Genome size variation in guayule and mariola: fundamental descriptors for genomics-assisted breeding of polyploid plant taxa

Paul L. Sanchez, Denise E. Costich, Bernd Friebe, Terry A. Coffelt, Matthew A. Jenks, and Michael A. Gore

How to cite this manuscript

If you make reference to this version of the manuscript, use the following information:

Published Version Information

Copyright: © 2014 Elsevier B.V.

Publisher’s Link: http://www.sciencedirect.com/science/article/pii/S0926669014000041
Genome size variation in guayule and mariola: fundamental descriptors for genomics-assisted breeding of polyploid plant taxa

Paul L. Sanchez\(^a\), Denise E. Costich\(^b\)\(^1\), Bernd Friebe\(^c\), Terry A. Coffelt\(^a\), Matthew A. Jenks\(^a\), and Michael A. Gore\(^d\), *

\(^a\)P. L. Sanchez (Paul.Sanchez@ars.usda.gov), T. A. Coffelt (terry.coffelt.arc@gmail.com), and M. A. Jenks (matt.jenks@ars.usda.gov), USDA-ARS, U.S. Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ, 85138, USA

\(^b\)D.E. Costich (d.costich@cgiar.org), USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA

\(^c\)B. Friebe (friebe@ksu.edu), Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA

\(^d\), *Corresponding author: M. A. Gore (mag87@cornell.edu), 310 Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA; Tel.: +1 607 255 5492; fax: +1 607 255 6683

\(^1\)Present address: International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
ABSTRACT
Guayule (Parthenium argentatum A. Gray) has tremendous potential as a domestic source of natural rubber production in the southwestern United States. However, genetic improvement of guayule has been slowed by its complex mode of reproduction and natural ploidy series, as well as lack of genetic and genomic resources. The interspecific hybridization of guayule with its closest sister taxon mariola (P. incanum L.) offers an opportunity to access novel genetic variation for guayule breeding programs, but mariola accessions available from the National Plant Germplasm System (NPGS) have never been evaluated for natural variation in ploidy level. In addition, the nuclear genome sizes for guayule and mariola at any ploidy level are unknown. To that end, we examined the ploidy of 10 mariola accessions, which revealed a natural polyploid series that ranged from triploid (2n = 3x = 54) to pentaploid (2n = 5x = 90). In contrast, a ploidy analysis of five guayule accessions uncovered a natural polyploid series ranging from diploid (2n = 2x = 36) to hexaploid (2n = 6x = 108). More than one ploidy level among individual plants (mixed ploidy) was observed for accessions of both guayule and mariola, with a higher preponderance of aneuploid plants for mariola. The nuclear genome sizes of guayule and mariola were similar at identical ploidy levels, and the genome size of diploid guayule (1,624 Mb) was almost twofold smaller than the genomes of sunflower (H. annuus L. 2n = 2x = 34) and lettuce (L. sativa L.; 2n = 2x = 18). The results from this study will guide future whole-genome sequencing studies and interspecific genomics-assisted breeding efforts of guayule and mariola.

Highlights
- Guayule (2x to 6x) had a more extensive natural ploidy series than mariola (3x to 5x).
- Mariola accessions had a higher rate of aneuploidy than guayule accessions.
- Nuclear genome size estimates of guayule ranged from 1,624(2x) to 4,812 (6x) Mb.
- Estimates of nuclear genome size for mariola ranged from 2,616 (3x) to 4,181 (5x) Mb.
- The nuclear genome size of diploid guayule (2n = 2x = 36) is nearly twofold smaller than the nuclear genomes of lettuce (2n = 2x = 18) and sunflower (2n = 2x = 34).

