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Abstract 

Rough bluegrass (RBG, Poa trivialis L.) is a difficult-to-control weed that commonly 

infests cool-season turfgrass swards after movement of vegetative propagules or contamination 

from seed lots.  Rough bluegrass is less tolerant of heat stress than desirable cool-season species 

such as tall fescue (TF, Festuca arundinacea Schreb. Syn Schedonorus arundinaceus Schreb.), 

and often declines during mid-summer due to biotic or abiotic stresses.  The objectives of these 

2011-2013 controlled environment and field experiments were to: 1) observe growth and 

physiological differences between ‘Laser’ and ‘Pulsar’ RBG and TF; 2) differentiate between 

physiological and pathological contributors to RBG decline; 3) determine the effects of TF 

seeding rate and mowing height on TF/RBG establishment when RBG is a seed contaminant; 4) 

evaluate herbicide combinations for selective RBG control; and 5) evaluate seasonal timing of 

glyphosate for nonselective RBG control.  Tall fescue was less affected by elevated temperature 

than RBG.  At 35°C, Laser and Pulsar experienced similar reductions in quality, gross 

photosynthesis (Pg), shoot and root biomass, and root length density compared to when grown at 

23°C, but maximum electrolyte leakage was greater for Pulsar (63%) than for Laser (49%).  Cell 

membrane thermostability could contribute to the better heat tolerance of Laser RBG.  

Evaluation of RBG foliage and roots did not reveal a fungal pathogen associated with RBG 

decline.  Still, repeated applications of azoxystrobin (610 g a.i. ha-1) or pyraclostrobin (556 g a.i. 

ha-1) increased RBG quality, cover, and Pg during summer compared to untreated RBG, possibly 

due to poorly understood non-target physiological effects of the fungicides.  Mowing TF at 7.6 

or 11.4 cm reduced RBG incidence up to 57% compared to mowing at 3.8 cm.  Tall fescue 

seeding rate had no effect on RBG incidence.  Several herbicides and herbicide combinations 

resulted in some RBG injury in the field, but bispyribac-sodium was the only treatment that 

provided RBG control (16 to 92%) in Manhattan, KS; Hutchinson, KS; and Mead, NE.  Spring-

applied glyphosate resulted in the lowest RBG coverage (1 to 31%) among field studies in 

Manhattan and Mead, followed by late-summer applications (6 to 58%), and mid-summer 

applications (9 to 86%). 
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Chapter 1 - Review of Literature 

 Rough Bluegrass Origin and Use  

Rough bluegrass (Poa trivialis L.), also commonly known as roughstalk bluegrass, rough 

meadowgrass, and roughstalk meadowgrass (Beard, 1973), is a C3 cool-season perennial 

turfgrass species that is native to northern Europe, temperate Asia, and northern Africa 

(Hubbard, 1954).  Rough bluegrass was likely originally introduced to North America as a 

contaminant in Kentucky bluegrass (Poa pratensis L.) seed (Hurley, 2003).  Rough bluegrass 

forms a yellow-green, moderately fine-textured, medium dense turf that produces leafy stolons 

(Beard, 1973; Hurley, 2003).  The species grows aggressively under suitable conditions, often 

segregating into distinct patches that do not blend well in mixed stands of other cool-season 

turfgrass species (Beard, 1973; Fry and Huang, 2004; Hurley, 2003).  Still, rough bluegrass may 

go unnoticed in mixed stands with other cool-season turfgrasses until decline during summer 

months (Fry and Huang, 2004) due to its sensitivity to heat and drought stresses (Beard, 1973), 

and potential susceptibility to turf diseases including brown patch (Rhizoctonia solani Kuhn), 

dollar spot (Sclerotinia homoeocarpa F.T. Bennett), and pythium blight (Pythium spp.) (Hurley, 

2003).  Rough bluegrass is cross-pollinated and has a significant amount of genetic variability 

among biotypes (Beard, 1973; Hurley, 2003).  Older, common-type cultivars (e.g. ‘Danish 

common,’ ‘Dasas,’ ‘Polis,’ and ‘Indo’) were produced in Europe and are light in color, and form 

a loose-growing sod with a high vertical growth rate.  There are now several improved cultivars 

(e.g. ‘Cypress,’ ‘Sabre,’ ‘Laser,’ ‘Winterplay,’ ‘Darkhorse’) that were bred to be lower growing, 

darker green turfs that produce a denser sod with improved disease resistance (Hurley, 2003). 

Commercially, rough bluegrass is recommended for use in shaded, moist lawns and is 

often used for winter overseeding programs on bermudagrass (Cynodon spp.) turfs in southern 

climates (Fry and Huang, 2004; Hurley, 2003).  Rough bluegrass responds more to irrigation 

than any other cultural practice (Beard, 1973), and, despite its sensitivity to heat, has survived 

summer months in overseeded bermudagrass putting greens in Florida if water is not limiting 

(Hurley, 2003). 
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 Rough Bluegrass Physiology and Growth 

Rough bluegrass has excellent low temperature hardiness and its seed can germinate and 

grow at low temperatures (Hurley, 2003).  However, rough bluegrass is quite susceptible to heat 

and drought stresses due to its fibrous, shallow root system.  It is well adapted to cool, damp, 

shaded locations not subjected to concentrated traffic (Beard, 1973; Hurley, 2003).  Many 

commonly used cool-season turfgrass species are less sensitive to heat stress than rough 

bluegrass (Sifers and Beard, 1993).  Still, high temperature stress is the main factor causing leaf 

senescence and physiological damage of cool-season turfgrasses (Cross et al., 2013; Xu and 

Huang, 2009) and occurs at temperatures greater than 30°C (Fry and Huang, 2004).  Rates of 

photosynthesis are more inhibited by high temperature stress than respiratory rates.  This leads to 

an imbalance whereby carbon used in respiration exceeds that provided by photosynthesis, 

ultimately depleting carbohydrate reserves (Taiz and Zeiger, 2010).  The reduced photosynthetic 

capacity of plants exposed to heat stress has been associated with reductions in photochemical 

(e.g. carotenoids, chlorophyll a and b) efficiency of photosystem II, the interruption of electron 

transport, and reduced CO2 fixation and assimilation resulting from reduced ribulose-1, 5-

bisphosphate carboxylase/oxygenase (RuBisCO) activity (Berry and Björkman, 1980; Liu and 

Huang, 2008, Xu and Huang, 2000).  Additionally, the induction of free radicals such as 

hydrogen peroxide (H2O2) during heat stress results in lipid peroxidation, ultimately degrading 

cell membranes and possibly inhibiting photosynthesis and respiration (Fry and Huang, 2004).   

High temperature stress can also greatly affect turfgrass rooting.  The fine root system is 

the primary pathway for water and nutrient absorption in vascular plants and root system 

maintenance requires a large allocation of carbon, often at the expense of new shoot growth 

(Eissenstat, 1992).  Increased soil temperatures also adversely affect shoots maintained at 

optimal temperatures.  Air temperature maintained at 20°C and root zone temperatures in excess 

of 23°C have been shown to be detrimental to root activities and net photosynthesis (Pote et al., 

2006).  Likewise, root zone temperatures of 25°C or greater may decrease cytokinin content, root 

number, and root biomass; and soil temperatures of 35°C can result in decreased rooting depth 

and overall turf quality (Pote et al., 2006).  Similarly, Wang et al. (2003) observed decreased 

antioxidant and cytokinin content in shoots of creeping bentgrass (Agrostis stolonifera L.) 

maintained at 20°C when soil temperatures were 25°C or greater. 
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Several researchers have demonstrated the sensitivity of rough bluegrass to high 

temperature stress (Carroll and Welton, 1937; Loveys et al., 2002; Rutledge et al., 2012a; 

Rutledge et al., 2012b; Sifers and Beard, 1993; Watschke et al., 1973).  For example, rough 

bluegrass maintains more fully open stomata during daylight hours compared to other cool-

season species, suggesting increased transpiration of rough bluegrass (Carroll and Welton, 1937).  

Similarly, Watschke et al. (1973) and Loveys et al. (2002) observed increases in rough bluegrass 

respiration with increasing temperature, and Watschke et al. (1973) observed a 50% decrease in 

rough bluegrass photosynthesis at 35°C compared to 23°C.   

More recently, researchers at Purdue observed stark physiological differences between 

creeping bentgrass and rough bluegrass exposed to supraoptimal temperatures (Rutledge et al., 

2012b).  In a controlled environment study, creeping bentgrass exhibited better turf quality at 28 

and 35 days after heat treatments began.  Rough bluegrass shoot growth declined after only 11 

days at 33°C.  After 35 days at 33°C, amino acid concentrations in rough bluegrass and creeping 

bentgrass shoots increased 223 and 64%, respectively, compared to plants at 23°C.  Perhaps most 

interestingly, rough bluegrass roots maintained higher total nonstructural carbohydrate and 

fructan concentrations than creeping bentgrass roots, indicating that rough bluegrass may not 

have been able to hydrolyze fructan to simple sugars for metabolic activity (Rutledge et al., 

2012b).  In a separate study, Rutledge et al. (2012a) observed total nonstructural carbohydrate 

concentrations in ‘L-93’ creeping bentgrass shoots remained unchanged in mid- to late-summer, 

while concentrations in Laser and ‘Pulsar’ rough bluegrass shoots decreased 18 to 26%, possibly 

due to degradation, metabolism, or translocation to stolons.  Protein and amino acid 

concentrations followed a similar trend.  Furthermore, total nonstructural carbohydrate 

concentrations in shoots of Laser and Pulsar increased 19 and 29%, respectively, during fall 

along with a respective 23 and 31% decrease in stolons, suggesting that the rapid decline of 

rough bluegrass during high temperature exposure is a survival mechanism whereby stolons are 

used as survival structures until favorable growing conditions return (Rutledge et al., 2012a). 

Rutledge et al. (2012b) selected Laser and Pulsar rough bluegrass for their experiment as 

relatively heat-tolerant and heat-sensitive cultivars, respectively, but they did not observe 

differences in turf quality, clipping yields, chlorophyll content, electrolyte leakage, root dry 

weight, root viability, or amino acid, total nonstructural carbohydrate, fructan, glucose, or protein 

concentrations in shoots/roots between the cultivars when exposed to elevated temperatures.  
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Electrolyte leakage is a measure of cell membrane thermostability that is commonly used to 

evaluate relative heat tolerance of plants (Jiang and Huang, 2001; Marcum, 1998; Su et al., 2009; 

Wallner et al., 1982).  While tall fescue (Festuca arundinacea Schreb. Syn Schedonorus 

arundinaceus Schreb.) is commonly accepted to be more heat tolerant than other cool-season 

species, in part due to its deep root system that maintains an adequate water supply for 

transpirational cooling (Fry and Huang, 2004), Wallner et al. (1982) reported that tall fescue is 

not more heat tolerant than perennial ryegrass (Lolium perenne L.) in vitro according to 

electrolyte leakage estimates.  Conversely, Jiang and Huang (2001) reported that electrolyte 

leakage increased more rapidly for perennial ryegrass than for tall fescue when exposed to heat 

stress alone, or in combination with drought stress.  More recently, Cross et al. (2013) tested 24 

tall fescue genotypes in a growth chamber study to compare “summer stress-tolerant” and 

“summer stress-sensitive” selections.  There were few differences among selections under 

drought stress or a combination of heat and drought stresses.  However, when selections were 

exposed only to heat stress, summer stress-tolerant selections had better turf quality, higher 

photochemical efficiency, and less electrolyte leakage compared to summer stress-sensitive 

selections indicating better heat tolerance.  Interestingly, one TF clone (designated TF-3) was a 

top-performing selection under heat stress, but was among the worst selections under drought 

stress or a combination of heat and drought stress.  Because TF-3 had very low soil volumetric 

water content under optimal conditions and under all combinations of heat and drought stresses, 

the researchers concluded that its heat tolerance resulted from a high level of transpirational 

cooling due to high water use (Cross et al., 2013).   

Since there is still no empirical explanation for the differences in relative heat tolerance 

between Laser and Pulsar, further examination of differences in EL, as well as other stress 

tolerance parameters, between the two cultivars and a heat tolerant turf species is warranted. 

 Pathogenic Contribution to Summer Decline 

While heat and drought stresses are likely the main instigators in rough bluegrass summer 

decline, there is some indication that disease susceptibility may play a larger role than previously 

thought.  Recently, rough bluegrass subjected to applications of azoxystrobin or fungicide 

mixtures containing azoxystrobin at two-week intervals beginning in May maintained quality 

and cover during summer months in Indiana compared to rough bluegrass not treated with 
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azoxystrobin, or treated with azoxystrobin beginning after decline had ensued in July 

(Weisenberger and Reicher, 2006 and 2007).  These results indicate that summer rough bluegrass 

decline may be due, in part, to one or more pathogens.  Azoxystrobin is a strobilurin (QoI) 

fungicide (Fungicide Resistance Action Committee [FRAC] Code 11).  In fungi, strobilurin 

fungicides inhibit mitochondrial respiration at the Qo site of cytochrome b, blocking electron 

transfer between cytochrome b and c1, thus preventing ATP synthesis (Bartlett et al., 2002).  

While strobilurin fungicides provide control of diseases caused by ascomycetous, 

basidiomycetous, and oomycetous fungi, many have also been associated with increased yield 

and quality in various plants even with trivial differences in disease control (Bartlett et al., 2002).  

For example, studies have shown treatment with azoxystrobin, kresoxim-methyl, trifloxystrobin, 

picoxystrobin, or pyraclostrobin have positively affected yield and grain size in wheat (Triticum 

aestivum L.) and barley (Hordeum vulgare L.), by influencing the maintenance of green leaf area 

of crops until late in the season, thereby maximizing the grain-filling period (Bartlett et al., 

2002).  On the other hand, Wrather et al. (2004) observed that treatment with azoxystrobin 

resulted in lower quality soybean [Glycine max (L.) Merr.] seed.  Applications of kresoxim-

methyl or pyraclostrobin to wheat under drought stress evoked similar plant responses to low 

quantities of auxins reducing ethylene activity and increasing cytokinin content and antioxidant 

activity (Grossmann and Retzlaff, 1997; Köhle el al., 2002).  More recently, researchers in 

Tennessee examined the effects of strobilurin fungicides on creeping bentgrass under heat and/or 

drought stress (Brosnan et al., 2010).  No changes in  turfgrass quality were observed after 

fungicide applications, but azoxystrobin reduced visual root length and total root biomass of 

‘Penncross’ creeping bentgrass, and total root length, root length density, and total root biomass 

of ‘Penn A-1’ creeping bentgrass compared to untreated turf at 27°C under well-watered 

conditions.  Conversely, treatment with pyraclostrobin increased visual root length for both 

cultivars and also increased total root length, root surface area, root length density, root volume, 

and root biomass for Penn A-1 compared to untreated turf at 27°C and irrigated to prevent leaf 

wilt. 

Considering recent research, it is unclear if the improved rough bluegrass quality during 

summer observed by Weisenberger and Reicher (2006 and 2007) resulted from disease control 

from preventative fungicide applications of azoxystrobin, combinations including azoxystrobin, 

or from potential non-target effects of strobilurin fungicides.  More investigation is needed. 
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 Rough Bluegrass Control During Establishment 

After its introduction from Europe, rough bluegrass was both inadvertently and 

intentionally seeded throughout much of North America, leading to its naturalization (Hurley, 

2003).  Currently, naturalized populations are thought to spread vegetatively during routine 

cultural practices (e.g. aeration), while improved varieties with fine texture and relatively dark 

green color are likely introduced directly from seed lots (Levy, 1998; Reicher et al., 2011).  

Weed control in seed production has become more difficult since 1990, when a mandatory 

change from burning to mechanical removal of post harvest residue was initiated (Mueller-

Warrant, 1990; Mueller-Warrant and Rosato, 2005).  In 1996, Levy (1998) tested 90 creeping 

bentgrass seed samples from 10 seed companies and found that 30% of seed lots contained rough 

bluegrass seed.  Following this study, seed producers moved creeping bentgrass seed production 

areas away from rough bluegrass production areas and improved sanitation procedures (Reicher 

et al., 2011).  Nonetheless, rough bluegrass contamination remains a major concern.  In 2008, 

Reicher et al. (2011) sampled 37 cultivars/blends of creeping bentgrass from 10 distributors from 

five Midwestern states, the majority of which were certified.  Rough bluegrass was detected in 8 

of 72 seed lots.   

 Herbicidal Control Before and After Seeding 

On golf courses, bispyribac-sodium (Velocity, Valent U.S.A. Corporation, Walnut Creek, 

CA) can be a useful rough bluegrass control tool during establishment, especially with the 

likelihood of seed contamination.  Bispyribac-sodium is a pyrimidinylthiobenzoic acid herbicide 

that inhibits acetolactate synthase (ALS), blocking amino acid synthesis in sensitive plants 

(Lycan and Hart, 2006; Senseman, 2007).  Rutledge et al. (2010b) made a single application of 

bispyribac-sodium at 18, 37, 55, or 74 g a.i. ha-1 at 7, 14, 21, or 28 days after creeping bentgrass 

emergence in spring and fall.  Rutledge et al. concluded that bispyribac-sodium may be applied 

to spring- and fall-seeded creeping bentgrass as early as seven days after emergence at 55 and 74 

g a.i. ha-1 or less, respectively.  In spring, applications were most effective at or exceeding 37 g 

a.i. ha-1 at 7 or 14 days after creeping bentgrass emergence. 

Bispyribac-sodium can also be applied for rough bluegrass control before seeding.  In a 

field study in New Jersey, bispyribac-sodium applied at 148 or 296 g a.i. ha-1 did not reduce 

ground cover of desirable species (creeping bentgrass, Kentucky bluegrass, or perennial 
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ryegrass) when applied two or more weeks before seeding (Lycan and Hart, 2006).  Similarly in 

a three-year study in Indiana from 2006 to 2008, Rutledge et al. (2010a) applied bispyribac-

sodium four times at a two-week interval at 37, 56, or 74 g a.i. ha-1 and then seeded half of each 

plot with creeping bentgrass at 49 kg ha-1 two weeks following the final herbicide treatment.  In 

2006 and 2007, all bispyribac-sodium treatments reduced rough bluegrass cover to less than 27% 

compared to a minimum of 66% rough bluegrass cover in untreated plots by 46 weeks after 

seeding.  However, due to cooler summer temperatures in 2008, herbicide treatments were not as 

effective as in 2006 and 2007 and rough bluegrass cover in herbicide-treated plots was not 

different from untreated plots by 46 weeks after seeding.  By 46 weeks after seeding in 2006 and 

2007, interseeding with creeping bentgrass resulted in 69 and 85% creeping bentgrass cover, 

respectively, compared to 39 and 15%, respectively, in unseeded plots.  Similar to herbicide 

treatments, interseeding had no effect on creeping bentgrass cover in 2008 (Rutledge et al., 

2010a).  Interseeding with desired species following bispyribac-sodium application is an 

important strategy for long-term rough bluegrass control. 

 Cultural Control in Tall Fescue 

Rough bluegrass seed contamination is also a concern in tall fescue sports fields and 

residential lawns in the transition zone.  Even though rough bluegrass seed contamination has not 

been empirically confirmed in tall fescue seed lots as it has been in creeping bentgrass seed lots, 

it is generally accepted that rough bluegrass is introduced into tall fescue lawns and sports fields 

as a seed contaminant.  In fact, tall fescue seed yields decrease with increasing rough bluegrass 

ground cover in production fields (Mueller-Warrant and Rosato, 2005), potentially validating 

contamination concerns.  Once established, glyphosate is currently the only herbicidal control 

option in residential lawns and sports fields.  During establishment, rough bluegrass is very 

competitive and has been shown to out compete perennial ryegrass.  When intentionally seeded 

in mixtures, rough bluegrass decreased the tillering of perennial ryegrass by up to 30% (Haggar, 

1979).  In a separate study, rough bluegrass had a higher relative growth rate than perennial 

ryegrass from 25 to 81 days after emergence (Vartha, 1973).  Despite rough bluegrass’s 

aggressive growth habit, it may be possible to favor tall fescue over rough bluegrass during 

establishment by altering seeding rates and/or mowing heights.  For example, higher mowing 

heights favor tall fescue over bermudagrass [Cynodon dactylon L. (Pers.)] and smooth crabgrass 
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[Digitaria ischaemum (Schreb.) Schreb. ex Muhl.].  Mowing tall fescue at 6 cm reduced 

bermudagrass encroachment over a season compared to mowing at 2 cm (Brede, 1992), while 

mowing tall fescue at 9 cm significantly reduced the amount of smooth crabgrass establishment 

in a season compared to mowing at 3 cm (Dernoeden et al., 1993).  Similarly, Voigt et al. (2001) 

observed more crabgrass (D. spp.) in tall fescue mowed at 2.5 cm compared to that mowed at 5.1 

or 7.6 cm.  Higher initial mowing heights also favor perennial ryegrass over Kentucky bluegrass 

when seeded in mixtures.  Brede and Duich (1984) observed that perennial ryegrass/Kentucky 

bluegrass seed mixtures mowed at 3.8 cm required no less than 95% Kentucky bluegrass seed to 

produce a 50:50 stand two months after seeding, wheras mixtures mowed at 1.3 cm required only 

50 to 75% Kentucky bluegrass for a 50:50 stand.  Further information is needed to optimize 

seeding rates and mowing height in tall fescue stands to minimize rough bluegrass colonization. 

 Postemergence Rough Bluegrass Control with Herbicides 

Few herbicides are effective for the selective control of rough bluegrass in cool-season 

grasses.  Fenoxaprop applied at 0.28 kg a.i. ha-1 reduced rough bluegrass in perennial ryegrass 

fields in Oregon (Mueller-Warrant, 1990), but there are no other reports of rough bluegrass 

control with fenoxaprop.  Neal and Senesac (1993) observed up to 20% injury of rough bluegrass 

with application of quinclorac (0.8 kg a.i. ha-1) + 2,4-dichlorophenoxy acetic acid (1.1 kg a.i. ha-

1) by six weeks after treatment, but rough bluegrass recovered by 12 weeks after treatment.  In a 

field study in Georgia, applications of oryzalin, oryzalin + benefin, and oryzalin + oxyfluorfen 

were severely injurious to overseeded Laser rough bluegrass in a ‘Tifway’ bermudagrass 

[Cynodon transvaalensis Burtt-Davy × C. dactylon (L.) Pers] putting green and influenced the 

rate of summer transition back to bermudagrass (Johnson, 1998).  However, preemergence 

herbicides will not control perennial weeds like rough bluegrass once established, and oryzalin is 

injurious to desirable cool-season turf species.  Rough bluegrass also tolerates fenarimol, which 

is a demethylation inhibiting (DMI) fungicide that inhibits ergosterol synthesis in fungal cell 

membranes, and has preemergence herbicidal activity on annual bluegrass (Johnson, 1994). 

There may be potential for rough bluegrass suppression with plant growth regulators.  

Monthly applications of trinexapac-ethyl at 0.19 kg a.i. ha-1 resulted in a 75% rough bluegrass 

reduction after seeding a mixture of creeping bentgrass, annual bluegrass, and rough bluegrass in 

a field study in Ohio (Bell et al., 1999).  Paclobutrazol is more commonly used for annual 
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bluegrass suppression on golf course fairways and putting greens (Baldwin and Brede, 2011; 

McCullough et al., 2005), but it is unclear if paclobutrazol suppresses rough bluegrass. 

 Bispyribac-sodium 

The most successful selective rough bluegrass control has come from applications of 

bispyribac-sodium or sulfosulfuron (Certainty, Monsanto Co., St. Louis, MO).  Sulfosulfuron is 

no longer labeled for use in cool season turf (Anonymous, 2012a).  Morton et al. (2007) tested 

several rates and timings of bispyribac-sodium, and found that four applications at 56 or 74 g a.i. 

ha-1 at two-week intervals reduced rough bluegrass by 85% or more compared to untreated plots 

12 weeks after initial treatment.  All rates (37, 56, 74, and 114 g a.i. ha-1) caused phytotoxicity in 

desired species, but turf recovered by two weeks after treatment.  The researchers also noted that 

efficacy of bispyribac-sodium increased at warmer temperatures (~24 to 30°C).  Askew et al. 

(2004) also observed increased efficacy of bispyribac-sodium when applications began at 

warmer times of the year in Virginia.  Three applications of bispyribac-sodium at 74 g a.i. ha-1 

beginning in June, August, and September reduced rough bluegrass cover 93, 95, and 31%, 

respectively, by 10 weeks after initial treatment, while applications at 37 g a.i. per ha-1 only 

reduced rough bluegrass 88, 48, and 11%, respectively.  In two separate field experiments in 

New Jersey, bispyribac-sodium applied two (37, 74, or 111 g a.i. ha-1) or three (37 or 74 g a.i. ha-

1) times at approximately three week intervals in two consecutive seasons beginning in June 

reduced rough bluegrass cover to 2% or less by August of the second season in both experiments 

with minimal phytotoxicity to creeping bentgrass (McCullough and Hart, 2011).  Untreated plots 

averaged 9 and 4% cover at this time, respectively, and all bispyribac-sodium treatments had less 

rough bluegrass cover than untreated plots.  There were no differences among rates or timings.  

However, by October in both experiments rough bluegrass had recovered in all bispyribac-

sodium-treated plots and was not different from untreated.  McCullough and Hart (2011) suggest 

that dormancy responses of rough bluegrass following applications likely limited translocation of 

herbicide to stems and roots, ultimately limiting control.   

Observed differences in rough bluegrass control with bispyribac-sodium may be due, in 

part, to genetic variation within the species.  The efficacy of bispyribac-sodium was not different 

among eight cultivars of rough bluegrass (‘Bariviera’, Laser, ‘Proam’, Pulsar, ‘Racehorse’, 

‘Sabre II’, ‘Sun-Up’, and ‘Winterlinks’) when mowed at 1.25 cm in Indiana (Morton et al., 
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2009).  However, Laser and Bariviera seemed to be more susceptible, and Pulsar less susceptible, 

to bispyribac-sodium than other cultivars when mowed at 5.0 cm. 

 Amicarbazone and Mesotrione 

Even though bispyribac-sodium can be effective for rough bluegrass control, its use is 

limited to golf course and sod farm turf (Anonymous, 2010).  More control options are needed.  

Amicarbazone (Xonerate, Arysta LifeScience, Cary, NC) and mesotrione (Tenacity, Syngenta 

Crop Protection, Greensboro, NC) are selective postemergence herbicides that are labeled for use 

in many turfgrass sites.  Amicarbazone is labeled for use on golf courses, sod farms, residential 

and commercial turf sites, park and recreation areas, school grounds and other turf areas 

(Anonymous, 2012b).  Mesotrione is labeled for use on golf courses, sod farms, athletic fields, 

parks, residential and commercial properties, cemeteries, airports, and lawns (Anonymous, 

2011).  In sensitive plants, amicarbazone inhibits photosystem II by blocking electron transport, 

whereas mesotrione is a p-hydroxyphenylpyruvate (HPPD)-inhibiting herbicide (Elmore et al., 

2013).  Recently, researchers have shown that amicarbazone and mesotrione more effectively 

control annual bluegrass (Poa annua L.) when tank-mixed than when either product is applied 

alone (Elmore et al., 2013).  Elmore et al. (2013) explain that the synergistic effects of 

combinations of amicarbazone and mesotrione result from coinciding increased production of 

toxic singlet oxygen (amicarbazone) and decreased singlet oxygen quenching due to inhibited 

carotenoid production (mesotrione).  Amicarbazone and mesotrione are not currently labeled for 

rough bluegrass control, but there is interest in evaluating the efficacy of the products, especially 

when applied in combination. 

 Nonselective Control 

Currently, nonselective herbicides are often the only option for rough bluegrass control in 

sports fields and residential lawns.  However, it is unclear if control varies with the seasonal 

timing of application as it often does with bispyribac-sodium (Askew et al., 2004; Morton et al., 

2007; Rutledge et al., 2010a).  Rough bluegrass has been anecdotally reported to persist in sites 

which have been renovated with use of glyphosate before fall seeding.  Spring applications of 

imazapic plus glyphosate are more effective controlling Kentucky bluegrass compared to 

summer or fall applications (Adkins and Barnes, 2013), but the effects of seasonal timing of 

glyphosate application on rough bluegrass control are not known. 
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 Objectives 

In summary, relative differences in phenotypic heat tolerance among rough bluegrass 

cultivars are poorly understood.  It is also unclear if turfgrass diseases contribute significantly to 

summer rough bluegrass decline, or if abiotic stresses are solely responsible.  Rough bluegrass is 

difficult to control in cool-season turf.  Seed contamination may result in the unintended 

presence of rough bluegrass in tall fescue swards, and further information is needed to culturally 

minimize rough bluegrass colonization during establishment.  Selective postemergence 

herbicides are limited for rough bluegrass control in cool-season turf, especially in sites other 

than golf courses and sod farms.  Synergistic herbicide combinations that selectively control 

annual bluegrass in cool-season turfgrasses may have efficacy against rough bluegrass.  Lastly, 

nonselective herbicides are currently the most reliable rough bluegrass control option in cool-

season turfgrasses, but the effect of seasonal timing of nonselective herbicide applications on 

rough bluegrass control has not been confirmed empirically.  Therefore, my objectives were to: 

1) observe growth and physiological differences between ‘Laser’ and ‘Pulsar’ rough bluegrass 

and tall fescue at elevated temperatures; 2) differentiate between physiological and pathological 

contributors to rough bluegrass decline; 3) determine the effects of tall fescue seeding rate and 

mowing height on tall fescue establishment and rough bluegrass encroachment when rough 

bluegrass is a seed contaminant; 4) evaluate herbicide combinations for selective rough bluegrass 

control; and 5) evaluate seasonal timing of glyphosate for nonselective rough bluegrass control. 
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Chapter 2 - Growth and Metabolic Responses of Rough Bluegrass 

Cultivars and Tall Fescue to Elevated Temperatures 

 Abstract 

Rough bluegrass (RBG, Poa trivialis L.) is a weed in other cool-season turfs because it 

declines in quality during prolonged high temperatures, often leaving unsightly patches.  Rough 

bluegrass cultivars differ in heat tolerance, but growth and physiological factors in response to 

heat are poorly understood.  The goal was to observe growth and physiological differences 

between two RBG cultivars and tall fescue (TF, Festuca arundinacea Schreb. Syn Schedonorus 

arundinaceus Schreb.), which has superior heat tolerance among cool-season grasses.  Four 

months after seeding, pots of ‘Laser’ and ‘Pulsar’ RBG and ‘Second Millennium’ TF were 

subjected to optimal (23°C day/19°C night) or supraoptimal (35/29°C) temperatures for 35 days.  

