
  

 

 

 

PHOTOANODE AND COUNTER ELECTRODE MODIFICATION FOR MORE EFFICIENT 

DYE SENSITIZED SOLAR CELLS 

 

 

by 

 

 

YICHEN ZHENG 

 

 

 

B.S., Zhejiang Gongshang University, 2011 

 

 

 

A THESIS 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

MASTER OF SCIENCE 

 

 

 

Department of Chemistry 

College of Arts and Sciences 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2014 

 

Approved by: 

 

Major Professor 

Jun Li 

  



  

Copyright 

YICHEN ZHENG 

2014 

 

  



  

Abstract 

With the increasing consumption of energy and the depletion of fossil fuels, finding an 

alternative energy source is critical. Solar energy is one of the most promising energy sources 

and solar cells are the devices that convert solar radiation into electricity. Currently, the most 

widely used solar cell is based on p-n junction formed with crystalline silicon materials. While 

showing high efficiency, the high fabrication cost limits its broad applications. Dye sensitized 

solar cell (DSSC) is a promising low-cost alternative to the Si solar cell, but its efficiency is 

much lower. Improvements in materials and interfaces are needed to increase the DSSC 

efficiency while maintain the low cost. In this thesis, three projects were investigated to optimize 

the DSSC efficiency and reduce the cost. The first project is to optimize the TiO2 barrier layers 

on Fluorine-doped Tin Dioxide (FTO) surface. Two preparation methods, i.e. TiCl4 solution 

treatment and thermal oxidation of sputtered Ti metal films, were employed and systematically 

studied in order to minimize electron-hole recombination and electron backflow during 

photovoltaic processes of DSSCs. TiCl4 solution treatment method was found to create a porous 

TiO2 barrier layer. Ti sputtering method created a very compact TiO2 blocking layer. Two 

methods showed different characteristics and may be used for different DSSC studies. The 

second project is to reduce the DSSC cost while maintaining the efficiency by replacing the 

expensive Pt counter electrode with a novel vertically aligned carbon nanofiber (VACNF) 

electrode. A large specific electrode surface area (~125 cm
2
 over 1 cm

2
 geometric area) was 

obtained by using VACNFs. The relatively high surface area, good electric conductivity and the 

large numbers of active graphitic edges existed in cone-like microstructure of VACNFs were 

employed to improve redox reaction rate of I3
-
/I

-
 mediators in the electrolyte. Faster electron 

transfer and good catalytic activities were obtained with such counter electrodes. The third 

project is to develop a metal organic chemical vapor deposition (MOCVD) method to coat TiO2 

shells on VACNF arrays as potential photoanodes in the DSSC system in order to improve the 

electron transfer. Fabrication processes were demonstrated and preliminary materials were 

characterized with scanning electron microscopy and transmission electron microscopy. 

MOCVD at 300 mTorr vapor pressure at 550° C for 120 min was found to be the optimal 

condition. 
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Chapter 1 - Introduction 

 Motivation 

For 21st century, environmental and energy issue has become one of the critical problems 

that need to be solved. During the past decades, the economic crises and the short of fossil fuels 

have driven the development to utilize new energy sources that are clean and powerful. The most 

promising and commendable source is the solar energy from the sun, which is very powerful and 

can be used permanently.    

 Solar Cells 

In order to harvest the solar energy from sun, a photovoltaic device that converts solar 

energy into electrical energy is needed. This photovoltaic device, also named as solar cell, can 

capture the photons in the sun light and convert them into electron flux in the system. Extensive 

studies have been done to investigate the solar cell systems, which have evolved in three 

generations.  

           

Figure 1.1 Images of three generations of solar cells. (left) the first generation solar cell, 

(middle) the second generation solar cell, (right) the third generation solar cell.  

The first-generation solar cell is the most common type of solar cell, which mainly 

consists of the silicon-based solar cells. They have a high efficiency, but also a high cost. In 

order to further increase the cell efficiency, instead of single junction, multi-junction structure 

solar cells have been studied and utilized. Figure 1.2 shows that the cells using multi-junction 

structure can reach up to 44% efficiency with a three-junction structure. However, the price is 

also doubled or tripled to build a multi-junction solar cell. Nowadays, the first generation solar 
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cells are mostly used for the military and outer space activities because of the high expense. The 

other problem of silicon-based solar is the Shockley-Queisser theoretical limit, which limits the 

maximum efficiency to be 32%, due to their single p-n junction structure. Even though multi-

junction solar cells can achieve higher efficiency than 32%, their cost is much too expensive as 

mentioned.   

Figure 1.2 Best efficiencies obtained for research solar cells since 1975 (Copyright © 2014 

NREL) 

In order to reduce the cost of the solar cells so that they can be more broadly used, the 

second generation of solar cells was invented by using thin film technology. Cost is lowered by 

reducing the thickness of the cell from couple hundreds of micrometers down to just several 

micrometers, which reduces the use of materials. For example, single crystalline Si based solar 

cell needs hundreds of micrometers to completely absorb the incident light, and it is very 

expensive to build such thick single crystalline Si layer. The amorphous Si based solar cell, as 

one of the second generation solar cells, only needs several micrometers to completely absorb 

the light. However, reducing the thickness leads lower energy conversion efficiency, which is 

one of the problems of the second generation solar cells. But it is very attractive due to its low 

cost. The solar cells that we commonly use today are mostly the second generation. Their 
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average efficiency is around 10%, such as CIGS (Copper Indium Gallium Selenide) thin film 

solar cell, CdTe (Cadmium Telluride) thin film solar cell, amorphous Si thin film solar cell, etc. , 

which are listed in Figure 1.2. They work well for small power applications but do not meet the 

requirements as large-scale power sources.   

The third generation consists of a family of emerging solar cells, which have total 

different structures and working principles from the 1
st
 and 2

nd
 generations. The examples 

include organic cells
1-5

, polymer cells
6, 7

, organic tandem cells
8-11

, dye sensitized solar cells 

(DSSCs)
12-18

, etc.
1, 12, 13, 19-21

 as shown in Figure 1.2.  

Figure 1.2 shows the best efficiencies from research solar cells till 2014. The highest 

efficiency is 44.4%, which was obtained using a three-junction tandem solar cell, which belongs 

to the first generation. The single junction solar cell with single crystalline Si has an efficiency of 

27.6%, which is getting closer to the Shockley-Queisser theoretical limit. The mostly widely 

used second generation solar cell is based on amorphous Si, which has an efficiency of 13.4%. 

The emerging solar cells, such as Dye-sensitized solar cells, have a lower efficiency than the first 

and second generation solar cells, but it is very promising, and it attracts many attentions.   
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Figure 1.3 The standard solar spectrum. (from an online source: 

http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html). The 1 sun 

AM1.5G standard is represented by the red curve 

Figure 1.3 shows the standard solar spectrum, which includes three curves. The black solid 

curve stands for the extraterrestrial radiation, which means the solar spectrum of the solar 

radiation at the top of atmosphere at a mean Earth-Sun distance. The red dotted curve stands for 

the solar spectral radiation from solar disk plus sky diffuse and diffuse reflected from ground 

with a solar zenith angle of 48.19 degree. The blue dash curve stands for the sum direct normal 

irradiance and spectral irradiance. Direct normal irradiance means nearly parallel (0.5 degree 

divergent cone) radiation on surface with surface normal pointing to the sun, excluding scattered 

sky and reflected ground radiation. The Spectral irradiance mean, the irradiance within 5 degree 

diameter field of view centered on the 0.5 degree diameter solar disk, but excluding the radiation 

from the disk. The solar spectrum in red dotted curve is used as the AM 1.5G standard solar 

spectrum in most solar cell studies, and it is also used as the standard solar spectrum in my 

studies.  

 Dye-Sensitized Solar Cells (DSSCs)  

Among the 3
rd

 generation solar cells, Dye-Sensitized Solar Cell is one of the most 

promising solar energy harvesting devices, and a lot works have been done to investigate the 

DSSCs since it was invented by Michael Gratzel 20 years ago. Now the Gratzel cell (DSSCs) 

can reach an efficiency of about 12%.
12, 13

  

 Structure of DSSCs 

The structure of a DSSC differs greatly from that of a 2
nd

 generation silicon-based cell. As 

shown in Scheme 1, a basic DSSC consists of 2 different electrodes, one is photoanode, and the 

other one is a counter electrode. For the photoanode, transparent conducing oxide (TCO) coated 

glass is normally used as a substrate. A layer of TiO2 semiconductor nanoparticle network is 

deposited on the top of the TCO coated substrate. Dye molecules (for example, N-719 (Di-

tetrabutylammonium cis-bis(isothiocyanato)bis(2,2’-bipyridyl-4,4’-dicarboxylato)ruthenium (II)), 

which are the sensitizers that absorb light, are adsorbed on the TiO2 nanoparticle surface. For the 

http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html
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counter electrode, a Pt coated TCO substrate is usually used. Between photo anode and counter 

electrode, an electrolyte containing I3
-
/I

-
 redox couple is filled and serves as mediators for hole 

transport and regeneration of the excited dye molecules.  

Scheme 1. Components and structure of a traditional TiO2 nanoparticle based dye 

sensitized solar cell.  

 Principles of DSSCs 

Scheme 2. Energy level diagram and electron transfer principles in the traditional TiO2 

nanoparticle based DSSC system.  

Scheme 2 shows the electron pathway in the DSSC system. When light irradiates on the 

photo anode, an electron from the dye is excited from ground state to its excited state. Because of 
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the downhill effect, the excited electron will be injected into TiO2 layer, whose conduction band 

has a lower energy level than the LUMO energy level of the dye molecule. Then the electron will 

travel from TiO2 to TCO substrate based on the same downhill effect. The electron then flows 

through the external circuit, generates electricity, and flows to Pt coated counter electrode. At the 

counter electrode, the electron reduces I3
-
 into I

-
. I

-
 then will arrive at the oxidized dye molecules 

on the photoanode, and the oxidized dye will be reduced by I
-
, while I

-
 will at the same time get 

oxidized into I3
-
. This completes a full circle without any net consumption so that the dye 

molecules are regenerated and the system can continuously generate electricity as long as there is 

light irradiation.  