Keywords: Guayule, Mariola, Ploidy level, Nuclear Genome size, Flow cytometry

Abbreviations: Mb, megabase; NPGS, National Plant Germplasm System
1. Introduction

Guayule (Parthenium argentatum A. Gray) is a woody perennial shrub indigenous to the deserts of the southwestern United States and Northern Mexico. This member of the Compositae (Asteraceae) family has been commercialized as a renewable source of natural rubber and hypoallergenic latex (see review in Ray et al., 2005). Even though the rubber tree [Hevea brasiliensis (Wild. ex A. Juss.) Müll. Arg.] is the predominant commercial source of natural rubber in the world, interest in guayule as a sustainable domestic source of natural rubber has intensified partly due to the projected global shortages of rubber by the next decade and the vulnerability of rubber tree plantations to South American leaf blight caused by the fungus Microcyclus ulei (Mann, 2009). Not only is guayule more amenable to traditional agronomic practices than the rubber tree, but it also produces a resin that resists termites when impregnated into wood (Holt et al., 2012). Guayule bagasse (plant residue after rubber and latex extraction) has the added potential of serving as a source of biofuel in the southwestern United States (Boateng et al., 2009).

Tremendous ploidy-level variation exists within and among wild populations, cultivars and germplasm lines of guayule (Bergner, 1946; Gore et al., 2011; Kuruvadi et al., 1997). This natural polyploid series typical ranges from diploid \(2n = 2x = 36\) to pentaploid \(2n = 5x = 90\), but even higher ploidy levels such as octoploid are possible (Powers, 1945; Thompson and Ray, 1988). However, tetraploid plants predominate in wild stands (Kuruvadi et al., 1997) and the U.S. germplasm collection (Gore et al., 2011). In addition, there is a low incidence of aneuploids within natural populations (Bergner, 1946; Kuruvadi et al., 1997; Powers, 1945). Guayule diploid plants principally have a sexual mode of reproduction and are obligate outcrossers by virtue of a sporophytic self-incompatibility system (see review in Ray et al., 2005; Thompson and Ray, 1988). In contrast, the facultative expression of apomixis in polyploid plants results in the production of both apomictic and sexual offspring. This complex mode of reproduction, as well as a highly variable number of chromosomes, have unquestionably slowed the genetic progress for a crop that is still in the process of domestication.

Genetic improvement for rubber yield has primarily resulted from single-plant selections in genetically narrow populations of apomictic polyploid plants, thus new avenues for exploitation of genetic diversity should be considered (Ray, 1993). The extent to which interspecific hybridization has been used in guayule breeding programs is limited, but the 13 other species of the genus Parthenium (www.theplantlist.org/) with only trace amounts of rubber are potential sources of genetic variation for increased vigor, resin content, biomass, disease resistance, and cold tolerance (Ray et al., 2010). Of these 13 species, the facultative apomictic species P. incanum (mariola) with a natural ploidy series is postulated to be the closest sister taxon of guayule (Powers and Rollins, 1945). Indeed, interspecific hybrids between guayule and mariola are found at low frequency where both species coexist in the wild (Rollins, 1944) and have been produced under controlled conditions for broadening the genetic base of guayule (Rollins, 1945).

The genetic diversity of guayule and mariola can be more effectively exploited in an interspecific breeding program when the ploidy level and chromosome number variation of the germplasm are known. We have previously collected ploidy level data from guayule germplasm available in the U.S. National Plant Germplasm System (NPGS) (Gore et al., 2011), but identical information for mariola germplasm is still needed. In addition, having nuclear genome size estimates of guayule and mariola is critical knowledge for helping to understand genome
evolution and develop whole-genome sequencing projects. We conducted the present study to (i) examine ploidy-level variation within and among mariola germplasm available from NPGS and (ii) measure nuclear genome size of guayule and mariola accessions at several ploidy levels.

2. Materials and methods

2.1. Plant material and growth conditions

Seeds of seven guayule and ten mariola accessions, as well as an interspecific hybrid of these two species, were obtained from the National Arid Land Plant Genetics Resources Unit (NALPGRU) at Parlier, CA (Table 1). Seeds of pea (Pisum sativum L.; Cèrèd) were obtained from J. Doležel at the Institute of Experimental Botany in the Czech Republic. Sunflower (Helianthus annuus L.; PI 642777; HA 412 HO) and lettuce (Lactuca sativa L.; PI 536851; Salinas) seeds were obtained from the North Central Plant Introduction Station in Ames, IA, and R. Michelmore at University of California, Davis, respectively.