At 35°C, Laser had unacceptable quality at 7 days after induction (DAI) of heat stress and Pulsar 

had unacceptable quality at 14 DAI, with no differences between the two thereafter.  Gross 

photosynthesis (Pg) of Laser, Pulsar, and TF at 35°C was significantly lower than that of 

turfgrasses at 23°C by 0, 7, and 14 DAI, respectively, with a corresponding 36, 36, and 26 % 

reduction in Pg at 35°C by 35 DAI.  Maximum electrolyte leakage (EL) values at 35°C were:  

Laser (49%), Pulsar (63%), and TF (24%).  Laser and Pulsar both accumulated less shoot 

biomass at 35°C than TF.  Root biomass and root length density (RLD) of Laser and Pulsar at 

35°C were reduced compared to 23°C, whereas root biomass and RLD of TF was similar at 35 

and 23°C.  The root decline of Laser and Pulsar from 23 to 35°C likely contributed to reduced 

turf quality and Pg of RBG at elevated temperatures, but the lack of rooting differences between 

Laser and Pulsar with significant differences in EL between the two indicate that differences in 

cell membrane thermostability could play a significant role in heat tolerance among RBG 

cultivars. 



18 

 

 Introduction 

Rough bluegrass (RBG, Poa trivialis L.) is a perennial cool-season species that often 

declines during summer due to sensitivity to heat and drought stresses (Beard, 1973).  Many 

commonly used cool-season turfgrass species are less sensitive to heat stress than RBG (Sifers 

and Beard, 1993), making RBG a weed in cultivated turfgrass systems.  High temperature stress 

is the main factor causing leaf senescence and physiological damage of cool-season turfgrasses 

(Cross et al., 2013; Xu and Huang, 2009) and occurs at temperatures greater than 30°C (Fry and 

Huang, 2004).  Rates of photosynthesis are more inhibited by high temperature stress than 

respiratory rates, resulting in an imbalance whereby carbon used by respiration exceeds that 

provided by photosynthesis, ultimately depleting carbohydrate reserves (Taiz and Zeiger, 2010).  

The reduced photosynthetic capacity of plants exposed to heat stress has been associated with 

reductions in photochemical (e.g. carotenoids, chlorophyll a and b) efficiency of photosystem II, 

the interruption of electron transport, and reduced CO2 fixation and assimilation resulting from 

reduced ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) activity (Berry and 

Björkman, 1980; Liu and Huang, 2008, Xu and Huang, 2000a).  Additionally, the induction of 

free radicals such as hydrogen peroxide (H2O2) during heat stress results in lipid peroxidation, 

ultimately degrading cell membranes and possibly inhibiting photosynthesis and respiration (Fry 

and Huang, 2004).   

While the increased sensitivity of RBG to high temperature stress compared to other 

turfgrass species has been associated with increased respiration and/or decreased photosynthesis 

(Carroll and Welton, 1937; Loveys et al., 2002; Watschke et al., 1973), Rutledge et al. (2012b) 

recently observed differences in creeping bentgrass (Agrostis stolonifera L.) and RBG shoot 

amino acid concentrations and root nonstructural carbohydrate concentrations during heat stress.  

After 35 days at 33°C, RBG shoot amino acid concentrations increased 223% compared to plants 

at 23°C.  Rough bluegrass roots also maintained higher total nonstructural carbohydrate and 

fructan concentrations than creeping bentgrass roots, indicating that RBG may not have been 

able to hydrolyze fructan to simple sugars for metabolic activity (Rutledge et al., 2012b).  In a 

separate study, Rutledge et al. (2012a) observed that total nonstructural carbohydrate 

concentrations in ‘Laser’ and ‘Pulsar’ RBG shoots in midsummer decreased 18 to 26%, possibly 

due to degradation, metabolism, or translocation to stolons.  In fall, the researchers observed an 
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influx of nonstructural carbohydrates to shoots, presumably from stolons, suggesting that stolons 

function as survival structures during high temperature stress. 

Rough bluegrass cultivars/biotypes differ with regard to heat tolerance, but 

physiological/morphological differences among cultivars have not been identified.  Rutledge et 

al. (2012b) selected Laser and Pulsar RBG for their experiment as relatively heat-tolerant and 

heat-sensitive cultivars, respectively, but they did not observe differences in turf quality, clipping 

yields, chlorophyll content, electrolyte leakage (EL), root dry weight, root viability, or amino 

acid, total nonstructural carbohydrate, fructan, glucose, or protein concentrations in shoots/roots 

between the cultivars when exposed to elevated temperatures.  Electrolyte leakage is a measure 

of cell membrane thermostability that is commonly used to evaluate relative heat tolerance of 

plants (Jiang and Huang, 2001; Marcum, 1998; Su et al., 2009; Wallner et al., 1982).  While tall 

fescue (TF, Festuca arundinacea Schreb. Syn Schedonorus arundinaceus Schreb.) is commonly 

accepted to be more heat tolerant than other cool-season species, in part due to its deep root 

system that maintains an adequate water supply for transpirational cooling (Fry and Huang, 

2004), Wallner et al. (1982) reported that TF is not more heat tolerant than perennial ryegrass 

(Lolium perenne L.) in vitro according to EL estimates.  Conversely, Jiang and Huang (2001) 

reported that EL increased more rapidly for perennial ryegrass than for TF when exposed to heat 

stress alone, or in combination with drought stress.  More recently, Cross et al. (2013) tested 24 

TF genotypes in a growth chamber study to compare summer stress-tolerant and summer stress-

sensitive selections.  There were few differences among selections under drought stress or a 

combination of heat and drought stresses.  However, when selections were exposed only to heat 

stress, summer stress-tolerant selections had better turf quality, higher photochemical efficiency, 

and less EL compared to summer stress-sensitive selections indicating better heat tolerance.  

Interestingly, one TF clone (designated TF-3) was a top-performing selection under heat stress, 

but was among the worst selections under drought stress or a combination of heat and drought 

stress.  Because TF-3 had very low soil volumetric water content under control conditions and 

under all combinations of heat and drought stresses, the researchers concluded that its heat 

tolerance resulted from a high level of transpirational cooling due to high water use (Cross et al., 

2013).   

Since there is still no empirical explanation for the differences in relative heat tolerance 

between Laser and Pulsar, further examination of differences in EL, as well as other stress 
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tolerance parameters, between the two cultivars and a heat tolerant turf species is warranted.  

Therefore, the objective was to evaluate the heat tolerance of Laser, Pulsar, and TF by comparing 

differences in gross photosynthesis (Pg), clipping production, EL, aboveground biomass 

production, root length density, and total root biomass among the three turfgrasses in response to 

supraoptimal temperatures. 

 Materials and Methods 

The experiment was conducted twice.  Laser and Pulsar RBG (0.16 g per pot, or 

approximately 98 kg ha-1) and ‘Second Millennium’ TF (0.6 g per pot, or approximately 391 kg 

ha-1) were seeded in the Throckmorton Plant Sciences Center Greenhouse Complex at Kansas 

State University on 30 September 2011 (run 1) and 11 November 2011 (run 2).  Soil was a 

calcined clay (Turface MVP, Profile Products LLC, Buffalo Grove, IL) retained in 12.7 × 12.7 × 

30.5 cm (length × width × height) pots.  After seeding, each container received a topdressing of a 

controlled release fertilizer [Osmocote 14-14-14 (N-P2O5-K2O), Everris NA Inc., Dublin, OH] to 

provide N at 24 kg ha-1.  Seedlings were irrigated with an automatic misting system for five 

minutes six times per day until 28 days after seeding.  After removal from the misting system, 

seedlings were watered to field capacity daily, and fertilized with water-soluble fertilizer [Jack’s 

High Performance Fertilizer 25-5-15 (N-P2O5-K2O), J.R. Peters Inc., Allentown, PA] to provide 

N at 12 kg ha-1 weekly until fully covered.  Grasses were clipped once weekly at 6.4 cm.   

After approximately four months in the greenhouse, pots were placed into growth 

chambers (Conviron E15, Winnipeg, Canada).  Two growth chambers were available and were 

randomly designated as low (23°C day/19°C night) and high (35/29°C) temperature treatments.  

The experiment was designed similar to Rutledge et al. (2012b), except here a split-plot, rather 

than a split-block, treatment structure was used in a completely randomized design.  Temperature 

treatment (growth chamber) was the whole-plot treatment factor and turfgrass species/cultivar 

(TF, Pulsar, and Laser) was the sub-plot treatment factor.  Three replicate sub-plots of each turf 

were placed in growth chambers, set at 23/19°C on 13 January 2012 (run 1).  Following a four-

day acclimation period, the low-temperature chamber was left at 23/19ºC while the day/night 

temperature was increased in the high-temperature chamber by 3/2.5°C for four days until the 

temperature reached 35/29°C.  Turfgrasses were then subjected to high temperature treatment for 

35 days.  The experiment was repeated on 24 February 2012 (run 2).  Plants were provided a 14-
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hour photoperiod in both runs.  Photosynthetically active radiation (PAR) was measured with a 

ceptometer (LP-80 AccuPAR PAR/LAI Ceptometer, Decagon Devices, Inc., Pullman, WA).  In 

run 1 and run 2 PAR averaged 762 (± 54) and 781 (± 24) μmolm-2s-1, respectively, in a 

horizontal plane approximately 30 cm above the turf canopy.   

Turfgrass quality, clipping yield, Pg, and EL were measured weekly.  Turfgrass quality 

was evaluated visually considering color, density, and uniformity on a 1 to 9 scale (1=completely 

brown, 6=minimum acceptable quality, 9=optimum color, density, and uniformity).  Clipping 

yield was determined by collecting clippings removed after mowing with scissors each week.  

Weekly yields were oven-dried at 60°C for two days and weighed.  Gross photosynthesis was 

estimated by monitoring carbon dioxide fluxes during consecutive “sunlit” and shaded 

measurements with a custom steady-state chamber attached to a portable photosynthesis system 

(LI-6400, Li-Cor Industries, Lincoln, NE) (Bremer and Ham, 2005).  Shaded measurements were 

obtained by covering the chamber with an opaque fabric that blocked solar radiation.  Equations 

[5] and [6] from Bremer and Ham (2005), explain that sunlit chamber measurements estimate Pg 

- (Rc + Rs) and shaded chamber measurements estimate Rc + Rs, where Rc is canopy respiration 

and Rs is soil respiration; all values are defined as positive.  Equation [8] was then used to derive 

Pg:  Pg = (CO2 flux from sunlit chamber) + (CO2 flux from shaded chamber). 

The EL technique used was similar to that done by Su et al. (2009).  Leaf samples were 

collected weekly from the greenest turf in the pot.  For each sample, three 2.5 cm segments were 

collected from fully expanded leaves and placed in a test tube containing 25 mL of distilled 

water.  Samples were then agitated for 24 hours to remove electrolytes adhering to and released 

from cutting plant tissue.  After shaking for 24 hours, the electrical conductivity of the solution 

in each test tube was measured, and test tubes were placed in a 90°C water bath for one hour.  

After agitating samples for an additional 24 hours, final electrical conductivity measurements 

were taken (% EL = initial electrical conductivity / final electrical conductivity × 100). 

Shoot biomass was collected at 35 DAI and a 5 cm (diameter) × 17.5 cm (depth) plug 

was then randomly removed from each pot.  Roots were washed, dyed with a methyl blue [acid 

blue 93 (C37H27N3O9S3Na2), Sigma Chemical Co., St. Louis, MO] and water solution (5 g methyl 

blue L-1 water), scanned at 600 dpi, and analyzed with WinRHIZO (version 2003 b, Regent 

Instruments, Quebec City, Canada) to determine root length density (RLD).  Total root and shoot 

biomasses were then oven-dried at 60°C for two days and weighed. 
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 Data Analysis 

Residual normality was tested with the w statistic of the Shapiro-Wilk test using the 

UNIVARIATE procedure of Statistical Analysis System (SAS Institute Inc., Cary, NC) (Shapiro 

and Wilk, 1965).  Temperature treatment × turfgrass species/cultivar treatment combinations 

were of most interest.  For this reason, only sub-plot (turf species) and interaction effects were 

considered during analysis.  Error variances were homogeneous between runs according to 

Levene’s Homogeneity of Variance Test and runs were combined for analysis.  All data were 

subjected to analysis of variance using the GLIMMIX procedure of SAS.  Fisher’s Protected 

LSD (P ≤ 0.05) was used to detect treatment differences.  Furthermore, because direct 

comparisons between each species/cultivar at high and low temperature were of interest, a set of 

pre-planned, single-degree-of-freedom contrasts (t tests) (P ≤ 0.05) were used to compare each 

turf at high and low temperatures. 

 Results and Discussion 

With the exception of clipping yield, root biomass, and RLD data, there were significant 

temperature treatment × turfgrass species/cultivar interactions for all parameters evaluated.  

Since treatment combinations are the most meaningful data in this experiment, effects of 

interactions will be presented for turfgrass quality, Pg, EL, and shoot biomass.  Results of t tests 

will be presented for all parameters. 

When exposed to the 23/19ºC temperature regime, Laser, Pulsar, and TF maintained 

acceptable quality (>6.0) for the duration of the experiment.  However, at 35ºC only TF 

maintained acceptable quality for 35 d (Figure 2.1, Table 2.1).  At 35°C, Laser and Pulsar 

exhibited unacceptable quality after 7 and 14 DAI, respectively, with no differences between the 

two thereafter.  Both cultivars had an average quality rating of 2.8 by 35 DAI.  In contrasts 

comparing each turfgrass’s quality at 35 to 23ºC, quality was significantly lower at 35°C by 7 

DAI for Laser and Pulsar, and by 14 DAI for TF (Table 2.1).  Rough bluegrass decline was 

similar to that described by Rutledge et al. (2012b) who exposed Laser to 33°C for 35 d, and 

observed unacceptable RBG quality (< 6.0) by 28 DAI. 

Gross photosynthesis of Laser, Pulsar, and TF remained relatively unchanged at 23°C, 

but declined over 35 d at 35°C.  At 23°C, Pg of Laser and Pulsar was greater than that of TF on 7 

DAI, and Pulsar also had a significantly higher Pg estimate than Laser on 28 DAI (Table 2.2).  
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At 35°C, TF had higher Pg estimates than Laser and Pulsar on 7 and 28 DAI.  Gross 

photosynthesis of Pulsar was greater than that of Laser on 7 DAI, but estimates were similar after 

28 days of heat stress.  In contrasts comparing Pg at 35 and 23°C, Pg was significantly lower at 

35°C by 0 DAI for Laser, 7 DAI for Pulsar, and 14 DAI for TF with corresponding Pg reductions 

of 36% for Laser and Pulsar and 26% for TF at 35°C by 35 DAI (Table 2.2).  

Electrolyte leakage was never > 30% for Laser or Pulsar at 23°C, and there were no 

differences between the two under optimum growing conditions.  Electrolyte leakage was never 

> 16% for TF at 23°C, and TF had significantly less EL compared to Laser and Pulsar on 21 DAI 

(Table 2.3).  Maximum EL at 35°C was 49% for Laser, 63% for Pulsar, and 24% for TF.  At 

35°C, Laser and Pulsar exhibited greater EL than TF on 21 and 35 DAI.  Furthermore, EL of 

Pulsar (62%) was significantly greater than that of Laser (46%) on 35 DAI.  In contrasts 

comparing EL at 35 and 23°C, EL was significantly greater at 35°C by 14 DAI for Pulsar and 21 

DAI for Laser.  Tall fescue EL at 35°C was never greater than at 23°C.  Jiang and Huang (2001) 

observed increased EL of relatively heat intolerant perennial ryegrass compared to relatively heat 

tolerant TF when the species were exposed to heat stress.  Electrolyte leakage estimates cell 

membrane thermostability, and has been used to predict whole-plant heat tolerance among 

Kentucky bluegrass cultivars (Marcum, 1998).  While TF heat tolerance is associated with its 

deep rooting characteristics (Fry and Huang, 2004), reduced EL from TF compared to RBG 

cultivars in this study emphasizes the importance of the maintenance of cell membrane function 

during heat stress.  Su et al. (2009) observed differing membrane lipid compositions and greater 

saturation of fatty acids in heat-tolerant compared to heat-sensitive cool-season turfgrassess.  

Similar trends between TF and RBG are likely.  Furthermore, the increased EL in Pulsar could 

explain the relative heat tolerance of Laser compared to Pulsar observed by Morton et al. (2009), 

but Pg of Laser was affected by heat stress sooner than Pulsar in this study.  It is also important 

to reiterate that Rutledge et al. (2012b) did not observed differences in EL between Laser and 

Pulsar. 

There was never a significant interaction between turfgrass clipping yields and 

temperature treatments (Table 2.4).  At 35°C, clipping yields on 7 DAI were 3.7 mg cm-2 for 

Laser, 5.0 mg cm-2 for Pulsar, and 5.6 mg cm-2 for TF, significantly less than produced by each 

turf at 23°C according to contrasts.  This trend continued throughout the 35 d treatment period, 

and on 35 DAI clipping yields of turfgrasses at 35°C were 0.0 mg cm-2 for Laser, 0.6 mg cm-2 for 
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Pulsar, and 1.9 mg cm-2 for TF.  Similar to observations by Rutledge et al. (2012b), Laser 

subjected to 35°C had ceased growing by 28 DAI.   

At 35 DAI, TF grown at 23°C had accumulated more shoot biomass (68.2 mg cm-2) than 

any other turf × temperature treatment combination, and shoot biomass accumulated by TF at 

35°C (62.0 mg cm-2) was not different from Laser and Pulsar at 23°C (62.0 and 55.8 mg cm-2, 

respectively) (Table 2.5).  Laser and Pulsar both accumulated 31.0 mg cm-2 of shoot biomass at 

35°C, less than any other turf × temperature treatment combination.  According to contrasts, all 

turfgrasses had less shoot biomass at 35°C compared to 23°C. 

Concerning root biomass and RLD, there was not a significant turf × temperature 

treatment interaction on 35 DAI.  However, contrasts revealed that root biomass in the top 17.5 

cm of pots and RLD of Laser and Pulsar at 35°C was significantly less than that at 23°C (Table 

2.5).  Accumulated root biomass in the top 17.5 cm of pots and RLD of TF was similar at 35 and 

23°C.  Decreasing soil temperatures for root health maintenance while maintaining 35°C air 

temperatures have been shown to increase turf quality, tiller density, leaf chlorophyll content, 

and shoot growth rate of creeping bentgrass, indicating that root heath maintenance is critical for 

plant survival (Xu and Huang, 2000).  The significant decline in root biomass and RLD of Laser 

and Pulsar from 23 to 35°C likely contributed to reduced turf quality (Table 2.1) and Pg (Table 

2.2) of RBG cultivars at 35°C.  Still, the lack of rooting differences between Laser and Pulsar at 

35°C with significant differences in EL between the two (Table 2.3) indicate that differences in 

cell membrane thermostability could play a significant role in heat tolerance among RBG 

cultivars. 

 Conclusions 

The superior heat tolerance of TF compared to RBG is associated with maintenance of 

rooting, photosynthesis, and cell membrane viability at elevated temperatures.  Few differences 

were observed between Laser and Pulsar RBG subjected to heat stress.  Both cultivars exhibited 

a similar level of poor quality, decreased photosynthetic activity, reduced clipping yields, and 

reduced rooting at elevated temperatures.  Pulsar has been regarded as more heat-sensitive than 

Laser.  While we didn’t observe differences in decline between the two cultivars, Laser did 

exhibit a higher degree of cell membrane thermostability compared to Pulsar, which may 

contribute to the relative heat-tolerance of Laser. 
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Figure 2.1 Effects of optimal and supraoptimal temperatures on the quality of rough 

bluegrass cultivars and tall fescue 35 days after the induction of heat stress in controlled 

environment chambers.  A) All turfgrasses have acceptable quality at optimal (23°C 

day/19°C night) temperatures.  B) Only tall fescue has acceptable quality at supraoptimal 

(35°C day/29°C night) temperatures. 
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Table 2.1 Effects of optimal and supraoptimal temperature on the quality of rough 

bluegrass cultivars and tall fescue grown in controlled environment chambers. 

 Quality† 

 0 DAI‡ 7 DAI 14 DAI 21 DAI 28 DAI 35 DAI 

(23/19°C)        

     Laser 7.8  8.2 a§ 8.2 a 7.8 b 7.7 b 7.2 b 

     Pulsar 8.3 8.0 a 8.3 a 8.0 b 8.0 b 7.5 b 

     Tall fescue 8.3 8.3 a 8.5 a 8.7 a 8.7 a 8.3 a 

(35/29°C)       

     Laser 7.7 5.7 c 4.8 c 4.3 d 3.5 d 2.8 c 

     Pulsar 8.2 6.5 b 4.8 c 4.3 d 3.2 d 2.8 c 

     Tall fescue 8.7 7.8 a 7.5 b 7.0 c 7.0 c 7.0 b 

Contrasts (23/19°C vs. 35/29°C)¶ 

Laser NS *** *** *** *** *** 

Pulsar NS *** *** *** *** *** 

Tall fescue NS NS ** *** *** *** 

†Turfgrass quality was rated visually considering color, density, and uniformity 

on a 1 to 9 scale (1=completely brown, 6=minimum acceptable quality, 

9=optimum color, density, and uniformity).   

‡Days after induction (DAI) of heat treatment. 

§Within columns, means with the same letter are not significantly different 

according to Fisher’s Protected LSD (P ≤ 0.05). 

¶A set of single-degree-of-freedom contrasts was used to compare Laser, Pulsar, 
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and tall fescue at optimal and supraoptimal temperatures. 

*, **, and *** are significant at the 0.05, 0.01, and 0.001 probability level, 

respectively. 

 



30 

 

 

Table 2.2 Effects of optimal and supraoptimal temperature on gross photosynthesis (Pg) of 

rough bluegrass cultivars and tall fescue grown in controlled environment chambers. 

 Pg (μmol CO2 m
-2 s-1)† 

 0 DAI‡ 7 DAI 14 DAI 21 DAI 28 DAI 35 DAI 

(23/19°C)        

     Laser 15  16 a§ 17 14 13 b 12 

     Pulsar 15 16 a 18 15 16 a 12 

     Tall fescue 15   13 bc 19 17   15 ab 15 

(35/29°C)       

     Laser 12   8 d   9   7   5 d   4 

     Pulsar 16 12 c   7   6   5 d   4 

     Tall fescue 15   15 ab 14 11 11 c 11 

Contrasts (23/19°C vs. 35/29°C)¶ 

Laser * *** *** *** *** *** 

Pulsar NS ** *** *** *** *** 

Tall fescue NS NS ** *** *** *** 

†Gross photosynthesis was estimated from the sum of sunlit and shaded 

measurements taken with a portable photosynthesis chamber.   

‡Days after induction (DAI) of heat treatment. 

§Within columns, means with the same letter are not significantly different 

according to Fisher’s Protected LSD (P ≤ 0.05). 

¶A set of single-degree-of-freedom contrasts was used to compare Laser, Pulsar, 

and tall fescue at optimal and supraoptimal temperatures. 
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*, **, and *** are significant at the 0.05, 0.01, and 0.001 probability level, 

respectively. 
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Table 2.3 Effects of optimal and supraoptimal temperature on electrolyte leakage (EL) of 

rough bluegrass cultivars and tall fescue grown in controlled environment chambers. 

 Electrolyte Leakage (%)† 

 0 DAI‡ 7 DAI 14 DAI 21 DAI 28 DAI 35 DAI 

(23/19°C)        

     Laser 23 29 28  32 b§ 27 24 c 

     Pulsar 24 30 23   24 bc 29 22 c 

     Tall fescue 13 16 15 12 d 12 12 c 

(35/29°C)       

     Laser 23 37 37 45 a 49 46 b 

     Pulsar 25 27 40 57 a 63 62 a 

     Tall fescue 13 18 16   18 cd 24 20 c 

Contrasts (23/19°C vs. 35/29°C)¶ 

Laser NS NS NS * ** *** 

Pulsar NS NS * *** *** *** 

Tall fescue NS NS NS NS NS NS 

†Leaf segments were agitated for 24 hours to remove electrolytes adhering to, and 

released from severed plant tissue.  After shaking for 24 hours, the electrical 

conductivity of the solution was measured, and test tubes were placed in a 90°C 

water bath for one hour.  After agitating samples for an additional 24 hours, final 

electrical conductivity measurements were taken (% EL = initial electrical 

conductivity / final electrical conductivity × 100).   

‡Days after induction (DAI) of heat treatment. 
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§Within columns, means with the same letter are not significantly different 

according to Fisher’s Protected LSD (P ≤ 0.05). 

¶A set of single-degree-of-freedom contrasts was used to compare Laser, Pulsar, 

and tall fescue at optimal and supraoptimal temperatures. 

*, **, and *** are significant at the 0.05, 0.01, and 0.001 probability level, 

respectively. 
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Table 2.4 Effects of optimal and supraoptimal temperature on clipping yields of rough 

bluegrass cultivars and tall fescue grown in controlled environment chambers. 

 Clipping yield (mg cm-2)† 

 0 DAI‡ 7 DAI 14 DAI 21 DAI 28 DAI 35 DAI 

(23/19°C)        

     Laser 0.0 6.8 7.4   8.1 5.0 3.7 

     Pulsar 0.0 8.7 8.7 10.5 6.8 5.0 

     Tall fescue 0.0 9.9 9.9 13.0 9.3 7.4 

(35/29°C)       

     Laser 0.0 3.7 1.2   1.2 0.0 0.0 

     Pulsar 0.0 5.0 1.9   1.9 0.6 0.6 

     Tall fescue 0.0 5.6 3.7   3.7 2.5 1.9 

Contrasts (23/19°C vs. 35/29°C)§ 

Laser NS * *** *** *** *** 

Pulsar NS ** *** *** *** *** 

Tall fescue NS *** *** *** *** *** 

†Clipping yields were determined by collecting clippings produced weekly.  

Clippings were oven-dried at 60°C for two days, and then weighed.   

‡Days after induction (DAI) of heat treatment. 

§A set of single-degree-of-freedom contrasts was used to compare Laser, Pulsar, 

and tall fescue at optimal and supraoptimal temperatures. 

*, **, and *** are significant at the 0.05, 0.01, and 0.001 probability level, 

respectively. 
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Table 2.5 Effects of optimal and supraoptimal temperature on shoot biomass, root biomass, 

and root length density (RLD) of rough bluegrass cultivars and tall fescue grown in 

controlled environment chambers. 

 Shoot biomass† Root biomass‡ RLD§ 

 ---------------------mg cm-2--------------------- cm cm-3 

(23/19°C)     

     Laser  62.0 b¶ 11.2 34 

     Pulsar 55.8 b 15.3 40 

     Tall fescue 68.2 a 11.7 19 

(35/29°C)    

     Laser  31.0 c   8.7 24 

     Pulsar  31.0 c 11.2 37 

     Tall fescue 62.0 b 10.7 16 

Contrasts (23/19°C vs. 35/29°C)# 

Laser *** * ** 

Pulsar *** ** * 

Tall fescue ** NS NS 

†Total shoot biomass was collected at 35 DAI, oven-dried at 60°C for two days, and 

weighed. 

‡At 35 DAI, a 5 cm (diameter) × 17.5 cm (depth) plug was randomly removed from each 

pot.  Roots were washed, oven-dried at 60°C for two days, and weighed. 

§Root length density (RLD) was determined by analyzing clean roots from a 5 cm 

(diameter) × 17.5 cm (depth) plug with WinRHIZO. 
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¶Within columns, means with the same letter are not significantly different according to 

Fisher’s Protected LSD (P ≤ 0.05). 

#A set of single-degree-of-freedom contrasts was used to compare Laser, Pulsar, and tall 

fescue at optimal and supraoptimal temperatures. 

*, **, and *** are significant at the 0.05, 0.01, and 0.001 probability level, respectively. 
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Chapter 3 - Physiological and Pathological Contributors to Summer 

Rough Bluegrass Decline  

  Abstract 

Rough bluegrass (RBG, Poa trivialis L.) commonly develops as a weed in cool-season 

turfgrass swards after its unintended presence as a contaminant in seed lots of desirable grasses. 

Rough bluegrass often declines during mid-summer due to biotic or abiotic stresses.  The overall 

goal of this research was to differentiate between physiological and pathological contributors to 

RBG decline, and determine the effects of QoI fungicides on growth and physiological 

parameters in controlled environment and field studies.  Rough bluegrass was treated with 

azoxystrobin (Heritage 50 WDG or Heritage TL) at 610 g a.i. ha-1 or pyraclostrobin (Insignia 20 

WG or Insignia SC) at 556 g a.i. ha-1 and exposed to heat stress (35°C day/29°C night) in growth 

chambers and in the field in Manhattan, KS (2011 and 2012) and Mead, NE (2012).  Fungicide 

treatments had no effect on RBG quality, gross photosynthesis (Pg), clipping yield, electrolyte 

leakage (EL), shoot biomass, root biomass, or root length density (RLD) in growth chambers.  In 

field studies, fungicide treatments generally did not influence EL, root biomass, or RLD of RBG.  