 Improvements to DSSCs  

A lot of studies have been done to improve the performance of DSSCs and at the 

meantime to reduce the cost. Most studies fall into the following three categories: first, 

modification to photoanodes and counter electrodes. Photoanodes can be modified by using 

different TiO2 structures 
22-29

 or different materials
30-32

 to improve the electron transfer or light 

absorption. Counter electrodes can be modified by replacing Pt with other materials 
33-42

 to 

improve the electron transfer and catalytic activity. Second, the modifications to sensitizers
43-49

 

to improve the light absorption wavelength range. Third, improve the electrolyte for better hole 

transport and thermal stability.  

In this thesis, on the photoanode part, a TiO2 thin layer was studied, which was used as a 

barrier layer to prevent electrons from flowing back to electrolyte or recombining with holes left 

in dye molecules. By minimizing the electron leakage, an optimized photoanode for DSSC study 

can be obtained. On the counter electrode part, traditional Pt electrode was replaced by a new 

Vertically-aligned carbon nanofiber (VACNF) electrode, which has a lower cost and a 

comparable performance. The VACNF counter electrode has a much larger specific surface area 

and a larger amount of graphitic edges due to VACNF cone-like structure, which is beneficial for 

higher catalytic activities and fast reaction rates.  At last, VACNF fabrication on FTO-coated 

quartz, Cu and Si substrates was demonstrated and a metal organic chemical vapor deposition 

(MOCVD) process was established to coat a TiO2 layer on VACNFs grown on the three different 

substrates.  
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Chapter 2 - Investigation of TiO2 barrier Layer in DSSCs 

 Abstract 

A TiO2 barrier layer is critical in enhancing the performance of dye-sensitized solar cells 

(DSSCs). Two methods to prepare TiO2 barrier layers on Fluorine-doped Tin Dioxide (FTO) 

surface were systematically studied in order to minimize electron-hole recombination and 

electron backflow during photovoltaic processes of DSSCs. The film structure and materials 

properties were correlated with the photovoltaic characteristics and electrochemical properties. 

In the first approach, a porous TiO2 layer was deposited by wet chemical treatment of the sample 

with TiCl4 solutions for time periods varying from 0 to 60 minutes. The N719 dye molecules 

were found to be able to insert into the porous barrier layers. The 20-min treatment formed a 

non-uniform but intact TiO2 layer of ~100 to 300 nm in thickness, which gave the highest open-

circuit voltage VOC, short-circuit photocurrent density JSC, and energy conversion efficiency. But 

thicker TiO2 barrier layers caused decrease in JSC, possibly limited by poor electron transport. In 

the second approach, a compact TiO2 barrier layer was created by sputter-coating 0 to 15 nm Ti 

on FTO/glass and then oxidizing it with thermal treatment at 500°C in the air for 30 min. The 

dye molecules were found to only attach at the outer surface of the barrier layer with little 

change versus the thickness. These two kinds of barrier layer showed different characteristics 

and may be used for different DSSC studies. 

 Introduction 

Dye Sensitized Solar Cells
50

 (DSSCs) have attracted great attention in recent decades due to 

the low cost, high sustainability and fairly high power conversion efficiency (> 10%). A high-

efficient DSSC requires assembling different functional materials and optimizing their interfaces 

for achieving the best performance in all processes including photon capture, charge separation, 

electron/hole transport, and dye regeneration. One of the critical interfaces lies between the 

transparent conductive oxide (TCO) electrode and the mesoporous TiO2 nanoparticle film. 

Studies indicated that depositing a proper TiO2 barrier layer of 10s to 100s nm between the TCO 

and the mesoporous TiO2 nanoparticle film can significantly improve the solar cell efficiency.
51-

59
  This barrier layer helps to improve the adhesion of TiO2 nanoparticles on the TCO surface 

and blocks TCO electrode from direct contact with electrolyte. It is essential in minimizing 



8 

 

electron backflow from TCO electrode into the electrolyte and suppressing electron-hole 

recombination at the TCO surface. The role of the barrier layer was found increasingly important 

at low light intensities,
58, 59

 and in solid-state DSSCs involving Ohmic hole-transport media
60-62

.  

So far the explored methods to build TiO2 barrier layer include so-gel processes
51, 56, 63

, 

TiCl4 solution treatment
54, 57, 58

, vacuum sputtering deposition of TiO2
52

, and vacuum sputtering 

deposition of Ti metal followed by conversion into TiO2 by acid treatment
53

 or thermal 

oxidation
55

. The effects of the barrier layer were evaluated by comparing the performance of 

traditional DSSCs of microns thick TiO2 nanoparticle film with and without the barrier layer. In 

general, a compact TiO2 layer was found to be effective in lowering the electron loss at the 

TCO/electrolyte interface, increasing the shunt resistance, and therefore increasing the fill factor 

and overall cell efficiency.
58, 59

 However, the function of the barrier layer was mixed with other 

components of the whole DSSCs and was not easily extracted from the full cell characterization. 

Here we report a study of DSSCs fabricated with the TiO2 barrier layer as the sole semiconductor 

layer in the photoanode. The structure, photovoltaic and electrochemical properties of the TiO2 

barrier layers prepared by two methods, i.e. TiCl4 solution treatment and thermal oxidation 

conversion of sputter-coated Ti metal films, were systematically studied at varied thickness with 

and without dye sensitization. Since it avoided the overwhelming contribution from the thick 

mesoporous TiO2 film, the measured photoelectron transport, back reactions, and charge 

recombination can be directly correlated with the materials properties of the barrier layer. This 

study provides a method for optimizing the TCO/TiO2 interface in DSSC fabrication and serve as 

a thin-film DSSC platform for investigating photovoltaic properties macromolecular sensitizers 

(such as photosynthesis complexes) which are not easily to access the interior surface of 

traditional mesoporous TiO2 nanoparticle films.
64

 

 Experimental 

Preparation of Photoanode of DSSC. Commercial fluorine-doped tin oxide (FTO) glass 

(Pilkington Glass, Lathrop, CA) was used as the photoanode substrate, which was first cleaned 

by sonication in isopropanol, ethanol and acetone each for 15 min. In the second step, some FTO 

anodes were treated with 40 mM TiCl4 solution, which is made by adding 99.9% TiCl4 solution 

into deionized water, at 70℃ in oil bath with varied time from 5 to 60 min. while others were 
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sputter-coated with a uniform Ti film at the thickness of 5, 10, and 15 nm, respectively, using a 

high-resolution ion beam coater (Model No. 681, Gatan Inc., Pleasanton, CA). Third, after the 

TiCl4 treatment or Ti sputtering, the photoanodes were annealed in tube furnace open to the air at 

500℃ for 30 min. This improved the crystallinity of the solution-deposited TiO2 and converted 

the Ti metal into TiO2 by thermal oxidation
65

, respectively. Finally, the annealed anodes were 

immersed in a 0.5 mM cis-diisothiocyanato-bis(2,2ʼ-bipyridyl-4,4ʼ-dicarboxylato) 

ruthenium(II) bis(tetrabutylammonium) (N-719 dye, shown in Figure A6) in dried ethanol 

solution (Solaronix, Aubonne, Switzerland) for 12 h for dye adsorption on the TiO2 surface. The 

samples were rinsed with dried ethanol to remove physisorbed dyes. 

Preparation of Cathode of DSSC. Two 1 mm diameter holes were drilled at the diagonal 

corners of the 1 cm
2
 optical window of the FTO-coated glass, and then the FTO/glass was 

sputtered with 25 nm thick Pt using the above ion beam coater. The Pt sputtered cathode was 

annealed at 450℃ in the air for activation.  

Assembly and Characterization of DSSCs. The anode and cathode were bonded through a 

60 m thick hot melt spacer (Solaronix, Aubonne, Switzerland) following our previous 

procedure.
66

 Then the Iodolyte AN-50 electrolyte (Solaronix, Aubonne, Switzerland) consisting 

of 50 mM triiodide, 0.1 M LiI, and 0.5 M 1,2-dimethyl-3-propylimidazolium iodide in 

acetonitrile was filled in the cell by a syringe. The assembled cell with an active area of 1 cm × 1 

cm was characterized under one sun illumination with a 300 W Xe lamp solar simulator and an 

AM 1.5G filter (Newport, Irvine, CA) to obtain the photocurrent-voltage (I-V) curve, and the 

dynamic responses of short-circuit current (JSC) and open-circuit voltage (VOC). Incident Photon-

to-Current Efficiency (IPCE) curves were measured with a 75 W Xe lamp and a monochromator 

(74004, Oriel Instrument, Newport, Irvine, CA).  

Electrochemical and Materials Characterization. Cyclic voltammetry was carried out 

with a potentiostat (CHI 440A, CH Instruments,Austin, TX) in an acetonitrile solution 

containing 0.1 M LiClO4 using a three-electrode setup vs. a Pt counter electrode and a Ag/AgCl 

reference electrode (filled with acetonitrile solution containing 10 mM AgNO3 in 1 M LiClO4) to 

characterize the N719 dye adsorption and electrochemical activity. Scanning electron 

microscopy (SEM) was carried with a field-emission system (FEI Nano430). Raman spectra 
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were measured with a DXR Raman microscope (Thermo Electron, WI) using 50X objective, 530 

nm laser, and 5 mW laser power. 

