2007) ascribed the first peak (2θ=9.0° corresponding to d=9.5 Å) and peak 2 

(d=4.5 Å) to α-helix and β-sheet, respectively. Elshemey et al (Elshemey et al 2010) studied 

the correlation to nine different proteins conformation of WAXD parameters and concluded 

that the ratio of intensities of 10 Å peak to the 4.5 Å peak (I1/I2) was positively sensitive 

towards α-helix content in proteins with a high correlation of 0.75, meanwhile showing a 

negative correlation (-0.71) to β-sheet structure. This result indicated that WAXD peak 1 

(d=10 Å) was more related to α-helix, while peak 2 (d=4.5 Å) was more identical to β-sheet 

in protein.  

Crystallinity (%) of camelina protein adhesives varied upon isolation methods. 

Glutelins (34-35.3%) exhibited higher crystallinity than that of globulins (27.4-32%), 

indicating more protein in glutelins was in the ordered state instead of amorphous state as 

compared to that of globulins. Higher crystallinity made glutelins have more compact and 

stable structures and, consequently, influence adhesion performance.  
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Figure 6.5 Crystallinity of dry camelina protein adhesives 

Table 6.2 Diffraction angle (2Θ) and crystallinity of dry camelina protein adhesive.  

Camelina 

protein 

samples 

Peak 1   Peak 2 
Crystallinity 

(%) 
Diffraction 

angle (2Θ)° 

d-spacing 

(Å) 
  

Diffraction 

angle (2Θ)° 

d-spacing 

(Å) 

Globulin 0 7.93 9.91 

 

17.45 4.52 32.00 

Glutelin 0 8.89 8.84 

 

17.82 4.43 34.00 

Globulin 1 8.48 9.27 

 

17.52 4.50 27.80 

Glutelin 1 9.01 8.73 

 

17.59 4.48 35.30 

Globulin 2 7.90 9.95 

 

17.38 4.54 27.40 

Glutelin 2 8.56 9.19   17.59 4.48 34.20 
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 6.4.6 Morphological properties  

Morphological properties of camelina protein adhesives are represented in Figure 6.6 as 

SEM images. Globulins mainly existed as spherical granules with uniform diameter (Figure 6.6 

A, C, and E) and had a looser protein network compared to glutelins in which protein granules 

were tightly clung together with a fairly compact and rigid texture (Figure 6.6 B, D, and F). This 

observation indicated stronger protein aggregation in glutelins than globulins.  Formation of 

covalent bonds in protein was considered to be one pathway for protein aggregation (Cromwell 

et al 2006). Covalent bonds could be formed by both disulfide bonds and formation of bityrosine 

through oxidation of tyrosine amino acid. In amino acid profiles of camelina protein, glutelins 

contained more tyrosine than globulins (Table 5.2), possibly leading to more covalent bonds 

formation through oxidation.  

No obvious morphological difference was observed among globulins fractions, with the 

exception of globulin 0. The considerable amount of thin film with both relative big and small 

holes and filament materials were observed among globulins 0 granules or on the granule surface, 

which could be water soluble gums co-extracted with globulin-0 (Figure 6.6 A). Compared with 

globulin 0, glutelin 0 contained less amount of gum (Figure 6.6 B). These observations were in 

agreement with results in Table 1, where globulin 0 showed the lowest protein purity (57.56%) 

followed by glutelin 0 (70.81%).   
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Figure 6.6 SEM images of dry camelina adhesives. Globulin 0 (A, X 20,000); Glutelin 0 (B, X 

20,000); Globulin 1 (C, X 20,000); glutelin 1 (D, X 20,000); Globulin 2 (E, X 20,000); and 

Glutelin 2 (F, X 20,000) 
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 6.4.7 Mechanical properties of camelina protein adhesives 