However, fungicide treatments did improve RBG quality, cover, and Pg when decline was 

observed during summer, and turf treated with azoxystrobin had higher measurements for all 

aforementioned parameters compared to untreated turf.  The increased Pg of fungicide-treated 

RBG compared to untreated RBG during stress likely resulted from delayed leaf senescence 

(improved quality and cover).  Evaluation of RBG foliage and roots did not reveal a fungal 

pathogen consistently associated with RBG decline.  Physiological stresses are likely the primary 

cause of summer RBG decline.  It is unclear why QoI fungicides positively affect heat-stressed 

RBG in the field, but poorly understood non-target effects may be the cause. 
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 Introduction 

Rough bluegrass (RBG, Poa trivialis L.) is a cool-season perennial turfgrass species that 

often declines during summer due to abiotic and/or biotic stresses (Beard, 1973).  Many 

commonly used cool-season turfgrass species are less sensitive to heat stress than RBG (Sifers 

and Beard, 1993).  High temperature stress is the main factor causing leaf senescence and 

physiological damage of cool-season turfgrasses (Cross et al., 2013; Xu and Huang, 2009) and 

occurs at temperatures greater than 30°C (Fry and Huang, 2004).  Photosynthetic rates are more 

inhibited by high temperature stress than respiratory rates resulting in an imbalance whereby 

carbon used by respiration exceeds that provided by photosynthesis, ultimately depleting 

carbohydrate reserves (Taiz and Zeiger, 2010).  The reduced photosynthetic capacity of plants 

exposed to heat stress has been associated with reductions in photochemical (e.g. carotenoids, 

chlorophyll a and b) efficiency of photosystem II, the interruption of electron transport, and 

reduced CO2 fixation and assimilation resulting from reduced ribulose-1, 5-bisphosphate 

carboxylase/oxygenase (RuBisCO) activity (Berry and Björkman, 1980; Liu and Huang, 2008, 

Xu and Huang, 2000).  Additionally, the induction of free radicals such as hydrogen peroxide 

(H2O2) during heat stress results in lipid peroxidation, ultimately degrading cell membranes and 

possibly inhibiting photosynthesis and respiration (Fry and Huang, 2004). 

While the increased sensitivity of RBG to high temperature stress compared to other 

turfgrass species is often associated with increased respiration and/or decreased photosynthesis 

(Carroll and Welton, 1937; Loveys et al., 2002; Watschke et al., 1973), Rutledge et al. (2012b) 

recently observed differences in creeping bentgrass (Agrostis stolonifera L.) and RBG shoot 

amino acid concentrations and root nonstructural carbohydrate concentrations during heat stress.  

After 35 days at 33°C, RBG shoot amino acid concentrations increased 223% compared to plants 

at 23°C.  Rough bluegrass roots also maintained higher total nonstructural carbohydrate and 

fructan concentrations than creeping bentgrass roots, indicating that RBG may not have been 

able to hydrolyze fructan to simple sugars for metabolic activity (Rutledge et al., 2012b).  In a 

separate study, Rutledge et al. (2012a) observed that total nonstructural carbohydrate 

concentrations in ‘Laser’ and ‘Pulsar’ RBG shoots in midsummer decreased 18 to 26%, possibly 

due to degradation, metabolism, or translocation to stolons.  In fall, the researchers observed an 

influx of nonstructural carbohydrates to shoots, presumably from stolons, suggesting that the 
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rapid decline of RBG during high temperature stress is a survival mechanism whereby stolons 

are used as survival structures until favorable growing conditions return.  

Rough bluegrass summer decline may also be exacerbated by its susceptibility to several 

common turfgrass diseases (Hurley, 2003).  Golf course superintendents often anecdotally report 

earlier and more severe incidences of dollar spot (Sclerotinia homoeocarpa F.T. Bennett) on 

RBG compared to desirable species.  Furthermore, RBG subjected to repeated applications of 

fungicide mixtures containing azoxystrobin maintained quality and cover during summer months 

in Indiana compared to RBG not treated with azoxystrobin (Weisenberger and Reicher, 2006 and 

2007), indicating that  summer RBG decline may be due, in part, to one or more pathogens.  In 

fungi, the strobilurin (QoI) fungicides (Fungicide Resistance Action Committee [FRAC] Code 

11) prevent ATP synthesis by inhibiting mitochondrial respiration at the Qo site of cytochrome b, 

blocking electron transfer between cytochrome b and c1 (Bartlett et al., 2002).  The QoI 

fungicides offer broad-spectrum disease control, but have also been recently associated with 

plant heath and productivity not related to disease control.  Researchers have shown that 

treatment with azoxystrobin, kresoxim-methyl, trifloxystrobin, picoxystrobin, or pyraclostrobin 

have positively affected yield and grain size in wheat (Triticum aestivum L.) and barley 

(Hordeum vulgare L.) even with insignificant differences in disease control compared to other 

fungicide groups (Bartlett et al., 2002).  One theory explaining this phenomenon includes non-

target, physiological effects of fungicidal compounds in host plants.  Applications of kresoxim-

methyl or pyraclostrobin to wheat under drought stress evoked similar plant responses to low 

quantities of auxins reducing ethylene activity and increasing cytokinin content and antioxidant 

activity (Grossmann and Retzlaff, 1997; Köhle el al., 2002).  More recently, researchers in 

Tennessee examined the effects of QoI fungicides on creeping bentgrass under heat and/or 

drought stress (Brosnan et al., 2010).  No changes in  turfgrass quality were observed after 

fungicide applications, but azoxystrobin reduced visual root length and total root biomass of 

‘Penncross’ creeping bentgrass, and total root length, root length density, and total root biomass 

of ‘Penn A-1’ creeping bentgrass compared to untreated turf at 27°C under well-watered 

conditions.  Conversely, treatment with pyraclostrobin increased visual root length for both 

cultivars and also increased total root length, root surface area, root length density, root volume, 

and root biomass for Penn A-1 compared to untreated turf at 27°C and irrigated to prevent leaf 

wilt. 
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Considering previous physiological evidence (Carroll and Welton, 1937; Loveys et al., 

2002; Rutledge et al., 2012a; Rutledge et al., 2012b; Sifers and Beard, 1993; Watschke et al., 

1973), it is unclear why QoI fungicides might prevent severe RBG summer decline.  Fungicidal 

compounds could be simply protecting RBG from a fungal pathogen, or possibly having non-

target physiological effects on RBG.  Therefore, the objectives were to:  1) differentiate between 

physiological and potential pathological contributors to summer RBG decline and 2) observe the 

effects of QoI fungicides on summer RBG decline. 

 Materials and Methods 

 Growth Chamber Study 

Laser RBG was established in the Throckmorton Plant Sciences Center Greenhouse 

Complex at Kansas State University on 23 December 2011 (replicates 1 and 2) and 3 February 

2012 (replicates 3 and 4).  Rough bluegrass was seeded at 98 kg ha-1 in 12.7 × 12.7 × 30.5 cm 

(length × width × height) pots filled with calcined clay (Turface MVP, Profile Products LLC, 

Buffalo Grove, IL) and topdressed with 24 kg N ha-1 of controlled release fertilizer [Osmocote 

14-14-14 (N-P2O5-K2O), Everris NA Inc., Dublin, OH].  Seedlings were irrigated with an 

automatic mist system for five minutes six times per day until 28 days after seeding.  After 

removal from the mist system, seedlings were watered to field capacity daily, and fertilized with 

water-soluble fertilizer [Jack’s High Performance Fertilizer 25-5-15 (N-P2O5-K2O), J.R. Peters 

Inc., Allentown, PA] at 12 kg N ha-1 weekly until fully covered.  Grasses were clipped once 

weekly at 6.4 cm.   

After approximately three months in the greenhouse, pots were placed into growth 

chambers (Conviron E15, Winnipeg, Canada) set at 23/19°C (day/night) on 1 June 2012 

(replicates 1 and 2) and 13 July 2012 (replicates 3 and 4).  Following a four-day acclimation 

period, temperatures were increased by 3/2.5°C for four days until temperatures reached 

35/29°C.  Pots of RBG were subjected to high temperature treatment for 35 days.  The 

experiment was conducted once as randomized complete-block design with four replications 

(blocks).  Only two growth chambers were available, and each served as a separate block on two 

different timings to achieve the experimental design.  In each replicate block there was one pot 

of RBG for each fungicide treatment.  Plants were provided a 14 hour photoperiod.  

Photosynthetically active radiation (PAR) was measured with a ceptometer (LP-80 AccuPAR 
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PAR/LAI Ceptometer, Decagon Devices, Inc., Pullman, WA) and averaged 750 (±27) μmolm-2s-

1 in a horizontal plane approximately 30 cm above the turf canopy.  Fungicide treatments were 

applied 7 days prior to heat treatment (-7 days of treatment), and at 7 and 21 days after induction 

of heat treatment (DAI) to evaluate stress mitigation potential.  Treatments included an untreated 

control, two formulations of azoxystrobin {methyl (E)-2-{2-[6-(2-cyanophenoxy) pyrimidin -4-

yloxy]phenyl}-3 methoxyacrylate; Heritage 50 WDG and Heritage TL, Syngenta Crop 

Protection, Greensboro, NC} at 610 g a.i. ha-1, and two formulations of pyraclostrobin 

{(carbamic acid, [2-[[[1-(4-chlorophenyl)-1H-pyrazol-3-yl]oxy]methyl] phenyl]methoxy-,methyl 

ester); Insignia 20 WG and Insignia SC, BASF Corporation, Research Triangle Park, NC} at 556 

g a.i. ha-1.  Two formulations of each active ingredient were used because Brosnan et al. (2010) 

attributed the differing effects of azoxystrobin and pyraclostrobin on creeping bentgrass root 

development in their study to differences in solubility and phytomobility between fungicidal 

compounds, and recommended further research with different formulations.  Applications were 

made with a CO2-powered sprayer equipped with a TeeJet XR 8008 EVS nozzle calibrated to 

deliver water carrier equal to 816 L ha-1 at 207 kPa. 

Turfgrass quality, clipping yield, gross photosynthesis (Pg), and electrolyte leakage (EL) 

were measured weekly.  Turfgrass quality was taken considering color, density, and uniformity 

on a 1 to 9 scale (1=completely brown, 6=minimum acceptable quality, 9=optimum color, 

density, and uniformity).  Clipping yields were estimated by collecting clippings produced 

weekly.  Clippings were oven-dried at 60°C for two days, and then weighed.  Gross 

photosynthesis was estimated by monitoring carbon dioxide fluxes during consecutive “sunlit” 

and shaded measurements with a custom steady state chamber attached to a portable 

photosynthesis system (LI-6400, Li-Cor Industries, Lincoln, NE) (Bremer and Ham, 2005).  

Shaded measurements were obtained by covering the chamber with an opaque fabric that 

blocked solar radiation.  Equations [5] and [6] from Bremer and Ham (2005), explain that sunlit 

chamber measurements estimate Pg - (Rc + Rs) and shaded chamber measurements estimate Rc 

+ Rs, where Rc is canopy respiration and Rs is soil respiration; all values are defined as positive.  

Equation [8] was then used to derive Pg:  Pg = (CO2 flux from sunlit chamber) + (CO2 flux from 

shaded chamber). 

Electrolyte leakage is a measure of cell membrane thermostability that is commonly used 

to evaluate relative heat tolerance of plants (Jiang and Huang, 2001; Marcum, 1998; Su et al., 
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2009).  The EL technique used was similar to that done by Su et al. (2009).  Leaf samples were 

collected weekly from the greenest areas in each pot.  For each sample, three 2.5 cm segments 

were collected from fully expanded leaves and placed in a test tube containing 25 mL of distilled 

water.  Samples were then agitated for 24 hours to remove electrolytes adhering to and released 

from severed plant tissue.  After shaking for 24 hours, the electrical conductivity of the solution 

in each test tube was measured, and test tubes were placed in a 90°C water bath for one hour.  

After agitating samples for an additional 24 hours, final electrical conductivity measurements 

were taken (% EL = initial electrical conductivity / final electrical conductivity × 100). 

Shoot biomass was collected at 35 DAI and a 5 cm (diameter) × 17.5 cm (depth) plug 

was then randomly removed from each pot.  Roots were washed, died with a methyl blue [acid 

blue 93 (C37H27N3O9S3Na2), Sigma Chemical Co., St. Louis, MO] and water solution (5 g methyl 

blue L-1 water), scanned at 600 dpi, and analyzed with WinRHIZO (version 2003 b, Regent 

Instruments, Quebec City, Canada) to determine root length density (RLD), surface area, and 

average diameter.  Root and shoot biomasses were then oven-dried at 60°C for two days and 

weighed. 

 Field Studies 

Studies were conducted at the Rocky Ford Turfgrass Research Center in Manhattan, KS 

in 2011 and 2012 and at the John Seaton Anderson Turf Research Center in Mead, NE in 2012.  

Research plots (0.9 × 0.9 m in Manhattan and 1.5 × 1.5 m in Mead) were arranged in a 

randomized complete-block design with four replications.  In Manhattan, the study was 

conducted on Laser RBG originally seeded in the fall of 2009.  Soil was a Chase silt loam (fine, 

smectitic, mesic, Aquertic Argiudoll) with a pH of 7.6 and phosphorous and potassium levels of 

0.11 and 0.42 g kg-1, respectively.  In Mead, the study was conducted on ‘Winterstar’ RBG 

originally seeded in the fall of 2010.  Soil was a Tomek silty clay loam (fine, montmorillonitic, 

mesic, Typic Argiudoll) with a pH of 7.5 and phosphorous and potassium levels of 0.03 and 0.50 

g kg-1, respectively.  Research areas were irrigated as needed to prevent drought stress and 

mowed at 6.3 cm once weekly with a rotary mower.   

In Manhattan, N was applied at 49 kg ha-1 on 18 March, 2 May, 19 September, and 10 

November 2011 and on 26 March, 15 May, 18 September, and 9 November 2012 to provide a 

total of 195 kg ha-1 annually.  Polymer-coated urea (41-0-0 N-P2O5-K2O; Polyon/Pursell 
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Industries, Sylacauga, AL) was used on 2 May 2011 and 15 May 2012, and urea (46-0-0) was 

used on all other dates.  Dimension 2 EW [dithiopyr: S,S'-dimethyl 2-(difluoromethyl)-4-(2-

methylpropyl)-6-(trifluoromethyl)-3,5-pyridinedicarbothioate; Dow AgroSciences LLC, 

Indianapolis, IN] and Speed Zone {Carfentrazone-ethyl: Ethyl α,2-dichloro-5-[4(difluoromethyl) 

-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl]-4-fluorobenzenepropanoate; 2,4-D, 2-

ethylhexyl ester: 2,4-dichlorophenoxyacetic acid equivalent; Mecoprop-p acid: (+)-R-2-(2-

methyl-4-chlorophenoxy)propionic acid equivalent; and Dicamba acid: 3,6-dichloro-o-anisic 

acid equivalent; PBI/Gordon Corporation, Kansas City, MO} were applied at 0.6 kg a.i. ha-1 and 

1.3 kg a.i. ha-1, respectively, on 12 April 2011 and 26 March 2012 for common dandelion 

(Taraxacum officinale Wigg.) control and smooth crabgrass [Digitaria ischaemum (Schreb.) 

Muhl.] and large crabgrass [D. sanguinalis (L.) Scop.] prevention.  Additionally, Merit 0.5 G 

{Imidacloprid: 1-[(6-Chloro-3-pyridinyl)methyl]-N-nitro-2-imidazolidinimine; Bayer 

Environmental Science, Research Triangle Park, NC} was applied at 0.3 kg a.i. ha-1 on 14 April 

2011 and 29 May 2012 for control of southern masked chafer (Cyclocephala lurida Bland) and 

May beetle (Phyllophaga spp.) larvae.   

In Mead, polymer-coated urea was used to provide N at 49 kg ha-1 on 1 May, 1 

September, and 1 November 2012 for a total of 147 kg ha-1 annually.  Pendimethalin (N-[1-

ethylpropyl]-3, 4-dimethyl-2, 6-dinitrobenzenamine) was applied in late-April 2012 at 3.4 kg a.i. 

ha-1 and Trimec Classic (Dimethylamine salt of 2,4-dichlorophenoxyacetic acid; dimethylamine 

salt of [+]-[R]-2-[2-methyl-4-chlorophenoxy]propionic acid; and dimethylamine salt of dicamba: 

3,6-dichloro-o-anisic acid; PBI/Gordon Corporation, Kansas City, MO) was applied at 1.5 kg a.i. 

ha-1 in late-September 2012 for broadleaf weed control. 

Heritage 50 WDG, Heritage TL, Insignia 20 WG, and Insignia SC were applied as 

described for the growth chamber study on a two-week interval from 21 May to 23 August in 

Manhattan in 2011.  In 2012, fungicides were applied from 23 April to 30 August in Manhattan 

and from 4 May to 30 August in Mead. 

In Manhattan (2011), Manhattan (2012), and Mead (2012) turfgrass quality and 

percentage green turf coverage were visually estimated every month from 31 May to 11 

November 2011, 30 May to 13 November 2012, and 18 May to 28 September 2012, respectively, 

and percentage green RBG cover was also collected on 30 May 2012, 24 May 2013, and 3 June 

2013, respectively.  Electrolyte leakage samples were collected weekly from the greenest turf in 
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each plot in Manhattan from 25 May to 31 August 2011 and from 6 June to 30 August 2012.  

Gross photosynthesis measurements were taken weekly in the center of each plot in Manhattan 

from 31 May to 8 September 2011 and from 4 June to 6 September 2012.  In Mead, Pg 

measurements were taken monthly from 28 June to 26 September 2012.  Turfgrass quality was 

recorded as described for the growth chamber study and percent green cover data were taken as a 

visual estimate of each plot covered by RBG. Gross photosynthesis was measured as described 

for the growth chamber study, except carbon dioxide fluxes were monitored with a non-steady 

state chamber that was developed at Kansas State University and configured with a closed path 

infrared gas analyzer (LI-840, Li-Cor Industries, Lincoln, NE) (Lewis, 2010). In Manhattan and 

Mead in 2012, 5 cm (diameter) × 17.5 cm (depth) plugs were removed from each plot on 24 and 

28 August, respectively, then washed, died with methyl blue, and analyzed with WinRHIZO to 

determine RLD, surface area, and average root diameter.  After analysis, roots were dried at 

60°C for 2 days and then weighed to determine root biomass. 

In Manhattan, plots were continuously monitored for signs and symptoms of foliar 

diseases from 31 May to 11 November 2011 and from 30 May to 13 November 2012.  Plots were 

also sampled for the presence of pathogens when RBG appeared healthy on 24 May 2011 and 9 

June 2012 and when RBG had declined on 11 July 2011 and 7 August 2012.  On 24 May 2011, 

two 2.5 cm (diameter) × 15.0 cm (depth) plugs were removed from each plot and incubated in a 

sealed, clear bag with a moist paper towel.  Foliage was inspected for lesions, mycelia growth, 

and other symptoms and signs the following day, and roots were soaked in water overnight to 

loosen field-soil.  Soil was washed from roots the following day, and roots were examined 

microscopically for the presence of pathogens and overall health.  On 11 July 2011, 9 June 2012, 

and 7 August 2012 one 10.2 cm (diameter) × 15.0 cm (depth) plug was removed from each plot.  

Plugs were incubated overnight, and foliage was examined the following day.  Five pieces of leaf 

tissue exhibiting both healthy and necrotic tissue approximately 5 mm in length were plated on 

one-quarter strength potato dextrose agar (¼ PDA + +).  Tissue was surface sterilized in 10% 

sodium hypochlorite (NaOCl), rinsed in sterile water, and blotted dry before plating.  Cultures 

were examined after three days.  For root analysis, approximately 2.5 cm of the margin of each 

plug was removed, soaked, and soil was washed from roots.  On each sampling date, roots were 

examined under a compound microscope in at least 10 fields of view.  Roots were rated on a 1 to 

5 scale (1=completely dark/discolored; 2=mostly dark/discolored; 3=approximately 50% healthy, 
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50% discolored, minor incidence of ectotrophic fungi; 4=minor discoloration; and 5=healthy root 

system).  In Mead, one 5 cm (diameter) × 17.5 cm (depth) plug was removed from each 

untreated plot on 28 June and 27 July 2012.  Samples were washed and foliage and roots were 

analyzed as previously described. 

 Data Analysis 

Residual normality was tested with the w statistic of the Shapiro-Wilk test using the 

UNIVARIATE procedure of Statistical Analysis System (SAS Institute Inc., Cary, NC) (Shapiro 

and Wilk, 1965).  Rough bluegrass cover data were not normally distributed, and were subjected 

to an arcsin (y/100) transformation prior to analysis and back-transformed for presentation.  All 

data were subjected to analysis of variance using the GLIMMIX procedure of SAS.  Because 

direct comparisons between each fungicide treatment and the untreated were of most interest, a 

set of pre-planned, single-degree-of-freedom contrasts (t tests) (P < 0.05) were used to compare 

fungicide treatments to the untreated control. 

 Results and Discussion 

 Growth Chamber Study 

No treatment resulted in acceptable turfgrass quality for the duration of the experiment 

(Table 3.1).  Similar to Rutledge et al. (2012b) who exposed Laser RBG to 33°C for 35 d, RBG 

quality was less than acceptable (< 6.0) for all treatments on 28 and 35 DAI.  In this study, 

turfgrass quality in a controlled environment was not improved by fungicide applications, similar 

to previous research (Brosnan et al., 2010).  Gross photosynthesis of RBG declined over the 35 

day treatment period, regardless of fungicide treatment (Table 3.2).  Rough bluegrass treated 

with Insignia 20 WG averaged greater Pg (4.8 μmol CO2 m
-2 s-1) than untreated RBG (3.2 μmol 

CO2 m
-2 s-1) on 21 DAI.  No other differences were detected.  There were never differences in 

RBG clipping yields among treatments (Table 3.3).  Untreated RBG and RBG treated with QoI 

fungicides had clipping yields ranging from 0.9 to 1.2 mg cm-2 dry weight at 7 DAI.  Clipping 

yields declined weekly and no clippings were produced by 35 DAI, regardless of fungicide 

treatment, which was similar to results observed when RBG was exposed to 33°C in the absence 

of fungicides in previous growth chamber research (Rutledge et al., 2012b).  Electrolyte leakage 

was never greater than 33% for any treatment, EL did not increase with time of exposure to heat 
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stress, and there were no differences among treatments (Table 3.4).  Cross et al. (2013) observed 

93.7% EL of a “summer stress-sensitive” tall fescue (Festuca arundinacea Schreb. Syn 

Schedonorus arundinaceus Schreb.) genotype exhibiting low quality (2.0 on a 1 to 9 scale) after 

four weeks of heat stress (38°C day/33°C night).  Even though no differences in EL among 

treatments were observed in this study, EL should have at least increased with decreasing RBG 

quality from 0 to 35 DAI.  Lack of increasing EL in this study is likely an artifact of the 

sampling method.  Because the greenest leaf tissue was always selected during sampling, EL 

estimates were likely artificially depressed, and not representative of pots.  

At 35 DAI, there were no differences in shoot biomass, root biomass, or RLD among 

treatments (Table 3.5). 

 Field Studies 

In general, fungicide treatments did not affect RBG quality, green cover, or Pg until 

decline began in summer.  All fungicide treatments had greater quality and green RBG cover 

compared to untreated RBG periodically throughout the three studies. 

 Rough Bluegrass Quality 

In Manhattan (2011), RBG had acceptable quality in May and June, regardless of 

treatment (Table 3.6).  By 27 July, RBG quality was unacceptable (<6.0) for all treatments and 

only RBG treated with Heritage TL averaged greater turf quality (5.0) than untreated RBG (2.5).  

On 25 August, RBG quality was < 4.0 for all treatments and all fungicide treatments resulted in 

greater RBG quality than untreated (1.3).  Rough bluegrass quality remained unacceptable 

through November for all treatments, but RBG treated with Heritage 50 WDG or Heritage TL 

averaged greater quality compared to untreated RBG on each of the three remaining dates in 

2011. 

Rough bluegrass decline was not as severe in 2012 as in 2011.  In Manhattan (2012), 

untreated RBG had unacceptable quality on only one of seven rating dates (30 August).  All 

fungicide-treated RBG had quality > 7.0 on this date, and was significantly greater than untreated 

RBG (Table 3.7).  By 26 September, untreated RBG was again acceptable (6.5), and all 

fungicide-treated RBG had quality > 8.0, significantly higher than untreated RBG.  Untreated 

RBG quality was 7.0 or greater in October and November.  In Mead in 2012, untreated RBG had 

unacceptable quality on three of five rating dates, but quality was never lower than 4.8 (Table 
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3.7).  Rough bluegrass treated with Heritage 50 WDG, Heritage TL, or Insignia SC never had 

unacceptable quality, and that treated with Insignia 20 WG was only unacceptable (5.8) on 31 

July. 

Similar to the results of Weisenberger and Reicher (2007), RBG treated with QoI 

fungicides maintained acceptable quality during summer months (in 2012) when untreated turf 

did not.  The summer quality of azoxystrobin-treated RBG was most consistently improved 

compared to untreated RBG in this study.  Brosnan et al. (2010) did not observe improved 

quality of azoxystrobin- or pyraclostrobin-treated creeping bentgrass exposed to heat stress in a 

greenhouse, possibly due to the higher heat tolerance of creeping bentgrass compared to RBG 

(Sifers and Beard, 1993). 

 Rough Bluegrass Green Cover 

In Manhattan (2011), all treatments averaged nearly 100% green RBG cover on 31 May 

and 28 June, but no treatment had > 78% green RBG cover by 27 July (Table 3.8).  Untreated 

RBG and RBG treated with Insignia SC or Insignia 20 WG continued loss of green cover, 

averaging only 0.8, 8.3, and 7.5% green RBG cover, respectively, by 28 August.  Rough 

bluegrass treated with Heritage 50 WDG or Heritage TL averaged 16.8 and 21.3% green RBG 

cover, respectively, at this time and both were significantly greater than untreated.  All 

treatments continued to decline into September, but RBG treated with Heritage 50 WDG or 

Heritage TL maintained greater green RBG cover compared to untreated RBG through 

November.  On 12 May 2012, RBG treated with Heritage 50 WDG, Heritage TL, or Insignia SC 

in 2011 averaged 87.8, 91.0, and 63.8% green RBG cover, respectively, significantly higher than 

untreated RBG (30.0%).  Fungicides and the respective rating dates (out of 8) on which they 

provided more green RBG cover than untreated turf were:  Heritage 50 WDG (4), Heritage TL 

(5), Insignia 20 WG (0), and Insignia SC (1). 

Rough bluegrass decline was not as severe in 2012 as in 2011.  In Manhattan (2012), 

untreated RBG never fell below 73.8% green cover, and fungicide treatments never had < 85.0% 

cover (Figure 3.1, Table 3.9).  Fungicides and the respective rating dates (out of 8) on which they 

provided more green RBG cover than untreated turf were:  Heritage 50 WDG (4), Heritage TL 

(5), Insignia 20 WG (5), and Insignia SC (3). 

All treatments in Mead in 2012 averaged approximately 80.0% green RBG cover on 18 

May (Table 3.9).  Untreated RBG declined to 58.8% green RBG cover by 31 July, but recovered 
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to 75.0% green RBG cover by 5 November, and 92.5% green RBG cover by 3 June 2013.  

Fungicide-treated RBG never averaged less than 70.0% green RBG cover and fungicides and the 

respective rating dates (out of 8) on which they provided more green RBG cover than untreated 

turf were:  Heritage 50 WDG (7), Heritage TL (7), Insignia 20 WG (4), and Insignia SC (3). 

Compared to the more modest results in Manhattan (2011), the less severe RBG decline 

in Manhattan and Mead in 2012 resulted in the maintenance of green RBG cover similar to that 

observed by Weisenberger and Reicher (2006). 

 Gross Photosynthesis 

Rough bluegrass Pg was affected by fungicide treatments in the field studies in 

Manhattan and Mead, but to a lesser extent than turfgrass quality and green RBG cover.  

Furthermore, estimated Pg was only consistently different from untreated turf during July and 

August in Manhattan, when green RBG cover was significantly less than fungicide-treated RBG 

(Tables 3.9 and 3.10).  In Manhattan (2011), Pg of unstressed RBG on 31 May ranged from 11.5 

to 13.2 μmol CO2 m
-2 s-1 (data not shown).  All treatments averaged > 11.0 μmol CO2 m

-2 s-1 on 

8 July, until falling to < 5.0 μmol CO2 m
-2 s-1on 20 July.  Gross photosynthesis was < 1.0 μmol 

CO2 m
-2 s-1 for all treatments on the final collection date in 2011 (8 September).  Rough 

bluegrass treated with Heritage TL averaged greater Pg than untreated RBG on 15 June 2011, 

whereas Insignia SC-treated RBG averaged greater Pg than untreated RBG on 15 and 28 June 

2011 (Table 3.10).  In Manhattan (2012), Pg of untreated and fungicide-treated RBG averaged 

10.9 to 15.8 μmol CO2 m
-2 s-1 on 4 June, and fungicide-treated RBG never averaged less than 

10.2 μmol CO2 m
-2 s-1 in Manhattan (2012) (data not shown).  Gross photosynthesis of untreated 

RBG was not different from any fungicide treatment until 24 July, when Pg of untreated RBG 

was 12.7 μmol CO2 m
-2 s-1, significantly less than that of Heritage 50 WDG-treated RBG (17.3 

μmol CO2 m
-2 s-1) (Table 3.10).  Gross photosynthesis of untreated RBG was < 6.0 μmol CO2 m

-

2 s-1 by 15 August, and remained depressed through the final monitoring date (30 August).  