 Results and Discussion 

Incubating the photoanode in aqueous TiCl4 solution before or after deposition of the TiO2 

nanocrystal film during DSSC fabrication has been used to form a TiO2 thin film as the 

interfacial barrier layer 
56, 58, 67

 or the protecting layer 
52, 62, 68, 69

. This method was adopted as the 

first approach for the study of interfacial barrier layers. As shown in Fig. A1, a DSSC cell with a 

~5 m thick film formed with sintered 20 nm dia. TiO2 nanoparticles (NPs) subjected to the 

TiCl4 treatment both before and after TiO2 NP film deposition shows the highest JSC, largest VOC, 

and longest electron lifetime  (as indicated by the VOC decay time constant after the light is 

switched off
56, 70

) which are consistent with literature.
56-58

 The TiO2 barrier layer is indeed 

critical in enhancing the DSSC performance. Since our focus here is on the understanding the 

properties of TiO2 barrier layer formed on the FTO surface, the following studies were carried 

out using the photoanodes with only the TiO2 barrier layer. The thick TiO2 NP film was skipped 

so that the photovoltaic information are dominated by the TCO/electrolyte interface similar to 

the reports that more pronounced interfacial effects were observed at low light intensities.
58, 59

 

The SEM images in Figures 2.1a-d show the change of the top-surface morphology of the 

FTO/glass photoanodes as the TiCl4 treatment time was increased. The starting FTO/glass 

sample (Figure 2.1a) showed typical crystalline feature of ~200 to 400 nm in size. Such 

crystalline surface became fluffy as thicker TiO2 layer was deposited by increasing TiCl4 

treatment time. Only the samples with 20, 40 and 60 min. treatment were shown because the 

change in the samples below 20 min. TiCl4 treatment was too small to be observed. To get 

around with the large surface roughness of the FTO electrode and estimate the deposited TiO2 

thickness, a polished Si substrate was treated with the TiCl4 for 20 min. following the similar 

procedure. Figure 2.1e shows the 45°perspective view SEM image and Figure 2.1f shows the 

cross-sectional view. The TiO2 barrier layer is not uniform, with the thickness varying from ~100 

nm in the thinnest region to ~300 nm at nucleation sites, but it clearly covers the whole surface. 

The overall thickness is comparable to the optimal thickness obtained with spray pyrolysis 

method on a solid-state DSSC by B. Peng et al.
62
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 Figure 2.1. SEM images at 45°perspective view of (a) bare FTO/glass surface and those 

after (b) 20 min., (c) 40 min., and (d) 60 min. of TiCl4 treatment. (e) The 45°perspective 

view and (f) cross-sectional view SEM images of a 20 min. treated sample on a polished Si 

surface. 

The bare FTO/glass photoanodes and those after 5 to 60 minutes of TiCl4 treatment were 

assembled into DSSCs following the standard procedure.
50, 66, 71

 The characteristics of these 

DSSCs are shown in Figure 2.2. To understand the origin of the photocurrent, two sets of 

identical samples were compared. One set was directly used without applying any dye (Figures 

2.2a-c) and another set was incubated in a N719 solution to adsorb a monolayer of dye (Figure 

2.2d-f). Since anatase TiO2 is a semiconductor material with a bandgap of ~3.2 V, it strongly 

absorbs UV light with wavelength below ~387 nm and generates a photocurrent. As a result, 

even the bare TiO2/FTO/glass electrodes without dye adsorption showed clear photovoltaic 

properties. As the TiCl4 treatment time was increased, both the JSC and VOC increased 

monotonically until reaching the maximum values with 20 min. treatment. However, the 

treatments longer than 20 min. tended to reduce JSC while maintaining the maximum value of 
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VOC, indicating that the barrier layer still functioned well in blocking electron backflow but 

failed to collect photocurrent effectively. 

Figure 2.2.  I-V curves (a and d), IPCE curves (b and e), and JSC responses during 

switching light on/off (c and f) of the DSSCs made of bare FTO photoanodes and those 

after TiCl4 treatment for 5 to 60 minutes. Panels a-c were collected with the photoanodes 

without N719 dye adsorption while panels d-f were measured with samples after N719 dye 

adsorption.  

The photocurrent generation by the TiO2 layer was further illustrated in the IPCE curves in 

Figure 2.2b. Clearly, the photocurrent was completely generated by the light below ~400 nm in 

wavelength. The IPCE value quickly increased when the wavelength was reduced below 387 nm 
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(at which photon energy is above the bandgap of anatase TiO2 Eg = ~3.2 eV) but then sharply 

dropped when the wavelength was further reduced below ~320 nm (3.87 eV), forming a high 

IPCE band around 320-360 nm. The IPCE cutoff below ~320 nm was due to the strong 

absorption by the glass substrate and FTO coating (with Eg = ~3.6 eV for Tin oxide), which 

completely blocked the light from reaching the TiO2 film. Hence the IPCE value in 320 to 360 

nm range represents the photovoltaic properties of the TiO2 overlayer. Figure 2.2c further shows 

that the dynamic response of JSC while the photo shutter was turned on and off. When the light 

was turned on, the JSC immediately jump to the maximum and stayed nearly constant afterward. 

When light was switched off, the current immediately drop to zero without any delay. The TiO2 

layer deposited by TiCl4 treatment did not show any effects in slowing down the electron transfer 

rate. The JSC magnitude correlates well with the trend of I-V curves vs. different TiCl4 treatment 

time in Figure 2.2a, which is maximum with 20 min. TiCl4 treatment. The photocurrent was 

found to decrease as the TiCl4 treatment time was increased to 40 and 60 min., presumably due 

to electron traps by impurities and defects in thicker TiO2 barrier layer as reported by B. Peng et 

al.
62

  

After incubating the TiO2/FTO/glass in N719 solution, a monolayer of dye presumably 

formed on the TiO2 surface similar to the general process in DSSC fabrication.
71

 The value of JSC 

increased by ~10 to 15 times as shown in Figures 2.2d and 2.2f. Taking 20 min. treated samples 

as an example, the JSC is about 11 A/cm
2
 without dye (Figure 2.2a), but is ramped up to about 

170 A/cm
2 

after dye adsorption (Figure 2.2d). Clearly, the dye molecule significantly enhanced 

the photocurrent generation. Similar to the bare TiO2/FTO anode, both JSC and VOC initially 

increased vs. the TiCl4 treatment time and reached the maximum with 20 min. treatment. With 

longer TiCl4 treatment time, the VOC remained the same while the JSC value decreased. It is clear 

that 20 min. treatment is optimum in forming an effective TiO2 barrier layer to minimize the 

electron backflow to the electrolyte while suppressing its recombination with holes (oxidized dye 

or triiodide). However, thicker TiO2 coating apparently affected electron transfer and adversely 

decreased the electron collection efficiency.  

The IPCE curves in Figure 2.2e show a broad peak around 525 nm in wavelength in 

addition to the TiO2 peaks around 320-360 nm, which is attributed to the photon capture by 

N719 dye. The magnitude of the IPCE peak corresponding to the dye molecules is in concert 
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with that of the TiO2 barrier layer as the TiCl4 treatment time is varied, both reaching the 

maximum with 20 to 40 min. treatment. Even though the maximum IPCE value for the dye is 

slightly lower than that of the TiO2 layer, it covers a broader wavelength range (from ~400 to 

700 nm) in which the standard AM1.5G solar spectrum contains much higher number of photons 

Np (see Figure A2). The photocurrent JSC can be estimated by integrating (IPCE x Np) over the 

wavelength range of 400 to 800 nm, which was indeed raised by about 10 times after N719 dye 

adsorption (see detailed discussions under Figure A2). The above data demonstrates that the 

photon absorption by TiO2 layer makes only a small contribution to the overall photocurrent of 

the DSSC cell, but it plays an important role as a barrier layer to prevent electron backflow into 

the electrolyte so that a high VOC can be maintained. Dye molecule makes the major contribution 

to the cell performance and determines the magnitude of JSC, VOC and IPCE. 

Figure 2.3. (a) Cyclic voltammogram of a 20 min TiCl4 treated sample with and without 

dye adsorption. The reference electrode was Ag/AgCl in an acetonitrile filling solution 
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containing 10 mM AgNO3 in 1 M LiClO4. The measurements were taken at 50 mV/s scan 

rate. (b) Extracted oxidation peaks of adsorbed N719 dye on FTO/glass with different TiCl4 

treatment time (5 to 60 min.), derived from the cyclic voltammograms by subtracting the 

linear background.  

To further characterize the surface properties of the TiO2 barrier layer and its effects on dye 

molecules adsorption, cyclic voltammetry (CV) measurements were carried out with a series of 

FTO/glass samples treated with TiCl4 from 5 to 60 min. As shown in Figure 2.3a, a 20 min 

treated sample shows a tilt CV curve with a high solvent oxidation baseline above ~0.60 V vs. 

Ag/AgCl (10 mM AgNO3). After adsorption of a monolayer of N719 dye, an oxidation peak is 

found at ~0.65 V corresponding to oxidation of the N719 dye from Ru(II) to Ru(III). However, it 

does not show the corresponding reduction wave, indicating that 20 min. treated TiO2 layer 

serves well as a barrier to block the electron backflow. The Ru(II) oxidation peak can be 

extracted by subtracting a linear background (thin dashed line in Figure 2.3a) and presented in 

Figure 2.3b. By dividing the integrated area ACV under the subtracted CV curves with the scan 

rate , the total charge Q and subsequently the number of moles of Ru dye molecules NRu 

adsorbed at the surface can be derived: 

𝑄 =
𝐴𝐶𝑉

𝜐
;   𝑁𝑅𝑢 =  𝑄/𝑒𝐹         (1) 

where e is the elementary charge. For 20 min treated sample, the calculated total charge is 4.21 

×10
-7

 C/cm
2
, and the adsorbed dye is 4.37 × 10

-12
 mol/cm

2
. While the TiCl4 treatment time was 

increased from 5 min. to 60 min., more dye molecules adsorbed onto the electrode surface. 

