DISSOCIATION DYNAMICS OF DIATOMIC MOLECULES IN INTENSE FIELDS

by

MAIA MAGRAKVELIDZE

B.S., Ivane Javakhishvili Tbilisi State University, Georgia, 2003
M.S., Ivane Javakhishvili Tbilisi State University, Georgia, 2005
M.S., Kansas State University, Manhattan, Kansas, 2009

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Physics
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2013
Abstract

We study the dynamics of diatomic molecules (dimers) in intense IR and XUV laser fields theoretically and compare the results with measured data in collaboration with different experimental groups worldwide. The first three chapters of the thesis cover the introduction and the background on solving time-independent and time-dependent Schrödinger equation. The numerical results in this thesis are presented in four chapters, three of which are focused on diatomic molecules in IR fields. The last one concentrates on diatomic molecules in XUV pulses.

The study of nuclear dynamics of H$_2$ or D$_2$ molecules in IR pulses is given in Chapter 4. First, we investigate the optimal laser parameters for observing field-induced bond softening and bond hardening in D$_2^+$. Next, the nuclear dynamics of H$_2^+$ molecular ions in intense laser fields are investigated by analyzing their fragment kinetic-energy release (KER) spectra as a function of the pump-probe delay $\tau$. Lastly, the electron localization is studied for long circularly polarized laser pulses.

Chapter 5 covers the dissociation dynamics of O$_2^+$ in an IR laser field. The fragment KER spectra are analyzed as a function of the pump-probe delay $\tau$. Within the Born-Oppenheimer approximation, we calculate ab-initio adiabatic potential-energy curves and their electric dipole couplings, using the quantum chemistry code GAMESS.

In Chapter 6, the dissociation dynamics of the noble gas dimer ions He$_2^+$, Ne$_2^+$, Ar$_2^+$, Kr$_2^+$, and Xe$_2^+$ is investigated in ultrashort pump and probe laser pulses of different wavelengths. We observe a striking “delay gap” in the pump-probe-delay-dependent KER spectrum only if the probe-pulse wavelength exceeds the pump-pulse wavelength. Comparing pump-probe-pulse-delay dependent KER spectra for different noble gas dimer cations, we quantitatively discuss quantum-mechanical versus classical aspects of the nuclear vibrational motion as a function of the nuclear mass.

Chapter 7 focuses on diatomic molecules in XUV laser pulses. We trace the femtosecond nuclear-wave-packet dynamics in ionic states of oxygen and nitrogen diatomic molecules by comparing measured kinetic-energy-release spectra with classical and quantum-mechanical simulations. Experiments were done at the free-electron laser in Hamburg (FLASH) using 38-eV XUV-pump–XUV-probe.

The summary and outlook of the work is discussed in Chapter 8.
DISSOCIATION DYNAMICS OF DIATOMIC MOLECULES IN INTENSE FIELDS

by

MAIA MAGRAKVELIDZE

B.S., Ivane Javakhishvili Tbilisi State University, Georgia, 2003
M.S., Ivane Javakhishvili Tbilisi State University, Georgia, 2005
M.S., Kansas State University, Manhattan, Kansas, 2009

A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Physics
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2013

Approved by:

Major Professor
Uwe Thumm
Copyright
MAIA MAGRAKVELIDZE
2013
Abstract

We study the dynamics of diatomic molecules (dimers) in intense IR and XUV laser fields theoretically and compare the results with measured data in collaboration with different experimental groups worldwide. The first three chapters of the thesis cover the introduction and the background on solving the time-independent and time-dependent Schrödinger equations. The numerical results in this thesis are presented in four chapters, three of which are focused on diatomic molecules in IR fields. The last one concentrates on diatomic molecules in XUV pulses.

The study of nuclear dynamics of H₂ or D₂ molecules in IR pulses is given in Chapter 4. First, we investigate the optimal laser parameters for observing field-induced bond softening and bond hardening in D₂⁺. Next, the nuclear dynamics of H₂⁺ molecular ions in intense laser fields are investigated by analyzing their fragment kinetic-energy release (KER) spectra as a function of the pump-probe delay \( \tau \). Lastly, the electron localization is studied for long circularly polarized laser pulses.

Chapter 5 covers the dissociation dynamics of O₂⁺ in an IR laser field. The fragment KER spectra are analyzed as a function of the pump-probe delay \( \tau \). Within the Born-Oppenheimer approximation, we calculate \textit{ab-initio} adiabatic potential-energy curves and their electric dipole couplings, using the quantum chemistry code GAMESS.

In Chapter 6, the dissociation dynamics of the noble gas dimer ions He₂⁺, Ne₂⁺, Ar₂⁺, Kr₂⁺, and Xe₂⁺ is investigated in ultrashort pump and probe laser pulses of different wavelengths. We observe a striking “delay gap” in the pump-probe-delay-dependent KER spectrum only if the probe-pulse wavelength exceeds the pump-pulse wavelength. Comparing pump-probe-pulse-delay dependent KER spectra for different noble gas dimer cations, we quantitatively discuss quantum-mechanical versus classical aspects of the nuclear vibrational motion as a function of the nuclear mass.

Chapter 7 focuses on diatomic molecules in XUV laser pulses. We trace the femtosecond nuclear-wave-packet dynamics in ionic states of oxygen and nitrogen diatomic molecules by comparing measured kinetic-energy-release spectra with classical and quantum-mechanical simulations. Experiments were done at the free-electron laser in Hamburg (FLASH) using 38-eV XUV-pump–XUV-probe.

The summary and outlook of the work is discussed in Chapter 8.
# Table of Contents

List of Figures ................................................................................................................................. x
List of Tables ............................................................................................................................... xvi
Acknowledgements ..................................................................................................................... xvii
Dedication .................................................................................................................................. xviii
Preface .......................................................................................................................................... xix
Chapter 1 - INTRODUCTION ....................................................................................................... 1
Chapter 2 - INTRODUCTION TO MOLECULAR ORBITAL THEORY ................................... 4
  2.1 Born-Oppenheimer approximation ....................................................................................... 4
  2.2. Hartree-Fock method and SCF procedure ........................................................................... 6
  2.3. Basis sets ............................................................................................................................ 10
    2.3.1 Slater type orbitals ....................................................................................................... 10
    2.3.2 Gaussian type orbitals .................................................................................................. 11
    2.3.3 Contracted Gaussian functions..................................................................................... 12
  2.4. Configuration interaction ................................................................................................... 12
  2.5. Multiconfiguration self-consistent field (MCSCF) method............................................... 13
Chapter 3 - THEORY AND NUMERICAL METHODS............................................................. 15
  3.1 Time-dependent Schrödinger equation ............................................................................... 15
    3.1.1. Crank-Nicholson split operator method (C-N method) .............................................. 15
    3.1.2 FFT method .................................................................................................................. 17
  3.2 Imaginary time propagation ................................................................................................ 18
  3.3 Absorbers ............................................................................................................................ 18
  3.4 Coupled channel propagation ............................................................................................. 19
    3.4.1 Two - state model for the nuclear wave packet dynamics in molecular ions .............. 20
    3.4.2. Quantum beat spectra (R-dependent power spectra) .................................................. 22
  3.5 Morse oscillator .................................................................................................................. 23
  3.6 Quantum revivals ................................................................................................................ 24
  3.7 KER spectra calculations (FT method)............................................................................... 25
  3.8 Virtual detector ................................................................................................................... 26
  3.9 Dipole selection rules .......................................................................................................... 27
Chapter 4 - HYDROGEN MOLECULES IN IR LASER FIELDS.............................................. 29
4.1 Introduction ......................................................................................................................... 29

4.2 Dependence of bond softening and bond hardening on laser intensity, wavelength, and pulse duration for D₂⁺ ........................................................................................................ 30

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1 Intensity dependence</td>
<td>32</td>
</tr>
<tr>
<td>4.2.2 Wavelength dependence</td>
<td>34</td>
</tr>
<tr>
<td>4.2.3 Pulse-length dependence</td>
<td>37</td>
</tr>
<tr>
<td>4.2.4 Conclusion</td>
<td>38</td>
</tr>
</tbody>
</table>

4.3 Dissociation dynamics of D₂⁺ in strong laser fields......................... 39

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1 Potential curve calculations</td>
<td>39</td>
</tr>
<tr>
<td>4.3.2 Experiment and theoretical model</td>
<td>40</td>
</tr>
<tr>
<td>4.3.3 Results</td>
<td>40</td>
</tr>
<tr>
<td>4.3.4 Conclusions</td>
<td>41</td>
</tr>
</tbody>
</table>

4.4 Electron localization ............................................................................ 41

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1 Experiment</td>
<td>43</td>
</tr>
<tr>
<td>4.4.2 Methods</td>
<td>45</td>
</tr>
<tr>
<td>4.4.2.1 Semiclassical model</td>
<td>45</td>
</tr>
<tr>
<td>4.4.2.2 Quantum model</td>
<td>46</td>
</tr>
<tr>
<td>4.4.3 Results</td>
<td>48</td>
</tr>
<tr>
<td>4.4.4 Summary</td>
<td>49</td>
</tr>
</tbody>
</table>

Chapter 5 - OXYGEN MOLECULES IN IR LASER FIELDS ....................................... 50

5.1 Introduction ......................................................................................................... 50

5.2 Potential curve and dipole coupling calculations .................................... 51

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1 Gaussian basis set</td>
<td>52</td>
</tr>
<tr>
<td>5.2.2 Configuration state function</td>
<td>52</td>
</tr>
<tr>
<td>5.2.3 Geometry optimization</td>
<td>54</td>
</tr>
<tr>
<td>5.2.4 Results</td>
<td>54</td>
</tr>
</tbody>
</table>

5.3 Nuclear dynamics ......................................................................................... 56

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.1 Free nuclear motion in a single electronic state (single-cation-curve calculations)</td>
<td>56</td>
</tr>
<tr>
<td>5.3.2 Nuclear dynamics on dipole-coupled electronic states</td>
<td>59</td>
</tr>
<tr>
<td>5.3.3 Comparison with the “virtual detector method” for simulating KER spectra</td>
<td>62</td>
</tr>
<tr>
<td>5.3.4 Influence of a probe-pulse pedestal</td>
<td>63</td>
</tr>
</tbody>
</table>
Appendix C - Single-curve-calculation code ................................................................. 123
Appendix D - Two-state code ......................................................................................... 150
Appendix E - GAMESS input-output ........................................................................... 164
Appendix F - Atomic units and useful formulas ......................................................... 185
Appendix G - Molecular orbital diagrams for diatomic molecules ............................. 187
My publications related to the thesis work ................................................................. 188
List of Figures

Figure 2.1  The schematic of the SCF procedure................................................................. 9

Figure 2.2  Schematic of a systematic approach to the exact solution of the time-independent Schrödinger Equation ................................................................. 13

Figure 3.1  Morse potential for $D_e=6$, $\alpha=1$ and $R_0=1$. ........................................ 23

Figure 3.2  Probability density as a function of internuclear distance $R$ and propagation time for $D_2$. Black arrows indicate the oscillation period at the beginning of the propagation. Full and partial revival times are indicated with blue arrows.................................................... 24

Figure 4.1  Schematics for the pump-probe pulse sequence. The main pulses (spikes) are shown in black and the pedestal (Gaussian-shape) of the pulse in red. In our simulations we assume that CE is instantaneous (ionization happens in the main peak of the probe pulse)............. 30

Figure 4.2  Laser-dressed adiabatic molecular potential curves for $D_2^+$ and a 500 nm CW laser field with an intensity of $5\times10^{11}$ (solid red lines) and $10^{13}$ W/cm$^2$ (dashed-dotted blue lines). Thin black dashed lines show field-free BO potential curves .......................................................... 31

Figure 4.3  R-dependent power spectra for a logarithmic color scale (a)-(c) and field-dressed potential curves (res lines) (d)-(f) of $D_2^+$ for different pedestal intensities. Graphs are plotted for 200 nm pedestal laser pulses with intensities of $0.1\times10^{14}$ W/cm$^2$ [(a) and (d)], $0.5\times10^{14}$ W/cm$^2$ [(b) and (e)], and $1\times10^{14}$ W/cm$^2$ [(c) and (f)]. ......................................................... 33

Figure 4.4  Same as Fig. 4.3, but for 800 nm pedestal laser pulses ........................................ 34

Figure 4.5  The power spectra (a)-(e) for the different laser wavelengths of 200 nm [(a) and (f)], 500 nm [(b) and (g)], 800 nm [(c) and (h)], 1024 nm [(d) and (i)], and 1600 nm [(e) and (j)]. (Same logarithmic color scale as in Fig. 4.3) at fixed $10^{13}$ W/cm$^2$ peak intensity pedestal laser pulses. Graphs (f)-(j) are field-dressed potential curves (red lines) for corresponding intensities. Field-free potentials are plotted as thin black lines .............. 36

Figure 4.6  Power spectra as a function of QB frequency and internuclear distance in log scale. (Same color scale as in Fig. 4.4) for fixed peak intensity of $10^{14}$ W/cm$^2$. The power spectra are plotted for different (200, 800, 1600 nm) wavelengths and pedestal lengths (FWHM 50, 100, and 200 fs). .................................................................................................................. 37

Figure 4.7  (a) Potential curves of $H_2$ and $H_2^+$ calculated using MCSCF/cc-pVTZ method with GAMESS. (b) Dipole couplings. For $R>4$ the dipole couplings are approaching R/2 limit. .......................................................................................................................... 39
Figure 4.8 (a) Measured [Rudenko-07] and (b) calculated proton energy for the process of dissociation of $D_2^+ \rightarrow D^+ + D$ (logarithmic color scale). The pulse parameters are 10 fs width and $3 \times 10^{14}$ W/cm$^2$ intensity. .......................................................... 41

Figure 4.9 Schematic of an ultrafast stopwatch. The times $t_{\text{start}}$ and $t_{\text{stop}}$ indicate the start and stop times of the stopwatch that are retrieved by coincident detection of the emitted electron and ion from a breaking chemical bond of $H_2^+$. Electrons are indicated as blue “bubbles” and nuclei are shown as red dots. In the bottom panel, the laser field that drives an electron up and down during the breaking of the chemical bond is shown as a red curve with start and stop times indicated by lines. (Figure by Jian Wu with POV-Ray for Windows). .............. 42

Figure 4.10 (a) Schematics of coincidence detection of the electron and ion for a circularly polarized laser field (red spiral). At time $t_{\text{pump}}$ the electron is emitted due to the pump pulse and detected at one of the detectors (green circle) with angle $\phi_e$, and the ions are detected coincidently with angle $\phi_i$ on the other detector (orange circle) at probe time $t_{\text{probe}}$. (b) Dissociation dynamics of the singly ionized $H_2^+$. The inset shows the calculated forced left-and-right motion of the nuclear wave packet by the laser field (red curve) which finally localizes at one of the nuclei during the dissociation of $H_2^+$ with increased internuclear distance. (Figures by Jian Wu). ........................................................................................................... 43

Figure 4.11 Localization of the electron in the dissociation process of singly ionized $H_2$. (a) Semi-classically calculated asymmetry parameter $\beta_c$ as a function of the laser phase $\omega_0 t_i$ and $H^+$ kinetic energy. (b) Quantum-mechanically calculated asymmetry parameter $\beta_q$. (c) Measured electron localization $\beta_m$ in dissociative single ionization of $H_2$ as a function of the emission angle $\phi_e^\text{mol}$ of the correlated electron in the molecular frame and the $H^+$ kinetic energy. ........................................................................................................... 48

Figure 5.1 Calculated potential energies for the $O_2^+$ molecule using the MCSCF/cc-pVTZ method. The zero of the energy axis is taken as the $\nu = 0$ level of the $X^3\Sigma_g^+$ ground state of $O_2$. ................................................................................................................................. 55

Figure 5.2 (a) Calculated potential energies and (b) dipole coupling elements from [Marian-82] using the MRD-CI/DZD method in comparison with our MCSCF/cc-pVTZ application. Blue dots in (a) correspond to the FSOCI -cc-pVTZ method ................................................. 55

Figure 5.3 Schematics for the mapping of the nuclear dynamics in oxygen molecular ions. The pump-laser pulse launches a nuclear wave packet onto the $O_2^+$ potential curves ($a^4\Pi_u$ and $f$
by ionizing $O_2$. After a variable time delay, an intense short probe pulse can cause the dissociation of the molecular ion through one or net two photon processes.

Figure 5.4 Single-curve calculations for the $A^2Π_u$ (a,b) and $a^4Π_u$ (c,d) states of $O_2^+$. Nuclear probability densities (a,c) and corresponding power spectra (b,d).

Figure 5.5 (a) Probability density $ρ(R; t)$ (Eq.5.4) for $O_2^+$ at fixed pump-probe delay $τ = 10$ fs for the $a^4Π_u - f^4Π_g$ two-state calculation. The yellow dashed line corresponds to $R_1 = 4$. The vibrational wave packet is considered purely dissociative and is propagated for 800 fs after the probe pulse. (b) Probability density as a function of internuclear distance $R$ at $t = 800$ fs (logarithmic scale).

Figure 5.6 Calculated KER spectra for the dipole-coupled states $a^4Π_u$ and $f^4Π_g$ as a function of pump-probe delay for (a) $R_1 = 3$, (b) 4, (c) 4.5, and (d) 5 for a 10 fs, $3×10^{14}$ W/cm$^2$ probe laser pulse.

Figure 5.7 Partitioning of the numerical grid into a propagation, virtual detector (VD), and absorption interval. The VD covers the interval $[R_{VD}^{min}, R_{VD}^{max}]$.

Figure 5.8 KER for dipole-coupled $a^4Π_u$ and $f^4Π_g$ states as a function of the pump-probe delay for calculations using the VD method [Marian-82] and a 10 fs, $3×10^{14}$ W/cm$^2$ probe laser pulse.

Figure 5.9 KER as a function of pump-probe delay for the calculations using the FT method described in Sec. 5.3.2. for $R_1 = 4$. The probe pulse includes the Gaussian pedestal. The parameters used for the main pulse were 10 fs, with intensity $3×10^{14}$ W/cm$^2$ and for the pedestal 100 fs with the intensity $5×10^{11}$ W/cm$^2$ (propagated for 800 fs after the end of FWHM of the probe).

Figure 5.10 Calculated (a,b) and measured (c,d) [De-11] KER spectra for $O_2^+$ as a function of pump-probe delay (a,c) and frequency $f$ (b,d). Calculated KER spectra include dipole-coupling of the $a^4Π_u$ and $f^4Π_g$ states by the 10 fs probe laser pulse with $3×10^{14}$ W/cm$^2$ peak intensity and a 100 fs $5×10^{11}$ W/cm$^2$ Gaussian pedestal. The power spectra (b,d) are obtained for a sampling time of 2 ps.

Figure 5.11 (a) Franck-Condon amplitudes $|\langle a|_2\rangle|^2$ for the vertical ionization from the ground state of $O_2$ to the $a^4Π_u$ state of $O_2^+$. (b) Delay-integrated focal-volume averaged KER as a function of the pump-probe delay, with main pulse length 10 fs, Gaussian pedestal length 100 fs, and for $R_1 = 4$. The focal-volume average is performed for peak intensities of the
probe pulse between $10^{13}$ W/cm$^2$ and $4\times10^{14}$ W/cm$^2$, with a fixed ratio of the peak intensities of the main pulse and pedestal of 0.01. (c) Delay-dependent focal-volume-averaged KER spectrum.

Figure 6.1 Schematics of nuclear wave packet motion on generic $N_2$ and $N_2^+$ states. Pont A indicates the center of the Franck-Condon region. Points B-E and C-D correspond to the one photon transitions due to the laser pulses ($\omega_1 = 1400$ or 700 nm and $\omega_2 = 800$ or 500 nm in our calculations).

Figure 6.2 Potential energy curves of $N_2$ and $N_2^+$ dimers, calculated without including spin-orbit coupling. (a) Ground state of $He_2$ (according to [Havermier-10, Gdanitz-00]), and the two lowest states of $He_2^+$ (from [Gadea-96]). (b) Ground state of $Ne_2$ (from [Wüest-03]), and the two lowest states of $Ne_2^+$ (from [Cohen-74, Ha-03]). (c) Ground state of $Ar_2$ (from [Ansari-08]), and the two lowest states of $Ar_2^+$ (from [Ansari-08, Ha-03, Stevens-77]). (d) Ground state of $Kr_2$ (from [Slavıček-03]), and the two lowest states of $Kr_2^+$ (from [Kalus-03]). (e) Ground state of $Xe_2$ (from [Slavıček-03]), and the two lowest states of $Xe_2^+$ (from [Paidarová-01]).

Figure 6.3 Potential energy curves of $N_2$ and $N_2^+$ dimers, calculated including spin-orbit coupling. (a) Ground state of $Ne_2$ (from [Wüest-03]), and the two lowest states of $Ne_2^+$ (from [Cohen-74]). (b) Ground state of $Ar_2$ (from [Ansari-08]), and the two lowest states of $Ar_2^+$ (from [Ha-03]). (c) Ground state of $Kr_2$ (from [Slavıček-03]), and the two lowest states of $Kr_2^+$ (from [Kalus-03]). (d) Ground state of $Xe_2$ (from [Slavıček-03]), and the two lowest states of $Xe_2^+$ (from [Paidarová-01]).

Figure 6.4 Probability density of the nuclear wave packet moving on the $^2\Sigma_u^+$ state of $Ar_2^+$ for a pump-probe (800 -1400 nm) delay of 150 fs and laser intensity $10^{14}$ W/cm$^2$. The dashed red line corresponds to the $R_1=10$ cut. The 500 fs propagation time begins after the end of the FWHM of the probe pulse.

Figure 6.5 Probability density of a freely propagated wavefunction on an $Ar_2^+$ potential curve ($I(1/2)_u$). The solid blue line corresponds to the expectation value of the internuclear distance $<R>$. 

Figure 6.6 (a) Measured KER spectrum for $Ar^+$ as a function of the pump-probe time delay for 60 fs laser pulses with a peak intensity of $10^{14}$ W/cm$^2$. The orange and yellow curves are partial fragment yields obtained by integrating the spectrum in (a) over the KER ranges.
from 0.8 to 1.0 eV and 0.35 to 0.4 eV, respectively. (b) Corresponding calculated KER spectrum.

Figure 6.7 Probability density of the nuclear wave packet as a function of the internuclear distance \( R \) and scaled propagation time for \( I(1/2)_u \) states of \( \text{He}_2^+ \) (a), \( \text{Ne}_2^+ \) (b), \( \text{Ar}_2^+ \) (c), \( \text{Kr}_2^+ \) (d) and \( \text{Xe}_2^+ \) (e) dimers. The superimposed blue curve shows the expectation value \( <R> \).

Figure 6.8 Position variance \( (\Delta R)^2 \), momentum variance \( (\Delta P)^2 \), and uncertainty product \( \Delta R \Delta P \) as a function of time scaled with respective revival times for \( \text{Ne}_2^+ \), \( \text{Ar}_2^+ \), \( \text{Kr}_2^+ \), and \( \text{Xe}_2^+ \) noble gas dimers in the \( I(1/2)_u \) state. Due to the absence of a clear wavefunction revival in our \( \text{He}_2^+ \) propagation calculation (\( 2\Sigma^+_u \) state), we scale the time in the first row by the approximate revival time 525 fs.

Figure 6.9 KER spectra as a function of pump-probe delay for \( \text{He}_2^+ \), \( \text{Ne}_2^+ \), \( \text{Ar}_2^+ \), \( \text{Kr}_2^+ \), and \( \text{Xe}_2^+ \) states with no spin-orbit coupling, and 800 - 1400 nm pump-probe pulses with 80 fs length and \( 10^{14} \) W/cm\(^2\) intensity.

Figure 6.10 (a) Same as Fig. 6.8(a). (b)-(e) KER spectra for states including SO coupling of \( \text{Ne}_2^+ - \text{Xe}_2 \) calculated with 800 - 1400 nm pump-probe wavelengths.

Figure 6.11 KER spectra as a function of pump-probe delay for \( \text{Kr}_2^+ \) and \( \text{Xe}_2^+ \) states with spin-orbit coupling, and 500-700nm pump-probe pulses with 80 fs length and \( 10^{14} \) W/cm\(^2\) intensity.

Figure 7.1. Adiabatic electronic states for (a) neutral \( \text{O}_2 \) and the \( \text{O}_2^+ \) and (b) \( \text{O}_2^{++} \) molecular ions adapted from [Lundqvist-96-1, Marian-82, Steinfeld-05]. Gerade states are indicated as dashed lines and ungerade states as solid lines. The repulsive \( 1/R \) Coulomb potential, shifted to match the 39.0 eV dissociation limit, is shown as a dotted line. Dissociation limits are indicated to the right of the potential curves.

Figure 7.2 Measured KER spectra as a function of the pump-probe delay, \( \tau \), (same logarithmic color/gray scale for the fragment yield in all plots) compared with the classically calculated KER curves, for different break-up channels: (a) \( \text{O}^+ + \text{O}^+ \), (b) \( \text{O}^{2+} + \text{O}^+ \), and (c) \( \text{O}^{2+} + \text{O}^{2+} \). The delay-integrated KER spectra are shown on the left. The classical calculations were done using the dissociative \( f^4\Pi_u \), \( c^4\Sigma_u^- \), and \( ^4\Pi_u \) and bound \( a^4\Pi_u \) states of \( \text{O}_2^+ \) and dissociative \( A^3\Sigma_u^+ \) and the bound \( 1^1\Delta_u \) states of \( \text{O}_2^{2+} \).
Figure 7.3 (a) Measured KER spectra as a function of pump-probe delay, \( \tau \), for the \( \text{O}_2 \to \text{O}^+ + \text{O}^+ \) break-up channel and (d, g) corresponding quantum mechanical calculations. (b) Measured KER spectra for the \( \text{O}_2 \to \text{O}^{2+} + \text{O}^+ \) channel and (e, h) corresponding quantum mechanical calculations. (c) Measured KER spectra for the \( \text{O}_2 \to \text{O}^{2+} + \text{O}^{2+} \) break-up channel and (f, i) corresponding quantum mechanical calculations (same logarithmic color/grayscale scales for the fragment yield within each column). The dissociation bands are marked as D (see text). The measured KER spectra are taken from Fig. 7.2 for positive delays and shown on a slightly different color/grey scale, as indicated. The inset in panel (i) shows the calculated KER for the dissociative intermediate state \( \text{O}_2^{2+}(A^3 \Sigma_u^+) \).

Figure 7.4 Adiabatic electronic states for (a) neutral \( \text{N}_2 \) and the \( \text{N}_2^+ \) and (b) \( \text{N}_2^{++} \) molecular ions adapted from [Aoto-06, Marian-82, Lundqvist-96-2]. Gerade states are indicated as dashed lines and ungerade states as solid lines. The repulsive \( 1/R \) Coulomb potential, shifted to match the 38.9 eV dissociation limit, is shown as a dotted line. Dissociation limits are indicated to the right of the potential curves.

Figure 7.5 Measured KER spectra as a function of pump-probe delay, \( \tau \), (same logarithmic color/grayscale scale for the fragment yield in all plots) compared with the classically calculated KER curves, \( K(\tau) \), for different break-up channels (a) \( \text{N}^++\text{N}^+ \), (b) \( \text{N}_2^{2+} + \text{N}^+ \), and (c) \( \text{N}^{2+} + \text{N}^{2+} \). The delay-integrated KER spectra are shown on the left. The classical calculations were done for the dissociative \( 2^2 \Sigma_u, 2^2 \Pi_u, 3^2 \Sigma_u, 4^2 \Pi_u, 4^2 \Sigma_u \) and \( 5^2 \Pi_u \) and the bound \( B^2 \Sigma_u^+ \) states of \( \text{N}_2^+ \) and the dissociative \( a^3 \Pi_u \) and bound \( D^3 \Sigma_u^+ \) states of \( \text{N}_2^{2+} \).

Figure 7.6 (a) Measured KER spectra as a function of pump-probe delay, \( \tau \), for the \( \text{N}_2 \to \text{N}^+ + \text{N}^+ \) break-up channel and (d, g) corresponding quantum mechanical calculations. (b) Measured KER spectra for the \( \text{N}_2 \to \text{N}^{2+} + \text{N}^+ \) channel and (e, h) corresponding quantum mechanical calculations. (c) Measured KER spectra for the \( \text{N}_2 \to \text{N}^{2+} + \text{N}^{2+} \) break-up channel and (f, i) corresponding quantum mechanical calculations (same logarithmic color/grayscale scales for the fragment yield within each column). The measured KER spectra are taken from Fig. 7.5 for positive delays and shown on a different color/grey scale, as indicated.

Figure 7 “Batmaker” compiler display.

Figure 8 Choosing input files already generated.

Figure 9 Choosing the name and place for outputs and .bat file.

Figure 10 Molecular orbital diagram for \( \text{N}_2 \) and \( \text{O}_2 \) molecules.
List of Tables

Table 5.1. The electronic configurations of the calculated states of O$_2^+$ ............................. 53

Table 5.2 Comparison of calculated and measured revival times and QB frequencies for
electronic states of O$_2^+$ .......................................................... 59

Table 6.1 Expected KERS for electronic states of Ar$_2^+$ with and without SO coupling .......... 75

Table 6.2 Revival times and wave packet oscillation period for I(1/2)$_u$ and $^2\Sigma_u^+$ states of Ng$_2^+$
dimers, and variance $(\Delta R)^2$ calculated at the oscillation period $T_{osc}$ ....................... 77

Table 6.3 Selected properties of noble gas dimers (Ng$_2$) and their cations (Ng$_2^+$). Column 2 –
reduced mass, 3 – equilibrium distance $R_0$(Ng$_2$) of the ground state of neutral dimer, 4 –
equilibrium distance of the dimer cation $R_0$(Ng$_2^+$) without SO coupling, 5 – dissociation
energy of the neutral dimer ground state $D_e$(Ng$_2$), 6 – dimer cation dissociation energy in
the ground state $D_e$(Ng$_2^+$) without spin-orbit coupling, 7 – dissociation energy in the
ground state $D_e$(Ng$_2^+$) with spin-orbit coupling, 8 – ionization energy $I_p$ of Ng$_2$, 9 – spin-orbit splitting of Ng$_2^+$ (eV), 10 – the full width at half maximum of the ground state dimer
nuclear probability density. ........................................................................................................ 79

Table 6.4 Expected KERS for calculations based on adiabatic molecular potential curves that
include or do not include SO coupling. In calculations without SO coupling we include the
dipole-coupled $^2\Sigma_u$ and $^2\Pi_g^+$ states of the dimer cation; for calculations with SO coupling
the I(1/2)$_u$ and II(1/2)$_g$ states. ............................................................................................. 81

Table 6.5. Results of the classically calculated propagation times from point A to B and from B
to C in Fig. 6.1 along the diabatic potential curves of noble gas dimer cations in $^2\Sigma_u^+$ and
I(1/2)$_u$ electronic states for the wavelength combinations 800+1400 and 500+700 nm. .. 83

Table F.1 Conversion from atomic units to SI units ............................................................... 186
Acknowledgements

First of all I want to express my deepest gratitude to Dr. Uwe Thumm for giving me the chance to pursue my Ph.D. at Kansas State University, for his guidance and outstanding support during all stages of this work, and for being so understanding and giving me all the confidence I needed.

I wish to thank all my teachers past and present for all that they have taught me; I could not have done it without you. Thanks to Dr. Brett DePaola, Dr. Igor Litvinyuk and Dr. Lew Cocke for introducing me to experimental AMO physics. Thanks to Professor Christine Aikens of the KSU Chemistry department for helping me to understand how the GAMESS software package works. Thanks to the head of the KSU Physics department Dr. Amit Chakrabarti for allowing me to teach engineering physics studio in the spring 2013 semester and Dr. Bruce Law for guiding me in the teaching process. I would like to acknowledge people with whom I have worked in collaboration: Drs. Jian, Wu, Reinhard Dörner, Oliver Herrwerth, Matthias Kling, Sankar De, C. Lew Cocke and many others.

I am thankful to the Physics Department support staff Scott Chainey, Bob Krause, Peggy Matthews, Deanna Selby, Peter Nelson, Barbara Steward, Jane Peterson, Terry Turner, Larry McFeeters, Kim Coy, and Lindsay Thompson for being so supportive and helpful.

Thanks to Dr. Kevin Carnes and my committee members: Dr. Larry Weaver, Dr. Kristan Corwin, Dr. Paul Smith, and Dr. Medhat Morcos for reading and editing my thesis and for interesting comments and questions.

Thanks to my colleagues Feng He and Chang-hua Zhang and group members Qing Liao, Aihua Liu, and Jianxiong Li for being there for me. Thanks to all my friends at Kansas State University and Tbilisi State University; I could not have done it without your love and support.

Finally, I heartily thank my mom მზრა, my sister ღვარ and my niece მოგრზო for all the encouragement and emotional support on every step of my life, ღვრიხ ღმრღვმღო.
Dedication

To my mom, my sister, my niece, and the memory of my dad.
“The eternal mystery of the world is its comprehensibility”.

Albert Einstein 1936.
Chapter 1 - INTRODUCTION

The investigation of the interaction of atoms and molecules with intense laser fields is one of the most interesting areas of the current research in atomic and molecular physics. The general motivation for studying molecules in laser fields lies in the possibility of gaining fundamental understanding of the dynamics and the intermediate processes involved in various physical, chemical and biological reactions.

The time scales of the atomic and molecular motion are orders of magnitude less than those in our life. The typical scales of length are less than a nanometer for small molecules, and the scales of time vary from attoseconds for the electronic dynamics, to femtoseconds for molecular vibration, to picoseconds for molecular rotation. To trace all the processes that take place during these interactions short laser pulses are used. To access the sub-femtosecond time scale, pump-probe techniques are being further developed to track electrons on their natural attosecond time scale [Alnaser-05, Bocharova-11, Calvert-10, Corkum-07, De-11, Ergler-06-2, Geißler-12, Johnsson-07, Légaré-05, Magrakvelidze-12-1, Magrakvelidze-12-2, Ullrich-12, Wu-13-2].

The control, time-resolved observation, and analysis of the nuclear dynamics in small diatomic molecules such as H$_2^+$ and D$_2^+$ [Kremer-09, Ray-09, Sansone-10, Singh-10, Ergler-06-2, Feuerstein-07, Bocharova-08, Winter-09] and, more recently, in heavier diatomic molecules with several binding electrons [De-10, De-11, Bocharova-11, Geißler-12] have been made possible by significant advances in femtosecond laser technology [Brixner-05, Dantus-04, Feuerstein-07, Hertel-06, Kling-06, Posthumus-04, Zewail-00]. “Pump-probe” experiments, which use short and intense time-delayed laser pulses, are performed in many laboratories [Alnaser-05, Baker-06, Corkum-07, Ergler-06-2, Johnsson-07, Légaré-05, Miller-88, Niikura-03, Sansone-06]. In these experiments a short pump pulse (with pulse lengths of only a few fs corresponding to bandwidths that are larger than the vibrational level spacing) electronically excites or ionizes the neutral target molecule and also coherently excites a superposition of stationary vibrational states of the molecular ion, resulting in a moving nuclear wave packet. With the help of a second delayed probe pulse the probability density of the wave packet can be imaged. The probe pulse rapidly ionizes the molecular ion leading to its fragmentation by Coulomb explosion (CE) [Chelkowski-02, Chelkowski-07, Feuerstein-03]. The fragments of the reaction are detected and kinetic-energy release (KER) spectra are measured [Alnaser-05, Ergler-
From the KER spectra, the dynamics of the nuclear wave packet can be reconstructed. The pump-probe technique is by now routinely applied in many fields of physics, chemistry and biochemistry [Zewail-88, Crespo-Hernández-05, Ergler-06-2].

The current work focuses on the dissociation dynamics of the diatomic molecules in infra-red (IR) or extreme ultraviolet (XUV) fields. We mainly calculate evolution of the wave packet in time for the dissociation process of the diatomic molecules in laser fields. Some background on molecular orbital theory and the theoretical tools used in the calculations are covered in Chapters 2 and 3. In particular, Chapter 2 reviews approximation methods for solving the time-independent Schrödinger equation and also some details on computing potential curves and dipole coupling elements using the quantum chemistry code GAMESS. Those calculations from GAMESS are used in the calculations of the KER spectra. Chapter 3 describes methods for solving the time-dependent Schrödinger equation (TDSE) based on discretizing operators and a finite-differencing scheme for the time propagation.

In the first chapter of the main part of this work (Chapter 4), the simplest molecule H$_2^+$ (D$_2^+$) in an IR field is discussed. At the beginning of the chapter, time-resolved studies of vibrational motion for the small molecules (H$_2$ and D$_2$) in laser fields are covered. The vibrational dynamics of wave packet motion of H$_2$ and D$_2$ molecules have been studied by analyzing the KER of the molecular ion fragments produced by a pump and second delayed probe laser pulse [Posthumus-04, Bocharova-11, Ergler-06-1, Alnaser-05, De-10, De-11]. The last part of Chapter 4 discusses the localization of electrons for symmetric laser pulses, which is in contrast to the general belief that electron localization cannot be measured in symmetric laser pulses. There are several techniques for studying electron localization in diatomic molecules that includes CEP locked [Kling-06, Kremer-09, Znakovskaya-12] or two color asymmetric pump-probe pulses [Ray-09, Wu-13-1, He-08-1, He-08-2, Sansone-10, Singh-10]. “Electron localization” with a single symmetric circularly polarized pulse is discussed in Section 4.4.