Mechanical properties of camelina protein-based adhesives are summarized in Table 6.3 

as wet, soak, and dry shear strength (MPa). The wood cohesive failure (WCF), an indicator that 

bonding strength between wood and camelina protein adhesives was stronger than mechanical 

strength of the wood itself, was only partially observed under soaked and dry conditions. Both 

camelina protein fractions isolated with varying methods and curing temperature significantly 

affected adhesion properties (Table 6.3). As curing temperature increased from 150 °C to 190 °C, 

not only did interactions among protein molecular improve, but also chemical reactions at the 

interface between protein adhesives and wood were also enhanced (Mo et al 2006; Zhong et al 

2001), resulting in improved adhesion performance of camelina protein fractions. However, 

higher curing temperatures did not always result in optimum adhesion performance to protein-

based adhesives. Li et al (2011a) reported that wet adhesion strength of sorghum protein-based 

adhesives increased as curing temperature increased from 130 °C to 150 °C, but decreased 

significantly from 3.15 MPa to 1.92 MPa at temperature of 190 °C because protein 

decomposition occured. This phenomenon was not observed for camelina protein adhesives, 

indicating camelina protein is more thermal stable than sorghum protein. 

Adhesion performance of camelina protein fractions were also affected greatly by various 

protein isolation methods. Generally, protein adhesive isolated without degumming step (S0) had 

lower adhesion strength than ones with the degumming procedure (S1 and S2), indicating 

degumming is critical for both camelina protein isolations and protein applications. The excellent 

water absorption and swelling properties of camelina gums could damage wood-protein 

interactions by interfering in physical or chemical bonds, leading to poor mechanical strength of 

globulin 0 and glutelin 0. 

Without considering the effect of gums, camelina globulins fraction adhesives (globulin 1, 

2) exhibited better adhesion performance than glutelin fractions (glutelin 1, 2). According to the 

SEM image (Figure 6.6), the native loose and porous morphology of globulins provided them 

with larger surface area and more exposing polar and apolar groups which, in turn, form strong 

mechanical interlocking chemically or physically between wood and protein adhesives during 

the curing process, thereby leading to an improvement in adhesive strength and improved water 

resistance (Lambuth 1977). No significant difference on adhesion performance was observed 

among globulins, while glutelin 1 behaved better than glutelin 2. Results showed that glutelin 1 
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exhibited higher shear strength (4.68-5.88 MPa, WCF 100%) than glutelin 2 (3.13-4.51 MPa, 

WCF 0%) for soak and dry samples (Table 6.3). As mentioned in the protein isolation section, 

glutelin 1 was extracted from defatted camelina meal directly, while glutelin 2 was isolated from 

residue after the globulin 2 isolation. Therefore, some NaCl still remained in the glutelin 2 as 

residues which affected adhesion properties of glutelin 2. Effects of NaCl on functional 

properties of proteins, such as adhesive strength, solubility, solution viscosity, and water binding 

have been well documented. Kalapathy et al (1996) stated that viscosity and adhesive strength of 

soy protein at 14% solids concentration significantly decreased as NaCl increased from 0 to 0.2 

M, which may result from weakened interaction of the polar groups of proteins with polar groups 

of woods. The negative effect of NaCl on protein adhesion could also enhance protein 

aggregation. Carbonaro et al (1997) reported that protein aggregation occurred when protein 

isolations were conducted on faba bean, lentil, and chickpea proteins with the presence of NaCl 

due to increased hydrophobic interaction, believed to be the driving force to protein aggregation. 

Glutelin 2 exhibited greater protein aggregation than that of glutlein 1 (Figures 6.1, 6.2, and 6.6), 

resulting in poorer adhesion performance.  