Seeds were sown on moist vermiculite inside a growth chamber (14 h light, 250 μmol m$^{-2}$ s$^{-1}$ at 28 ºC and 10 h dark at 21 ºC). Seven-day-old seedlings were planted individually into 10 cm diameter pots containing moistened Sunshine Mix #1 (Sun Gro Horticulture Inc., Bellevue, WA) and perlite (4:1 ratio). Plants were fertilized every 2 weeks with 20–20–20 (50 ppm N) Peters Professional plant nutrient solution (The Scotts Company, Marysville, OH, USA). Two months later, guayule seedlings were transplanted separately into 1 gal pots with Sunshine Mix #1. Plants were grown under natural light in a greenhouse with daytime and nighttime mean temperatures at 28 and 21 ºC, respectively. Plants were fertilized every two-weeks with 20–20–20 (200 ppm N) Peters Professional plant nutrient solution.

2.2. Sample collection and preparation for ploidy analysis

Leaf tissue samples were collected and prepared for ploidy analysis as previously described (Gore et al., 2011). Briefly, young, fully expanded leaves were collected from immature flower stalks of individual plants with unknown ploidy and a 36-Chromosome (P. argentatum) plant that was repeatedly used as an internal diploid standard and confirmed to be diploid (2n = 2x = 36) via mitotic chromosome counts in root tip cells in this (data not shown) and our previous study (Gore et al., 2011). Leaf tissue samples were collected the morning of the experiment and maintained at 4 ºC until preparation later in the same day. To prepare each sample for ploidy analysis, we added 1 mL of woody plant buffer (Loureiro et al., 2007) to a Petri dish that contained equivalent amounts of leaf tissue from an individual plant with unknown ploidy and the 36-chromosome plant, followed by coarse chopping of the combined leaf tissue with a razor blade for 30 s. The resultant homogenate was filtered through a Partec 30 μm CellTrics (Partec GmbH, Münster, Germany) disposable nylon filter. Nuclei were stained with 4 μg mL$^{-1}$ of 4′, 6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich, St. Louis, MO, USA) and incubated on wet ice for 10 min before immediate analysis by the flow cytometer.

2.3. Analysis of ploidy level with flow cytometry

A Partec Ploidy Analyser flow cytometer (Partec GmbH) was used to analyze the fluorescence of nuclei stained with DAPI as previously described (Gore et al., 2011). Briefly, the
mean position of the G1 peak for the diploid standard (36-chromosome) was set at channel 100. The order in which samples were run on the instrument was randomized. In the first experiment, we evaluated 15 plants from each of 16 accessions listed in Table 1. One plant from each accession was randomly assigned to one of 15 blocks or runs on the flow cytometer. The entire experiment was replicated twice, for a total of two measurements per plant. To assess the quality of the data, the Partec CA3 analysis software was used to calculate the coefficient of variation for each measurement.

The peak ratio for each plant of unknown ploidy was calculated per Doležel et al. (2007) as the mean position of the G1 peak for the unknown ploidy plant (“sample”) divided by the mean position of the G1 peak for the diploid standard 36-chromosome plant (“reference”). For each experiment, we screened for outliers in SAS version 9.2 (SAS Institute, 2011) by examining the Studentized deleted residuals obtained from a mixed linear model fitted with peak ratio as the dependent variable, plant as a fixed effect, and replicate nested within plant as a random effect. Degrees of freedom were calculated via the Satterthwaite approximation. With outliers removed, the same mixed linear models were used to obtain least square means for peak ratios with the LSMEANS statement in PROC MIXED. For each accession, the overall average and standard deviation of least square means for peak ratios of plants within a ploidy level were calculated. The ploidy level within an accession was estimated by multiplying the average peak ratio by two (the ploidy of the 36-chromosome plant).

2.4. Cytological preparation and image analysis

We conducted mitotic chromosome counts in root tip cells from representative plants within a ploidy level of several accessions per Gore et al. (2011). Briefly, actively growing root tips were pretreated with ice water for 24 h, followed by fixation in ethanol: glacial acetic acid (3:1), staining in 1% acetocarmine and squash preparation as previously described by Costich et al. (2010). Images were captured using an Olympus DP71 camera attached to a Zeiss Photomicroscope III and processed with Adobe Photoshop CS5 Version 12.0 x64 (Adobe Systems Incorporated, San Jose, CA, USA). Counts of metaphase chromosomes from images were independently confirmed by two people (authors Paul L. Sanchez and Bernd Friebe).