Interaction of laser fields with heavier molecules such as O$_2$ and noble gas dimers are described in Chapters 5 and 6 respectively. Compared to the H$_2^+$ molecule the dissociative dynamics for the heavier molecules is more complicated due to more adiabatic states involved. In chapter 5 we present a method that we developed for identifying the relevant electronic states involved in the dissociation dynamics with one color IR pump and probe pulses using the O$_2$
molecule as an example. Chapter 6 focuses on dissociation dynamics of noble gases with different pump and probe field wavelengths by analyzing the KER spectra as a function of the pump-probe delay. Using the pump and probe pulses with different wavelengths allows us to observe additional features of the KER spectra such as striking “delay gap”.

The interaction of a XUV pulse with O₂ and N₂ molecules is described in Chapter 7, where in the calculations, we try to identify the electronic states of the molecular ions that are populated by ionizing the neutral molecule. We model the femtosecond nuclear wave packet dynamics in the ionic states of oxygen and nitrogen molecules for one of the first experimentally measured KER spectra for the XUV-pump and XUV-probe pulses. In contrast to intense NIR pulses, the interaction of XUV pulses with atomic and molecular targets is characterized by large Keldysh parameters, corresponding to ionization by the absorption of no more than a few energetic photons. In addition, with regard to identifying reaction pathways, the absorption of a known small number of energetic photons tends to induce electronic transitions to a more narrowly defined part of the target electronic spectrum. In addition, since these XUV and X-ray sources are tunable, transitions into specific spectral regions can be selected. In dissociative reactions, the KER can thus be resolved with regard to the number of absorbed photons and the pump-pulse-generated intermediate charge states of the molecular ion. Finally, conclusions and final remarks are presented in Chapter 8. We use atomic units (a.u.) throughout this work unless indicated otherwise (Appendix F).
Chapter 2 - INTRODUCTION TO MOLECULAR ORBITAL THEORY

In this chapter approximation methods for solving the time-independent Schrödinger equation are summarized.

For simple systems such as the harmonic oscillator, a particle in a box, or the hydrogen atom, the time-independent Schrödinger equation can be solved exactly. For more complex systems (for example molecules), however approximations need to be made to solve it numerically.

There are several steps involved in solving the time-independent Schrödinger equation for molecules: first, the Born-Oppenheimer (BO) approximation, leading to the idea of a potential energy surface. Next, the expansion of the many-electron wavefunction in terms of the so-called Slater determinants; and finally, representation of the Slater determinants in terms of molecular orbitals (MO), which are linear combinations of atomic-like-orbital functions - the basis set.

To describe molecules in an intense laser field accurately, one needs to consider both the electronic and also the nuclear degrees of freedom. The typical Hamiltonian for the molecule is written as the sum of the nuclear ($T_N$) and electronic ($T_e$) kinetic and potential ($V_{NN}$ nuclear-nuclear, $V_{eN}$ nuclear-electron and $V_{ee}$ electron-electron interactions) energies:

$$H = T_N + T_e + V_{NN} + V_{eN} + V_{ee}$$

$$= -\frac{1}{2} \sum_k \frac{1}{m_k} \nabla_k^2 - \frac{1}{2} \sum_i \nabla_i^2 + \frac{1}{2} \sum_{k \neq i} \frac{Z_k Z_i e^2}{r_{kl}} - \sum_k \frac{Z_k e^2}{r_{lk}} + \sum_{i \neq j} \frac{e^2}{r_{ij}}$$  \hspace{1cm} (2.1)

where labels $k$ and $l$ correspond to the nuclei and $i$ and $j$ to the electrons, $m_i$ is nuclear mass, $Z_{ke}$ and $Z_{le}$ nuclear charges, $r_{kl}$ are internuclear distances, $r_{ij}$ are distances between two electrons, and $r_{ik}$ are the distances from nuclei to electrons.

2.1 Born-Oppenheimer approximation

“The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complex to be soluble”.

P.A. Dirac 1929.

The wave-function of the many-electron molecular system is a function of electron and nuclear coordinates: $\psi(R,r)$, where $R$ represents the nuclear coordinates, and $r$ the electron
coordinates), and the motions of the nuclei and electrons are coupled. The BO approximation is based on the fact that the nuclei are almost 2000 times heavier than electrons and move much more slowly, so that to the electrons they appear “fixed”. In the BO approximation, to a high degree of accuracy, we can separate electron and nuclear motion

$$\psi(R, r) = \psi_{el}(r; R)\psi_N(R)$$  \hspace{1cm} (2.2)

where the electronic wavefunction depends on the nuclear coordinates only parametrically. We start with the Schrödinger equation

$$H\psi(R, r) = E\psi(R, r) .$$  \hspace{1cm} (2.3)

In the BO approximation \cite{Cramer-04}, the $T_N$ term is taken as independent of electrons in the Hamiltonian and the $V_{eN}$ term becomes constant for a fixed $R$. Note that even with the separated wavefunction equation (2.3) cannot be solved exactly (except for simplest molecule $\text{H}_2^+$) and further approximations has to be made.

**A. Electronic Schrödinger equation**

Under the BO approximation we can solve the electronic part of the Schrödinger equation separately:

$$H_{el}\psi_{el}(r; R) = E_{el}\psi_{el}(r; R)$$  \hspace{1cm} (2.3a)

with the electronic Hamiltonian

$$H_{el}(R) = T_e + V_{eN} + V_{ee} = -\frac{1}{2}\sum_i \nabla_i^2 - \sum_\alpha \sum_i z_{\alpha} e^2 r_{i\alpha} + \sum_j \sum_{i>j} \frac{e^2}{r_{ij}}$$  \hspace{1cm} (2.3b)

that depends on $R$ only parametrically. The electronic energy $E_{el}$ is not a constant but depends on the nuclear geometry (internuclear distance for diatomic molecules). The solution of the electronic part of the Schrödinger equation (2.3) for different geometry (internuclear distance) leads to the potential energy surfaces

$$V(R) = E_{el} + V_{NN}$$  \hspace{1cm} (2.3c)

where $V_{NN}$ is given in equation (2.1).

**B. Nuclear Schrödinger equation**

Once we have the potential energy surface, we can solve the nuclear Schrödinger equation that describes the nuclei in the average field generated by the fast moving electrons:

$$H_N\psi_N(R) = E_N\psi_N(R)$$  \hspace{1cm} (2.3b)
where \( H_N = T_r + V(R) + V_{eN} \) is the total energy of the molecule in BO. Note that each electronic state corresponds to a different potential energy surface.

### 2.2. Hartree-Fock method and SCF procedure

While in BO approximation the Hamiltonian is separated in electronic and nuclear parts, it is still not possible to solve the electronic part (equation (2.3a)) exactly for complicated molecules. Thus, it is necessary to make more approximations. One of the popular approaches is the Hartree–Fock self consistent field method (HF-SCF) \[\text{Hartree-28}, \text{Atkins-05}\]. This method gives an approximate solution of the electronic Schrödinger equation (2.3a) using the Hamiltonian \( H_{el} \) as obtained from the Born–Oppenheimer approximation.

Till now we have assumed that we could solve the electronic Schrödinger equation. But the last term \( V_{ee} \) in the Hamiltonian (2.1), which depends on electron-electron separation, is problematic in the calculations. As a first step we are going to ignore this term and solve the Schrödinger equation for \( n \) electrons

\[
H^0 \psi^0 = E^0 \psi^0 ; \quad H^0 = \sum_{i=1}^{n} h_i
\]  

where

\[
h_i = -\frac{1}{2} \nabla_i^2 - \sum_{k} \frac{Z_k}{r_{ik}}
\]  

is the so-called core Hamiltonian for electron \( i \) in the field of a nucleus of charge \( Z_k \) \[\text{Szabo-82}, \text{Atkins-05}\]. The \( n \) electron equation (2.4) can be separated into \( n \) one-electron equations with \( \psi^0 \) as a product (Hartree product) of the one-electron \( \psi^0_\alpha(i) \) wavefunctions (orbitals):

\[
h_i \psi^0_\alpha(i) = E^0_\alpha \psi^0_\alpha(i); \quad \psi^0 = \psi^0_\alpha \psi^0_\beta \ldots \psi^0_\omega
\]  

with \( E^0_\alpha \) the energy of an electron in the \( \alpha \)-th orbital. Note that simplified notation \( \psi^0_\alpha(i) \) is introduced for the orbital \( \psi^0_\alpha(r_i) \) occupied by electron \( i \) with coordinate \( r_i \). Applying the Pauli principle, the product wavefunction \( \psi^0 \) is symmetrized or antisymmetrized, depending on the symmetry of the total spin wavefunction leading to the Slater determinants in place of \( \psi^0 \). Introducing spin-orbitals as a product of the spin wavefunctions and the orbital wavefunctions, the wavefunctions \( \psi^0 \) can be written in terms of the Slater determinant as:

\[
\psi^0(r, R) = (n!)^{-0.5} \begin{pmatrix}
\phi_1(1) & \phi_2(1) & \ldots & \phi_n(1) \\
\phi_1(2) & \phi_2(2) & \ldots & \phi_n(2) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_1(n) & \phi_2(n) & \ldots & \phi_n(n)
\end{pmatrix}
\]  

(2.6)
where $\phi_{\alpha}(i)$ are orthonormal spin-orbitals of electron $i$ with the indices corresponding to the spin states as well as spatial states. The single particle $\phi_{\alpha}(i)$ wavefunctions are determined by minimizing the Rayleigh ratio:

$$E = \frac{\langle \psi_{el}(\vec{r}; R)|H_{el}|\psi_{el}(\vec{r}; R) \rangle}{\langle \psi_{el}(\vec{r}; R)|\psi_{el}(\vec{r}; R) \rangle}$$

(2.6a)

Execution of this procedure leads to the equations for each spin-orbitals $\phi_{\alpha}(i)$.

Up to this point, the electron-electron repulsion has been neglected. In the Hartree-Fock method the electron-electron repulsion is included in an averaged way, meaning that each electron is moving in the average field of the other electrons and the nuclei. The HF equation for a spin-orbital $\phi_{\alpha}(1)$ occupied by electron 1 is

$$f_1 \phi_{\alpha}(1) = \varepsilon_{\alpha} \phi_{\alpha}(1)$$

(2.7)

with spin-orbital energy $\varepsilon_{\alpha}$ and HF operator $f_1$ instead of the Hamiltonian:

$$f_1 = h_1 + \sum_{\mu} \{ J_{\mu}(1) - K_{\mu}(1) \}$$

(2.8)

where the sum is over all spin-orbitals $\alpha, \beta, ..., \omega$, $h_1$ is core Hamiltonian of electron 1, and the Coulomb operator $J_{\mu}(1)$ and exchange operator $K_{\mu}(1)$ are defined as

$$J_{\mu}(1) \phi_{\alpha}(1) = \int \phi_\mu^*(2) \frac{1}{r_{12}} \phi_\mu(2) dr_2 \phi_{\alpha}(1)$$

(2.9)

$$K_{\mu}(1) \phi_{\alpha}(1) = \int \phi_\mu^*(2) \frac{1}{r_{12}} \phi_{\alpha}(2) dr_2 \phi_\mu(1)$$

(2.10)

Note that if the Hartree-Fock equation is written for spatial orbitals a factor of 2 emerges in front of the Coulomb operator; each spatial orbital is doubly occupied [Atkins-05]. The Coulomb operator reflects the electron-electron Coulombic repulsion, and the exchange operator takes into account the electron exchange energy including spin correlation effects.

For each spin-orbital the HF equation (2.7) need to be solved, but for that one needs to know the Coulomb and exchange operators that depend on spin-orbitals of n-1 other electrons. Thus the solution of (2.7) needs to be known up front. This dilemma is solved with self-consistent field (SCF) method [Cramer-04]. The SCF procedure is as follows:

2. Construct HF operator.
3. Solve the Hartree-Fock equations; obtain a new set of spin-orbitals.
4. Construct the new HF operator with the new spin orbitals and again solve the HF equations.
5. Check convergence (usually the energies of HF wavefunctions are compared and if the
difference is less than, say, $10^{-6}$ a.u. the result is considered to be converged).

Roothaan suggested using an expansion of the spin-orbitals (more correctly spatial part of
the orbitals) in terms of known basis set functions (for example Gaussian basis sets (see Section
2.3 for the basis sets)), which leads to the HF-SCF method for molecules [Roothaan-51].

The HF equation for spatial orbital $\psi_\alpha (1)$ with electron 1 can be written as
$$f_1\psi_\alpha (1) = \varepsilon_\alpha \psi_\alpha (1)$$
with HF operator for spatial orbitals $f_1 = h_1 + \sum_\mu \{2J_\mu (1) - K_\mu (1)\}$ [Atkins-05]; where the
$J_\mu$ and $K_\mu$ operators are defined for spatial orbitals. Each spatial orbital can be expanded in terms
of n basis Roothaan basis functions $\varphi_j$
$$\psi_i = \sum_{j=1}^{n} a_{ij} \varphi_j$$
with unknown $a_{ij}$ coefficients. For molecules the orbitals are called molecular orbitals (MOs).

Substituting (2.12) in (2.11), multiplying both sides of the equation by $\varphi_i^*(1)$, and
integrating over the electronic coordinates $r_i$ leads to
$$\sum_{j=1}^{n} a_{ij} \int \varphi_i^*(1) f_1 \varphi_j(1) dr_1 = \varepsilon_\alpha \sum_{j=1}^{n} a_{ij} \int \varphi_i^*(1) \varphi_j(1) dr_1$$
Introducing the overlap matrix $S$ and Fock matrix $F$
$$S_{ij} = \int \varphi_i^*(1) \varphi_j(1) dr_1$$
$$F_{ij} = \int \varphi_i^*(1) f_1 \varphi_j(1) dr_1$$
equation (2.13) becomes
$$\sum_{j=1}^{n} F_{ij} a_{ij} = \varepsilon_\alpha \sum_{j=1}^{n} S_{ij} a_{ij} ; \quad \text{or} \quad F a = S \varepsilon$$
where $\varepsilon$ is an $n \times n$ diagonal matrix with elements $\varepsilon_\alpha$ and $a$ is an $n \times n$ matrix with elements of
$a_{ij}$. Equation (2.16) is called the Roothaan equation. In order to determine MOs the Roothaan
equation needs to be solved. To obtain nontrivial solutions of the Roothaan equations the
following secular equation need to be solved with the SCF method ($F$ and $S$ depend on the MO):
$$|F - \varepsilon S| = 0$$
(2.17)
Let us write $F_{ij}$ explicitly:
$$F_{ij} = h_{ij} + \sum_{k,l} P_{kl} [(ij|kl) - \frac{1}{2} (il|kj)]$$
(2.18)
where the density matrix elements are defined as $P_{kl} = 2 \sum_\mu a_{k\mu}^* a_{l\mu}$ and the one-electron
integrals $h_{ij}$ and two-electron integrals $(ij|kl)$ are defined as:
$$h_{ij} = \int \varphi_i^*(1) h_1 \varphi_j(1) dr_1$$
(2.18a)
\[(ij|kl) = a^*_k\mu a^*_l\mu \int \phi^*_i(1)\phi_j(1)\phi^*_k(2)\frac{1}{r_{12}}\phi^*_l(2)\phi_l(2)dr_1dr_2\] (2.18b)

The schematic of the SCF procedure is given in Fig. 2.1. First, the trial set of Roothaan basis functions and initial orbitals with initial \(a_{ia}\) coefficients need to be chosen to construct \(\psi_i\) (2.12) and, using equations (2.14) and (2.15), to calculate the overlap and Fock matrices. Then, the Slater determinant (2.17) is solved for the energies \(\varepsilon_a\) and coefficients \(a_{ia}\). Using this new set of coefficients, the process is started again and continued until the convergence criteria are reached (usually energies are compared at every step and the result is considered converged if the difference is less than \(10^{-6}\)). During this iteration process, one-electron integrals are calculated once, but two-electron integral indices run over the total number of basis functions and in principle need to be calculated \(n^4\) times. Thus, the choice of basis set functions is very important, meaning that one cannot use an excessively large set in the calculations.

![The schematic of the SCF procedure.](image)

**Figure 2.1** *The schematic of the SCF procedure.*

To summarize, the Hartree-Fock method is variational and uses a variational wavefunction in the form of the single Slater determinant. Slater determinant, on the other hand, is built from the complete set of spin-orbitals. By variation of the set of coefficients in the Slater determinant in addition to the simultaneous variation of MO coefficients in the basis set expansion, the total electronic wavefunction is obtained with the lowest possible energy for a given set of orbitals.
2.3. Basis sets

From HF theory, the energy (HF limit) that can be reached in the limit of infinite basis set is well defined. As already mentioned, one cannot use infinite basis sets in the calculation, thus optimizing the mathematical functions (basis sets) that allow reaching the HF limit is very important. Using finite basis sets generates basis-set truncation errors. Choosing the finite basis set that minimizes this error is important.

The basis set is the set of mathematical functions from which the wavefunction (spatial orbital) is constructed. While choosing the basis sets one needs to keep in mind that the number of two-electron integrals increases as $n^4$, $n$ being the number of basis functions; truncation error needs to be minimal; and, finally, the basis functions need to be physical, meaning that these functions need to have larger amplitudes where electron probability density is high. In general, many different kinds of basis sets could be used. Two common choices are described below.

2.3.1 Slater type orbitals

Mathematically, Slater type orbitals (STOs) that neglect radial nodes are neglected [Slater-30] written as

$$\phi_{nlmn}(r, \theta, \phi; \xi) = Nr^{n^*-1}e^{-\xi r}Y_l^m(\theta, \phi)$$  \hspace{1cm} (2.19)

where $Y_l^m(\theta, \phi)$ are spherical harmonics depending on angular momentum quantum numbers $l$ and $m$, $\xi$ can be chosen from the Slater rules [Slater-30] and is related to the effective charge as $\xi=Z_{eff}/n^*$, $n^*$ is the effective principal quantum number and is related to the true principal quantum number as follows: $n \rightarrow n^*$: 1$\rightarrow$1, 2$\rightarrow$2, 3$\rightarrow$3, 4$\rightarrow$3.7, 5$\rightarrow$4, 6$\rightarrow$4.2..., and the normalization constant is given as $N = \frac{(2^\xi)^{n^*+0.5}}{[(2n^*)!]^{0.5}}$. The effective charge is defined as $Z_{eff} = Z - \sigma$, where $Z$ is the atomic number and $\sigma$ is the shielding or screening constant. The screening constant can be evaluated using Slater rules [Slater-30]:

For each group of electrons (for a given principal quantum number grouped as $(1s)(2s,2p)(3s,3p)\ (3d)\ (4s,4p)\ (4d)\ (4f)\ (5s,5p)\ ...$ the shielding constant is a sum of the following contributions:

(i) All the other electrons in the same group as the electron of interest shield an amount of $\sigma = 0.35$ except for the 1s group where the contribution amounts to 0.30.
(ii) For the (s, p) type of group, the shield amount is 0.85 from each (n-1) and 1.00 from (n-2) and lower shell electrons.

(iii) For group types (d) and (f) the shield amount is 1.00 from all the electrons below the one of interest.

For example, consider nitrogen with electronic configuration \((1s^2) \ (2s^2 \ 2p^3)\). The screening constant and effective nuclear charge for each electron can be calculated using Slater rules:

2p electron: \[ \sigma = (4 \times 0.35) + (2 \times 0.85) = 3.10 \] \[ Z_{\text{eff}} = Z - \sigma = 7 - 3.10 = 3.90 \]

2s electron: \[ \sigma = (4 \times 0.35) + (2 \times 0.85) = 3.10 \] \[ Z_{\text{eff}} = Z - \sigma = 7 - 3.10 = 3.90 \]

1s electron: \[ \sigma = (1 \times 0.30) = 0.30 \] \[ Z_{\text{eff}} = Z - \sigma = 7 - 0.30 = 6.70 \]

The farthest electron from the core “sees” the least positive charge of the nucleus. The calculated screening constants and effective charges are summarized in Clementi et al. [Clementi-63].

At larger distances from the nucleus, STO basis sets very closely approximate hydrogen-like atomic orbitals. However, for different systems such as molecules with more than two atoms, the STOs are not practical.

### 2.3.2 Gaussian type orbitals

Gaussian type orbitals (GTOs), proposed by S. F. Boys [Boys-50] make ab-initio calculations computationally more effective compared with STOs. A GTO in Cartesian coordinates is written as

\[
\phi_{i,j,k}(x, y, z; \alpha) = N x^i y^j z^k e^{-a(x^2 + y^2 + z^2)}
\]  

(2.20)

where \(i, j\) and \(k\) are positive integers, \(\alpha\) is the positive exponent controlling the width of the GTO, and the normalization constant is \(N = \left(\frac{2\alpha}{\pi}\right)^{3/4} \left[\frac{(8\alpha)^{i+j+k}i!j!k!}{(2i)! (2j)! (2k)!}\right]^{1/2}\). The orbitals are called s-type orbitals if \(i = j = k = 0\), p-type if \(i = j = k = 1\), and d-type when \(i = j = k = 2\).

The “Gaussian product theorem” puts GTO at an advantage compared with STO in terms of computational speed. According to the theorem, the product of two GTOs centered on two different centers is equivalent to the Gaussian function centered on a point along the axis connecting them. Thus, for example, four-center integrals are reduced to two-center integrals, and eventually one-center integrals. However, GTOs have its disadvantages also. For instance, a
single GTO basis function has significant errors when compared to a single STO, especially near the nucleus.

### 2.3.3 Contracted Gaussian functions

Using GTOs (for atoms and molecules) two-electron integrals are calculated very effectively (compared with STO), but are not optimal basis sets and have different functional behavior (especially near and far from nucleus) from the behavior of molecular orbitals. Thus, a better basis set is preferable. Hehre, Stewart, and Pople had the idea to linearly combine GTOs to approximate STOs to produce the so-called contracted Gaussian functions [Pople-69].

A number of GTOs—called *primitives*—are linearly combined, each with different $\alpha$ values, and normalized to give a “contracted” Gaussian function,

$$G_c = \sum_{i=1}^{M} c_i G_p$$

where $G_p$ is a primitive Gaussian, $M$ the number of Gaussians, and the $c_i$ are contraction coefficients [Pople-69]. The contraction coefficients are optimized to mimic STOs. The term used for the “contracted” Gaussian functions is STO-MG (Single-ζ [Cramer-04]) where M is the number of primitive GTOs used. For example, for STO-3G three primitive GTOs are used per AO or MO.

### 2.4. Configuration interaction

Until now, the electron correlation term has been treated in an averaged way, such that each electron is moving in an averaged field of nuclei and other ($n$-1) electrons, leading to the Hartree-Fock SCF procedure. Improving inclusion of electron correlation is an ongoing task in electronic structure calculations. The first choice is to construct a wavefunction using not one but many Slater determinants or so called “configuration state functions” (CSF). The exact electronic wavefunction can be written as:

$$\psi_{el} = \sum_l A_l \varphi_l$$

where the sum is over finite number (in all applications) of determinants $\varphi_l$ (over all configurations of the orbitals) and $A_l$ are expansion coefficients. This *ab-initio* method, in which the total electronic wavefunction is expressed as a linear combination of the Slater determinants, is known as “configuration interaction” (CI). It includes electron correlation neglected in the HF
method. Ideally one would need to use an infinite number of Slater determinants and also an infinite number of basis sets to obtain an exact solution of the time independent Schrödinger equation as shown schematically in Fig. 2.2, but this is computationally impossible and the infinite sum in (2.22) is truncated at some point. Existing ab-initio methods (for example the MCSCF-method) provide a systematic approach to the solution of the time-independent Schrödinger equation (Fig.2.2) (Chapter 2.5).

**Figure 2.2. Schematic of a systematic approach to the exact solution of the time-independent Schrödinger Equation.**

### 2.5. Multiconfiguration self-consistent field (MCSCF) method

In MCSCF calculations a (finite) linear combination of CSFs (or configurations of Slater determinants) is used to approximate the exact electronic wavefunction of a system, in contrast
to the HF method, where only one determinant is used. The Slater determinants (configurations) correspond to the possible electron occupation of different molecular orbitals (MOs).

\[ \psi_{el} = \sum_i^N A_i \phi_i \]  

(2.23)

Such a wavefunction is called ‘multiconfiguration self-consistent-field’ (MCSCF) wavefunction, in which the basis functions are optimized for a combination of configurations. By a variation of the set of expansion coefficients \( A_i \) in the CSFs or determinants, in addition to the MO coefficients \( a_{ij} \), the total electronic wavefunction is obtained with the lowest possible energy [Hinze-67].

In MCSCF calculations, the specification of how many MOs are occupied is crucial. One needs to specify the so-called “active” space. MCSCF active space choices are often abbreviated as ‘\((m,n)\)’ where \( m \) is the number of electrons and \( n \) is the number of orbitals (see chapter 5 for the calculations of potential curves of the oxygen molecular ion, and Appendix E for an input-output example).
Chapter 3 - THEORY AND NUMERICAL METHODS

“It is the theory that decides what can be observed”.
Albert Einstein 1921.

In this chapter the theory and the numerical methods used in our calculations are summarized.

3.1 Time-dependent Schrödinger equation

In 1926 the basic equation of quantum mechanics was introduced by Erwin Schrödinger (1887-1961). The solution of the equation is the wavefunction, which is used to describe, for example, atoms or molecules in intense laser fields, collisions, or interactions with metal surfaces.

For describing molecular dynamics in intense laser fields, one needs to solve the time dependent Schrödinger equation (TDSE). The single-particle three-dimensional TDSE has the form:

$$i \frac{\partial}{\partial t} \Psi(\vec{r}, t) = \hat{H} \Psi(\vec{r}, t)$$

(3.1)

where atomic units have been used with $e = \hbar = m_e = 1$ (Appendix F), and typically the Hamiltonian is given as:

$$\hat{H} = \hat{T} + \hat{V} = -\frac{\nabla^2}{2} + \hat{V}(\vec{r}, t)$$

(3.2)

where $\hat{T}$ is kinetic energy and $\hat{V}$ is potential energy operator of the system. If the Hamiltonian is time independent (3.1) can be integrated to obtain:

$$\Psi(\vec{r}, t) = \exp(-i\hat{H}t) \Psi(\vec{r}, 0) .$$

(3.3)

Introducing small time intervals $\Delta t$ such that $t = N\Delta t$ and the full time dependence of the wave packet is obtained by iteratively propagating each of the $N$ time step:

$$\Psi(\vec{r}, t + \Delta t) = \exp(-i\hat{H}\Delta t) \Psi(\vec{r}, t) + O(\Delta t^2)$$

(3.4)

3.1.1. Crank-Nicholson split operator method (C-N method)

The Crank-Nicolson (CN) method is a finite difference method which is used to solve differential equations such as the TDSE. It is unconditionally stable [Press-92].

For a particle in an external field $V(r,t)$, the Hamiltonian is given as equation (3.2). Since the kinetic $T$ and potential $V$ energy operators do not commute, the sum in the exponent in equation
(3.4) cannot be written as a product of the exponential functions containing only $V$ and only $T$ operators. Therefore the *Baker–Campbell–Hausdorff* formula \[\text{[Reinsch-00, Bialynicki-69, Niederhausen-07]}\] is applied which gives:

$$\exp(-\tilde{T} \Delta t) = \exp(-\tilde{V} \Delta t/2) \exp(-i \tilde{V} \Delta t) \exp(-\tilde{V} \Delta t/2) + O(\Delta t^3).$$

This expression is called the *split-operator* method and is accurate up to errors of the order $\Delta t^3$.

Using *Cayley’s* form for expressing the exponent in (3.3a) for a time step $\Delta t$

$$\exp(-i \hat{H} \Delta t) = \frac{1 - \frac{1}{2} i \hat{H} \Delta t}{1 + \frac{1}{2} i \hat{H} \Delta t}$$  \hspace{1cm} (3.5)

one can obtain:

$$\Psi(t + \Delta t) \left(1 + \frac{1}{2} i \hat{H} \Delta t\right) = \Psi(t) \left(1 - \frac{1}{2} i \hat{H} \Delta t\right). \hspace{1cm} (3.6)$$

Let us assume that the time independent Hamiltonian has the form:

$$\hat{H} = A \frac{\partial^2}{\partial x^2} + B \frac{\partial}{\partial x} + CV(x) \hspace{1cm} (3.7)$$

where $A$, $B$ and $C$ are constants, $V$ potential energy. Using so called three-point formulas for the differentials

$$\frac{\partial}{\partial x^2} \Psi_n = \frac{\Psi_{n+1} - 2 \Psi_n + \Psi_{n-1}}{\Delta x^2} \quad \text{and} \quad \frac{\partial}{\partial x} \Psi_n = \frac{\Psi_{n+1} - \Psi_{n-1}}{2 \Delta x} \hspace{1cm} (3.8)$$

(where $n$ stands for the grid point number in the $x$ direction) one obtains by combining (3.7) and (3.5)

$$\Psi_n(t + \Delta t) + i \frac{\Delta t}{2} \left( A_n \frac{\Psi_{n+1}(t + \Delta t) - 2 \Psi_n(t + \Delta t) + \Psi_{n-1}(t + \Delta t)}{\Delta x^2} 
$$

$$+ B_n \frac{\Psi_{n+1}(t + \Delta t) - \Psi_{n-1}(t + \Delta t)}{2 \Delta x} + V_n \Psi_n(t + \Delta t) \right) =$$

$$= \Psi_n(t) - i \frac{\Delta t}{2} \left( A_n \frac{\Psi_{n+1}(t) - 2 \Psi_n(t) + \Psi_{n-1}(t)}{\Delta x^2} + B_n \frac{\Psi_{n+1}(t) - \Psi_{n-1}(t)}{2 \Delta x} + V_n \Psi_n(t) \right)$$  \hspace{1cm} (3.9)

which is a tridiagonal matrix equation.
\[
\begin{bmatrix}
X_1^2 & X_1^3 & 0 & 0 & 0 \\
X_2^1 & X_2^2 & X_2^3 & \ldots & 0 & 0 & 0 \\
0 & X_3^1 & X_3^2 & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & X_{N-1}^1 & X_{N-1}^2 & X_{N-1}^3 \\
0 & 0 & 0 & \ldots & 0 & X_N^1 & X_N^2 & X_N^3
\end{bmatrix}
\begin{pmatrix}
\Psi_1(t + \Delta t) \\
\Psi_2(t + \Delta t) \\
\Psi_3(t + \Delta t) \\
\vdots \\
\Psi_{N-1}(t + \Delta t) \\
\Psi_N(t + \Delta t)
\end{pmatrix} = 
\begin{bmatrix}
Y_1^2 & Y_1^3 & 0 & 0 & 0 \\
Y_2^1 & Y_2^2 & Y_2^3 & \ldots & 0 & 0 & 0 \\
0 & Y_3^1 & Y_3^2 & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & Y_{N-1}^1 & Y_{N-1}^2 & Y_{N-1}^3 \\
0 & 0 & 0 & \ldots & 0 & Y_N^1 & Y_N^2 & Y_N^3
\end{bmatrix}
\begin{pmatrix}
\Psi_1(t) \\
\Psi_2(t) \\
\Psi_3(t) \\
\vdots \\
\Psi_{N-1}(t) \\
\Psi_N(t)
\end{pmatrix}
\] (3.10)

\(N\) is the total number of grid points in the \(x\) direction and the matrix elements are:

\[
X_n^1 = i \frac{\Delta t}{2(\Delta x)^2} A_n - i \frac{\Delta t}{4\Delta x} B_n
\]

\[
X_n^2 = 1 - i \frac{\Delta t}{(\Delta x)^2} A_n + i \frac{\Delta t}{2} V_n
\]

\[
X_n^3 = i \frac{\Delta t}{2(\Delta x)^2} A_n + i \frac{\Delta t}{4\Delta x} B_n
\]

\[
Y_n^1 = -i \frac{\Delta t}{2(\Delta x)^2} A_n + i \frac{\Delta t}{4\Delta x} B_n
\]

\[
Y_n^2 = 1 + i \frac{\Delta t}{(\Delta x)^2} A_n - i \frac{\Delta t}{2} V_n
\]

\[
Y_n^3 = -i \frac{\Delta t}{2(\Delta x)^2} A_n - i \frac{\Delta t}{4\Delta x} B_n
\]

This system of equations is solved using the TRIDIAG routine (adjusted to double precision) from Numerical Recipes [Press-92] (see also [Niederhausen-07]).

### 3.1.2 FFT method

There is another method to do time evolution of the wave packet instead of the CN method. This method involves transforming the Schrödinger equation into momentum space where the momentum operator and kinetic energy operator are multiplicative operators.

\[T + V(x,t) = p^2 / 2m + V(x,t)\]. Using (3.4) and the split-operator method results in:

\[
\Psi(x, t + \Delta t) = \exp \left( -i \frac{V}{2} \Delta t \right) \exp \left( -i \frac{p^2}{2m} \Delta t \right) \exp \left( -i \frac{V}{2} \Delta t \right) \Psi(x, t)
\] (3.12)

The procedure of time evolution of the wave packet is as follows: the first step is to multiply the wave packet by the exponent containing the potential energy; the second step is to
Fourier transform the product and multiply that by the exponent containing the momentum operator; the last step to inverse Fourier transform the product and multiply that by the third exponent containing the potential energy.

### 3.2 Imaginary time propagation

Imaginary time propagation is a reliable method for obtaining the ground state of the system. The wavefunction in (3.1) can be expanded as a superposition of eigenstates $\varphi_{\nu}$:

$$\Psi(\vec{r}, t) = \sum_{\nu} a_{\nu} \varphi_{\nu}(\vec{r}) e^{-iE_{\nu} t}$$  \hspace{1cm} (3.13)

By substituting $t \rightarrow -i\tau$, the time evolution equation (3.3) leads to an exponential decay of the wavefunction

$$\Psi(\vec{r}, \tau) = \exp(-\hat{H} \tau) \Psi(\vec{r}, 0) = \sum_{\nu} a_{\nu} \varphi_{\nu}(\vec{r}) e^{-E_{\nu} \tau}$$  \hspace{1cm} (3.14)

When propagated in imaginary time the eigenfunctions decay exponentially with a rate given by their energies. The ground state decays slowest. Thus, starting with a randomly chosen wavefunction $\Psi$, in the limit of large $\tau$, the wavefunction will be proportional to the ground state

$$\lim_{\tau \to \infty} \Psi(\vec{r}, \tau) = a_0 \varphi_0 e^{-iE_0 \tau}$$  \hspace{1cm} (3.15)

After choosing an initial trial wave function the imaginary time propagation is carried out using the CN propagation method until the ground state wavefunction is obtained to predetermined accuracy.

### 3.3 Absorbers

In the simulation it is impossible to make an infinite numerical grid. It always has limits that could cause reflection of the wave packet. There are several methods for avoiding this reflection including complex rotation \cite{Ho-83}, splitting the wavefunction at the boundaries \cite{Chelkowski-96}, and a negative imaginary potential \cite{Hussain-00, Poirier-03, Muga-04}. The last method- negative imaginary potential - is the one used in our calculations. A negative imaginary potential $-iW(r)$ is added to the Hamiltonian

$$H_{tot} = H + H_a = H - iW(r)$$  \hspace{1cm} (3.16)

where $H$ is the original Hamiltonian (see equation (3.2) for example) and $H_a$ is the negative imaginary potential, called “absorbers” \cite{Niederhausen-07}. 

3.4 Coupled channel propagation

The Crank-Nicolson scheme described above can be applied to systems including propagation of the coupled wave packets on two or more potential curves. This application for the motion of the nuclear wave packet on two BO potential curves – coupled with dipole coupling matrix elements – is given in Chapters 4, 5 and 6.

In general there can be any number of coupled channels, but the case of three coupled wavefunctions is discussed below. The TDSE for the nuclear part of the wavefunction in the case of the three states can be written as:

\[
-i \frac{d}{dt} \begin{pmatrix} \Psi_1(R) \\ \Psi_2(R) \\ \Psi_3(R) \end{pmatrix} = (\hat{H} + \hat{H}_c) \begin{pmatrix} \Psi_1(R) \\ \Psi_2(R) \\ \Psi_3(R) \end{pmatrix}
\]  
(3.17)

where the Hamiltonian \(\hat{H} = \hat{T} + \hat{V}\) corresponds to the wave packet propagation discussed in previous sections (Chapter 2.1) and \(\hat{H}_c\) accounts for the coupling of wave packets propagating on given states. Note that notation is changed, we dropped subscript \(N\) for nuclei \((\psi_N(R))\) and now \(\Psi_i(R)\) \((i=1,2,3)\) refers to a nuclear wavefunction in each state (in this case three). Note that the phases between the wave functions in (3.17) do not matter because we are considering the phase of the electronic wavefunction.