 6.4.8 Comparison of Camelina Protein and Other Protein-Based Adhesives 

Mechanical strengths of camelina, canola and soy protein-based adhesives obtained at 

optimum conditions are presented in Table 6.4. All adhesives exhibited comparable dry and soak 

adhesion performance. However, the most significant difference was observed on wet shear 

strength, and wood failure was only observed with canola protein adhesive at curing temperature 

of 190°C. Optimum wet shear strength was observed at 190 °C for all adhesives excepting 

sorghum protein (at 150 °C). Optimum adhesion performance of protein-based adhesive evolves 

in protein structure unfolding, melting, functional groups crossing linking among protein 

adhesive or between adhesive and wood surface, and re-crystallization processes at optimum 

curing conditions such as curing temperature, pressure, and pressing time. Those processes 

typically occurred at temperature for protein complete denaturation, varied with different protein 

sources, and could be roughly predicted by thermal property studies such as DSC (Li et al 2011a; 

Wang et al 2007). The temperature for protein complete denaturation was around 190 °C for 

camelina, canola, and soy protein, and 125 °C for sorghum protein (Li et al 2011a; Wang et al 
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2007). These results may explain why optimum adhesion performance was observed at lower 

temperature in sorghum protein than canola, camelina and soy proteins.  

Even though camelina globulins showed better adhesion performance than glutelins, 

globulins only accounted for 15% (db) of the total camelina protein. Glutelins fraction accounts 

for 65% (db)   in total camelina protein, but had a weak water resistance (Table 6.4). Therefore, 

further work may focus on enhancing the water resistance of camelina glutelins by grafting 

specific hydrophobic groups, inducing the crosslinking agent, or using denaturants to disrupt the 

highly aggregated protein structure, and exploring the potential application of glutelin as bio-

based wood adhesives. 
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Table 6.3 Adhesion properties of camelina protein adhesives.  

  Wet Strength (Mpa)   Soak Strength (Mpa)   Dry Strength (Mpa) 

Sample ID 150 ℃ 170 ℃ 190 ℃   150 ℃ 170 ℃ 190 ℃   150 ℃ 170 ℃ 190 ℃ 

globulin 0 
0.51±0.03 

0% WCF
1
 

0.58±0.07 

0% WCF 

1.27±0.11 

0% WCF 
 

3.21±0.16 

0% WCF 

3.51±0.23 

0% WCF 

4.24±0.13 

0% WCF 
 

3.57±0.55 

0% WCF 

3.78±0.41 

0% WCF 

4.43±0.37 

0% WCF 

globulin 1 
1.31±0.12 

0% WCF 

2.10±0.17 

0% WCF 

3.23±0.14 

0% WCF 

(fiber out) 

 
4.32±0.07 

30 % WCF 

5.02±0.19 

100 % WCF 

4.96±0.56 

100 % WCF 
 

4.79±0.38 

100 % WCF 

5.28±0.21 

100 % WCF 

5.23±0.12 

100 % WCF 

severe 

globulin 2 
1.26±0.10 

0% WCF 

1.99±0.41 

0% WCF 

3.32±0.15 

0% WCF 

(fiber out) 

 
4.96±0.69 

60 % WCF 

5.01±0.09 

100 % WCF 

5.07±0.30 

100 % WCF 
 

5.23±0.29 

20 % WCF 

5.40±0.32 

100 % WCF 

5.45±0.41 

100 % WCF 

severe 

glutelin 0 
0.47±0.08 

0% WCF 

0.64±0.05 

0% WCF 

1.30±0.03 

0% WCF 
 

4.55±0.35 

50 % WCF 

4.68±0.25 

60 % WCF 

4.94±0.53 

100 % WCF 
 

4.85±0.56 

100 % WCF 

5.10±0.11 

100 % WCF 

5.01±0.50 

100 % WCF 

glutelin 1 
0.35±0.02 

0% WCF 

0.72±0.02 

0% WCF 

2.10±0.26 

0% WCF 
 

4.68±0.27 

40 % WCF 

5.06±0.11 

100 % WCF 

5.41±0.19 

100 % WCF 
 

4.83±0.63 

100 % WCF 

5.11±0.28 

100 % WCF 

5.88±0.68 

100 % WCF 

severe 

glutelin 2 
0.50±0.10 

0% WCF 

0.67±0.13 

0% WCF 

2.15±0.24 

0% WCF  
 

3.13±0.32 

0 % WCF 

4.39±0.29 

0 % WCF 

4.34±0.07 

0 % WCF 
 

3.45±0.15 

0 % WCF 

3.64±0.25 

0 % WCF 

4.51±0.36 

0 % WCF 
1
WCF: Wood cohesive failure 
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Table 6.4 Comparison of camelina protein and other protein-based adhesives 