2.5. Sample collection and preparation for genome size analysis

The protocol for the preparation of leaf samples for flow cytometry used in this analysis of genome size is based on that of Arumuganathan and Earle (1991), with various modifications. Leaves from the unknown plants, the 36-chromosome diploid standard (P. argentatum), and the pea standard were harvested the day before the experiment and sent via overnight courier to the collaborating lab at Cornell University (Ithaca, NY, USA). Upon arrival the following morning, a 2 cm² piece of leaf of the unknown plus the same amount of diploid standard leaf were finely chopped together in 900 μL of extraction buffer (Solution “A”) in a Petri dish kept on ice. Solution A was prepared fresh on the day of the experiment as follows (per sample): 877.5 μL Woody Plant Buffer (Loureiro et al., 2007), 0.9 mg DTT, and 22.5 μL Triton X-100 solution (Sigma-Aldrich, St. Louis, MO, USA). The resulting slurry was poured through a 30 μm CellTrics (Partec GmbH) nylon filter. The following staining solution was then added to the filtrate: 11.25 μL propidium iodide-RNase solution [7.5 μL propidium iodide (5 mg mL⁻¹), 0.375
μL RNase stock (100 mg mL⁻¹), and 3.375 μL Solution A]. Samples were kept in a light-
protected cooler and transported to the flow cytometer.

2.6. Analysis of genome size with flow cytometry

The samples were run on an LSRII (BD Biosciences, San Jose, CA, USA) within 2 h
after completion of preparation. The stained nuclei samples were excited by a 488 nm laser.
Propidium iodide fluorescence was measured with a 610/20 nm band pass filter and doublets
were excluded using a linear PI fluorescence area and width plot. We evaluated 1, 3, 4, or 6
plants each of 11 *Parthenium* accessions (i.e., unknown samples), for a total of 38 plants, that
captured ploidy levels representative of those shown in Table 1. To expand the comparison of
genome size within the Compositae (Asteraceae) family, we also evaluated three plants each of
lettuce and sunflower. Each plant was randomly assigned to one of three blocks, but if a
Parthenium accession had only one plant for a ploidy level, that one plant was assigned to all
three blocks. In addition, the 36-chromosome plant used as the diploid control for ploidy analysis
was included twice in each block. Thus, each block consisted of 20 samples. We also
randomized the order in which samples were run on the instrument. The entire experiment was
replicated two times, for a total of two, six, or 12 measurements per plant. We calculated the
genome size of the diploid standard (36-chromosome; *P. argentatum*) by running it twice in each
block along with pea (2C content = 9.09 pg DNA), a reference genome size standard provided by
J. Dolezel (Doležel et al., 2007), taking the mean of the two values, and then using that number
to calculate the genome sizes of the 18 unknown samples in the block.

We screened for outliers in SAS version 9.2 (SAS Institute, 2011) by examining the
Studentized deleted residuals obtained from a mixed linear model fitted with genome size as the
dependent variable, plant as a fixed effect, and replicate nested within plant as a random effect.
Degrees of freedom were calculated via the Satterthwaite approximation. With outliers removed,
the same mixed linear models were used to obtain the least square means for genome size with
the LSMEANS statement in PROC MIXED. For each accession, the overall average and
standard deviation of the least square means for nuclear genome size of plants within a ploidy
level were calculated.

3. Results and Discussion

3.1 Ploidy level variation

The extent of ploidy level variation among and within five guayule accessions was
evaluated. Of the five guayule accessions evaluated, three of them were selected based on the
results of Gore et al (2011) to capture a natural ploidy series for eventual nuclear genome size
estimation. As predicted, the ploidy ranged from triploid (2n = 3x = 54) to pentaploid (2n = 5x =
90), but a larger sampling of plants revealed mixed ploidy within N566 and 11591 (Table 1).
Two wild accessions, CFS-21 and CFS-24, were also surveyed in an attempt to extend the upper
range of the ploidy series. Through the mixed ploidy of these two wild accessions, a series of
four ploidy levels was detected that included the successful identification of a hexaploid plant.
Cytological chromosome counting confirmed the accuracy of estimated ploidy levels for five
representative plants (3x to 6x). Even though aneuploidy occurs at an appreciable level in
guayule (Gore et al., 2011; Kuruvadi et al., 1997), there was no evidence of aneuploidy for these five plants.

