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Using conceptual blending to describe how students use mathematical integrals in physics
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Calculus is used across many physics topics from introductory to upper-division courses. The funda-
mental concepts of differentiation and integration are important tools for solving real-world problems
involving nonuniformly distributed quantities. Research in physics education has reported students’ lack of
ability to transfer their calculus knowledge to physics. In order to better understand students’ deficiencies, we
collected data from group teaching or learning interviews as students solved physics problems requiring
setting up integrals. We adapted the conceptual blending framework from cognitive science to make sense of
the ways in which students combined their knowledge from calculus and physics to set up integrals. We
found that many students were not able to blend their mathematics and physics knowledge in a productive
way though they have the required mathematics knowledge. We discussed the productive and unproductive
blends that students created when setting up integrals. The results of the study also suggested possible

strategies to shifting students’ constructing of blends to more powerful ones.

DOI: 10.1103/PhysRevSTPER.9.020118

I. INTRODUCTION

Developing the ability to use mathematics is necessary
to understand subject matter throughout science and engi-
neering courses. Using mathematics in physics requires
more than the straightforward application of algorithms
and rules that students may learn in their mathematics
classes. Previous work in physics education research has
documented students’ difficulties with mathematical flu-
ency in physics problem solving [1-4]. In calculus-based
physics courses, this issue is of particular concern as
problems often require the application of sophisticated
mathematical concepts such as differentiation and inte-
gration. To facilitate students’ use of mathematical inte-
gration in physics, we need to first investigate how
students solve physics integration problems and under-
stand students’ reasoning processes. The goal of our study
is to adapt the framework of conceptual blending to
systematically investigate how students set up mathemati-
cal integrals in physics and to get a clearer understanding
of their difficulties.

Integration problems in physics involve blending of the
physical world with mathematical symbols and concepts.
There are often many different ways to interpret and
apply mathematics in a given physical situation. Hence,
there are various types of blends that students might
construct in a given problem. In this paper, we use the
cognitive framework of conceptual blending [5] to
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describe the ways in which students set up mathematical
integrals in physics contexts. The conceptual blending
framework views the process of learning as selective
projection and combination of knowledge from several
different mental spaces. In our study, we conducted a
detailed analysis of students solving a physics problem
to investigate how they make connections among mathe-
matical symbols and concepts, as well as concepts asso-
ciated with the physical world. We make comparisons of
the blends created by students and discuss the effective-
ness of certain kinds of blends in facilitating students’ use
of integration in a productive way. Identifying the differ-
ent types of blends that students create provides a way of
parsing students’ reasoning when approaching physics
integration problems.

Previous studies often investigated students’ difficulties
with particular facets of using integration, such as recog-
nizing when to use integration [3,6], finding the infinitesi-
mal expression for a physical quantity [4,7], and deciding
the limits of an integral [3,4]. Our study describes the
overall strategies students used to apply integrals in phys-
ics contexts through the perspective of mental space inte-
gration. This framework allows us to organize the bits of
knowledge that exist in student reasoning and connect the
fine-grain-sized knowledge elements to the entire picture
of student approach.

In the next section, we provide an overview of previous
work on theoretical development of mathematical use in
physics. In Sec. III, we describe the conceptual blending
theoretical framework and how it is used in our study. In
Sec. IV, we focus on the methodology used to collect and
analyze our data, and in Sec. V, we present the results of
our study. Finally, in Sec. VI, we discuss our results and
implications for teaching and education research.

Published by the American Physical Society


http://dx.doi.org/10.1103/PhysRevSTPER.9.020118
http://creativecommons.org/licenses/by/3.0/

DEHUI HU AND N. SANJAY REBELLO

PHYS. REV. ST PHYS. EDUC. RES. 9, 020118 (2013)

II. BRIEF OVERVIEW: STUDENTS’ USE OF
MATHEMATICS IN PHYSICS

To characterize and understand how students use mathe-
matics in physics, researchers have utilized several frame-
works to analyze student behavior. In this section, we
briefly review some of the recent work in this area.

Sherin [8] introduced symbolic forms (i.e., cognitive
mathematical primitives) to understand student interpreta-
tion of mathematical equations in physics problem solving.
Symbolic forms allow students to associate meanings
with certain structures of mathematical expressions. A
symbolic form has two components: a symbolic template
(e.g., [1=11 [1/[] and a conceptual schema. The con-
ceptual schema is ‘“a simple structure associated with
the symbolic form that offers a conceptualization of the
knowledge contained in the mathematical expression’ [8].
Sherin observed that students not only applied known
equations or given principles, but also invented their own
equations from intuition. When observing five pairs of
intermediate-level engineering students solve physics
problems, Sherin discovered the existence of symbolic
forms based on the fact that students “learn to associate
meanings with certain structures in equations.” One prob-
lem was based on the physical scenario that a person gives
a block a shove so that the block slides across a table and
then comes to rest. Students were asked to talk about the
forces acting on the block and discuss what would happen
if the block was heavier. A pair of students, Mike and Karl,
invented an equation u = u; + C(w,/m) for the coeffi-
cient of friction based on their understanding of the
situation “‘the coefficient of friction has two components:
one that’s a constant and one that varies inversely as the
weight.” This expression was not from the textbook;
instead, they constructed this equation from their under-
standing of the physical scenario. One symbolic form
identified by Sherin from this expression was ‘parts-of-
a-whole.” The symbol template that two or more terms are
separated by plus (+) signs contains a conceptual schema
“a whole is composed of two or more parts.” Sherin’s
symbolic forms were primarily based on student reasoning
of algebraic equations.

Meredith and Marrongelle [6] later applied symbolic
forms to analyze student understanding of equations in
calculus-based physics problems. They identified several
symbolic forms that cued students to use integration,
including the dependence cue and the parts-of-a-whole
cue. The “dependence’ symbolic form is associated with
the mathematical entity of function [...x...]. The associ-
ated structure of the parts-of-a-whole form is the Riemann
sum (i.e.,[] =[]+ []+ ---). They categorized the sym-
bolic forms that appeared at the beginning of the problem
solving process when students decided whether or not to
use integration.

Jones [9] extended the symbolic forms framework to
analyze student understanding of the integral concept.

He interviewed nine students who were enrolled in an
introductory-level physics course which was designed pri-
marily for students in physics and engineering. All students
were interviewed twice in their study. In the first interview,
students were given open-ended mathematics problems
related to integrals; in the second interview, students
were given open-ended physics integration problems
involving real-world objects. He identified four major
symbolic forms associated with the integral symbol tem-

plate [ E %[ 1d[ 1. The area symbolic form basically takes

the integral expression and interprets it as an area in the x-y
plane. The adding up pieces symbolic form refers to the
evidence that students sliced the area on a graph into
infinitely small pieces and added those pieces to find the
total amount. However, Jones argued that under this sym-
bolic form, the limiting process occurred before the addi-
tion process took place. Thus, this symbolic form diverged
from the Riemann sum process. The function mapping
symbolic form conceives the integral as a “pairing of
objects,” which matches the integrand with an “‘original
function.” According to the problematic add up then multi-

ply symbolic form, the first box inside the integral [ % %[ 1d[ ]

was added up over the infinitesimally small pieces and the
resultant summation was then multiplied by the quantity
represented by the differential. Among the four major
symbolic forms, Jones concluded that the adding up pieces
symbolic form is a more productive way to view the
integral in both mathematics and physics contexts.