Curing condition 
Camelina proteins (MPa) 

Canola protein
2
 

(MPa) 

Sorghum 

protein
3
 (MPa) 

Soy 

protein
3
 

(MPa) Globulin-1 Glutelin-1 

Wet strength 
     

130 ºC 
   

2.36+ 0.22(0) 1.61(0) 

150 ºC 1.31+ 0.12(0
1
) 0.35+ 0.02(0) 1.95+1.07(0) 2.45+ 0.10(0) 1.63(0) 

170 ºC 2.10+ 0.17(0) 0.72+ 0.02(0) 2.23±0.45(0) 1.13+ 0.04(0) 1.98(0) 

190 ºC 3.23+ 0.14(0) 2.10+ 0.26(0) 3.97+0.53(100) 
 

2.68
4
 

Dry strength 
     

130 ºC 
   

5.00+ 0.14(100) 4.55(100) 

150 ºC 4.79+ 0.38(100) 4.83+ 0.63(100) 4.63+ 0.57(100) 5.23+ 0.08(100) 5.29(100) 

170 ºC 5.28+ 0.21(100) 5.11+ 0.28(100) 5.15+ 0.33(100) 4.36+ 0.12(100) 4.88(100) 

190 ºC 5.23+ 0.12(100) 5.88+ 0.68(100) 5.44+ 0.32(100) 
 

5.80
4
 

Soaked strength 
     

130 ºC 
   

4.90+ 0.20(100) 4.17(100) 

150 ºC 4.32+ 0.07(100) 4.68+ 0.27(100) 4.76+ 0.36(100) 4.89+ 0.27(100) 4.35(100) 

170 ºC 5.12+ 0.19(100) 5.06+ 0.11(100) 5.45+ 0.23(100) 4.22+ 0.24(100) 4.42(100) 

190 ºC 4.96+ 0.56(100) 5.41+ 0.19(100) 5.24+ 0.21(100) 
 

5.73
4
 

1
 Wood cohesive failure (%); 

 
2 

Li N, 2011(a); 

 
3 

Li N, 2011(b); 

 
4 
Wang Y, 2007
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 6.5 Conclusions 

Physicochemical properties and adhesion performance of camelina protein fractions, 

globulins and glutelins, isolated from camelina meal were characterized. Protein isolation 

sequence 1 (S1) was more effective than that of S0 and S2 in terms of both protein yield and 

purity. Glutelin (65% db) was the major fraction in total camelina protein, followed by globulin 

(15%). Glutelin had compacter protein structure and higher aggregation than globulin, which 

may contribute to lower adhesion strength to glutelin.  

In general, camelina displayed comparable water resistance at optimum curing 

temperature with sorghum protein or soy protein, but was inferior to canola protein. Future work 

may involve grafting specific hydrophobic groups, inducing the crosslinking agent, or using 

denaturants to disrupt the highly aggregated glutelin protein structure in order to improve wet 

adhesion strength for bio-based wood adhesives application.  



 

140 

 

Chapter 7 -   Conclusion and future work 

 7.1 Conclusion 

Sorghum protein extracted from sorghum DDGS and sorghum flour with different 

methods affected adhesion performances. Results showed that PI had the best adhesion 

performance, followed by PF and PII, especially for wet strength. Wet strength of PI at 12% 

protein concentration assembled at 150°C was 3.15 MPa, which is significantly higher than PII 

(2.17 MPa0 and PF (2.59 MPa). Low protein purity caused by non-protein materials of PF may 

be the primary reason for lower adhesion strength as compared to PI. In addition, PI may have 

more hydrophobic amino acids aligned at the interface than PII, which could explain the better 

water resistance of PI. Optimum sorghum protein concentration and pressing temperature for 

maximum adhesion strength is 12% and 150 °C. Compared with soy protein-based adhesives, PI 

had advantages such as significantly higher water resistance and lower energy input. These 

results indicate that sorghum protein displays huge potential as an alternative to petroleum-based 

adhesives.   