We also explored ploidy level variation within and among 14 accessions of mariola—the closest sister taxon of guayule (Powers and Rollins, 1945; Rollins, 1944; Rollins, 1945). As with guayule, a natural ploidy series, although not as extensive, was detected for mariola that ranged from triploid \(2n = 3x = 54\) to pentaploid \(2n = 5x = 90\). Such a ploidy series \((3x \text{ to } 5x)\) was also detected for wild mariola accessions by (Stebbins and Kodani, 1944), but diploid mariola plants were not identified in our study. Notably, four of six plants across the three ploidy levels showed evidence for aneuploidy, with \(2n = 55, 76, \) and \(82\) chromosomes. A large-scale assessment of guayule and mariola plants collected from native stands across diverse geographic regions is needed to determine if aneuploidy is more prevalent in mariola than guayule. In addition, we evaluated ploidy variation within an interspecific hybrid constructed from a cross between guayule and mariola. The hybrid was found to be tetraploid and have at least two aneuploid plants. Although the ploidy of parental plants for the interspecific hybrid cannot be accurately predicted based on these data alone, interspecific hybridization between tetraploid plants of guayule and mariola are more likely to produce tetraploid offspring (Rollins, 1945).

3.2 Nuclear genome size variation

The nuclear genome sizes of 12 guayule and mariola accessions that captured the ploidy level variation of these two \textit{Parthenium} species were estimated. Estimates of nuclear genome sizes (haploid) for the \(2x\) to \(6x\) guayule ploidy series ranged from 1,624 to 4,812 Mb, with an incremental increase of 779 Mb per ploidy level based on a linear regression model \((R^2 = 0.99)\). With a range from 2,616 to 4,181 Mb, the \(3x\) to \(5x\) ploidy series of mariola extended slightly beyond the \(3x\) to \(5x\) range of guayule. With the exclusion of the two aneuploid plants that had 76 and 84 chromosomes, a linear regression model \((R^2 = 0.99)\) showed that genome size increased 763 Mb per ploidy level for mariola. Thus, the genome sizes of guayule and mariola at the same ploidy level are highly similar. Additionally, the estimated nuclear genome size of the interspecific hybrid was similar to the genome sizes of the guayule and mariola tetraploids.

We showed that the nuclear genome size of the diploid guayule accession 36-chromosome was 1.9 to 2.2 fold smaller than that of lettuce \((2n = 2x = 18)\) and sunflower \((2n = 2x = 34)\), respectively, which are two diploid species also in the Compositae family. This suggests that the diploid guayule genome has a lower repetitive DNA content than the genomes of the lettuce (Salinas) and sunflower (HA 412 HO) accessions that are currently being used by whole-genome sequencing projects. Notably, our estimates of 3130 and 3589 Mb for the nuclear genome size of lettuce and sunflower were very close to the reported estimates of 2700 and 3500 Mb, respectively, by their respective genome sequencing consortiums (Kane et al., 2011; Truco et al., 2013).

4. Conclusions

This is the first flow cytometry study of variability in ploidy levels within and among mariola accessions from the NPGS, as well as the first estimation of nuclear genome size for guayule, mariola, and an interspecific hybrid of these two species. Similar to the findings of Gore et al. (2011) for guayule, we detected a natural ploidy series for mariola \((3x \text{ to } 5x)\), with evidence for mixed ploidy within four accessions. Given that ploidy level is of critical importance to genetic and transgenic studies of mariola, the ploidy of experimental plants must be determined
before primary experiments are initiated. Furthermore, a higher incidence of aneuploidy in mariola relative to guayule was revealed by cytological chromosome counting, which merits further investigation to discern if aneuploidy is more rampant in mariola. Such a finding, as well as elucidation of its biological cause would have important implications for the development of interspecific hybrids between guayule and mariola.