At the meantime, the effective TiO2 electrode surface area Aeff can be estimated from the 

separation in the baseline current of forward and backward scans, which is mostly attributed to 

the charge-discharge currents to the electrical double layer at the electrode surface. Here the 

current separation i was read at 0.20 V and Aeff is calculated by: 

𝐴𝑒𝑓𝑓 = (
Δ 𝑖

2
)/(𝐶0𝜐)               (2) 

For anatase TiO2, the specific capacitance is known to be about 90 F/cm
2
.
72

 By using 

equation (2), the effective surface area Aeff of 20 min treated sample was calculated to be about 
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22.3 cm
2
 on each 1.0 cm

2
 geometric substrate surface area. The trend of the effective TiO2 

surface area correlates very well with that of dye adsorption vs. the TiCl4 treatment time. 

Figure 2.4. Comparison of (a) VOC, (b) JSC, (c) the maximum dye IPCE (at 525 nm), (d) 

Effective surface area Aeff on a 1 cm
2
 geometric surface area and Amount of dye adsorption 

NRu vs. the TiCl4 treatment time.  

For comparison, Figure 2.4 shows both of the photovoltaic properties (JSC, VOC, and the 

maximum dye IPCE) and electrochemical properties (effective TiO2 surface area Aeff and 

amount of dye adsorption NRu). These data are quite similar to the study on barrier layer in a 

solid-state DSSC by B.Peng et al
62

. As the treatment time was raised from 0 to 20 min., Aeff 

increased linearly, leading to proportional increase of dye adsorption as shown in Figure 2.4d. 

This indicates that the TiCl4 treatment builds a porous TiO2 barrier layer in this region and the 

dye molecules can access and adsorb inside the TiO2 layer instead of only attaching on the outer 

surface. The treatments longer than 20 min., however, formed plateaus in both of effective 

surface area and dye adsorption curves, indicating the possibility of transferring the porous TiO2 

structure into a more compact film. The VOC curve showed the very similar trend. On the other 

hand, IPCE and JSC first increased with 0 min. to ~20 min. TiCl4 treatment time, and then 
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decreased when the time was further increased from ~20 min. to 60 min. It is likely that a thicker 

compact TiO2 layer may hinder the electron transfer due to the low electrical conductivity. 

Figure 2.5. (a) VOC decay curves of the DSSCs made of the photoanodes with different 

TiCl4 treatment time as light being switched off. (b) Raw data and the exponential fitting of 

the VOC decay curve of the 20 min. TiCl4 treated FTO/glass photoanode. (c) Comparison of 

the electron lifetime of different photoanodes. 
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Another piece of useful information that can be obtained regarding the barrier layer 

properties is the lifetime of photoexcited electrons, which can be derived from VOC decay curve 

after the light is switched off as shown in Figure 2.5. Light was turned on for 20 s to stabilize the 

VOC and was then turned off while the VOC was measured over time. Apparently the decay rates 

are strongly dependent on the TiO2 barrier layer as presented in Figure 2.5a. The decay curves 

can be nicely fitted with the following exponential function (Figure 2.5b): 

𝑉𝑂𝐶 =  𝐴 + 𝑉𝑂𝐶
0 𝑒−(𝑡−𝑡0)/𝜏         (3) 

The electron lifetime τe can be further derived by:  

𝜏𝑒 = (𝑘𝐵𝑇/𝑒)(𝑑𝑉𝑂𝐶/𝑑𝑡),                   (4) 

where kB is Boltzmann constant and T is the temperature.
56, 70, 73

 The derived τe is a function 

of VOC as shown in Figure 2.5c. As observed, the 5 min. treated sample had a shortest electron 

lifetime ranging from about ~0.01 s to ~5 s, while the 20 min. treated sample had a longest 

lifetime with the whole curve shifted up by nearly two orders of magnitude. More than 20 min. 

treatment caused the curves to shift down again. The trend agrees very well with the I-V, IPCE, 

and electrochemical measurements. 
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Figure 2.6. Top Panels: Optical images of a bare FTO/glass sample, this sample after ion-

sputtering with 15 nm Ti, and after further thermal annealing in the air at 500 C for 30 

min., respectively showing the conversion of opaque Ti into transparent TiO2 film. (a) I-V 

and (b) IPCE of the DSSCs fabricated with the FTO/glass covered with the sputtering-

thermal-annealing produced TiO2 barrier layer started with 5, 10, and 15 nm of Ti metal 

film.  All samples were soaked in the N719 dye solution for dye adsorption. (c) Cyclic 

voltammograms of a TiO2/FTO/glass sample started with 10 nm sputtered Ti with and 

without dye adsorption. (d) Comparison of the effective electrode surface area Aeff on a 1 

cm
2
 geometric surface area and the amount of dye adsorption NRu versus the thickness of 

sputtered Ti. 

Alternately, a compact TiO2 barrier layer can be formed by oxidation of an ion-beam 

sputtering deposited Ti metal film with thermal annealing in the air at 500 C for 30 min.
65
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Comparing to the non-uniform porous TiO2 layer formed by TiCl4 treatment, this sputtering-

thermal-annealing method can produce much more compact and smooth TiO2 barrier layers. The 

starting Ti film thickness can be precisely controlled (down to 0.1 nm) with the High-Resolution 

Ion Beam Coater. The top panels in Figure 2.6 show the conversion of an opaque Ti film into a 

transparent TiO2 film by the thermal annealing process. Both I-V curves (Figure 2.6a) and IPCE 

curves (Figure 2.6b) of the DSSCs made of N719-sensitized TiO2/FTO/glass anodes showed 

strong dependence on the sputtered Ti thicknesses (5, 10, and 15 nm). Though the 5 nm sputtered 

sample gave the largest JSC, the VOC of some DSSCs was very low, likely due to the incomplete 

TiO2 coverage or open grain boundaries at this small thickness. Thicker TiO2 barrier layer gave 

much larger and reliable VOC and decent I-V curves showing high fill factors. The 10 nm 

sputtered sample gave the best overall photovoltaic properties. Further increase of sputtered Ti to 

15 nm turned to lower both JSC and VOC. The I-V and IPCE of the DSSCs without dye adsorption 

(Figure A4) showed similar trend. The sputtering-thermal-annealing TiO2 barrier layer somehow 

affected electron transfer more than that by TiCl4 treatment. In addition, comparing to that of 

TiCl4 treated sample, the IPCE value of dye molecules at ~525 nm is much lower eventhough 

that of TiO2 (at ~350 nm) are comparable. The dye to TiO2 ratio in the sputtering-thermal-

annealing samples was generally much lower than that in TiCl4 treated samples. It is possible 

that the sputtering-thermal-annealing TiO2 barrier layer was too compact so that the dye 

molecules only adsorbed on the outer surface. This hypothesis was confirmed by the CV 

measurements shown in Figures 2.6c and 2.6d. Using the same method discussed earlier, the 

effective TiO2 surface area Aeff and the total amount of dye adsorption NRu can be derived from 

the CV curves. As shown in Figure 2.6d, both of these quantities only slightly increased as the 

thickness of the TiO2 barrier layer was raised (by increasing sputtered Ti thickness). The small 

change can be attributed to the small increase in outer surface roughness in thicker TiO2 layers. 
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Scheme 3. Schematic illustration of the differences of the TiO2 barrier layers formed by (a) 

TiCl4 treatment and (b) Ti sputtering followed by thermal annealing. 

The structural differences of the TiO2 barrier layers formed by TiCl4 treatment and 

sputtering-annealing of Ti are summarized in Scheme 1. Ideally, the conformal compact barrier 

layer by sputtering-annealing of Ti metal would simplify the structure and thus may be a better 

choice. However, the chemical and materials properties of the TiO2 film by TiCl4 treatment were 

better for DSSCs. Particularly, 20 min TiCl4 treated FTO/glass appeared to be the best TiO2 

barrier layer with ideal porosity, compactness, good electron transport, and effective backflow 

blocking effects. Longer TiCl4 treatment tended to degrade the performance. The materials 

difference is further illustrated by the Raman spectra in Figure A5, which confirmed that only the 

TiCl4 treatment produced the desired anatase TiO2 crystal structure. A sharp peak at the Raman 

shift of ~143 cm
-1

 was observed in all TiCl4 treated samples with the peak intensity increasing 

quickly with the treatment time. In contrast, only a small anatase shoulder at ~143 cm
-1

 as well 

as those of rutile crystal at 448 and 610 cm
-1

 were barely observed in the samples by sputtering-

annealing of Ti metal. It may form amorphous or rutile crystallites during thermal oxidation of 

the Ti metal at 500 C as reported by Zhu et al.
74

 This partially explains why the performance of 

DSSCs made with the sputtering-annealing method was worse than those by TiCl4 treatments 

since anatase TiO2 is known a better crystalline phase for DSSCs
75

. 