The Hamiltonian of the uncoupled system is given by a tridiagonal matrix. The total Hamiltonian of the coupled system is therefore given by a block matrix, where the diagonal blocks are tridiagonal and the off-diagonal blocks, which introduce the coupling, are diagonal

\[
\hat{H}_{tot} = \hat{H} + \hat{H}_c = \begin{pmatrix} \hat{T} & \hat{V} & \hat{V} \\ \hat{V} & \hat{T} & \hat{V} \\ \hat{V} & \hat{V} & \hat{T} \end{pmatrix} = \\
\begin{pmatrix} \hat{H} & \hat{H}_c \\ \hat{H}_c & \hat{H} \end{pmatrix} = \\
\begin{pmatrix} \hat{T} & \hat{V} \\ \hat{V} & \hat{T} \end{pmatrix} + \begin{pmatrix} \hat{H}_c & 0 \\ 0 & \hat{H}_c \end{pmatrix}
\]  
(3.18)

Note that if \(\hat{H}_c = 0\) wave packets propagate on each state separately (no coupling). The wave packet time evolution is achieved by the split-operator scheme at each time step:

\[
\exp(-iH_{tot}\Delta t) = \exp\left(-iH_c\frac{\Delta t}{2}\right) \exp(-iH\Delta t) \exp\left(-iH_c\frac{\Delta t}{2}\right) + O(\Delta t^3)
\]  
(3.19)

The coupling part of the Hamiltonian can be written as a sum of three separate matrices
\[
H_c = \begin{pmatrix}
\begin{array}{ccc}
\hline
\hline
\hline
\hline
\end{array}
\end{pmatrix} = \begin{pmatrix}
\begin{array}{ccc}
\hline
\hline
\hline
\hline
\end{array}
\end{pmatrix} + \begin{pmatrix}
\begin{array}{ccc}
\hline
\hline
\hline
\hline
\end{array}
\end{pmatrix} + \begin{pmatrix}
\begin{array}{ccc}
\hline
\hline
\hline
\hline
\end{array}
\end{pmatrix} \quad (3.20)
\]

Again using the split-operator technique (3.19), the coupling will reduce to 2x2 couplings \(H_c^{ij}\) acting only on the two states \(i\) and \(j\) with \(i \neq j\). It can be shown that

\[
\exp\left(-i H_c^{ij} \Delta t / 2\right) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cos\left(\frac{D \Delta t}{2}\right) - i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sin\left(\frac{D \Delta t}{2}\right) \quad (3.21)
\]

where \(D = d_{ij}E\) is the off-diagonal coupling matrix element corresponding to the coupled states \(i\) and \(j\) multiplied by an electric field strength [Niederhausen-07].

Thus the coupling of the wavefunction for the three states can be represented as a successive application of two-channel couplings involving the split-operator scheme, leading to simple rotations of the wavefunction between the two states. The case of a coupled state calculation for two states of \(D^+_2\) is discussed next (see Chapter 4 for the numerical results using this model).

### 3.4.1 Two-state model for the nuclear wave packet dynamics in molecular ions

We model the nuclear dynamics in the pump-probe sequence (Fig. 4.1), where pump pulse is ionizing the neutral diatomic molecules and delayed (delay is designated as \(\tau\) in further discussions) probe pulse can either dissociate (Chapters 4-6) or Coulomb explode the molecular ion (Chapter 7). In our model we assume that the neutral diatomic molecules are singly ionized by an intense short laser field. The quantum state of the resulting molecular ion can be approximated as

\[
\Phi(\vec{r}, R; t) = \frac{1}{\sqrt{2}} \left[ \Psi_1(R, t) \psi_{el_1}(\vec{r}, R, t) + \Psi_2(R, t) \psi_{el_2}(\vec{r}, R, t) \right] \quad (3.22)
\]
where $\Psi_1$ and $\Psi_2$ are nuclear wave-functions, $\psi_{el1}$ and $\psi_{el2}$ are the electronic states of the molecular ion in the BO approximation (for example $1s\sigma_g$ and $2p\sigma_u$ states for $\text{H}_2^+$), and $\vec{r}$ is the electron position vector. The bound and dissociating nuclear motions of the molecular ion can be described in this two-electronic-state model by projecting out the electronic states. The $\Psi_1$ and $\Psi_2$ nuclear wave-function components can be obtained from a set of coupled equations,

$$i\frac{\partial}{\partial t}(\Psi_1(R,t)) = \left(\frac{T_R + V_1(R)}{d_{12}(R)} E(t - \tau) \frac{d_{12}(R)E(t - \tau)}{T_R + V_2(R)} \right) \times (\Psi_1(R,t)\Psi_2(R,t))$$

(3.23)

where $\mu$ is the reduced mass of the nuclei, $T_R = -\frac{1}{2\mu}\frac{\partial}{\partial R^2}$, and $V_1(R)$ and $V_2(R)$ are the BO potential curves of the molecular ion. The dipole coupling between the two electronic states in the laser field is defined as $d_{12} = \langle \psi_{el1} | \vec{r} | \psi_{el2} \rangle$ [Kulander-96]. The laser field $E$ is linearly polarized along the internuclear axis. Note that the maximal propagation times in our numerical applications are significantly smaller than the rotational periods of the diatomic molecules, therefore, we can neglect the rotation of the molecules.

We assume that the initial state of the molecular ion is bound and solve Eq. (3.23) numerically using the Crank-Nicholson method [Feuerstein-03-1, Press-92, Thumm-08] assuming that

$$\Psi_1(R,0) = \sum_{\mu} a_{\mu} \Psi_{\mu}(R), \quad \Psi_2(R,0) = 0,$$

(3.24)

where $\{a_{\mu}\}$ are the set of amplitudes (in general complex) in the basis of the stationary vibrational eigenstates $\{\Psi_{\mu}\}$ of the diatomic molecular ion electronic ground-state potential $V_1(R)$. The ionization process is often modeled with Franck-Condon (FC) factors $\{|a_{\mu}|^2\}$ in the sudden approximation [Bransden-03, Thumm-08, Magrakvelidze-09] and all phases are randomly set to zero in order to obtain the set of real amplitudes $\{a_{\mu}\}$ for the bound initial wave packet (please see Chapter 6 for the alternative ADK ionization model). Using imaginary time propagation the trial function (for example Gaussian) on the ground-state BO potential curve of the molecule is propagated, and the ground state wavefunction $\Psi_0$ of the neutral parent molecule is calculated. Subsequent projection on the vibrational states of the molecular ion $\{a_{\mu} = \langle \Psi_{\mu} | \Psi_0 \rangle\}$ generates the real function $\Psi_1(R,0)$. Without an external laser field, the two states in Eq. (3.23) are decoupled, and the nuclear wavefunction evolves as a bound nuclear wave packet on the $V_1$ potential curve, undergoing characteristic cycles of dephasing and revival [Feuerstein-03-1, Thumm-08].
3.4.2. Quantum beat spectra (R-dependent power spectra)

Quantum beat (QB) spectra (known also as power spectra [Thumm-08]) are very useful to identify the given potential curve characteristics that are obtained by Fourier transforming the probability density as a function of internuclear distance and propagation time (see Eq. 3.25 below). The oscillation (beating) occurs because the bound nuclear vibrational wavefunctions on a given potential curve undergo dephasing, oscillating at different frequencies. Each of the QB frequencies can be linked to the contributing vibrational energy levels of the vibrational wave packet and, most importantly, the derivative of the molecular potential energy curve can be mapped from the power spectra. The details on how we numerically obtain power spectra are discussed below.

In the two-state model (discussed in 3.4.1), the amplitudes \( \{a_\mu\} \) in Eq. (3.24) remain time independent during the field-free propagation from \( t = 0 \) to the probe time delay \( \tau \) (Fig. 4.1). The nuclear probability density as a function of time at \( \tau \) is written as

\[
\rho(R, \tau) = \int dr |\Phi(\vec{r}, R; \tau)|^2 = |\Psi_\varphi(R, \tau)|^2 + |\Psi_u(R, \tau)|^2
\]

It is very important to note that the diagonal term (first term in the second line) is time independent and gives an incoherent background to the wave function probability density. We subtract this diagonal contribution from the probability density spectra thereby getting rid of static terms in the incoherent sum included in Eq. (3.25). We Fourier transform the remaining coherent (time dependent) terms over the finite sampling time \( T \) and take the square of the result, obtaining the power spectrum

\[
P(R, \omega; T) = \left| \sum_{\mu,\nu=0}^N a_\mu^* a_\nu \Psi_\varphi^*(R) \Psi_\nu(R) \delta_T(\Delta \omega_{\mu,\nu} - \omega) \right|^2
\]

where the “broadened delta function” is defined as

\[
\delta_T(\Omega) \equiv \frac{1}{2\pi} \int_0^T dt e^{i\Omega t} = \frac{1}{\pi} e^{i\Omega T/2} \frac{\sin(\Omega T/2)}{\Omega}
\]

and centered at the QB energies \( \Delta \omega_{\mu,\nu} = \omega_{\nu} - \omega_{\mu} \). It is broadened due to the Fourier transformation over a finite time interval. In the limit of large sampling times, it becomes identical with the usual delta “function”, and the power spectrum \( P(R, \omega, \varphi) \) reproduces the QB spectrum at
infinite resolution. Further details on the properties and interpretation of $P(R, \omega; T)$ can be found in [Thumm-08].

![Morse potential graph]

**Figure 3.1** Morse potential for $D_e=6$, $\alpha=1$ and $R_0=1$.

### 3.5 Morse oscillator

The potentials for diatomic molecules are often parameterized using the Morse potential [Morse-29]:

$$V(R) = D_e (1 - e^{-\alpha(R-R_0)})^2$$

where $D_e$ is the depth of the potential well (often called the dissociation energy), $\alpha$ accounts for the measure of the curvature at the bottom of the well, $R$ is the internuclear distance, and $R_0$ is the equilibrium bond distance. Figure 3.1 shows the Morse potential (3.28) for parameters $D_e=6$, $\alpha=1$ and $R_0=1$. Actually, Morse proposed a potential in the form [Morse-29]

$$V(R) = D_e e^{-2\alpha(R-R_0)} - 2D_e e^{-\alpha(R-R_0)} ,$$

but since the zero of the potential is relative one can subtract $D_e$ from (3.28a) and obtain (3.28).

With the Morse potential, an exact solution of the TDSE can be obtained [Morse-29]. Stationary states on a Morse potential have eigenvalues:

$$E(\nu) = \omega_0 \left( \nu + \frac{1}{2} \right) - \omega_0 \chi_0 \left( \nu + \frac{1}{2} \right)^2 + \cdots$$

(3.29)
where \( \omega_0 = \alpha \sqrt{2D_e/\mu} \) is the vibrational constant with the reduced mass \( \mu \) of the diatomic molecule, and \( \chi_0 \omega_0 \approx \omega_0^2/(4D_e) = \alpha^2/(2\mu) \) is the anharmonicity constant.

**3.6 Quantum revivals**

The anharmonicity of the potential results in a quick dephasing of the wave packet, but only certain, possibly long propagation time, the relative phases of the nuclei vibrational wave packet can become similar or identical to the relative phases of the initial wave packet, leading to wavefunction revivals [Robinett-04]. In Fig. 3.2, the dephasing of the wave packet on the ground state of D\(_2^+\), partial (wave packet oscillates at integer fractions of the original oscillation period), and full revivals (wave packet oscillates at the initial oscillation period) are shown [Robinett-04].

For one dimensional systems, the wave packet can be written as a superposition of \( \varphi_\nu \) eigenfunctions

\[
\Psi(x, t) = \sum_{\nu=0}^{\infty} a_\nu \varphi_\nu(x)e^{-iE_\nu t},
\]

(3.30)
where $a_\nu$ are expansion coefficients (FC amplitudes) and $E_\nu$ are energy eigenvalues, given by Eq.(3.29) for the Morse potential. At the revival, the condition $\Psi(x, T_{rev}) = \Psi(x, 0)$ needs to be satisfied (up to an overall arbitrary phase factor), which requires

$$E_\nu T_{rev} = \left\{ \omega_0 \left( \nu + \frac{1}{2} \right) - \omega_0 \chi_0 \left( \nu + \frac{1}{2} \right)^2 \right\} T_{rev} = 2\pi N_\nu$$

(3.31)

where $N_\nu$ are integers. Equation (3.31) for the next vibrational state can be written as:

$$E_{\nu+1} T_{rev} = \left\{ \omega_0 \left( \nu + \frac{3}{2} \right) - \omega_0 \chi_0 \left( \nu + \frac{3}{2} \right)^2 \right\} T_{rev} = 2\pi N_{\nu+1}$$

(3.32)

Subtracting (3.31) from (3.32) will lead to:

$$\left\{ \omega_0 - 2\omega_0 \chi_0 \nu - 2\omega_0 \chi_0 \right\} T_{rev} = 2\pi M_\nu$$

(3.33)

where $M_\nu$ are also integers. Repeating the same subtraction procedure on Eq.3.33 gives revival time for the Morse potential:

$$T_{rev} = \frac{\pi}{\omega_0 \chi_0}$$

(3.34)

According to equation (3.34) the half, third, quarter and so on fractional revivals are defined as $T_{rev}/2, T_{rev}/3, T_{rev}/4..., \text{and wave packet oscillates with corresponding fractional periods (Fig.3.2).}$ Note that if one follows the definition of $T_{rev}$ by [Robinett-04], the result is twice the $T_{rev}$ defined by Eq. (3.34). One can fit any given binding potential curve with a Morse potential to get the Morse parameters and, using Eq. (3.34), calculate the revival time on this potential curve, so that the oscillation period at $T_{rev}/2$ ($T_{rev}/3$) is two (three) times the oscillation period at $T_{rev}$ (see Fig. 3.2).

### 3.7 KER spectra calculations (FT method)

In order to simulate KER spectra, we numerically propagate the coupled equations (3.23) for a sufficiently long time $T$, including field-free propagation of the nuclear wave packets after the action of the probe pulse. This allows us to separate the bound and dissociating parts of the nuclear motion by introducing the internuclear distance $R_1$ as an effective range for the bound nuclear motion. The probability current associated with the dissociation of the molecular ion has relevant contributions for $R > R_1$, whereas the bound motion remains restricted to distances $R < R_1$. Fourier transformation of the dissociating parts of the nuclear wave packets over the interval $[R_1, R_{max}]$ yields the momentum representations of the dissociating wave packets in the adiabatic channel $i$ [De-11, Magrakvelidze-12-1]

$$\tilde{\Psi}_l^{diss}(P, T) = \int_{R_1}^{R_{max}} dR \, \Psi_l^{diss}(R, T) \, e^{-iPR}$$

(3.35)
where $R_{\text{max}}$ is related to the size of the numerical grid. By incoherently adding the corresponding momentum distributions, we obtain the pump-probe-delay ($\tau$) - dependent distribution of fragment KERs

$$C^{\text{diss}}(E, \tau) \propto \sum_i \rho_i^{\text{incoh}}(P, \tau)$$

(3.36)

where $E = P^2 / 2M$ is the kinetic energy per fragment. Subtracting the large incoherent static contribution

$$C^{\text{diss}}_{\text{incoh}}(E) = \frac{1}{T} \int_0^T d\tau C^{\text{diss}}(E, \tau)$$

(3.36a)

from $C^{\text{diss}}$ we obtain the power spectrum as a function of the QB frequency $f = \omega / 2\pi$

$$P^{\text{diss}}(E, f) = \left| \int_0^T d\tau C^{\text{diss}}(E, \tau) e^{-i2\pi \tau f} \right|^2$$

(3.36b)

Results using the FT method are given in Chapters 4, 5, and 6 for D$_2$, and O$_2$ molecules, and noble gas dimers, respectively.

### 3.8 Virtual detector

Virtual detector (VD) is a method for extracting momentum distributions without propagating the wave packet over a large numerical grid [Feuerstein-03-1, Magrakvelidze12-1]. The momentum distribution is obtained for each time step at the fixed location and width of the VD. The wavefunction can be written as

$$\Psi(\vec{r}, t) = A(\vec{r}, t) \exp \left( i\varphi(\vec{r}, t) \right)$$

(3.37)

where $\varphi(\vec{r}, t)$ and $A(\vec{r}, t)$ are the time-dependent phase and amplitude, respectively. The momentum information at a given detector position $\vec{r}_d$ can be extracted from the phase $\varphi(\vec{r}, t)$. To reveal this information, we consider the current density $\vec{j}$ at $\vec{r}_d$ of the outgoing particles with mass $\mu$,

$$\vec{j}(\vec{r}_d, t) = \frac{\rho(\vec{r}_d, t)}{\mu} \vec{\nabla} \varphi(\vec{r}_d, t) \quad \text{with} \quad \rho(\vec{r}_d, t) = |A(\vec{r}_d, t)|^2$$

(3.38)

The momentum can be obtained from the gradient of the phase $\varphi(\vec{r}_d, t)$ at each time and at a fixed position $\vec{r}_d$ where the virtual detector is located.

$$k(\vec{r}_d, t) = \mu \nu = \vec{\nabla} \varphi(\vec{r}_d, t).$$

(3.39)

Then, by applying a ‘binning’ or ‘histogramming’ procedure, the momentum distribution $dN/dk$ can be derived.
For simplicity, consider the one-dimensional case, where the VD is located at $x_d$. The probability for finding the number $\Delta N$ of events that have momenta $k$ within a small momentum interval $\Delta k$ around the momentum value $k_j$ is then given by

$$\Delta N(k_j) = \Delta k \int_0^\infty dt j(x_d, t) \left\{ \begin{array}{ll} 1 & \text{for } k \in [k_j - \Delta k/2, k_j + \Delta k/2] \\ 0 & \text{else} \end{array} \right. \quad (3.40)$$

See [Feuerstein-03-1] for more details.

### 3.9 Dipole selection rules

When the system is introduced into an electromagnetic field, the probability of finding it in a different state is non-zero. To obtain the so-called dipole selection rules, one needs to calculate the matrix elements of the electric dipole moment:

$$D_{ij} = \int \psi_i^* d\psi_j dr,$$

where $d = e_k r_k$ with $e_k$ being the charges of $N$ particles at coordinates $r_k$ and $\psi_i$ and $\psi_j$ are the wavefunctions of the states involved in the transition.

The quantum numbers used below are defined as:

- $L$ – electron orbital angular momentum;
- $\Lambda$ – projection of $L$ on the rotation axis;
- $S$ – spin;
- $\Sigma$ – projection of the spin (not to confuse with the same notation for $\Lambda=0$);
- $J$ – electron total angular momentum ($\vec{J} = \vec{L} + \vec{S}$);
- $\Omega$ – projection of $J$ ($\Omega = \Lambda + \Sigma$).

Selection rules for the homonuclear diatomic molecules in the same charge states are as follows. We need to distinguish the cases when light is polarized along the molecular axis and when it is polarized perpendicular to the molecular axis. In the first case the value of the projection $\Lambda$ of the angular momentum on the internuclear axis needs to be same for both states. In addition, for states with defined parity, g (gerade symmetry) states are connected with u (ungerade symmetry) states and for the $\Sigma - \Sigma$ ($\Lambda = 0 - \Lambda = 0$) transition, only $+ \leftrightarrow +$ and $- \leftrightarrow -$ transitions are allowed (for diatomic molecules the system has additional symmetry- mirror reflection through an internuclear axis leading to $+$ or $-$). For the perpendicular polarizations the last rule holds, but only transitions between states with $\Delta \Lambda = \pm 1$ are allowed.

Thus, summarizing the selection rules we have:

$$\Delta \Lambda = \left\{ \begin{array}{ll} 0 & \text{for parallel transitions} \\ \pm 1 & \text{for perpendicular transitions} \end{array} \right.$$
\(+\leftrightarrow +; -\leftrightarrow -\) and \(+\leftrightarrow -\) in \(\Sigma - \Sigma\) transitions;
\(g \leftrightarrow u; u \leftrightarrow u\) and \(g \leftrightarrow g\) for homonuclear molecules.

In addition, for light molecules \(\Delta \Sigma = 0\) since there is no spin in the dipole moment operators. For heavier molecules, where \(\Omega\), the total electronic angular momentum about the internuclear axis, is a good quantum number, dipole-allowed transitions require \(\Delta \Omega = 0, \pm 1\) \(\Omega = |\Sigma + \Lambda|\). Note that the selection rules above are different for the photoionization of the homonuclear molecule in different charge states due to different symmetry of the states [Zare-98, Xie-90].
Chapter 4 - HYDROGEN MOLECULES IN IR LASER FIELDS

The focus of this chapter is the $\text{H}_2$ ($\text{D}_2$) molecule in IR fields.

4.1 Introduction

$\text{H}_2$ ($\text{D}_2$) molecules have been heavily studied both experimentally and theoretically [Posthumus-04, Giusti-Suzor-95, Calvert-10]. When $\text{H}_2(\text{D}_2)$ molecules are subjected to a strong laser field different processes can happen, such as: dissociation via one- or two- photons also known as bond softening (BS) [Bucksbaum-90, Posthumus-04] and above threshold dissociation [Zavriyev-90, Giusti-Suzor-90, Posthumus-04], bond hardening (BH) [Posthumus-04, Châteauneuf-98, Frasinski-99, Bandrauk-81, Walker-93, Bucksbaum-90], charge resonance enhanced ionization (CREI) [Zuo-95, Seideman-95, Codling-93, Cornaggia-91, Dietrich-92, Strickland-92, Williams-00] high order harmonic generation [Liang-94, Baker-06, Budil-93, Mercer-96, Hay-02], and CE occurring after removal of a second electron from the molecule [Ergler-06-2, Alnaser-05, Bandrauk-99, Ellert-98, Légaré-06, Chelkowski-07, Feuerstein-03]. The theoretical study of the dependence of BS and BH on laser parameters is presented in Section 4.2.

The vibrational dynamics of wave packet motion of $\text{H}_2$ and $\text{D}_2$ molecules have been studied by analyzing the KER of the molecular ion fragments produced by a pump and second delayed probe laser pulse [Posthumus-04, Bocharova-11, Ergler-06-1, Alnaser-05, De-10, De-11]. Section 4.3 focuses on the process of weakening the bond by a strong field, which induces the dissociation (also known as photo-dissociation) of $\text{D}_2^+$ molecules, by comparing the measured and calculated KER spectra.

There are several techniques for studying electron localization in diatomic molecules that include CEP locked or two-color asymmetric pump-probe pulses. “Electron localization” with a single symmetric circularly polarized pulse is discussed in Section 4.4.
4.2 Dependence of bond softening and bond hardening on laser intensity, wavelength, and pulse duration for D$_2^+$

By solving the TDSE, the time evolution of the wave packet can be calculated theoretically. We calculate the time evolution of an initial nuclear vibrational wave packet in D$_2^+$ generated by the rapid ionization of D$_2$ in an ultrashort pump-laser pulse based on a quantum-mechanical model. The QB frequency and internuclear distance-dependent power spectra are obtained by Fourier transformation of the nuclear probability density with respect to the time delay between the spike of the pump pulse and the high-intensity spike of an intense probe-laser pulse. The probe pulse causes immediate Coulomb explosion, which allows imaging of the wave packet. The QB frequency spectra serve as a tool for visualizing and analyzing the nuclear dynamics in D$_2^+$ in an intermittent external laser field (See Chapter. 3, Thumm-08, and Niederhausen-07 for more details). In this work, we model the external laser pulse with a pedestal (with about 5% of the peak intensity of the main pulse) to obtain more realistic pulses (Fig. 4.1). Variation in the intensity, wavelength, and duration of this probe-pulse pedestal allows us to identify the optimal laser parameters for the observation of field-induced BS and BH in D$_2^+$.

![Figure 4.1 Schematics for the pump-probe pulse sequence. The main pulses (spikes) are shown in black and the pedestal (Gaussian-shape) of the pulse in red. In our simulations we assume that CE is instantaneous (ionization happens in the main peak of the probe pulse).](image-url)
In Floquet theory, the interactions of the continuum wave (CW) laser field with the molecule are described using adiabatic laser-dressed potential curves [Giusti-Suzor-92, Sändig-00, Williams-00], which are also referred to as “Floquet adiabatic molecular potential curves” or simply “Floquet curves.” The field-dressed curves (Floquet curves) correspond to the field-free adiabatic molecular potential curves that are shifted in energy by one or several photons due to the interaction with the laser field. The shift in energy depends on the net number of photons the molecule absorbs from the field. We used short laser pulses in our simulation for which the CW Floquet picture may not be applicable without restrictions. The Floquet picture is a very good reference for the description of laser-molecule interactions with laser pulses of finite duration.

![Figure 4.2](image.png)

**Figure 4.2.** Laser-dressed adiabatic molecular potential curves for $D_2^+$ and a 500 nm CW laser field with an intensity of $5 \times 10^{11}$ (solid red lines) and $10^{13}$ W/cm² (dashed-dotted blue lines). Thin black dashed lines show field-free BO potential curves.

As an example, Fig. 4.2 shows the field-dressed adiabatic potential curves for $D_2^+$ in a 500 nm CW laser field for two different intensities, $5 \times 10^{11}$ (solid red lines) and $10^{13}$ W/cm² (dashed-dotted blue lines) [Bates-53]. The curves are labeled as $1s\sigma_g-2n\omega$ and $2p\sigma_u-(2n-1)\omega$, where
corresponding to the field-free potential curves and the net number of photons $2n$ and $(2n-1)$, respectively, that are released to the photon field. The dipole-allowed coupling between field-free potential curves of gerade and ungerade symmetries \cite{Bransden-03}, due to the absorption or release of an odd number of photons, leads to characteristic “avoided” crossings between Floquet curves. The avoided crossings near internuclear distances of $R=4$ and $R=3$ correspond to the one and three photon exchange between the molecular ion and the CW laser field, respectively. The gap between the adiabatic Floquet curves increases with increasing laser intensity. Near avoided crossings the BH well, which is also referred to as “vibrational trapping” or “dynamical dissociation quenching” \cite{Chateauneuf-98}, can be formed and the depth and shape of it is laser intensity dependent. At higher intensities it becomes shallower and wider, and, at sufficiently high intensities, loses the ability to bind BH states. The other interesting feature of field-dressed adiabatic curves is BS - dissociation of the molecule due either to classically allowed over-the-barrier escape or by tunneling \cite{Bucksbaum-90, Posthumus-04}. The less energetic Floquet potential curve below the gap forms a barrier that may enable BS dissociation.

In sections 4.2.1- 4.2.3, the bound and dissociating nuclear motion of $D_2^+$ in a laser pulse are discussed by examining how power spectra are affected by the laser pedestal parameters intensity, frequency, and duration. Even though all simulations were carried out for laser pulses with a finite pulse length (including the pedestal), it is shown that the terminology developed based on the Floquet picture is appropriate. For example, even though stable BH states can only exist in CW laser fields, evidence for transient BH states in laser pulses over a large range of pulse lengths is found.

### 4.2.1 Intensity dependence

The $R$-dependent power spectra $P(R,\omega;T)$ for $D_2^+$ propagating through 200 nm 20 fs (FWHM) Gaussian pedestal laser pulses are shown in Fig. 4.3 for different peak intensities (upper panels) and the corresponding Floquet field-dressed potential curves, which are displayed in red in the lower panels. The three different pedestal intensities are $10^{13}$ (left), $5\times10^{13}$ (middle), and $10^{14}$ W/cm$^2$ (right column). Note that the thin black lines in the lower panels correspond to the field-free adiabatic molecular potential curves. As for all other numerical results shown below, the molecular ion is assumed to be produced by the rapid ionization of D$_2$ and is characterized by a FC distribution of stationary vibrational states, as described in Chapter 3.4.1.
The nodal structure of the spectra is due to the beating of two adjacent stationary vibrational states $|\chi_\mu\rangle$ and $|\chi_\nu\rangle$ with frequency $f = \Delta\omega_{\mu,\nu} / 2\pi$ [Thumm-08]. The thin black vertical lines link the minima of the 1-$\omega$ BH wells in the power spectra (upper row of graphs in Fig. 4.3) to BH wells in the Floquet potential curves (lower row). For the given intensities, the power spectra show a significant amount of nuclear probability density that is intermittently trapped in the 1-$\omega$ BH well.

![Figure 4.3](image.png)

**Figure 4.3** R-dependent power spectra for a logarithmic color scale (a)-(c) and field-dressed potential curves (res lines) (d)-(f) of $D_2^+$ for different pedestal intensities. Graphs are plotted for 200 nm pedestal laser pulses with intensities of $0.1 \times 10^{14}$ W/cm$^2$ [(a) and (d)], $0.5 \times 10^{14}$ W/cm$^2$ [(b) and (e)], and $1 \times 10^{14}$ W/cm$^2$ [(c) and (f)].

As the intensity increases the nuclear probability density in the 1-$\omega$ BH well increases due to the increase of probability that is associated with the bound motion of the molecular ions in field-dressed $1s\sigma_g$ potential curve. The calculations for intensity-dependent power spectra
confirm the intuitive expectations. First, the dissociation due to classical over-the-barrier motion of the two nuclei or by tunneling across the 1-ω BS barrier increases with increasing peak intensity. Second, BS progresses from depleting the highest vibrational state components of the nuclear wave packet with vibrational quantum numbers $\nu \geq 4$ (left column in Fig. 4.3) to the lowest vibrational components of the initial FC distribution (right column).

**Figure 4.4** Same as Fig. 4.3, but for 800 nm pedestal laser pulses.

### 4.2.2 Wavelength dependence

The same power spectra as in Fig. 4.3, but calculated for 800 nm in Fig. 4.4, indicate that the nuclear motion in $D_2^+$ sensitively depends on the carrier wavelength. This dependence can be understood within the Floquet picture. As the photon energy decreases, the spacing in energy between Floquet potential curves decreases. This decrease increases the significance of couplings between more than two curves, which, in turn, may result in the overlap of (1-ω with 3-ω) BH
wells, reducing the BH effectiveness of the resulting, flatter, well. At 800 nm and $10^{13}$ W/cm$^2$ peak intensity (left column in Fig. 4.4), the power spectrum shows only weak evidence for the temporary trapping of nuclear probability density in the 1-ω BH well that is centered near $R=5$. The molecular ion remains most likely bound in the electronic ground state. At the higher intensities (middle and right columns), dissociation via BS becomes increasingly important but cannot be as clearly assigned to the 1-ω BS barrier as for the case of 200 nm wavelength.

For the 800 nm and $5\times10^{13}$ W/cm$^2$ case shown in the middle column of Fig. 4.4, the corresponding 1-ω BH well has disappeared in the Floquet potential curve in graph (e) and most of the BH happens on the 3-ω BH well centered at smaller distances near $R=3.5$ in the power spectrum. The same can be seen for the $10^{14}$ W/cm$^2$ intensity (right column). Note that despite the absence of the BH well on graph (e), graph (b) also shows weak evidence for BH states in the 1-ω well near $R=5$ due to temporary vibrational trapping during the increasing laser intensity of the pedestal.

Figure 4.5 summarizes a more systematic study of the wavelength dependence of BS and BH at a fixed intensity of $10^{13}$ W/cm$^2$. For the different pulse wavelengths, the positions of one (or three) photon crossing(s) are different (thin black lines in the lower panels). For this reason we expect laser wavelength to affect BS and BH. In Figs. 4.5 (a)–(e), the power spectra show that dissociation by BS decreases with increasing wavelength, while the 1-ω BH well moves to larger internuclear distances. A very prominent BH well is visible for 200 nm wavelength in Figs. 4.5(a) and (f). For this wavelength, all vibrational eigenstates in the initial FC distribution above $\nu=2$ are being depleted by BS, while the deep BH well traps even the highest initially occupied vibrational states. In Figs. 4.5(b) and 4.5(g) for 500 nm, the 1-ω BH well is visible but compared to the 200 nm case it has less probability density, while the nuclear motion in the electronic ground state remains bound. This trend continues for 800, 1024, and 1600 nm (the three right columns in Fig. 4.5) to the point that BH in the 1-ω well disappears at 1600 nm. The same conclusion can be drawn from the comparison of Figs. 4.3(c) and 4.4(c) above. As the wavelength increases, BS through and over the 3-ω well becomes energetically possible for an increasing number of stationary vibrational states of the nuclear wave packet. However, as the simulated power spectra show, the peak intensity of $10^{13}$ W/cm$^2$ is too low for three-photon processes to become relevant. Therefore, 3-ω BS and BH are not clearly noticeable in Fig. 4.5. In
the left four columns of Fig. 4.5, the positions of the $1-\omega$ BH well agree in the power spectra and Floquet potential curves.

![Figure 4.5](image)

**Figure 4.5** The power spectra (a)-(e) for the different laser wavelengths of 200 nm [(a) and (f)], 500 nm [(b) and (g)], 800 nm [(c) and (h)], 1024 nm [(d) and (i)], and 1600 nm [(e) and (j)]. (Same logarithmic color scale as in Fig. 4.3) at fixed $10^{13}$ W/cm$^2$ peak intensity pedestal laser pulses. Graphs (f)-(j) are field-dressed potential curves (red lines) for corresponding intensities. Field-free potentials are plotted as thin black lines.

At 1600 nm, however, according to the Floquet picture the $1-\omega$ BH has disappeared and BH is expected to happen near the $3-\omega$ crossing point (Fig. 4.5(j)). This prediction of the CW Floquet picture is not fully confirmed in the power spectrum in Fig. 4.5(e) that shows very weak evidence of $1-\omega$ BH states centered near $R=7$ and no apparent traces of $3-\omega$ BS or BH. This mismatch can be related to the fact that the Floquet picture assumes infinite pulse lengths, while at 1600 nm the power spectrum simulates the propagation of the nuclear wave packet across a pedestal pulse with a length of $L=20$ fs (FWHM), corresponding to the illumination of the wave packet by the pedestal laser pulse over just two optical cycles and with a rapidly changing
envelope. Thus we interpret this discrepancy as due to both the onset of the breakdown of the Floquet picture for short pulses, and more importantly, an effective laser intensity in the power spectra that is much smaller than the peak intensity for which the Floquet curves were calculated.

**Figure 4.6** Power spectra as a function of QB frequency and internuclear distance in log scale. (Same color scale as in Fig. 4.4) for fixed peak intensity of $10^{14}$ W/cm$^2$. The power spectra are plotted for different (200, 800, 1600 nm) wavelengths and pedestal lengths (FWHM 50, 100, and 200 fs).

### 4.2.3 Pulse-length dependence

Figure 4.6 summarizes the pulse length dependence of power spectra for different wavelengths, where the panels are ordered with pedestal wavelengths increasing from 200 (top) to 1600 nm (bottom). From left to right the pedestal length increases from 50 to 200 fs. For each wavelength, the BH probability decreases with increasing pulse length. Intuitively one would expect that for longer pedestals BH would be more pronounced due to longer trapping times, but our simulations show the opposite. We relate this to the dominant influence of the pulse energy - longer pedestals transfer more energy to the molecule. This favors both dissociation by BS
directly from the electronic ground state (leaving less probability to be potentially trapped in a BH well) and the decay of BH states by nonadiabatic couplings to dissociative potential curves that are neglected in the BO approximation [Bransden-03]. For the lower wavelengths, the same pedestal pulse envelope includes more optical cycles. Thus, the power spectrum in Fig. 4.6 with the shortest wavelength and longest pulse duration is the most agreeable to an interpretation within the Floquet picture. However, as shown in the top right corner of Fig 4.6, this trend is somewhat difficult to follow over a large range of pulse lengths, since, for high pulse durations (high pulse energies) BS can dominate to the point that all bound states become depleted. For the 200 nm case, BS depletes the ground state of the molecular ion leaving almost no population for the longest pulse length (200 fs). In contrast, for the higher wavelength cases (800 and 1600 nm), the electronic ground state remains populated at all displayed pulse lengths but, as expected, gets increasingly depleted with increasing pulse length by BS over and through the 1-ω BS barrier. Thus, comparing all the calculated power spectra in Fig 4.6 suggests that BH is most pronounced at the shortest wavelengths and for the shortest pedestals. Adding Fig. 4.3 to the comparison, we can in addition conclude that BH at short wavelengths is robust over a large range in peak intensities.

4.2.4 Conclusion

To summarize, by simulating the $R$-dependent QB power spectra we investigated the nuclear dynamics of the $D_2^+$ molecules in a short laser field for different peak intensities, wavelengths, and pedestal lengths. We focused on dissociation by BS and BH while analyzing the power spectra in terms of field-dressed Floquet potential curves. We confirmed that the Floquet picture is appropriate for characterizing the main features of the nuclear dynamics in few-cycle laser pulses despite its inherent CW assumption, except for the longest wavelengths used in our simulations (1600 nm). Our simulations suggest that pulses with a wavelength between 200 to 300 nm, a peak intensity of about $10^{14}$ W/cm$^2$, and a duration of less than 50 fs (FWHM) are well suited for the observation of transient vibrational trapping of the molecular motion in the 1-ω BH well. At wavelengths of 1600 nm, we found that dissociation proceeds via both 1-ω and 3-ω BS. For the same wavelength, our simulations indicate transient trapping in the 3-ω BH well. To the best of our knowledge, our theoretical findings can be tested experimentally considering existing technology [Alnaser05].
4.3 Dissociation dynamics of $D_2^+$ in strong laser fields

In this sub-chapter, starting with the simple diatomic molecule $D_2$, we investigate dissociation dynamics of diatomic molecules in intense laser fields, test the FT method described in Chapter 3, and compare the calculations with the measured data [Rudenko-07]. In the case of $D_2$, electronic states potentially involved in the dynamics are not so hard to identify, since there are two main states of $D_2^+$, bound $1s\sigma_g$ (the only bound state of $D_2^+$), and repulsive $2p\sigma_u$. These states are widely available from the literature, but we have done *ab initio* calculations using GAMESS code.