Tuminaro and Redish [10] used the framework of epis-
temic games to describe students’ use of mathematics in
physics. Collins and Ferguson [11] introduced epistemic
games to describe expert scientists’ approaches to scien-
tific inquiry. Epistemic games have two structural compo-
nents: the entry or ending conditions and moves. The entry
and ending conditions determine when it is appropriate
to play that game. When solving physics problems, stu-
dents’ perceptions about physics problems determine the
entry and ending conditions. The moves are the steps that
can be taken in the game. Tuminaro and Redish [10]
identified six different epistemic games that students
played while using mathematics in algebra-based physics
problems: Mapping Meaning to Mathematics, Mapping
Mathematics to Meaning, Physical Mechanism game,
Pictorial Analysis, Recursive Plug-and-Chug, and
Transliteration to Mathematics. In the Mapping Meaning
to Mathematics game, for example, they identified five
basic moves: develop a story about the physical situation,
translate quantities in the physical story to mathematical
entities, relate the mathematical entities in accordance with
the physical story, manipulate symbols, and evaluate the
solution. A student’s decision to play a particular game is
determined by preconceived expectations about problem
solving in physics.

Extending Tuminaro and Redish [10], Gire et al. [12]
used the framework of epistemic games to characterize five
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students’ use of graphs to solve physics problems and the
hints given by an instructor to facilitate the students’
problem solving. They introduced the Graphical Analysis
game and identified the moves students made. They found
that students demonstrated facility with the interpret lex-
ical information, readout a value, and calculate area moves
within this epistemic game. The create a story move was
the most difficult move for these students, in terms of both
connecting the graph to the story situation and connecting
the graph to concepts leading to a situation.

These previous studies using symbolic forms and epis-
temic games frameworks have provided ways for educators
and education researchers to describe students’ ideas as
students use mathematics in the context of physics.
Symbolic forms provide us with a better understanding
of students’ conceptual schema as they deal with mathe-
matical equations and other symbolic expressions. Based
on the knowledge-in-pieces tradition, the symbolic forms
are kinds of mathematical resources that students bring
from their prior learning experience. The epistemic games
from Tuminaro and Redish [10] and Gire et al. [12] depict
the common reasoning patterns in student use of mathe-
matics in physics problem solving. The purpose of epis-
temic games is not to describe how students solve certain
physics problems but to help us understand how students
perceive the use of mathematics in physics. For example, in
the Mapping Meaning to Mathematics game, an important
feature of this game is that students relate a physical
situation to mathematical entities and make sense of
mathematics in the physics scenario. However, it does
not describe how a student interprets particular mathemat-
ics or physics concepts. The symbolic forms framework
describes the conceptual schema associated with a certain
mathematical template and it is based on the implicit
assumption that resources are created and then applied in
a situation. In our work, we are interested in how students
apply their mathematics knowledge to a physics situation
to set up integrals. In the following section, we describe our
theoretical framework and demonstrate that it can serve a
powerful paradigm to analyze student creation of knowl-
edge from the integration of existing knowledge in distinct
domains.

III. CONCEPTUAL BLENDING FRAMEWORK

We use the framework of conceptual blending, also
called mental space integration by Fauconnier and Turner
[13], to describe students’ use of mathematics in physics.
Conceptual blending or integration describes how the mind
combines two or more mental spaces to make sense of
linguistic inputs. Mental spaces are small conceptual
packets or knowledge elements that tend to be activated
together [14]. According to this framework, one creates
new meanings from the combination of different mental
spaces that share content or structure. Blending, as a gen-
eral cognitive process, brings two or more spaces together

through selective projection, taking some information from
each input to compose a blend. The new space is called
the blended space. The blend often inherits partial structure
from input spaces but also has its own emergent structure
[15]. The way a person blends several input mental spaces
together depends strongly on the cues and contexts.
Constructing a blend involves three operations: composi-
tion, completion, and elaboration.

Consider the phrase “computer virus,” which we use
frequently in our vocabulary nowadays. To understand this
phrase, one has to blend knowledge from two different
mental spaces—a biological mental space and a computer
mental space. A biological mental space contains elements
like a biological system, cell, virus, and immunity mecha-
nism. A computer mental space includes elements like
memory, software, and programs. In the blended space, a
computer program and virus are fused into a new, single
entity “‘computer virus” through the process of ‘“compo-
sition,” meaning that the computer virus is composed of
elements from two input spaces. The composed structure
often provides relations that are not available in the input
spaces. When completing the blend, crucial elements from
each input (e.g., viruses attack normal body cells, software
gives instructions to a computer) are mapped to the third
space to form the blend. Meanwhile, an organizing frame
(i.e., the property of viruses—reproduction and attacking
the normal system) is adopted to organize the knowledge
elements in the blended space [16]. When the blend is
complete, it can be elaborated to make inferences accord-
ing to the rules in the blend. The process of elaboration is
also called ‘“running the blend.” By elaborating on the
knowledge in the computer virus blended space, a new
meaning emerges—a computer virus as a computer pro-
gram that can replicate itself and spread from one com-
puter to another, usually making unauthorized and
undesirable changes to the computer. Only in the blended
space does the phrase computer virus make sense. In
general, composition, completion, and elaboration lead to
emergent structure in the blend; the blend contains a
structure that is not preexisting in the input spaces [17].

The conceptual blending framework has also been
extended to analyze students’ mathematical and scientific
reasoning. Zandieh et al. [18] applied the theory of con-
ceptual blending to illustrate how university students con-
struct mathematical proofs. Bing and Redish [14] used the
conceptual blending theory to model how students com-
bine physical and mathematical knowledge to construct
solutions to physics problems. They described two repre-
sentative ways in which students blend their knowledge
from physics and mathematics mental spaces. A single-
scope blend only involves unidirectional mapping of the
elements from one input space into the organizing frame of
the other while a double-scope blend involves an integra-
tion of the organizing frames from input spaces. In the
context of using mathematics in physics problem solving,
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FIG. 1. Wave-ball blend from Wittmann [17].

a single-scope blend often refers to a one-way mapping of
physical quantities to an existing mathematical equation or
template. In a double-scope blend, students not only map
an existing mathematical equation to a physics context,
but also translate a physical scenario to a mathematical
expression. They pointed out that the difficulties students
experienced were often not from their lack of prerequisite
knowledge but from inappropriate blending of mental
spaces.