Fungicides and the respective rating dates (out of 14) on which they resulted in higher RBG Pg 

estimates than untreated turf were:  Heritage 50 WDG (5), Heritage TL (5), Insignia 20 WG (3), 

and Insignia SC (4). 

In Mead, respective Pg estimates (μmol CO2 m
-2 s-1) on 28 June 2012 were:  untreated 

(10.7), Heritage 50 WDG (18.1), Heritage TL (12.7), Insignia 20 WG (14.5), and Insignia SC 

(16.6) (Table 3.10).  Gross photosynthesis of Heritage 50 WDG- and Insignia SC-treated RBG 
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was significantly greater than that of untreated RBG.  Among treatments, Pg was < 8.0 μmol 

CO2 m
-2 s-1 for all treatments on 25 July, between 9.0 and 17.0 μmol CO2 m

-2 s-1 on 28 August, 

and > 18.0 μmol CO2 m
-2 s-1 by the final monitoring date (26 September) with no significant 

differences between untreated and fungicide-treated RBG (data not shown).  The association 

between maintenance of Pg and green RBG cover would suggest that fungicidal compounds did 

not directly affect the metabolic activity of RBG, but rather influenced Pg by delaying leaf 

senescence.  In fact, Pg of RBG is dependent on RBG green cover according to Pearson’s 

correlation coefficient (r=0.57, P=0.0001) calculated with the CORR procedure of SAS.  

Brosnan et al. (2010) provide excellent discussion of possible mechanisms resulting in delayed 

leaf senescence from applications of strobilurin fungicides.  Briefly, strobilurin fungicides have 

been linked to ethylene inhibition and increased endogenous cytokinin, antioxidant (superoxide 

dismutase and peroxidase), and auxin production in wheat (Grossmann and Retzlaff, 1997; 

Köhle el al., 2002).  Given that auxins and cytokinins regulate cell elongation and division, 

respectively, and that auxins and cytokinins directly stimulate shoot growth, and ethylene 

induces senescence and ripening (Taiz and Zeiger, 2010), it is logical that the perseverance of 

RBG during summer stress in this study is related to hormonal shifts encouraged by fungicide 

applications. 

 Electrolyte Leakage 

Electrolyte leakage of unstressed RBG averaged 9.1 to 13.8% among treatments in 

Manhattan on 25 May 2011 (data not shown).  Electrolyte leakage was never > 30.0% for any 

treatment in 2011.  In general, there were no consistent trends in EL data.  Untreated RBG had 

9.2, 10.7, and 12.9% EL on 22 June, 6 July, and 20 July, respectively, significantly less than 

Insignia SC (13.3%), Heritage 50 WDG (13.9%), and Heritage TL (20.2%) on the same dates, 

respectively.  Fungicides and the respective rating dates (out of 15) on which they resulted in 

RBG EL lower than untreated turf were:  Heritage 50 WDG (3), Heritage TL (2) Insignia 20 WG 

(2), and Insignia SC (2).  In 2012, EL was never > 32.0% for any treatment and, similar to 2011, 

there were no consistent trends in EL data.  Untreated RBG averaged 15.9 and 10.7% EL on 26 

June and 14 August, respectively, significantly less than Heritage TL (32.0%) and Heritage 50 

WDG (14.3%) on the same dates, respectively.  Out of 13 total rating dates, untreated RBG 

never had greater EL than Heritage 50 WDG-treated RBG and only averaged higher EL (19.6%) 

than Heritage TL- (14.2%), Insignia 20 WG- (12.2%), and Insignia SC-treated RBG (15.5%) on 
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25 July 2012.  Similar to the growth chamber study, EL should have at least increased during 

periods of low RBG quality.  The lack of increasing EL in this study is likely an artifact of the 

sampling method as previously discussed.  As a result, EL was not a good indicator of RBG 

stress in either growth chamber or field studies, and has been unreliable in other recent studies 

(Rutledge et al., 2012a; Rutledge et al., 2012b). 

 Disease Incidence and Rooting Parameters 

In Manhattan (2011), baseline sampling of RBG on 27 May 2011, prior to decline, 

revealed no indications of common foliar or root pathogens.  Roots from all treatments appeared 

healthy with little, to no discoloration and all treatments averaged root health > 4.5.  There were 

no indications of disease development between disease samplings on 27 May and 14 July, by 

which time RBG had severely declined.  Some foliage cultured from the 14 July sampling 

produced mycelium that was not indicative of any common turf pathogens, and further 

identification was not conducted.  Root health had also declined by 14 July, and untreated plots 

had root health of 2.8.  Rough bluegrass treated with Heritage 50 WDG, Heritage TL, Insignia 20 

WG, and Insignia SC had root health of 4.0, 3.8, 3.3, and 3.8, respectively, on this date, all 

significantly higher than untreated (Table 3.11).  Small amounts of dark hyphae typical of 

ectotrophic root infecting fungi were present on RBG roots, resulting in lower average root 

health scores.  The presence of ectotrophic fungi on roots, coupled with field symptomology of 

declining RBG, could suggest summer patch (Magnaporthe poae Landschoot & Jackson) or 

necrotic ring spot (Ophiosphaerella korrae [J. Walker & A. M. Sm.] Shoemaker & Babcock), 

but fungal signs were present at very low levels and not considered to be pathogenic.  

Furthermore, it is not likely that the prevention of a root-infecting pathogen led to increased root 

health, RBG quality, or RBG green cover because fungicides were applied to foliage, not roots.  

Azoxystrobin and pyraclostrobin are acropetal and localized penetrants, respectively, and cannot 

reach roots to protect against root-infecting pathogens without irrigation following application.  

Rough bluegrass is susceptible to many common turfgrass diseases, but the lack of foliar and/or 

root signs and symptoms suggests that none were responsible for the decline of RBG in this 

study. 

In Manhattan (2012), samples from healthy RBG on 11 June showed no signs of typical 

foliar or root pathogens.  All fungicide-treated turf had average roots heath scores > 4.8, and 

none differed from untreated RBG.  There were again no indications of disease development 
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between disease samplings, and there were no foliar signs of disease in cultures from declining 

RBG samples on 7 August.  Root heath among treatments averaged 2.8 to 3.0, with no 

significant differences, and small amounts of ectotrophic fungi were present on RBG roots from 

all plots, regardless of treatment.  Plugs removed for root analysis on 24 August revealed that 

RBG treated with Heritage 50 WDG had greater RLD (11.1 cm cm-3), root surface area (175.2 

cm2), and root biomass (7.6 mg cm-2 dry weight) compared to roots from untreated RBG (RLD, 

surface area, and root biomass of 6.7 cm cm-3, 92.1 cm2, and 3.6 mg cm-2 dry weight, 

respectively) (Table 3.11).  Root parameters from RBG treated with other fungicides were not 

different from untreated RBG. 

Root biomass and RLD were much lower in field studies compared to growth chamber 

studies, which ranged between 11.7 to 14.3 mg cm-2 and 31.6 to 34.8 cm cm-3, respectively.  

Rough bluegrass was established in sterile fritted clay in the growth chamber study in an attempt 

to isolate the effects of fungicide treatments on heat-stressed RBG.  The increased porosity 

and/or lower bulk density of fritted clay compared to field soil, coupled with daily irrigation to 

field capacity in growth chambers, likely resulted in the increased rooting of RBG in the growth 

chamber study.  The general increased rooting in growth chambers may have resulted in the lack 

of fungicide effects on RBG quality or root growth of heat stressed RBG compared to the 

Manhattan (2012) field study.  The roots of most turfgrasses are not major carbohydrate storage 

organs (Beard, 1973), and RBG roots likely didn’t directly provide carbohydrate reserves for 

survival during heat stress, but rather indirectly enhanced heat tolerance by providing a 

continuous water supply to ensure stomata remained open for transpirational cooling.  Tall 

fescue has superior heat tolerance among cool-season turfgrasses which largely results from its 

deep root system (Jiang and Huang, 2001).  Root health maintenance has also been shown to 

directly affect turf quality, tiller density, shoot growth rate, and clipping yield of creeping 

bentgrass (Xu and Huang, 2001).  Furthermore, cytokinins are synthesized in roots and are 

linked to delayed leaf senescence (Taiz and Zeiger, 2010).  The greater root biomasses of RBG 

in the growth chamber study could have resulted in higher cytokinin content in RBG shoots 

delaying leaf senescence and nullifying potential fungicide effects. 

Only untreated plots were sampled in Mead in 2012.  Dollar spot was present on 28 June 

2012 with < 10% of affected plots showing symptoms.  Dollar spot was cultured from two of 

four untreated plots.  There were no signs of root diseases on this date, and root health of RGB in 
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untreated plots averaged 3.5.  Samples from declining RBG on 27 July revealed no foliar signs or 

symptoms, and small amounts of ectotrophic fungi were present on untreated RBG roots.  The 

overall dark appearance of roots resulted in an average root heath of 2.0.  Analysis of RBG roots 

on 28 August revealed that RLD, surface area, and root biomass among treatments was 8.5 to 9.4 

cm cm-3, 119.4 to 129.3 cm2, and 4.1 to 4.6 mg cm-2, respectively, with no differences compared 

to untreated RBG (Table 3.11).   

Results of root analysis from Manhattan (2012) and Mead are different from those of 

Brosnan et al. (2010) who observed increased visual root length, total root length, root surface 

area, RLD, root volume, and total root biomass of pyraclostrobin-treated creeping bentgrass 

under deficit irrigation and decreased visual root length, total root biomass, and RLD of 

azoxystrobin-treated creeping bentgrass under more frequent irrigation.  In this study, neither 

increased rooting with either pyraclostrobin product, nor decreased rooting with azoxystrobin as 

a microemulsion concentrate (Heritage TL) was observed.  Instead, I observed increased rooting 

from treatment with azoxystrobin (Heritage 50 WDG) compared to untreated RBG in Manhattan 

(2012) only. 

 Conclusions 

The aggressive use of QoI fungicides improved RBG quality and green cover during 

stressful summer months, and azoxystrobin products generally resulted in healthier RBG 

compared to untreated RBG more consistently than did pyraclostrobin products.  In general, Pg 

of fungicide-treated RBG did not decrease as much as untreated RBG during stress, likely 

resulting from delayed leaf senescence.  Fungicides had little effect on RBG rooting.  While 

treatment with Heritage 50 WDG resulted in improved rooting compared to untreated RBG in 

the field in Manhattan, the same was not true in Mead or the growth chamber study.  Disease 

sampling did not reveal a fungal pathogen consistently associated with the decline of RBG.  I 

acknowledge that RBG is susceptible to many common summer turfgrass diseases, but theorize 

that disease incidence is secondary, and abiotic physiological stresses are the primary reason for 

the summer decline of RBG.  It is unclear why strobilurin fungicides positively influence RBG in 

the field, but I agree with Brosnan et al. (2010) that poorly understood non-target physiological 

effects of fungicidal compounds may likely be the foundation of this phenomenon.  Still, 

fungicides should be used as such, and not as biostimulants.  Rough bluegrass is extremely 
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sensitive to heat, and it is still unclear if similar effects will occur on more heat-tolerant turf 

species without exceeding label constraints.  I suggest further research with QoI fungicides and 

other turfgrass species within label restrictions. 
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Figure 3.1 Effects of QoI fungicides on rough bluegrass quality and cover in Manhattan, 

KS in 2011 and 2012.  A) Untreated rough bluegrass on 1 September 2011.  B) Heritage 

TL-treated rough bluegrass on 1 September 2011.  C) Untreated rough bluegrass on 28 

August 2012.  D) Heritage TL-treated rough bluegrass on 28 August 2012.  Other 

fungicides yielded similar results compared to Heritage TL-treated rough bluegrass in each 

year. 
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Table 3.1 Effects of fungicide treatments on rough bluegrass quality when exposed to 

supraoptimal temperatures (35°C day/29°C night) in a growth chamber. 

 Quality† 

Treatments‡ 0 DAI§ 7 DAI 14 DAI 21 DAI 28 DAI 35 DAI 

Untreated¶ 8.3 7.5 6.8 5.3 4.0 2.8 

Heritage 50 WDG 8.3 7.8 6.8 5.5 4.3 2.5 

Heritage TL 8.5 7.5 6.8 6.0 4.5 2.8 

Insignia 20 WG 8.8 7.3 7.0 6.3 4.5 3.0 

Insignia SC 8.3 7.3 6.5 6.0 4.3 3.0 

†Turfgrass quality was rated visually considering color, density, and uniformity on a 1 to 9 scale 

(1=completely brown, 6=minimum acceptable quality, 9=optimum color, density, and uniformity).   

‡Fungicide treatments were applied 7 days prior to heat treatment (-7 days of treatment), and at 7 and 

21 days after induction of heat treatment (DAI) with a CO2-powered sprayer equipped with a TeeJet 

XR 8008 EVS nozzle calibrated to deliver water carrier equal to 816 L ha-1 at 207 kPa.  The 

experiment was set up in a randomized complete block design with four replications, with one pot per 

fungicide treatment in each replication. 

§Days after induction (DAI) of heat treatment. 

¶A set of single-degree-of-freedom contrasts were used to compare fungicide treatments to the 

untreated control. 

*, **, and *** are significantly different from untreated rough bluegrass at the 0.05, 0.01, and 0.001 

probability level, respectively. 
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Table 3.2 Effects of fungicide treatments on gross photosynthesis (Pg) of rough bluegrass exposed 

to supraoptimal temperatures (35°C day/29°C night) in a growth chamber. 

 Pg (μmol CO2 m-2 s-1)† 

Treatments‡ 0 DAI§ 7 DAI 14 DAI 21 DAI 28 DAI 35 DAI 

Untreated¶ 10.9 7.3 5.1 3.2 3.4 2.6 

Heritage 50 WDG 10.4 7.5 5.0 4.0 3.0 2.5 

Heritage TL 10.9 7.5 5.4 3.4 2.8 2.7 

Insignia 20 WG 10.2 7.6 5.9    4.8 * 3.4 2.7 

Insignia SC 11.9 8.4 5.4 4.3 3.5 2.9 

†Gross photosynthesis was estimated from the sum of sunlit and shaded measurements taken with a 

portable photosynthesis chamber. 

‡Fungicide treatments were applied 7 days prior to heat treatment (-7 days of treatment), and at 7 and 

21 days after induction of heat treatment (DAI) with a CO2-powered sprayer equipped with a TeeJet 

XR 8008 EVS nozzle calibrated to deliver water carrier equal to 816 L ha-1 at 207 kPa.  The 

experiment was set up in a randomized complete block design with four replications, with one pot per 

fungicide treatment in each replication. 

§Days after induction (DAI) of heat treatment. 

¶A set of single-degree-of-freedom-contrasts were used to compare fungicide treatments to the 

untreated control. 

*, **, and *** are significantly different from untreated rough bluegrass at the 0.05, 0.01, and 0.001 

probability level, respectively. 
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Table 3.3 Effects of fungicide treatments on clipping yields of rough bluegrass exposed to 

supraoptimal temperatures (35°C day/29°C night) in a growth chamber. 

 Clipping yield (mg cm-2)† 

Treatments‡ 7 DAI§ 14 DAI 21 DAI 28 DAI 35 DAI 

Untreated¶ 1.0 0.7 0.4 0.1 0.0 

Heritage 50 WDG 0.9 0.8 0.4 0.1 0.0 

Heritage TL 1.1 1.2 0.6 0.2 0.0 

Insignia 20 WG 1.2 1.1 0.6 0.2 0.0 

Insignia SC 0.9 0.7 0.4 0.1 0.0 

†Clipping yields were estimated by collecting clippings produced weekly.  Clippings were 

oven-dried at 60°C for two days, and then weighed. 

‡Fungicide treatments were applied 7 days prior to heat treatment (-7 days of treatment), and 

at 7 and 21 days after induction of heat treatment (DAI) with a CO2-powered sprayer 

equipped with a TeeJet XR 8008 EVS nozzle calibrated to deliver water carrier equal to 816 

L ha-1 at 207 kPa.  The experiment was set up in a randomized complete block design with 

four replications, with one pot per fungicide treatment in each replication. 

§Days after induction (DAI) of heat treatment. 

¶A set of single-degree-of-freedom-contrasts were used to compare fungicide treatments to 

the untreated control. 

*, **, and *** are significantly different from untreated rough bluegrass at the 0.05, 0.01, 

and 0.001 probability level, respectively. 
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Table 3.4 Effects of fungicide treatments on electrolyte leakage (EL) of rough bluegrass exposed to 

supraoptimal temperatures (35°C day/29°C night) in a growth chamber. 

 Electrolyte leakage (%)† 

Treatments‡ 0 DAI§ 7 DAI 14 DAI 21 DAI 28 DAI 35 DAI 

Untreated¶ 24.7 13.2 15.9 18.2 26.9 24.5 

Heritage 50 WDG 21.7 12.7 19.4 14.8 32.7 19.7 

Heritage TL 21.4 19.0 20.5 19.2 24.7 18.9 

Insignia 20 WG 20.1 12.9 14.3 16.6 27.1 24.0 

Insignia SC 24.6 16.9 14.6 11.9 21.5 20.3 

†Leaf segments were agitated for 24 hours to remove electrolytes adhering to, and released from 

severed plant tissue.  After shaking for 24 hours, the electrical conductivity of the solution was 

measured, and test tubes were placed in a 90°C water bath for one hour.  After agitating samples for 

an additional 24 hours, final electrical conductivity measurements were taken (% EL = initial 

electrical conductivity / final electrical conductivity × 100).   

‡Fungicide treatments were applied 7 days prior to heat treatment (-7 days of treatment), and at 7 and 

21 days after induction of heat treatment (DAI) with a CO2-powered sprayer equipped with a TeeJet 

XR 8008 EVS nozzle calibrated to deliver water carrier equal to 816 L ha-1 at 207 kPa.  The 

experiment was set up in a randomized complete block design with four replications, with one pot per 

fungicide treatment in each replication. 

§Days after induction (DAI) of heat treatment. 

¶A set of single-degree-of-freedom-contrasts were used to compare fungicide treatments to the 

untreated control. 

*, **, and *** are significantly different from untreated rough bluegrass at the 0.05, 0.01, and 0.001 

probability level, respectively. 
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Table 3.5 Effects of fungicide treatments on shoot biomass, root biomass, and root length density 

(RLD) of rough bluegrass exposed to supraoptimal temperatures (35°C day/29°C night) in a growth 

chamber. 

Treatments† 

Shoot biomass‡ Root biomass§ RLD¶ 

--------------- mg cm-2--------------- cm cm-3 

Untreated# 57.0 12.2 34.8 

Heritage 50 WDG 57.0 11.7 31.6 

Heritage TL 58.9 14.3 34.7 

Insignia 20 WG 59.5 12.7 34.4 

Insignia SC 58.9 14.3 34.2 

†Fungicide treatments were applied 7 days prior to heat treatment (-7 days of treatment), and 

at 7 and 21 days after induction of heat treatment (DAI) with a CO2-powered sprayer 

equipped with a TeeJet XR 8008 EVS nozzle calibrated to deliver water carrier equal to 816 

L ha-1 at 207 kPa.  The experiment was set up in a randomized complete block design with 

four replications, with one pot per fungicide treatment in each replication. 

‡Total above-ground biomass was collected at 35 DAI, oven-dried at 60°C for two days, and 

weighed. 

§At 35 DAI, a 5 cm (diameter) × 17.5 cm (depth) plug was randomly removed from each pot.  

Roots were washed, oven-dried at 60°C for two days, and weighed. 

¶Root length density (RLD) was determined by analyzing clean roots from a 5 cm (diameter) 

× 17.5 cm (depth) plug with WinRHIZO.  

#A set of single-degree-of-freedom-contrasts were used to compare fungicide treatments to 

the untreated control. 

*, **, and *** are significantly different from untreated rough bluegrass at the 0.05, 0.01, 

and 0.001 probability level, respectively. 
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Table 3.6 Effects of fungicide treatments on rough bluegrass quality in Manhattan, KS in 2011. 

 Quality† 

Treatments‡ 31 May 28 June 27 July 25 Aug. 28 Sept. 27 Oct. 11 Nov. 

Untreated§ 7.3 7.3 2.5 1.3 1.0 1.3 1.8 

Heritage 50 WDG 7.5 7.3 3.5      2.8 **   2.0 *    2.5 *    2.8 * 

Heritage TL 7.5 7.8      5.0 **        3.5 ***     2.5 **      2.3 **    3.0 * 

Insignia 20 WG 7.0 7.5 3.5    2.3 * 1.5 2.0 2.3 

Insignia SC 7.8 7.3 3.8    2.5 * 1.0 1.8 2.3 

†Turfgrass quality was rated visually considering color, density, and uniformity on a 1 to 9 

scale (1=completely brown, 6=minimum acceptable quality, 9=optimum color, density, and 

uniformity).  Data were collected monthly from 31 May to 11 November in 2011. 

‡Fungicide treatments were applied every other week from 21 May to 23 August with a CO2-

powered sprayer equipped with a TeeJet XR 8008 EVS nozzle calibrated to deliver water 

carrier equal to 816 L ha-1 at 207 kPa. 

§A set of single-degree-of-freedom-contrasts were used to compare fungicide treatments to the 

untreated control. 

*, **, and *** are significantly different from untreated rough bluegrass at the 0.05, 0.01, and 

0.001 probability level, respectively. 
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Table 3.7 Effects of fungicide treatments on rough bluegrass quality in Manhattan, KS and Mead, NE in 2012. 

 Quality† 

 Manhattan  Mead 

Treatments‡ 30 May 27 June 27 July 30 Aug. 26 Sept. 31 Oct. 13 Nov.  18 May 29 June 31 July 30 Aug. 28 Sept. 

Untreated§ 7.5 8.0 6.0   4.8   6.5 8.0 7.0  7.0 5.8   4.8   5.3   6.8 

Heritage 50 WDG 7.5 8.0 6.3   7.8 ***   8.0 ** 8.0 7.0  7.0      7.3 **   6.5 ***   6.8 ***   7.8 ** 

Heritage TL 8.3 8.0    7.5 *   8.3 ***   8.8 ***    8.5 *     7.5 **  6.8    6.8 *   6.0 ***   6.5 **   7.5 * 

Insignia 20 WG    8.0 * 8.0 7.0   7.3 ***   8.5 ***    8.5 * 7.0  7.0 6.3   5.8 **   6.0 *   7.3 

Insignia SC 7.3 8.0 6.8   7.5 ***   8.5 *** 8.0 7.0  7.0 6.5   6.0 ***   6.3 **   8.0 *** 

†Turfgrass quality was rated visually considering color, density, and uniformity on a 1 to 9 scale (1=completely brown, 6=minimum acceptable quality, 9=optimum 

color, density, and uniformity).  Data were collected on monthly from 30 May to 13 November and from 18 May to 28 September in Manhattan and Mead, 

respectively. 

‡Fungicide treatments were applied every other week from 23 April to 30 August in Manhattan and from 4 May to 30 August in Mead with a CO2-powered sprayer 

equipped with a TeeJet XR 8008 EVS nozzle calibrated to deliver water carrier equal to 816 L ha-1 at 207 kPa . 

§A set of single-degree-of-freedom-contrasts were used to compare fungicide treatments to the untreated control. 

*, **, and *** are significantly different from untreated rough bluegrass at the 0.05, 0.01, and 0.001 probability level, respectively. 
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Table 3.8 Effects of fungicide treatments on rough bluegrass cover in Manahttan, KS in 2011. 

 Green rough bluegrass cover (%)† 

Treatments‡ 31 May 28 June 27 July 28 Aug. 28 Sept. 27 Oct. 11 Nov. 30 May 12 

Untreated§ 99.5 98.5 43.8   0.8 0.3   3.3   4.8     30.0 

Heritage 50 WDG 99.0 98.3 48.8      16.8 **   7.5 *    16.8 *  21.3     87.8 *** 

Heritage TL 99.5 99.5 77.5      21.3 **   7.8 *    14.8 *    17.5 *     91.0 *** 

Insignia 20 WG 97.0 95.3 52.5   8.3 2.0   5.0   7.0     63.8 

Insignia SC 99.0 97.3 63.8   7.5 1.0   6.3   7.3     63.8 * 

†Percent green rough bluegrass cover data were collected as a visual estimate.  Data were not normally distributed, and were 

subjected to an arcsin (y/100) transformation prior to analysis and back-transformed for presentation.  Data were collected monthly 

from 26 May to 11 November in 2011 and again on 30 May 2012. 

‡Fungicide treatments were applied every other week from 23 April to 30 August in Manhattan and from 4 May to 30 August in 

Mead with a CO2-powered sprayer equipped with a TeeJet XR 8008 EVS nozzle calibrated to deliver water carrier equal to 816 L 

ha-1 at 207 kPa . 

§A set of single-degree-of-freedom-contrasts were used to compare fungicide treatments to the untreated control. 

*, **, and *** are significantly different from untreated rough bluegrass at the 0.05, 0.01, and 0.001 probability level, respectively. 

 



65 

 

 

Table 3.9 Effects of fungicide treatments on rough bluegrass cover in Manahttan, KS and Mead, NE in 2012. 

 Green rough bluegrass cover (%)† 

 Manhattan  Mead 

Treatments‡ 30 May 27 June 27 July 30 Aug. 26 Sept. 31 Oct. 13 Nov. 24 May 13  18 May 29 June 31 July 30 Aug. 28 Sept. 24 Oct. 5 Nov. 3 June 13 

Untreated§ 95.3 95.0  77.5 73.8 78.3   95.3   93.5 99.0  78.8 67.5 58.8  62.5  71.3 73.8 75.0   92.5 

Heritage 50 WDG 97.8 98.0  85.5 95.3*** 95.8***   99.3**   98.3** 98.8    82.5* 81.3*** 78.8***  82.5**  80.0**   80.0* 80.0   95.0* 

Heritage TL 98.5 98.5  95.8** 98.0*** 97.8*** 100.0*** 100.0*** 99.5  80.0 76.3* 70.0*  83.8**  80.0**   80.0* 82.5**   95.0* 

Insignia 20 WG 98.3 97.8  93.0* 93.8*** 96.5*** 100.0*** 100.0*** 98.3  78.8 78.8** 72.5**  76.3*  76.3 76.3 78.8   95.0* 

Insignia SC 93.8 94.0  88.3 88.5** 92.5**   97.5   96.8* 98.3  80.0 78.8** 76.3**  80.0**  76.3 76.3 77.5   93.8 

†Percent green rough bluegrass cover data were collected as a visual estimate.  Data were not normally distributed, and were subjected to an arcsin (y/100) transformation prior to analysis and back-transformed for presentation.  

Data were collected monthly from 30 May to 13 November in 2012 and again on 24 May 2013 in Manhattan and from 18 May to 5 November in 2012 and again on 3 June 2013 in Mead. 

‡Fungicide treatments were applied every other week from 23 April to 30 August in Manhattan and from 4 May to 30 August in Mead with a CO2-powered sprayer equipped with a TeeJet XR 8008 EVS nozzle calibrated to deliver 

water carrier equal to 816 L ha-1 at 207 kPa . 

§A set of single-degree-of-freedom-contrasts were used to compare fungicide treatments to the untreated control. 

*, **, and *** are significantly different from untreated rough bluegrass at the 0.05, 0.01, and 0.001 probability level, respectively. 
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Table 3.10 Effects of fungicide treatments on gross photosynthesis (Pg) of rough bluegrass in Manhattan, KS in 2011 and 2012 

and in Mead, NE in 2012. 

 Pg (μmol CO2 m-2 s-1)† 

 2011  2012 

 Manhattan  Manhattan  Mead 

Treatments‡ 15 June 28 June  24 July 31 July 8 Aug. 15 Aug. 21 Aug. 30 Aug.  28 June 

Untreated§ 12.8 14.4  12.7   9.1   6.2    5.9    6.7    5.9    10.7 

Heritage 50 WDG 12.8 14.9     17.3 * 11.6 12.7 **  16.9 ***  17.1 **  18.8 ***    18.1 ** 

Heritage TL    17.4 * 16.2  15.5    14.6 * 11.3 *  14.0 **  18.5 **  14.1 **    12.7 

Insignia 20 WG 15.3 13.2  16.3    15.1 * 13.1 **  10.2  13.6  17.4 ***    14.5 

Insignia SC    17.0 *    17.5 *  15.8 11.1 15.3 ***  15.9 **  15.1 *  18.2 ***    16.6 * 

†Gross photosynthesis was estimated from the sum of sunlit and shaded measurements taken with a portable photosynthesis chamber.  In 

Manhattan (2011), Manhattan (2012), and Mead (2012) data were collected on 10 dates from 31 May to 8 September 2011, 14 dates from 4 June 

to 6 September 2012, and 4 dates from 28 June to 26 September, respectively.  Only significant dates are shown. 

‡Fungicide treatments were applied every other week from 23 April to 30 August in Manhattan and from 4 May to 30 August in Mead with a 

CO2-powered sprayer equipped with a TeeJet XR 8008 EVS nozzle calibrated to deliver water carrier equal to 816 L ha-1 at 207 kPa . 

§A set of single-degree-of-freedom-contrasts were used to compare fungicide treatments to the untreated control. 
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*, **, and *** are significantly different from untreated rough bluegrass at the 0.05, 0.01, and 0.001 probability level, respectively. 

 



68 

 

 

Table 3.11 Effects of fungicide treatments on rooting parameters in Manhattan, KS in 2011 and 2012 and Mead, NE in 2012. 