![Figure 4.7](image)

**Figure 4.7** (a) Potential curves of $H_2$ and $H_2^+$ calculated using MCSCF/cc-pVTZ method with GAMESS. (b) Dipole couplings. For $R>4$ the dipole couplings are approaching $R/2$ limit.

### 4.3.1 Potential curve calculations

Potential curves and dipole couplings were calculated with the MCSCF/cc-pVTZ method (Details of the method used in the calculations can be found in Chapter 3 and Appendix E). We optimized the molecular geometry of neutral (equilibrium internuclear distance 1.35) and singly charged (equilibrium internuclear distance 2) deuterium molecules using restricted open-shell SCF wavefunctions. Calculations were done for different fixed internuclear separations with steps of 0.05Å. The ground state of $H_2$ ($D_2$) has the configuration $(1\sigma_g)^2$. In the calculations, both of the molecular orbitals $1\sigma_g$ and $1\sigma_u$ were allowed to vary. The electronic state $1s\sigma_g$ ($X^2\Sigma_g^+$) has the configuration $(1\sigma_g)^1(1\sigma_u)^0$ and the state $2p\sigma_u$ ($A^2\Sigma_u^+$) has the configuration $(1\sigma_g)^0(1\sigma_u)^1$. 

39
The calculated $D_2$ and $D_2^+$ curves and dipole couplings are shown in Fig. 4.7. The calculated curves are in excellent agreement with the “known” results based on the solution of time independent Schrödinger equation discussed in Chapter 2 [Thumm-08]. The minimum of the ground state of $H_2$ ($H_2^+$) is at around 1.35 (2.0), and the dipole couplings approach the $R/2$ limit at large $R$.

### 4.3.2 Experiment and theoretical model

The experiment was done using cold target recoil ion momentum spectroscopy (COLTRIMS, also known as a reaction microscopy) with a pump-probe scheme to map the $H_2^+$ nuclear wave packets by three-dimensional CE imaging in intense laser pulses [Rudenko-07]. The laser parameters were 800 nm wavelength, ~10fs FWHM pulse width, and $3\times10^{14}$ W/cm$^2$ intensity. In the pump-probe process a pump pulse singly ionized the molecule, and a probe pulse could photo-dissociate the molecular ion, or ionize it further and Coulomb-explode.

In this particular study we were interested in the photo-dissociation process. The measured proton energy as a function of pump-probe delay was compared to the measured spectra (see the next section). In our theoretical model we solve the two-state TDSE as described in Chapter 3, and using the FT method we plot proton energy as a function of delay. We used 10 fs FWHM pulses with an intensity of $3\times10^{14}$ W/cm$^2$.

### 4.3.3 Results

The measured energy spectrum for the photo-dissociation process is compared with the calculations in Fig. 4.8. The revival time of ~580 fs is reproduced in the calculations, with the wave packet oscillation period ~20 fs (in the $1s\sigma_g$ state). Even a fractional revival is visible at around 290 fs.

The dissociative line coming down from energies around 4 eV and merging with the dissociative energy limit below 1 eV is not relevant. This path comes from so-called “delayed dissociation” [Rudenko-07], that is, dissociative ionization first by the pump and then ionization of the bound part of the wave packet by the probe (not included in the simulation).
Figure 4.8 (a) Measured [Rudenko-07] and (b) calculated proton energy for the process of dissociation of \( \text{D}_2^+ \rightarrow \text{D}^+ + \text{D} \) (logarithmic color scale). The pulse parameters are 10 fs width and \( 3 \times 10^{14} \text{ W/cm}^2 \) intensity.

### 4.3.4 Conclusions

The main features of the measured energy spectra, such as the oscillation period and revivals, are reproduced in the calculation. Our FT method works for small diatomic molecules. The next step is to try heavier molecules (Chapters 5 and 6).

### 4.4 Electron localization

*In this sub-chapter the localization of the electron in an IR field is discussed* [Wu-13-3].

In the previous experiments the asymmetry of the pulses was achieved either by CEP stabilizing a few-cycle pulse [Kling-06, Kremer-09, Znakovskaya-12, Kling-13] or by composing a pulse of two different carrier frequencies [Ray-09, Wu-13-1]. The asymmetric fields drive and eventually localize the bound electron at one of the dissociating nuclei [He-08-1, He-12]. Alternatively, an attosecond pulse [He-08-2, Sansone-10, Singh-10] has been used to first launch a \( \text{H}_2^+ \) vibrational wave packet by single-photon ionization of \( \text{H}_2 \). Next, a phase-locked near-infrared laser pulse drives the remaining electron back and forth between the nuclei until its final localization at one of them, governed by the relative time delay between the excitation and the driving pulses.
This section of the chapter focuses on answering a question - *do symmetric long laser pulses preserve symmetry in breaking chemical bonds?* To answer the question, experiments were done in Frankfurt, Germany using a two-particle-coincidence technique achieving attosecond time resolution in a long circularly polarized multicycle femtosecond laser pulse. This allowed the time resolution of the laser-driven ionization and fragmentation of H$_2$ by relating the instant of ionization of H$_2$ to the ejected electron direction and by subsequently breaking the H$_2^+$ bond in the same pulse. This approach provides an ultrafast stopwatch using the jointly measured directions of two emitted particles as hands (Fig. 4.9). In its basic implementation used here, the technique is extremely robust and easy to use as it is independent of the carrier-envelope phase [Kling-06, Kremer-09, Znakovskaya-12] and pulse length and does not require attosecond pulses [Hentschel-01, Sansone-06, Goulielmakis-04, Drescher-02, Cavalieri-07, Gräfe-08]. It is scalable to more than two particles as each electron carries its individual time stamp [Pfeiffer-11] and can be encoded by using different polarizations. This technique allows the measurement of time

*Figure 4.9 Schematic of an ultrafast stopwatch. The times $t_{\text{start}}$ and $t_{\text{stop}}$ indicate the start and stop times of the stopwatch that are retrieved by coincident detection of the emitted electron and ion from a breaking chemical bond of H$_2^+$. Electrons are indicated as blue “bubbles” and nuclei are shown as red dots. In the bottom panel, the laser field that drives an electron up and down during the breaking of the chemical bond is shown as a red curve with start and stop times indicated by lines. (Figure by Jian Wu with POV-Ray for Windows).*
intervals based on the momentum differences which can be detected with extremely high precision, even for long pulses, thereby providing a powerful tool for ultrafast science.

Figure 4.10 (a) Schematics of coincidence detection of the electron and ion for a circularly polarized laser field (red spiral). At time $t_{\text{pump}}$ the electron is emitted due to the pump pulse and detected at one of the detectors (green circle) with angle $\phi_e$, and the ions are detected coincidently with angle $\phi_i$ on the other detector (orange circle) at probe time $t_{\text{probe}}$. (b) Dissociation dynamics of the singly ionized $H_2^+$. The inset shows the calculated forced left- and right motion of the nuclear wave packet by the laser field (red curve) which finally localizes at one of the nuclei during the dissociation of $H_2^+$ with increased internuclear distance. (Figures by Jian Wu).

### 4.4.1 Experiment

In the experiment the particles emitted from the same molecule are detected in coincidence (Fig. 4.9). As displayed in Fig. 4.10(a), we use the rotating electric field vector of a
circularly polarized long laser pulse as ultrafast clockwork and the coincidence detection of the two particles which are both driven by this clockwork as two hands marking the start and stop of the clock. We then read the time elapsed between start and stop as the angle between the detected particle momenta. This coincident angular streaking technique is used to probe the attosecond dynamics of an electron in a breaking chemical bond of H₂⁺ as shown in Fig. 4.9. By realizing both the pump and probe step in a single near-infrared multicycle circularly polarized pulse (Fig. 4.10(a)), we clearly observe the asymmetric release of the proton by simultaneously tracking the electron localization as a function of the moment of ionization and the proton kinetic energy.

Figure 4.10a illustrates the coincidence detection measurement: at time \( t_{\text{pump}} \) the nuclear vibrational wave packet is launched by the first part of the laser pulse (acting as the pump) releasing one electron from the neutral molecule at the same time. After the ionization the remaining electron is driven by the second part of the same laser pulse (acting like a probe) until its final localization at time \( t_{\text{probe}} \). A vibrational nuclear wave packet is created by the pump on the \( 1s\sigma_g^+ \) potential curve of H₂⁺ at time \( t_i \) as marked in Fig. 4.10(b). The wave packet is coupled to the repulsive \( 2p\sigma_u^+ \) state at a later time \( t_c \) and eventually dissociates into H⁺+H. Due to the coherent superposition of \( 1s\sigma_g^+ \) and \( 2p\sigma_u^+ \) contributions, the nuclear probability density is then localized (asymmetrically) at the nuclei. The electron localization dynamics is governed by the laser phases at the instants of field ionization (\( t_i \)) and at the couplings (\( t_{c,3\omega} \) and \( t_{c,1\omega} \)). The angle of the final momentum of the released electron \( \phi_e \) provides the laser phase at the ionization instant \( t_i \) [Eckle-08-1, Eckle-08-2, Pfeiffer-12, Holmegarrd-10, Wu-12]. In a long pulse and without coincidence detection, the information on the instantaneous field direction is physically meaningless. For an analog clock this would correspond to having one hand of the clock, but lacking an oriented clock face. In our case the orientation of the clock face is given by the dissociation direction \( \phi_i \) of the proton measured in coincidence, which is determined by the laser phases at the field-coupling instants \( t_{c,3\omega} \) and \( t_{c,1\omega} \). The angle difference between the electron and proton momentum vectors (or the electron angle in the molecular frame), \( \phi_e^{\text{mol}} = \phi_e - \phi_i \), is equivalent to the time delay in a traditional pump-probe scheme.

A COLTRIMS [Ullrich-03] reaction microscope was used to measure in coincidence the directions and energies of the ion and electron produced by 35 fs (~13.3 cycle at 790-nm) circularly polarized laser pulses. The experiments were performed with femtosecond laser pulses (35 fs, 790 nm, 8 kHz) produced from a multipass amplifier Ti:sapphire laser system (KMLabs
Dragon). The laser pulses were sent into a standard COLTRIMS setup [Ullrich-03] and focused by a concave reflection mirror with a focal length of 7.5 cm onto a supersonic gas jet. The jet was a mixture of H₂ and D₂ with a ratio of 1:1, so that both targets could be probed under identical conditions. The ions and electrons created by the laser were accelerated by a static electric field (~14.7 V/cm) and detected by two time and position sensitive micro channel plate detectors at opposite sides of the spectrometer. A weak homogeneous magnetic field (~9.2 Gauss) was used to enable the detection of the electrons within a 4π solid angle. The three-dimensional momentum vectors of the correlated ions and electrons were retrieved from the measured time-of-flight and position information during the offline analysis. The polarization of the laser pulse was changed from linear to circular by using a quarter waveplate with its fast-axis orientated at 45° with respect to the input linear polarization. The handedness of the circular polarization could be switched from anticlockwise to clockwise by rotating the fast-axis of the quarter waveplate by 90°.

4.4.2 Methods

In this subsection two different models - semiclassical and quantum mechanical - are discussed for a quantitative insight into the observed localization mechanism. Note that dissociation is considered along the direction of the molecular axis, and only the component of the laser field along this axis is used in our simulations.

4.4.2.1 Semiclassical model

In a semi-classical approach, we model the classical motion of the nuclei on the potential curves of H₂⁺ keeping track of the quantum phases. As illustrated in Fig. 4.10(b), we start the nuclear motion on the 1sσ_g⁺ potential surface at time t_i and consider dissociation along two possible pathways: the 1ω (violet curve) or the net-2ω pathway (pink curve).

We propagate the nuclear wave packet as a classical particle with reduced mass on the potential curves of H₂⁺. Its motion follows Newton’s laws and is driven by the force \( F = -\frac{\partial U}{\partial R} \) [Bocharova-11]. As illustrated in Fig. 4.10(b), the classical nuclear motion in the molecular ion is initiated at the equilibrium distance of the neutral molecule (\( R_0 \approx 1.4 \) a.u.) at time \( t_i \) with an initial energy of \( E_0 = U_{g0} + E_{k0} \) given by the sum of the potential and kinetic energy. An initial kinetic energy (stemming from the finite width of the original wave packet in momentum space)
is given to the particle so that it can reach the one-photon or three-photon energy gap and thus can be laser coupled to the repulsive state. As illustrated in Fig. 4.10(b), the two possible dissociation pathways are: the 1ω pathway (violet curve; propagation on the 1sσ\textsubscript{g}\textsuperscript{+}, followed by coupling to the 2pσ\textsubscript{u}\textsuperscript{+} curve at time \(t_{c,1\omega}\) by absorption of one laser photon, followed by dissociation along the 2pσ\textsubscript{u} curve) or the net-2ω pathway (pink curve; propagation on the 1sσ\textsubscript{g}\textsuperscript{+}, followed by coupling to the 2pσ\textsubscript{u}\textsuperscript{+} curve at time \(t_{c,3\omega}\) by absorption of three photons, followed by propagation on the 2pσ\textsubscript{u}\textsuperscript{+} curve and coupling back to the 1sσ\textsubscript{g}\textsuperscript{+} curve by emitting one photon at time \(t_{c,1\omega}\) followed by dissociation along the 1sσ\textsubscript{g}\textsuperscript{+} curve). For the 1ω and net-2ω dissociation pathways, the accumulated phase of the wave packet during the dissociation from \(R_0\) to \(R_f\) (\(R_f > 100\) a.u.) can be approximated as

\[
\varphi_{1\omega} = (E_{0,1\omega} + \omega_0)(t_{c,1\omega} - t_i) + \varphi_{gu} + (E_{0,1\omega} + \omega_0)(t_f - t_{c,1\omega}) - \int_{R_0}^{R_f} p_{1\omega}(R) dR
\]

\[
\varphi_{net-2\omega} = (E_{0,net-2\omega} + 3\omega_0)(t_{c,3\omega} - t_i) + \varphi_{gu} + (E_{0,net-2\omega} + 3\omega_0)(t_{c,1\omega} - t_{c,3\omega}) - \omega_0(t_{c,1\omega} - t_i) - \varphi_{gu} + (E_{0,net-2\omega} + 2\omega_0)(t_f - t_{c,1\omega}) - \int_{R_0}^{R_f} p_{net-2\omega}(R) dR
\]

where \(\varphi_{gu} = \pi\) is the phase change due to coupling of the gerade state to the ungerade state and \(p_{...}(R)\) is the momentum of the wave packet. The probabilities for electron localization on the left or right nucleus are

\[
P_l = |\psi_l|^2 = \frac{1}{2}|\psi_{1\omega} + \psi_{net-2\omega}|^2
\]

\[
P_r = |\psi_r|^2 = \frac{1}{2}|\psi_{1\omega} - \psi_{net-2\omega}|^2.
\]

By assuming \(|\psi_{1\omega}| = |\psi_{net-2\omega}|\), the asymmetry parameter within this semiclassical model is

\[
\beta_c = \frac{P_l - P_r}{P_l + P_r} = \cos(\varphi_{1\omega} - \varphi_{net-2\omega}) = \cos(\Delta \varphi).
\]

Therefore, the asymmetrical electron localization due to interference between dissociating wave packets on the 1ω and net-2ω pathways is governed by the phase difference between them.

### 4.4.2.2 Quantum model

In our second two-state quantum mechanical model, we numerically solved the one-dimensional TDSE for the vibrational nuclear wave packet [Thumm-08]. The quantum dynamics of the nuclear wave packet is modeled by solving the TDSE in the subspace of the gerade (1sσ\textsubscript{g}\textsuperscript{+}) and ungerade (2pσ\textsubscript{u}\textsuperscript{+}) electronic states of H\textsubscript{2}+ [Thumm-08]. Since mainly the laser polarization component parallel to the molecular axis influences the electron localization dynamics [Kling-
A simplified one-dimensional model is sufficient to reproduce the observed asymmetry in our experiment. The initial vibrational nuclear wave packet in H$_2^+$ is modeled based on molecular Ammosov-Delone-Krainov (ADK) rates for the depletion of the neutral hydrogen molecules as described in references [Niederhausen-08, Brichta-06]. In brief, the molecular ADK rate, which depends on the internuclear distance and instantaneous laser intensity, is integrated over time, divided by two, and exponentiated in order to provide the $R$-dependent neutral-molecule-depletion factor $d$. The initial wave packet in H$_2^+$ is then obtained by multiplying the vibrational (and electronic) ground state wavefunction of the neutral molecule by $(1-d)$ followed by normalization of this product. The launch time defines the detected electron angle $\phi_e$ and corresponds to the instantaneous ionization by the attosecond pulse in the two-color pump-probe experiment [He-08-2, Sansone-10, Singh-10]. After the wave packet is launched, the remainder of the laser pulse is used to drive its motion. We assume the ionization occurs mainly in the seven most intense laser cycles around the pulse peak. The wave packets launched during different laser cycles for the same laser phase (modulo $2\pi$) are coherently added at the end of the propagation from the gerade ($\psi_{net-2\omega}$) or ungerade ($\psi_{1\omega}$) potential curves, respectively. The probability for finding the electron localized on the left or right nucleus is calculated similar to the semiclassical model. Here, in order to determine the kinetic energy spectrum of the ion, we Fourier transform the dissociating parts of the nuclear wave packets to obtain the momentum representations $P_{\omega l}$ and $P_{\omega r}$ and calculate the asymmetry parameter as

$$\beta_q = \frac{P_{\omega l}-P_{\omega r}}{P_{\omega l}+P_{\omega r}}.$$  (4.6)

The peak laser intensity in the simulation, adjusted to obtain the best agreement of the kinetic energy spectra, is $I_0=7.0\times10^{13}$ W/cm$^2$. It is lower than to the peak intensity in the experiment for the linear component along the molecular axis, which is $1.2\times10^{14}$ W/cm$^2$. (We divided the peak intensity for the circularly polarized pulse by 2 to take into account the circular polarization). By using a lower peak intensity in the quantum simulation, we effectively average over the laser intensity profile in the experiment (focal-volume effect).
Figure 4.11 Localization of the electron in the dissociation process of singly ionized H$_2$. (a) Semi-classically calculated asymmetry parameter $\beta_c$ as a function of the laser phase $\omega_0 t_i$ and H$^+$ kinetic energy. (b) Quantum-mechanically calculated asymmetry parameter $\beta_q$. (c) Measured electron localization $\beta_m$ in dissociative single ionization of H$_2$ as a function of the emission angle $\phi_{e mol}^{\text{mols}}$ of the correlated electron in the molecular frame and the H$^+$ kinetic energy.

### 4.4.3 Results

Figure 4.11a displays the semiclassically calculated asymmetry parameter $\beta_c$ as a function of the laser phase at ionization instant $t_i$ and the final kinetic energy $E_k$, in good agreement with our measured asymmetry $\beta_m$ for $E_k > 0.6$ eV. The final kinetic energy from the 1$\omega$ and net-2$\omega$ pathways are $E_{k,1\omega} = E_{0,1\omega} + \omega_0$ and $E_{k,\text{net-}2\omega} = E_{0,\text{net-}2\omega} + 2\omega_0$, respectively.
Interference between the dissociating wave packets requires equal final kinetic energy, i.e., $E_{k,1\omega} = E_{k,\text{net}-2\omega}$.

This requirement and the applied initial kinetic energy give the lower limit of the final KER in the classical calculation. To compare with the emission angles of the electron for circular polarization, the absolute phase of the laser is shifted by 90° in the simulation. This accounts for the 90° rotation of the electron angle due to the angular streaking. Figure 4.11b depicts the results from the quantum calculation, which agrees well with the experiments (Fig. 4.11(c)) for the whole observed kinetic energy range. This confirms that our measured asymmetry is indeed predominantly due to the interference between the $1\omega$ and net-$2\omega$ dissociating wave packets.

### 4.4.4 Summary

Our findings are in contrast to the general belief that electron localization cannot be measured in symmetric laser fields, such as our multicycle laser pulse composed of a single carrier frequency. Our data show that electron localization is not something which has to be artificially enforced by optical means as done so far [He-08-1, He-08-2, Kling-06, Kremer-09, Ray-09, Sansone-10, Singh-10, Znakovskaya-12], but that it occurs naturally, even in pulses which are perfectly symmetric. This ubiquitous localization is, however, hidden to all techniques which detect only one particle, thus integrating over all time delays. Our coincidence technique in contrast looks into the electron dynamics with attosecond resolution and shows the underlying dynamics in a very transparent and general way.

The technique to measure time spans by coincidence detection using the rotating electric field vector of circular or elliptical laser light as a clock is highly versatile. The key advantage as compared to techniques detecting only one particle from a sequence of events is that the time resolution is not limited by the width of the pulse as demonstrated in the present work. Coincidence techniques allow the measurement of time intervals based on the differences in momenta (in either magnitude or direction) which can be detected with extremely high precision, even for long pulses, thereby providing a powerful tool for ultrafast science.
Chapter 5 - OXYGEN MOLECULES IN IR LASER FIELDS

In this chapter the dissociation dynamics of \( \text{O}_2^+ \) molecular ions in IR fields is summarized.

5.1 Introduction

Significant advances in femtosecond laser technology have made it possible to control and analyze the nuclear dynamics in small diatomic molecules [Zewail-88, Niikura-06, Posthumus-04]. In particular, the nuclear dynamics in \( \text{H}_2 \) and \( \text{D}_2 \) molecular ions have been studied by analyzing the measured (or calculated) KER spectra of the fragments produced by ultra-short IR pulses with a carrier wavelength of 800 nm and pulse lengths between 7 fs and 20 fs [Bocharova-11, De-11]. In comparison with heavier molecules, the vibrational nuclear motion in \( \text{H}_2^+ \) (and its isotopes) is simple as it primarily involves the two lowest adiabatic potential curves of the molecular ion. For \( \text{H}_2^+ \), the dissociative wave packet emerges mainly on the repulsive \( |2p\sigma_u> \) state, while a bound oscillating part of the wave packet may remain in the electronic ground state \( |1s\sigma_g> \) (see Chapter 4). The extension of these investigations to heavier molecules is not straightforward, and the interpretation of experimental data is intricate due to the large number of molecular potential curves involved. By analyzing KER spectra from dissociated oxygen ions as a function of the time delay, we found that several intermediate electronic states of the molecular ion usually contribute to the same KER [Bocharova-11, De-10, De-11]. In references [Bocharova-11] and [De-11], we studied the dynamics of \( \text{N}_2 \), \( \text{O}_2 \), and \( \text{CO} \) molecules in intense laser pulses using the CE imaging technique. In comparison with classical and quantum mechanical simulations, we identified transiently populated intermediate states for molecular ions in different charge states and associated dissociation pathways. The occurrence of vibrational revivals in measured KER spectra was scrutinized in reference [De-10] and allowed the identification of relevant molecular potential curves.

In this chapter we present a method for identifying the relevant electronic states involved in the dynamics of the \( \text{O}_2 \) molecule. First we employ the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry code [Gordon-05] to calculate potential curves and dipole coupling strengths between adiabatic potential curves using the multi-configuration (MC) self-consistent field (SCF) method with a correlation consistent (cc) polarized triple-\( \xi \) (pVTZ) basis set (MCSCF/cc-pVTZ) [Schmidt-98, Cramer-04]. Next, in Sec 5.3, we numerically solve the TDSE for the evolution of a given initial vibrational wave packet in the molecular ion on a given BO potential curve. In our quantum mechanical calculations, we
neglect molecular rotation and model the initial state of the molecular ion by assuming instantaneous ionization of the neutral parent molecule in the pump pulse based on the Franck-Condon approximation [Bransden-03]. Our calculations provide KER spectra as a function of the pump-probe delay that reveal the vibrational period and revival times of binding molecular potential curves. The vibrational period and revival times in a given electronic state serve as a first criterion for selecting relevant potential curves. This selection process starts by comparing simulated KER spectra that were obtained in separate calculations under the assumption that the nuclear motion in the molecular ion proceeds on a single electronic potential curve with measured KER spectra [De-11]. This comparison involves the scrutiny of simulated and measured KER spectra as a function of time and frequency. For this purpose we derive internuclear-distance (R)-dependent power spectra [Thumm-08, Magrakvelidze-09, Winter-10, Feuerstein-07, Niederhausen-08] by Fourier transformation of the calculated time-dependent nuclear probability density. The power spectra allow us to identify vibrational QB frequencies associated with the bound motion of the vibrationally excited molecular ion. This enables us to further scrutinize the relevance of any given binding electronic state of the molecular ion by comparing revival times [Robinett-04], oscillation periods, and QB frequencies with measured values.

After comparing separate calculations performed for individual BO molecular potential curves with measured KER spectra, we select a small set (in this work two) of curves that agree best with the measured data. In a final separate calculation, we then investigate the dissociative dynamics of the molecule, including dipole couplings between the selected electronic states of the molecular ion in the electric field of the probe-laser pulse (Sec.5.3.2). As an example we present numerical results for the dissociation of O$_2^+$ molecules. In Sec. 5.3.3 we compare two alternative methods for deriving KER spectra in nuclear wave-function-propagation calculations. The effect of an added long-probe pedestal is investigated in Sec. 5.3.4. Section 5.4 compares measured KER spectra for O$_2^+$ ions [De-11] with simulated spectra for dipole-coupled potential curves [Magrakvelidze-12-1]. A brief summary and our conclusions follow in Sec. 5.5.

5.2 Potential curve and dipole coupling calculations

For our calculations we used the MCSCF method (See Chapter 2), where a linear combination of configuration state functions (CSF), i.e. Slater determinants of MOs, are
employed to approximate the exact electronic wavefunction of a system. This is an improvement over the HF method where only one determinant is used. By variation of the set of coefficients in the MCSCF expansion in addition to the simultaneous variation of MO coefficients in the basis set expansion, the total electronic wavefunction for a given BO channel is obtained with the lowest possible energy for a given set of occupied and active orbitals [Hartree-28, Roothaan-51] (See Appendix E for input and output examples).

5.2.1 Gaussian basis set

In our calculations we choose AOs that are modeled as Gaussian functions centered at each nucleus of the diatomic molecule (or molecular ion). These AO orbitals are linearly combined to form MOs with a set of expansion coefficients \( \{a_i\} \). The MOs are multiplied with electron spin orbitals and combined to make Slater determinants in order to satisfy the Pauli Exclusion Principle. The CSF wavefunctions are equivalent to these Slater determinants and are linearly combined to create the MC wavefunction with coefficients \( \{A_k\} \). The expansion coefficients \( \{a_i\} \) and \( \{A_k\} \) are determined simultaneously based on a variational principle [Bransden-03].

For the accuracy of the calculated potential curves, it is very important to choose appropriate basis functions. The basis set is the set of (mathematical) functions (for example Gaussians) from which the wavefunction is constructed. Since HF and MCSCF methods are variational, larger basis sets tend to produce more accurate results. The basis set with two Gaussians on each AO is called a double-\( \xi \) basis. The higher the number of Gaussians used for each AO the more complete the basis is (multiple-\( \xi \) basis set). We used the Dunning-type correlation-consistent polarized valence triple-\( \xi \) basis set (cc-pVTZ) [Dunning-89]. The “Dunning-type basis set” is an example of a multiple-\( \xi \) basis set. The “correlation-consistent” part of the name indicates that the basis set was optimized for calculations including electron correlation through excited CSFs.

5.2.2 Configuration state function

We calculated potential curves and dipole-coupling strengths between adiabatic potential curves using the MCSCF/cc-pVTZ method. The MCSCF wavefunctions were optimized with the \( [(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^2(2\sigma_u)^2] \) “frozen core”, meaning that the occupations of those MOs were not
allowed to vary. The calculations were done for fixed internuclear separations $R$ with steps of 0.02 Å. Dipole-coupling matrix elements for different $R$s were calculated including configuration interaction within the graphical unitary group approach (GUGA) [Gould-90].

The ground state of the oxygen molecule has the configuration $[(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^2(2\sigma_u)^2](3\sigma_g)^2(1\pi_u)^4(1\pi_g)^2$. A large number of final molecular ion states with different multiplicities and symmetries can be generated after valence photoionization. Those states are given in Table 5.1. The table shows the main configurations that contribute more than 70% to the norm of the MCSCF wavefunction. GAMESS outputs only designate electronic configurations. To link the calculated potential curves and dipole-coupling matrix elements to a given MCSCF state, we used Table 5-1.

**Table 5.1. The electronic configurations of the calculated states of O$_2^+$.**

<table>
<thead>
<tr>
<th>State</th>
<th>Main electronic configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X^2\Pi_g$</td>
<td>$1\sigma_g$ $1\sigma_u$ $2\sigma_g$ $2\sigma_u$ $3\sigma_g$ $1\pi_u$ $1\pi_u$ $3\sigma_u$</td>
</tr>
<tr>
<td>$a^4\Pi_u$</td>
<td>$2$ $2$ $2$ $2$ $2$ $3$ $2$ $0$</td>
</tr>
<tr>
<td>$A^4\Pi_u$</td>
<td>$2$ $2$ $2$ $2$ $2$ $3$ $2$ $0$</td>
</tr>
<tr>
<td>$^4\Sigma_u^+$</td>
<td>$2$ $2$ $2$ $2$ $3$ $1$ $1$</td>
</tr>
<tr>
<td>$f^4\Pi_g$</td>
<td>$2$ $2$ $2$ $2$ $2$ $3$ $0$</td>
</tr>
</tbody>
</table>

The MCSCF process minimizes energy using the variational principle. “Root switching” can be a problem if two states are close in energy and MO and CSF coefficients are only optimized for one MCSCF state. To avoid this problem, we carried out state-averaged MCSCF calculations [Diffenderfert-82], where MO orbitals are optimized not for any one state energy $E_j$ (which is usually the ground state), but for the average of two or more states $\bar{E} = \sum_j^n w_j E_j$, where $N$ is the number of states (in our case 14) included in the average, and the coefficients $w_j$ are positive constants with normalization $\sum_j w_j = 1$. The MCSCF wavefunctions are optimized to minimize the energies $E_j$. The number of MOs used in the variation space was 60; the number of the Cartesian Gaussian basis functions (atomic orbitals) used was 70. In MCSCF calculations, the specification of how many MO are occupied is crucial. One needs to specify the so-called “active” space. We use the notation- “($m$, $n$)” where $m$ is the number of active electrons and $n$ is the number of orbitals (Chapter 2). As an active space we used MCSCF (7, 6) for O$_2^+$. The six orbitals are the $\sigma$, $\pi$, $\sigma^*$, and $\pi^*$ orbitals of O$_2$.  

53
5.2.3 Geometry optimization

When performing computations it is important to understand the geometry of the molecule, since many of the physical and chemical properties of the molecule depend on it. We optimized the molecular geometry of neutral (equilibrium internuclear distance 1.152Å) and singly-charged (equilibrium internuclear distance 1.087Å) oxygen molecules using restricted open-shell SCF wavefunctions, where the occupation of closed shells by the electrons are assumed to be fixed, with the wavefunctions represented as a single Slater determinant. “Restricted” indicates that the spin-up and spin-down orbital coefficients in the expansion and energies are the same. The symmetry used was D₄₋ for the linear molecule with inversion center [Cotton-90], since the full Dₓ₄ point group is not supported in GAMESS.

5.2.4 Results

Four of the calculated electronic states for the O₂⁺ molecular ion are shown in Fig. 5.1. For selected states (a₄Πᵤ and f₄Πₛ states), we compared data from the literature [Marian-82] with our MCSCF/cc-pVTZ results and found good agreement for both adiabatic potential curves and electric dipole transition matrix elements Dᵢⱼ between two adiabatic electronic states that correspond to potential curves Vᵢ(R) and Vⱼ(R), where indices i and j label electronic states. As an example, our calculated potential curves for the a₄Πᵤ and f₄Πₛ states of O₂⁺ and their dipole-coupling matrix elements are compared to results in [Marian-82] in Figs. 5.2 (a) and (b) respectively. In Marian et al. [Marian-82], a multi-reference double-excitation configuration interaction (MRD-CI) treatment [Buenker-83] and a double-ζ basis set were used in the calculation (MRD-CI/DZP). MRD-CI includes electron correlation from excited determinants in addition to correlation within the active space. To make sure that our MCSCF/cc-pVTZ method was sufficient compared to calculations that better represent electron correlation, we performed full second-order CI calculations (FSOCI) for the a₄Πᵤ state at four different internuclear distances. FSOCI calculations are similar to MRD-CI but include single and double excitations, while MRD-CI includes only double excitations. Blue dots in Fig. 5.2 (a) indicate results from FSOCI/cc-pVTZ calculations which are in good agreement (within 0.7%) with our MCSCF calculations (red line in Fig. 5.2 (a)). The computational time for FSOCI calculations is 3 orders of magnitude larger than for MCSCF calculations. Since the calculated values from both
methods are similar, we used the numerically less expensive method (MC-SCF) for obtaining electronic states and dipole-coupling matrix elements. Using a larger cc-pVTZ basis set than the basis used in [Marian-82], we can be confident that our calculated results are at least as accurate with regard to the complete basis set limit.

Figure 5.1 Calculated potential energies for the O$_2^+$ molecule using the MCSCF/cc-pVTZ method. The zero of the energy axis is taken as the $v = 0$ level of the $X^3\Sigma_g^-$ ground state of O$_2$.

Figure 5.2 (a) Calculated potential energies and (b) dipole coupling elements from [Marian-82] using the MRD-CI/DZD method in comparison with our MCSCF/cc-pVTZ application. Blue dots in (a) correspond to the FSOCI-cc-pVTZ method.
5.3 Nuclear dynamics

5.3.1 Free nuclear motion in a single electronic state (single-cation-curve calculations)

The dynamics of the nuclear vibrational wave packet can be reconstructed from the KER spectra obtained for a sequence of pump-probe delays \( \tau \). This is shown schematically in Fig. 5.3 for the \( a^4 \Pi_u \) and \( f^4 \Pi_g \) states where a pump pulse singly ionizes an oxygen molecule. In general, the pump pulse can ionize oxygen molecules to any state of \( O_2^+ \), for example the \( X^2 \Pi_u \) and \( b^4 \Sigma_g^- \) states, but as our calculations show, several characteristic parameters, such as the oscillation period, revival time, and QB frequency for the \( a^4 \Pi_u \) state match the experimental data best. The probe pulse is assumed to be linearly polarized along the molecular axis throughout this work. The excited oxygen molecule can dissociate through a one-photon or net two-photon process. In order to reveal relevant intermediate electronic states of the molecular ion, we compared the oscillation period and revival times of the bound motion of the wave packet in a given electronic state with measured values. We also checked whether transitions between these states are dipole allowed and calculated the strength of their dipole coupling in the electric field.

To identify which of the states are main contributors to the dynamics, we allow the wave packet to freely propagate separately on individual adiabatic potential curves \( V_i(R) \) of the
molecular ion. We assume the propagation times to be short enough to neglect the rotation of the molecule and solve the 1-D TDSE

\[ i \frac{d}{dt} \psi_i = \left[ T_R + V_i(R) \right] \psi_i \]  

(5.1)

where \( T_R = -\frac{1}{2}M \frac{\partial^2}{\partial R^2} \) is the kinetic energy operator of the nucleus with mass \( M \), \( V_i \) are the electronic states.

Starting with a neutral \( \text{O}_2 \) molecule in the ground state, we model the creation of the \( \text{O}_2^+ \) vibrational wave packet by the pump pulse in the FC approximation [Bransden-03, Thumm-08, Magrakvelidze-09]. We solve (5.1) for the initial wave packet

\[ \psi_i(R, t = 0) = \sum_v a_{i,v} \phi_{i,v}(R) \]  

(5.2)

that is expressed in terms of the FC amplitudes \( a_{i,v} \). The index \( v \) corresponds to vibrational states \( \phi_{i,v} \) in the \( i \)'th bonding adiabatic electronic state of the molecular ion with vibrational energy \( \omega_{i,v} \). We usually assume real amplitudes \( \{a_{i,v}\} \).

After calculating the spectrum \( \{\omega_{i,v}\} \) by either diagonalization of the single-curve Hamiltonian \( T_R + V_i(R) \) or by numerical wave-packet propagation of (5.1) subject to the initial condition (5.2), we obtain the field-free evolution of (5.2)

\[ \psi_i(R, t) = \sum_v a_{i,v} \phi_{i,v}(R)e^{-i\omega_{i,v}t}. \]  

(5.3)

Repeating single-curve calculations for several potential energy curves (we use one bound potential curve at a time), we aim at identifying relevant electronic states by comparing characteristics of the bound wave packet motion in \( V_i(R) \), such as vibrational periods \( T_i \) and full and partial revival times \( T_{rev,i} \) [Robinett-04], with pump-probe-delay-dependent measured KER data [Bocharova-11, De-10, De-11, Zohrabi-11, Magrakvelidze-12-2, 12-1].