More recently, Wittmann [17] used the conceptual
blending framework to describe emergent meanings in
students’ understanding of wave propagation. He analyzed
gestural, perceptual, and verbal information to describe
how different elements were combined to create new,
emergent meaning. The “wave-ball” blend (Fig. 1) is
formed by selective projection from two different mental
spaces: observed wave pulse and imagined ball thrown
in the air. Then he compared this blend with a “beaded-
string”” blend (Fig. 2) containing the input spaces of the
observed spring and falling dominoes. The blend that
students make is determined by their selective attention
to parts of the observed physical system as they determine
which part of the system to use in the process of projection
from the input spaces to the blended space.

According to the cognitive blending theory of
Fauconnier and Turner, learners must find a way to bridge
or blend their knowledge in different mental spaces to
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wrist llick\

N

up/down

nearest
neighbor
interactions

Beaded-String Blend

FIG. 2. Beaded-string blend from Wittmann [17].

make sense of new information. Using mathematics in
physics requires the blending of mathematical ideas with
physical situations. Experts often automatically and natu-
rally blend their knowledge in mathematics and physics in
efficient ways that they have developed through years of
learning and experience. However, novice students might
blend their knowledge in mathematics and physics in
unproductive ways that hamper their physics problem
solving ability. In this study, we use the tool of conceptual
blending to analyze how novice students bridge their
knowledge in two distinct worlds—calculus and physics.
This analysis will provide us deeper insights into (a) what
information students perceive as relevant, i.e., which
knowledge elements of a problem do students attend to
and which they ignore, when constructing a solution, and
(b) how students interpret their solution, i.e., what new
meanings they create when they combine their understand-
ings of mathematics and physics. The former involves the
process of selective projection of information from the
mathematical and physical mental spaces, when compos-
ing a blend, and the latter involves the creation of an
emergent structure when running a blend. In the computer
virus example, when creating this blend, certain elements
from each space—the computer space and the biological
space—are selected to be projected into the blended space.
When running the blend, a new meaning emerges: com-
puter virus is an entity that can replicate and spread from
one computer to another.

In the last section we reviewed two other frameworks—
symbolic form and epistemic game, which also have
explanatory power in understanding student use of mathe-
matics in physics. A discussion about the three theoretical
constructs might be helpful for understanding why we
choose cognitive blending as our theoretical framework
in this study. Symbolic forms are mathematical resources
associated with mathematical equations. The knowledge
elements in the input mental spaces can be described as
resources. Thus, the formation of symbolic form can be
described using the language of conceptual blending.
However, after years of learning and practice, learners
may often activate some symbolic forms as a unit (or a
blend), for which the input mental spaces are no longer
distinguishable and the blending process cannot be easily
retraced. In this study we use the conceptual blending
framework to describe how students organize their existing
knowledge resources in a situation that they have little or
no experience with.

Epistemic games describe students’ cognitive reasoning
patterns, and their purpose is to model the process compo-
nent of physics problem solving, i.e., the moves that
students make as they solve problems [19]. Resources are
the knowledge base of epistemic games and are considered
the ontological component for describing students’ physics
problem solving. The cognitive blending framework
focuses on the conceptual component, describing the
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ways that students combine their knowledge in different
mental spaces as well as the generation of new ideas that
emerge from the combination. There appears to be a con-
nection between the epistemic games that students play
and the type of blends that they construct. For example,
Bing and Redish [14] described the “double-scope” blend
when students solve the air resistance problem. From the
perspective of epistemic game, students might have played
the Mapping Meaning to Mathematics or the Mapping
Mathematics to Meaning game. However, one cannot
predict what specific blends students create based on the
epistemic games that they play. For example, we can
imagine a student who plays the Mapping Meaning to
Mathematics game is more likely to create a double-scope
blend, but there are a number of ways for constructing a
double-scope blend.

In general, the three theoretical constructs serve differ-
ent purposes: the resources framework describes the
ontological components, the epistemic game framework
models the process component, and the conceptual blend-
ing framework models the creation of meaning that is
emergent as students’ use mathematics in the context of
physics problem solving.

IV. METHODOLOGY

A. Data collection

Data for this study were collected as part of a semester
long series of teaching or learning interviews [20] during
an introductory-level calculus-based physics course for
engineering majors at a U.S. Midwestern university. This
course is the second semester of a two-semester sequence.
The first semester mainly focused on mechanics topics
and the second semester mainly focused on electricity
and magnetism (E&M) topics. This course has two main
components—two 50-minute traditional lectures with
clicker questions and two 110-minute integrated laboratory
and problem solving sessions (i.e., studio sessions) [21].
The class has an enrollment of about 250 students who are
divided into several studio sessions with a maximum of 40
students each.

Thirteen students were selected from a pool of 40
volunteers, depending upon scheduling convenience.

The selected participants were organized in small groups
of three or four students each, to discuss physics problems
on a whiteboard. Each group met with the interviewer
separately over eight 75-minute long sessions that
occurred approximately biweekly throughout the semes-
ter. All participants had taken prerequisite calculus classes
before the physics course. Interview problems presented
to students were E&M problems requiring integrals.
During the small group discussion, students discussed
problems in groups on a whiteboard and the interviewer
watched students work. The interviewer was a silent
observer for a vast majority of the time, and only inter-
jected to ask students to explain their thinking whenever
necessary. When the students were unable to proceed, the
interviewer would engage in Socratic dialog in order to
provide hints and cues to facilitate the participants in
figuring out the next step in the solution process. The
interviewer refrained from providing any instruction or
feedback during the session. Our data sources include the
video-recorded conversations of students and their work
completed on the whiteboard.

B. Data analysis

In this study we present a detailed analysis that focuses
on one physics problem in the context of resistance. The
problem (Fig. 3) was presented to students during the fifth
interview session. There were two main reasons for choos-
ing this problem for a detailed analysis. First, students were
familiar with the resistance concept, but they had not seen
any specific example nor had they received any instruction
on how to find the resistance of a resistor with nonuniform
resistivity. Students had to invent their own integral equa-
tion as there was no specific integral equation on resistance
that they could draw upon from their memory. Second,
students used diverse strategies and reasoning when solv-
ing this problem. This problem seemed neither too easy
nor too difficult for most students. Most students were
able to invent strategies to solve this problem and explain
their thinking.

The problem (Fig. 3) involves finding the total resistance
due to a cylindrical resistor with nonconstant resistivity.
When the resistivity is not a constant, one must first chop

A material with length L and cross-sectional area A lies along the x-axis between x=0
and x=L. Its resistivity varies along the rod according to ¢ (x) = o - e /L. Find

the total resistance of this cylinder between two end faces.