 Conclusions 

In summary, we have demonstrated two methods, the wet chemical treatment of FTO 

electrode with an aqueous TiCl4 solution and thermal oxidation of sputter-coated Ti metal film, 
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in preparing thin TiO2 films as the barrier layer to prevent the photoelectron backflow from TCO 

to electrolyte or recombining with the holes at the TCO surface during DSSC operation. The 

structural and materials properties of the TiO2 barrier layer were systematically characterized 

with electron microscopy, Raman spectroscopy, I-V and IPCE measurements under light 

illumination, and cyclic voltammetry. The characterization results showed consistent effects of 

the thickness and structure of the TiO2 barrier layer on the DSSC performance. The method by 

TiCl4 solution treatment produced a non-uniform porous TiO2 film whose interior surface was 

accessible by the N719 dye while the method by sputtering-annealing of Ti metal formed a 

smooth compact TiO2 film with N719 dye only adsorbed on the outer surface. Overall, the 

DSSCs fabricated with photoanodes by 20 min. TiCl4 treatment showed the best performance, 

likely due to the formation of desired anatase crystallites at the optimum thickness. Such thin-

film DSSCs may be used as a model system to test the photovoltaic effects of new dyes or 

macromolecular sensitizers which cannot easily access the interior pores of traditional DSSCs. 
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Chapter 3 - VACNFs as a New Type of Counter Electrode in DSSCs 

 Abstract 

A new type of counter electrode in dye-sensitized solar cell (DSSC) system using the 

vertically-aligned carbon nanofibers (VACNFs) structure was demonstrated. VACNF counter 

electrode was fabricated on a Si substrate using plasma enhanced chemical vapor deposition 

(PECVD). The structural properties of VACNFs were studied by scanning electron microscopy, 

transmission electron microscopy and Raman spectroscopy. Cyclic voltammetry characterization 

showed that the VACNF electrode had a large specific surface area of 125 cm
2
 over 1 cm

2
 

window. I-V measurement demonstrated that the DSSCs made of a VACNF counter electrode 

had a comparable efficiency of 4.98% to that of DSSC with a Platinum (Pt) counter electrode, 

which had an efficiency of 5.1%. Electrochemical impedance spectroscopy results showed that 

the charge transfer resistance of VACNF electrode was smaller than Pt electrode, and VACNF 

electrode had a lower series resistance due to good electronic conductivity. Overall, VACNF 

counter electrode showed a comparable performance to Pt counter electrode but potentially at 

lower cost and sustainable materials.  

 Introduction 

Dye-Sensitized Solar Cells (DSSCs) have drawn great attentions for their good efficiency 

and low cost in recent decades. Counter electrode is a very important component in the DSSC 

system, it collects electrons from outer circuit and reduces I3
-
 into I

-
 in the electrolyte. Currently 

the most widely used material for counter electrode is Pt, which has good catalytic activity for 

the reduction of the I3
-
 mediator. Its high cost and limit supply, however, is one of the main 

problems that prevent people from using it for large-scale solar energy applications. 

Development of a new alternative counter electrode material is urgent.  

Carbon has emerged as a new promising counter electrode material for replacement of Pt. It 

has benefits of low cost, good stability, good catalytic activity, good electronic conductivity, 

easy fabrication and very large surface area. So far a number of forms of carbon have been 

reported as materials for counter electrodes, such as multi-walled carbon nanotubes 
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(MWCNTs)
34, 76-79

, single-walled carbon nanotubes (SWCNTs)
37, 80-83

, carbon nanofibers (CNFs) 

84-86
,and  graphene 

87-92
.  

In this study, a new 3-D vertically-aligned carbon nanofiber (VACNF) structure is 

introduced to be a replacement for Pt. VACNFs are fabricated by Plasma-Enhanced Chemical 

Vapor Deposition (PECVD) method. The 3-D VACNF structure provides an extremely large 

counter electrode surface area of 125 cm
2
 over 1 cm

2
 testing area. The large surface area ensures 

a good contact between counter electrode and electrolyte, which leads to a better and more stable 

catalytic activity between VACNFs and redox couple in the electrolyte. The DSSC built with 

VACNFs counter electrode showed a good conversion efficiency of 4.98%, which is comparable 

to the 5.1 % efficiency of DSSCs using our homemade Pt counter electrodes. 

 Experimental  

Preparation of Photoanode of DSSC. Commercial fluorine-doped tin oxide (FTO) glass 

(Pilkington Glass, Lathrop, CA) was used as the photoanode substrate, which was first cleaned 

by sonication in isoproponal, ethanol and acetone each for 15 min. In the second step, FTO 

anodes were treated with 40 mM TiCl4 solution, at 70℃ in oil bath for 20 min, which was 

reported as an optimal treatment time to create a TiO2 barrier layer in the previous paper by our 

group. The photoanode was annealed in the tube furnace in open air at 500℃ for 30 min to form 

a anatase TiO2 barrier layer. Third, the photoanode with barrier layer was then pasted with TiO2 

nanoparticles (Solaronix, Aubonne, Switzerland) using doctor blade method and the pasted 

photoanode was annealed again in open air at 500℃  for 30 min to form anatase TiO2 

nanoparticle layer. Finally, the annealed anode was immersed in a 0.5 mM cis-diisothiocyanato-

bis (2,2ʼ-bipyridyl-4,4ʼ-dicarboxylato) ruthenium (II) bis (tetrabutylammonium) (N-719 dye) in 

dried ethanol solution (Solaronix, Aubonne, Switzerland) for 12 h for dye adsorption. The 

samples were rinsed with dry ethanol to remove physisorbed dyes. 

Preparation of Cathode of DSSC. Two 1 mm holes were drilled at the diagonal corners of 

the 1cm
2
 window of the commercial Si wafer (WaferNet. Inc, San Jose, California) for VACNF 

electrode and FTO-coated glass for Pt electrode. A 100 nm thick layer of Cr and 22.5 nm Ni was 

then sputtered onto the Si wafer using high-resolution ion beam coater (Model No. 681, Gatan 
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Inc., Pleasanton, CA). The sputtered substrate was then put into the PECVD system (Aixtron, 

Cambridge, United Kingdom) to grow the vertically-aligned carbon nanofibers, then the as 

grown VACNF electrode was soaked into HNO3 to remove the amorphous carbon to expose the 

active graphitic edges. The FTO-glass was sputtered with 25 nm thick Pt using the above ion 

beam coater. The Pt sputtered electrode was annealed at 450℃ in the air for activation.  

Assembly and Characterization of DSSCs. The anode and counter electrode were bonded 

through a 60 m thick hot melt spacer (Solaronix, Aubonne, Switzerland) following our previous 

procedure.
66

 Then the Iodolyte AN-50 electrolyte (Solaronix, Aubonne, Switzerland) consisting 

of 50 mM triiodide, 0.1 M LiI, and 0.5 M 1,2-dimethyl-3-propylimidazolium iodide in 

acetonitrile was filled in the cell by a syringe. The assembled cell with an active area of 1 cm × 1 

cm was characterized under one sun illumination with a 300 W Xe lamp solar simulator and an 

AM 1.5G filter (Newport, Irvine, CA) to obtain the photocurrent-voltage (I-V) curve. 

Electrochemical and Materials Characterization. Cyclic voltammetry was carried out 

with a potentiostat (CHI 440A, CH Instruments, Austin, TX) in the Iodolyte AN-50 electrolyte 

mentioned above using a three-electrode setup vs. a Pt counter electrode and a Ag/AgCl 

reference electrode (filled with acetonitrile solution containing 10 mM AgNO3 in 1 M LiClO4) to 

characterize the catalytic activity. Scanning electron microscopy (SEM) was carried with a field-

emission system (FEI Nano430). Transmission electron microscopy (TEM) was measured. 

Raman spectra were measured with a DXR Raman microscope (Thermo Electron, WI) using 

50X objective, 530 nm laser, and 5 mW laser power. Electrochemical impedance spectroscopy 

was carried out with an electrochemical workstation (Parstat 2273, Princeton Applied Research, 

Oak Ridge, TN) under one sum illumination. 

 Results and Discussion 

VACNFs grown by PECVD have cylindrical outer structure with diameters ranging from a 

number of nanometers to several hundreds of nanometers and lengths varying from microns to 

hundreds of microns. The internal structure with different arrangement of graphene layers is 

what makes VACNFs different from CNTs and conventional carbon nanofibers. Figure 3.1b 

shows the structure of VACNFs, and different internal structures can be formed based on a 
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different cone angle . With cone angle  = 0, it gives a bamboo-like structure 
93, 94

, which 

results in a smooth outer wall for each CNF, and this type of CNF is known as carbon nanotubes 

(CNTs). The other type is just as what is shown in Figure 3.1b with a cone angle  > 0, which 

forms an internal structure consists of cone-like stacked graphene layers with a defect rich outer 

wall. This cone structured VACNFs is the type that was used in this study.  

Figure 3.1. (a) TEM image of a single VACNF with cone like inner structure shown, (b) 

Schematic drawing of a single VACNF with same structure shown in (a), (c) SEM image at 

45perspective view of VACNFs, (d) Raman characterization of VACNF. 

Layers of cone-structured graphene were stacked, forming a stacked cone-like or fishbone-

like structure. Due to stacked graphene layers, the graphitic edges of each graphene layer were 

exposed and act as the outer wall of VACNFs. With the active graphitic edges, the catalytic 

activity rate with the I
-
/I3

-
 redox couple in electrolyte will be improved. Figure 3.1a and 3.1c are 

the TEM and SEM images of the as grown VACNFs. The cone-like structure is clearly 

demonstrated in the TEM image. Good uniformity and high density of about 5.6×10
9
 VACNFs 

per 1 cm
2
 grown on Si substrate is shown in then SEM image. With such a high VACNF density, 

the specific surface area of a VACNF electrode over 1 cm
2
 window can be approximately 
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calculated using the dimension of a single VACNF, which has a surface of about 2.4×10
-8

 cm
2
. 

The specific surface area calculated was 125 cm
2 

over the 1cm
2
 window, respectively. With such 

high specific surface area, the catalytic activities between VACNF electrode and electrolyte can 

be further improved. Raman characterization is shown in Figure 3.1d. Peak around 1600 cm-1 

(G-band) demonstrates the formation of graphene structure, and the peak around 1360 cm-1 (D-

band) demonstrates the defects in the VACNFs, which is mostly due to the exposed graphitic 

edges.    

Figure 3.2, Cyclic voltammogram of counter electrodes using different materials. Solid line 

stands for electrode with Pt, dashed line stands for electrode using VACNFs after acid 

treatment, and dotted line stands for electrode using VACNF before acid treatment.  