We obtain additional information for selecting electronic states that participate in the bound and dissociative nuclear motion of the molecular ion by comparing probability densities obtained from single-curve calculations with measured KER spectra as a function of the pump-probe delay and QB frequency [Thumm-08, Magrakvelidze-09, Winter-10, Feuerstein-07, Niederhausen-08]. The comparison of probability density as a function of propagation time and QB frequency with measured KER spectra gives information about oscillation period and revival times of the bound motion of the wave packet in a given electronic state. By splitting the nuclear probability density
\[ \rho_i(R, t) = |\Psi_i(R, t)|^2 = \rho_i^{\text{incoh}}(R) + \sum_{\mu \neq \nu} a_{i,\mu}^* a_{i,\nu} e^{-i\omega_{\mu,\nu} t} \varphi_{i,\mu} \varphi_{i,\nu} \] (5.4)

after getting rid of the incoherent part in equation (5.4) as discussed in Chapter 3, and Fourier transformation the coherent contribution over the finite sampling time \( T \), we obtain power spectrum

\[ W_i(R, \omega) = |\tilde{\rho}_i(R, \omega; T)|^2, \] (5.5)

The frequency resolution in \( \omega_i \) increases with \( T \). Typically, sampling times of the order of a few picoseconds are required to clearly resolve vibrational QB frequencies in the power spectrum of heavy diatomic molecular ions. Examples for single-curve calculations are shown in Fig. 5.4 (a) and (b) for the \( A^2\Pi_u \) and in Fig. 5.4 (c) and (d) for the \( a^4\Pi_u \) states of \( \text{O}_2^+ \). Comparison of the simulated vibrational periods, revival times, and QB frequencies for a number of electronic states with measured KER spectra reveals the \( a^4\Pi_u \) state as the best match to the experimental oscillation period and the beat frequencies. Table 5.2 shows a comparison of the calculated and measured parameters (oscillation period, revival time, and QB frequencies) for each potential curve we tried in our calculations. The best match to the measured ones is obtained for the state \( a^4\Pi_u \).

Figure 5.4 Single-curve calculations for the \( A^2\Pi_u \) (a,b) and \( a^4\Pi_u \) (c,d) states of \( \text{O}_2^+ \). Nuclear probability densities (a,c) and corresponding power spectra (b,d).
Table 5.2 Comparison of calculated and measured revival times and QB frequencies for electronic states of O$_2^+$.

<table>
<thead>
<tr>
<th>State</th>
<th>Oscillation period (fs)</th>
<th>Revivals (fs)</th>
<th>(THz) QB frequency $(ν=1 \rightarrow ν=2)$</th>
<th>Oscillation period (fs)</th>
<th>First full Revivals (fs)</th>
<th>(THz) QB frequency $(ν=1 \rightarrow ν=2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>X$^2Π_g$</td>
<td>17</td>
<td>670</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a^4Π_u$</td>
<td>33</td>
<td>1400</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A^2Π_u$</td>
<td>36</td>
<td>1200</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b^4Σ_g^-$</td>
<td>29</td>
<td>900</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.3.2 Nuclear dynamics on dipole-coupled electronic states

After conducting single curve calculations for several potential curves of O$_2^+$ and identifying the states by their oscillation periods, revival times and QB frequencies matching the measured values ($a^4Π_u$ and $A^2Π_u$), we have carried out a full solution of the TDSE (Eq.9, see below) by including the combination of states $a^4Π_u / f^4Π_g$, $a^4Π_u / 4Σ_g^+$, and $A^2Π_u / 2Σ_g^+$ in our two-state calculations in order to understand the dissociation channels (the best match to the measured KER corresponds to the $a^4Π_u / f^4Π_g$ process).

Modeling the coherent motion of nuclear vibrational wave packets on several FC-populated adiabatic potential curves of the diatomic molecular ion, we allow for dipole couplings of (coherently launched) nuclear wave packets $Ψ_i(R,t)$ in the electric field of the probe laser pulse by numerically propagating the coupled TDSE with initial condition (5.2) [Thumm-08, Magrakvelidze-09, Winter-10, Feuerstein-07, Niederhausen-08].

$$i \frac{d}{dt} Ψ_2 = (T_R + V_1 \begin{pmatrix} D_{21} & D_{12} \end{pmatrix} T_R + V_2) Ψ_1 . \tag{5.6}$$

Fourier transformation of the total nuclear probability density

$$ρ(R,t) = \sum_i ρ_i(R,t) \quad i = 1,2 \tag{5.7}$$

as discussed in Chapter 3.4 for the sampling time $T$ leads to a power spectrum

$$W(R, ω) = |\hat{ρ}(R, ω; T)|^2 . \tag{5.8}$$

In order to simulate KER spectra, we numerically propagate the coupled equations (5.6) for a sufficiently long time $t_{max}$, including field-free propagation of the nuclear wave packets for
typically ~800 fs after the action of the probe pulse ($t_{\text{probe}}=10$ fs). This allows us to separate the bound and dissociating parts of the nuclear motion in terms of the internuclear distance $R$, such that the probability current associated with the dissociation of the molecular ion has no relevant contributions for $R>R_1$, whereas bound motion remains restricted to distances $R<R_1$ (see Fig. 5.5). Fourier transformation of the dissociating parts of the nuclear wave packets over the interval $[R_1, R_{\text{max}}]$ (typically $R_1=4$ and $R_{\text{max}}=330$ in our calculations) then yields the momentum representation of the dissociating wave packets

$$\Psi_i^{\text{diss}}(P, t_{\text{max}}) = \int_{R_1}^{R_{\text{max}}} dR \Psi_i^{\text{diss}}(R, t_{\text{max}}) e^{-iPR} \quad ,$$

and the momentum representation of the total wave packet (after Fourier transforming the total wave packet $\Psi_i(R, t)$):

$$\Psi_i(P, t_{\text{max}}) = \int_0^{R_{\text{max}}} dR \Psi_i(R, t_{\text{max}}) e^{-iPR} \quad ,$$

where $R_{\text{max}}$ (typically about 330 for converged results) is related to the size of the numerical grid. By incoherently adding the corresponding momentum distributions, we obtain the pump-probe-delay ($\tau$) - dependent distribution of fragment KERs as discussed in Chapter 3.7.

![Figure 5.5](image)

**Figure 5.5 (a)** Probability density $\rho(R; t)$ (Eq.5.4) for $O_2^+$ at fixed pump-probe delay $\tau = 10$ fs for the $a^4\Pi_u - f^4\Pi_g$ two-state calculation. The yellow dashed line corresponds to $R_1 = 4$. The vibrational wave packet is considered purely dissociative and is propagated for 800 fs after the probe pulse. **(b)** Probability density as a function of internuclear distance $R$ at $t = 800$ fs (logarithmic scale).

Figure 5.5 shows the probability density (see equation (5.4)) as a function of propagation time and the internuclear distance at fixed pump-probe delay ($\tau = 10$ fs) for a calculation with two coupled states, $a^4\Pi_u$ and $f^4\Pi_g$. In this calculation we assumed that initially only the $a^4\Pi_u$
state is populated, through a Franck-Condon transition from the ground state of \( \text{O}_2 \). However, we found that the KER spectra do not change if initially both \( a^4\Pi_u \) and \( f^4\Pi_g \) states are equally populated. The delayed probe-pulse dipole couples the initial wave packet motion with the \( f^4\Pi_g \) state. As mentioned above, for the KER spectra calculations we took only the dissociative part of the wave packet into account. The horizontal yellow dashed line indicates the internuclear separation \( R_1=4 \), beyond which the wave packet is considered as purely dissociative. Figure 5.5 (b) shows the probability density on a logarithmic scale as a function of the internuclear distance 800 fs after the pump pulse.

![Probability Density](image)

**Figure 5.6 Calculated KER spectra for the dipole-coupled states \( a^4\Pi_u \) and \( f^4\Pi_g \) as a function of pump-probe delay for (a) \( R_1=3 \), (b) \( 4 \), (c) 4.5, and (d) 5 for a 10 fs, \( 3 \times 10^{14} \) W/cm\(^2 \) probe laser pulse.**

We investigated the effect of the parameter \( R_1 \) on the KER spectra. The calculated KER, obtained using the FT method, as a function of pump-probe delay is given in Fig. 5.6 for 10 fs, \( 3 \times 10^{14} \) W/cm\(^2 \) probe pulses, and for \( R_1=3 \) (Fig. 5.6 (a)), \( R_1=4 \) (Fig. 5.6 (b)), \( R_1=4.5 \) (Fig. 5.6 (c)), and \( R_1=5 \) (Fig. 5.6 (d)). From Fig. 5.5 (b) one can see that for all values \( R_1>4.5 \) the KER spectra should give the same result. Indeed, the KER spectra shown in Fig. 5.6 (c) (\( R_1=4.5 \)) and (d) (\( R_1=5 \)) are almost the same. We found that simulations with \( R_1 = 4 \) yield the best agreement with measured KER spectra (in Sec.5.4 below).
5.3.3 Comparison with the “virtual detector method” for simulating KER spectra

In addition to the FT calculations, we also applied an alternative method, the so-called “virtual detector” (VD) method, described in Chapter 3.8, for obtaining KER spectra [Feuerstein-03]. This method allows the computation of fragment-momentum distributions without propagating the wave packet over a large numerical grid. In these VD calculations only, we used a grid length of \( R_{\text{max}} = 40 \) with spacing \( \Delta R = 0.01 \) (Fig. 5.7). The VD covers the \( R \) interval \([R_{\text{VD min}}, R_{\text{VD max}}] = [6.5, 16.5]\). The calculation was carried out for a total propagation time of 800 fs with time steps of \( \Delta t = 1 \). Applying the VD method, we calculated the momentum expectation value of the fragments, \( p(t_i) \), at each time step \( t_i \). We then combined fragment momenta that fall into small momentum bins in a histogram. From this histogram we obtained the KER spectrum (see [Feuerstein-03] for more details). The KER spectrum obtained with the VD method in Fig. 5.8 is almost identical with our results obtained using the FT method for \( R_1=4.5 \) (Fig. 5.6 (c)).

Figure 5.7 Partitioning of the numerical grid into a propagation, virtual detector (VD), and absorption interval. The VD covers the interval \([R_{\text{VD min}}, R_{\text{VD max}}]\).

Figure 5.8 KER for dipole-coupled \( a^1\Pi_u \) and \( f^1\Pi_g \) states as a function of the pump-probe delay for calculations using the VD method [Marian-82] and a 10 fs, \( 3 \times 10^{14} \) W/cm\(^2\) probe laser pulse.
5.3.4 Influence of a probe-pulse pedestal

Figure 5.9 shows calculated KER spectra for the same laser parameters as in Fig. 5.8 using the FT method, with the exception that \(R_1=4\) and a long Gaussian pedestal [Thumm-08, Magrakvelidze-09, Winter-10], with a length of 100 fs and intensity \(5\times10^{11}\) W/cm\(^2\), is added to the main pulse (see Chapter 4. - Fig. 4.1). Due to the long pedestal a prominent energy-dependent structure appears in the KER spectra. The reason why the energy-dependent structure is present only if a long pedestal is included can be explained based on the relation \(\delta E \delta t \geq \hbar\). If only short pulses are present, the resolution in energy is such that one cannot observe the energy-dependent structure. On the other hand, if only the pedestal of the probe pulse is present, the oscillatory motion cannot be resolved [De-11]. For example, in order to resolve energies up to 0.1 eV, corresponding to the vibrational energy spacing in \(a^4\Pi_u\), one needs to use pulses that are longer than 45 fs. The time-dependent structure is due to the periodic motion of the coherent vibrational wave packet on the given \(O_2^+\) state (the oscillation period for the \(a^4\Pi_u\) state is 33 fs, Table 5.1). A fragment-kinetic-energy dependent structure in the KER spectra was predicted as due to photoionization of vibrational states [De-11, Zohrabi-11].

5.4 Comparison with the experiment

The calculated KER as a function of the delay and the corresponding power spectrum (5.16) as a function of the QB frequency \(f\) for the \(a^4\Pi_u - f^4\Pi_g\) two state calculation are shown in Fig. 5.10 (a) and (b) for a 10 fs probe pulse with a peak intensity of \(3\times10^{14}\) W/cm\(^2\) and a 100 fs
$5 \times 10^{11}$ W/cm$^2$ Gaussian probe-pulse pedestal. Figures 5.10 (c) and (d) show the measured KER and power spectrum for a pump-probe intensity of $3 \times 10^{14}$ W/cm$^2$ and pulse duration of 10 fs. The measurements were done using velocity map imaging (VMI) spectrometer. The sampling time in the experimental spectrum in Fig. 5.10 (d) is $T = 2000$ fs with the revival time 1200 fs (not shown) [De-11]. Comparison with the experimental results in Fig. 5.10 (c) and (d) shows that several features of the experimental data are reproduced.

![Figure 5.10](image)

**Figure 5.10** Calculated (a,b) and measured (c,d) [De-11] KER spectra for O$_2^+$ as a function of pump-probe delay (a,c) and frequency $f$ (b,d). Calculated KER spectra include dipole-coupling of the $a^4\Pi_u$ and $f^4\Pi_g$ states by the 10 fs probe laser pulse with $3 \times 10^{14}$ W/cm$^2$ peak intensity and a 100 fs $5 \times 10^{11}$ W/cm$^2$ Gaussian pedestal. The power spectra (b,d) are obtained for a sampling time of 2 ps.

The oscillatory structure, with a period near 33 fs, is similar to the experimental period near 34 fs. The progressive tilt in the KER with increasing delay complies with a slightly larger return time of the more energetic spectral components of the vibrational wave packet and was noticed earlier in the fragmentation of D$_2^+$ [Ergler-06-2, Feuerstein-07, Niederhausen-08, Feuerstein-03-1] and O$_2^+$ [De-11]: a nuclear wave packet with dominant spectral contribution from low-lying vibrational states oscillates faster than a vibrationally warmer wave packet.
(corresponding to higher KER), causing the KER structure to tilt toward larger delays. The difference in the classical oscillation periods \cite{Feuerstein-07, Niederhausen-08} that correspond to wave packet components centered around on \( \nu=11 \) and 13 vibrational states amounts to \( \sim 2.5 \) fs. This is consistent with the oscillation period difference between the peaks on energy cuts at 0.13 eV and 0.32 eV in the calculated KER spectra. However, the same difference in oscillation periods is obtained from the measured data for 0.14 eV and 0.25 eV.

For better comparison with the measured KER we focal-volume-averaged our calculations for the intensity range \( 10^{13} - 4\times10^{14} \) W/cm\(^2\) with steps of \( 10^{13} \) W/cm\(^2\), keeping the ratio between the peak intensities of the main pulse and the pedestal constant, according to

\[
\overline{C}_{\text{diss}}(E, \tau) = \frac{1}{N} \sum_{n=1}^{N} C_{\text{diss}}(I_n; E, \tau)
\]

(5.11)

where \( C_{\text{diss}} \) is given by (3.36 in Chapter 3.7) (Fig. 5.11) and \( I_n = (n+1)\times10^{13} \) W/cm\(^2\), with \( n=1, ..., N=13 \). The volume averaging effect on the energy-dependent structure is small.

Figure 5.11 (a) Franck-Condon amplitudes \( |a_\nu|^2 \) for the vertical ionization from the ground state of \( O_2 \) to the \( a^4\Pi_u \) state of \( O_2^+ \). (b) Delay-integrated focal-volume averaged KER as a function of the pump-probe delay, with main pulse length 10 fs, Gaussian pedestal length 100 fs, and for \( R_1=4 \). The focal-volume average is performed for peak intensities of the probe pulse between \( 10^{13} \) W/cm\(^2\) and \( 4\times10^{14} \) W/cm\(^2\), with a fixed ratio of the peak intensities of the main pulse and pedestal of 0.01. (c) Delay-dependent focal-volume-averaged KER spectrum.

As in Figs. 5.9 and 5.10 (a), the energy-dependent structure, with a spacing of approximately 0.1 eV, is still seen in the focal volume averaged result (Fig. 5.11 (b)), where the separation between the peaks corresponds to the kinetic energies from the vibrational states in the \( a^4\Pi_u \) electronic state: \( \nu = 10 \) (0.03 eV), \( \nu = 11 \) (0.13 eV), \( \nu = 12 \) (0.23 eV), \( \nu = 13 \) (0.32 eV), and \( \nu = 14 \) (0.41 eV).
eV). The expected KERs in the brackets are calculated as the dissociation energy limit of the $a^4\Pi_u$ state subtracted from the sum of the given vibrational level and photon energy. The vibrational state $v=10$ of the $a^4\Pi_u$ state is energetically just above the dissociation limit of the $f^4\Pi_g - \omega$ field-dressed Floquet potential energy curve. Fig. 5.11 (a) shows the Franck-Condon amplitudes $\langle |a_v|^2 \rangle$ for vertical ionization. The population decreases as the vibrational quantum number increases. Thus, we conclude that the origin of the energy structure likely arises from the vibrational states as predicted in [De-11, Zohrabi-11].

5.5 Summary

To summarize, we developed a method for identifying the adiabatic potential curves involved in the dissociation dynamics that contains three steps. First, we calculate adiabatic potential curves and electric-dipole-coupling matrix elements using the quantum chemistry code GAMESS. Next, we calculate nuclear probability-density spectra as a function of time and QB frequency for one molecular potential curve at a time and compare calculated revival times and QB frequencies with experimental data. After identifying relevant electronic states, we include laser-induced dipole-coupling in improved wave packet propagation calculations and again compare the resulting KER spectra with experimental data. We applied this scheme to O$_2$ molecules. After separately employing different combinations of electronic states of O$_2^+$ in our calculations, we concluded that the $a^4\Pi_u$ and $f^4\Pi_g$ states are key players in the dissociation dynamics, as the calculated and measured KER are similar with matching oscillation periods (see Table 5.2) and revival times (not shown in Fig. 5.10). Calculating KER spectra in nuclear wave packet propagation calculations based on the Fourier-transformation method discussed in Sec. 5.3.2 and the virtual detector method in Sec. 5.3.3, we obtained almost identical results. KER calculations including long probe-pulse pedestals were found to add an energy-dependent structure that is reminiscent of but does not clearly reproduce the energy dependence in measured KER spectra. The interpretation of this observed energy dependence remains a challenge for future investigations.
Chapter 6 - NOBLE GAS DIMERS IN TWO-COLOR IR LASER FIELDS

The focus of this chapter is the study of the dissociation process of noble gas dimer ions by analyzing the KER spectra as a function of the pump-probe delay.

6.1 Introduction

Control and imaging of the nuclear wave packet dynamics of diatomic molecules in real time have been made possible by advances in laser technology [Ullrich-12, Calvert-10]. In particular, pump-probe-spectroscopic imaging is being employed to trace the nuclear motion in both, the smallest diatomic molecules, H₂ and D₂ [Ergler-05, Alnaser-05, Feuerstein-07, Ergler-06-2, Winter-09, Calvert-10], and heavier diatomic molecules, such as O₂, N₂, and CO [De-11, Magrakvelidze-12-1, Bocharova-11], most recently including XUV-pump-XUV-probe experiments at free-electron laser facilities [Jiang-10, Magrakvelidze-12-2]. In these experiments the pump pulse ionizes the neutral molecule and a delayed probe pulse dissociates the molecular ion, revealing the nuclear dynamics in the bound and dissociating molecular ions through pump-probe-delay dependent KER spectra.

The noble gas dimers are more weakly bound and have much larger vibrational periods than the diatomic molecules mentioned above. Binding energies of the neutral dimers are in the 1-25 meV range, orders of magnitude less than the binding energy of the dimer ions. Their vibrational periods are of the order of hundreds of femtoseconds, an order of magnitude larger than those of H₂, O₂, N₂ and CO. Another characteristic feature of all noble gases is that the equilibrium distance of the neutral dimer is larger than for the dimer ion, so that the dimer ions contract after photoionization of the neutral parent dimers, before the molecular-ion nuclear wave packet reflects at the inner turning point of its adiabatic molecular state (Figs. 6.1- 6.3).

All these features, especially their comparatively slow nuclear motion, make noble gas dimers very attractive targets for the detailed investigation of their bound and dissociative nuclear dynamics in pump-probe experiments. For example the properties of the noble gas dimers are very important in the modeling of the larger clusters [Poisson-07]. Due to their weak binding, noble gases are metastable and can be made by cooling [Vassen-12].
Figure 6.1 Schematics of nuclear wave packet motion on generic Ng₂ and Ng₂⁺ states. Point A indicates the center of the Franck-Condon region. Points B-E and C-D correspond to the one photon transitions due to the laser pulses (ω₁ = 1400 or 700 nm and ω₂ = 800 or 500 nm in our calculations).

The focus of this chapter is the study of the dissociation process by analyzing the KER spectra as a function of the pump-probe delay for noble gas dimers Ng₂ (Ng = He, Ne, Ar, Kr, Xe) and to see whether the “delay gap” observed in measured and calculated KER spectra for the Ar₂ dimer ion [Wu-13-2] can also be observed for other noble gas dimers and explained within the same two-color “pump-dump” mechanism. The chapter is organized as follows. Section 6.2 explains the theoretical model. Our numerical results are presented and discussed in Sect. 6.3. In particular, Section 6.3.1 discusses theoretical and experimental results for Ar₂⁺ dimers; Section 6.3.2 covers numerical results for the rest of the noble gas dimers [Magrakvelidze-13]. Section 6.3.2.1 discusses results for the single-cation-curve calculations. Classical vs. quantum aspects of the dissociation process are discussed in Section 6.3.2.2, and KER spectra resulting from the dipole-coupled calculations for the states with and without spin-orbit couplings are shown and discussed in Section 6.3.2.3, followed by a brief summary in Sect. 6.4.
6.2 Theoretical model

Figure 6.1 shows the pump-probe process schematically. The pump pulse singly ionizes a Ng₂ dimer. The nuclear motion in Ng₂⁺ can be traced from the KER spectra as a function of the delay between the pump and probe pulses. The delayed probe pulse (with a different wavelength) dissociates the ionized dimer (Ng₂⁺ → Ng + Ng⁺). Several dissociation paths are possible depending on the central wavelength of the laser pulse. After the ionization, the wave packet starts moving inward from point A of the Ng₂⁺ state (2Σ⁺ₜₜ or I(1/2)ₜ) to the one-photon crossing points B (ω₁) and C (ω₂), where it may undergo a laser-induced transition to higher states of Ng₂⁺ (2Σ⁺₢ or II(1/2)₢), leading to the two different energy bands in the KER spectra depending on the paths ABE or ACD.

As described in Chapter 5, we perform two kinds of calculations. The first are single-cation-curve calculations, in order to identify the wave packet’s oscillating motion on 2Σ⁺ₜ or I(1/2)ₜ bound states of Ng₂⁺. We plot the nuclear wave packet probability density as a function of propagation time and internuclear distance R, obtaining the wave packet revival times and oscillation periods in a given adiabatic molecular state [Magrakvelidze-12-1]. The calculations were done with time steps of Δt = 1, a grid spacing of ΔR = 0.01, and with a numerical grid length of 100 (excluding the absorber length of 10). The second type of calculations includes plotting the KER spectra for the dipole-coupled states. The calculations were done with a numerical grid length of 330 (including the absorber with a length of 20), with the same grid spacing and with the same time steps as in the single-cation-curve calculation.

The potential energy curves used in our calculations are shown in Fig. 6.2 without spin-orbit (SO) couplings and in Fig. 6.3 including SO couplings [Haervmier-10, Gdanitz-00, Gadea-96, Wüst-03, Cohen-74, Ansari-08, Ha-03, Stevens-77, Slavíček-03, Kalus-03, Paidarová-01, Wadt-80, NIST]. The dipole-coupling elements between I(1/2)ₜ–II(1/2)₢ and 2Σ⁺ₜ and 2Σ⁺₢ states were taken from [Gadea-96, Ha-03, Paidarová-01, Wadt-80]. Out of all noble gas dimers, He₂ is the weakest bound, with an energy around 1 meV, and the only one not having SO coupled states (The splitting for He₂⁺ vanishes because it has only s-electrons [Bransden-03]). For all dimers the equilibrium distance for the neutral is larger than the one for the ionic state.
Figure 6.2 Potential energy curves of \( \text{Ng}_2 \) and \( \text{Ng}_2^+ \) dimers, calculated without including spin-orbit coupling. (a) Ground state of \( \text{He}_2 \) (according to [Havermier-10, Gdanitz-00]), and the two lowest states of \( \text{He}_2^+ \) (from [Gadea-96]). (b) Ground state of \( \text{Ne}_2 \) (from [Wüest-03]), and the two lowest states of \( \text{Ne}_2^+ \) (from [Cohen-74, Ha-03]). (c) Ground state of \( \text{Ar}_2 \) (from [Ansari-08]), and the two lowest states of \( \text{Ar}_2^+ \) (from [Ansari-08, Ha-03, Stevens-77]). (d) Ground state of \( \text{Kr}_2 \) (from [Slavček-03]), and the two lowest states of \( \text{Kr}_2^+ \) (from [Kalus-03]). (e) Ground state of \( \text{Xe}_2 \) (from [Slavček-03]), and the two lowest states of \( \text{Xe}_2^+ \) (from [Paidarová-01]).

6.2.1 Free nuclear motion in a single electronic state

The free nuclear motion in a single electronic state has already been discussed in Chapter 5, but we briefly repeat the main points and state the grid parameters here as well. We allow the wave packet to freely propagate separately on individual adiabatic potential curves \( V_i(R) \) of the dimer ion. We neglect the rotation of the dimer and solve the TDSE

\[
\frac{i}{\hbar} \frac{d}{dt} \Psi_i = \left[ T_R + V_i(R) \right] \Psi_i
\]

where \( T_R = -(1/M)\partial^2/\partial R^2 \) is the kinetic energy operator of the nucleus with mass \( M \), and \( V_i \) designates an adiabatic molecular potential curve of a noble gas dimer ion.
Figure 6.3 Potential energy curves of $\text{Ng}_2$ and $\text{Ng}_2^+$ dimers, calculated including spin-orbit coupling. (a) Ground state of $\text{Ne}_2$ (from \cite{Wuest-03}), and the two lowest states of $\text{Ne}_2^+$ (from \cite{Cohen-74}). (b) Ground state of $\text{Ar}_2$ (from \cite{Ansari-08}), and the two lowest states of $\text{Ar}_2^+$ (from \cite{Ha-03}). (c) Ground state of $\text{Kr}_2$ (from \cite{Slavicek-03}), and the two lowest states of $\text{Kr}_2^+$ (from \cite{Kalus-03}). (d) Ground state of $\text{Xe}_2$ (from \cite{Slavicek-03}), and the two lowest states of $\text{Xe}_2^+$ (from \cite{Paidarova-01}).

Starting with the neutral dimer $\text{Ng}_2$ in the ground state we model the creation of the $\text{Ng}_2^+$ vibrational wave packet by the pump pulse in the FC approximation \cite{Bransden-03, Thumm-08, Magrakvelidze-09}. For modeling a more “realistic” ionization process, ADK transition rates \cite{Niederhausen-08, Brichta-06} could be used that give very similar results, so the results we show for single-cation-curve calculations are for FC approximation. We solve (6.1) for the initial wave packet

$$
\Psi_1(R, t = 0) = \sum_\nu a_{1,\nu} \varphi_{1,\nu}(R)
$$

(6.2)

that can be viewed as a coherent superposition of vibrational states $\varphi_{1,\nu}$ in $V_1(R)$ with amplitudes

$$
a_{1,\nu} = \langle \varphi_{1,\nu} | \Psi_{\text{gr}}(R, t = 0) \rangle,
$$

where $\Psi_{\text{gr}}(R, t = 0)$ is the ground state of the neutral dimer. The index $\nu$ corresponds to vibrational states $\varphi_{1,\nu}$ in the $V_1$ vibrational state of the molecular ion with vibrational energy $\omega_{1,\nu}$. By numerical wave packet propagation (Chapter 3) \cite{Thumm-08, Magrakvelidze-09} of (6.1) with the initial condition (6.2), we obtain the field-free evolution of $\psi_1$

$$
\Psi_1(R, t) = \sum_\nu a_{1,\nu} \varphi_{1,\nu}(R) e^{-i\omega_{1,\nu}t}.
$$

(6.3)
Examining the nuclear probability density
\[ \rho_1(R, t) = |\psi_1(R, t)|^2 \]  \hspace{1cm} (6.4)
as a function of the propagation time \( t \) in \( V_1(R) \) allows us to identify oscillation periods and revival times [Bocharova-11, Robinett-04].

### 6.2.2 Dipole-coupled calculation

**Ionization and dissociation by pump and probe pulse**

Nuclear dynamics on dipole-coupled electronic states are discussed in Chapter 3.4 and Chapter 5.3.2, but modeling the ionization in the pump pulse in FC approximation. Here we present the dipole-coupled calculations for the ionization by pump and probe pulses using ADK rates. Starting with neutral \( \text{Ng}_2 \) dimers, the parts of the wave packet from the ground potential of \( \text{Ng}_2 \) \( V_{gr} \) are moved onto the \( \text{Ng}_2^+ \) bound potential curves \( V_1 (\tilde{2} \Sigma_u^+ \text{ or } I(1/2)_u) \) during the pump and probe pulses using ADK transition rates \( \Gamma_{ADK} \) [Niederhausen-08, Brichta-06]. In general, wave packets can be launched onto both bound and repulsive states of \( \text{Ng}_2^+ (V_1 (\tilde{2} \Sigma_u^+ \text{ or } I(1/2)_u), \text{ and } V_2 (\tilde{2} \Sigma_g^+ \text{ or } II(1/2)g)) \), respectively. The part that is launched onto the excited state does not change the main features of the KER spectra. Therefore, we assume that initially only the bound state is populated. The pump pulse and delayed probe pulse can dissociate the \( \text{Ng}_2^+ \) ion. The TDSE for this process can be written as:

\[
\begin{align*}
\frac{i}{\hbar} \begin{pmatrix} \psi_{gr} \\ \psi_1 \\ \psi_2 \end{pmatrix} &= \begin{pmatrix} V_{gr} - i\Gamma_{ADK} \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & D_{21} \\ T_R + V_1 + i\Gamma_{ADK} & D_{12} & 0 \end{pmatrix} \begin{pmatrix} \psi_{gr} \\ \psi_1 \\ \psi_2 \end{pmatrix} \\
&= \begin{pmatrix} V_{gr} - i\Gamma_{ADK} \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & D_{21} \\ T_R + V_1 + i\Gamma_{ADK} & D_{12} & 0 \end{pmatrix} \begin{pmatrix} \psi_{gr} \\ \psi_1 \\ \psi_2 \end{pmatrix} 
\end{align*}
\]  \hspace{1cm} (6.5)

where \( T_R = - (1/M) \frac{\partial^2}{\partial R^2} \) is the kinetic energy of the nuclei, \( \psi_{gr} \) is the ground-state vibrational wavefunction obtained by imaginary time propagation in the ground state \( V_{gr} \) of \( \text{Ng}_2 \), and \( D_{ij} = E(t)d_{ij} \), with \( d_{ij} = \langle \psi_i | R | \psi_j \rangle \), are transition dipole matrix elements between the two cation adiabatic electronic states. The combined external electric field \( E(t) \) of the pump and probe pulses is

\[
E(t, \tau) = E_{01} \cos[\omega_1(t)] \exp \left[ -2ln2 \left( \frac{t}{T_1} \right)^2 \right] + E_{02} \cos[\omega_2(t-\tau)] \exp \left[ -2ln2 \left( \frac{t-\tau}{T_2} \right)^2 \right] \]  \hspace{1cm} (6.6)

The pump (probe) pulse is assumed to have a Gaussian envelope with electric field amplitude \( E_{01} \) (\( E_{02} \), frequency \( \omega_1 \) (\( \omega_2 \), and pulse length (full width – half intensity maximum) \( T_1 \) (\( T_2 \).
Figure 6.4 Probability density of the nuclear wave packet moving on the \( ^2\Sigma_u^+ \) state of \( \text{Ar}_2^+ \) for a pump-probe (800 - 1400 nm) delay of 150 fs and laser intensity \( 10^{14} \text{ W/cm}^2 \). The dashed red line corresponds to the \( R_1=10 \) cut. The 500 fs propagation time begins after the end of the FWHM of the probe pulse.

After the probe pulse has passed, the wave packet is allowed to freely propagate for a sufficiently long time (~500 fs). This allows the nuclear wave packet to completely enter the region \( R > R_1 \) \((R_1=10)\), and the bound part of the wave packet becomes separable from its dissociating part (Fig. 6.4) [He-10]. In order to determine the KER spectrum of the molecular ion, we Fourier transform the dissociating parts of the nuclear wave packet over the interval \([R_i,R_{\text{max}}]\) to obtain the momentum representation,

\[
\tilde{\Psi}_i^{\text{diss}}(P, t) = \int_{R_i}^{R_{\text{max}}} dR \Psi_i^{\text{diss}}(R, t) e^{-iPR},
\]

where \( R_{\text{max}} \) is the maximum size of the numerical grid (310 in our calculations excluding the absorber), and \( R_1 \) is 10. The distribution of the \( \text{Ng}^+ \) fragment energies as a function of the delay can then be written as (Chapter 3.7)

\[
C_{\text{diss}}(E, \tau) \propto \sum_i |\tilde{\Psi}_i^{\text{diss}}(P, t)|^2
\]

where \( E = P^2/2M \) is the energy, and \( P \) is the momentum of the \( \text{Ng}^+ \) fragment. The total KER is twice \( E \).
6.3 Results and discussions

6.3.1 Measured and calculated results for $\text{Ar}_2^+$ dimers

6.3.1.1 Experiment

The experiment was done at the Institute of Nuclear Physics (IKF) in the Goethe University in Frankfurt, Germany. In the experiment a Ti:sapphire laser system was used to generate 780 nm pulses that were split into a pump and probe pulse, then one pulse was sent to an optical parametric amplifier to vary its wavelength (1400 nm). The time delay between the pump and probe pulse was controlled using a motorized translation stage with a step size of 10 fs. Neutral Ar$_2$ was generated from a collimated supersonic gas jet and ionized by linearly polarized laser pulses at various wavelengths. The COLTRIMS apparatus was used to detect charged fragments [Ullrich-03]. The 3D momenta and KER as a function of pump-probe delay of the Ar$^+$ ions from ionization and dissociation events were reconstructed from the detected times of flight and positions of the charged particles.

6.3.1.2 Results

Before conducting a TDSE calculation including dipole couplings, we first try to identify electronic states that contribute to the dissociation dynamics by examining the dynamics of a nuclear wave packet separately on individual adiabatic potential curves of the molecular ion, in our case $^2\Sigma_u$ or $I(1/2)_u$. Looking at the oscillation period and revival times [Bocharova-11, Robinett-04] for each state and comparing those values to the measured ones, we choose the state contributing to the dynamics.

As an example, the probability density (6.4) of the freely propagated wavefunction on the $I(1/2)_u$ potential curve is given in Fig. 6.5. As one can see the revival time for the wavefunction is around 7.4 ps and the wavefunction oscillation period for this state is around 250fs, matching the oscillations observed in the experiment. Thus, the $I(1/2)_u$ electronic state plays a major role in the dissociation dynamics. The $^2\Sigma_u$ state has an oscillation period around 230 fs, close to the experimental value, but the expected KER for this state does not match the measured KER (Table 6.1). Table 6.1 shows all the combinations and expected KERs for the Ar$_2^+$ states with and without SO coupling. The combination of the $I(1/2)_u$ state coupled with the $II(1/2)_g$ state gives an expected KER closest to the experimental values.
Figure 6.5 Probability density of a freely propagated wavefunction on an \(\text{Ar}_2^+\) potential curve \((I(1/2)_u)\). The solid blue line corresponds to the expectation value of the internuclear distance \(<R>\).

Table 6.1 Expected KERs for electronic states of \(\text{Ar}_2^+\) with and without SO coupling.

<table>
<thead>
<tr>
<th>Electronic state</th>
<th>Expected KER (1400nm) eV</th>
<th>Expected KER (800nm) eV</th>
<th>Measured KER (1400nm) eV</th>
<th>Measured KER (800nm) eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2\Sigma_u / 2\Sigma_g^+)</td>
<td>0.75</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2\Sigma_u / 2\Pi_g^+)</td>
<td>0.70</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I(1/2)_u / I(1/2)_g)</td>
<td>0.71</td>
<td>2.24</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>(I(1/2)_u / I(3/2)_g)</td>
<td>0.72</td>
<td>2.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I(1/2)_u / II(1/2)_g)</td>
<td>0.53</td>
<td>1.22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We have done calculations including the following states. Without SO coupling \(2\Sigma_u / 2\Sigma_g^+\), \(2\Sigma_u / 2\Pi_g^+\), and with SO coupling \(I(1/2)_u / II(1/2)_g\), \(I(1/2)_u / I(3/2)_g\), \(I(1/2)_u / I(1/2)_g\), and \(I(1/2)_u / I(1/2)_g\). The states leading to the best agreement with experimental KER spectra are: \(I(1/2)_u\) and \(II(1/2)_g\).

Figure 6.6(b) shows our calculated time-delay-dependent KER spectrum focal-volume averaged over intensities between \(10^{12}\) and \(10^{14}\) W/cm\(^2\). The numerical simulation reproduces several features of the experimental data in Fig. 6.6(a), such as the strong enhancement of the dissociation yield near zero time delay and (for both positive and negative delays) and the periodic stripes that map the oscillation of the vibrational wave packet on the \(I(1/2)_u\) potential.
curve. Most importantly, the frustrated dissociation effect, i.e., the “delay gap” in the band of KERs near 1.18 eV for positive delays, is reproduced in the calculation. Numerical tests show that this gap also occurs at different combinations of wavelengths (we tried the pump/probe wavelengths 600-1200 nm, 790-1000 nm, and 790-1800 nm), as long as the wavelengths of the pump and probe pulse remain sufficiently different for the resulting two bands of KER to be distinguishable in the KER spectrum. Two pulses of different wavelength can thus be used as a gate, either allowing or terminating the previously initiated dissociation along a specific adiabatic molecular potential curve.