A

y

U

U

v

FIG. 3.

Interview task.
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[ dR = [

The basic physics equation for resistance with constant resistivity is given by R =
o The resistance of one infinite thin disk dR can be expressed as dR = pT with dx

the thickness of the disk. The total resistance R is the integral of dR, that is R =

dx

oM\VA 2

FIG. 4. Partial solution to the interview task in Fig. 3.

the cylinder into infinitesimally thin disks and find the
resistance dR of each disk (Fig. 4). We find the total
resistance by summing up, i.e., integrating over the resist-
ance dR, of each disk. Finally, we substitute the resistivity
function p(x) provided in this equation and evaluate the
integral.

Our unit of analysis was a student discussion group. We
transcribed the video files for all five groups working on
the task. First, we conducted a qualitative analysis using a
phenomenographic approach [22]. An important aspect of
our approach was that we did not categorize students’
descriptions based on predecided categories. Rather, the
categories emerged from the data. Then, we identified the
important themes that emerged from students’ conversa-
tions or written work on the board. Next, we examined
these emergent themes through the lens of the conceptual
blending framework. For each theme, we determined the
input spaces and blended spaces by analyzing the ways in
which students connected their ideas from different
domains. Finally, we generated a holistic description of
how the students blended their ideas. This holistic picture
describes how the knowledge elements from each input
space are projected to the blended space and how a new
structure emerges from the blend.

V. RESULTS AND DISCUSSION

In this section, we present four distinct conceptual
blends identified from five groups of students working on
the problem (Fig. 3). We noticed that students within the
same group did not necessarily follow the same approach;
thus, there was often more than one blend created in a
group. We claim that the blending process is a dynamic
process. That is, students do not have explicit ideas in their
mind and construct the solutions spontaneously. We found
that students constructed one blend at the beginning and
later changed the blend as they proceeded. Some blends
eventually led students to solve the problem correctly
while others hampered students’ efforts in setting up the
correct integral. We will illustrate the four different blends
identified from student work.

A. Blend A

Two groups of students constructed the same blend. We
discuss one group of three students as an example. Prior to
this dialog, all three students set up their own equations and
they all seemed to be in agreement with each other. We
show the solution from Phil in Fig. 5. The interviewer then
prompted the students to explain their thinking, which
resulted in two of the students (Zad and Alan) participating
in the conversation below.

Interviewer: Can you guys sort of explain what your
plan is for solving this problem?

Well, we set up our basic equation. And
then we are using our p(x) that they gave
us. We are going to integrate that to give
the whole area, right? That’s where we are
at right now.

Interviewer: What do you mean by “integrate to get the
whole area”? Can you talk more about that?
We are looking for total resis (pause) p
total, yeah, and this (points to the resistiv-
ity function in the problem statement)
gives us p at any one point, so we are
summing up all of its points.

Alan:

Alan:

Then students discussed the cross-sectional area A in the
integral and calculated the integral. After they were all
done, the interviewer continued:

p €L
”~ X_Z-)/
=(£-€ A
e —
—~
- L V¥
=/ / P
- /
=—\ € o
L oo =i

FIG. 5. Equation set up by Phil.

020118-6



USING CONCEPTUAL BLENDING TO DESCRIBE ...

PHYS. REV. ST PHYS. EDUC. RES. 9, 020118 (2013)

Interviewer: So can you guys explain your solution from
the beginning?

Zad: Resistivity times length over area. We have
function of resistivity, pull out all the con-
stants. Length is a constant, x = L, py is a
constant, over A, we need to take the inte-
gral of x, which, a function of x, which is
e 'L from 0 to L, because you are taking
from O to the length L. .. (Continues to talk
about his calculation.)

Interviewer: Can you guys explain what the meaning is
for the integral part? Is there a meaning for
that?

Zad: Um, it gets more resistive as it approaches
L. That’s a function of p but just the resist-
ance isn’t constant, I guess? So you have to
take, since it’s not constant, you have to
take the total integral of . .. sum all the way
across.

When working on this problem, this group of students
mainly focused on mathematical manipulations and looked
for ways to relate mathematical symbols to a mathematical
equation. First, the students related the resistivity function
p(x) to the basic resistance equation R = pL/A by substi-
tution. In mathematics, substitution or “‘plugging in” is one
of the most basic operations, often made subconsciously by
students even though the resulting equation does not have
any concrete meaning in this physical situation. Students
also demonstrated a basic knowledge of a function. Alan
explained that the resistivity function “gives us p at any one
point” and Zad talked about “it gets more resistive as it
approaches L.” In their explanation, Alan talked about
“summing up all of its points” and Zad said “‘take the total
integral of, sum all the way across.” Hence, students had the
notion that ““an integral represents a sum.”

When setting up integrals, students’ reasoning involved
three input spaces: symbolic space, mathematical notion
space, and the physics space. A blending diagram is shown
in Fig. 6. The symbolic space includes abstract mathemati-
cal symbols and notations, such as resistivity function p(x)
and resistance equation R = pL/A. The mathematical
notion space involves students’ knowledge about mathe-
matical concepts and notations. In this case, the mathe-
matical notion space includes students’ ideas of the
function as being nonconstant, integral f as a sum, and
d[] as the variable of integration. The physics space
includes physical quantities associated with the object,
such as resistivity, resistance, and length. It is not our
purpose to make a comprehensive list of the elements in
each space, rather, only the most relevant elements are
included for the purpose of describing students’ reasoning.
For example, the area of the cylinder is also a feature
of the physical object in the physics space, but it is not
included as it seems less relevant in students’ reasoning
process.

Math notion space

Symbolic

Physics space

Function
Integral ‘[ as a sum
‘d[]” as the variable
of integration

Resistivity
Resistance

Length

Resistivity varies along length
L . o

% substitute resistivity

fL p(x)L

o 2 dx sum up over

Blended space

FIG. 6. Blend A.

Elements from input spaces were projected into a new
space—the blended space. In the blended space, the
expression p(x), the notion of function as a nonconstant
quantity, and the cylindrical resistor were combined, gen-
erating a meaning that the resistivity varies along the axis
of cylinder. Students seemed to map the resistivity func-
tion p(x) and the basic resistance equation (R = pL/A)
into the new space to create a new expression [R =
p(x)L/A]. Then the notions of an integral [ as a sum
(i.e., performing an integral would produce the total
quantity) and differential d[ ] as variable of integration
were projected into the blended space. Guided by this
notion, students integrated the expression of resistance
that they obtained earlier over the variable x. A new
meaning seems to emerge from this blend—the total
resistance is the sum of a varying resistance across the
length over which the resistivity varies. This new meaning
is generated from the blend and it did not preexist in
any of the input spaces. Students started out with basic
information (i.e., physical world and mathematical sym-
bols) given in this problem and blended the information
with their notion of relevant mathematical concepts. The
organizing structure was based on the notion of an inte-
gral in mathematical notion space as representing a sum.
The elements in the physics space were imported into the
organizing structure without considering whether or not
the way the elements were structured was appropriate.
For example, when integrating the new expression R =
p(x)L/A, the resistance element was mapped into the
blended space, giving a meaning of summing up resist-
ance. However, students neither talked about which re-
sistance (i.e., the resistance of which part of the object)
this R represented nor talked about what it meant to “‘sum
up the resistance” physically. In other words, it is a
one-way mapping, importing elements from the physics
space and symbolic space into the structure of math
notion space. Hence, students did not recognize that the
expression R = p(x)L/A was incorrect in this physical
situation. All students said they were confident about
their answer.