Cyclic Voltammetry is a very useful and important technique to study the electrochemical 

properties of VACNFs. Figure 3.2 shows the CV curves of different types of counter electrodes. 

Two oxidation and two reduction peaks were observed due to the following two redox reactions 

(1), (2), (3) and (4).
84, 95, 96

 

2I
- 
→ I2

-
 + e

-                                                                                 
 (1) 

I2
-
 + I

- 
→ I3

-
 + e

-  
                                                (2) 

I3
-
 + e

- 
→ I2

-
 + I

-                                                                          
(3) 

I2
-
 + e

- 
→

 
2I

-     
                                                    (4) 

Equation (1) and (2) explain that in the DSSC system, electrons are injected into the  

 Ep1-Ep4 (V) Ep2-Ep3 (V) 

Pt 1.68 1.11 

VACNF 

(Untreated) 
1.56 0.95 

VACNF 

(Treated) 
2.86 1.78 

(1) 

(2) 

(3) 

(4) 

Table 1. Peak separations of each sample 
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oxidized dye molecules from electrolyte to regenerate them, and the reduction reaction of 

produced I3
-
 ions on the counter electrode is shown in equations (3) and (4). Dotted CV curve in 

Figure 3.2 represents the VACNFs without acid treatment, which means the amorphous carbon 

around the VACNFs was not removed. Compared to CV curve of the Pt electrode, the VACNFs 

electrode without acid treatment had a lower current density and a broader peak separation, 

which demonstrates that the untreated VACNF electrode has a slower reaction rate than Pt 

electrode. Dashed CV curve of VACNF with acid treatment in Figure 3.2 shows a larger current 

density and a smaller peak separation than both the Pt electrode and the VACNF electrode 

without acid treatment, which demonstrates a faster electron transfer rate that is due to the 

exposed graphitic edges
96-98

 after acid treatment, which removed the amorphous carbon 

deposited around the VACNFs. Higher electron transfer rate also means a higher reaction rate of 

the two reactions mentioned above, which can further improve the DSSC performance, and all 

these are attributed to the large specific surface area and large amount of exposed graphitic edges 

in the VACNF counter electrode.    
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Figure 3.3. (a) Schematic drawing of the structure of DSSCs with VACNFs as the counter 

electrode, (b) IV curve comparison between DSSCs using Pt counter electrode, acid-treated 

VACNF counter electrode, and untreated VACNF counter electrode without acid 

treatment.  

Schematic of the structure of DSSC using VACNF counter electrode is shown in Figure 

3.3a, the traditional Pt counter electrode has been replaced with VACNF electrode, which has 

larger specific surface area with large number of exposed graphitic edges that help reactions with 

electrolyte. I-V measurement is shown in Figure 3.3b. The cell with Pt counter electrode had a 

higher JSC of 15.12 mA/cm
2
 and a VOC of 0.689 V. The cell with VACNF counter electrode had a 

JSC of 13.8 mA/cm
2
 and a VOC of 0.713 V, respectively. The cell with VACNF electrode without 

acid treatment had a JSC of 13.1 mA/cm
2
 and a VOC of 0.634 V, which shows the importance to 

improve the catalytic activities by removing amorphous carbon with acid treatment. The VOC 

value is consistent with the reduction potential shift shown in Figure 3.2. Overall, the efficiency 

for cell with VACNF counter electrode without acid treatment was 4.54%, and VACNF cell with 

acid treatment was 4.98%, which is comparable to 5.1% of the cell with Pt counter electrode.  

Figure 3.4. EIS plot of DSSC using a Pt counter electrode and DSSC using an acid-treated 

VACNF counter electrode under dark (a) and illumination (b).  

In order to further investigate the electrochemical properties and electron transfer in DSSC 

system, EIS was carried to measure both cells with VACNF electrode and Pt electrode. Figure 

3.4 shows the EIS spectra of cells with VACNF electrode (in square and the fitted data shown in 

red line) and Pt electrode (in triangle and fitted data shown in blue line). The equivalent circuit is 

shown in inset of panel a. A small semi-circle at high frequency region (200 Hz to 100 kHz) and 
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a large semi-circle at middle frequency region (200 Hz to 0.1 Hz) were observed in Pt electrode; 

however the small semi-circle can barely be seen in VACNF electrode. The first (small) semi-

circle at high frequency region is related to the interfacial capacitance (CPE1) and charge 

transfer resistance (RCT) at the interface of counter electrode/electrolyte. The second (large) one 

at middle frequency region is related to the interfacial capacitance (CPE2) and charge transfer 

resistance (RW) at the interface of dye/TiO2/electrolyte
90, 99

. It can be observed that the RCT 

values of cell with VACNF counter electrode at both dark (RCT = 1.217 ohm) and illumination 

(RCT = 0.787 ohm) conditions are smaller the ones with Pt counter electrode (RCT =5.35 ohm 

under darkness, and RCT = 1.37 under illumination), which demonstrates that the large specific 

surface area and large numbers of active graphitic edges help to improve the reaction and charge 

transfer rate between the interface of counter electrode and electrolyte. The series resistance (RS) 

of VACNF electrode is lower than Pt electrode due to higher electronic conductivity, which 

demonstrates the VACNFs as effective electrodes. .  
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Figure 3.5. Stability measurement of a DSSC with a VACNF counter electrode over 90 days, 

(a) I-V curves vs. time, (b) efficiency vs. time, (c) fill factor vs. time, (d) JSC vs. time, (e) VOC 

vs. time. 

I-V measurement of a similar DSSC with non-acid-treated VACNF counter electrode was 

carried out every 30 days to show the good stability of using this new type of VACNF counter 

electrode. There were some small fluctuations of each parameter, and the overall efficiency after 

90 days was decreased by only 13% from 4.54% on the first day to 3.95% on the 90
th

 day. The 

good stability was attributed to the good electrical and chemical stability of VACNFs.  

Figure 3.6. Cyclic voltammetry measurement of: (a) VACNF counter electrode and (d) Pt 

counter electrode with different scan rates. Oxidation and reduction peak potential vs. scan 

rate and peak separation vs. scan rate of both electrode (b, c for VACNF counter electrode 

and e, f for Pt counter electrode).  
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In order to further compare VACNF electrode with Pt electrode, cyclic voltammetry 

measurement was carried out with different scan rates, and the oxidation and reduction peak 

potential and peak separation of both electrodes were measured and compared with the scan rate 

varying from 50 mV/s to 300 mV/s. VACNF electrode was very comparable with Pt electrode as 

demonstrated in Figure 3.6. As the scan rate increased, the peak separation increased slightly as 

what was shown from Pt electrode. This demonstrated that the redox reactions are quasi-

reversible but comparable with both electrodes. The reaction rates are not very fast but sufficient 

to match the photocurrent as in traditional DSSCs.    

 Conclusions 

In summary, a 3-D VACNF counter electrode was fabricated by PECVD. The structural 

and materials properties of VACNFs were characterized with TEM, SEM and Raman 

spectroscopy. I-V measurement, cyclic voltammetry, and EIS were carried out to study the cell 

performance and electrochemical properties. The characterization results showed that the 

VACNF structure had a large specific surface area of 125 cm
2
 over 1 cm

2
 window with a big 

number of active graphitic edges that improve the catalytic activity between counter electrode 

and electrolyte. Comparable cell efficiency (4.98%) was demonstrated compared to the DSSC 

with Pt counter electrode (5.1%), and good cell stability over 90 days was shown. Overall, the 

VACNF counter electrode can be served as a good alternative to the Pt electrode with a 

comparable performance and lower cost. 
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Chapter 4 - TiO2 Coated VACNFs 

 Abstract  

TiO2 nanoparticle coated vertically-aligned carbon nanofiber (VACNF) was fabricated by 

the metal-organic chemical vapor deposition (MOCVD) of a TiO2 layer onto VACNFs. Various 

deposition time and deposition partial pressure were tested. As the deposition time increased 

from 30 min to 120 min, it changed from no coating into a uniform and tightly packed TiO2 

nanoparticle coating around the VACNFs (shown in SEM images) with a coating thickness of ~ 

50 nm (shown in TEM images). Such core-shell-TiO2 VACNF structure can be used to build the 

photoanode in dye-sensitized solar cells (DSSCs). The core-shell structure can help prevent the 

electron recombination and back flow in the DSSC system just like what a TiO2 barrier layer 

does as reported. With the VACNF core, electron transfer and specific surface area can be 

further improved.  

 Introduction 

Studies about dye sensitized solar cell have been carried out in the recent decades. The 

traditional structure of a DSSC uses TiO2 nanoparticles to attach dye molecules that absorb light. 

One disadvantage of this structure is the severe electron recombination and the respectively slow 

electron transfer rate through the semiconducting TiO2 nanoparticle network. Works about using 

other structures to replace the mesoporous TiO2 nanoparticle network have been reported as 

using TiO2 nanotubes 
26, 27, 100

, ZnO nanotubes and nanowires
101, 102,103-105

, mixture of TiO2 

nanoparticles and graphene 
106

, and mixture of  TiO2 nanoparticles and carbon nanotubes
107

. By 

using the direct electron pathways or mixing with conductive materials, a faster electron 

transport can be achieved. This work represents a new photoanode structure based on the TiO2 

nanoparticle coated vertically aligned carbon nanofibers (VACNFs) using metal organic 

chemical vapor deposition (MOCVD) process. VACNFs were fabricated using plasma enhanced 

chemical vapor deposition (PECVD) on the three different solid substrates. The as grown 

VACNFs, with large amount of active graphitic edges and a big specific surface area, can obtain 

a well packed and uniform TiO2 coating around each single VACNF and provide a large 

electrode surface area. TiO2 coating was deposited using MOCVD process. The deposition 
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condition was studied using various deposition time (30 min to 120 min) and different partial 

pressure (150 mTorr, 300 mTorr and 600 mTorr). SEM and TEM images were taken to examine 

the deposition of each sample, and the optimal condition was found to be 300 mTorr with 120 

min deposition time.  