Figure 6.6 (a) Measured KER spectrum for Ar$^{+}$ as a function of the pump-probe time delay for 60 fs laser pulses with a peak intensity of $10^{14}$ W/cm$^2$. The orange and yellow curves are partial fragment yields obtained by integrating the spectrum in (a) over the KER ranges from 0.8 to 1.0 eV and 0.35 to 0.4 eV, respectively. (b) Corresponding calculated KER spectrum.

6.3.2 Calculated results for Ng$_2^+$ dimers

6.3.2.1 Single-cation-curve calculations

First, the numerical results for single-cation-curve calculations are discussed for the nuclear motion in Ng$_2^+$ dimers on $I_{\langle 1/2\rangle}$ potential curves [De-10, De-11, Magrakvelidze-12-1, Thumm-08]. Figure 6.7 shows the probability density (6.4) of the freely propagated vibrational
wave packets in the $I(1/2)_u$ states of Ne$_2^+$, Ar$_2^+$, Kr$_2^+$, and Xe$_2^+$. Our single-cation-curve calculations for the $^2\Sigma_u^+$ states yield similar probability densities with slightly different oscillation periods and full revival times (not shown). The full revival times and wave packet oscillation periods for the wave packet motion in the $^2\Sigma_u^+$ and $I(1/2)_u$ states, excluding and including SO coupling, respectively, are summarized in Table 6.2. This table also lists the number of bound vibrational states in both electronic cation states. The oscillation period and revival time for the Ar$_2^+$ $I(1/2)_u$ state are close to those observed [Wu-13-2].

Some periodic oscillatory structure is present for the He$_2^+$ dimer in the single-cation-curve calculations, and the revival time is of the order of 525 fs, but the structure does not allow the extraction of a vibrational oscillation period due to the very delocalized vibrational ground state of He$_2$ (Fig. 6.7(a)). The width of this state is 15 a.u. Table 6.3 summarizes some of the characteristic parameters of the noble gas dimers and their cations, such as the SO splitting, reduced mass, ionization and dissociation energies, ground-state equilibrium distances, and the width of the ground state probability densities as obtained from our calculations.

**Table 6.2 Revival times and wave packet oscillation period for $I(1/2)_u$ and $^2\Sigma_u^+$ states of Ng$_2^+$ dimers, and variance $(\Delta R)^2$ calculated at the oscillation period $T_{osc}$.**

| Dimer  | Number of bound vibrational states | $^2\Sigma_u^+$ | | | $I(1/2)_u$ | | | | Variance $(\Delta R)^2$ (a.u.) calculated at $T_{osc}$ |
|--------|-----------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| He$_2^+$ | 23 | - | 0.5 | - | - | - | >12 |
| Ne$_2^+$ | 41 | 250 | 2.8 | 32 | 230 | 2.2 | 0.85 |
| Ar$_2^+$ | 69 | 290 | 7.9 | 63 | 250 | 7.5 | 0.15 |
| Kr$_2^+$ | 111 | 490 | 22 | 91 | 460 | 19.0 | 0.09 |
| Xe$_2^+$ | 149 | 550 | 39 | 131 | 510 | 38.2 | 0.03 |
Figure 6.7 Probability density of the nuclear wave packet as a function of the internuclear distance $R$ and scaled propagation time for $I(1/2)$ states of $\text{He}_2^+$ (a), $\text{Ne}_2^+$ (b), $\text{Ar}_2^+$ (c), $\text{Kr}_2^+$ (d) and $\text{Xe}_2^+$ (e) dimers. The superimposed blue curve shows the expectation value $<R>$. 
Table 6.3 Selected properties of noble gas dimers \((\text{Ng}_2)\) and their cations \((\text{Ng}_2^+)\). Column 2 – reduced mass, 3 – equilibrium distance \(R_0(\text{Ng}_2)\) of the ground state of neutral dimer, 4 – equilibrium distance of the dimer cation \(R_0(\text{Ng}_2^+)\) without SO coupling, 5 – dissociation energy of the neutral dimer ground state \(D_e(\text{Ng}_2)\), 6 – dimer cation dissociation energy in the ground state \(D_c(\text{Ng}_2^+)\) without spin-orbit coupling, 7 – dissociation energy in the ground state \(D_c(\text{Ng}_2^+)\) with spin-orbit coupling. 8 – ionization energy \(I_p\) of \(\text{Ng}_2\), 9 – spin-orbit splitting of \(\text{Ng}_2^+\) (eV), 10 – the full width at half maximum of the ground state dimer nuclear probability density.

<table>
<thead>
<tr>
<th>Dimer</th>
<th>Reduced mass of (\text{Ng}_2) (a.u.)</th>
<th>(R_0(\text{Ng}_2)) (a.u.)</th>
<th>(R_0(\text{Ng}_2^+)) (a.u.)</th>
<th>(D_e(\text{Ng}_2)) (meV)</th>
<th>(D_c(\text{Ng}_2^+)) (\Sigma_u^+) (eV)</th>
<th>(I_p) (eV) of (\text{Ng}_2)</th>
<th>SO splitting of (\text{Ng}_2^+) (eV)</th>
<th>Width of (\text{Ng}_2) vibrational ground state (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{He}_2)</td>
<td>3651.91</td>
<td>5.61(^{[4]})</td>
<td>2.4(^{[8]})</td>
<td>0.94(^{[4]})</td>
<td>2.5(^{[8]})</td>
<td>-</td>
<td>24.6</td>
<td>-</td>
</tr>
<tr>
<td>(\text{Ne}_2)</td>
<td>18411.65</td>
<td>5.8(^{[5]})</td>
<td>3.3(^{[1]})</td>
<td>3.6(^{[5]})</td>
<td>1.2(^{[9]})</td>
<td>1.17</td>
<td>21.76</td>
<td>0.096(^{[1]})</td>
</tr>
<tr>
<td>(\text{Ar}_2)</td>
<td>36447.90</td>
<td>7.1(^{[6]})</td>
<td>4.6(^{[1]}) (-)</td>
<td>12.3(^{[6]})</td>
<td>1.24(^{[10]})</td>
<td>1.19</td>
<td>14.51</td>
<td>0.18(^{[1]}) (-)</td>
</tr>
<tr>
<td>(\text{Kr}_2)</td>
<td>76456.01</td>
<td>7.6(^{[8]})</td>
<td>5.0(^{[1]})</td>
<td>17.3(^{[6]})</td>
<td>1.23(^{[10]})</td>
<td>1.05</td>
<td>12.87</td>
<td>0.67(^{[1]})</td>
</tr>
<tr>
<td>(\text{Xe}_2)</td>
<td>119789.70</td>
<td>8.3(^{[9]})</td>
<td>5.9(^{[7]})</td>
<td>24.4(^{[8]})</td>
<td>1.08(^{[10]})</td>
<td>0.79</td>
<td>11.24</td>
<td>1.31(^{[3]})</td>
</tr>
</tbody>
</table>

\(^{[1]}\) Ha-03, \(^{[2]}\) Ansari-08, \(^{[3]}\) Paidarová-01, \(^{[4]}\) Gdanitz-00, \(^{[5]}\) Wüest-03, \(^{[6]}\) Slavček-03, \(^{[7]}\) NIST, \(^{[8]}\) Gadea-96, \(^{[9]}\) Cohen-74, \(^{[10]}\) Wadt-80

6.3.2.2 Classical and quantum mechanical approach to dissociation dynamics

With increasing mass of the dimer the number of oscillations during which the vibrational motion in the dimer cation dephases increases (Fig. 6.7(b-e)). For the \(\text{Xe}_2^+\) dimer the nuclear wave packet dephases much slower compared to \(\text{Ne}_2^+\). The number of vibrational oscillations the wave packet completes before dephasing is 1 for \(\text{Ne}_2^+\), ~3 for \(\text{Ar}_2^+\), ~5 for \(\text{Kr}_2^+\), and ~14 for \(\text{Xe}_2^+\), indicating that heavier dimers more closely resemble classical particles, in compliance with the correspondence principle. In addition, the vibrational ground states of heavier dimers are more localized. For example, the ground-state probability density has a width of 0.5 a.u. for \(\text{Xe}_2\) and ~15 a.u. for \(\text{He}_2\).

To expand more on the “classical” character of heavier dimers, briefly mentioned in section 6.3.2.1, the classical approach to dissociation dynamics is discussed based on the variances \(\Delta R^2\) and \(\Delta P^2\). Figure 6.8 summarizes the calculated variances \(\Delta R^2 = \langle R^2 \rangle - \langle R \rangle^2\), \(\Delta P^2 = \langle P^2 \rangle - \langle P \rangle^2\), and \(\Delta R \Delta P\) for wave packet motion in \(I(1/2)_u\) state of \(\text{Ng}_2^+\) ions as a function of time, scaled with the revival times of corresponding molecular ion. As shown in Fig. 6.8 and in the last column of Table 6.2, the calculated \(\Delta R^2\) variance is more than one order of magnitude less for \(\text{Xe}_2^+\) compared to \(\text{Ne}_2^+\) after one vibrational oscillation period \(T_{osc}\) in \(I(1/2)_u\), pointing to less spread of the wave packet as the mass of the dimer increases. The variance oscillation is
consistent with the wave packet oscillation in $I(1/2)_u$ states and the $(\Delta R)^2$ variances have clear minima at the revival times (corresponding to $t / T_{\text{rev}} = 1$ on the graph). As the mass of the dimer increases, the minima become more distinctive. The same is true for the momentum variance $(\Delta P)^2$; the spread has noticeable structure at the revival times. The last column in Fig. 6.8 the plots calculated uncertainty product $\Delta R \Delta P$.

Figure 6.8 Position variance $(\Delta R)^2$, momentum variance $(\Delta P)^2$, and uncertainty product $\Delta R \Delta P$ as a function of time scaled with respective revival times for $Ne_2^+$, $Ar_2^+$, $Kr_2^+$, and $Xe_2^+$ noble gas dimers in the $I(1/2)_u$ state. Due to the absence of a clear wavefunction revival in our $He_2^+$ propagation calculation ($^2\Sigma_u^+$ state), we scale the time in the first row by the approximate revival time 525 fs.
Table 6.4 Expected KERs for calculations based on adiabatic molecular potential curves that include or do not include SO coupling. In calculations without SO coupling we include the dipole-coupled $^2\Sigma_u^+$ and $^2\Pi_g^+$ states of the dimer cation; for calculations with SO coupling the $I(1/2)_u$ and $II(1/2)_g$ states.

<table>
<thead>
<tr>
<th>Dimer</th>
<th>KERs (800nm) no SO</th>
<th>KERs (1400nm) no SO</th>
<th>KERs (800nm) with SO</th>
<th>KERs (1400nm) with SO</th>
</tr>
</thead>
<tbody>
<tr>
<td>He$_2^+$</td>
<td>1.6 eV</td>
<td>0.8 eV</td>
<td>1.6 eV</td>
<td>0.8 eV</td>
</tr>
<tr>
<td>Ne$_2^+$</td>
<td>1.45 eV</td>
<td>0.75 eV</td>
<td>1.3 eV</td>
<td>0.6 eV</td>
</tr>
<tr>
<td>Ar$_2^+$</td>
<td>1.35 eV</td>
<td>0.6 eV</td>
<td>1.18 eV</td>
<td>0.45 eV</td>
</tr>
<tr>
<td>Kr$_2^+$</td>
<td>1.3 eV</td>
<td>0.54 eV</td>
<td>0.25 eV</td>
<td>0.008 eV</td>
</tr>
<tr>
<td>Xe$_2^+$</td>
<td>1.2 eV</td>
<td>0.5 eV</td>
<td>0.1 eV</td>
<td>-</td>
</tr>
</tbody>
</table>

6.3.2.3 Discussion of the dipole-coupled calculations

The distinctive “delay gap” is observed in KER spectra for Ar$_2^+$, measured for 800 and 1400 nm pump probe pulses with pulse length 80 fs and an intensity of $10^{14}$ W/cm$^2$ [Wu-13-2]. Calculations using the same pulse parameters and the $I(1/2)_u$ and $II(1/2)_g$ states of Ar$_2^+$ reproduce the gap [Wu-13-2]. It is interesting to see whether the gap is present for other noble gas dimers and whether it has the same explanation. In this subsection the calculations for Ng$_2^+$ are presented including states without and with SO couplings.

KER spectra as a function of internuclear distance and pump-probe delay for calculations that include dipole coupling for the states Ng$_2^+$ ($^2\Sigma_u^+$ and $^2\Sigma_g^+$) are given in Fig. 6.9. The parameters for the pump (probe) pulse used were 800 (1400) nm wavelength, 80 fs pulse length and a peak intensity of $10^{14}$ W/cm$^2$, as in the experiment from Ref. [Wu-13-2]. The oscillating structures visible for the energy bands on both the negative and positive delay sides correspond to the wave packet oscillations in the $^2\Sigma_u^+$ states of Ng$_2^+$: ~230 fs for Ne$_2^+$, ~250 fs for Ar$_2^+$, ~460 fs for Kr$_2^+$, and ~550 fs for Xe$_2^+$. Two separate energy bands are present corresponding to dissociation through different avoided one-photon crossings (800 or 1400nm). The “delay gap” discussed in [Wu-13-2] is observed only for positive delays. The width of the “gap” is on the order of 150-200 fs. Expected KERs are summarized in Table 6.4.
For positive (negative) delays, the 1400 (800) nm probe pulse comes after the 800 (1400) nm pump. Starting from the negative delays, we try to explain the main features of the KER spectra. The 1400 nm pump couples part of the wave packet from the $^2\Sigma_u^+$ (or $I(1/2)_u$) state into the $^2\Sigma_g^+$ (or $II(1/2)_g$) state (B to E in Fig. 6.1), which dissociates giving the lower energy band in the KER spectra (0.1-0.9 eV range). The rest of the wave packet continues moving inward on the $^2\Sigma_u^+$ (or $I(1/2)_u$) state to the point where the 800 nm probe couples it onto the $^2\Sigma_g^+$ (or $II(1/2)_g$) state (C to D in Fig. 6.1), resulting in the higher energy band in the KER spectra (0.9-1.9 eV range). In the case of positive delays, the pump-probe sequence is reversed. The 1400 nm probe couples part of
the wave packet into the excited \( \text{Ng}_2^+ (^2\Sigma_u^+ \text{ or } I(1/2)_{g}) \) state, leading to the lower energy bands in the KER spectra (B to E in Fig. 6.1), and the rest of the wave packet is coupled from the lower \( \text{Ng}_2^+ (^2\Sigma_u^+ \text{ or } I(1/2)_{u}) \) to the higher \( \text{Ng}_2^+ (^2\Sigma_g^+ \text{ or } II(1/2)_{g}) \) state by the 800 nm pump pulse (C to D in Fig. 6.1). This would result in dissociation into the higher energy band. However, the 1400 nm probe pulse couples the wave packet back to the \(^2\Sigma_u^+ \text{ (or } I(1/2)_{u} \text{) state (E to B in Fig. 6.1), leading to the “delay gap” in the KER spectra. Note that if the 1400 nm probe pulse comes after the dissociative wavefunction passes the 1400 nm crossing, the “gap” is no longer present (more details can be found in [Wu-13-2]). For \( \text{Xe}_2^+ \), the time from A to C on \(^2\Sigma_u^+ \) is larger than the pulse length (80 fs), so we do not see the upper band on the positive delay side in Fig. 6.9e (Table 6.5).

Table 6.5. Results of the classically calculated propagation times from point A to B and from B to C in Fig. 6.1 along the diabatic potential curves of noble gas dimer cations in \(^2\Sigma_u^+ \) and \( I(1/2)_{u} \) electronic states for the wavelength combinations 800+1400 and 500+700 nm.

<table>
<thead>
<tr>
<th>Dimer</th>
<th>( ^2\Sigma_u^+ \text{ 800+1400} )</th>
<th>( I(1/2)_{u} \text{ 800+1400} )</th>
<th>( I(1/2)_{u} \text{ 500+700} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{Ne}_2^+ )</td>
<td>t_{AB} (fs)</td>
<td>t_{BC} (fs)</td>
<td>t_{AB} (fs)</td>
</tr>
<tr>
<td>( \text{Ar}_2^+ )</td>
<td>22</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>( \text{Kr}_2^+ )</td>
<td>30</td>
<td>15</td>
<td>38</td>
</tr>
<tr>
<td>( \text{Xe}_2^+ )</td>
<td>36</td>
<td>29</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 6.10 summarizes the dipole-coupled calculations for the states including SO coupling, \( I(1/2)_{u} \text{ and } II(1/2)_{g} \). We used the same pulse parameters as in the calculations shown in Fig. 6.9. The “delay gap” we are looking for is also present in these calculations for the dimers \( \text{He}_2^+-\text{Ar}_2^+ \). The KER spectra for \( \text{Kr}_2^+ \) and \( \text{Xe}_2^+ \) calculated for the 800-1400 nm wavelength combination (Fig. 6.10(d,e)) have only one energy band below 0.2 eV, because the one photon crossing that corresponds to 1400 nm does not exist for \( \text{Xe}_2^+ \) due to SO coupling of the ungerade and gerade states. The resulting KER (from the one-photon crossing corresponding to 1400 nm) for \( \text{Kr}_2^+ \) is close to zero (Table 6.4). The KER spectra in Fig. 6.9 show lower energies compared to the spectra in Fig. 6.10. The reason for this lowering of KER bands is the change of the shape of the potential energy curves: the width and depth of the \( I(1/2)_{u} \) and the slope of \( II(1/2)_{g} \) states are different from the \(^2\Sigma_u^+ \) and \(^2\Sigma_g^+ \) states due to SO coupling.
Figure 6.10 (a) Same as Fig. 6.8(a). (b)-(e) KER spectra for states including SO coupling of Ne$_2^+$-Xe$_2$ calculated with 800 - 1400 nm pump-probe wavelengths.

Figure 6.11 KER spectra as a function of pump-probe delay for Kr$_2^+$ and Xe$_2^+$ states with spin-orbit coupling, and 500-700nm pump-probe pulses with 80 fs length and $10^{14}$ W/cm$^2$ intensity.
For the Kr$_2^+$ and Xe$_2^+$ we have used different pump-probe wavelength combination, 500-700 nm, and plot KER spectra as shown in Fig. 6.11. The reason why we have to use different wavelength combination is that the one photon crossing for 1400 nm wavelength is not present due to the large gap of SO coupled states of Xe$_2^+$; the resulting KER from the one photon crossing is close to zero for Kr$_2^+$ as mentioned above. The “delay gap” for the given wavelengths is present, but the double-band energy structure is not clearly visible for the same reason as for the calculations including non-SO-coupled states (the time the wave packet takes from A to C in Fig 6.1 is longer than the pulse length for Xe$_2^+$, Table 6.5). In principle one can find wavelength and pulse length combinations such that the KER spectra would have two energy bands for Xe$_2^+$.

### 6.4 Summary

We have investigated the dissociation dynamics in noble gas dimers in two-color IR pump and probe fields. The “delay gap” on the positive side of the KER spectra, observed in the Ar$_2^+$ dimer, is also present for He$_2^+$, Ne$_2^+$, Kr$_2^+$ and Xe$_2^+$ dimers. This striking feature can be explained by a simple model where the wave packet is coupled by two-color laser pulses on the $I(1/2)_u$ (or $^2\Sigma_u^+$) and $II(1/2)_g$ (or $^2\Sigma_g^+$) states of Ng$_2^+$. Comparing pump-probe-pulse delay-dependent kinetic-energy-release spectra for different noble gas dimer cations, we quantitatively discussed quantum-mechanical versus classical aspects of the nuclear vibrational motion as a function of the nuclear mass. In addition, based on the study of the variances, as the mass of the system increases, the more it resembles a classical particle as the wave packet spreads less for the heavier dimers. Also, we found that as the mass of the dimer increases, the fine structure effects become more noticeable in the KER spectra.
Chapter 7 - OXYGEN AND NITROGEN MOLECULES IN XUV FIELDS

7.1 Introduction

Investigating nuclear wave-packet dynamics of diatomic and more complex molecules in various charge states with time-resolved experiments gives detailed insight into reaction pathways as a function of the excitation conditions and offers the possibility to test calculated potential energy surfaces for these species [Bocharova-11, De-11, Feuerstein-07, Thumm-08].

Ultrafast nuclear wave-packet dynamics in various charge states of diatomic molecules, up to now, were almost entirely examined with time-resolved pump-probe spectroscopy using intense few-cycle near-infrared (NIR) laser pulses [Bocharova-11, De-11, De-10, Ergler-05]. However, these high-peak-intensity pulses tend to induce strong couplings between dipole-allowed adiabatic molecular states. Accordingly, NIR pump – NIR probe spectroscopy very sensitively probes the nuclear dynamics near curve crossings that result from such couplings. Importantly, the localization of NIR-induced couplings at avoided crossings means that NIR pump – NIR probe experiments examine the nuclear dynamics of field-dressed, rather than external-field-free adiabatic molecular potential curves. Moreover, the presence of intense NIR pulses, in general, perturbs the target of interest significantly, such that those pulses also alter the outcome of chemical reactions. For this reason, strictly speaking, NIR pulses are not suitable for detecting and exploring nuclear motion on unperturbed potential curves. On the other hand, intense, ultra-short extreme ultraviolet (XUV) radiation would be much better suited for the task as detailed below. Recent progress in the development of tunable intense XUV laser sources led to the realization of isolated XUV pulses with pulse durations below 100 attoseconds [Goulielmakis-08]. XUV and X-ray laser pulses are produced by either employing high-harmonic generation [L’Huillier-83, Krausz-09] or free-electron lasers [Hoener-10]. In contrast to intense NIR pulses, their interaction with atomic and molecular targets is characterized by large Keldysh parameters, corresponding to ionization by the absorption of no more than a few energetic photons. In addition, with regard to identifying reaction pathways, the absorption of a known small number of energetic photons (rather than a large, not-well determined number of less energetic photons provided by a NIR pulse of comparable spectral width) tends to induce
electronic transitions to a more narrowly defined part of the target electronic spectrum. Furthermore, since these XUV and X-ray sources are tunable, transitions into specific spectral regions can be selected. In dissociative reactions, the KER can thus be resolved with regard to the number of absorbed photons and the pump-pulse-generated intermediate charge states of the molecular ion. This is done for a comparatively narrow spectral range of intermediate adiabatic states which are populated by short-wavelength pump and probe pulses, facilitating the assignment of possible dissociation (reaction) pathways. Time resolutions on the order of a few femtoseconds can be realized, which is short enough to trace even the fastest motion of nuclei in molecules. Attempts to achieve even higher resolution in time, in order to simultaneously follow the electronic motion during chemical reactions or to zoom into fast rearrangement processes, would decrease the spectral resolution.

Recently, the nuclear wave-packet dynamics in diatomic molecular ions have been investigated in several XUV pump - NIR probe experiments [Cao-10, Cao-11, Gagnon-07, Kelkensberg-09, Sandhu-08, Sansone-10]. In those experiments the pump pulse is perturbative but the NIR-probe pulse efficiently couples potential energy curves of the molecular ion, making these studies sensitive mainly to confined regions of internuclear distances where the coupling is strong. This limitation is removed in XUV pump – XUV probe spectroscopy pioneered in [Rudenko-10], where the first XUV pulse ionizes the neutral molecule and initializes a nuclear wave-packet in the ionic species of interest on potential energy curves that lie within a specific spectral range of the molecular ion. The second XUV pulse probes the dynamics by a subsequent ionization step, removing one or several electrons. In contrast to NIR probe pulses, for sufficiently high XUV photon energy, the final charge state of the molecular ion will be reached for any given pump-probe delay. Hence, the wave-packet motion can be observed along the entire reaction coordinate. In addition, this scheme often leads to multiple ionization and, as a result, to fragmentation by CE. Measurement of the resulting KER and momentum distributions as a function of the pump-probe delay then enables the imaging of the wave-packet dynamics (if the reflection principles can be applied and the fragmentation potential energy surfaces are known) in the same way as for NIR pump – NIR probe CE experiments (see, e.g., [De-10]), but without the limitations described above. Following this approach, XUV pump – XUV probe experiments have recently been conducted to trace the nuclear wave-packet motion in the D₂
cation [Jiang-10-1] and to measure the isomerization dynamics in the acetylene cation [Jiang-10-2].

In this chapter, we report on XUV pump – XUV probe studies performed at FLASH with the goal of elucidating the nuclear wave-packet dynamics following the XUV ionization of O\textsubscript{2} and N\textsubscript{2} at a central photon energy of 38 eV. By comparing our experimental results with classical and quantum-mechanical calculations, based on available potential energy curves for various charge states of these molecules, we describe a method for identifying the dominant dissociation pathways.

### 7.2 Experimental method

A reaction microscope (also known as COLTRIMS) [Ullrich-03] was used to record the three-dimensional momentum vectors of fragment ions at beam line BL3 of FLASH. The temporal overlap between the two XUV pulses was determined by detecting the delay-dependent dissociation of the coincident O\textsuperscript{+} + O\textsuperscript{2+} (N\textsuperscript{+} + N\textsuperscript{2+}) fragments, where a maximum in the dissociation yield at zero delay-time was observed [Jiang-09]. With a focus diameter of ~20 µm and pulse energies of a few µJ at an estimated average pulse duration of ~80 fs [Jiang-10], the experiment reached peak intensities of the order of 10\textsuperscript{13} W/cm\textsuperscript{2} at a photon energy of 38±0.5 eV. Ionic fragments were projected by means of an electric field (40 V/cm) onto a time- and position-sensitive micro-channel plate detector (diameter 120 mm, position resolution 0.1 mm, multi-hit delay-line read-out) and recorded as a function of the pump-probe time delay. From the measured time-of-flight (TOF) and position of each individual fragment, the initial three-dimensional momentum vector was reconstructed. The resolution in the KER is better than 50 meV for all fragment energies detected. For more details see [Rudenko-10, Jiang-10-2, Magrakvelidze-12-2].

### 7.3 Theoretical methods

We use two separate numerical methods for identifying dissociation pathways in terms of adiabatic electronic states involved in the molecular fragmentation dynamics. In the first “classical” model we calculate the KER, $K(\tau)$, as a function of the pump-probe delay, $\tau$, [Bocharova-11] by solving Newton’s equations for nuclear motion on adiabatic molecular potential curves in order to understand the main features in the measured spectra. In the second,
more accurate quantum-mechanical model, we solve the TDSE for the motion of the nuclear wave-packet on selected molecular potential curves. This allows us to simulate KER spectra for given dissociation paths, i.e., for a given sequence of adiabatic molecular states that are successively populated by ionization of the neutral molecule with the pump and, subsequently, of the molecular ion with the probe XUV pulse. Finally, by comparing the simulated and measured KER spectra, we attempt to assess the importance of specific dissociation pathways considered in our quantum calculations.

7.3.1 “Classical” simulations

In this model the XUV pump pulse is assumed to instantaneously ionize the neutral molecule by removing one or more electrons at time zero. In response, the nuclei are assumed to start moving as classical point particles on a selected intermediate (bonding) adiabatic molecular potential curve of the molecular ion in a specific charge state and at an internuclear distance, $R$, that is equal to the equilibrium distance in the neutral molecule before ionization. This modeling of the pump process corresponds to the FC approximation in quantum mechanical calculations (Chapter 3). The subsequent nuclear motion is described by solving Newton’s equations of motion for the selected adiabatic potential curve of the molecular ion.

Similarly, the delayed XUV probe pulse is assumed to instantaneously (multiply) ionize the molecular ion at the pump-probe-delay time $\tau$. The nuclei start their classical motion after the probe pulse with the relative velocity they had just before the action of the probe pulse. Their classical motion after the probe pulse is assumed to be dissociative and to proceed on a repulsive Coulomb potential curve $\alpha/R$, with $\alpha=qp$, where $q$ and $p$ are the charges of the two fragments. The KER for a given delay is thus obtained by adding the kinetic energy of the relative motion of the nuclei at time $\tau$ to the Coulomb repulsion energy $\alpha/R(\tau)$ (see [Bocharova-11, De-11] for details). This calculation is repeated for several intermediate adiabatic electronic states.

7.3.2 Quantum mechanical simulations

As for our classical model, we describe the action of both XUV pump and XUV probe pulses as a sudden removal of one or more electrons. Prior to the pump pulse, for times $t<0$, we assume the neutral molecule to be in its electronic and vibrational ground state. The instantaneous ionization of the neutral molecule by the pump pulse is modeled to result in a
vertical (FC) transition to a preselected bonding adiabatic potential curve, \( E_i(R) \), of the molecular ion in a given charge state, on which a nuclear vibrational wave packet, \( \Psi(R, t) \), starts to evolve. This wave packet can be thought of as a coherent superposition of vibrational eigenstates \( \varphi_\nu \),

\[
\Psi(R, t) = \sum_\nu a_\nu \exp(-i\omega_\nu t) \varphi_\nu(R),
\]

with energies \( \omega_\nu \) on the selected potential curve \( E_i(R) \). In the absence of external fields, \( \Psi(R, t) \) propagates freely on \( E_i(R) \), starting at time \( t = 0 \) in the vibrational ground state of the neutral parent molecule. We obtain \( \Psi(R, t) \) by propagating the TDSE for 300 fs with time steps of \( \Delta t = 1 \) a.u. on a numerical grid that covers the interval \( 0 \leq R \leq 100 \) a.u. with equidistant grid spacing \( \Delta R = 0.02 \) a.u. [Feuerstein-03-1].

The free propagation of \( \Psi(R, t) \) on \( E_i(R) \) is interrupted by the probe pulse at the delay time \( \tau \). This action further ionizes the molecular ion and is assumed to instantaneously project the nuclear wavefunction onto a dissociative final adiabatic molecular potential curve, \( E_f(R) \). We thus obtain the KER distribution

\[
Y(K, \tau) = |\Psi(R(K), \tau)|^2 \left[ \frac{dE_f(R)}{dR} \right]^{-1}, \tag{7.1}
\]

by mapping the nuclear probability density \( |\Psi(R, \tau)|^2 \) at a given delay onto \( E_f(R) \). For dissociation along a pure Coulomb potential curve, \( E_f(R) = \alpha/R \), (7.1) simplifies to

\[
Y(K, \tau) = |\Psi(R(K), \tau)|^2 \frac{R^2}{\alpha}, \tag{7.2}
\]

Note that \( K \) in (7.1) and (7.2) is the sum of the kinetic energies released by the two nuclei. Note also that these transformations neglect the kinetic energy, \( E_{\text{kin}} = <\Psi(R, t)|\hat{K}|\Psi(R, t)> \), of the nuclei at the ionization time \( t = \tau \) [Feuerstein-03-1], where \( \hat{K} \) is the operator for the relative kinetic energy of the nuclei. We include \( E_{\text{kin}} \) in our quantum mechanical simulation by shifting the argument in the right-hand sides of (7.1) and (7.2) according to

\[
Y(K_{\text{tot}}, \tau) = |\Psi(R(K_{\text{tot}} - E_{\text{kin}}), \tau)|^2 \left[ \frac{dE_f(R)}{dR} \right]^{-1}, \tag{7.3}
\]

where \( K_{\text{tot}} = K + E_{\text{kin}} \) and the \( R \)-derivative is taken without including \( E_{\text{kin}} \), i.e., at \( R(K_{\text{tot}} - E_{\text{kin}}) \). In our numerical calculations below, we find small contributions of \( E_{\text{kin}} \) that do not exceed 0.5 eV for the oxygen and 0.3 eV for the nitrogen targets. The inclusion of \( E_{\text{kin}} \) does not noticeably affect the comparison with measured KER spectra discussed in the following sections.
7.4 Results and discussion

7.4.1 Oxygen

The relevant lowest potential curves for $\text{O}_2$, $\text{O}_2^+$ and $\text{O}_2^{2+}$ molecules, adapted from [Lundqvist-96-1, Marian-82, Steinfeld-05], are given in Fig. 7.1. States with gerade symmetry are plotted in Fig.7.1(a) as dashed lines (including the ground states of the $\text{O}_2$ and $\text{O}_2^+$ molecules) and ungerade states are given as solid lines. Similarly, states with gerade (dashed lines) and ungerade (solid lines) symmetry are shown in Fig.7.1(b) for $\text{O}_2^{2+}$. The pure $1/R$ Coulomb potential, shifted to match the dissociation limit at 39.0 eV, is shown as a dotted line in Fig. 7.1(b).

Figure 7.2 shows the measured KER vs. pump-probe delay for the $\text{O}_2 \rightarrow \text{O}^+ + \text{O}^+$ (a), $\text{O}_2 \rightarrow \text{O}^{2+} + \text{O}^+$ (b), and $\text{O}_2 \rightarrow \text{O}^{2+} + \text{O}^{2+}$ (c) dissociation channels (on the right) alongside the delay integrated KER spectra (on the left). The breakup channels can be reached by various pathways. An analysis of the intensity-dependent yield (as done in ref. [Jiang-10] for $\text{N}_2^{4+}$) indicates that the $\text{O}_2 \rightarrow \text{O}^+ + \text{O}^+$ channel involves two photons, the $\text{O}_2 \rightarrow \text{O}^{2+} + \text{O}^+$ channel three photons, and the $\text{O}_2 \rightarrow \text{O}^{2+} + \text{O}^{2+}$ channel between 4 and 6 photons. Note that energy conservation alone merely requires the absorption of one (two) photon(s) to generate singly-(doubly-) charged molecular ions. At the intensities used in the current study, the $\text{O}_2 \rightarrow \text{O}^+ + \text{O}^+$ channel can be populated both directly and sequentially, where the latter involves intermediate $\text{O}_2^+$ states. The distinct peaks in Fig. 7.2(a), labeled a-d, can be assigned to the direct population of the $\text{O}_2^{2+} W^3\Delta_u$, $B^3\Sigma_u^-$, $1^1\Delta_u$, and $B^3\Pi_g$ states [Lundqvist-96-1, Voss-04].
Figure 7.1. Adiabatic electronic states for (a) neutral O$_2$ and the O$_2^+$ and (b) O$_2^{++}$ molecular ions adapted from [Lundqvist-96-1, Marian-82, Steinfeld-05]. Gerade states are indicated as dashed lines and ungerade states as solid lines. The repulsive 1/R Coulomb potential, shifted to match the 39.0 eV dissociation limit, is shown as a dotted line. Dissociation limits are indicated to the right of the potential curves.

In Fig. 7.2 we compare the experimental data to the classically calculated KER lines for the intermediate electronic states $f^4\Pi_g$, $c^4\Sigma_u^+$, $4\Pi_u$, and $a^4\Pi_u$ of the O$_2^+$ molecule and $A^3\Sigma_u^+$ and $1^1\Delta_u$ of the O$_2^{2+}$ molecule (the latter being relevant for the sequential population of triply and quadruply charged O$_2$). Note that the angular distributions of the fragment emission can in principle help to narrow down the choices for intermediate states. For the measurement on O$_2$, however, the limited signal-to-noise ratio did not permit the exclusion of any intermediate states based on the fragment angular distributions. For our calculations in Fig. 7.2, we assumed dissociation along the $\alpha/R$ Coulomb potentials with potential strengths $\alpha= qp$ in the break-up channels O$_2 \rightarrow$ O$^{q^+} +$ O$^{p^+}$. The KER lines are strikingly different for dissociation paths that involve dissociative and bound intermediate states. While dissociative intermediate states ($f^4\Pi_g$, ...
$c^3\Sigma_u^-, 4\Pi_u, A^3\Sigma_u^+$) yield KER lines which decrease monotonously as functions of the pump-probe delay, the bound and predissociating intermediate states, $a^4\Pi_u$ and $1^1\Delta_u$, yield KER lines that oscillate with periods of 34 and 41 fs, respectively. For the bound and predissociating intermediate states, the calculated asymptotic energies are in good agreement with the measured spectra, except for the $O_2 \rightarrow O^{2+} + O^{2+}$ dissociation channel. Performing separate classical calculations using all bound states in Fig.7.1 as intermediate states, we found that none could reproduce the dissociative energy limit measured for the $O_2 \rightarrow O^{2+} + O^{2+}$ channel.

Figure 7.2 Measured KER spectra as a function of the pump-probe delay, $\tau$, (same logarithmic color/gray scale for the fragment yield in all plots) compared with the classically calculated KER curves, for different break-up channels: (a) $O^+ + O^+$, (b) $O_2^{2+} + O^+$, and (c) $O^{2+} + O_2^{2+}$. The delay-integrated KER spectra are shown on the left. The classical calculations were done using the dissociative $f^4\Pi_g$, $c^4\Sigma_u^-$, and $4\Pi_u$ and bound $a^4\Pi_u$ states of $O_2^+$ and dissociative $A^3\Sigma_u^+$ and the bound $1^1\Delta_u$ states of $O_2^{2+}$. 