020118-7



DEHUI HU AND N. SANJAY REBELLO

PHYS. REV. ST PHYS. EDUC. RES. 9, 020118 (2013)

B. Blend B

When solving this problem, this group of students first
constructed a blend as discussed in the last episode. At the
very beginning of their problem solving, one student (Zad)
wrote “dR’ but he did not specify what dR meant nor had
he found the expression for dR. In the following episode,
the interviewer asked students to explain what dR means
and they started to find the expression for dR. Students
eventually constructed another blend which was different
from the blend they had originally created. When prompted
to explain the differential term dR, students’ notion about
the differential template d[ ] was activated. Hence, students
shifted from one blend to another.

Interviewer: So here I saw you wrote dR. Can you sort
of explain what do you mean by this dR?
Zad: Like electric field, anything else uneven,
we have to define the integral of dR. We
have to find dR, um ... with ... over an
area.
It’s a small R. It’s just a small part of our
resistance (points to the cylinder of this
problem). Like, we just look at a section
of it. We look at . . . just on our cylinder like
we are looking at our resistance at this
point right here (points to the dot on the
central axis of the cylinder in Fig. 7). It
would be just our dR there. So we do that
and then we take the integral ... adds up
the little parts together.
Interviewer: How would you set up the equation for dR?

Alan:

Then students started to set up the equation for dR and
talk about their thinking at the same time.

Alan: So dR would be equal to . .. (Fig. 8), but I
need dx, I guess.
Zad: We would have to take the derivative of this

one (points to the equation in Fig. 9). Um,

FIG. 7. Picture drawn by Alan.

FIG. 8. Equation set up by Alan.

FIG. 9. Equation set up by Zad.

FIG. 10. Expression for dR.

this is the derivative. Take the derivative of

that (Fig. 9). Would that (Fig. 10) be the

derivative of it?

It should equal dR.

dR ... cause that will times dx, not equals

dR. So, instead, you have to take the de-

rivative of something, we just plug in to dR

(sets up equation in Fig. 11).

Interviewer: So why did you take the derivative of this
one (points to Fig. 9)?

Zad: Um, because we just plugged it in to ...
we plugged what R was into the integral of
R basically. So, we need to take the deriva-
tive of it. So, we can plug in to R because we
basically pull dx out of nowhere, because
the derivative of the only changing
Sfunction ... then we require dx. We need
to integrate that.

Alan:
Zad:

At the beginning of this conversation, when asked to
explain what dR meant, Zad said, “like electric field ...,
you have to define the integral of dR.”” We noticed that Zad
did not actually talk about the meaning of dR. Instead, he
recalled the electric field problems in which the total
electric field E is the integral of dE. Then he argued that
the total resistance R should be the integral of dR. Hence,
his argument seemed to be based on pattern matching with
similar examples he had seen before rather than under-
standing what dR was and how it was related to the total
resistance R. Alan seemed to have a more concrete under-
standing that dR represented “‘a small R or “‘a small part
of our resistance.” He drew a picture (Fig. 7) to explain
“resistance at this point.” When finding the expression for
dR, Alan just plugged the resistivity function into the basic

FIG. 11. Expression for total resistance.
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resistance equation (Fig. 8) and then he realized there must
be something wrong with this equation because he “need
[ed] dx.” Zad proposed a different approach. He first
substituted the resistivity function into the basic resistance
equation to get a new expression for “R” (Fig. 9), then he
took the derivative of this new expression with respect to x
to get the differential of R, which was dR (Fig. 10). Finally,
they set up a definite integral of dR to find the total
resistance (Fig. 11). When finding the expression for dR,
Zad explained “‘that will times dx ... you have to take the
derivative of something.” We suspect that Zad realized dx
was needed in the differential equation (Fig. 8) set up by
Alan and this prompted him to “take the derivative of
something” in order to get dx. In this problem, Zad acti-
vated the mathematical operation of ‘“‘taking the deriva-
tive” to find the differential expression dR. Upon seeing
Zad’s approach, Alan erased his work and seemed to
accept this approach.

We noticed that Alan and Zad explained dR in different
ways. However, Alan did not propose another approach for
solving this problem based on his own understanding.
Hence, the blending diagram (Fig. 12) is primarily based
on Zad’s work. Three mental spaces were involved: sym-
bolic space, mathematical notion space, and physics
space. The symbolic space includes the expression of
resistivity function p(x), the basic resistance equation
R = pL/A . The math notion space includes the mathe-
matical concept of function, differential d as the operation
of taking the derivative or differentiation, and the
integration-differentiation relation (i.e., integration is the
reverse operation of differentiation) contained in the form
of fd[]. The physics space includes physical quantities of
resistivity and resistance.

The expression of p(x), the notion of function as a
nonconstant quantity, and the physical quantity of resistiv-
ity were projected into the blended space, and the blend
conveyed the information of uneven resistivity. This
uneven property further cued Zad to use integration. The
basic resistance equation was mapped into the mathemati-
cal structure of d[ ] and [ d[ ] in the blended space. Under

Math notion space

Symbolic space

Function Physics space

‘d’ as differentiation Resistivity
Resistance

“fd[]’ differential-
integral relation

Uneven resistivity

L . .
R= p(j) Resistance function

dR Derivative of resistance function
[ dR Integral of dR

Blended space

FIG. 12. Blend B.

the notion of differentiation and integration operations,
students created a new expression for resistance so that
they could take the derivative of the resistance function and
then take the integral of the differential resistance. The new
resistance function was obtained from a direct ““plug-and-
chug”—plugging in the resistivity function into the basic
resistance equation. In the blended space, a new structure
emerges: the total resistance is the integral of the differen-
tial resistance, which is the derivative of a resistance
function. The organizing structure of this blend was
recruited primarily from the mathematical notion space.
Similar to blend A, this blend was constructed under a one-
way mapping, in which the elements in physics space and
symbolic space were mapped onto the mathematical struc-
tures of differential d[ ] and integral [ d[ ]. Students did not
map the resistance function, the differential resistance, and
the integral to the physics space. Even though the inter-
viewer prompted students to explain their thinking several
times, Zad still did not map the solution back into the
physics space and eventually Zad responded “I do not
know how to explain it other than mathematically.” The
solution appeared reasonable for him; however, he was
unable to explain the physics underlying the solution or
recognize that it was incorrect.