 Manhattan  Mead 

 RLD† Surface area Root biomass  Root health‡  RLD Surface area Root biomass  Root health 

Treatments§ cm cm-3 cm2 mg cm-2   2011 2012  cm cm-3 cm2 mg cm-2  2012 

Untreated¶  6.7        92.1 3.6    2.8 2.8  8.5 119.4 4.1  2.0 

Heritage 50 WDG    11.1 *      175.2 **     7.6 **    4.0 *** 3.0  9.1 127.4 4.6  - 

Heritage TL  7.5        96.4 4.1    3.8 *** 2.8  9.4 127.0 4.6  - 

Insignia 20 WG  8.7      119.3 4.6    3.3 * 2.8  8.9 129.3 4.6  - 

Insignia SC  8.7      127.9 5.1    3.8 *** 3.0  8.5 121.0 4.6  - 

†Root length density (RLD) and root surface area were determined by analyzing roots from a 5 cm (diameter) × 17.5 cm (depth) plug randomly removed from 

each plot on 24 and 28 August 2012 in Manhattan and Mead, respectively.  Roots were cleaned, oven-dried at 60°C for two days, and weighed to determine 

root biomass. 

‡In Manhattan, plots were sampled for the presence of pathogens when rough bluegrass had declined on 11 July 2011 and 7 August 2012.  In Mead, untreated 

plots were sampled on 27 July 2012.  Roots were rated on a 1 to 5 scale (1=completely dark/discolored; 2=mostly dark/discolored; 3=approximately 50% 

healthy, 50% discolored, minor incidence of ectotrophic fungi; 4=minor discoloration; and 5=healthy root system).   

§Fungicide treatments were applied every other week from 23 April to 30 August in Manhattan and from 4 May to 30 August in Mead with a CO2-powered 

sprayer equipped with a TeeJet XR 8008 EVS nozzle calibrated to deliver water carrier equal to 816 L ha-1 at 207 kPa . 
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¶A set of single-degree-of-freedom-contrasts were used to compare fungicide treatments to the untreated control. 

*, **, and *** are significantly different from untreated rough bluegrass at the 0.05, 0.01, and 0.001 probability level, respectively. 
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Chapter 4 - Effects of Tall Fescue Seeding Rate and Mowing Height 

on Rough Bluegrass Encroachment During Establishment 

 Abstract 

Rough bluegrass (RBG, Poa trivialis L.) is a perennial cool-season species and a weed in 

tall fescue (TF, Festuca arundinacea Schreb. Syn Schedonorus arundinaceus Schreb.) turf due 

to differences in summer stress tolerance between the species.  Rough bluegrass is likely 

introduced as a seed contaminant during establishment, and chemical control strategies are 

limited.  The objective of this study was to determine the effects of TF seeding rate and mowing 

height on TF/RBG establishment when RBG is included as a seed contaminant.  Two separate 

studies were conducted at the Rocky Ford Turfgrass Research Center in Manhattan, KS.  

Mowing height was the whole-plot treatment factor, and seeding rate was the sub-plot treatment 

factor.  Whole-plots were mowed at 3.8, 7.6, or 11.4 cm weekly.  Sub-plots were seeded in 

September with TF at 195, 391, or 586 kg ha-1 with 1.0% RBG contamination by weight.  Study 

1 was evaluated in 2012 and 2013 and Study 2 was evaluated in 2013.  Tall fescue establishment 

was acceptable with all seeding rate × mowing height combinations.  Mowing TF at 7.6 or 11.4 

cm reduced RBG incidence by 39 or 57%, respectively, in the second year after establishment 

compared to mowing at 3.8 cm.  Seeding rates did not consistently influence RBG incidence, and 

had no effect by the end of the study.  Mowing TF at > 7.6 cm can mitigate RBG encroachment, 

but altering TF seeding rate/mowing height will not eliminate RBG. 
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 Introduction 

Rough bluegrass (RBG, Poa trivialis L.) is a perennial cool-season species that often 

declines during summer due to sensitivity to heat and drought stresses (Beard, 1973).  The 

species is sometimes recommended for use in shady sites, and has been used in winter 

overseeding programs in the southern U.S.A.  Tall fescue (TF, Festuca arundinacea Schreb. Syn 

Schedonorus arundinaceus Schreb.) is commonly used in sports fields, golf course roughs, and 

residential lawns in the transition zone, and is the most heat and drought tolerant species among 

cool-season turfgrasses (Fry and Huang, 2004).  Rough bluegrass is considered a weed in TF 

stands due to its contrasting color and texture, as well as its intolerance to biotic and abiotic 

stresses.  Bispyribac-sodium (Velocity 17.6 SG, Valent U.S.A Corporation, Walnut Creek, CA) 

is the only selective postemergence herbicide currently labeled for RBG control in cool-season 

turfgrasses, and is effective (McCullough and Hart, 2011; Morton et al., 2009), but is only 

labeled for use on golf courses and sod farms (Anonymous, 2010).  Glyphosate controls RBG 

nonselectively, and is often the only chemical control option in sports fields and residential 

lawns. 

Naturalized populations of RBG are thought to spread vegetatively during aeration via 

dispersal of vegetative propagules, while improved varieties with fine texture and relatively dark 

green color are likely introduced directly from seed lots (Levy, 1998; Reicher et al., 2011).  

Weed control in seed production has become more difficult since 1990, when a mandatory 

change from burning to mechanical removal of post harvest residue was initiated (Mueller-

Warrant, 1990; Mueller-Warrant and Rosato, 2005).  In 1996, Levy (1998) tested 90 creeping 

bentgrass (Agrostis stolonifera L.) seed samples from 10 seed companies and found that 30% of 

seed lots contained RBG seed.  Following this study, seed producers moved creeping bentgrass 

seed production areas away from RBG production areas and improved sanitation procedures 

(Reicher et al., 2011).  Nonetheless, RBG contamination remains a major concern.  In 2008, 

Reicher et al. (2011) sampled 37 cultivars/blends of creeping bentgrass from 10 distributors from 

five Midwestern states, the majority of which were certified.  Rough bluegrass was detected in 8 

of 72 seed lots.  While similar seed contamination in TF has not been confirmed empirically, it is 

generally accepted that RBG is introduced into TF lawns and sports fields as a seed contaminant.  

In fact, TF seed yields have been observed to decrease with increasing RBG ground cover in 
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production fields (Mueller-Warrant and Rosato, 2005), potentially validating contamination 

concerns. 

Rough bluegrass is characteristically competitive during establishment, even with 

turfgrass species that establish quickly.  When seeded intentionally in mixtures with 8 to 43% 

perennial ryegrass (Lolium perenne L.) by seed number, RBG decreased the tillering of perennial 

ryegrass by up to 30% (Haggar, 1979).  In a separate study, RBG had a higher relative growth 

rate than perennial ryegrass from 25 to 81 days after emergence (Vartha, 1973).  Despite rough 

bluegrass’s aggressive growth habit, it may be possible to favor TF over RBG during 

establishment by altering seeding rates and/or mowing heights.  For example, higher mowing 

heights favor TF over bermudagrass [Cynodon dactylon L. (Pers.)] and smooth crabgrass 

[Digitaria ischaemum (Schreb.) Schreb. ex Muhl.].  Mowing TF at 6 cm reduced bermudagrass 

encroachment over a season compared to mowing at 2 cm (Brede, 1992), whereas mowing TF at 

9 cm significantly reduced the amount of smooth crabgrass establishment in a season compared 

to mowing at 3 cm (Dernoeden et al., 1993).  Similarly, Voigt et al. (2001) observed more 

crabgrass (D. spp.) in TF mowed at 2.5 cm compared to that mowed at 5.1 or 7.6 cm.  Higher 

initial mowing heights also favor perennial ryegrass over Kentucky bluegrass (Poa pratensis L.) 

when seeded in mixtures (Brede and Duiche, 1984).  Furthermore, lawn care providers routinely 

seed lawns at higher than recommended rates (> 391 kg ha-1), but it is not know what effect 

higher TF seeding rates have on RBG encroachment during establishment.  Further information 

is needed to optimize TF seeding rate and initial mowing height to minimize RBG colonization.  

Therefore, the objective of this study was to determine the effects of TF seeding rate and 

mowing height and on TF and RBG establishment when RBG is included as a seed contaminant. 

 Materials and Methods 

Two identical studies were conducted at the Rocky Ford Turfgrass Research Center in 

Manhattan, KS.  Study 1 was established on a site previously covered with perennial ryegrass. 

The stand was treated with glyphosate [N-(phosphonomethyl)glycine; Glyphomate 41, 

PBI/Gordon Corporation, Kansas City, MO] on 13 August 2011.  The borders and alleyways of 

the study area were seeded with perennial ryegrass at 391 kg ha-1 on 7 September 2011.  Study 2 

(also previously perennial ryegrass) was treated with glyphosate on 15 August 2012, and borders 

and alleyways were seeded on 7 September 2012.  Seeding rate of TF and RBG was a treatment 
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factor and is described below.  Both studies were arranged with split-plots in randomized 

complete-block designs with four replications.  Mowing height was the whole-plot treatment 

factor, and seeding rate was the sub-plot treatment factor.  Whole-plots measured 1.5 × 4.5 m, 

and were mowed at 3.8, 7.6, or 11.4 cm weekly.  Sub-plots measured 1.5 × 1.5 m and were 

seeded on 15 September 2011 (Study 1 – evaluated in 2012 and 2013) and 18 September 2012 

(Study 2 – evaluated in 2013) with TF and 1.0% RBG by weight.  Sub-plots were seeded to 

represent seeding rates of 195, 391, or 586 kg ha-1.  As such, plots were first seeded with ‘Second 

Millennium’ TF at 193, 387, or 580 kg ha-1, and then seeded with ‘Laser’ RBG at 2, 4, or 6 kg 

ha-1, respectively.  Rough bluegrass seed was spread with 24 kg N ha-1 of a natural organic 

fertilizer (Sustane, 8-2-4 [N-P2O5-K2O], Sustane Natural Fertilizer Inc., Cannon Falls, MN) to 

aid in spreading RBG seed evenly throughout each plot.  

After seeding, N was applied to Study 1 at 49 kg ha-1 on 11 November 2011; 26 March, 

15 May, 18 September, and 9 November 2012; and 16 April, 17 May, 19 September, and 1 

November 2013.  Study 2 was fertilized identically to Study 1 beginning 9 November 2012.  

Polymer-coated urea (41-0-0; Polyon/Pursell Industries, Sylacauga, AL) was used on 15 May 

2012 and 17 May 2013, and urea (46-0-0) was used on all other dates.  Dimension 2 EW 

[dithiopyr: S,S'-dimethyl 2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-3,5-

pyridinedicarbothioate; Dow AgroSciences LLC, Indianapolis, IN] and Speed Zone 

{Carfentrazone-ethyl: Ethyl α,2-dichloro-5-[4(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-

1,2,4-triazol-1-yl]-4-fluorobenzenepropanoate; 2,4-D, 2-ethylhexyl ester: 2,4-dichlorophenoxy 

acetic acid equivalent; Mecoprop-p acid: (+)-R-2-(2-methyl-4-chlorophenoxy)propionic acid 

equivalent; and Dicamba acid: 3,6-dichloro-o-anisic acid equivalent; PBI/Gordon Corporation, 

Kansas City, MO} were applied at 0.6 and 1.2 kg a.i. ha-1, respectively, on 26 March 2012 and 9 

May 2013 for common dandelion (Taraxacum officinale Wigg.) control and smooth crabgrass 

[Digitaria ischaemum (Schreb.) Muhl.] and large crabgrass [D. sanguinalis (L.) Scop.] 

prevention.  Additionally, Merit 0.5 G {Imidacloprid: 1-[(6-Chloro-3-pyridinyl)methyl]-N-nitro-

2-imidazolidinimine; Bayer Environmental Science, Research Triangle Park, NC} was applied at 

0.4 kg a.i. ha-1 on 29 May 2012 and 6 June 2013 for control of southern masked chafer 

(Cyclocephala lurida Bland) and May beetle (Phyllophaga spp.) larvae.  Both studies were 

irrigated to prevent drought stress. 
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Turfgrass quality (1 to 9 scale, 1=completely brown, 6=minimum acceptable quality, 

9=optimum color, density, and uniformity) and RBG incidence were rated for Study 1 on 31 

May, 31 July, 30 September, and 27 November 2012, and for studies 1 and 2 on 31 May, 30 

July, 20 September, and 13 November 2013.  Rough bluegrass incidence was determined by 

rating RBG frequency with presence/absence counts under an 81-intersection grid that measured 

0.9 × 0.9 m with 10 cm between each of nine gridlines in either direction (% RBG incidence = 

RBG frequency/81 × 100) (Figure 4.1).  Brown patch (Rhizoctonia solani Kuhn) was observed in 

2012 and 2013 in both studies and was rated as percent of plot blighted by brown patch 

symptoms when present.  

 Data Analysis 

Residual normality was tested with the w statistic of the Shapiro-Wilk test using the 

UNIVARIATE procedure of Statistical Analysis System (SAS Institute Inc., Cary, NC) (Shapiro 

and Wilk, 1965).  Brown patch severity data were not normally distributed and were subject to 

an arcsin (y) transformation prior to analysis.  All data were subject to analysis of variance using 

the GLIMMIX procedure of SAS.  Fisher’s protected LSD (P ≤ 0.05) was used to detect 

treatment differences. 

 Results and Discussion 

In each study, all mowing height × seeding rate treatment combinations resulted in > 98% 

ground cover by the spring following seeding, and there were no significant differences among 

treatment combinations or main effects according to visual estimates (data not shown).  There 

was never a mowing height × seeding rate interaction for any parameter evaluated, and main 

effects of mowing height and seeding rate in each study will be discussed separately for RBG 

incidence, turfgrass quality, and brown patch severity. 

 Rough Bluegrass Incidence 

 Study 1 

Mowing height affected RBG incidence, but not until the second year after seeding 

(2013).  Mowing at 3.8, 7.6, or 11.4 cm resulted in 64, 68, or 71% RBG incidence, respectively, 

eight months after seeding in May of 2012, with no significant differences among mowing 
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heights (Table 4.1).  Rough bluegrass incidence remained relatively unchanged throughout 2012 

and into June of 2013, when mowing at 3.8, 7.6, or 11.4 cm resulted in 74, 77, or 61% RBG 

incidence, respectively, again, with no significant differences among mowing heights.  However, 

by September of 2013, RBG incidence had declined to < 30% in plots mowed at 11.4 cm, 

significantly less than plots mowed at 3.8 cm (54% RBG incidence).  Higher mowing continued 

to reduce RBG incidence and by the final rating date in November of 2013, mowing at 7.6 or 

11.4 cm reduced RBG incidence compared to mowing at 3.8 cm.  It is well documented that 

mowing TF higher mitigates bermudagrass and crabgrass encroachment (Brede, 1992; 

Dernoeden et al., 1993; Voigt et al., 2001), but studies specifically investigating the effects of 

mowing height on RBG encroachment in TF stands during establishment are limited.  Perennial 

ryegrass, another bunchgrass, is also more competitive with sod-forming grasses with higher 

initial mowing heights.  Brede and Duich (1984) observed that perennial ryegrass/Kentucky 

bluegrass seed mixtures mowed at 3.8 cm required no less than 95% Kentucky bluegrass seed to 

produce a 50:50 stand two months after seeding, while mixtures mowed at 1.3 cm required only 

50 to 75% Kentucky bluegrass for a 50:50 stand.  In this study, RBG incidence among mowing 

heights was similar until the fall of the second year after seeding (2013).   

Seeding rate affected RBG incidence during the first year after seeding (2012), but had 

no effect after May in the second year after seeding (2013).  Seeding at 195 kg ha-1 in September 

2011 resulted in greater RBG incidence (73%) in May 2012 than seeding at 586 kg ha-1 (63%) 

(Table 4.1).  In September 2012, November 2012, and May 2013, plots that had been seeded at 

195 kg ha-1 had less RBG than those seeded at 586 kg ha-1.  Rough bluegrass incidence then 

began to decline regardless of seeding rate, and there were no differences among seeding rates in 

July, September, or November of 2013. 

 Study 2 

Similar to Study 1, mowing height generally had no effect the first year after seeding 

(2013) in Study 2.  Rough bluegrass incidence ranged from 51 to 57% among mowing heights in 

May of 2013 and from 69 to 75% in July of 2013, with no differences among mowing heights on 

either rating date (Table 4.2).  By September, mowing at 11.4 cm reduced RBG incidence to 

33%, significantly less than turf mowed at 3.8 or 7.6 cm.  However, mowing height again had no 

effect in November, when RBG incidence ranged from 45 to 57% among mowing heights. 
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Seeding rates had no effect the first year after seeding (2013) in Study 2.  In May, 

seeding at 391 or 586 kg ha-1 resulted in 60 and 56% RBG incidence, respectively, significantly 

more than seeding at 195 kg ha-1 (45 % RBG) (Table 4.2).  There were no other differences 

among seeding rates in Study 2 in 2013, and all seeding rates averaged 52% RBG incidence on 

the final rating date in November of 2013. 

 Turfgrass Quality 

 Study 1 

Mowing height had no effect on turf quality the first (2012) or second (2013) years after 

seeding Study 1.  Mowing at 3.8 cm resulted in lower turfgrass quality compared to higher 

mowing heights in May 2012 and 2013, but quality was acceptable (> 6.0) regardless of mowing 

height (Table 4.3).  Due to increased brown patch in higher mowing heights (Table 4.5), turf 

quality in plots mowed at 7.6 or 11.4 cm had unacceptable quality in July 2012, whereas turf 

mowed at 3.8 cm had acceptable quality.  Turfgrass quality was acceptable regardless of mowing 

height in September and November of 2012, and July, September, and November of 2013, with 

no significant differences among mowing heights. 

Seeding at 586 kg ha-1 resulted in higher turf quality than seeding at 195 kg ha-1 in May 

of 2012 (Table 4.3).  There were no other differences in turf quality among seeding rates in 2012 

or 2013. 

 Study 2 

Mowing height did not consistently affect turfgrass quality the first year after seeding 

(2013) in Study 2 and all mowing heights resulted in acceptable quality in 2013.  Turf mowed at 

7.6 or 11.4 cm had higher quality than that mowed at 3.8 cm in May and September 2013 (Table 

4.4).   

Seeding at 195, 391, or 586 kg ha-1 resulted in quality of 7.6, 7.1, and 6.6, respectively, in 

July and all seeding rates were different from one another (Table 4.4).  Turf quality was never 

less than acceptable in 2013, and there were no other differences in turf quality among seeding 

rates. 
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 Brown Patch Severity 

Brown patch was observed in Study 1 in 2012 and 2013, and in Study 2 in 2013, but 

statistical differences were only observed in Study 1 the first year after seeding (2012) (Table 

4.5).  On 5 July 2012, turf mowed at 7.6 cm had significantly more brown patch (7%) compared 

to turf mowed at 3.8 cm (4%).  By 18 July, mowing at 7.6 or 11.4 cm resulted in more brown 

patch (> 18%) compared to turf mowed at 3.8 cm (4%).  There were no differences in brown 

patch development among seeding rates.  The literature is conflicting concerning brown patch 

development in response to mowing heights.  Burpee (1995) reported increased brown patch of 

TF mowed at 8.9 cm compared to 3.8 cm during maximum disease development during one 

season, but the trend reversed the following season.  Fidanza and Dernoeden (1996) observed 

more brown patch of perennial ryegrass mowed at 1.7 cm compared to 4.5 cm in the first year of 

their study, but brown patch was more severe at 4.5 cm in the second and third years of the 

study.  In this experiment, brown patch was more severe at higher mowing heights during only 

the first year after seeding Study 1 (2012).  The inconsistent response of brown patch to mowing 

heights suggests other factors are more important than canopy height for disease development. 

 Conclusions 

Tall fescue establishment was acceptable with all seeding rates, mowing heights, and 

their combination.  Even though RBG incidence was relatively high at the beginning of each 

study, it was difficult to observe without close inspection until characteristic patches began to 

develop in the second year after seeding.  Mowing TF at 7.6 or 11.4 cm reduced RBG incidence 

compared to mowing at 3.8 cm, especially in the second year after establishment.  Seeding rates 

did not consistently influence RBG incidence, and had no effect by the end of the study.  Brown 

patch was more severe at higher mowing heights during peak disease development, but seeding 

rate did not influence brown patch development.  Mowing TF at > 7.6 cm may be an important 

strategy to mitigate RBG encroachment during establishment, even before infestations are 

observed.  However, neither seeding rates nor mowing heights evaluated in this study eliminated 

RBG. 
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Figure 4.1 A) Transect grid used to determine rough bluegrass frequency and B) tall fescue 

and rough bluegrass present under intersections on 31 May 2012, approximately eight 

months after seeding Study 1 on 15 September 2011.  The grid measured 0.9 × 0.9 m, and 

had 81 intersections with 10 cm between each of nine gridlines in either direction. 
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Table 4.1 Effect of mowing height and seeding rate on rough bluegrass incidence in Study 1 

in 2012 and 2013. 

 Rough bluegrass incidence (%)† 

 2012‡  2013 

Effect May July Sept. Nov.  May July Sept. Nov. 

Whole-plot (mowing height)§ 

      3.8 cm 64 52 68 72  71 74    54 a¶   61 a 

      7.6 cm 68 62 83 77  76 77     41 ab   37 b 

    11.4 cm 71 49 74 68  65 61   29 b   26 b 

Sub-plot (seeding rate)# 

  195 kg ha-1   73 a 55   68 c   63 b    64 b 72 41 41 

  391 kg ha-1    67 ab 55   75 b   76 a    69 b 69 44 41 

  586 kg ha-1   63 b 53   82 a   78 a    77 a 71 39 40 

†Rough bluegrass (RBG) incidence was determined by rating RBG frequency with 

presence/absence counts under an 81-intersection grid that measured 0.9 × 0.9 m with 

10 cm between each of nine gridlines in either direction (% RBG incidence = RBG 

frequency/81×100). 

‡Study 1 was evaluated in the first year after seeding (2012) on 31 May, 31 July, 30 

September, and 27 November.  In the second year after seeding (2013) Study 1 was 

evaluated on 31 May, 30 July, 20 September, and 13 November. 

§Plots were mowed at designated heights once weekly with a rotary mower. 

¶There was never a significant mowing height × seeding rate interaction.  Means are 

averaged over main effects.  Within columns and main effects, means are not 
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significantly different according to Fisher’s Protected LSD (P ≤ 0.05). 

#Study 1 was seeded with tall fescue on 15 September 2011 with 1.0% RBG 

contamination by weight. 
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Table 4.2 Effect of mowing height and seeding rate on rough bluegrass incidence in Study 2 

in 2013. 

 Rough bluegrass incidence (%)† 

Effect 31 May 30 July 20 Sept. 13 Nov. 

Whole-plot (mowing height)‡ 

      3.8 cm 51 69    52 a§ 57 

      7.6 cm 55 71   46 a 54 

    11.4 cm 57 75   33 b 45 

Sub-plot (seeding rate)¶ 

  195 kg ha-1   45 b 69 41 52 

  391 kg ha-1   60 a 72 44 52 

  586 kg ha-1   56 a 74 46 52 

†Rough bluegrass (RBG) incidence was determined by rating RBG frequency with 

presence/absence counts under an 81-intersection grid that measured 0.9 × 0.9 m with 10 

cm between each of nine gridlines in either direction (% RBG incidence = RBG 

frequency/81×100). 

‡Plots were mowed at designated heights once weekly with a rotary mower. 

§There was never a significant mowing height × seeding rate interaction.  Means are 

averaged over main effects.  Within columns and main effects, means are not 

significantly different according to Fisher’s Protected LSD (P ≤ 0.05). 

¶Study 2 was seeded with tall fescue on 18 September 2012 with 1.0% RBG 

contamination by weight. 
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Table 4.3 Effect of mowing height and seeding rate on turf quality in Study 1 in 2012 and 

2013. 

 Turf quality† 

 2012‡  2013 

Effect May July Sept. Nov.  May July Sept. Nov. 

Whole-plot (mowing height)§ 

      3.8 cm  7.6 b¶   6.8 a 7.5 7.0    6.4 b 6.4 7.5 8.6 

      7.6 cm 8.8 a   5.9 b 7.7 7.0    8.0 a 7.1 8.2 9.0 

    11.4 cm 9.0 a   5.6 b 7.9 6.8    8.3 a 7.2 8.1 9.0 

Sub-plot (seeding rate)# 

  195 kg ha-1 8.3 b  6.3 7.8 7.0  7.6 7.0 7.9 8.9 

  391 kg ha-1   8.4 ab 5.9 7.7 6.8  7.7 6.8 7.8 8.9 

  586 kg ha-1 8.7 a 6.2 7.6 7.0  7.5 6.8 8.1 8.8 

†Turfgrass quality was rated on a 1 to 9 scale (1=completely brown, 6=minimum 

acceptable quality, 9=optimum color, density, and uniformity). 

‡Study 1 was evaluated in the first year after seeding (2012) on 31 May, 31 July, 30 

September, and 27 November.  In the second year after seeding (2013) Study 1 was 

evaluated on 31 May, 30 July, 20 September, and 13 November. 

§Plots were mowed at designated heights once weekly with a rotary mower. 

¶There was never a significant mowing height × seeding rate interaction.  Means are 

averaged over main effects.  Within columns and main effects, means are not 

significantly different according to Fisher’s Protected LSD (P ≤ 0.05). 

#Study 1 was seeded with tall fescue on 15 September 2011 with 1.0% RBG 
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contamination by weight. 
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Table 4.4 Effect of mowing height and seeding rate on turf quality in Study 2 in 2013. 

 Turf quality† 

Effect 31 May 30 July 20 Sept. 13 Nov. 

Whole-plot (mowing height)‡ 

      3.8 cm    7.0 b§ 6.6   7.3 b 8.0 

      7.6 cm   8.5 a 7.4   8.3 a 8.3 

    11.4 cm   8.2 a 7.3   8.1 a 7.6 

Sub-plot (seeding rate)¶ 

  195 kg ha-1 7.7   7.6 a 7.9 8.0 

  391 kg ha-1 8.1   7.1 b 7.8 7.9 

  586 kg ha-1 7.9   6.6 c 7.9 8.0 

†Turfgrass quality was rated on a 1 to 9 scale (1=completely brown, 6=minimum 

acceptable quality, 9=optimum color, density, and uniformity). 

‡Plots were mowed at designated heights once weekly with a rotary mower. 

§There was never a significant mowing height × seeding rate interaction.  Means are 

averaged over main effects.  Within columns and main effects, means are not 

significantly different according to Fisher’s Protected LSD (P ≤ 0.05). 

¶Study 2 was seeded with tall fescue on 18 September 2012 with 1.0% RBG 

contamination by weight. 
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Table 4.5 Effect of mowing height and seeding rate on brown patch severity in Study 1 in 

2012 and 2013 and Study 2 in 2013. 

 Brown patch severity (%)† 

Study 1  Study 2 

 2012  2013  2013 

Effect 5 July 18 July 30 Aug.  26 July  26 July 

Whole-plot (mowing height)‡ 

      3.8 cm    4 b§     4 b 0  6  7 

      7.6 cm   7 a   18 a 1  11  8 

    11.4 cm     5 ab   23 a 1  11  4 

Sub-plot (seeding rate)¶ 

  195 kg ha-1 5 11 0  8  3 

  391 kg ha-1 6 16 0  8  6 

  586 kg ha-1 6 17 1  12  9 

†Brown patch severity was visually rated as percent of plot blighted by brown 

patch symptoms when present.  Data were not normally distributed and were 

subject to an arcsin (y) transformation to normalize prior to analysis. 

‡Plots were mowed at designated heights once weekly with a rotary mower. 

§There was never a significant mowing height × seeding rate interaction.  

Means are averaged over main effects.  Within columns and main effects, 

means are not significantly different according to Fisher’s Protected LSD (P ≤ 

0.05). 

¶Studies 1 and 2 were seeded with tall fescue on 15 September 2011 and 18 
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September 2012, respectively, with 1.0% RBG contamination by weight. 
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Chapter 5 - Evaluation of Selective Herbicides and Paclobutrazol on 

Rough Bluegrass 

 Abstract 

Rough bluegrass (RBG, Poa trivialis L.) is a problematic weed in cool-season 

turfgrasses, and more selective postemergence control options are needed.  Our objective was to 

evaluate amicarbazone, mesotrione, and paclobutrazol, applied alone and in combination, for 

efficacy against RBG and safety on desirable cool-season turfgrasses in greenhouse and field 

settings.  In the greenhouse study, sod pieces of RBG, creeping bentgrass (Agrostis stolonifera 

L.), Kentucky bluegrass (Poa pratensis L.), and perennial ryegrass (Lolium perenne L.) were 

removed from established field plots and planted in the greenhouse.  Two applications of 

herbicide treatments were made to pots of each species.  Field studies were conducted in 2013 in 

Manhattan, KS; Hutchinson, KS; and Mead, NE.  Amicarbazone, mesotrione, amicarbazone + 

mesotrione combinations, paclobutrazol, and bispyribac-sodium were applied one to three times 

at approximately 10 day intervals.  In the greenhouse study, no herbicide treatment resulted in 

unacceptable quality of Kentucky bluegrass or perennial ryegrass, and only treatments containing 

mesotrione resulted in unacceptable creeping bentgrass quality.  Amicarbazone and mesotrione + 

amicarbazone reduced RBG quality, but did not reduce RBG cover.  With the exception of 

mesotrione, all herbicide treatments reduced RBG clipping production compared to untreated 

RBG, but reductions were similar to those observed in the other three species.  When treated 

with paclobutrazol or combinations including paclobutrazol, RBG had similar green color to 

other species.  Amicarbazone reduced the lateral spread of RBG by 40%.  In the field study, 

mesotrione and bispyribac-sodium reduced perennial ryegrass quality at 8 weeks after initial 

treatment.  Rough bluegrass quality was consistently reduced across all three locations with two 

sequential applications of amicarbazone (0.09 kg a.i. ha-1) + mesotrione or three sequential 

applications of bispyribac-sodium.  Several treatments provided transient RBG control, but 

bispyribac-sodium was the only treatment that provided enduring RBG control (16 to 92%) 

across all three locations. 
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 Introduction 

Rough bluegrass (RBG, Poa trivialis L.) is a cool-season perennial turfgrass and a 

problematic weed in cool-season landscapes, golf course turfs, and athletic fields due to invasive 

stoloniferous growth, suboptimal color, extreme sensitivity to heat and drought, and 

susceptibility to diseases (Beard, 1973; Hurley, 2003).  Rough bluegrass is spread vegetatively 

during cultivation and as weed seed due to contamination in production seed lots (Levy, 1998; 

Reicher et al., 2011). 