93
Next, we carried out quantum mechanical calculations, including those intermediate states which best reproduced the measured KER limits in our classical calculations in Fig. 7.2(a,b), with the exception of the O$_2$ $\rightarrow$ O$^{2+}$ + O$^+$ channel. Since, for this particular channel, dissociation through bound intermediate states does not reproduce the measured data, we also performed a separate calculation including the dissociative A$^3\Sigma^+_u$ state of O$_2$$^{2+}$, which yields the best agreement with the measured KER spectrum in Fig. 7.2(c). Figure 7.3 shows a comparison...
between the measured KER values for positive delays (left column) and the results from our quantum mechanical calculations (middle and right column) for the dissociation channels: \( \text{O}_2 \rightarrow \text{O}^+ + \text{O}^- \) (top), \( \text{O}_2 \rightarrow \text{O}^{2+} + \text{O}^+ \) (middle), and \( \text{O}_2 \rightarrow \text{O}^{2+} + \text{O}^{2+} \) (bottom row). In the calculations for the \( \text{O}^++\text{O}^- \) dissociation channel, the XUV pump pulse singly ionizes \( \text{O}_2 \) and the XUV probe pulse removes a second electron, moving the nuclear wave-packet onto \( \text{O}_2^{2+} \) states and causing dissociation. Explicitly, the wave-packet is launched from the \( \text{O}_2 \) ground state via a FC transition onto the bound potential curve of the \( \text{O}_2^{2+} (a^4\Pi_u) \) state.

We also calculated KER spectra for dissociation along the \( 2^1\Sigma_g^+ \), \( 1^1\Delta_g \), \( 1^1\Pi_g \), and \( B^3\Pi_g \) repulsive states of \( \text{O}_2^{2+} \) (not shown) and obtained KER spectra that agree equally well with the experimental results in Fig. 7.3(a,b,c). Figure 7.3(d) shows the result for the intermediate bound \( \text{O}_2^+ (a^4\Pi_u) \) state that is Coulomb imaged onto a final \( 1/R \) state, while the same intermediate state imaged onto the \( 1^5\Sigma_g^+ \) state of \( \text{O}_2^{2+} \) is considered in Fig. 7.3(g). For both cases, the positions of the energy bands in the KER are in agreement with the measurement. This indicates that populating the \( \text{O}_2^+ (a^4\Pi_u) \) intermediate state is consistent with the measured dissociation dynamics in the \( \text{O}^+ + \text{O}^- \) break-up channel. We found equally good agreement with the experimental data, with a slightly larger oscillation period, by replacing the \( \text{O}_2^+ (a^4\Pi_u) \) intermediate state with the \( \text{O}_2^+ (a^4\Pi_u) \) state (not shown). Similarly, by substituting the \( \text{O}_2^+ (a^4\Pi_u) \) intermediate state with either the \( \text{O}_2^+ (X^2\Pi_g) \) or \( \text{O}_2^+ (b^4\Sigma_g^-) \) state, we obtained spectra (not shown) with a smaller oscillation period than the calculated spectra in Fig. 7.3(d,g) that, however, agree equally well with the experimental data in Fig. 7.3(a). The unambiguous identification of one (or several) intermediate states would require experiments with shorter XUV pulses that are able to resolve the vibrational motion in the molecular ions. The larger spread in KER for dissociation on the \( \text{O}_2^{2+} (1^5\Sigma_g^+) \) potential curve (Fig. 7.3(g)) relative to the CE in Fig. 7.3(d) is consistent with the steeper decrease with \( R \) of the \( 1^5\Sigma_g^+ \) curve compared with the \( 1/R \) Coulomb curve (cf., Fig. 7.1(b)) in the FC region near the equilibrium position of the \( \text{O}_2^{2+} (a^4\Pi_u) \) curve.

For the dissociation channels \( \text{O}_2 \rightarrow \text{O}^{2+} + \text{O}^+ \) and \( \text{O}_2 \rightarrow \text{O}^{2+} + \text{O}^{2+} \), the KER spectra are calculated assuming probe-pulse-induced CE along the \( 2/R \) and \( 4/R \) curves (Fig. 7.3(e,h,f,i)), respectively, and compared with the experimental data for positive delays (Fig. 7.3(b,c)). In particular, Fig. 7.3(e) shows the quantum mechanically calculated KER for CE out of an intermediate bonding state of the \textit{singly-charged} \( \text{O}_2^+ \) ion along the dissociation path \( \text{O}_2 \rightarrow \text{O}_2^+(a^4\Pi_u) \rightarrow \text{O}_2^{3+} (2/R) \rightarrow \text{O}^{2+} + \text{O}^+ \), while in Fig. 7.3(h) dissociation is modeled for an
intermediate adiabatic state of the doubly-charged O$_2^{2+}$ ion, specifically, O$_2$ → O$_2^{2+}(1^1\Delta_u) → O_2^{3+}(2/\sqrt{R}) → O^{2+} + O^+$. For both dissociation paths, the position of the energy band in the calculated KER agrees with the experimental data. However, the dissociative branch for delays below 120 fs (labeled with “D” in Fig. 7.3(h,i)) is not seen in the experimental data. This track of decreasing KER corresponds to dissociation of the most energetic vibrational components of the initial wave packet after approximately half a vibrational period ($T_{\text{vib}} = 41$ fs) on the O$_2^{2+}(1^1\Delta_u)$ potential curve (cf. Fig. 7.1(b)). In our FC model for the pump process, a significant fraction of unbound nuclear states of the O$_2^{2+}(1^1\Delta_u)$ potential are populated, since the equilibrium distance of the O$_2$ ground state lies well within the repulsive part above the shallow well of the O$_2^{2+}(1^1\Delta_u)$ potential curve (cf. Fig. 7.1(b)).

For CE by the probe pulse leading to O$_2^{2+} + O^{2+}$ fragmentation (Fig. 7.3(f,i)), our quantum mechanical calculations overestimate the measured KER, indicating that fragmentation along a pure Coulomb potential is inappropriate in this case. As for the O$_2^{2+} + O^+$ break-up in Fig. 7.3 (h), our calculated spectrum in Fig. 7.3(i) shows the dissociative branch (“D”) emerging from the intermediate O$_2^{2+}(1^1\Delta_u)$, which is not seen in the experimental data. The wave-packet oscillations in our quantum mechanical calculations in Fig. 7.3 are not resolved in the experimental data. The periods of these oscillations in the calculated KER are consistent with the oscillation periods we obtain directly from the intermediate-state potential energy curves. By fitting these potential curves to Morse potentials [Brandsen-03], we obtain periods of ~37 and ~40 fs, respectively, for the intermediate bound states O$_2^+(a^4\Pi_u)$ and O$_2^{2+}(1^1\Delta_u)$, in good agreement with the oscillations in Fig. 7.3(d-i). We are confident that CE (along the 4/R potential curve) is a realistic assumption and performed simulations with the $2^1\Sigma_g^+, 1^1\Delta_g, 1^1\Pi_g, B^3\Pi_g$ repulsive intermediate states of O$_2^{2+}$ (not shown) replacing the O$_2^+(a^4\Pi_u)$ and O$_2^{2+}(1^1\Delta_u)$ states in Fig. 7.3 (f,i). However, these simulations did not improve the agreement with the measured spectrum in Fig. 7.3(c). Simulations for the dissociative O$_2^{2+}(A^3\Sigma_u^+)$ state, which gives the closest match to the measured KER in the classical calculations (Fig. 7.2(c)) are shown in the inset in Fig. 7.3(i). The calculated KER for this intermediate state follows the classically calculated KER line. For the O$_2^{2+} + O^{2+}$ break-up, our simulations fail to reproduce the measured overall slow decrease in KER for increasing pump-probe delay.

In view of the limited resolution of the measured spectra, our classical and quantum simulations are in good agreement with the experimental data for the O$_2$$\rightarrow$O$^+ + O^+$ and
O₂→O⁺ + O²⁺ breakup channels. In contrast, for the O₂→O²⁺ + O²⁺ channel our simulations, both classical and quantum, predict larger KERs than the experiment, not only for the intermediate states employed to calculate the results shown in Figs. 7.2 (c) and 7.3 (f,i), but also for all other intermediate states of O⁺ and O²⁺ (not shown) for which we found adiabatic potential curves in the literature (cf. [Lundqvist-96-1, Marian-82, Steinfeld-05]). The lack of agreement for this particular dissociation channel might in part be related to pump-pulse-induced dipole couplings between adiabatic intermediate states of O⁺ and O²⁺. The latter effect has been addressed by Quaglia et al. [Quaglia-02] in the IR-laser induced dissociation of O⁺. Their measured KERs for IR-laser peak intensities between 6x10¹⁴ and 6x10¹⁵ W/cm² are between 4 and 21 eV smaller than predicted by CE at the ground-state equilibrium distance of neutral O₂. The decrease of the KER due to deviations from pure Coulomb dissociation in their IR experiments is thus comparable to the mismatch we find between our measured and simulated results for the O²⁺ + O²⁺ channel. It is left to future investigations to address both effects, i) and ii), based on new ab-initio calculations of O⁺, O²⁺, and O⁺⁺ adiabatic potential curves, allowing for dipole couplings of selected electronic states in the electric fields of the XUV pump and probe pulses [Magrakvelidze-12-2]. Future investigations should also scrutinize to what degree the simultaneous (coherent versus incoherent) population of vibrational wave packets in two (or more) electronic states by the pump pulse changes the KER.

7.4.2 Nitrogen

Adiabatic electronic potential curves for N₂, N₂⁺, and N₂²⁺, adapted from [Aoto-06, Lundqvist-96-2], are shown in Fig. 7.4. States with gerade symmetry are plotted as dashed lines (including the ground states of the N₂ and N₂⁺ molecules in Fig. 7.4(a)) and those with ungerade symmetry as solid lines. Similarly, states with gerade (dashed lines) and ungerade (solid lines) symmetry are shown in Fig. 7.4(b) for N₂²⁺. The pure 1/R Coulomb curve, shifted to match the dissociation limit at 38.9 eV, is given as a dotted line in Fig. 7.4(b).
Figure 7.4 Adiabatic electronic states for (a) neutral $N_2$ and the $N_2^+$ and (b) $N_2^{++}$ molecular ions adapted from [Aoto-06, Marian-82, Lundqvist-96-2]. Gerade states are indicated as dashed lines and ungerade states as solid lines. The repulsive $1/R$ Coulomb potential, shifted to match the 38.9 eV dissociation limit, is shown as a dotted line. Dissociation limits are indicated to the right of the potential curves.

As in section 7.4.1, we assume in our classical simulations that the pump pulse populates a selected intermediate state of the molecular ion in a given charge state, out of which the probe pulse induces fragmentation. Figure 7.5 shows the measured KER vs. pump-probe delay for the dissociation channels $N^+ + N^+$, $N^{2+} + N^+$, and $N^{2+} + N^{2+}$ alongside the delay-integrated KER spectra.
Preliminary data for angular distributions measured for the N$^+$ fragment emission from the dissociation of N$_2^{2+}$ into N$^+$ + N$^+$ indicate predominantly parallel transitions in the energy windows 0-5 eV and 10-13 eV and perpendicular transitions for 5-10 eV and 13-20 eV. The asymptotic energies and dissociation bands appear to be in agreement with the measured spectra. Similar to the O$_2$ molecule, the calculations including bound states B$^2 \Sigma_u^+$ of N$_2^{+}$ and D$^3 \Sigma_u^+$ of N$_2^{2+}$ show oscillations related to the periodic wave packet motion. Their oscillation period is about 16 fs. All of the bound states we considered in our calculations for the N$^+$ + N$^+$ dissociation
channels (Fig. 7.4(a)) reproduced KERs of approximately 10 eV. The peaks labeled e and f in Fig. 7.5(a) are in agreement with a direct population of the N$_2^{2+}$ A$^1\Pi_u$ and d$^1\Sigma^+_g$ states [Voss-04, Lundqvist-96-2].

Figure 7.6 (a) Measured KER spectra as a function of pump-probe delay, $\tau$, for the N$_2 \rightarrow$ N$^+ + N^+$ break-up channel and (d, g) corresponding quantum mechanical calculations. (b) Measured KER spectra for the N$_2 \rightarrow$ N$^{2+} + N^+$ channel and (e, h) corresponding quantum mechanical calculations. (c) Measured KER spectra for the N$_2 \rightarrow$ N$^{2+} + N_2^+$ break-up channel and (f, i) corresponding quantum mechanical calculations (same logarithmic color/gray scales for the fragment yield within each column). The measured KER spectra are taken from Fig. 7.5 for positive delays and shown on a different color/grey scale, as indicated.

Figure 7.6 (a-c) shows the measured KER spectra for positive delays compared to the results from quantum mechanical calculations (described above) for the dissociation channels N$_2 \rightarrow$ N$^+ + N^+$ (top), N$_2 \rightarrow$ N$^{2+} + N^+$ (middle), and N$_2 \rightarrow$ N$^{2+} + N_2^+$ (bottom row). Calculations for the N$^+ + N^+$ break-up channel (Fig. 7.6(d,g)) were carried out as for the O$_2$ molecule in section A.
Starting from the ground state of N\textsubscript{2}, a nuclear wave-packet is launched on the N\textsubscript{2}\textsuperscript{+}(B\Sigma\textsubscript{u}\textsuperscript{+}) potential curve via a FC transition, and dissociation by the probe pulse is modeled as either CE (Fig. 7.6(d)) or dissociation in the N\textsubscript{2}\textsuperscript{2+}(D\Pi\textsubscript{g}) electronic state (Fig. 7.6(g)). For separate calculations with CE-imaged intermediate states X\Sigma\textsubscript{g}\textsuperscript{+}, A\Pi\textsubscript{u}, or C\Sigma\textsubscript{u}\textsuperscript{+} of N\textsubscript{2}\textsuperscript{+}, we obtained KER spectra (not shown) at the same level of (dis)agreement with the experimental data in Fig. 7.6(a) as our calculated spectra shown in Fig. 7.6(d). Similarly, if these intermediate states are mapped onto the N\textsubscript{2}\textsuperscript{2+}(D\Pi\textsubscript{g}) potential curve, we found similar KER spectra (not shown) that agree equally well with the experimental data in Fig. 7.6(a) as our calculated spectra in Fig. 7.6(g). The KER band for 1/R CE (Fig. 7.6(d)) tends to exceed the measured KER, while the calculation is in better agreement with the measurement for dissociation along the N\textsubscript{2}\textsuperscript{2+}(D\Pi\textsubscript{g}) potential curve (Fig. 7.6(g)). More specifically, the calculated KER for CE in Fig. 7.6(d) is ~ 6 eV larger than for dissociation on the non-Coulombic repulsive N\textsubscript{2}\textsuperscript{2+}(D\Pi\textsubscript{g}) state in Fig. 7.6(g). This is consistent with the potential energy diagrams in Fig. 7.4, where, in the FC region of the N\textsubscript{2}\textsuperscript{+}(B\Sigma\textsubscript{u}\textsuperscript{+}) state (roughly between 2 and 2.5 a.u.), the shifted 1/R curve is energetically ~ 5 eV higher than the D\Pi\textsubscript{g} state. Note that this discrepancy does not emerge for the O\textsubscript{2} molecule, where the 1/R curve happens to be energetically comparable to the O\textsubscript{2}\textsuperscript{2+}(1\Sigma\textsubscript{g}\textsuperscript{+}) state (cf. Fig. 7.1(b)) in the FC region of the O\textsubscript{2}\textsuperscript{+}(a\Pi\textsubscript{u}) state.

For N\textsubscript{2} → N\textsuperscript{2+} + N\textsuperscript{+} and N\textsubscript{2} → N\textsuperscript{2+} + N\textsuperscript{2+} dissociation the calculated KER plots are shown for CE along 2/R and 4/R repulsive curves in Fig. 7.6(e,h) and Fig. 7.6(f,i), respectively, and are compared with the experimental spectra for positive pump-probe delays in Fig. 7.6(b,c). For these dissociation processes, the calculated KERs are generally in good agreement with the experimental data. This is in contrast to the O\textsubscript{2} results for the highest-charged dissociation channel, O\textsubscript{2} → O\textsuperscript{2+} + O\textsuperscript{2+}, where the calculated KER spectra do not reproduce the measured data. Nevertheless, our simulated KERs for N\textsubscript{2} → N\textsuperscript{2+} + N\textsuperscript{2+} dissociation are clearly larger than the center of energy of the measured KERs (Figs. 7.6(c,f,i)). Even though less pronounced than for the case of O\textsubscript{2} → O\textsuperscript{2+} + O\textsuperscript{2+} dissociation, this might in part be due to dissociation along non-Coulombic potential curves of N\textsuperscript{4+} [Quaglia-02]. As for the case of O\textsubscript{2}, we leave it to future investigations to address simulations non-Coulomb and dipole-coupling effects, and effects that are due to the initial creation by the pump pulse of nuclear vibrational wave packets on more than one adiabatic potential curve. These simulations will likely need to include new independent
*ab-initio* calculations of N⁺, N₂⁺, and N⁴⁺ potential curves [Magrakvelidze-12-1], some of which (in particular for N⁴⁺) are not available in the literature.

In our search for relevant intermediate N₂⁺ electronic states, we included all potential curves that are reproduced in Fig. 7.4(a) [Steinfeld-05, Aoto-06, Lundqvist-96-2]. These electronic states include most of the states identified in the analysis of the N₂⁺ vibrational structure with He II radiation in the spectral range between 23 and 35 eV by Baltzer *et al.* [Baltzer-92]. With regard to the few electronic states of N₂⁺ discussed by Baltzer *et al.* but not considered by us, corresponding potential curves are not available to us. We nevertheless are confident that none of these states would noticeably further improve the agreement we find between our simulated and measured spectra. In the same way as for the dissociation of the O₂ molecule, our quantum mechanical calculations for the dissociation of N₂ in Fig. 7.6 predict wave-packet oscillations that are not resolved in the experimental data. By fitting the potential curves for the intermediate states N₂⁺ (B²Σᵤ⁺) and N₂²⁺ (D³Σᵤ⁺) to Morse potentials [Brandsen-03], we obtain periods of ~16 and ~15 fs, respectively, in good agreement with the oscillations in Fig. 7.6(d-i).

### 7.5 Summary and outlook

The main features of the measured KER spectra are reproduced by classical calculations, implying that following the classical nuclear dynamics on quantum mechanical adiabatic potential curves is a valid scheme for approximating the dissociation dynamics of homonuclear diatomic molecules (with limited accuracy). In comparison with measured KER spectra, we theoretically investigated the dissociation of oxygen molecules via XUV-pumped transitions to specific intermediate states of O₂⁺ or O₂²⁺. These intermediate states are assumed to fragment upon irradiation with the XUV probe pulse. The same was found for the dissociation of nitrogen molecules.

Different dissociation paths were investigated in the quantum mechanical model by calculating KER spectra separately for different (intermediate and dissociating) adiabatic electronic states of O₂⁺,N₂⁺ and N₂⁺,N₂⁺ molecular ions. These simulated KER spectra are (for most cases) compatible with the experimental data. For N⁺ + N⁺ dissociative ionization of N₂, our quantum mechanical calculation predicts different KERs for 1/R CE and dissociation along the N₂²⁺ (D³Π₉) anti-bonding state. In contrast, for O⁺ + O⁺ dissociation of O₂, we find that CE and
dissociation along the \( O_2^{2+}(1^5\Sigma_g^+) \) state yield comparable KERs. Interestingly, for the \( N_2\rightarrow N^{2+} + N^{2+} \) dissociation channel, CE produces KER spectra that agree with the measured data, while this is not the case for the \( O_2\rightarrow O^{2+} + O^{2+} \) dissociation channel (Fig. 7.3(f,i)). Overall, taking the limited resolution of the measured spectra into account, our classical and quantum simulations are in reasonable agreement with the experiments, with the exception of the \( O_2\rightarrow O^{2+} + O^{2+} \) channel. We hope this lack of agreement will be resolved in the future employing quantum mechanical simulations. These simulations should explore additional simulation paths by including more than one (dipole-coupled) intermediate state [Magrakvelidze-12-1] and should be based on experimental XUV pump – XUV probe data with improved statistics and time resolution, taken for a large range of pump-probe delays, that will allow the application of additional criteria for the selection of dissociation pathways, such as nuclear oscillation periods and revival times.

The XUV pulse lengths used in the measured spectra are slightly longer than the nuclear vibrational periods for \( O_2 \) and \( N_2 \) molecular ions and thus prohibited the explicit identification of intermediate states and dissociation paths. Future XUV-pump – XUV-probe experiments with shorter pulses and higher temporal resolution may allow for better identification of relevant intermediate states, based not only on the measured time-averaged KER but also on the time-resolved nuclear motion within a vibrational period and on QB structures in transiently populated electronic states [De-11, Feuerstein-07, Thumm-08, Magrakvelidze-12-1]. This may eventually enable the complete identification of dissociation pathways in the XUV-triggered dissociation of small molecules. Moreover, initial encouraging attempts at FLASH have been undertaken to coincidently detect the emitted photoelectron(s) [Kurka-09]. If successful, this will allow for the unambiguous energetic identification of the intermediate state involved within the achieved energy resolution.

In general, XUV pump pulses coherently populate more than one electronic state such that the vibrational wavefunction consists of a superposition of vibrational eigenstates in several electronic states. It is left to future calculations to address the sensitivity of KER spectra to the coupling of adiabatic electronic states in the electric fields of the pump and probe pulses. Higher selectivity in the XUV population of electronic states can be achieved by analyzing the data as a function of the alignment of the molecules. The current data contain the full information on the molecular alignment, but due to limited statistics have not been analyzed to reveal this alignment.
dependence. Future experiments with better statistics may be able to examine dissociation pathways for selected molecular alignment angles. An approach to increasing the statistics even further without increasing the data acquisition times would be to employ non-adiabatic alignment \cite{Lepine-07} and orientation in intense laser fields \cite{De-09, Sayler-07} in conjunction with XUV pump – XUV probe experiments.
Chapter 8 - SUMMARY

To summarize, we covered basic concepts and molecular orbital theory in chapter 2, including approximations used to solve the TDSE. The theoretical models and the calculation techniques for solving the TDSE are discussed in chapter 3.

In chapter 4, we investigated the nuclear dynamics in $\text{H}_2^+$ ($\text{D}_2^+$) in intense laser fields. In particular, the dynamics of the $\text{D}_2^+$ molecule for different peak intensities, wavelengths, and pedestal lengths of the laser pulses, based on simulated $R$-dependent QB power spectra was studied in chapter 4.1. [Magrakvelidze-09]. By analyzing these spectra in terms of field-dressed Floquet potential curves we focused on dissociation by BS and transient binding of the nuclear motion by BH. We confirmed that, despite the incoherent CW assumption, the Floquet picture is suitable for characterizing the main features of nuclear dynamics, such as BS and BH in few-cycle laser pulses, except for the longest wavelength we used in simulations (1600 nm). From the simulations, we concluded that a peak intensity of about $10^{14}$ W/cm$^2$, pulses with a wavelength between 200 to 300 nm, and a duration of less than 50 fs (FWHM) are most suitable for observing the vibrational trapping of the molecular motion in the 1-$\omega$ BH well. At wavelengths of 1600 nm, dissociation can proceed via both 1-$\omega$ and 3-$\omega$ BS, and our simulations indicate transient trapping in the 3-$\omega$ BH well at the same wavelength. Existing technologies [Hertel-06, Feuerstein-07] can be used to test our findings experimentally. Next, in section 4.2 the dissociation dynamics of $\text{H}_2^+$ molecule were investigated using the FT method discussed in Chapter 3 and compared with the measured data. The excellent match with the measurements led us to believe that the FT method works for small diatomic molecules (Chapter 3.4). The last part of the chapter (Chapter 4.4.) discussed the localization of the electron in the $\text{H}_2^+$ molecular ion using elliptically polarized long IR fields and coincidence techniques. The methods used so far for investigating the localization involve either two color [Ray-09, Wu-13-1] or carrier-envelope-phase-stabilized short IR pulses [Kling-06, Kremer-09, Znakovskaya-12]. The current experimental technique shatters the belief that the localization of the electron cannot be measured using a single wavelength long pulse.

We studied the dissociation dynamics of the $\text{O}_2^+$ molecular ion in IR fields in Chapter 5. Here the method for identifying adiabatic electronic states involved in the dissociation of small molecules was introduced. First, the adiabatic potential curves and electric dipole-coupling matrix elements are calculated with the quantum chemistry code GAMESS. Next, the nuclear
probability-density spectra as a function of time and QB frequency are calculated and compared to the measured data for one molecular potential curve at a time. Finally, after identifying the relevant electronic states, laser-induced dipole-coupling are included in improved wave packet propagation calculations, and the resulting KER spectra are again compared with experimental data. After performing the calculations for different combinations of electronic states of O$_2^+$, we concluded that the a$^4\Pi_u$ and f$^4\Pi_g$ states are main players in the dissociation dynamics, as the calculated and measured KER are similar with matching oscillation periods and revival times.

In chapter 6, we investigated the dissociation dynamics of noble gas dimers in two-color IR pump-and probe fields. The “delay gap” on the positive side of the KER spectra, observed in the Ar$_2^+$ dimer, is also present for He$_2^+$, Ne$_2^+$, Kr$_2^+$ and Xe$_2^+$ dimers. This striking feature can be explained by a simple model where the wave packet is coupled by two-color laser pulses on $I(1/2)_u$ (or $^2\Sigma_u^+$) and $II(1/2)_g$ (or $^2\Sigma_g^+$) states of Ng$_2^+$. Comparing pump-probe-pulse delay-dependent KER spectra for different noble gas dimer cations, we quantitatively discussed quantum mechanical versus classical aspects of the nuclear vibrational motion as a function of the nuclear mass. In addition, based on a study of the variances, as the mass of the system increases, the more it resembles a classical particle, since the wave packet spreads less for the heavier dimers.

Chapter 7 focused on diatomic molecules in XUV laser pulses. We traced the femtosecond nuclear-wave-packet dynamics in ionic states of oxygen and nitrogen molecules by comparing measured KER spectra with classical and quantum mechanical simulations. Experiments were done at the free-electron laser in Hamburg (FLASH) using 38-eV XUV-pump–XUV-probe. The nuclear dynamics were monitored via the detection of coincident ionic fragments using COLTRIMS and a split-mirror setup to generate the pump and probe pulses. Using our classically and quantum mechanically calculated KER spectra, we identified electronic states of the molecular ions that are populated by ionization of the neutral molecule. For specific fragment charge states, this comparison allowed us to assess the relevance of specific dissociation paths.

For the future there are different steps to be taken for improvement of our current quantum model that is used for KER calculations. The model does not include more than two electronic states, nor molecular rotations. A next step would be to implement three and more electronic states in the calculations. Including molecular rotation in the current code without
doing full $ab$-initio calculations [Winter-10] will be more challenging. The study of this project only included diatomic molecules in IR or UV fields. It would be alluring to extend the research to heavier molecules with more than one active degree of freedom that require potential surface calculations.
Bibliography


O. Jagutzki, V. Mergel, K. Ullmann-Pfleger, L. Spielberger, U. Spillmann, R. Dörner, H. Schmidt-Böcking “A broad-application microchannel-plate detector system for advanced particle or photon...
detection tasks: large area imaging, precise multi-hit timing information and high detection rate”, Nucl. Instr. and Meth. in Phys. Res. A 477, 244 (2002)


P. M. Morse, Phys. Rev. 34 (1), 57 (1929).


http://webbook.nist.gov/chemistry/

http://www.nr.com/
I. Paidarová and F. X. Gadea, “Accurate ab-initio calculation of potential energy curves and transition dipole moments of the Xe$_2^+$ molecular ion”, Chem. Phys. 274, 1 (2001)


[Wadt-80] W. R. Wadt, “The electronic states of \( \text{Ne}_2^+ \), \( \text{Ar}_2^+ \), \( \text{Kr}_2^+ \), and \( \text{Xe}_2^+ \). II. Absorption cross sections for the \( 1(1/2)_v \rightarrow 1(3/2)_g \), \( 1(1/2)_g \), \( 2(1/2)_g \) transitions”, J. Chem. Phys. 73(8), 3915 (1980); ibid. 68(2), 402 (1978).


APPENDICES

Appendix A - Abbreviations

A list of the abbreviations used in this work is given below.

ADK – Ammosov-Delone-Krainov
AO – Atomic orbital
BH – Bond hardening
BO – Born-Oppenheimer
BS – Bond softening
CI – Configuration interaction
CE – Coulomb explosion
CEP – Carrier envelope phase
CN – Crank-Nicolson
COLTRIMS – COLd target recoil ion momentum spectroscopy
CREI – Charge-resonance enhanced ionization
CSF – Configuration state function
CW – Continuous wave
FC – Frank-Condon
FLASH – Free-electron laser in Hamburg
FWHM – Full width half maximum
GAMESS – General atomic and molecular electronic structure system
GTO – Gaussian-type orbitals
HF – Hartree-Fock
IR – Infra-red
KER – Kinetic energy release
MCSCF – Multiconfiguration self-consistent field
MO – Molecular orbital
NIR – Near infra-red
SCF – Self-consistent field
STO – Slater type orbitals
TDSE – Time dependent Schrödinger equation
QB – Quantum beat
VD – Virtual detector
VMI – Velocity map imaging
XUV – Extreme ultra-violet
Appendix B - Reduced mass

If the masses of the atoms in a diatomic molecule are \( m_1 \) and \( m_2 \), the *reduced* mass can be calculated as follows

\[
\mu = \frac{m_1 m_2}{m_1 + m_2}
\]

If \( m_1 = m_2 = m \) (homonuclear diatomic molecules).

\[
\mu = \frac{m}{2} = \frac{1}{2} \times \frac{\text{Atomic mass (g/mol)}}{\text{Avogadro's number (mol}^{-1}\text{)}} \times \frac{1}{9.10938 \times 10^{-28} \text{g (a. u.}^{-1}\text{)}}
\]

\[
\mu (\text{a. u.}) = \text{Atomic mass (g/mol)} \times 911.44453
\]

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Atomic mass (g/mol)</th>
<th>Reduced mass (a. u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_2)</td>
<td>1.0079</td>
<td>918.645</td>
</tr>
<tr>
<td>D(_2)</td>
<td>2.0158</td>
<td>1835.2415</td>
</tr>
<tr>
<td>He(_2)</td>
<td>4.0026</td>
<td>3648.148</td>
</tr>
<tr>
<td>N(_2)</td>
<td>14.0067</td>
<td>12766.341</td>
</tr>
<tr>
<td>O(_2)</td>
<td>15.9994</td>
<td>14582.566</td>
</tr>
<tr>
<td>Ne(_2)</td>
<td>20.1797</td>
<td>18392.677</td>
</tr>
<tr>
<td>Ar(_2)</td>
<td>39.948</td>
<td>36410.386</td>
</tr>
<tr>
<td>Kr(_2)</td>
<td>83.798</td>
<td>76377.229</td>
</tr>
<tr>
<td>Xe(_2)</td>
<td>131.293</td>
<td>119666.287</td>
</tr>
</tbody>
</table>
**Appendix C - Single-curve-calculation code**

This appendix describes the source code used in single-cation curve calculations. It is written in FORTRAN-90. The code has a main program that uses several subroutines and functions that are divided into different files.

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tdse.f90</td>
<td>The main program.</td>
</tr>
<tr>
<td>progvars.f90</td>
<td>Defining program variables and default values.</td>
</tr>
<tr>
<td>wfMath.f90</td>
<td>Math-related subroutines.</td>
</tr>
<tr>
<td>wfPot.f90</td>
<td>Reading in potential curves.</td>
</tr>
<tr>
<td>params.f90</td>
<td>Reads input parameter values.</td>
</tr>
<tr>
<td>CN.f90</td>
<td>Crank–Nicolson propagation scheme.</td>
</tr>
<tr>
<td>FT.f90</td>
<td>FT method propagation scheme.</td>
</tr>
<tr>
<td>adk.f90</td>
<td>ADK depletion of ground state.</td>
</tr>
<tr>
<td>fft.f90</td>
<td>Fast Fourier transform related subroutines.</td>
</tr>
<tr>
<td>diag.f90</td>
<td>One dimensional diagonalization souboutines.</td>
</tr>
<tr>
<td>debug.f90</td>
<td>Debug related.</td>
</tr>
<tr>
<td>fileswin.f90</td>
<td>Reading-writing input-output files.</td>
</tr>
<tr>
<td>strings.f90</td>
<td>String manipulation subroutines.</td>
</tr>
</tbody>
</table>
C.1 Main Program (tdse.f90)

```fortran
program main
    use progvars
    implicit none
    molecule = "He2";
    inputFolder = "input\";
    curve1 = "He2_pot_ground.txt"
    outputFolder = "output\";
    curve2 = "He2p-Sig-u-Morse.txt"
    call RunOnce();
    print *, 'program completed'
end program main
```

```fortran
subroutine RunOnce()
    use progvars
    use files
    implicit none
    call EnsureFolderExists(outputFolder);
    call init();
    print *, 'init completed';
    call find_groundstate_byenergy();
    print *, 'find_groundstate completed';
    call calculate_energy();
    print *, 'calculate_energy completed';
    call Diagonalize();
    if (useADKpump.eq. .true.) then
        call Apply_ADK();
    endif
    call run();
    print *, 'run completed';
    call cleanup();
end subroutine RunOnce

!_______________________________input parameters____________________________
subroutine init
    use progvars
    use strings;
    use wfMath
    use wfPot
    implicit none
    integer :: nloop
    real*8 :: widthz,pz
    select case (trim(molecule))
      case("D2")
        mass = 1835.241507d0; nz = 1024;  deltaz  = 0.05d0;
      case("He2")
        mass = 3648.148d0; nz =8192;  deltaz  = 0.01d0
      end select
    maxt   = 124024.34d0 ! 3ps                 ! maximum time
    deltat = 1.0d0           ! delta time
    widthz = 3.0d0                             ! width of the gaussian
    minz   = 0.d0                              ! minimum z in a.u.
    maxz   = nz * deltaz                       ! maximum z in a.u.         
    centerz = 7.d0                              ! center of the gaussian 
    nt     = NINT(maxt/deltat)                 ! time steps
    pz     = 0.d0                              ! not used currently
    deltafft = 20.d0* deltat                   ! time step for FFT
    nfft   = NINT(maxt/deltafft)               ! no of steps for FFT
    fadewidth =15.d0                 ! the width of the absorber in a.u.
    fasdestrength = 0.1d0  !the maximum heigth of the neg. imaginary potential
    includeAbsorber = .true.                    ! switch for absorber         
    !_________________________E FIELD section_______________________________
    Eo      = 0.1d0                             ! field amplitude
    Eomega  = 0.057d0                           ! laser frequency
    Ephi    = 0.d0                              ! carrier envelope phase
    Ewidth  = 120.d0                            ! width of the envelope  
    Eto     = 1000.d0                           ! eccentric.of the Gaus. envelope
    includeField = .false.                      ! switch for efield
    pumpEo         =  0.053 !1E14
```

124
pumpEwidth  =  3305.8d0 !80fs
pumpEomega  =  0.057d0
pumpEphi    =  0.0d0

!______________________________Printing & Plotting Filters_____________________
printFilter = nz
maxFrequencyFilter = 2000
printInterval = 200
! print filter upper boundary check
if (printFilter > nz) then
  printFilter = nz
end if

! allocate
allocateArrays();
do nloop = 1,nz
  Z(nloop) = minz+ (nloop)* deltaz
  P(nloop) = 2*pi*(nloop-(nz/2)-1)/(maxz-minz);
end do

! call.
call wfmath_gaussian(widthz,pz)
call setabsorber_left(fadewidth, fadestrength) !/deltat
call setabsorber_right(fadewidth, fadestrength)
call printpsi(trim(concat(outputFolder,"psi.dat")))
call potentials_init(nz) !initialize potential arrays

call read_potential();
end subroutine

subroutine read_potential()
  use progvars;
  use strings;
  use wfPot;
call potentials_readfromfile_activate(trim(concat(inputFolder,curve1)),1)
call potentials_readfromfile_activate(trim(concat(inputFolder,curve2)),2);
end subroutine  

subroutine Diagonalize()
  use progvars;
  use strings;
  use wfMath;
  use wfPot;
  use diag;
  implicit none;
  integer nstate;
  real*8, pointer :: potarray(:);

  print *,"--------------------------------------"
  print *,"-> Diagonalizing the potential of gerade curve <-"
call diag_init(nz,deltaz,mass) ! needed for diag. of the potential
nullify(states%energyarr) ! ensure proper disas. of the new pointers
nullify(states%wavefunctions)
call potentials_setactive(2);
call wfPot_FormattedPotentialHC(potarray,curve2);
open(unit=111,file=trim(concat(outputFolder,"fpot.dat")),status="replace",
     access="sequential",recl=1024)
do nstate=1, nz
  write(111,'(E13.3,E12.5)') (nstate*deltaz), potarray(nstate);
enddo
close(111)
call diag_diagonalize(potarray, states) !find the bound states
print *,"Number of bound states: ",states%numbound !number of bound states
nullify(states%wavefunctions)
call potentials_setactive(2);
open(unit=111,file=trim(concat(outputFolder,"fc_factors.dat")),status="replace",
     access="sequential",recl=1024)
write(111,'(I6,2E12.4)') StatesEnergysrarr, &
cdabs(wfmath_overlap(psi(:),states%wavefunctions(nstate,:)))**2
write(111,*)
close(111)
call diag_release(states);  
call diag_done();
end subroutine Diagonalize

!____________________________run____________________________
subroutine run
  use progvars
  use strings;
  use wfMath
  use wfPot
  use fft;
implicit none
real*8  :: etime, energy1, efield = 0.d0, mom
complex*16 :: pos,var, mom1, mom2, varP, varMom, rdeltat
integer  :: fftloop,tloop, timestep , estep
logical  :: ufield = .true.
call MethodInit()
!init fft arrays for KER
call fftInit(nz, deltaz, mass);
rdeltat = CMPLX(deltat,0.d0)
call potentials_setactive(2);
open(unit=102,file=trim(concat(outputFolder,"wfunc.dat")),status="replace",  
      access="sequential",recl=1024)
open(unit=103,file=trim(concat(outputFolder,"efield.dat")),status="replace",  
      access="sequential",recl=1024)
open(unit=104,file=trim(concat(outputFolder,"position.dat")),status="replace",  
      access="sequential",recl=1024)
open(unit=105,file=trim(concat(outputFolder,"momentum.dat")),status="replace",  
      access="sequential",recl=1024)
open(unit=106,file=trim(concat(outputFolder,"XVariance.dat")),status="replace",  
      access="sequential",recl=1024)
open(unit=108,file=trim(concat(outputFolder,"PXproduct.dat")),status="replace",  
      access="sequential",recl=1024)
open(unit=109,file=trim(concat(outputFolder,"MomVariance.dat")),status="replace",  
      access="sequential",recl=1024)
timestep = NINT(deltafft / deltat)
do fftloop = 1 , nfft
  !print *, fftloop*timestep
  do tloop = 1 , timestep
    fftvalues = czero;
    estep = ((fftloop-1)*timestep + tloop);
    print *, estep ;
    etime = estep * deltat;
    if(includeField .eq. .true.) then
      efield = wfmath_efield(etime)
    else
      efield = 0.d0
    end if
    call propagate(rdeltat,efield, ufield, includeAbsorber)
    pos = wmath_pos(psi)
    write(104,'(E13.4E3, E13.4E3)') etime*0.0242, Real(pos)
    var = wmath_var(psi)
    write(106,'(E13.4E3, E13.4E3)') etime*0.0242, Real(var)
    call fftForward(psi);
    mom = wfmath_momentum3(fftvalues);
    write(105,'(E13.4E3, E13.4E3)') etime, mom
    varMom = wmath_varMom(fftvalues)/((nz *deltaz )**2)
    write(109,'(E13.4E3, E13.4E3)') etime*0.0242, Real(varMom)
    write(108,'(E13.4E3, E13.4E3)') etime*0.0242, sqrt(abs(Real(var*varMom))
    ufield = includeField
    if(mod(estep,printInterval) .eq. 0) then
      write(102,'(E13.4E3, $)') cdabs(psi(1:printFilter))**2
      write(102,*)
      write(103,'(E13.4E3 ,E13.4E3)') etime, efield
    end if
  end do
end do
close(102)
close(103)
close(104)
close(105)
close(106)
close(108)
close(109)
call MethodCleanup()
end subroutine run
!
subroutine find_groundstate

use progvars
215 use strings
use wfMath
use wfPot
implicit none
complex*16 :: energy1, energy2
220 real8 :: overlap

!The preset precision goal
real8 :: prec = 1.d-11
!Test convergence by default every 2nd propagation step
integer :: ctest = 2
225 !The preset maximum iteration to find ground state
integer :: maxiter = 1000000
complex*16 :: timestep
integer :: loop
logical :: ufield = .true.