C. Blend C

In the episode below, two students (Jared and Lee) used
different approaches to solve this problem. We will discuss
Jared’s approach in this example. Jared started with the
basic resistance equation and then converted it into an
integral form as shown in Fig. 13. When he completed
this equation, the interviewer prompted him to explain his
thinking. Below is a transcript from the conversation
between Jared and the interviewer.

Interviewer: Can you guys talk about what you are
trying to do before you continue?

Uh, I took this pL and converted to this
right here which is p(x). And then multiply
by d, uh, small distance x, each of the little
resistivity? It’s all those little pieces going
up together. And so it’s the integral from 0
toL, of e /L dx.

Interviewer: Can you explain more about this part, the
integral part?

Basically this part right here (drew a rect-
angular box on the equation as shown in

Jared:

Jared:

— R r

r AT
=| Pg J ;

FIG. 13. Equation set up by Jared.

=
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Fig. 5) is the p, resistivity, and the dx is the
length, and uh, since it’s not just multiplied
by one small length, it’s from 0 to L, so you
get the whole length.

Interviewer: Uh huh.

Jared: And you are also adding up all of the
resistivities together.

Jared explained that each small piece was represented
by “dx” and by using integration, “all those little pieces
going up together.” Jared seemed to view the use of
integral in this physical situation as adding up small quan-
tities. By saying ““I took this pL and converted to this right
here,” Jared mapped the basic resistance equation and the
summation idea into the structure of the basic resistance
equation. He interpreted the variable of integration dx as
“little pieces” and the integral part in the rectangular box
(Fig. 13) as “adding up all of the little resistivities.” The
expression in the rectangular box is neither a complete nor
correct expression without dx. By saying “adding up all of
the resistivities together” he seemed to have understood
that an integral represents a sum. However, he did not seem
to realize that the resistivity represents the property of this
material and the resistivity at different points could not be
added up in this physical scenario.

The blending diagram (Fig. 14) represents how Jared
constructed his solution. There are three mental spaces
involved in this blending process: symbolic space, math
notion space, and physics space. The symbolic space
contains the expression of p(x) and the basic resistance
equation. The math notion space contains the idea of inte-
gral [ asa sum and differential d[ ] as a small quantity. The
physics space contains physical quantities associated with
the resistor, including the length, resistivity, and resistance.

When composing the blend, Jared mapped elements
from input spaces to the blended space: the expression
p(x) and the mathematical notion of integral [ as a sum
was combined to construct an integral of p(x), generating a
new meaning of summing up little resistivities. Further,
they seemed to map the idea of the differential d[ | as a

Symbolic space Math notion space

Physics space

Integral ‘[ as a sum
Differential ‘d[]’as a
small quantity

Length
Resistivity

Resistance

" Summin g up
little resistivities
clA

.:Small distance

Blended space

FIG. 14. Blend C.

small amount of quantity from the mathematical notion
space, and the length of cylinder from the physics space
into the new space to construct the differential dx as small
distance or length. We speculate that the students mapped
the structure of the basic resistance equation (R = pL/A)
into the blended space, in which the expression inside the
box is considered as the total resistivity and dx is consid-
ered as the length. In the blended space, Jared constructed
anintegral R = [} p(x)dx/A which encapsulates an emer-
gent meaning—adding up resistivities and distances. Jared
tried to separate the structure of [ p(x)dx into two parts—
resistivities and distances; however, the two parts are
entangled in a way that, as you integrate, you “‘add up
the resistivities” and “all the little pieces going up
together.” It is only in the blended space that this “split-
ting” and “‘entanglement” can coexist. Jared recruited the
structure of the equation from the symbolic mental space in
combination of the ‘““integral as a summation” idea from
the mathematics notion space to construct the solution. In
other words, the organizing structure of the blend results
primarily from an integration of structural elements from
the symbolic space and mathematical notion space. Guided
by the notion of integration as adding up small quantities in
the mathematical notion space, Jared incorrectly mapped
the resistivity instead of the resistance as the quantity being
added up. When making this one-way mapping, we suspect
that Jared was not aware of the structure or concepts in the
physics space: resistivity is an intensive physical quantity
that characterizes the variation of the material in different
parts of the object in terms of its ability to resist the flow of
current; thus, it is inappropriate to add up resistivity physi-
cally. Unlike the previous two blends where students tended
to map elements from both symbolic space and physics
space to the structure of mathematical notion space, Jared
organized his solution based on the blending of the structure
from both symbolic and mathematical notion space.

D. Blend D

In the following episode, two students, David and Alice,
used an approach which is similar to the typical approach
described in Fig. 4. They first chopped the cylindrical
resistor into infinitely thin disks and then added the resist-
ance due to each thin disk to get the total resistance. The
following conversation occurred as soon as they started to
solve this problem.

David: Okay, I think we need to separate this into
like, little pieces (see gesture in Fig. 15).

Alice: Yeah.

David: Little disks. Disks are fun.

Interviewer: So what made you guys think you need to
separate it into disks?

In this case, because the resistivity changes
as the length increases (see gesture in
Fig. 16).

David:
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s

FIG. 15. David’s gesture about ‘“‘separating into pieces.’

FIG. 16. David’s gesture about ‘“‘increasing resistivity.”

Alice: So that’s the sum , when we do that, it is just
an integral.
David: It is different here than it is here (see gesture

in Fig. 17). So, the easiest way is to picture
it as infinitesimal thing at different values
and then add up all the different values.

After this short conversation, they set up the differential
form dR, which is the infinitesimal resistance due to a
thin section of the cylinder of thickness dx. They then set
up the expression for total resistance R by taking the
integral of dR. Their solution is shown in Fig. 18. Then
the interviewer prompted them to explain their thinking.
During his explanation, David also drew a picture as
shown in Fig. 19.

FIG. 17. David’s gesture about “different values.”

. -
_Jf__-;.;_‘f—- W
o n""-vﬁ.

FIG. 18. Solution from David and Alice.
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FIG. 19. Picture drawn by David.

Interviewer: Okay. Can you guys explain how you got
this equation (referring to the integral
equation in Fig. 15)?

Okay. Well, we are taking that one (the
basic resistance equation) and so... but
since we have to sum up a bunch of little
pieces, you have to get little pieces, little
piece of R, and then our function for p, as
p changes with respect to x, and where x is
little pieces of length. And so we cannot
use whole of it, we have to use dx, and this
is just the area (points to the equations in
Fig. 18). So, it’s our resistivity, (laughs)
our resistance, is dependent on our
length. . .