Nonselective herbicides (e.g. glyphosate) can control RBG, but few postemergence 

herbicides are effective for selective removal in cool-season turfgrasses.  Fenoxaprop effectively 

reduced RBG in perennial ryegrass (Lolium perenne L.) production fields (Mueller-Warrant, 

1990) and applications of quinclorac plus 2,4-D injured RBG six weeks after treatment, whereas 

Kentucky bluegrass (Poa pratensis L.), perennial ryegrass, and tall fescue (Festuca arundinacea 

Schreb.) were not injured (Neal and Senesac, 1993).  There are no other reports of RBG control 

with fenoxaprop or quinclorac plus 2, 4-D.  The most success selectively controlling RBG has 

come from applications of bispyribac-sodium {2,6-bis[(4,6-dimethoxypyrimidin-2-yl)oxy] 

benzoic acid; Velocity 17.6 SG, Valent U.S.A. Corporation, Walnut Creek, CA} or sulfosulfuron 

{1-[4,6-dimethoxypyrimidin-2-yl]-3-[2-ethanesulfonyl-imidazo(1,2-a)pyridine-3-yl) 

sulfonyl]urea; Certainty 75 WDG, Monsanto Co., St. Louis, MO}.  Sulfosulfuron is no longer 

labeled for use in cool season turf (Anonymous, 2012a).  Bispyribac-sodium is a 

pyrimidinylthiobenzoic acid herbicide that inhibits acetolactate synthase (ALS), blocking amino 

acid synthesis in sensitive plants (Lycan and Hart, 2006; Senseman, 2007).  The effectiveness of 

bispyribac-sodium for selective postemergence RBG reduction is well documented (Askew et 

al., 2004; McCullough and Hart, 2011; Morton et al., 2007), but long-term studies indicate that 

RBG recovery ultimately limits control (McCullough and Hart, 2011).  Bispyribac-sodium also 

safely controls RBG soon before and after seeding desirable species.  Creeping bentgrass 

(Agrostis stolonifera L.), Kentucky bluegrass, and perennial ryegrass may be safely seeded as 

soon as two weeks after bispyribac-sodium application (Lycan and Hart, 2006), and interseeding 

has been shown to improve RBG control in creeping bentgrass (Rutledge et al., 2010a).  After 

seeding, bispyribac-sodium safely controls RBG as early as 7 days after creeping bentgrass 

emergence (Rutledge et al., 2010b). 
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Even though bispyribac-sodium is effective for RBG control, its use is limited to golf 

course and sod farm turf (Anonymous, 2010).  More control options are needed.  Amicarbazone 

[4-amino-N-(1,1-dimethylethyl)-4,5-dihydro-3-(1-methylethyl)-5- oxo-1H-1,2,4-triazole-1-

carboxamide; Xonerate 4 SC, Arysta LifeScience, Cary, NC] and mesotrione {2-[4-

(methylsulfonyl)-2-nitrobenzoyl]-1,3-cyclohexanedione; Tenacity 4 SC, Syngenta Crop 

Protection, Greensboro, NC} are selective postemergence herbicides that are labeled for use in 

many turfgrass sites.  Amicarbazone is labeled for use on golf courses, sod farms, residential and 

commercial turf sites, park and recreation areas, school grounds, and other turf areas 

(Anonymous, 2012b).  Mesotrione is labeled for use on golf courses, sod farms, athletic fields, 

parks, residential and commercial properties, cemeteries, airports, and lawns (Anonymous, 

2011).  In sensitive plants, amicarbazone inhibits photosystem II by blocking electron transport, 

wheraes mesotrione is a p-hydroxyphenylpyruvate (HPPD)-inhibiting herbicide (Elmore et al., 

2013).  Recently, researchers have shown that amicarbazone and mesotrione more effectively 

control annual bluegrass (Poa annua L.) when tank-mixed than when either product is applied 

alone (Elmore et al., 2013).  Elmore et al. (2013) explain that the synergistic effects of 

combinations of amicarbazone and mesotrione result from coinciding increased production of 

toxic singlet oxygen (amicarbazone) and decreased singlet oxygen quenching due to inhibited 

carotenoid production (mesotrione).  Paclobutrazol {(±)-(R*,R*)-beta-[(4-chlorophenyl)methyl]-

alpha- (1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol; Trimmit 2 SC, Syngenta Crop 

Protection, Greensboro, NC} is a plant growth regulator that inhibits gibberellic acid synthesis 

and is commonly used for annual bluegrass suppression in creeping bentgrass fairways and 

putting greens (Baldwin and Brede, 2011; McCullough et al., 2005), but it is unclear if 

paclobutrazol suppresses RBG.  Therefore, the objective of this research was to evaluate 

amicarbazone, mesotrione, and paclobutrazol, when applied alone and in combination, for 

efficacy against RBG and safety on desirable cool-season turfgrasses. 

 Materials and Methods 

 Greenhouse Study 

Sod pieces (5 cm × 10 cm) (diameter × depth) of ‘Laser’ RBG, ‘Declaration’ creeping 

bentgrass, ‘Bedazzled’ Kentucky bluegrass, and ‘Revenge GLX’ perennial ryegrass were 

removed from established research plots at the Rocky Ford Turfgrass Research Center in 
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Manhattan, KS on 28 January 2013, planted in 12.7 × 12.7 × 30 cm (length × width × height) 

pots filled with field soil (Chase silt loam:  6.8 pH, 0.08 g kg-1 P, 0.33 g kg-1 K, and 2% organic 

matter), and placed in the Throckmorton Plant Sciences Center Greenhouse Complex at Kansas 

State University.  The experiment was a split-plot in a randomized complete-block design with 

four replications.  Turf species and herbicide treatment were the whole- and sub-plot treatment 

factors, respectively.  Whole-plots in each block were comprised of eight pots of each species.  

As such, each pot was a sub-plot experimental unit and was either left untreated, or treated with 

herbicide (described below).  Pots received N at 49 kg ha-1 from a controlled release fertilizer 

[Osmocote 14-14-14 (N-P2O5-K2O), Everris NA Inc., Dublin, OH], were watered to field 

capacity every other day, and were mowed three times each week at 1.3 cm.  Mean air 

temperature of the greenhouse and soil temperature 10 cm deep in pots was 20 (± 3.7)°C and 20 

(± 1.3)°C, respectively.  Plants were provided a 14 hour photoperiod.  Photosynthetically active 

radiation (PAR) was measured with a ceptometer (LP-80 AccuPAR PAR/LAI Ceptometer, 

Decagon Devices, Inc., Pullman, WA) and averaged 1,185 (± 245) μmol m-2 s-1 in a horizontal 

plane approximately 30 cm above the turf canopy. 

Herbicide treatments were applied on 1 March 2013 and 15 March 2013 with a Links 

spray chamber equipped with a single 8015 LP nozzle (Spraying Systems, Co., Wheaton, IL) 

positioned 0.8 m over the turf canopy and operating at 124 kPa to deliver 374 L spray solution 

ha-1.  Treatments included:  1) untreated; 2) paclobutrazol (0.56 kg a.i. ha-1); 3) mesotrione (0.17 

kg a.i. ha-1); 4) amicarbazone (0.15 kg a.i. ha-1); 5) paclobutrazol (0.56 kg a.i. ha-1) + mesotrione 

(0.15 kg a.i. ha-1) + amicarbazone (0.10 kg a.i. ha-1); 6) paclobutrazol (0.56 kg a.i. ha-1) + 

mesotrione (0.15 kg a.i. ha-1); 7) paclobutrazol (0.56 kg a.i. ha-1) + amicarbazone (0.10 kg a.i. ha-

1); and 8) mesotrione (0.15 kg a.i. ha-1) + amicarbazone (0.10 kg a.i. ha-1). 

Turfgrass quality (1 to 9, 1=completely brown, 6=acceptable, 9=no phytotoxicity), 

percent control, and clipping yield were recorded every other week.  Percent control was 

determined by rating green turf frequency with presence/absence counts under an 81-intersection 

grid that measured 11.7 × 11.7 cm with 1.3 cm between each of nine gridlines in either direction 

(% green turf cover=green turf frequency/81 × 100).  Percent control was then determined by 

comparing cover on each rating date to initial cover in each pot [if % cover on rating date ≥ 

initial % cover, then % control=0; otherwise, % control = (initial % cover – % cover on rating 

date) / initial % cover × 100].  Clipping yield was determined by collecting clippings produced 
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each week.  Weekly yields were oven-dried at 60°C for two days, weighed, and reported as mass 

per unit area (g dry weight m-2) based upon the area of each pot covered by green turf.  Turfgrass 

color (1 to 9, where 9 = dark green turf) was rated visually from six weeks after initial treatment 

(WAIT) to the end of the study (10 WAIT).  At 10 WAIT, lateral spread (average plug diameter), 

leaf area index (LAI), and shoot biomass were measured.  The average diameter of each plug 

was determined from the mean of measurements in two perpendicular directions.  Leaf area 

index was determined directly by defoliating a 5.0 cm plug removed from the center of each pot.  

Brown leaves and debris were removed from samples prior to image analysis with WinRHIZO 

(version 2003 b, Regent Instruments, Quebec City, Canada).  Remaining foliage was then 

harvested from pots, and all shoot biomass was oven-dried at 60°C for two days, weighed, and 

reported as mas per unit area (g dry weight m-2).  For comparison across turf species, clipping 

yield, shoot biomass, average diameter, and LAI data were adjusted by scaling data from each 

pot to the percent of the untreated pot within each block of each species on each rating date [% 

of untreated=(treatment parameter rating from block x on date y / untreated parameter rating 

from block x on date y) × 100]. 

 Field Study 

Three separate experiments were conducted in the field study.  Experiments were 

conducted in 2013 at the Rocky Ford Turfgrass Research Center in Manhattan, KS; Prairie 

Dunes Country Club in Hutchinson, KS; and The John Seaton Anderson Turf Research Center in 

Mead, NE.  Research plots (0.9 × 0.9 m in Manhattan and Hutchinson, and 1.5 × 1.5 m in Mead) 

were arranged in a randomized complete-block design with three replications.  Studies were 

conducted on monostands of ‘Laser’ and ‘Winterstar’ RBG in Manhattan and Mead, 

respectively.  The experiment in Hutchinson was conducted on a natural infestation of RBG of 

unknown variety and origin in mixture with an established blend of perennial ryegrass cultivars.  

All studies were mowed with reel mowers and irrigated as needed to prevent drought stress.  In 

Manhattan, RBG was mowed twice each week at 1.9 cm and fertilized with N at 49 kg ha-1 on 16 

April, 17 May, 19 September, and 1 November 2013.  Polymer-coated urea (41-0-0; Polyon/ 

Pursell Industries, Sylacauga, AL) was used on 17 May, and urea (46-0-0) was used on all other 

dates.  Dimension 2 EW [dithiopyr: S,S'-dimethyl 2-(difluoromethyl)-4-(2-methylpropyl)-6-

(trifluoromethyl)-3,5-pyridinedicarbothioate; Dow AgroSciences LLC, Indianapolis, IN] and 



94 

 

Speed Zone {Carfentrazone-ethyl: Ethyl α,2-dichloro-5-[4(difluoromethyl)-4,5-dihydro-3-

methyl-5-oxo-1H-1,2,4-triazol-1-yl]-4-fluorobenzenepropanoate; 2,4-D, 2-ethylhexyl ester: 2,4-

dichlorophenoxy acetic acid equivalent; Mecoprop-p acid: (+)-R-2-(2-methyl-4-chlorophenoxy) 

propionic acid equivalent; and Dicamba acid: 3,6-dichloro-o-anisic acid equivalent; PBI/Gordon 

Corporation, Kansas City, MO} were applied at 0.6 and 1.2 kg a.i. ha-1, respectively, on 9 May 

2013 for common dandelion (Taraxacum officinale Wigg.) control and smooth crabgrass 

[Digitaria ischaemum (Schreb.) Muhl.] and large crabgrass [D. sanguinalis (L.) Scop.] 

prevention.  Additionally, Merit 0.5 G {Imidacloprid: 1-[(6-Chloro-3-pyridinyl)methyl]-N-nitro-

2-imidazolidinimine; Bayer Environmental Science, Research Triangle Park, NC} was applied at 

0.4 kg a.i. ha-1 on 6 June 2013 for control of southern masked chafer (Cyclocephala lurida 

Bland) and May beetle (Phyllophaga spp.) larvae.  The experiment in Hutchinson was mowed 

three times each week at 1.3 cm and fertilized with N from urea at 15 kg ha-1 on 13 May, 20 kg 

ha-1 on 13 September, and 49 kg ha-1 on 18 November 2013.  In Mead, RBG was mowed three 

times weekly at 1.6 cm and fertilized with polymer-coated urea to provide N at 49 kg ha-1 on 1 

May, 1 September, and 1 November 2013.  Pendimethalin (N-[1-ethylpropyl]-3, 4-dimethyl-2, 6-

dinitrobenzenamine) was applied in late-April 2013 at 3.4 kg a.i. ha-1 and Trimec Classic 

(Dimethylamine salt of 2,4-dichlorophenoxyacetic acid; dimethylamine salt of [+]-[R]-2-[2-

methyl-4-chlorophenoxy]propionic acid; and dimethylamine salt of dicamba: 3,6-dichloro-o-

anisic acid; PBI/Gordon Corporation, Kansas City, MO) was applied at 1.5 kg a.i. ha-1 in late-

September 2013 for broadleaf weed control. 

Herbicides were applied with a CO2-powered sprayer equipped with XR TeeJet 8002 flat 

spray nozzles calibrated to deliver 814 L spray volume ha-1 at 207 kPa.  Amicarbazone, 

mesotrione, paclobutrazol, and bispyribac-sodium were applied one to three times at 

approximately 10 day intervals.  Rates and combinations included:  1) untreated; 2) two 

sequential applications of amicarbazone (0.04 kg a.i. ha-1); 3) one application of amicarbazone 

(0.09 kg a.i. ha-1); 4) two sequential applications of amicarbazone (0.09 kg a.i. ha-1); 5) one 

application of mesotrione (0.15 kg a.i. ha-1); 6) two sequential applications of mesotrione (0.15 

kg a.i. ha-1); 7) three sequential applications of mesotrione (0.15 kg a.i. ha-1); 8) two sequential 

applications of amicarbazone (0.04 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1); 9) one 

application of amicarbazone (0.09 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1); 10) two 

sequential applications of amicarbazone (0.09 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1); 11) 
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three sequential applications of paclobutrazol (0.28 kg a.i. ha-1); and 12) three sequential 

applications of bispyribac-sodium (0.08 kg a.i. ha-1).  Specific application dates for each site are 

available in Table 5.1. 

In Manhattan and Mead, RBG quality (1 to 9, 1=brown, 6=minimum acceptable, and 

9=optimum color, density, and uniformity) was evaluated every other week from 0 to 8 weeks 

after initial treatment (WAIT).  Percent green RBG cover was visually estimated from 0 to 16 

WAIT.  In Hutchinson, RBG quality and perennial ryegrass injury (0 to 100, where 0=no injury) 

were evaluated every other week from 0 to 8 WAIT, and percent green RBG cover was visually 

estimated from 0 to 12 WAIT.  In each study, percent RBG control was determined in the same 

way as previously described in the greenhouse study [if % cover on rating date ≥ initial % cover, 

then % control=0; otherwise, % control = (initial % cover – % cover on rating date) / initial % 

cover × 100]. 

 Data Analysis 

Residual normality was tested with the w statistic of the Shapiro-Wilk test using the 

UNIVARIATE procedure of Statistical Analysis System (SAS Institute Inc., Cary, NC) (Shapiro 

and Wilk, 1965).  Percent control and clipping yield data from the greenhouse study were not 

normally distributed and were subjected to a log10(y+1) transformation prior to analysis.  All data 

were subjected to analysis of variance using the GLIMMIX procedure of SAS.  Fisher’s 

protected LSD (P ≤ 0.05) was used to detect treatment differences. 

 Results and Discussion 

 Greenhouse Study 

With the exception of LAI, there were significant turf species × herbicide treatment 

interactions for all parameters evaluated (Table 5.2). 

 Turfgrass Quality 

In general, herbicide treatments reduced the quality of RBG more than for other species 

and treatment with amicarbazone or mesotrione + amicarbazone most greatly reduced RBG 

quality (Table 5.3).  No herbicide treatment resulted in unacceptable quality (<6.0) of Kentucky 

bluegrass or perennial ryegrass from 0 to 10 WAIT, and only treatments containing mesotrione 
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resulted in unacceptable creeping bentgrass quality (Table 5.3).  Mesotrione is labeled for 

creeping bentgrass control, and the adverse effects on creeping bentgrass quality in this study 

were expected (Anonymous, 2011).  Mesotrione also reduced perennial ryegrass quality, whereas 

herbicide combinations including paclobutrazol most often reduced Kentucky bluegrass quality.  

While Kentucky bluegrass injury is not uncommon with use of plant growth regulators (Bigelow, 

2012), mesotrione doesn’t generally reduce perennial ryegrass quality, and only resulted in 

minimal phytotoxicity to perennial ryegrass when applied at or as early as four weeks before 

seeding at 161, 282, 343, or 565 g a.i. ha-1 in a greenhouse study in Washington (Williams et al., 

2009).  Additionally, Beam et al. (2006) observed < 20% perennial ryegrass injury after two (280 

g a.i. ha-1) or three (60 or 170 g a.i. ha-1) sequential applications of mesotrione.  With the 

exceptions of paclobutrazol and amicarbazone, all treatments resulted in significantly lower RBG 

quality ratings (5.8 to 7.3) compared to untreated RBG by 2 WAIT.  Perennial ryegrass had 

similar quality to RBG when treated with mesotrione at 2 WAIT, and creeping bentgrass had 

significantly lower quality ratings compared to RBG when treated with mesotrione or 

combinations including mesotrione (3.5 to 4.0). 

All treatments resulted in lower RBG quality compared to untreated RBG on 4 and 6 

WAIT, but reduced quality from paclobutrazol or mesotrione had diminished by 8 WAIT.  With 

the exception of creeping bentgrass treated with mesotrione, combinations including mesotrione, 

or paclobutrazol + amicarbazone, quality of all turfgrass species was less affected by herbicide 

treatments than RBG at 4 and 6 WAIT.  At 8 WAIT, only creeping bentgrass treated with 

mesotrione, combinations including mesotrione, or paclobutrazol + amicarbazone, as well as 

Kentucky bluegrass treated with paclobutrazol + mesotrione or paclobutrazol + amicarbazone 

had similar quality to RBG receiving the same treatment.  At 10 WAIT, only amicarbazone and 

mesotrione + amicarbazone resulted in lower RBG quality compared to untreated RBG, and 

quality of RBG treated with amicarbazone was still considered unacceptable (5.3).  

Amicarbazone did not reduce quality of other turf species at 10 WAIT, and quality from 

mesotrione + amicarbazone in RBG was only similar to that in creeping bentgrass.  

Amicarbazone injury to desirable species has been reported previously.  McCullough et al. 

(2010) observed only subtle differences in injury of annual bluegrass and desirable turfgrass 

species (creeping bentgrass, perennial ryegrass, and Kentucky bluegrass) with amicarbazone 

applications, especially at temperatures exceeding 20°C.   
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 Control 

No treatment controlled RBG.  Applications of paclobutrazol + amicarbazone provided 

14% RBG control at 2 WAIT, but the treatment had no effect by 4 WAIT (Table 5.4).  

Paclobutrazol and mesotrione provided 8% Kentucky bluegrass control and 5% perennial 

ryegrass control, respectively, at 2 WAIT, with no effect thereafter.  As expected, applications 

containing mesotrione reduced creeping bentgrass cover from 2 to 8 WAIT, but no herbicide 

treatment controlled creeping bentgrass by 10 WAIT.  Mesotrione efficacy on creeping bentgrass 

is well documented (Beam et al., 2006; Branham et al., 2005; Dernoeden, et al., 2008; Jones and 

Christians, 2007).   

 Clipping Yields 

From 2 to 10 WAIT, clipping yields varied among untreated creeping bentgrass (9 to 28 g 

m-2), Kentucky bluegrass (9 to 15 g m-2), perennial ryegrass (11 to 24 g m-2), and RBG (10 to 24 

g m-2).  Clipping yields of herbicide-treated RBG were not different from untreated RBG at 2 

WAIT, but creeping bentgrass treated with paclobutrazol + amicarbazone and Kentucky 

bluegrass treated with paclobutrazol produced 56 and 48% fewer clippings than untreated turfs, 

respectively (Table 5.5).  At 4 WAIT, RBG treated with paclobutrazol + mesotrione + 

amicarbazone produced 52% fewer clippings than untreated RBG, which was statistically similar 

to clipping reductions in creeping bentgrass, Kentucky bluegrass, and perennial ryegrass 

receiving the same treatment.  Treatments containing paclobutrazol and/or mesotrione reduced 

creeping bentgrass clipping production 63 to 78% at 4 WAIT, whereas treatments containing 

paclobutrazol reduced Kentucky bluegrass clipping production 48 to 72% at 4 WAIT.  With the 

exception of mesotrione, all herbicide treatments reduced RBG clipping production compared to 

untreated RBG by 6 WAIT.  However, RBG clipping reductions from treatments containing 

paclobutrazol and/or mesotrione were similar or greater in magnitude (mesotrione + 

amicarbazone) compared to those in creeping bentgrass.  Similarly, clipping reductions from 

treatments containing paclobutrazol were similar to those in Kentucky bluegrass, while perennial 

ryegrass treated with paclobutrazol or paclobutrazol + mesotrione + amicarbazone had similar 

reductions in clipping production compared to RBG receiving the same treatment.  At 8 WAIT, 

only Kentucky bluegrass treated with paclobutrazol produced fewer clippings than untreated 

turfgrasses.  Plant growth regulators such as flurprimidol or paclobutrazol have been 

recommended for RBG suppression in creeping bentgrass golf course fairways (Dernoeden, 
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2013).  However, the desirable turfgrass species in this study generally experienced similar 

clipping reductions to RBG when treated with paclobutrazol or treatments containing 

paclobutrazol, indicating that paclobutrazol may be ineffective in reducing RBG populations as it 

has been for reducing annual bluegrass on golf course fairways and putting greens (Baldwin and 

Brede, 2011; McCullough et al., 2005). 

 Green Color 

Treatments affected the level of green color of turfgrass species at 6 and 8 WAIT.  On 6 

and 8 WAIT, RBG treated with paclobutrazol or combinations including paclobutrazol had a 

significantly darker green color than untreated RBG or RBG receiving other herbicide treatments 

(Table 5.6).  Furthermore, RBG and creeping bentgrass treated with paclobutrazol or 

paclobutrazol + amicarbazone had similar green color on 6 and 8 WAIT and RBG, Kentucky 

bluegrass, and perennial ryegrass treated with paclobutrazol, paclobutrazol + mesotrione + 

amicarbazone, or paclobutrazol + amicarbazone had similar green color on 6 WAIT (Figure 5.1).  

On 8 WAIT, treatment with paclobutrazol, paclobutrazol + mesotrione + amicarbazone, 

paclobutrazol + mesotrione, or paclobutrazol + amicarbazone resulted in similar green color 

among RBG, Kentucky bluegrass, and perennial ryegrass.  Paclobutrazol is not typically used for 

color enhancement as is trinexapac-ethyl (Dernoeden, 2013), but routine applications may 

enhance RBG color in golf course fairways making the species less noticeable without close 

inspection and resulting in perceived RBG suppression. 

 Lateral Spread, Leaf Area Index, and Biomass 

From the original 5.0 cm plugs, untreated creeping bentgrass, Kentucky bluegrass, 

perennial ryegrass, and RBG had spread to diameters of 10.0, 8.7, 6.0, and 7.5 cm, respectively, 

at 10 WAIT.  Amicarbazone was the only treatment that reduced the lateral spread of RBG, and 

did so by 40% compared to untreated RBG at 10 WAIT (Table 5.7).  Amicarbazone had no 

effect on the lateral spread of creeping bentgrass, Kentucky bluegrass, or perennial ryegrass.  

Treatment with mesotrione, paclobutrazol + mesotrione + amicarbazone, or mesotrione + 

amicarbazone reduced the lateral spread of creeping bentgrass 43 to 48% compared to untreated 

creeping bentgrass at 10 WAIT.  The lateral spread of Kentucky bluegrass and perennial ryegrass 

was not affected by herbicide treatments. 
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At 10 WAIT, LAI of untreated creeping bentgrass, Kentucky bluegrass, perennial 

ryegrass, and RBG was 1.2, 1.2, 1.0, and 1.6 m2 m-2, respectively, but there was neither a 

significant turf species × herbicide treatment interaction, nor a significant turf species main effect 

for LAI at 10 WAIT (Table 5.2).  Averaged over turf species, paclobutrazol and combinations 

including paclobutrazol increased LAI 154 to 206% compared to untreated turf (data not shown).  

Additionally, treatment with paclobutrazol or combinations including paclobutrazol resulted in 

significantly greater LAI compared to treatment with mesotrione or amicarbazone, while 

treatment with paclobutrazol alone also resulted in greater LAI compared to treatment with 

paclobutrazol + mesotrione. 

Shoot biomass for untreated creeping bentgrass, Kentucky bluegrass, perennial ryegrass, 

and RBG was 118, 49, 41, and 49 g dry weight m-2 at 10 WAIT.  No herbicide treatment reduced 

RBG shoot biomass compared to untreated RBG, and treatment with paclobutrazol + mesotrione 

increased RBG shoot biomass 104% (Table 5.7).  Similarly, treatment with paclobutrazol or 

combinations including paclobutrazol increased perennial ryegrass shoot biomass 103 to 216% 

compared to untreated perennial ryegrass.  Herbicide treatments had no effect on creeping 

bentgrass or Kentucky bluegrass shoot biomass. 

With the exception of applications of mesotrione or combinations including mesotrione 

to creeping bentgrass, herbicide combinations evaluated in this study were generally safe on 

creeping bentgrass, Kentucky bluegrass, and perennial ryegrass.  However, because of the lack 

of herbicide effects on RBG quality, control, clipping yields, and shoot biomass by 10 WAIT, 

herbicides and herbicide combinations evaluated were generally ineffective in controlling RBG.  

The exception was amicarbazone applied alone, which reduced the lateral spread of RBG, but 

not desirable turfgrass species. 

 Field Study 

There were signifant herbicide × location (Manhattan, Hutchinson, or Mead) interactions 

in the statistical models for RBG quality and percent control, and perennial ryegrass injury was 

only evaluated in Hutchinson.  Consequently, RBG quality, percent control, and perennial 

ryegrass injury data will be discussed separately for each location. 
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 Rough Bluegrass Quality 

With the exception of paclobutrazol, all herbicide treatments reduced RBG quality 

compared to untreated RBG in Manhattan (Appendix Table A.1).  In Hutchinson, one application 

of mesotrione, one application of amicarbazone (0.09 kg a.i. ha-1) + mesotrione, two sequential 

applications of amicarbazone (0.09 kg a.i. ha-1) + mesotrione, or three sequential applications of 

bispyribac-sodium reduced RBG quality.  Compared to untreated RBG in Mead, RBG quality 

was significantly reduced by two sequential applications of amicarbazone (0.09 kg a.i. ha-1) + 

mesotrione or three sequential applications of bispyribac-sodium.   

 Perennial Ryegrass Injury 

No treatment was injurious to perennial ryegrass until 4 WAIT in Hutchinson (Appendix 

Table A.2).  At that time, two sequential applications of amicarbazone (0.04 or 0.09 kg a.i. ha-1) 

+ mesotrione or three sequential applications of bispyribac-sodium injured perennial ryegrass 8 

to 15%, and were the only treatments with significantly more injury than untreated RBG (2%).  

By 8 WAIT, only three sequential applications of mesotrione or bispyribac-sodium injured 

perennial ryegrass.  Mesotrione was most injurious (60%), and bispyribac-sodium was 

marginally less injurious (45%) to perennial ryegrass.  Even though mesotrione application 

rates/frequency were similar to or less than those in previous experiments, the level of perennial 

ryegrass injury from mesotrione in this study exceeds that observed in the greenhouse study and 

that previously reported by other researchers (Beam et al., 2006; Williams et al., 2009).  Because 

post application temperature and irradiance levels have been shown not to affect mesotrione 

injury of perennial ryegrass (McCurdy et al., 2008), potential differences in injury caused by 

mesotrione in this study and that in the greenhouse study or reported by Beam et al. (2006) and 

Williams et al. (2009) are not likely due to confounding environmental factors.   

Perennial ryegrass injury from bispyribac-sodium was also greater than reported by 

previous researchers.  McCullough and Hart (2009) applied bispyribac-sodium twice on 

approximately a 21-day interval at 37, 74, 148, 222, or 296 g a.i. ha-1 and observed < 15% 

perennial ryegrass injury.  Lycan and Hart (2005) applied bispyribac-sodium once at 37, 74, 111, 

148, or 296 g ha-1 and observed < 16% perennial ryegrass injury 35 days after treatment with 

nearly complete recovery by 70 days after treatment.  The efficacy of bispyribac-sodium often 

increases with warmer temperatures (~24 to 30°C) (Askew et al., 2004; Morton et al. 2007).  
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Daily maximum temperatures in Hutchinson exceeded 24°C from 0 to 12 WAIT (data not 

shown), possibly contributing to perennial ryegrass injury.   