The diploid guayule accession 36-chromosome has an estimated nuclear genome size that is about twofold smaller than lettuce and sunflower, thus indicating that it may be less complex to sequence than the lettuce and sunflower genomes, with their likely higher repetitive DNA contents. Similarly, mariola would be less complicated to sequence if a diploid accession was available, given the likely similar genome size of a diploid mariola accession to the diploid guayule. Importantly, the availability of guayule and mariola genome sequences would 1) enhance the study of genome structure and function within the Compositae, 2) serve as a framework for the development of molecular breeding tools for the genetic improvement of guayule and 3) facilitate the introgression of chromosomal segments from mariola to guayule.

Acknowledgements

We thank the following institutions for providing seeds: National Arid Land Plant Genetics Resources Unit at Parlier, CA, North Central Plant Introduction Station at Ames, IA, R. Michelmore at University of California, Davis, and J. Doležel at the Institute of Experimental Botany in the Czech Republic. Also, we wish to thank Greg Leake, Stephanie Johnson, and Kristen Cox for assistance in maintaining plants in the greenhouse and collecting leaf tissue for flow cytometry experiments. Preparation of samples for genome-size analysis was carried out by Patrick Redmond and Michael Boerman at the Institute for Genomic Diversity at Cornell University. This work was funded and supported by the USDA-ARS and USDA-NIFA/DOE Biomass Research and Development Initiative (BRDI) Grant No. 2012-10006. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture.
References

Powers, L., 1945. Fertilization without reduction in guayule (Parthenium argentatum Gray) and a hypothesis as to the evolution of apomixis and polyploidy. Genetics 30, 323-346.
Table 1. Ploidy levels and chromosome numbers of 17 guayule and mariola accessions.

<table>
<thead>
<tr>
<th>Species</th>
<th>Accession</th>
<th>Ploidy Analysis</th>
<th>Cytogenetic Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No. Plants^a</td>
<td>Average Peak Ratio</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>36-Chromosome</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>11591</td>
<td>14</td>
<td>1.51</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>11591</td>
<td>1</td>
<td>2.46</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>CFS-24</td>
<td>5</td>
<td>1.51</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>CFS-24</td>
<td>7</td>
<td>1.98</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>CFS-24</td>
<td>3</td>
<td>2.50</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>AZ-5</td>
<td>15</td>
<td>2.01</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>N566</td>
<td>3</td>
<td>1.96</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>N566</td>
<td>12</td>
<td>2.48</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>CFS-21</td>
<td>14</td>
<td>1.97</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>CFS-21</td>
<td>1</td>
<td>2.94</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CSO3-2005</td>
<td>15</td>
<td>1.56</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CSO7-2005</td>
<td>15</td>
<td>1.57</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CSO8-2005</td>
<td>15</td>
<td>1.56</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CS12-2005</td>
<td>15</td>
<td>1.56</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CS13-2005</td>
<td>15</td>
<td>1.55</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CSO4-2005</td>
<td>14</td>
<td>1.56</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CSO4-2005</td>
<td>1</td>
<td>2.20</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CS11-2005</td>
<td>14</td>
<td>1.56</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CS11-2005</td>
<td>1</td>
<td>2.35</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CSO6-2005</td>
<td>3</td>
<td>1.57</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CSO6-2005</td>
<td>12</td>
<td>2.06</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CSO5-2005</td>
<td>15</td>
<td>2.05</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CSO1-2005</td>
<td>14</td>
<td>2.04</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CSO1-2005</td>
<td>1</td>
<td>2.46</td>
</tr>
<tr>
<td>P. argentatum/</td>
<td>R1109</td>
<td>15</td>
<td>2.00</td>
</tr>
<tr>
<td>P. incanum</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aNumber of plants.
^bSD, standard deviation.
^cAneuploid plant.
Table 2. Nuclear genome sizes (megabase; Mb) of 12 guayule and mariola accessions and two comparative species, lettuce, and sunflower.