Interviewer: Okay. If you are going to explain your
solution to your classmates, or friends,
how would you explain it?

Well, I guess that would be ... Since we
have a material that has a varying density,
we can separate it into small cylinders,
each one having a different density depend-
ing on their location x. So, starting out with
the basic equation, we would find the re-
sistance of each individual cylinder, which
is dR, and that would be our little piece of
resistance. And when you sum up those
resistances from the left side to the right
side, 0 to L, um, you would get the total
resistance.

Alice:

David:

David started with “separate this into like, little pieces,”
and used his hands (Fig. 15) to imitate the action of
“chopping the whole cylinder into little pieces.” He
explained that “resistivity changes as length changes”
and indicated the resistivity was different at different posi-
tions by sweeping his hand across using the gestures shown
in Figs. 16 and 17. The students realized that they needed
to do a “sum” or “‘integral” to “‘add up all the different
values.” In the above episode, the students first analyzed
the physical situation, then they developed a story about it
using words and gestures, and finally they began to apply
formal mathematics to set up an integral. When setting up
the integral expression, they first found dR, which was the
“little piece of R or “resistance of each individual
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Symbolic space

Math notion space Physics space

Function Cylindrical resistor
Integral <[ as a sum Resistance
Differential ‘d[]” as a Resistivity

small quantity Length

s e mizyt= -Resistance of each
e j;_.,:r; PN small cylinder
- b .
o r::- 7 2~ Sum up resistances
>
( a M Separate into pieces
—TR

Blended space

FIG. 20. Blend D.

cylinder,” then they “‘summed up those resistances’ using
an integral to get the total resistance. He realized each
resistor had a certain amount of resistance and could be
added up. We construct a blending diagram (Fig. 20) to
describe how students applied their mathematics knowl-
edge in this physical situation to set up an integral.

The blending diagram (Fig. 20) includes three input
mental spaces: symbolic space, math notion space, and
physics space. In the upper left of the blending diagram,
the symbolic space contains the expression of resistivity
function and the basic resistance equation; the math notion
space involves students’ knowledge about function, inte-
gral as a sum, and differential as a small quantity. In the
upper right, the physics space is the physical scenario
containing a cylindrical resistor and the physical quantities
of resistivity, resistance, and length. The three input spaces
were integrated to create the blend. The expression of p(x),
the mathematical notion of function as a varying quantity
depending on another quantity, and the cylinder were

TABLE L

associated together in the blended space, generating a
meaning of “resistivity changes as the length increases”
or resistivity is different at different lengths. When David
visualized the change of resistivity as the length changes in
the physics space, it also cued him to “separate it into
small cylinders” and apply the concept of integration.
Then, the basic resistance equation was associated with
the small cylinders, along with the mathematical notion of
differential d[ ] as representing a small amount of quantity.
A new structure emerged from this blend: chopping up
total resistance R and adding up small pieces of resistance
dR. Unlike the other three blends which primarily involved
a one-way mapping, this blend involved a two-way map-
ping among the three input spaces. The solution was
organized based on the blend of the structural elements
from all three input spaces.

E. Summary of the four blends

Our four blends are identified based on our observations
of student work. As shown in Table I, those four blends
involve three input mental spaces as well as different
organizing structures. The organizing structure or frame
describes the way in which students organize the knowl-
edge elements in the blended space. We identified three
input mental spaces involved in students’ construction of
solution. Blends A and B primarily involved a one-way
mapping, in which the organizing structure was recruited
from the mathematical notion space. In blend A, students
had the idea of an integral as adding up quantities; how-
ever, they imported elements from both symbolic and math
notion spaces, without mapping back to the physics space
to justify whether the symbol or equation represented the
appropriate quantity that they wanted to add up. The
emergent structure from this blend is that the mathematical
expression [5[p(x)L/Aldx contains the meaning of the
total resistance as the sum of a varying resistance across
the length over which the resistivity varies. In blend B, the

Description of the four blends.

Blend Organizing frame

Emergent meaning or structure

Representations

Integral as a sum (from math notion
space)

Differential as taking the derivative of
a function (from math notion space)

Structure of basic resistance equation
C and integral as a sum (a blend of
symbolic and math notion spaces)

Structure of basic resistance equation,
integral as a sum, chopping a resistor
(a blend of symbolic, math notion and
physics spaces)

J dR: Chopping up total resistance R and
adding up small pieces of resistance dR

Llp(x)L/A]dx: Total resistance is the sum
of a varying resistance across the length
over which the resistivity varies

Primarily algebraic

J dR: Total resistance is the integral of the
differential resistance—the derivative of a
resistance function

Primarily algebraic

J5 p(x)dx/A: [k p(x) represents adding up
resistivities and dx as small distances being
added up when integrating

Algebraic and narrative

Algebraic, narrative,
pictorial, and heavy
use of gesturing
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student mainly relied on his notion of differential as taking
the derivative of a function and integration as the reverse
of the differentiation action. His solution was based on
mathematical manipulations without making connections
to physical situations. This blend conveys the meaning
that the mathematical expression [dR represents the
total resistance, which is the integral of the differential
resistance—the derivative of a resistance function.
Blends A and B primarily involve algebraic representa-
tions, in which students focus on computation and manipu-
lating mathematical symbols, and seldom connect these
with the underlying physics.

When constructing blend C, Jared blended the structure
of the equation from the symbolic mental space and the
“integral as a summation” idea from the mathematics
notion space. Then the elements in the physics space
were mapped into the blended space and organized under
the blended structure. Jared constructed the mathematical
expression for the total resistance as [& p(x)dx/A,
containing a meaning that [} p(x) represents adding up
resistivities and dx as small distances being added up when
integrating. Following this blend, the students set up an
integral expression which was mathematically correct but
was based on an incorrect physical principle; i.e., the
resistivity at different parts of an object should be added
up. In addition to algebraic representation, Jared also
attempted to develop a story of mathematical symbols;
i.e., dx is small distance and small distances are added
together when integrating. We describe this as the narrative
representation. In blend D, students did not just recruit the
structure from one input mental space; instead, they cre-
ated a new structure based on the blending of structures
from all three input spaces. A new meaning emerges from
this blend—chopping up the object and adding up the
resistance dR of each of the small pieces to find the total
resistance R. Students used multiple representations,
including algebraic, narrative, pictorial presentations, as
well as gesturing while creating this blend.