The level of mesotrione- and bispyribac-sodium-related perennial ryegrass injury in this 

study could also be an artifact of the rating method.  On later rating dates, perennial ryegrass 

injury was rated as percent plot inury (0 to 100) excluding intital RBG coverage.  Annual 

bluegrass was also present in some research plots at the beginning of the study, but percent 

annual bluegrass coverage was not recorded.  Mesotrione and bispyribac-sodium have efficacy 

against annual bluegrass (Askew et al., 2004; Elmore et al., 2013).  Therefore, the percent of plot 

injury excluding initial RBG coverage could include annual bluegrass injury, artificially inflating 

estimates of perennial ryegrass injury. 

 Rough Bluegrass Control 

No treatment completely eliminated RBG.  Several treatments provided transient RBG 

control from 2 to 8 WAIT in Manhattan, but only two sequential applications of amicarbazone at 

0.04 or 0.09 kg a.i. ha-1, two or three sequential applications of mesotrione, or three sequential 

applications of bispyribac-sodium enhanced RBG control compared to untreated RBG by the 

final rating 16 WAIT (Table 5.8).  Bispyribac-sodium provided 92% RBG control at this time, 

and only two sequential applications of amicarbazone at 0.09 kg a.i. ha-1 provided similar control 

(63%).  While RBG control from other amicarbazone treatments, mesotrione treatments, and 

amicarbazone + mesotrione combinations were not statistically different from that provided by 

two sequential applications of amicarbazone (0.09 kg a.i. ha-1), control from these treatments was 

not different from the untreated RBG.  Furthermore, RBG control from a single treatment with 

amicarbazone/mesotrione was not enhanced by combining the two products as has been reported 

with annual bluegrass (Elmore et al., 2013). 

In Hutchinson, several treatments enhanced RBG control from 2 to 8 WAIT, but only 

three sequential bispyribac-sodium applications provided significant RBG control (58%) 

compared to untreated RBG by the final rating 12 WAIT.  Less overall control was observed in 

Mead.  While two sequential applications of mesotrione or three sequential applications of 

bispyribac-sodium controlled RBG 14 and 20%, respectively, by 12 WAIT, only bispyribac-

sodium controlled RBG compared to untreated RBG by the final rating 16 WAIT.  Bispyribac-

sodium was not as effective in this study as it was for Morton et al. (2007), who observed up to 

100% RBG control 12 WAIT in Indiana with four sequential applications at 0.07 kg a.i. ha-1.  
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The efficacy of bispyribac-sodium in this study was similar to that reported by McCullough and 

Hart (2011), who observed transient RBG control for up to three months after initial treatment 

with three applications at 0.07 kg a.i. ha-1 before RBG cover was similar to the untreated. 

 Conclusions 

Amicarbazone + mesotrione combinations did not effectively control RBG.  Bispyribac-

sodium was the only herbicide treatment that consistently reduced RBG coverage.  The safety of 

bispyribac-sodium was not evaluated on creeping bentgrass or Kentucky bluegrass, but 

bispyribac-sodium was injurious to perennial ryegrass in this study.  Bispyribac-sodium is 

typically less injurious to perennial ryegrass than observed in this study, but practitioners should 

expect at least minor reductions in perennial ryegrass quality with repeated bispyribac-sodium 

applications.  Routine paclobutrazol applications could result in darker green RBG that is less 

noticeable in desirable species without close inspection. 
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Figure 5.1 Effects of paclobutrazol on rough bluegrass (photos A and B) and perennial 

ryegrass (photos C and D) color six weeks after initial treatment in the greenhouse study.  

Rough bluegrass and perennial ryegrass in photos B and D received two applications of 

paclobutrazol (0.56 kg a.i. ha-1), while turf in photos A and C was left untreated. 
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Table 5.1 Date of herbicide applications in Manhattan, KS; Hutchinson, KS; and Mead, 

NE in 2013. 

 Rate Location 

      Treatment (kg a.i. ha-1)† Manhattan, KS Hutchinson, KS Mead, NE 

1)  Untreated n/a n/a n/a n/a 

2)  Amicarbazone 0.04 A, B‡ A, B§ A, B¶ 

3)  Amicarbazone 0.09 A A A 

4)  Amicarbazone 0.09 A, B  A, B  A, B  

5)  Mesotrione 0.15 A A A 

6)  Mesotrione 0.15 A, B A, B A, B 

7)  Mesotrione 0.15 A, B, C A, B, C A, B, C 

8)  Amicarbazone +  

mesotrione 

0.04 

0.15 

A, B A, B A, B 

9)  Amicarbazone + 

mesotrione 

0.09 

0.15 

A A A 

10) Amicarbazone + 

mesotrione 

0.09 

0.15 

A, B A, B A, B 

11) Paclobutrazol 0.28 A, B, C A, B, C A, B, C 

12) Bispyribac-sodium 0.08 A, B, C A, B, C A, B, C 

† Herbicide treatments were applied with a CO2-powered sprayer equipped with XR TeeJet 8002 flat 

spray nozzles calibrated to deliver 814 L spray volume ha-1 at 207 kPa. 

‡In Manhattan, application dates were A) 27 June, B) 8 July, and C) 18 July 2013.  

§In Hutchinson, application dates were A) 2 July, B) 15 July, and C) 29 July 2013. 
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¶In Mead, application dates were A) 27 June, B) 10 July, and C) 22 July 2013. 
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Table 5.2 Analysis of variance for parameters evaluated after turfgrass species were 

treated with herbicides in a greenhouse study in 2013. 

  Weeks after initial treatment (WAIT) 

Parameter Source of variation 0 2 4 6 8 10 

Phytotoxicity   T† 

  H‡ 

  T × H§ 

 NS¶ 

NS 

NS 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

** 

** 

*** 

Percent control# T 

H 

T × H 

NS 

NS 

NS 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

* 

NS 

** 

NS 

NS 

NS 

Turf color T 

H 

T × H 

  n/a†† 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

*** 

*** 

*** 

*** 

*** 

** 

** 

*** 

NS 

Clipping yield#  T 

H 

T × H 

n/a 

n/a 

n/a 

NS 

* 

* 

NS 

*** 

* 

NS 

*** 

*** 

NS 

*** 

* 

NS 

*** 

NS 

Biomass T 

H 

T × H 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

* 

*** 

** 

Plug diameter T 

H 

T × H 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

* 

NS 

*** 

Leaf area index T n/a n/a n/a n/a n/a NS 
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H 

T × H 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

*** 

NS 

†Turfgrass species (T). 

‡Herbicide treatment (T). 

§Interaction of turfgrass species and herbicide treatment combination (T × H).  

¶Not significant (NS). 

#Log10(y+1) transformed prior to analysis. 

††Not applicable (n/a). 

*, **, and *** are significant at the 0.05, 0.01, and 0.001 probability level, respectively. 

 



111 

 

Table 5.3 Effects of herbicide treatments on quality of turfgrass species in a greenhouse study in 2013. 

  Quality† 

Turf species‡ Herbicide§ 0 WAIT¶ 2 WAIT 4 WAIT 6 WAIT 8 WAIT 10 WAIT 

Creeping bentgrass Untreated 

Paclobutrazol (PB) 

Mesotrione (ME) 

Amicarbazone (AM) 

PB + ME + AM 

PB + ME 

PB + AM 

ME + AM 

9.0 

9.0 

9.0 

9.0 

9.0 

9.0 

9.0 

9.0 

9.0 a# 

9.0 a 

3.5 g 

8.5 ab 

4.0 g 

4.0 g 

8.3 ab 

3.8 g 

9.0 a 

8.8 ab 

2.0 h 

9.0 a 

2.3 h 

2.8 h 

8.5 abc 

2.3 h 

9.0 a 

8.8 ab 

1.8 h 

8.8 ab 

2.3 h 

2.8 h 

7.0 c-g 

2.5 h 

9.0 a 

8.3 abc 

2.5 h 

8.5 ab 

4.3 g 

4.8 fg 

7.3 b-e 

4.5 g 

9.0 a 

8.0 abc 

3.5 f 

8.8 a 

6.5 b-e 

5.8 de 

7.5 a-d 

5.8 de 

Kentucky bluegrass Untreated 

Paclobutrazol 

Mesotrione 

Amicarbazone 

PB + ME + AM 

PB + ME 

9.0 

9.0 

9.0 

9.0 

9.0 

9.0 

 9.0 a 

 9.0 a 

 8.8 ab 

8.8 ab 

9.0 a 

8.8 ab 

9.0 a 

8.5 abc 

8.8 ab 

9.0 a 

8.5 abc 

8.3 a-d 

9.0 a 

8.3 abc 

9.0 a 

8.0 a-d 

7.0 c-g 

8.0 a-d 

9.0 a 

8.3 abc 

9.0 a 

9.0 a 

7.0 b-e 

7.3 b-e 

9.0 a 

8.3 abc 

9.0 a 

8.5 ab 

7.8 a-d 

8.0 abc 
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PB + AM 

ME + AM 

9.0 

9.0 

8.5 ab 

8.8 ab 

8.3 a-d 

8.5 abc 

7.5 b-f 

7.8 a-e 

7.3 b-e 

8.0 abc 

7.3 a-e 

7.5 a-d 

Perennial ryegrass Untreated 

Paclobutrazol 

Mesotrione 

Amicarbazone 

PB + ME + AM 

PB + ME 

PB + AM 

ME + AM 

9.0 

9.0 

9.0 

9.0 

9.0 

9.0 

9.0 

9.0 

9.0 a 

8.8 ab 

6.3 ef 

9.0 a 

7.0 de 

8.0 bc 

8.3 ab 

7.0 de 

9.0 a 

9.0 a 

6.5 g 

8.8 ab 

8.0 b-e 

8.0 b-e 

8.3 a-d 

7.5 def 

9.0 a 

9.0 a 

8.5 ab 

8.5 ab 

8.0 a-d 

8.0 a-d 

7.5 b-f 

8.3 abc 

9.0 a 

9.0 a 

9.0 a 

8.5 ab 

8.5 ab 

8.0 abc 

8.0 abc 

8.5 ab 

9.0 a 

9.0 a 

9.0 a 

8.5 ab 

8.8 a 

8.5 ab 

8.3 abc 

8.5 ab 

Rough bluegrass Untreated 

Paclobutrazol 

Mesotrione 

Amicarbazone 

PB + ME + AM 

PB + ME 

9.0 

9.0 

9.0 

9.0 

9.0 

9.0 

9.0 a 

8.0 bc 

6.0 f 

8.8 ab 

6.0 f 

6.3 ef 

9.0 a 

7.5 def 

8.0 b-e 

7.8 c-f 

7.5 def 

7.5 def 

9.0 a 

7.0 c-g 

7.0 c-g 

5.8 g 

6.3 fg 

6.8 d-g 

9.0 a 

7.8 a-d 

8.5 ab 

5.8 efg 

6.8 cde 

7.0 b-e 

9.0 a 

8.5 ab 

9.0 a 

5.3 ef 

7.3 a-e 

7.3 a-e 
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PB + AM 

ME + AM 

9.0 

9.0 

7.3 cd 

5.8 f 

7.3 efg 

7.0 fg 

6.5 d-g 

6.0 g 

7.3 b-e 

6.3 def 

8.0 abc 

6.3 cde 

†Turfgrass quality was visually estimated on a 1 to 9 scale (1=completely brown, 6=acceptable, 9=no phytotoxicity) every 

other week from 0 to 10 weeks after initial treatment (WAIT). 

‡Turf species was the whole-plot treatment factor.  Sod pieces of ‘Laser’ rough bluegrass, ‘Declaration’ creeping bentgrass, 

‘Bedazzled’ Kentucky bluegrass, and ‘Revenge GLX’ perennial ryegrass were removed from established research plots on 

28 January 2013 and planted in 12.7 × 12.7 × 30 cm (length × width × height) pots filled with field soil. 

§Herbicide treatment was the sub-plot treatment factor and products were applied on 1 March 2013 (0 WAIT) and 15 March 

2013.  Treatments included:  1) untreated; 2) paclobutrazol (0.56 kg a.i. ha-1); 3) mesotrione (0.17 kg a.i. ha-1); 4) 

amicarbazone (0.15 kg a.i. ha-1); 5) paclobutrazol (0.56 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1) + amicarbazone (0.10 kg 

a.i. ha-1); 6) paclobutrazol (0.56 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1); 7) paclobutrazol (0.56 kg a.i. ha-1) + 

amicarbazone (0.10 kg a.i. ha-1); and 8) mesotrione (0.15 kg a.i. ha-1) + amicarbazone (0.10 kg a.i. ha-1). 

¶Weeks after initial treatment (WAIT). 

#Within columns, means with the same letter are not significantly different according to Fisher’s Protected LSD (P ≤ 0.05). 
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Table 5.4 Effects of herbicide treatments on control of turfgrass species in a greenhouse study in 2013. 

  Control (%)†  

Turf species‡ Herbicide§ 0 WAIT¶ 2 WAIT 4 WAIT 6 WAIT 8 WAIT 10 WAIT 

Creeping bentgrass Untreated 

Paclobutrazol (PB) 

Mesotrione (ME) 

Amicarbazone (AM) 

PB + ME + AM 

PB + ME 

PB + AM 

ME + AM 

0 

0 

0 

0 

0 

0 

0 

0 

   0 d# 

  0 d 

57 a 

  0 d 

54 a 

57 a 

0 d 

56 a 

  0 c 

  0 c 

77 a 

  0 c 

77 a 

63 b 

  0 c 

72 a 

  0 c 

  0 c 

64 a 

  0 c 

59 a 

38 b 

  0 c 

42 a 

  0 c 

  0 c 

34 a 

  0 c 

24 b 

  3 bc 

  0 c 

  10 bc 

0 

0 

18 

0 

24 

2 

0 

4 

Kentucky bluegrass Untreated 

Paclobutrazol 

Mesotrione 

Amicarbazone 

PB + ME + AM 

0 

0 

0 

0 

0 

  0 d 

  8 c 

  0 d 

  0 d 

  0 d 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  5 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

0 

0 

0 

0 

0 
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PB + ME 

PB + AM 

ME + AM 

0 

0 

0 

    1 cd 

    2 cd 

    2 cd 

  0 c 

  0 c 

  0 c 

  0 c 

  2 c 

  0 c 

  0 c 

    3 bc 

  0 c 

0 

12 

0 

Perennial ryegrass Untreated 

Paclobutrazol 

Mesotrione 

Amicarbazone 

PB + ME + AM 

PB + ME 

PB + AM 

ME + AM 

0 

0 

0 

0 

0 

0 

0 

0 

  0 d 

  0 d 

  5 c 

  0 d 

  0 d 

  0 d 

  0 d 

  0 d 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

0 

0 

0 

0 

0 

0 

0 

0 

Rough bluegrass Untreated 

Paclobutrazol 

Mesotrione 

Amicarbazone 

PB + ME + AM 

0 

0 

0 

0 

0 

  0 d 

  0 d 

  0 d 

  0 d 

  0 d 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  8 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

  0 c 

0 

0 

0 

5 

0 
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PB + ME 

PB + AM 

ME + AM 

0 

0 

0 

  0 d 

14 b 

   4 cd 

  0 c 

  0 c 

  0 c 

  3 c 

  0 c 

  5 c 

    5 bc 

  0 c 

  0 c 

0 

0 

0 

†Percent control was determined by rating green turf frequency with presence/absence counts under an 81-intersection grid 

that measured 11.7 × 11.7 cm with 1.3 cm between each of nine gridlines in either direction (% green turf cover=green turf 

frequency/81 × 100).  Percent control was then determined by comparing cover on each rating date to initial cover in each 

pot [if % cover on rating date ≥ initial % cover, then % control=0; otherwise, % control = (initial % cover – % cover on 

rating date) / initial % cover × 100].  Data were log10(y+1) transformed prior to analysis and back-transformed for 

presentation. 

‡Turf species was the whole-plot treatment factor.  Sod pieces of ‘Laser’ rough bluegrass, ‘Declaration’ creeping bentgrass, 

‘Bedazzled’ Kentucky bluegrass, and ‘Revenge GLX’ perennial ryegrass were removed from established research plots on 

28 January 2013 and planted in 12.7 × 12.7 × 30 cm (length × width × height) pots filled with field soil. 

§Herbicide treatment was the sub-plot treatment factor and were applied on 1 March 2013 (0 WAIT) and 15 March 2013.  

Treatments included:  1) untreated; 2) paclobutrazol (0.56 kg a.i. ha-1); 3) mesotrione (0.17 kg a.i. ha-1); 4) amicarbazone 

(0.15 kg a.i. ha-1); 5) paclobutrazol (0.56 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1) + amicarbazone (0.10 kg a.i. ha-1); 6) 

paclobutrazol (0.56 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1); 7) paclobutrazol (0.56 kg a.i. ha-1) + amicarbazone (0.10 kg 
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a.i. ha-1); and 8) mesotrione (0.15 kg a.i. ha-1) + amicarbazone (0.10 kg a.i. ha-1). 

¶Weeks after initial treatment (WAIT). 

#Within columns, means with the same letter are not significantly different according to Fisher’s Protected LSD (P ≤ 0.05). 
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Table 5.5 Effects of herbicide treatments on clipping yields of turfgrass species in a greenhouse study in 2013. 

  Clipping yield† 

---------------------------- (% of untreated)‡---------------------------- 

Turf species§ Herbicide¶ 2 WAIT# 4 WAIT 6 WAIT 8 WAIT 10 WAIT 

Creeping bentgrass Untreated 

Paclobutrazol (PB) 

Mesotrione (ME) 

Amicarbazone (AM) 

PB + ME + AM 

PB + ME 

PB + AM 

ME + AM 

100 abc†† 

- 37 b-e 

 + 5 ab 

- 26 b-e 

- 23 b-e 

- 17 a-e 

- 56 e 

- 20 b-e 

100 ab 

- 63 ghi 

- 41 b-i 

- 22 a-g 

- 65 hi 

- 75 i 

- 78 i 

- 65 hi 

100 ab 

- 65 d-g 

- 54 def 

- 20 bc 

- 87 g 

- 87 g 

- 78 gf 

- 80 gf 

100 b-f 

- 22 c-g 

- 52 efg 

  - 9 c-g 

- 20 c-g 

- 48 efg 

- 37 c-g 

- 16 c-g 

100 

- 31 

 + 1 

- 15 

- 49 

- 33 

- 45 

 + 3 

Kentucky bluegrass Untreated 

Paclobutrazol 

Mesotrione 

Amicarbazone 

100 abc 

- 48 de 

- 20 b-e 

- 15 a-e 

100 ab 

- 70 i 

  - 7 abc 

 + 8 a 

100 ab 

- 87 g 

+ 14 a 

  - 2 ab 

100 b-f 

- 77 g 

+ 86 a 

+ 32 abc 

100 

- 58 

+ 30 

+ 28 
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PB + ME + AM 

PB + ME 

PB + AM 

ME + AM 

- 24 b-e 

- 28 b-e 

- 42 cde 

 ± 0 abc 

- 48 d-i 

- 51 d-i 

- 72 i 

+ 10 a 

- 81 gf 

- 70 efg 

- 74 gf 

 + 7 ab 

- 47 efg 

- 53 efg 

- 60 fg 

+ 28 a-d 

- 47 

- 36 

- 48 

 + 1 

Perennial ryegrass Untreated 

Paclobutrazol 

Mesotrione 

Amicarbazone 

PB + ME + AM 

PB + ME 

PB + AM 

ME + AM 

100 abc 

  - 4 a-d 

- 14 a-e 

- 16 a-e 

- 32 b-e 

- 27 b-e 

- 21 b-e 

- 10 a-d 

100 ab 

- 38 b-i 

- 21 a-f 

- 14 a-e 

- 57 f-i 

- 49 c-i 

- 45 c-i 

- 24 a-h 

100 ab 

- 76 gf 

- 21 bc 

- 37 cd 

- 73 gf 

- 71 efg 

- 82 gf 

- 18 bc 

100 b-f 

- 35 c-g 

+ 38 ab 

  + 7 b-f 

- 49 efg 

- 39 c-g 

- 59 fg 

+ 13 a-e 

100 

- 17 

+ 34 

+ 9 

- 25 

- 28 

- 37 

 ± 0 

Rough bluegrass Untreated 

Paclobutrazol 

Mesotrione 

Amicarbazone 

100 abc 

  + 8 ab 

   - 7 a-d 

+ 27 a 

100 ab 

- 27 a-h 

- 17 a-f 

- 10 a-d 

100 ab 

- 59 d-g 

- 23 bc 

- 39 cd 

100 b-f 

- 28 c-g 

+ 18 a-e 

- 45 d-g 

100 

- 25 

+ 30 

- 30 
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PB + ME + AM 

PB + ME 

PB + AM 

ME + AM 

- 10 a-d 

- 21 b-e 

+ 28 a 

  + 5 ab 

- 52 e-i 

- 40 b-i 

- 16 a-f 

- 14 a-d 

- 68 efg 

- 58 d-g 

- 65 d-g 

- 41 cde 

- 52 efg 

- 41 c-g 

- 52 efg 

  - 6 c-g 

- 38 

  - 1 

- 31 

 + 9 

†Weekly clipping yields were oven-dried at 60°C for two days, weighed, and reported as mass per unit area (g m-

2 based upon the area of each pot covered by green turf. 

‡Because clipping yields among untreated creeping bentgrass (9 to 28 g m-2), Kentucky bluegrass (9 to 15 g m-2), 

perennial ryegrass (11 to 24 g m-2), and rough bluegrass (10 to 24 g m-2) varied from 2 to 10 WAIT, yields were 

adjusted by scaling data from each pot to the percent of the untreated pot within each block of each species on 

each rating date [% of untreated=(treatment clipping yield from block x on date y / untreated clipping yield from 

block x on date y) × 100].  Data were log10(y+1) transformed prior to analysis and back-transformed for 

presentation. 

§Turf species was the whole-plot treatment factor.  Sod pieces of ‘Laser’ rough bluegrass, ‘Declaration’ creeping 

bentgrass, ‘Bedazzled’ Kentucky bluegrass, and ‘Revenge GLX’ perennial ryegrass were removed from 

established research plots on 28 January 2013 and planted in 12.7 × 12.7 × 30 cm (length × width × height) pots 

filled with field soil. 
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¶Herbicide treatment was the sub-plot treatment factor and were applied on 1 March 2013 (0 WAIT) and 15 

March 2013.  Treatments included:  1) untreated; 2) paclobutrazol (0.56 kg a.i. ha-1); 3) mesotrione (0.17 kg a.i. 

ha-1); 4) amicarbazone (0.15 kg a.i. ha-1); 5) paclobutrazol (0.56 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1) + 

amicarbazone (0.10 kg a.i. ha-1); 6) paclobutrazol (0.56 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1); 7) 

paclobutrazol (0.56 kg a.i. ha-1) + amicarbazone (0.10 kg a.i. ha-1); and 8) mesotrione (0.15 kg a.i. ha-1) + 

amicarbazone (0.10 kg a.i. ha-1). 

#Weeks after initial treatment (WAIT). 

††Within columns, means with the same letter are not significantly different according to Fisher’s Protected LSD 

(P ≤ 0.05). 
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Table 5.6 Effects of herbicide treatments on green color of turfgrass species in a 

greenhouse study in 2013. 

  Color† 

Turf species‡ Herbicide§  6 WAIT¶  8 WAIT  10 WAIT 

Creeping bentgrass Untreated 

Paclobutrazol (PB) 

Mesotrione (ME) 

Amicarbazone (AM) 

PB + ME + AM 

PB + ME 

PB + AM 

ME + AM 

      7.0 efg# 

9.0 a 

6.0 h 

  7.0 efg 

  7.0 efg 

  6.5 gh 

     9.0 a 

   7.0 efg 

 7.0 efg 

 8.5 abc 

    5.0 i 

7.0 efg 

    5.7 hi 

6.5 fgh 

8.5 abc 

6.3 gh 

 7.0 

8.5 

5.0 

7.0 

6.3 

6.5 

8.3 

6.3 

Kentucky bluegrass Untreated 

Paclobutrazol 

Mesotrione 

Amicarbazone 

PB + ME + AM 

PB + ME 

PB + AM 

ME + AM 

   7.8 cd 

9.0 a 

  7.3 def 

  7.3 def 

9.0a 

9.0 a 

9.0 a 

  7.0 efg 

 7.5 c-f 

8.8 ab 

7.0 efg 

7.0 efg 

 8.5 abc 

 8.3 a-d 

     9.0 a 

 7.0 efg 

 7.8 

9.0 

7.0 

7.0 

8.3 

7.0 

8.8 

7.0 

Perennial ryegrass Untreated 

Paclobutrazol 

Mesotrione 

   7.5 de 

 9.0 a 

 7.8 cd 

  8.0 b-e 

     9.0 a 

 7.5 c-f 

 7.3 

9.0 

7.8 
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Amicarbazone 

PB + ME + AM 

PB + ME 

PB + AM 

ME + AM 

 7.5 de 

9.0 a 

9.0 a 

9.0 a 

  7.5 de 

 7.3 d-g 

  8.5 abc 

     9.0 a 

8.8 ab 

 7.0 efg 

7.5 

9.0 

9.0 

9.0 

7.0 

Rough bluegrass Untreated 

Paclobutrazol 

Mesotrione 

Amicarbazone 

PB + ME + AM 

PB + ME 

PB + AM 

ME + AM 

   7.0 efg 

9.0 a 

6.8 fg 

  7.0 efg 

 8.8 ab 

 8.3 bc 

 8.5 ab 

 6.5 gh 

  7.0 efg 

8.8 ab 

 6.8 fgh 

 6.8 fgh 

 8.3 a-d 

8.8 ab 

 8.5 abc 

6.8 fgh 

 7.0 

8.5 

6.8 

5.8 

7.8 

8.0 

8.5 

5.8 

†Turfgrass color (1 to 9, where 9 = dark green turf) was estimated from 6 to 10 weeks after 

initial treatment (WAIT). 

‡Turf species was the whole-plot treatment factor.  Sod pieces of ‘Laser’ rough bluegrass, 

‘Declaration’ creeping bentgrass, ‘Bedazzled’ Kentucky bluegrass, and ‘Revenge GLX’ 

perennial ryegrass were removed from established research plots on 28 January 2013 and 

planted in 12.7 × 12.7 × 30 cm (length × width × height) pots filled with field soil. 

§Herbicide treatment was the sub-plot treatment factor and were applied on 1 March 2013 (0 

WAIT) and 15 March 2013.  Treatments included:  1) untreated; 2) paclobutrazol (0.56 kg 

a.i. ha-1); 3) mesotrione (0.17 kg a.i. ha-1); 4) amicarbazone (0.15 kg a.i. ha-1); 5) 

paclobutrazol (0.56 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1) + amicarbazone (0.10 kg a.i. 
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ha-1); 6) paclobutrazol (0.56 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1); 7) paclobutrazol 

(0.56 kg a.i. ha-1) + amicarbazone (0.10 kg a.i. ha-1); and 8) mesotrione (0.15 kg a.i. ha-1) + 

amicarbazone (0.10 kg a.i. ha-1). 

¶Weeks after initial treatment (WAIT). 

#Within columns, means with the same letter are not significantly different according to 

Fisher’s Protected LSD (P ≤ 0.05). 
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Table 5.7 Effects of herbicide treatments on lateral spread (average diameter), leaf area 

index (LAI), and shoot biomass of turfgrass species at 10 weeks after initial treatment in a 

greenhouse study in 2013. 

 

Turf species¶ 

 

Herbicide# 

 Diameter†      LAI‡  Biomass§ 

------------------(% of untreated)††--------------- 

Creeping bentgrass Untreated 

Paclobutrazol (PB) 

Mesotrione (ME) 

Amicarbazone (AM) 

PB + ME + AM 

PB + ME 

PB + AM 

ME + AM 

   100 a-f ‡‡ 

   - 5 a-f 

 - 48 h 

   - 3 a-f 

 - 48 h 

 - 33 fgh 

 - 11 c-g 

 - 43 gh 

     100 

   + 28 

    - 42 

   + 12 

     + 3 

     - 7 

  + 44 

    + 2 

     100 e-i 

   - 13 f-i 

   - 73 i 

   - 19 f-i 

   - 73 i 

   - 57 hi 

   - 26 f-i 

    - 65 i 

Kentucky bluegrass Untreated 

Paclobutrazol 

Mesotrione 

Amicarbazone 

PB + ME + AM 

PB + ME 

PB + AM 

ME + AM 

  100 a-f 

   - 3 a-f 

  + 2 a-e 

  + 1 a-f 

 - 25 e-h 

   - 3 a-f 

 - 21 d-h 

  + 1 a-e 

    100 

  + 78 

  + 44 

  + 44 

  + 65 

  + 54 

  + 45 

  + 20 

     100 e-i 

  + 99 b-e 

  + 48 b-g 

  + 18 d-i 

  + 52 b-g 

  + 73 b-f 

  + 54 b-g 

   - 14 f-i 

Perennial ryegrass Untreated 

Paclobutrazol 

  100 a-f 

+ 25 ab 

    100 

+ 222 

    100 e-i 

+ 216 a 
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Mesotrione 

Amicarbazone 

PB + ME + AM 

PB + ME 

PB + AM 

ME + AM 

 + 4 a-e 

 + 9 a-d 

+ 11 a-d 

+ 20 abc 

+ 13 abc 

  + 4 a-e 

  + 68 

  + 37 

+ 165 

+ 125 

+ 110 

  + 26 

  + 40 c-h 

  + 42 c-h 

+ 125 bc 

+ 142 b 

+ 103 bcd 

  + 24 d-i 

Rough bluegrass Untreated 

Paclobutrazol 

Mesotrione 

Amicarbazone 

PB + ME + AM 

PB + ME 

PB + AM 

ME + AM 

  100 a-f 

+ 11 a-d 

+ 27 a 

 - 40 gh 

+ 10 a-d 

+ 2 a-e 

 - 6 b-f 

- 10 c-g 

    100 

  + 94 

  + 48 

   - 51 

  + 87 

  + 44 

+ 125 

   - 22 

    100 e-i 

  + 91 b-e 

  + 36 c-h 

   - 29 ghi 

  + 37 c-h 

+ 104 bcd 

  + 37 c-h 

   - 30 ghi 

†The average diameter of each plug was determined from the mean of measurements in two 

perpendicular directions and reported as a length (cm). 

