Design, Development and Operation of UAVs for Remote Sensing

Mark Ewing, Director
Flight Research Laboratory
University of Kansas
Why fly UAVs?

• Fly where human flight is “too dangerous”
• Fly at a reduced expense w.r.t. crewed flight
• Fly more stealthily than crewed flight

What can you do with UAVs?

• Remote sensing—military recon, crop/soil health, natural disaster damage, environmental change, spying (government, industry, individual)
• Airborne communications hub
• Delivery—weapons, fertilizers, fire suppressants, medical supplies, mail, NetFlix
KU UAS program: Core Competencies

• Mission-driven system development
 – Pick the right UAV for the mission
 – Design/Build custom airframe/avionics as needed

• UAV flight control
 – Upset-tolerant control algorithms
 – Obstacle/air traffic avoidance
 • Vision & Radar data integration
 • Cognitive algorithms for avoidance
 – Cooperative flight

• UAV Avionics development
KU UAS Program: Facilities & UAVs

• Garrison Flight Research Center
 ➢ 2500 sq ft fabrication space
 ➢ Avionics development lab
 ➢ Structural load frame
 ➢ Mal Harned Propulsion Test Lab
 ➢ *AST 4000 fixed base simulator*

• Structural Composites Lab
 ➢ Carbon fiber airframes
 ➢ Glass fiber radar apertures

• RF Anechoic Chamber
 ➢ Fits UAVs to 20-ft wingspan

• Meridian (NSF)
 ➢ Unique design
 ➢ Ice-sounding platform
 ➢ Multiple arctic deployments
 ➢ Custom ground station

• G1X
 ➢ Modified kit UAV: extended wing
 ➢ Ice-sounding radar
 ➢ Dual-frequency radar
 ➢ En route to Antarctica

• MSTs
 ➢ Meridian surrogate trainers
Meridian UAS on final approach
NEEM Camp, Greenland ice sheet
Meridian UAS Overview

weights
- takeoff weight: 1082 lb
- empty weight: 753 lb
- payload weight: 165 lb
- fuel weight: 164 lb

performance
- cruise speed: 110 kts
- range: 600 nm
- endurance: 12 hrs
- L/D (cruise): 12.5

powerplant
- engine: TAE Centurion 2.0
- power: 160 hp

For more information, contact:
Rick Hale, PhD, Associate Professor, Aerospace Engineering
1530 W 15th St., 2120 Learned Hall, Lawrence, KS 66045
785-864-2949, rhale@ku.edu, www.cresis.ku.edu
The desired, “mission-driven” spot in design space

Design Space sweet spot

Crewed Aircraft

<table>
<thead>
<tr>
<th>Number</th>
<th>Manufacturer</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aerosonde</td>
<td>MK3</td>
</tr>
<tr>
<td>2</td>
<td>Meteor</td>
<td>Mirach 26</td>
</tr>
<tr>
<td>3</td>
<td>Aurora</td>
<td>Perseus B</td>
</tr>
<tr>
<td>4</td>
<td>General Atomics</td>
<td>Predator</td>
</tr>
<tr>
<td>5</td>
<td>IAI</td>
<td>Heron</td>
</tr>
<tr>
<td>6</td>
<td>General Atomics</td>
<td>Gnat 750</td>
</tr>
<tr>
<td>7</td>
<td>Aerospatiale</td>
<td>Sarohale</td>
</tr>
<tr>
<td>8</td>
<td>Northrop Grumman</td>
<td>Global Hawk</td>
</tr>
<tr>
<td>9</td>
<td>Kawada</td>
<td>Robocopter</td>
</tr>
<tr>
<td>10</td>
<td>Aurora</td>
<td>Theseus</td>
</tr>
<tr>
<td>11</td>
<td>DeHavilland</td>
<td>Twin Otter</td>
</tr>
<tr>
<td>12</td>
<td>Lockheed</td>
<td>P-3 Orion</td>
</tr>
<tr>
<td>13</td>
<td>Lockheed</td>
<td>C130</td>
</tr>
</tbody>
</table>
Meridian UAV Ice-sounding: NEEM Drill Site, Greenland

Radar Returns (time domain)

Ice surface
Internal layers
Ice-bed echo

Meridian at the NEEM Camp

Echo-gram thru Greenland ice sheet:
note the bedrock at ~2.5 km down

Internal layers
Ice-bed returns
Trace number
Meridian Ground Station and Health Monitoring System GUIs
Meridian Training System (33% scale YAK 54) on final approach at Pegasus Field, Antarctica
G1X UAS Overview

weights
- takeoff weight: 85 lb
- empty weight: 65 lb
- payload weight: 10 lb
- fuel weight: 10 lb

performance
- cruise speed: 70 kts
- range: 57 nm
- endurance: 1 hr
- L/D (cruise): 13

powerplant
- engine: DA 100
- power: 9.8 hp

G1X during installation of 14MHZ and 35MHz sounding antennas in the Structural Composites Laboratory

For more information, contact:
Shawn Keshmiri, PhD, Associate Professor, Aerospace Engineering
1530 W 15th St., 2120 Learned Hall, Lawrence, KS 66045
785-864-2974, keshmiri@ku.edu
KU UAS Program: People

• Faculty
 – Shawn Keshmiri—control law development
 – Rick Hale—airframe & radar aperture design/build
 – Dongkyu Choi—artificial intelligence, situational awareness
 – Haiyang Chao—cooperative flight, vision systems
 – Chris Allen—radar for obstacle/traffic identification
 – Mark Ewing—avionics development

• Staff
 – Andy Pritchard—A&P mechanic
 – Wes Ellison—electronics technician, avionics development
 – George Blake—electronics technician, comm systems
KU UAS Program: Partners

- NSF/Center for Remote Sensing of Ice Sheets (CReSIS)
 - 10-year, $20M grant
 - Underwrote Meridian, G1X and AFS autopilot development
- NASA Langley
 - Aircraft/UAV aerodynamic upset conditions identification
- NASA Ames
 - UAV dynamics & control
 - Cooperative/formation flight
- DARPA
 - Cognitive algorithms for control
- Ft Riley
 - Access to Ft. Riley restricted airspace
- Kansas State University
 - Access to Smoky Hills restricted airspace
KU UAS Program: Current Priorities

• Making flight in the NAS safer
 – Non-linear control laws for low, slow UAVs
 • Upset-proof
 • Precision trajectories
 – See/sense/avoid technology
 • Integration of vision and radar data
 • Cognitive architectures to insure avoidance
 – Spin-off technology to GA community (workload reduction)

• Remote sensing... *in Kansas if airspace is cleared*
 – Precision flight line technology—spinoff from ice-sounding
 – Robust systems meeting emerging certification standards
 – Formation flight, creating synthetic apertures

• Re-purposing existing UASs to new partners/customers