Overall, blend D is the most productive one among the
four blends that the students created. This blend involves a
much higher level of blending of students’ mathematics
and physics knowledge. In the blended space, students
created a new structure of chopping and adding resistance.
Blend C involves the inappropriate blending of knowledge
in the symbolic space and mathematical notion space.
Jared appeared to map his solution to the physics space
when he explained dx as small distances. He set up an
integral equation which was mathematically equivalent to
the correct answer, but the inherent physical structure was
incorrect. In blend B, the organizing structure was based
on the notion of differential as taking the derivative of a
function. This blend is unproductive for setting up integrals
since the student tended to find the function in an effortless
way—simply substituting the resistivity function into the
basic resistance equation. This blending is based primarily

on a one-way mapping from the symbolic and physics
spaces to the mathematical notion space. Similar to
blend B, blend A also involved a one-way mapping from
the symbolic and physics spaces to the mathematical
notion space. Students had the notion of an integral as
adding up quantities; however, they built up a resistance
function as the quantity being added up through mathe-
matical substitution, which was an inappropriate way of
bending knowledge from the symbolic and physics spaces.
This too was also not a productive way for setting up
integrals in the context of the physics problem at hand.
The reason that we assert that some of these blends, such as
blend A, are unproductive is not because they failed to lead
students to correctly set up the integral. Rather, we cate-
gorize these blends as unproductive blends because in
constructing this blend students created mapping from
the symbolic and physics spaces to the mathematical
notion space without attending to the physical meaning
of the situation.

VI. CONCLUSION AND IMPLICATIONS

In this paper, we have illustrated how the conceptual
blending framework can be used to analyze students’
application of the integration concept in physics problem
solving. From a large set of interview data, we selected
data from five groups of students working on a problem
situation and identified four different kinds of blends that
emerged from the data as students constructed solutions to
the problem.

In blends A and B, students did not relate the mathe-
matical concepts to the specific physical scenario of the
problem. Rather, they mapped their mathematics knowl-
edge to general physics concepts. Both blends involve an
organizing frame which was primarily from the mathe-
matical notion space. The organizing frame of blend A is
the notion of an integral as adding up quantities and the
organizing frame of blend B is the notion of a differential
as taking the derivative of a function. The third type of
blend—blend C—contains an organizing frame predomi-
nantly from the symbolic and math notion space. In the
blended space, Jared constructed the notion of adding
up the resistivities but did not seem to be making any
connection to the physics concepts in order to distinguish
between adding resistivities and adding resistances. Hence,
the student eventually set up an expression which made
sense to him, but the structure was not appropriate in the
physics space. The last type of blend—blend D—contained
an organizing frame based on the integration of knowledge
elements from all three input spaces: the notion of integral
as a sum in the math notion space and the cylindrical
resistor in the physical space were associated with each
other, resulting in chopping of the physical object and
adding the quantity due to each small piece. Thus, the
resistance equation in the symbolic space, the small piece
of cylinder, and the notion of differential as a small
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quantity were blended to find the resistance of each small
cylinder.

Bing and Redish [14] describe two distinct ways (i.e.,
single-scope blend and double-scope blend) in which stu-
dents blended their mathematics and physics knowledge in
the context of problems involving air drag and time travel.
Neither of these problems involved mathematical integra-
tion. Physics problems that involve integration are mathe-
matical dominated problems, and the kinds of blending
are somewhat more complex. We illustrated four different
kinds of blends that students created in one problem
situation—finding the total resistance of a cylindrical re-
sistor or varying resistivity. Transferring knowledge from
calculus to physics is a challenging process for many
introductory students, which is apparent from both our
teaching experience as well as research on students’
work. Analysis of students’ work as they solve integration
problems using this framework shows that the process of
blending is complex and students blend their knowledge in
many different ways. The difficulties that students experi-
ence seem to be not necessarily from a lack of prerequisite
knowledge of mathematics, but rather from inappropriate
blending of the knowledge of mathematics with their
knowledge of physics concepts and the physical scenario
at hand. Students appeared to have the required mathe-
matical knowledge and were able to construct a solution in
a physics context, but many of them were not able to blend
their mathematics and physics knowledge in a productive
way. We found that students who created three of the four
observed blends had the notion of an integral as adding up
quantities; however, they blended their knowledge in three
mental spaces in different ways. One of these observed
blends was a more powerful blend than the other two
blends because it facilitated the combination of mathemati-
cal and physical ideas in a productive way. The description
of students’ work under the cognitive blending framework
might help instructors better understand students’ difficul-
ties and the important features in student solutions.

During the interviews, we intended to have students
solve physics problems in a somewhat natural environment
in which the interviewer did not provide feedback on
students’ work or facilitate their problem solving process.
At times, during the interviews, the interviewer (author
Hu) occasionally asked questions to probe students’ think-
ing, but she was always mindful of trying not to change
the ways in which students constructed their ideas. Under
this environment, we found that the blends that students
constructed involved very little integration of mathematics
and physics knowledge. In other words, students relied
heavily on their mathematical ideas but not their sense of
the physical situations. Though the interviewer tried her
best not to provide guidance on student work, we found
that the interviewer did seem to affect students’ construc-
tion of the blends. For example, a group of students dis-
carded blend A, which they originally constructed, and

shifted to blend B as the interviewer asked them to explain
what dR meant.

The results of this study also suggest that it is possible
to steer students away from one blend to another when
certain resources are provided. The construction of a
blend is a dynamic process in which we observed that
students changed their thinking and created a new blend
when they were reflecting on their work or were asked
questions that prompted them to activate different resour-
ces. For example, one student first constructed a blend
similar to blend A and later switched to blend D as he saw
a cylinder being sliced up drawn by one of the other
students in his group.

Modeling student responses with the conceptual
blending framework allows us to conduct a fine-grained
analysis of student reasoning in our problem scenario.
Here, we consider three mental spaces: symbol, math
notion, and physics. This classification of mental spaces
is based on characteristics of our problems as well as
students’ responses. We do not claim that this is the only
way to classify students’ mental spaces’ however, it
does help us to create a representation to describe
student reasoning.

We analyzed students’ application of calculus concepts
in physics problems from the perspective of conceptual
blending. The conceptual blending framework can be
used to understand the creation of resources. In other words,
the development of a resource may be described as a
blend. A blend once constructed can become a resource
for the student to be used in the future. For example, in
blend A, students constructed a mathematical expression
J5[p(x)L/A]dx, which contains a meaning that the total
resistance is the sum of a varying resistance across the
length over which the resistivity varies. It can also be
described as a mathematical resource (i.e., a symbolic

form) in which the mathematical structure [ H[]d[] pro-

vides a way for students to associate mathematical symbols
with their intuitive mathematical knowledge (i.e., concep-
tual schema). Jones [9] described the conceptual schema as
“add up then multiply”’—adding up one and then multi-
plying the resultant summation with the quantity repre-
sented by the differential. From the resources perspective,
students applied the ““add up then multiply” resource in this
physics context. Instead of assuming that this resource
preexists in students’ minds and becomes activated in this
context, we describe how this resource is constructed based
on more generic resources such as the notion of an integral
as adding up quantities. The power of the conceptual blend-
ing framework is that it provides a language for describing
the process by which learners activate generic resources to
create new resources to solve the problem at hand.
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