Canola protein was extracted from defatted meal slurry modified with varying NaHSO3 

concentrations and precipitated by using alkali solubilization-acid precipitation method. Canola 

protein recovery increased as concentration of NaHSO3 increased, but canola protein purities 

decreased. Even though canola protein had a low content of hydrophobic amino acids, its water 

resistance was excellent when used as a wood adhesive. NaHSO3 had slight weakening effects 

on adhesion performance of canola protein, resulting from counterbalanced effects on adhesion 

performance: positive effects of good flow-ability and negative effects of induced extra charges 

(RS-SO3
–
) in NaHSO3-modified samples. Canola protein modified with 3g/L NaHSO3 had wet 

shear strength comparable to the control, but had significantly improved flow-ability and 

handling properties. 

Canola protein-based adhesives were developed and showed great potential as bio-based 

adhesives. Dry and soak wood specimens had 100% wood failure. Wet specimens showed partial 

wood failure only at high curing temperature of 170 and 190 °C. Modifier NaHSO3 did not 

improve adhesive properties of canola protein, but it greatly improved flow-ability and handling 

properties. NaHSO3 functionalized canola protein adhesive as the reducing agent, and the 
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decrease of molecular weight, thermal transition temperature, and apparent viscosity of canola 

protein directly proved its reducing effect.  

Physicochemical properties of camelina protein fractions, including solubility and 

precipitation abilities, amino acid profiles, molecular weight distributions, secondary structures, 

morphological properties, and thermal properties, varied in different protein fractions. The MS-

pH of albumin, globulin, and glutelin were found at pH 3.0, 3.0, and 4.5-5.0, respectively. S0 

extracted the highest amounts of protein isolates but with the lowest protein purities due to the 

gum.  S1 was more effective than S0 and S2 in terms of protein recovery and purities. Essential 

amino acids accounted for approximately 40% of the total amino acids, and essential amino acid 

profiles met or exceeded WHO standards for children over one year old and adults. Camelina 

proteins had 26-28% hydrophobic amino acids, which is lower than canola, soy, and sorghum 

proteins. Glutelins exhibited higher α-helix and β-sheet ratios (1.03-1.05) than globulin fractions 

(0.91-1.00) and albumin (0.84).  

Physicochemical properties and adhesion performance of camelina protein fractions, 

globulins and glutelins, isolated from camelina meal were characterized. Protein isolation 

sequence 1 (S1) was more effective than that of S0 and S2 in terms of both protein yield and 

purity. Glutelin (65% db) was the major fraction in total camelina protein, followed by globulin 

(15%). Glutelin had compacter protein structure and higher aggregation than globulin, which 

may contribute to lower adhesion strength compared to glutelin.  

 7.2 Future work 

Some challenges for the use of sorghum protein isolates as adhesives are notable. First, 

finding a low-cost solvent to dissolve isolated sorghum kafirins for use as an adhesive was 

difficult; in contrast, uniform suspension of soy proteins can be obtained by mixing soy protein 

with water. In addition, lower efficiency of sorghum protein recovery and complicated extraction 

procedures compared with soy protein are a concern.  Further research is needed to improve the 

extraction of sorghum proteins. 

For canola protein, low protein extraction rate is a challenge. In this research, the 

highest extraction rate is only 30%. In addition, future work may focus on lowering canola 

protein adhesive’s curing temperature to increase the final product quality.  
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In general, camelina protein displayed comparable water resistance at optimum curing 

temperature with sorghum protein or soy protein, but was inferior to canola protein. Future work 

may involve grafting specific hydrophobic groups, inducing the crosslinking agent, or using 

denaturants to disrupt the highly aggregated glutelin protein structure, to improve wet adhesion 

strength. Studying the camelina protein isolation process and physicochemical properties is vital 

to understanding its unique functionality and further exploring its applications in food and other 

industrial applications such as plastics and films. 
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