Three substrates are FTO coated quartz, Cu and Si. FTO coated quartz substrate was used in 

the study of DSSC due to its transparency. Si substrate was used mainly for the MOCVD 

condition study and Cu substrate can be used in other application, such as Lithium ion battery 

study. The TiO2 coated VACNFs grown on FTO coated quartz was used as a new architecture 

for the DSSC system. With the VACNF core, electron can transfer much faster than the 

traditional TiO2 nanoparticle network. The TiO2 nanoparticle coating around the VACNF can act 

as a barrier layer to minimize the electron recombination and back flow between the interface of 

dye molecule and VACNFs, the interface of electrolyte and VACNFs, and the interface of dye 

molecule and FTO coated quartz electrode. With the high electrode surface area and fast electron 

transfer rate, this new photoanode structure can be used in the future DSSC study to obtain a 

more efficient DSSC.  

 Experimental 

Fabrication of VACNFs. Commercial Si wafer was used as substrate for VACNF growth, 

which was first cleaned by sonication in isoproponal, ethanol and acetone each for 15 min. In the 

second step, Si wafer was dried in oven and put into high-resolution ion beam coater (Model No. 

681, Gatan Inc., Pleasanton, CA). 100 nm thick layer of Cr and 22.5 nm Ni was then sputtered 

onto the Si wafer. The sputtered substrate was then put into plasma-enhanced chemical vapor 

deposition (PECVD) system to grow the VACNFs at 750℃ . Copper foil was used as the 

substrate to grow VACNFs for battery testing. The commercial Cu foil was sputtered with 100 

nm Cr and 22.5 nm Ni using the same ion beam coater mentioned above, and was then put into 

PECVD system to grow VACNFs at 750℃. FTO coated quartz substrate (Solaronix, Aubonne, 

Switzerland) was used as substrate for DSSC testing. Substrate was cleaned following the same 

procedures as Si wafer, dried and put into ion beam coater. 22.5 nm Ni was sputtered onto the 

FTO coated quartz substrate, and the substrate was moved into PECVD for VACNF growth at 

550℃.  
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MOCVD process for coating TiO2 on VACNFs. TiO2 was coated onto different substrates 

using MOCVD process at 500℃ under a partial pressure of 300 mTorr with a bass pressure of 70 

mTorr for 3 hrs.  

Electrochemical and Materials Characterization. Cyclic voltammetry was carried out 

with a potentiostat (CHI 440A, CH Instruments, Austin, TX) in an acetonitrile solution 

containing 0.1 M LiClO4 using a three-electrode setup vs. a Pt counter electrode and a Ag/AgCl 

reference electrode (filled with acetonitrile solution containing 10 mM AgNO3 in 1 M LiClO4) to 

characterize the N719 dye adsorption and electrochemical activity. Scanning electron 

microscopy (SEM) was carried with a field-emission system (FEI Nano430). Transmission 

electron microscopy (TEM) was measured.  

 Results and Discussion 

Figure 4.1. 45°perspective view of SEM images of VACNFs grown on (a, b) FTO coated 

quartz substrate with a diameter about 40 nm, (c, d) Cu substrate with a diameter about 

100 nm, (e, f) Si substrate with a diameter of 100 nm.  
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A good substrate is the base for a good sample. Figure 4.1 shows the SEM images of 3 

different substrates on where the VACNFs were grown. Figure 4.1a and 4.1b are the images of 

VACNFs grown on the FTO coated quartz substrate using PECVD. 750°C was used as the 

growth temperature as the other two substrates. However, under that high temperature, the FTO 

coating will degrade, which leads to a bad VACNF growth. The FTO degradation temperature is 

around 550 – 600°C, so 550°C was then set as the growth temperature. Surprisingly, the result 

turned out with quite good uniformity, and it was reproducible. 750°C was used for the other two 

substrates and good quality and uniformity were obtained. Compare the VACNFs in Figure 4.1a 

and 4.1b to the other images, smaller diameter of the VACNFs was observed, and it may be due 

to the low growth temperature, which resulted in a smaller diameter. All the substrates were later 

coated with TiO2 nanoparticles using MOCVD method. The one with FTO coated quartz 

substrate was used as the photoanode in a DSSC system because the FTO coated quartz is 

transparent. The one with Cu substrate was later used as the part in the Lithium ion battery study. 

The one with Si substrate is most reliable and was used mainly to characterize the MOCVD 

coating condition.  

Figure 4.2. 45°perspective view of SEM images of TiO2 coating using MOCVD process on 

the as-grown VACNFs on Si with various growth time and partial pressure (a) 150 mTorr 
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for 30 min, (b) 300 mTorr for 30 min, (c) 300 mTorr for 60 min, (d) 300 mTorr for 90 min, 

(e) 300 mTorr for 120 min, (f) 600 mTorr for 60 min.  

Figure 4.2 demonstrates different TiO2 MOCVD coating results with different temperature 

and partial pressure. The coating condition in Figure 4.2a was 150 mTorr as the partial and 30 

min as coating time, which was obtained from a previous study from our group
108

. However, no 

coating was observed. The MOCVD used in this study was totally rebuilt to better control the 

deposition condition. It now has a better vacuum level that 70 mTorr can be obtained as the base 

pressure. A small change in the MOCVD condition can cause a huge difference in deposition 

results. Thus the parameters were systematically investigated. Figure 4.2b shows the coating 

result of 300 mTorr with 30 min coating time. Some small amount of TiO2 nanoparticles were 

observed on the tips of the VACNFs, which indicated that the coating time was not long enough 

so only the tips were clearly coated. With 300 mTorr and 60 min coating time, a much better 

TiO2 nanoparticle coating was obtained in Figure 4.2c, the walls of VACNFs were coated. 

Figure 4.2d shows the coating at the condition of 300 mTorr and 90 min coating time. In Figure 

4.2e, which 300 mTorr and 120 min coating time was used, very nice and tightly packed TiO2 

nanoparticles were formed on the walls of VACNFs. In Figure 4.2f, a high partial pressure (600 

mTorr) with a shorter time (60 min) was tried. However, it is noted that the scale bar is 5 m 

compared to other images with 500 nm, indicating that the amount of precursor was too big and 

the deposited TiO2 buried the VACNFs and started to form merged bundles. As a result, 300 

mTorr and 120 min was concluded as the MOCVD condition for the further study.                               

Figure 4.3. Diameter of TiO2 coated VACNFs under 300 mTorr vs. MOCVD deposition 

time.  
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Figure 4.4. 45°perspective view of SEM images of TiO2 coating using MOCVD process on 

the as-grown  VACNFs under 300 mTorr 120 min condition on (a, b) FTO coated quartz 

substrate with diameter of about 300 nm, (c, d) Cu substrate with diameter of about 400 

nm, (e, f) Si substrate with diameter of about 400 nm.  

After finding the optimal MOCVD condition, VACNFs grown on different substrates were 

deposited with TiO2 using MOCVD under 300 mTorr for 120 min. SEM images are shown in 

Figure 4.3, (a, b) are the images of the sample with FTO coated quartz, compared to the images 

in Figure 4.1a and 4.1b, the diameter of each coated fiber was increased a lot, which was due to 

that the VACNFs formed bundles during MOCVD process. So each fiber shown in the image is 

actually a bundle of several fibers, and it was confirmed with the TEM images in Figure 4.3a and 

4.3b. Figure 4.3c, 4.3d are the SEM images of TiO2 coated VACNFs on Cu, 4.3e and 4.3f are 

images of TiO2 coated VACNFs on Si. They both showed good uniformity of the TiO2 coating.  
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Figure 4.5. TEM images of TiO2 coating on the as grown VACNFs on (a, b) FTO coated 

quartz substrate, (c, d) Cu substrate, (e, f) Si substrate.  

TEM characterization was carried out to study MOCVD TiO2 coating around the VACNFs. 

As mentioned, VACNFs grown on FTO-coated quartz substrate formed bundles during MOCVD 

process, which resulted in the increased diameter of each fiber shown in the SEM images. Figure 

4.4a and 4.4b show the TEM images of TiO2 coated VACNFs on FTO coated quartz. Compared 

to the VACNFs grown on the other two substrates shown in Figure 4.4c-4.4f, the TiO2 

nanoparticles in Figure 4.4a are not as tightly packed as what are shown in the 4.4c-4.4f. The 

reason why it formed loose packed TiO2 nanoparticles is because the VACNF bundles formed 

during MOCVD process, which can be seen in Figure 4.4b, which is the bottom of one coated 

fiber. Many smaller VACNFs with much smaller diameters were observed, which is consistent 

with what was observed in the SEM images in Figure 4.1a and 4.1b. Figure 4.4c and 4.4d are the 

TEM images of TiO2 coating on the VACNFs grown on Cu, and the ones on Si are shown in 

Figure 4.4e and 4.4f. Both show very uniform and well packed TiO2 nanoparticle coating around 

the VACNFs.  
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Scheme 4. Comparison of TiO2 coated VACNFs and non-TiO2 coated VACNFs and the 

electron transfer, electron recombination and electron backflow routines 

The TiO2 coated VACNFs grown on the FTO coated quarts substrate can be used as a new 

photoanode structure base for the DSSC system. Schematic 4 shows the structure detail and the 

electron transfer routine in the DSSC system using TiO2 coated VACNFs as photoanode. The 

VACNF core provides an “electron highway” on which the electron from the dye molecules can 

travel much faster than the traditional mesoporous TiO2 nanoparticle network. In the tradition 

TiO2 nanoparticle network, each TiO2 nanoparticle is attached to each other, the electron injected 

from dye molecule needs to travel from one TiO2 nanoparticle to another one and finally get to 

the electrode surface by going through thousands of TiO2 nanoparticles. During the electron 

transfer through the TiO2 nanoparticle network, because TiO2 is a semiconducting material, a lot 

of electron traps and electron back flow will happen, which will limit the electron transfer rate. 