<table>
<thead>
<tr>
<th>Species</th>
<th>Accession</th>
<th>Ploidy and Chromosome Number</th>
<th>No. Plants</th>
<th>Average picogram DNA/nucleus</th>
<th>SD(^g)</th>
<th>Estimated Haploid Genome Size (Mb)(^h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. argentatum</td>
<td>36-Chromosome</td>
<td>2(n)=2(x)=36(^a)</td>
<td>1</td>
<td>3.32</td>
<td></td>
<td>1624</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>11591</td>
<td>2(n)=3(x)=54(^a)</td>
<td>3</td>
<td>4.98</td>
<td>0.04</td>
<td>2435</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>11591</td>
<td>2(n)=5(x)=90(^b)</td>
<td>1</td>
<td>7.89</td>
<td></td>
<td>3858</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>N566</td>
<td>2(n)=4(x)=72(^b)</td>
<td>3</td>
<td>6.28</td>
<td>0.08</td>
<td>3071</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>CFS-21 #2</td>
<td>2(n)=4(x)=72(^b)</td>
<td>3</td>
<td>6.56</td>
<td>0.07</td>
<td>3208</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>AZ-5</td>
<td>2(n)=4(x)=72(^a)</td>
<td>3</td>
<td>6.56</td>
<td>0.06</td>
<td>3208</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>N566</td>
<td>2(n)=5(x)=90(^a)</td>
<td>3</td>
<td>8.06</td>
<td>0.05</td>
<td>3941</td>
</tr>
<tr>
<td>P. argentatum</td>
<td>CFS-21 #2</td>
<td>2(n)=6(x)=108(^a)</td>
<td>1</td>
<td>9.84</td>
<td></td>
<td>4812</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CFSO4-2005</td>
<td>2(n)=3(x)=54(^a)</td>
<td>3</td>
<td>5.53</td>
<td>0.03</td>
<td>2704</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CFSO4-2005</td>
<td>2(n)=4(x)=76(^c)</td>
<td>1</td>
<td>7.67</td>
<td></td>
<td>3751</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CF911-2005</td>
<td>2(n)=3(x)=55(^c)</td>
<td>3</td>
<td>5.35</td>
<td>0.16</td>
<td>2616</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CF911-2005</td>
<td>2(n)=5(x)=84(^c)</td>
<td>1</td>
<td>8.16</td>
<td></td>
<td>3990</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CF906-2005</td>
<td>2(n)=3(x)=55(^c)</td>
<td>3</td>
<td>5.48</td>
<td>0.14</td>
<td>2680</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CF906-2005</td>
<td>2(n)=4(x)=72(^a)</td>
<td>3</td>
<td>7.02</td>
<td>0.05</td>
<td>3433</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CF901-2005</td>
<td>2(n)=4(x)=72(^b)</td>
<td>3</td>
<td>7.10</td>
<td>0.13</td>
<td>3472</td>
</tr>
<tr>
<td>P. incanum</td>
<td>CF901-2005</td>
<td>2(n)=5(x)=90(^a)</td>
<td>1</td>
<td>8.55</td>
<td></td>
<td>4181</td>
</tr>
<tr>
<td>P. argentatum/P. incanum</td>
<td>R1109</td>
<td>2(n)=4(x)=70-73(^d)</td>
<td>3</td>
<td>6.50</td>
<td>0.05</td>
<td>3179</td>
</tr>
<tr>
<td>L. sativa</td>
<td>Salinas</td>
<td>2(n)=2(x)=18(^e)</td>
<td>3</td>
<td>6.40</td>
<td>0.15</td>
<td>3130</td>
</tr>
<tr>
<td>H. annuus</td>
<td>HA 412 HO</td>
<td>2(n)=2(x)=34(^f)</td>
<td>3</td>
<td>7.34</td>
<td>0.22</td>
<td>3589</td>
</tr>
</tbody>
</table>

\(^a\)Chromosome number based on one plant.

\(^b\)Chromosome number inferred from chromosome counts on euploid plants of the same species with an identical ploidy level.

\(^c\)Chromosome number based on one aneuploid plant.

\(^d\)Chromosome numbers based on two aneuploid plants.

\(^e\)Chromosome number from (Truco et al., 2013).

\(^f\)Chromosome number from (Kane et al., 2011).

\(^g\)SD, standard deviation.

\(^h\)Haploid nuclear genome size was estimated as follows: \([(\text{average picogram DNA/nucleus} \times 978 \text{ Mb}) / 2]\) (Doležel et al., 2003).