‡Leaf area index was determined directly by defoliating a 5 cm plug removed from the center 

of each pot.  Brown leaves and debris were removed from samples prior to image analysis with 

WinRHIZO (version 2003 b, Regent Instruments, Quebec City, Canada).  Leaf area index was 

reported as leaf area per unit area (m2 m-2). 

§Shoot biomass was oven-dried at 60°C for two days, weighed, and reported as mass per unit 

area (g dry weight m-2).   

¶Turf species was the whole-plot treatment factor.  Sod pieces of ‘Laser’ rough bluegrass, 
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‘Declaration’ creeping bentgrass, ‘Bedazzled’ Kentucky bluegrass, and ‘Revenge GLX’ 

perennial ryegrass were removed from established research plots on 28 January 2013 and 

planted in 12.7 × 12.7 × 30 cm (length × width × height) pots filled with field soil. 

#Herbicide treatment was the sub-plot treatment factor and were applied on 1 March 2013 (0 

WAIT) and 15 March 2013.  Treatments included:  1) untreated; 2) paclobutrazol (0.56 kg a.i. 

ha-1); 3) mesotrione (0.17 kg a.i. ha-1); 4) amicarbazone (0.15 kg a.i. ha-1); 5) paclobutrazol 

(0.56 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1) + amicarbazone (0.10 kg a.i. ha-1); 6) 

paclobutrazol (0.56 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1); 7) paclobutrazol (0.56 kg a.i. 

ha-1) + amicarbazone (0.10 kg a.i. ha-1); and 8) mesotrione (0.15 kg a.i. ha-1) + amicarbazone 

(0.10 kg a.i. ha-1). 

††Because untreated pots of each species differed in average diameter [creeping bentgrass (10.0 

cm), Kentucky bluegrass (8.7 cm), perennial ryegrass (6.0 cm), and rough bluegrass (7.5 cm)], 

LAI [creeping bentgrass (1.2 m2 m-2), Kentucky bluegrass (1.2 m2 m-2), perennial ryegrass (1.0 

m2 m-2) and rough bluegrass (1.6 m2 m-2)], and biomass [creeping bentgrass (118 g dry weight 

m-2), Kentucky bluegrass (49 g dry weight m-2), perennial ryegrass (41 g dry weight m-2), and 

rough bluegrass (49 g dry weight m-2)], data were adjusted by scaling data from each pot to the 

percent of the untreated pot within each block of each species on each rating date [% of 

untreated=(treatment rating from block x on date y / untreated rating from block x on date y) × 

100]. 

‡‡Within columns, means with the same letter are not significantly different according to 

Fisher’s Protected LSD (P ≤ 0.05). 

 



128 

 

Table 5.8 Effect of herbicide treatments on rough bluegrass control in Manhattan, KS, Hutchinson, KS, and Mead, NE in 

2013. 

 Control (%)† 

 Manhattan, KS  Hutchinson, KS  Mead, NE 

 Weeks after initial treatment‡  Weeks after initial treatment  Weeks after initial treatment 

Treatment§ 2 4  8 12 16  2 4 8 12  2 4 8 12 16  

Untreated 2 f¶ 12 f 49 e 46 17 d  0 c 0 b   29 de 0 b  3 5 b   4 bc 3 b 3 bc 

Amicarbazone (0.04) (AB)# 12 def 60 b-e 93 ab 71 54 bc  0 c 12 b   84 abc 0 b  7 9 b   5 bc 5 b 3 bc 

Amicarbazone (0.09) (A)  13 c-f 40 ef 62 de 53 45 bcd  2 c 2 b   77 a-d 0 b  6 6 b   2 c 0 b 0 c 

Amicarbazone (0.09) (AB) 24 cd 96 ab 96 ab 85 63 ab  0 c 0 b   60 a-e 0 b  2 8 b   6 bc 2 b 2 bc 

Mesotrione (A) 8 def 58 cde 68 cde 65 46 bcd  0 c 0 b   10 e 0 b  2 2 b   8 bc 4 b 4 bc 

Mesotrione (AB) 10 def 56 cde 76 bcd 68 56 bc  3 c 5 b   58 a-e 13 b  6 6 b 14 b 14 a 8 b 

Mesotrione (ABC) 4 ef 51 de 82 a-d 76 50 bc  8 bc 0 b   89 ab 17 b  6 4 b   2 c 2 b 2 bc 

AM (0.04) + ME (AB)†† 23 cde 88 a-d 89 abc 64 42 bcd  29 a 66 a   20 e 7 b  7 5 b   1 c 1 b 1 c 

AM (0.09) + ME (A)†† 48 ab    91 abc 93 ab 73 48 bcd  18 ab 7 b   34 cde 0 b  4 2 b   2 c 0 b 0 c 

AM (0.09) + ME (AB)†† 59 a 100 a 94 ab 71 49 bcd  23 ab 66 a   42 b-e 0 b  5 7 b   2 c 3 b 3 bc 

Paclobutrazol (ABC) 3 f 29 f 47 e 54 27 cd  0 c 12 b   56 a-e 23 b  2 2 b   8 bc 4 b 4 bc 

Bispyribac-sodium (ABC) 32 bc 98 a 98 a 95 92 a  8 bc 60 a 100 a 58 a  2 18 a 51 a 20 a 16 a 

†Percent green rough bluegrass (RBG) cover was visually estimated from 0 to 16 WAIT.  Percent RBG control was determined by comparing cover on each rating date to 

initial cover in each plot [if % cover on rating date ≥ initial % cover, then % control=0; otherwise, % control = (initial % cover – % cover on rating date) / initial % cover × 

100]. 

‡Each herbicide treatment was applied one to three times.  Weeks after initial treatment indicates the period of time after the first application was made in Manhattan (27 June), 
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Hutchinson (2 July), and Mead (27 June) in 2013. 

§Herbicide treatments were applied with a CO2-powered sprayer equipped with XR TeeJet 8002 flat spray nozzles calibrated to deliver 814 L spray volume ha-1 at 207 kPa.  

Amicarbazone, mesotrione, paclobutrazol, and bispyribac-sodium were applied one to three times at approximately 10 day intervals.  Rates and combinations included:  1) 

untreated; 2) amicarbazone (0.04 kg a.i. ha-1); 3) amicarbazone (0.09 kg a.i. ha-1); 4) amicarbazone (0.09 kg a.i. ha-1); 5) mesotrione (0.15 kg a.i. ha-1); 6) mesotrione (0.15 kg 

a.i. ha-1); 7) mesotrione (0.15 kg a.i. ha-1); 8) amicarbazone (0.04 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1); 9) amicarbazone (0.09 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-

1); 10) amicarbazone (0.09 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1); 11) paclobutrazol (0.28 kg a.i. ha-1); and 12) bispyribac-sodium (0.08 kg a.i. ha-1). 

¶Within columns, means with the same letter are not significantly different according to Fisher’s Protected LSD (P ≤ 0.05). 

#Applications were made on 27 June (A), 8 July (B), and 18 July (C) in Manhattan; 2 July (A), 15 July (B), and 29 July (C) in Hutchinson; and on 27 June (A), 10 July (B), and 

22 July (C) in Mead in 2013. 

††Treatment is a tank-mix of amicarbazone (AM) and mesotrione (ME). 
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Chapter 6 - Effect of the Seasonal Timing of Glyphosate Application 

on Rough Bluegrass Control 

 Abstract 

Rough bluegrass (RBG, Poa trivialis L.) is a problematic weed in cultivated cool-season 

turfgrasses.  Chemical control of RBG can be challenging as herbicides labeled for its selective 

removal are limited.  Nonselective herbicides can eradicate RBG, and properly timed 

applications may offer better control.  Our objective was to evaluate seasonal timing of 

glyphosate for nonselective control of RBG.  Glyphosate was applied at 3.4 kg a.i. ha-1 in spring, 

mid-summer, or late-summer in Manhattan, KS (2011 and 2012) and Mead, NE (2012).  Percent 

green RBG cover was visually estimated.  Following glyphosate applications, green RBG 

coverage was reduced to 0% in all treatments in Manhattan and Mead in 2011 and 2012.  Among 

all three experiments, spring glyphosate applications resulted in the lowest green RBG coverage 

(1 to 31%) the following spring, followed by late-summer applications (6 to 58%), and mid-

summer applications (9 to 86%). 
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 Introduction 

Rough bluegrass (RBG, Poa trivialis L.) is a perennial cool-season turfgrass and a 

problematic weed in cool-season turf due to suboptimal color, invasive stoloniferous growth, and 

sensitivity to heat and drought (Beard, 1973).  Rough bluegrass is thought to spread vegetatively 

during routine aeration and from contamination in seed lots (Levy, 1998; Reicher et al., 2011).  

Bispyribac-sodium {2,6-bis[(4,6-dimethoxypyrimidin-2-yl)oxy] benzoic acid; Velocity 17.6 SG, 

Valent U.S.A. Corporation, Walnut Creek, CA} is the only product currently labeled for 

selective RBG removal in cool-season turf and is effective, but can damage desirable species 

(McCullough and Hart, 2011; Morton et al., 2007).  Furthermore, bispyribac-sodium is only 

labeled for use on sod farms and golf courses (Anonymous, 2010).  

Nonselective herbicides are often the only option for RBG control in sports fields and 

residential lawns, but it is unclear if efficacy varies with the seasonal timing of application as it 

often does with bispyribac-sodium (Askew et al., 2004; Morton et al., 2007; Rutledge et al., 

2010).  Rough bluegrass has been anecdotally reported to persist in sites which have been 

renovated with use of glyphosate [N-(phosphonomethyl)glycine] before fall seeding.  Adkins and 

Barnes (2013) observed that spring applications of imazapic plus glyphosate were more effective 

controlling Kentucky bluegrass (Poa pratensis L.) compared to summer or fall applications, but 

tall fescue (Festuca arundinacea Schreb. Syn Schedonorus arundinaceus Schreb.) control was 

better following summer applications.  It is not known how RBG responds to the seasonal timing 

of glyphosate application.  Therefore, the objective of this study was to determine if the seasonal 

timing of a single glyphosate application influences RBG control. 

 Materials and Methods 

This study was conducted at the Rocky Ford Turfgrass Research Center in Manhattan, 

KS and at the John Seaton Anderson Turf Research Center in Mead, NE.  Research plots (0.9 × 

0.9 m in Manhattan and 1.5 × 1.5 m in Mead) were arranged in a randomized complete-block 

design with four replications.  In Manhattan, two separate studies (2011 and 2012) were 

conducted on ‘Laser’ RBG originally seeded in the fall of 2009.  Soil was a Chase silt loam with 

a pH of 7.6 and phosphorous and potassium levels of 0.11 and 0.42 g kg-1, respectively.  In 

Mead, the study was conducted in 2012 only, on ‘Winterstar’ RBG originally seeded in the fall 

of 2010.  Soil was a Tomek silty clay loam with a pH of 7.5 and phosphorous and potassium 



132 

 

levels of 0.03 and 0.50 g kg-1, respectively.  Research areas were irrigated as needed to prevent 

drought stress and mowed at 6.3 cm once weekly with a rotary mower.   

In Manhattan, N was applied at 49 kg ha-1 on 18 March, 2 May, 19 September, and 10 

November 2011 and on 26 March, 15 May, 18 September, and 9 November 2012 to provide a 

total of 195 kg ha-1 annually.  Polymer-coated urea (41-0-0 [N-P2O5-K2O]; Polyon/Pursell 

Industries, Sylacauga, AL) was used on 2 May 2011 and 15 May 2012, and urea (46-0-0) was 

used on all other dates.  Dimension 2 EW [dithiopyr: S,S'-dimethyl 2-(difluoromethyl)-4-(2-

methylpropyl)-6-(trifluoromethyl)-3,5-pyridinedicarbothioate; Dow AgroSciences LLC, 

Indianapolis, IN] and Speed Zone {Carfentrazone-ethyl: Ethyl α,2-dichloro-5-[4(difluoro 

methyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl]-4-fluorobenzenepropanoate; 2,4-D, 

2-ethylhexyl ester: 2,4-dichlorophenoxyacetic acid equivalent; Mecoprop-p acid: (+)-R-2-(2-

methyl-4-chlorophenoxy)propionic acid equivalent; and Dicamba acid: 3,6-dichloro-o-anisic 

acid equivalent; PBI/Gordon Corporation, Kansas City, MO} were applied at 0.6 kg a.i. ha-1 and 

1.3 kg a.i. ha-1, respectively, on 12 April 2011 and 26 March 2012 for common dandelion 

(Taraxacum officinale Wigg.) control and smooth crabgrass [Digitaria ischaemum (Schreb.) 

Muhl.] and large crabgrass [D. sanguinalis (L.) Scop.] prevention.  Additionally, Merit 0.5 G 

{Imidacloprid: 1-[(6-Chloro-3-pyridinyl)methyl]-N-nitro-2-imidazolidinimine; Bayer 

Environmental Science, Research Triangle Park, NC} was applied at 0.4 kg a.i. ha-1 on 14 April 

2011 and 29 May 2012 for control of southern masked chafer (Cyclocephala lurida Bland) and 

May beetle (Phyllophaga spp.) larvae.   

In Mead, polymer-coated urea was used to provide N at 49 kg ha-1 on 1 May, 1 

September, and 1 November 2012 for a total of 147 kg ha-1 annually.  Pendimethalin (N-[1-

ethylpropyl]-3, 4-dimethyl-2, 6-dinitrobenzenamine) was applied in late-April 2012 at 3.4 kg a.i. 

ha-1 and Trimec Classic (Dimethylamine salt of 2,4-dichlorophenoxyacetic acid; dimethylamine 

salt of [+]-[R]-2-[2-methyl-4-chlorophenoxy]propionic acid; and dimethylamine salt of dicamba: 

3,6-dichloro-o-anisic acid; PBI/Gordon Corporation, Kansas City, MO) was applied at 1.5 kg a.i. 

ha-1 in late-September 2012 for broadleaf weed control. 

 Application Timings 

Treatments consisted of three application timings:  spring, mid-summer, and late-

summer.  Glyphosate (Glyphomate 41, PBI/Gordon Corporation, Kansas City, MO) was applied 
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at 3.4 kg a.i. ha-1 with a hand-held CO2-power sprayer equipped with XR TeeJet 8002 flat spray 

nozzles at 207 kPa in water carrier rate equal to 327 L ha-1 on each of the three timings.  In 

Manhattan (2011), applications were made on 21 May (spring, 96% green coverage), 26 July 

(mid-summer, 51% green coverage), and 25 August (late-summer, 9% green coverage). 

Growing degree days (GDD, base temperature = 10°C) were monitored beginning 1 

January at each site each year, and were used to schedule initial spring applications in Manhattan 

and Mead in 2012 to match the 263 GDD that accumulated in Manhattan in 2011. In 2012, 

spring applications were made on 23 April in Manhattan and 4 May in Mead.  Mid- and late-

summer applications in 2012 were made when RBG green cover was as near as possible to that 

in Manhattan (2011).  In 2012, mid- and late-summer applications were made in Manhattan on 

27 July (mid-summer, 38% green cover) and 30 August (late-summer, 37% green cover), and on 

31 July (mid-summer, 70% green cover) and 6 September (late-summer, 75% green cover) in 

Mead.    

 Data Collection and Analysis 

Percent green RBG cover was visually estimated monthly.  In Manhattan (2011 and 

2012), and Mead (2012) data were collected weekly from 26 May 2011 to 11 November 2011, 

23 April 2012 to 13 November 2012, and 4 May 2012 to 5 November 2012, respectively, and 

again on 30 May 2012, 24 May 2013, and 3 June 2013, respectively, to measure RBG recovery 

from applications.  At the beginning of each study in Manhattan (2011), Manhattan (2012), and 

Mead (2012) treatments averaged 94 to 97%, 92 to 94%, and 78 to 80% green RBG cover, 

respectively, with no significant differences among treatments. 

Residual normality was tested with the w statistic of the Shapiro-Wilk test using the 

UNIVARIATE procedure of Statistical Analysis System (SAS Institute Inc., Cary, NC) (Shapiro 

and Wilk, 1965).  Percent green cover data were not normally distributed, and data were 

subjected to a log10(y+1) transformation to normalize.  Means were back-transformed for 

presentation.  Percent green RBG cover data were subjected to analysis of variance using the 

GLIMMIX procedure of SAS.  Fisher’s protected LSD (P ≤ 0.05) was used to detect treatment 

differences. 
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 Results and Discussion 

Even though green RBG cover data were collected weekly in all three studies, RBG 

recovery the year following treatment was of most practical interest as it indicated the level of 

recovery following applications the previous season.  For this reason, monthly green RBG cover 

in untreated plots during the growing season is summarized, but comparisons among treatments 

were only made one-year after treatment with glyphosate. 

 Manhattan, KS – 2011  

All treatments had nearly 100% green RBG cover in May 2011 in Manhattan, and were 

not different from one another.  Untreated plots averaged > 90% green cover until the middle of 

July, but only 1% green RBG cover by 16 September.  Untreated plots then began to recover, 

and averaged nearly 15% green cover by 15 November 2011 (Figure 6.1).  On 30 May 2012, 

approximately one year after treatments began in 2011, untreated plots averaged nearly 80% 

green RBG cover.  The spring glyphosate application resulted in less green RBG cover (1%) than 

the mid-summer application (9%), whereas RBG cover from the late-summer application was 

not different from that of the other timings (6%). 

 Manhattan, KS – 2012 

All treatments had nearly 100% green RBG cover in April 2012 (Figure 6.1).  Untreated 

plots averaged > 90% green cover well into July, until declining to approximately 23% green 

cover on 8 August.  Rough bluegrass then began to recover and untreated plots averaged nearly 

96% green cover by 8 November 2012.  On 24 May 2013, approximately one year after 

treatments began in 2012, untreated plots averaged 100% green cover and were not different 

from RBG that was treated with glyphosate in mid-summer (86%).  Due to relatively high plot-

to-plot variability, the late-summer timing (47% green RBG cover) was also not different from 

untreated RBG (Figures 6.1 and 6.2).  The spring glyphosate application resulted in less green 

RBG cover (1%) at this time than all other treatments.  Adkins and Barnes (2013) observed 

better control of Kentucky bluegrass with spring treatments of imazapic plus glyphosate, but tall 

fescue control was better following summer applications.  Glyphosate product labels typically 

state that reduced weed control may result if applied during turfgrass stress (2).  Ruiter and 

Meinen (1998) observed decreased glyphosate absorption and translocation when black 

nightshade (Solanum nigrum L. SOLNI) was water stressed and suggested a positive correlation 
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between plant growth rate and glyphosate efficacy.  In this study, RBG was most actively 

growing during spring glyphosate applications, leading to improved control presumably because 

of increased absorption and translocation. 

 Mead, NE – 2012 

Rough bluegrass decline was not as severe in Mead, NE in 2012 as it was in Manhattan, 

KS in 2011 and 2012.  All treatments averaged 78 to 80% green RBG cover on 4 May 2012 and 

were not different from one another (Figure 6.1).  Untreated plots never averaged less than 70% 

green cover during summer, and untreated RBG reached nearly 96% green cover by 5 November 

2012.  On 3 June 2013, approximately one year after treatments began in 2012, untreated plots 

averaged 95% green RBG cover and only the spring glyphosate application resulted in less green 

cover (31%), statistically.  Green cover of RBG treated in mid-summer (68%) was not different 

from untreated cover, and green cover of RBG treated in late-summer (58%) was not different 

from untreated, or that treated in spring. 

 Conclusions 

Spring-applied glyphosate consistently resulted in better RBG control than treatment in 

mid-summer.  Glyphosate application in mid- to late-summer can temporarily reduce RBG 

cover, but should be applied in the spring for optimum RBG control. 
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Figure 6.1 Effect of glyphosate application timing on green RBG cover in Manhattan, KS (2011 and 2012) and Mead, NE 

(2012).  Applications were made in spring, mid-summer, or late-summer. Percent green RBG cover data were visually 

estimated monthly and one year after the spring applications.  Data were subject to a log10(y+1) transformation to normalize 

prior to analysis, and back-transformed for presentation.  On each of the three timings, glyphosate was applied at 3.4 kg a.i. 
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ha-1 with a CO2-powered sprayer equipped with XR TeeJet 8002 flat spray nozzles at 207 kPa in 327 L ha-1 spray solution.  In 

Manhattan (2011), applications were made on 21 May (spring), 26 July (mid-summer), and 25 August (late-summer).  In 

Manhattan (2012), application dates were 23 April (spring), 27 July (mid-summer), and 30 August (late-summer).  In Mead 

(2012), application dates were 4 May (spring), 31 July (mid-summer), and 6 September (late-summer).  There were statistical 

differences in RBG cover among treatments after each application and before the final rating date, but the focus here is on the 

final rating date, for brevity.  Within each location each year, means with the same letter on the last rating date are not 

statistically different according to Fisher’s Protected LSD (P ≤ 0.05). 
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Figure 6.2 Effects of the seasonal timing of a single glyphosate application at 3.4 kg a.i. ha-1 

on green rough bluegrass cover in Manhattan, KS on 24 May 2013.  Rough bluegrass was 

A) untreated, or treated the year prior in B) spring (23 April 2012), C) mid-summer (27 

July 2012), or D) late-summer (30 August 2012). 
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Appendix A - Additional Tables for Chapter 5 

Table A.1 Effect of herbicide treatments on rough bluegrass quality in Manhattan, KS, Hutchinson, KS, and Mead, NE in 

2013. 

 Quality (%)† 

 Manhattan, KS  Hutchinson, KS  Mead, NE 

 Weeks after initial treatment‡  Weeks after initial treatment  Weeks after initial treatment 

Treatment§ 0 1 2 4 8  0 2 4 8  0 2 4 8 

Untreated 9.0  9.0 a¶ 7.7 a 5.7 a 4.3 a  9.0 9.0 a 7.3 a 8.0  8.0 7.7  7.7 ab    6.0 abc 

Amicarbazone (0.04) (AB)# 9.0 6.7 b   6.0 bc   2.7 cd    2.3 cde  9.0 9.0 a 7.3 a 5.7  8.0 7.0    7.0 abc 6.7 a 

Amicarbazone (0.09) (A)  9.0   6.0 bc   5.7 cd   4.3 ab  3.7 ab  9.0     8.3 abc 7.3 a 5.3  8.0 6.7  6.7 bc    6.0 abc 

Amicarbazone (0.09) (AB) 9.0   6.0 bc   4.3 df   1.7 de  1.3 ef  9.0   8.7 ab 7.3 a 5.0  8.0 7.3    7.3 abc   6.3 ab 

Mesotrione (A) 9.0   5.7 bc   5.7 cd   4.0 bc  3.7 ab  9.0     7.0 bcd 7.0 a 7.7  8.0 7.3 8.3 a   5.3 bc 

Mesotrione (AB) 9.0   6.0 bc     6.7 abc   4.0 bc    3.3 abc  9.0   8.7 ab 7.0 a 5.0  8.0 7.3    7.3 abc 5.0 c 

Mesotrione (ABC) 9.0   6.0 bc   7.0 ab   4.7 ab    3.3 abc  9.0     8.0 abc 6.3 a 3.3  8.0 7.0    7.3 abc 6.7 a 

AM (0.04) + ME (AB)†† 9.0   5.7 bc   4.7 de   2.7 cd    2.7 bcd  9.0     8.0 abc 3.3 b 7.7  8.0 7.0    7.0 abc  6.3 ab 

AM (0.09) + ME (A)†† 9.0   5.7 bc   3.3 fg   2.3 de    2.3 cde  9.0     7.0 bcd 7.7 a 7.7  8.0 7.0  7.7 ab  6.3 ab 

AM (0.09) + ME (AB)†† 9.0   5.7 bc 2.7 g 1.0 e    2.0 def  9.0 6.0 d 3.3 b 7.7  8.0 6.7 6.0 c    6.0 abc 

Paclobutrazol (ABC) 9.0 8.7 a 7.7 a   5.0 ab 4.3 a  9.0     8.0 abc 7.3 a 5.7  8.0 7.7    7.3 abc    5.7 abc 

Bispyribac-sodium (ABC) 9.0 4.7 c    3.7 efg 1.0 e 1.0 f  9.0   6.7 cd 2.7 b 1.0  8.0 6.7 4.3 d 3.3 d 

†Rough bluegrass quality (1 to 9, 1=brown, 6=minimum acceptable, and 9=optimum color, density, and uniformity) was evaluated every other week from 0 to 8 weeks after initial 

treatment. 
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‡Each herbicide treatment was applied one to three applications.  Weeks after initial treatment indicates the period of time after the first application was made in Manhattan (27 June), 

Hutchinson (2 July), and Mead (27 June) in 2013. 

§Herbicide treatments were applied with a CO2-powered sprayer equipped with XR TeeJet 8002 flat spray nozzles calibrated to deliver 814 L spray volume ha-1 at 207 kPa.  

Amicarbazone, mesotrione, paclobutrazol, and bispyribac-sodium were applied one to three times at approximately 10 day intervals.  Rates and combinations included:  1) untreated; 

2) amicarbazone (0.04 kg a.i. ha-1); 3) amicarbazone (0.09 kg a.i. ha-1); 4) amicarbazone (0.09 kg a.i. ha-1); 5) mesotrione (0.15 kg a.i. ha-1); 6) mesotrione (0.15 kg a.i. ha-1); 7) 

mesotrione (0.15 kg a.i. ha-1); 8) amicarbazone (0.04 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1); 9) amicarbazone (0.09 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1); 10) 

amicarbazone (0.09 kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1); 11) paclobutrazol (0.28 kg a.i. ha-1); and 12) bispyribac-sodium (0.08 kg a.i. ha-1). 

¶Within columns, means with the same letter are not significantly different according to Fisher’s Protected LSD (P ≤ 0.05). 

#Applications were made on 27 June (A), 8 July (B), and 18 July (C) in Manhattan; 2 July (A), 15 July (B), and 29 July (C) in Hutchinson; and on 27 June (A), 10 July (B), and 22 

July (C) in Mead in 2013. 

††Treatment is a tank-mix of amicarbazone (AM) and mesotrione (ME). 
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Table A.2 Effect of herbicide treatments on perennial ryegrass injury in Hutchinson, KS in 

2013. 

 Injury† 

Treatment‡ 0 WAIT§ 2 WAIT    4 WAIT       8 WAIT 

Untreated 0.0 0.0 1.7 d¶ 0.0 c 

Amicarbazone (0.04) (AB)# 0.0 0.0 1.7 d 0.0 c 

Amicarbazone (0.09) (A)  0.0 0.0 3.3 cd 0.0 c 

Amicarbazone (0.09) (AB) 0.0 0.0 1.7 d 1.7 c 

Mesotrione (A) 0.0 0.0 3.3 cd 0.0 c 

Mesotrione (AB) 0.0 0.0 7.7 bcd 0.0 c 

Mesotrione (ABC) 0.0 0.0 6.7 cd 60.0 a 

AM (0.04) + ME (AB)†† 0.0 0.0 13.3 ab 0.0 c 

AM (0.09) + ME (A)†† 0.0 0.0 3.3 cd 0.0 c 

AM (0.09) + ME (AB)†† 0.0 0.0 15.0 a 0.0 c 

Paclobutrazol (ABC) 0.0 0.0 3.3 cd 11.7 c 

Bispyribac-sodium (ABC) 0.0 0.0 8.3 bc 45.0 b 

†Perennial ryegrass injury (0 to 100, where 0=no injury) was evaluated every other 

week from 0 to 8 weeks after initial treatment. 

‡Herbicide treatments were applied with a CO2-powered sprayer equipped with XR 

TeeJet 8002 flat spray nozzles calibrated to deliver 814 L spray volume ha-1 at 207 

kPa.  Amicarbazone, mesotrione, paclobutrazol, and bispyribac-sodium were applied 

one to three times at approximately 10 day intervals.  Rates and combinations 

included:  1) untreated; 2) amicarbazone (0.04 kg a.i. ha-1); 3) amicarbazone (0.09 kg 
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a.i. ha-1); 4) amicarbazone (0.09 kg a.i. ha-1); 5) mesotrione (0.15 kg a.i. ha-1); 6) 

mesotrione (0.15 kg a.i. ha-1); 7) mesotrione (0.15 kg a.i. ha-1); 8) amicarbazone (0.04 

kg a.i. ha-1) + mesotrione (0.15 kg a.i. ha-1); 9) amicarbazone (0.09 kg a.i. ha-1) + 

mesotrione (0.15 kg a.i. ha-1); 10) amicarbazone (0.09 kg a.i. ha-1) + mesotrione (0.15 

kg a.i. ha-1); 11) paclobutrazol (0.28 kg a.i. ha-1); and 12) bispyribac-sodium (0.08 kg 

a.i. ha-1). 

§Each herbicide treatment was applied one to three applications.  Weeks after initial 

treatment (WAIT) indicates the period of time after the first application was made in 

Manhattan (27 June), Hutchinson (2 July), and Mead (27 June) in 2013. 

¶Within columns, means with the same letter are not significantly different according 

to Fisher’s Protected LSD (P ≤ 0.05). 

#Applications were made on 27 June (A), 8 July (B), and 18 July (C) in Manhattan; 2 

July (A), 15 July (B), and 29 July (C) in Hutchinson; and on 27 June (A), 10 July (B), 

and 22 July (C) in Mead in 2013. 

††Treatment is a tank-mix of amicarbazone (AM) and mesotrione (ME). 
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