By using the VACNF core, the electron can easily travel within the same fiber without jumping 

from one particle to another, which effectively improves the electron transfer in the DSSC 
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system. Moreover, with the TiO2 nanoparticle coating around the VACNFs, the electron 

recombination and electron flow can be minimized due to the barrier layer effect of the TiO2 

coating. With this photoanode base, further study can be carried out based on this structure to 

make more efficient DSSCs. With the unique property of the TiO2 nanoparticle, this structure 

can also be used to make the anode in the Lithium ion battery study with a faster charging and 

discharging rate and a better stability.  

 Conclusion 

In summary, fabrication of VACNFs on three different substrates were demonstrated, the 

condition for using MOCVD to coat TiO2 on as grown VACNFs on different substrates were 

calibrated with an optimal condition with a partial pressure of 300 mTorr and deposition time of 

120 min . With too less partial pressure or too short time, there were only small amount or 

nothing deposited on the VACNSs; with too high partial pressure, the deposition rate was too 

fast to uniformly coat each single VACNF, instead VACNFs were buried and big crystalline 

structures were formed. VACNFs grown on FTO coated quartz substrate were found to have 

smaller diameter than the ones grown on Cu or Si due to low growth temperature (550°C). 

Because of the small diameter, VACNFs formed bundle structure after MOCVD process, while 

the other two samples were coated uniformly. TiO2 coated VACNF photoanode has a very large 

electrode surface area, very good electric conductivity due to VACNF core and minimum 

electron recombination and back flow, so it can be used as a good base for further studies in 

DSSCs and Lithium ion batteries.  
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Chapter 5 - Overall Conclusion and Future Outlook 

In conclusion, properties of the TiO2 barrier layer were systemically studied; two 

approaches can be used in different DSSC studies. The TiCl4 treatment can be used to create a 

barrier layer, which minimize the electron recombination and back flow to optimize the DSSC 

condition, so that a optimized DSSC base can be used in the further DSSC studies. The Ti 

sputtering method can be used to create a compact blocking layer, which can be used in the 

DSSC studies, where a smooth and compact substrate is needed.  

For the counter electrode study, a new VACNF counter electrode was used to replace the 

traditional Pt counter electrode to reduce the cost and at the mean time, maintain the performance 

and stability. With a VACNF counter electrode, a larger electrode surface area was obtained, and 

with the big amount of active graphitic edges, the redox reaction rate and the catalytic activities 

can be improved. 

Fabrication of VACNFs on different substrates was also studied. FTO coated quartz, Cu and 

Si were used as substrates to grow VACNFs on them. The VACNFs grown on FTO coated 

quartz had much smaller diameter than the ones grown on the other two substrates, and that was 

due to the low growth temperature used for FTO coated quartz substrate to prevent the FTO from 

degrading. MOCVD process was carried to coat the VACNFs on different substrates with TiO2 

layer. The optimal MOCVD condition was found to be 300 mTorr and 120 min under 550 °C. 

SEM and TEM characterization were carried out to characterize the as grown VACNFs. TiO2 

coated VACNFs grown on FTO coated quartz substrate can be used as a new photoanode base in 

the DSSC system to obtain a faster electron transfer rate with the highly conductive VACNF 

core. And with the TiO2 coating, which can be served as a barrier layer, the electron 

recombination and back flow ware minimized. This structure can also be used in the study of 

Lithium ion batteries.  

Overall, an optimized DSSC base was prepared by applying TiO2 barrier layer to suppress 

the electron recombination and back flow. A cheap, stable VACNF counter electrode was 

studied and it can be used as a comparable replacement for the traditional Pt counter electrode 

while maintain the cell performance. A new TiO2 coated VACNF structure was introduced by 

PECVD and MOCVD processes. The as grown TiO2 coated VACNFs can be used as a new 

DSSC base with faster electron transfer and minimal electron recombination and back flow for 
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the future DSSC studies, and such structure can also be used for Lithium ion batteries studies. By 

combining these three components, a cheap, stable and efficient DSSC system can be obtained.  
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Appendix A – Supporting Information for Chapter 2 

 

Figure A1. The I-V curves of various DSSCs consisting of N719 dye on a ~5 m thick TiO2 

nanoparticle film (a) in dark and (b) under 1 sun illumination through an AM1.5G filter. (c) The 

response of the open-circuit voltage VOC of these DSSCs as the light was switched on and off. 

0 20 40 60 80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

V
O

C
 (

V
)

Time (s)

 Before and After

 Only After

 Only Before

 Nothing

c 

0.0 0.2 0.4 0.6
-14

-12

-10

-8

-6

-4

-2

0

 

 

 

 

V (V)

J
 (

m
A

/c
m

2
)

 Before and after 5.75%

 Only After           4.43%

 Only before         5.21%

 Nothing               4.79%

a 

0.0 0.2 0.4 0.6
-14

-12

-10

-8

-6

-4

-2

0

 

 

 

 

V (V)

J
 (

m
A

/c
m

2
)

 Before and after 5.75%

 Only After           4.43%

 Only before         5.21%

 Nothing               4.79%

b 



52 

 

Four different DSSCs were prepared using the following photoanodes: (1) with a TiO2 barrier 

layer by 20 min TiCl4 treatment before applying TiO2 nanoparticle paste and followed with a 

typical 30 min TiCl4 treatment after thermal annealing of the TiO2 nanoparticle film (black line), 

(2) with only the TiO2 barrier layer before applying the TiO2 nanoparticle paste (green dot-

dashed line), (3) only applying the typical 30 min TiCl4 treatment after annealing the TiO2 

nanoparticle paste (red dashed line), and (4) without any TiCl4 treatment.  

 

Experimental details: All the DSSCs were characterized using a 0.25 cm
2
 window mask. The 

DSSC with TiCl4 treatment before and after deposition of the ~5 m TiO2 nanoparticle film 

showed the best performance with the largest JSC, highest VOC, and highest conversion efficiency 

(see inset of panel b), and smallest VOC decay time constant (i.e. longest photoelectron lifetime). 

The TiCl4 treatment before applying TiO2 nanoparticle paste is critical in creating a TiO2 barrier 

between TiO2 nanoparticles and FTO electrode, which minimizes the photoelectron backflow 

and recombination in the DSSC system. The second TiCl4 treatment post TiO2 nanoparticle film 

formation is a general procedure in fabrication of Grätzel cells and is commonly believed to 

improve the physical connection between the TiO2 nanoparticles.  
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Figure A2. (a) The standard solar spectra.(from an online source: 

http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html). The 1 sun AM1.5G 

standard is represented by the red curve. (b) The presentation of the AM1.5G spectrum in 

irradiance (blue line) and number of photons Np (black line) vs. the wavelength. The yellow and 

pink areas under the black curve represent the total incident photons that could be absorbed by 

the TiO2 barrier layer and N719 dye, respectively. 

 

Photocurrent estimation: The contribution to the JSC by photon absorption in the TiO2 barrier 

layer and the N719 dye can be roughly estimated by the following procedures: (1) converting the 

AM1.5G solar spectra from irradiance (in unit of W/(m
2
 nm)) to number of photons Np (in unit 

of s
-1

cm
-2

) by dividing the photon energy hc/; (2) multiplying the IPCE value (shown in Figure 

2.2b and 2.2e, respectively) with the average Np in the same wavelength interval; and (3) taking 
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the sum of the multiplication product over all wavelength intervals of the IPCE curves. The 

resulting estimated JSC is ~7.8 A/cm
2
 with bare TiO2 barrier layer as the photoanode and ~67 

A/cm
2
 after sensitized with N719 dye. The approximately ten fold increase is consistent with 

the large JSC increase from the I-V data in Figure 2.2a to that of Figure 2.2d, indicating that the 

N719 dye makes the dominant contribution to the photocurrent even though its maximum IPCE 

is lower than that of TiO2 layer. 

Figure A3. Cyclic voltammograms of TiCl4 treated samples. The reference electrode was made 

of Ag/AgCl in an acetonitrile filling solution containing 10 mM AgNO3 and 1 M LiClO4. The 

measurements were taken at 50 mV/s scan rate.  
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Figure A4. Photovoltaic characterization of the control DSSCs without dye sensitizers, which 

were fabricated with the FTO/glass photoanodes covered with TiO2 barrier layers converted by 

thermal oxidation of sputtered Ti metal films at different thicknesses: (a) I-V curves under 1 sun 

AM1.5G illumination and (b) IPCE curves.  
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Figure A5. Raman spectra of the TiO2 overlayer structure formed by (a) the TiCl4 treatment (0 

min to 60 min) and (b) thermal oxidation of sputtered Ti metal films (0 nm to 15 nm). The 20 nm 

diameter anatase TiO2 nanoparticle paste for DSSC fabrication (Solaronix, Aubonne, 

Switzerland) were used as a control in the top panels. Anatase structured TiO2 has a large peak at 

143 cm
-1

, and three small peaks at 395, 515 and 638 cm
-1

. The bottom panels are the Raman 

spectrum of bare FTO as a control blank. With increasing TiCl4 treatment time, the peak at 143 

cm
-1

 increased as the TiO2 barrier became thicker. In panel b, the intensity of the characteristic 

anatase feature at 143 cm
-1

 is very weak and comparable to the rutile features at 448 and 610 cm
-

1
. It is inconclusive whether it formed anatase, rutile, or amorphous structure. 
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Figure A6. Molecular structure and UV-vis absorption spectrum of N-719 dye used in this study.  