!wavefunction array to check convergence
complex*16, pointer, dimension(:) :: psiwork

call MethodInit()
allocate (psiwork(size(psi)), stat=iAllocStatus)
if (iAllocStatus /= 0) then
235 print *, "ERROR: can't allocate PSIWORK array"
stop
endif
print *, "TOOLS_GROUNDSTATE: PSIWORK wavefunction array allocated"
call potentials_setactive(1);
psiwork = 0.d0

timestep = -ii * deltat
240 do loop = 1 , maxiter

245 call propagate(timestep, 0.d0, ufield, .false.)
if (mod(loop, ctest).eq.0) then ! test convergence only every ctest loop

250 energy1 = wfMath_energy(psi);
energy2 = wfMath_energy(psiwork);
overlap = abs(real(energy1-energy2));
print *, loop, real(overlap);
if (overlap < prec) then
255 ! found ground state .. yeah....
print *, "found groundstate"
exit
endif
endif
psiwork = psi
end if
ufield = .false. ! calculate XY only first time for CN Method, not used in any other method
end do
if (loop > maxiter) then
260 print *, "groundstate not found"
stop
endif
call MethodCleanup()
use strings
use wfMath
implicit none
complex*16 energy;
energy = wfmath_energy(psi);
print *, real(energy);
open(unit=129, file=trim(concat(outputFolder, "groundstate_energy.dat")), status="replace", access="sequential", rec=1024)
write(129, '(E13.6)') real(energy);
close(129)
end subroutine calculate_energy

subroutine setabsorber_left(width, strength)
use progvars
implicit none
real*8, intent(in) :: width, strength
integer :: n
real*8 :: maskvalue
do n=1, nint(width / deltaz)
  maskvalue = (((width - (n-1)*deltaz) / width)**2) * strength
  maskvalue = exp(-maskvalue)
  absorber(n) = absorber(n) * maskvalue
enddo
end subroutine setabsorber_left

subroutine setabsorber_right(width, strength)
use progvars
implicit none
real*8, intent(in) :: width, strength
integer :: n
real*8 :: maskvalue
do n=1, nint(width / deltaz)
  maskvalue = (((width - (n-1)*deltaz) / width)**2) * strength
  maskvalue = exp(-maskvalue)
  absorber(nz + 1 - n) = absorber(nz + 1 - n) * maskvalue
enddo
end subroutine setabsorber_right

subroutine setabsorber(width, strength)
call setabsorber_left(width, strength)  
call setabsorber_right(width, strength)
end subroutine setabsorber

subroutine allocateArrays
use progvars
implicit none
integer i,j
allocate(Z(nz), P(nz), stat = iAllocStatus)
if (iAllocStatus /= 0) then
  print *, "ERROR: can't allocate position vector Z or P"
  stop
endif
allocate(psi(nz), psitotal(nz), stat = iAllocStatus)
if (iAllocStatus /= 0) then
  print *, "ERROR: can't allocate wave function psi"
  stop
endif
allocate(absorber(nz), stat = iAllocStatus)
if (iAllocStatus /= 0) then
  print *, "ERROR: can't allocate Vector absorber"
  stop
endif
allocate(fftarray(nz, nfft), stat = iAllocStatus)
if (iAllocStatus /= 0) then
  print *, "ERROR: can't allocate Array FFT"
  stop
endif
allocate (fftinput(nfft), stat = iAllocStatus)
if (iAllocStatus /= 0) then
  print *,'ERROR: can't allocate Array FFT Input'
  stop
endif
psi = czero
psitotal = czero
absorber = 1.d0
fftarray = 0.d0
end subroutine

subroutine cleanup
  use progvars
  use fft
  implicit none
deallocate(Z)
deallocate(P)
deallocate(psi)
deallocate(psitotal)
deallocate(absorber)
deallocate(fftarray)
deallocate(fftinput)
call potentials_done()
end subroutine

subroutine MethodInit()
  use progvars
  use CN
  use FT
  implicit none
  select case(useMethod)
    case (CNMethod)
      call CNInit()
    case (FTMethod)
      call FTInit()
  end select
end subroutine

subroutine MethodCleanup()
  use progvars
  use CN
  use FT
  implicit none
  select case(useMethod)
    case (CNMethod)
      call CNCleanup()
    case (FTMethod)
      call FTCleanup()
  end select
end subroutine

subroutine propagate(timestep, efield, useefield, useabsorber)
  use progvars
  use wfMath
  use CN
  use FT
  implicit none
  complex*16, intent(in) :: timestep
  real*8, intent(in) :: efield
  logical, intent(in) :: useefield
  logical, intent(in) :: useabsorber
  select case(useMethod)
    case (CNMethod)
      call CNPropagate(psi, timestep, efield, useabsorber)
    case (FTMethod)
      call FFTPropagate(timestep, efield, useefield, useabsorber)
  end select
end subroutine

subroutine Apply_ADK()
module progvars
  implicit none
  type :: TEnergies            ! declare a type array for bound state energies
      integer :: numbond     ! number of bound states
      real*8, pointer :: energyarr(:) ! the array with the bound energies
  end type
  type :: TStates              ! declare a type array for bound wave functions
      integer :: numbond     ! number of bound states, identical to TEnergies
      real*8, pointer :: energyarr(:) ! the array with the bound energies
      complex*16, pointer :: wavefunctions(:,:)! the array with the wave functions
  end type
  ! Variable definitions
  real*8 :: mass         ! particle mass
  real*8 :: maxz         ! maximum x
  real*8 :: minz         ! minimum x
  real*8 :: deltaz       ! step size in x direction
  real*8 :: centerz      ! initial position in gaussian
  real*8 :: maxt         ! maximum time
  real*8 :: deltat       ! delta time
  integer :: nz           ! no of steps in x direction (no of points in the grid)
  integer :: nt           ! no of time steps
  real*8 :: deltaitf     ! time step for FFT
  integer :: nfft         ! no of time/frequency steps for FFT
  real*8, pointer :: Z(:), P(:)
  real*8, pointer :: potential(:)
  complex*16, pointer :: psi(:)       ! initial wavefunction array
  complex*16, allocatable :: psitotal(:)
  complex*16 :: ii  = (0.d0,1.d0)       ! complex number i
  complex*16 :: czero  = (0.d0,0.d0)
  real*8 :: pi = 3.141592653589793238462643d0
  !_________________absorber section____________________________________________________
  real*8 :: fadewidth                    ! the width of the absorber for the electrons
  real*8 :: fadestrength                 ! the strength of the absorbing border potential
  complex*16 :: absorber(:)             ! absorber potential
  logical :: includeAbsorber              ! switch for using absorber
  !_________________________E FIELD section_______________________________________________
  real*8 :: Eo                           ! field amplitude
  real*8 :: Eomega                       ! laser frequency
  real*8 :: Ephi                         ! carrier envelope phase
  real*8 :: Ewidth                       ! width of the envelope
  real*8 :: Eto                          ! center of the gaussian envelope
end module progvars

C.2 Module defining variables (progvars.f90)
logical :: includeField                    ! switch for using field

Pump Section
real*8 :: pumpEo    !(pulseint)               
real*8 :: pumpEwidth !(pulselength)           
real*8 :: pumpEomega !(pulseomega)            
real*8 :: pumpEphi   !(pulsephase)            

FFT Section
real*8, pointer :: fftarray(:, :)     ! array for FFT
complex*16, pointer :: fftinput(:)      ! the complex version for one R parameter

Diagonalization Section
! object with wave functions and energies from diagonalization

Memory allocation
integer :: iAllocStatus

Printing & Plotting Filters
integer :: printFilter
integer :: maxFrequencyFilter
integer :: printInterval
real*8 :: frequencyInTHZ = 6579.7d0

Method Selection
character(len=2), parameter :: CNMethod = "CN"   ! Crank-Nicholson method
character(len=2), parameter :: FTMethod = "FT"   ! FFT method
character(len=2) :: useMethod = CNMethod
character(len=120) :: inputFolder;
character(len=120) :: outputFolder;
character(len=120) :: curve1, curve2;
character(len=10)  :: molecule

ADK Section
logical :: useADKpump   ! = .true.
logical :: Powerspectra

end module progvars

C.3 Module Wave Function (wfMath.f90)

module wfmath
    implicit none
    contains
        ! definind initial wave function
        subroutine wfmath_gaussian(widthz,pz)
            use progvars
            implicit none
            real*8, intent(in) :: widthz         ! the width of the wavepacket
            real*8, intent(in) :: pz              ! momentum
            integer :: nR
            real*8 :: rvalue
            complex*16 :: cvalue
            real*8 :: z2
            z2 = minz + deltaz
            do nR=1, nz
                rvalue = exp( -((z2-centerz)/widthz)**2 /2 ) / (2*pi*widthz)
                cvalue = cdexp( cmplx(0.0,1.0)*(pz*z2))
                psi(nR) = rvalue * cvalue
                z2 = z2 + deltaz
            enddo
            call wfmath_normalize(psi)
        end subroutine
        ! function to calculate the overlap of the two given wave functions inside the optional given integration areas
        function wfmath_overlap(wf1,wf2,centerz1,widthz1)
            use progvars
            implicit none
            ! algorithm can be improved by a better integration method!
end module
complex*16, intent(in), dimension(:) :: wf1, wf2
real*8, intent(in), optional :: centerz1 ! the center of the integration window
real*8, intent(in), optional :: widthz1 ! the full length of the integration window
complex*16, intent(in), optional :: overlap
integer :: nzstart, nzend ! the integration grid boundary

!initial function result in case of out-of-integration-area
overlap = cmplx(0.d0,0.d0)
if (present(centerz1).and.present(widthz1)) then
  ! the integration boundary in x-grid space
  nzstart = int((centerz1 - minz - widthz1/2) / deltaz) + 1
  nzend = int((centerz1 - minz + widthz1/2) / deltaz) + 1
endif

end function wfmath_overlap

!_________________________________Energy____________________________________________
function wfmath_energy(wf) result(energy)

! calculates the energy corresponding to the given wavefunction: E=<Psi|H|Psi>
! using 5-point formula for H=-1/(2*mass) * (d^2/dx^2 + d^2/dz^2) + V

use progvars
implicit none
complex*16 :: energy ! the functional result for the energy
complex*16 :: epot, ekinz ! contributions to the total energy

! First step: Potential energy Epot = <Psi|V|Psi>
epot = sum(conjg(wf)*wf*potential)*deltaz

! Second: kinetic energy
ekinz = - 1 / (24*mass) / deltaz * &
  sum(conjg(wf(3:nz-2)) * &
    ( -wf(1:nz-4)+16*wf(2:nz-3)-30*wf(3:nz-2)+16*wf(4:nz-1)-wf(5:nz) ) )

! Third: return the total (sum) energy
energy = epot + ekinz

end function wfmath_energy

!________________________________position______________________________________________________
function wmath_pos(wf) result(pos)

!calculates the expectation value of the position corresponding to the given wavefunction: pos=<Psi|x|Psi>

use progvars
implicit none
complex*16, intent(in), dimension(:) :: wf
complex*16 :: pos

pos=sum(conjg(wf)*wf*Z)*deltaz

end function wmath_pos

!________________________________momentum_____________________________________________________
function wfmath_momentum3(wf) result(momentum)

use progvars
complex*16, intent(inout), dimension(:) :: wf
real*8 :: momentum, pmax, deltap
complex*16 :: mom, norm

pmax = 1.d0/(2.d0*deltaz) ! maximum momentum of the grid (see Nyquist theorem)
deltap = 2.d0*pmax / nz ! the momentum resolution
norm= sum(conjg(wf)*wf*deltap)
mom = sum(conjg(wf)*wf*P)*deltap/norm
momentum = Real(mom);

end function wfmath_momentum3
module wfPot

  implicit none

  real*8, allocatable, target :: pot_curve1(:), pot_curve2(:)

  ! these are our 2 potential curves 1 is ground, 2 is gerade/ungerade
  integer :: selectedPotentialNumber = 0;

contains

! I N I T I A L I Z A T I O N

subroutine potentials_init(zdim)
  use debug
  integer, intent(in) :: zdim ! the dimension of the arrays
  integer :: iAllocStatus ! return value

  ! allocate potential arrays
  allocate(pot_curve1(zdim), pot_curve2(zdim), stat=iAllocStatus)
end subroutine

end module

C.4 Module potentials (wfPot.f90)
if (iAllocStatus /= 0) then
  print *, "ERROR: can't allocate POTENTIAL arrays"
  stop
endif

!And make sure we have an active potential assigned - initialized with the lowest curve.
call potentials_setactive(1)
call debugmsg(5,1,"POTENTIALS_INIT: 1D potentials allocated")
end subroutine potentials_init

!------------------------------------------------------------------------------------------------
subroutine potentials_setactive(potnr)
  use progvars
  implicit none

  ! chooses which potential curve is the currently active potential curve
  integer, intent(in) :: potnr
  selectedPotentialNumber = potnr;
  select case(potnr)
    case(1)
      potential => pot_curve1
    case(2)
      potential => pot_curve2
    case default
      print *, "POTENTIALS_SETACTIVE: ERROR - potential number ", potnr,
        "is not within [1,2] range"
      stop
  end select
end subroutine

!------------------------------------------------------------------------------------------------
subroutine potentials_readfromfile_activate(filename,potnr)
  character(len=*) , intent(in) :: filename ! potential file to read
  integer, intent(in) :: potnr
  call potentials_setactive(potnr)
call potentials_readfromfile(filename)
end subroutine

!------------------------------------------------------------------------------------------------
subroutine potentials_readfromfile(filename)
  ! read the potential from a file. In the first column is the position while
  ! the second column gives the potential value.
  use progvars
  use debug
  implicit none

  character(len=1), intent(in) :: filename ! potential file to read
  integer :: ios ! the error for the I/O operation
  real*8 :: pos, pot ! position and potential from the file
  integer :: nzpos ! the grid point
  logical :: warning ! the general warning flag
  potential   =   0.d0
  nzpos       =   1
  warning     =   .false. ! no warning condition

  open(unit=501,file=trim(filename),access="sequential",recl=1024,status="old")
! open file in binary form to read wavefunction
  do
    read(501,*,IOSTAT=ios) pos, pot ! read one line
    if (ios.ne.0) then
      exit ! exit the do loop if an error occurred, i.e. end of file
    end if
    if(nzpos <= nz) then
      ! now we have the values from the file and can start assigning them
      ! to our internal array
      potential(nzpos) = pot
      nzpos = nzpos + 1!
    else
      warning = .true. ! no warning condition
    !exit
    end if
  end do
  if (ios < 0) then
    if (warning) then
      call debugmsg(5,2,"POTENTIALS_READ: WARNING = potential read, but file does not match grid")
    endif
else
  call debugmsg(5,2,"POTENTIALS_READ: data successfully read from file")
endif
else
call debugmsg(5,2,"POTENTIALS_READ: ERROR while reading file")
print *,"Error number: ",ios
pause
endif
end subroutine potentials_readfromfile

!------------------------------------------------------------------------------------------------
subroutine potentials_done
use debug
integer :: iDeallocStatus     ! return value

dealocate(pot_curve1, pot_curve2,stat=iDeAllocStatus)
if (iDeAllocStatus /= 0) then
  print *,"ERROR: can't deallocate POTENTIAL arrays"
  stop
endif
call debugmsg(10,1,"POTENTIALS_DONE: POTENTIAL arrays destroyed")
call debugmsg(5,1,"POTENTIALS_DONE: 1D potentials destroyed")
end subroutine

end module

module params
  implicit none
  contains
  subroutine params_read()
    use progvars
    use debug
    integer             :: ios             ! the error for the I/O operation
    character(len=50)   :: key
    real*8              :: value
end subroutine
end module

module CN
  implicit none
  complex*16, allocatable, private :: psiout(:)     ! local wavefunction for propagation
  complex*16, allocatable, private :: gamma(:)      ! used for CN-propagation algorithm
  complex*16, allocatable, private :: diagarr(:)    ! diagonal elements used for CN-propagation
  contains
  subroutine CNInit()
    use progvars
    use debug
    implicit none;
    ! allocate 1D local wavefunctions
    allocate(psiout(nz),stat=iAllocStatus)
    if (iAllocStatus /= 0) then
      print *,"ERROR: can't allocate 1D local wavefunction array"
      stop
    endif
call debugmsg (10,1,"PROPAGATOR_INIT: 1D local wavefunction array allocated")
    ! allocate temporary CN-propagator array
    allocate(gamma(nz),stat=iAllocStatus)
    if (iAllocStatus /= 0) then
      print *,"ERROR: can't allocate temporary propagator array GAMMA"
      stop
    endif
call debugmsg (10,1,"PROPAGATOR_INIT: temporary propagator array GAMMA allocated")
    ! allocate CN diagonal elements array
    allocate(diagarr(nz),stat=iAllocStatus)
    !...
  end subroutine
end module

C.5 Module parameters (params.f90)

C.6 Module Crank-Nicolson propagation (CN.f90)
if (iAllocStatus /= 0) then
  print *, "ERROR: can't allocate DIAGARR array"
  stop
end if
call debugmsg (10,1,"PROPAGATOR_INIT: DIAGARR allocated")
call debugmsg(5,1,"PROPAGATOR_INIT: propagation arrays allocated")
end subroutine

subroutine CNCleanup()
use debug
integer :: iDeallocStatus ! return value
! deallocate 1D sub-wavefunctions
deallocate(psiout,stat=iDeallocStatus)
if (iDeallocStatus /= 0) then
  print *, "ERROR: can't deallocate 1D local wavefunction array"
  stop
end if
call debugmsg (10,1,"PROPAGATOR_DONE: 1D local wavefunction array destroyed")
deallocate(gamma,stat=iDeallocStatus)
if (iDeallocStatus /= 0) then
  print *, "ERROR: can't deallocate temporary propagator array GAMMA"
  stop
end if
call debugmsg(10,1,"PROPAGATOR_DONE: temporary propagator array GAMMA destroyed")
deallocate(diagarr,stat=iDeallocStatus)
if (iDeallocStatus /= 0) then
  print *, "ERROR: can't deallocate DIAGARR"
end if
call debugmsg (10,1,"PROPAGATOR_DONE: DIAGARR destroyed")
call debugmsg(5,1,"PROPAGATOR_DONE: propagation arrays destroyed")
end subroutine

subroutine CNPropagate(wfunc, timestep, efield, useabsorber)
use progvars
implicit none
! uses Crank-Nicholson propagation scheme to propagate wavefunction for small timestep
complex*16, intent(inout), dimension(:) :: wfunc
complex*16, intent(in) :: timestep ! complex for imaginary time propagation
real*8, intent(in) :: efield
logical, intent(in) :: useabsorber
complex*16, parameter :: iu = (0.d0,1.d0) ! imaginary unit
!
!the diagonal elements without potential term
complex*16 :: diagz
!
!the constant off-diagonal elements
complex*16 :: subdiagz
!
! 1.) Calculate constant tridiagonal elements of propagation matrix (Hamiltonian)
diagz = 0.5 + iu * timestep / (mass * 4.0 * deltaz**2)
! Note: potential is added in propagation loop
subdiagz = -iu * timestep / (mass * 8.0 * deltaz**2)
!
! 2.) Propagate a full potential and kinetic energy step at once
diagarr = potential * iu * timestep / 4.d0  + diagz
!
! the diagonal elements including potential
call tridiag(wfunc,psiout,diagarr,subdiagz) ! propagate in z-direction
!
! 2.) Propagate half a potential step
! wfunc = wfunc * (1.d0 - iu * potential * timestep / 4.d0) /
! (1.d0 + iu * potential * timestep / 4.d0)
!
! 3.) Propagate a full timestep T_z in z direction
! call tridiag(wfunc,psiout,diagz,subdiagz) ! propagate in z-direction
!
! write back the result into the wavefunction
! wfunc = psiout
!
! 4.) Propagate another half a potential step
! wfunc = wfunc * (1.d0 - iu * potential * timestep / 4.d0) /
! (1.d0 + iu * potential * timestep / 4.d0)
!
! 5.) Apply the absorber to reduce grid boundary reflections (if absorber array is given)
if (useabsorber) then
  wfunc = psiout*absorber
else
  wfunc = psiout
end if
end subroutine
subroutine tridiag(psiin, psiout, diag, subdiag)  
! modified NUMERICAL RECIPES TRIDAG routine for constant diagonal  
! and upper/subdiagonal elements  
complex*16, intent(in) :: psiin(:), diag(:)
complex*16, intent(out) :: psiout(:)
complex*16, intent(in) :: subdiag
integer :: j
beta      = diag(1)
psiout(1) = psiin(1) / beta  
do j=2, size(psiin)
   gamma(j) = subdiag / beta
   beta     = diag(j) - subdiag * gamma(j)
   if (beta.eq.0) then
      pause "ERROR: CNTRIDAG_CONST failed (beta=0)"
      stop
   endif
   psiout(j) = (psiin(j) - subdiag * psiout(j-1)) / beta
endo
endo  
disableoptimization
psiout = psiout - psiin  
end subroutine 

c7 module FFT propagation (FT.f90)

module FT
implicit none
complex*16, pointer ::  K(:)               ! Kinetic Energy part of Hamiltonian 
contains
subroutine FTInit()
use progvars
use fft
implicit none
integer zloop  
real*8 pn
allocate(K(nz), stat = iAllocStatus)
if (iAllocStatus /= 0)
   then
      print *,"ERROR: can't allocate vector K"
      stop
endif
!calculate KE part of hamiltonian
do zloop = 1, nz
   pn = 2 * pi * (zloop-nz/2-1)/(maxz-minz)
   K(zloop) = cdexp((-ii * deltat/(4 * mass))*(pn**2))
endo
call fftInit(nz,deltaz,mass)
end subroutine 

subroutine FTPropagate(timestep, efield, useefield, useabsorber)
use progvars
use fft
use wfMath
implicit none
complex*16, intent(in) :: timestep
real*8, intent(in) :: efield
logical, intent(in) :: useefield
logical, intent(in) :: useabsorber
complex*16 K2(nz)
integer :: zloop, usee = 0
if(useefield) usee = 1
call FTShift(nz, K2)
call fftForward(psi)
call fftInverse(psi)
psi = fftvalues* K2
psi = psi * cdexp(-ii* timestep*(potential-usee*Z*efield) )
call fftForward(psi)
psi = fftvalues * K2

psi = fftInverse(psi)

if(useabsorber.eq.true.) then
  psi = psi * absorber
end if

end subroutine

!------------------------------------------------------------------------------------------------

subroutine FTShift(n,wf, wft)
implicit none
integer, intent (in) :: n
complex*16, intent (in), dimension(:) :: wf       ! the input array to shift
complex*16, intent(inout), dimension(:) :: wft      ! the target array
integer i

do i = 1, n/2.
   wftemp(i)= wf(i+n/2)
   wftemp(i+n/2)= wf(i)
endo

wft  = wftemp
end subroutine

!------------------------------------------------------------------------------------------------

subroutine FTCleanup()
use progvars
use fft
implicit none

call fftCleanup()
end subroutine

end module

C.8 Module ADK ionization (adk.f90)

module adk
implicit none
contains

subroutine adk_deplete(psiin, potlo, pothi, ioncharge, pulseint, pulselength, pulseomega, pulsephase)
! ADK routine for improved Franck-Condon transition but based on atomic ADK rates for molecules, taken from eq. (5) of J. P. Brichta et al., J. Phys. B 39, 3769 (2006). The initial wave packet WAVEFUNCTION is originally moving in the lower potential POTLO and exposed to the given ionizing pulse. Static ADK rates for varying field is used rather than cycle averaged in order to account for really short pulses and the rapid change in envelope. The given wave function DOES NOT propagate during the pulse, thus the routine still assumes instantaneous ADK depletion and is therefore limited to very short pulses. Output is given in WAVEFUNCTION as the remaining part of the original wave function and the ionized wave function moving in the upper potential POTHI can be estimated as (original wave function) - (final wave function).
use wfmath
complex*16, dimension(:), intent(inout) :: psiin(:)
! the initial wave function for ionization, also return value
real*8, dimension(:), intent(in) :: potlo, pothi
! both potential curves considered for the ADK transition
real*8, intent(in) :: ioncharge
! the total charge of the ION (after the ADK transition)
real*8, intent(in) :: pulseint, pulselength, pulseomega, pulsephase
! the laser parameters
real*8, parameter :: pi = 3.141592653589793238462643d0
! lets start off with something round...
i integer, parameter :: ncyclesteps = 128
! number of sampling points per laser cycle
real*8, parameter :: sigmawidth = 2.d0
! multiplier for the pulse length for total transition time
real*8 :: timestep
! the delta t for the ADK calculation
real*8 :: currenttime ! current time of the pulse
integer :: nt, ntimesteps ! for the time step loop
real*8 :: fieldenv
! the envelope of the electric field of the laser pulse

end subroutine

real*8 :: fieldphase  ! the laser pulse carrier envelope phase
real*8 :: efield  ! that's the electric field strength of the laser we need
real*8 :: fieldabs  ! but only the magnitude of the field matters for ADK
integer :: iAllocStatus  ! error check
real*8, dimension(:,), allocatable :: kappa, adkconst  ! for precomputing ADK constants
real*8 :: e  ! integrate it and you still have the same function...
integer :: nR, nRstep  ! for loop through the R values
real*8 :: e = dexp(1.d0)  ! the Euler constant
kappa = dsqrt(2.d0 * (pothi - potlo))/ioncharge  ! sqrt(2*I_p)/Z with I_p the ionization potential
adkconst = (3.d0*e/pi)**1.5d0 & *(kappa**4.5d0)/(ioncharge**2.5d0) & *(4.d0*e*(kappa**4)/ioncharge)**(2.d0*ioncharge/kappa-1.5d0)
timestep = 2.d0*pi / (pulseomega * ncyclesteps)  ! calculate an appropriate timestep for each ADK transition
ntimesteps = nint(sigmawidth*pulselength/timestep)  ! how many time steps do we have in total?
do nt=0, ntimesteps-1  ! The ADK time loop
  currenttime = -sigmawidth*pulselength/2.d0 + timestep*nt  ! get ma a clock reading
  fieldenv = dsqrt(pulseint) * dexp(- 2.d0 * dlog(2.d0) * (currenttime**2) / (pulselength**2) )
  fieldphase = dmod(pulseomega*currenttime+pulsephase,2*pi)
  efield = fieldenv * dcos(fieldphase)
  fieldabs = dabs(efield)
  if (fieldabs < 1.d-4) cycle  ! ADK only depends on the magnitude of the electric field
  do nR=1, nRstep
    rate = adkconst(nR) * (fieldabs**(1.5d0 - 2.d0*ioncharge/kappa(nR))) & *dexp(-2.d0*kappa(nR)**3/(3.d0*fieldabs))
    psiin(nR) = psiin(nR)*(1.d0 - dsqrt(dabs(rate*timestep)))  ! and the depleted ground state wave function
  enddo  !&$OMP END PARALLEL DO
  enddo ! (* time loop *)
  ! and finally remove the precomputed arrays again
allocate(kappa(nRstep), adkconst(nRstep), stat=iAllocStatus)
if (iAllocStatus /= 0) then
  print *,"ERROR: can't deallocate temporary ADK work arrays"
stop
endif
enddo
end subroutine adk_deplete

end module adk

C.9 Module Fast Fourier transforms (fft.f90)

module fft
  implicit none
  integer, private :: nzstep  ! the dimension of the 1D potentials/wavefunctions
integer, private :: nzstepp2  ! the next larger power of 2
real*, private :: deltaz  ! the grid spacing
real*, private :: mass  ! the mass of particles in a.u.
real*, private :: pmax  ! maximum momentum (from Niyquist theorem)
real*, private :: deltap  ! the momentum resolution
complex*16, allocatable, target :: fftvalues(:)  ! here goes the FFT stuff
contains
! INITIAL I Z A T I O N
subroutine fftInit(zdim,dz,particlemass)
use debug
integer, intent(in) :: zdim
real*, intent(in) :: dz, particlemass
integer :: i, iAllocStatus
integer nzstep = zdim
deltaz = dz
mass = particlemass
nzstepp2 = nzstep  ! now find next larger power of 2
if (iand(nzstepp2,nzstepp2-1) /= 0)
  then
    ! dirty trick to check for powers of two. 25
    i = 1  ! initialize with 1, so we automatically get the NEXT larger power of 2
    do while (nzstepp2 /= 1)
        nzstepp2 = rshift(nzstepp2,1)! shift n to the right until the last bit has been found
        i = i + 1  ! count how many bits we have to shift
    enddo
    nzstepp2 = 2**i
  ! the next larger power of two - just from counting the number of set bits in zdim
  end if
! pmax   = 1.d0/(2.d0*deltaz)    ! maximum momentum of the grid (see Nyquist theorem)
! deltap = 2.d0*pmax / nzstepp2  ! the momentum resolution     35
! allocate the FFT array
allocate(fftvalues(nzstepp2),stat=iAllocStatus)
if (iAllocStatus /= 0)
  then
    print *,"ERROR: can't allocate FFT array"
    stop
  endif
  call debugmsg(5,1,"FFT_INIT: FFT array allocated")
print*,
print*," FFT_INIT: input dimension=',zdim,' used dimension=nstepp2=',nzstepp2
print*,
print*," FFT_INIT: fftvalues(nzstepp2) allocated"
print*,
print*,
end subroutine fftInit
!
subroutine fftCleanup 50
use debug
integer :: iDeallocStatus
! deallocate the FFT array
deallocate(fftvalues,stat=iDeallocStatus)
if (iDeallocStatus /= 0)
  then
    print *,"ERROR: can't deallocate FFT array"
    stop
  endif
  call debugmsg(5,1,"FFT_DONE: FFT array destroyed")
end subroutine
!
subroutine fftForward(fftinput)
! calculates the discrete Fourier transformation of the given function data points
! ~ Exp(-2 pi i k n / N)
! Source: Numerical Recipes, Chap. 12.2 65
complex*16, dimension(:), intent(in) :: fftinput  ! the function values for the FFT
integer :: i, istep, j, m, mmax, n2
real*8 :: theta
complex*16 :: w, wp, ws
real*8, parameter :: pi = 3.141592653589793238462643d0
complex*16 :: dummy
! copy the input data to the FFT array and fill the blanks
fftvalues(1:nzstep) = fftinput  ! copy the input data
if (nzstep /= nzstepp2) fftvalues(nzstep:nzstepp2) = 0.d0  ! fill the rest with 0
! The bit-reversal routine, to rearrange the array
n2 = nzstepp2/2
j = n2
do i=1, nzstepp2-2
    if (j > i) then ! swap the values
        dummy = fftvalues(j+1)
        fftvalues(j+1) = fftvalues(i+1)
        fftvalues(i+1) = dummy
    endif
m = n2
85 do
    if (m<2 .or. j<m) exit
    j = j-m
    m = m/2
endo  
j = j+m
endo
! Danielson-Lanczos algorithm
mmax = 1
95 do ! outer loop = executed log_2 N times
    istep = 2*mmax
    theta = pi / mmax ! initialize for trigonometric recurrence
    wp = cmplx(-2.0d0*sin(0.5d0*theta)**2,sin(theta))
    w = cmplx(1.0d0,0.0d0)
    do m=1,mmax ! here are the two nested inner loops
        ws = w
        do i=m,nzstepp2,istep
            j = i + mmax
            dummy = ws*fftvalues(j) ! this is the Danielson-Lanczos formula
            fftvalues(j) = fftvalues(i)-dummy
            fftvalues(i) = fftvalues(i)+dummy
        enddo
        w = w*wp+w ! trigonometric recurrence
    enddo
    mmax = istep
endo
110 ! Normalization
fftvalues = fftvalues / sqrt(dble(nzstepp2))
end subroutine

subroutine fftInverse(fftinput)
! calculates the inverse discrete Fourier transformation of the given function data points
! ~ Exp(2 pi i k n / N)
! This is ABSOLUTELY the same routine as FFT_FORWARD,
! except THETA in the D.L. algorithm has a minus.
complex*16, dimension(:), intent(in) :: fftinput ! function values for the FFT
integer :: i, istep, j, m, mmax, n2
real*8 :: theta
complex*16 :: w, wp, ws
real*8, parameter :: pi = 3.141592653589793238462643d0
complex*16 :: dummy
! copy the input data to the FFT array and fill the blanks
fftvalues(1:nzstep) = fftinput ! copy the input data
if (nzstep /= nzstepp2) fftvalues(nzstep:nzstepp2) = 0.d0 ! fill the rest with 0
! The bit-reversal routine, to rearrange the array
n2 = nzstepp2/2
j = n2
do i=1, nzstepp2-2
    if (j > i) then ! swap the values
        dummy = fftvalues(j+1)
        fftvalues(j+1) = fftvalues(i+1)
        fftvalues(i+1) = dummy
    endif
m = n2
130 do
    if (m<2 .or. j<m) exit
    j = j-m
    m = m/2
endo  
j = j+m
endo
! Danielson-Lanczos algorithm
mmax = 1
    do ! outer loop - executed log_2 N times
        istep = 2*mmax
! initialize for trigonometric recurrence - minus sign for inverse transformation
        theta = - pi / mmax
        wp = cmplx(-2.0d0*sin(0.5d0*theta)**2,sin(theta))
        w = cmplx(1.0d0,0.0d0)
        do m=1,mmax ! here are the two nested inner loops
            ws = w
            do i=m,nzstepp2,istep
                j = i + mmax
                dummy = ws*fftvalues(j) ! this is the Danielson-Lanczos formula
                fftvalues(j) = fftvalues(i) - dummy
                fftvalues(i) = fftvalues(i) + dummy
            enddo
            w = w*wp + w ! trigonometric recurrence
        enddo
        mmax = istep
    enddo
! Normalization
    fftvalues = fftvalues / sqrt(dble(nzstepp2))
end subroutine

!------------------------------------------------------------------------------------------------
subroutine fft_power(fftinput)
! calculates the power spectrum of the given wave function and stores the magnitude square in
! the REAL part of FFTVALUES while the phase information (between -Pi and Pi) is stored in the
! IMAGINARY part
complex*16, dimension(:,), intent(in) :: fftinput ! function values for the FFT
integer :: np
real*8 :: magnitude, phase
complex*16 :: value
    call fftForward(fftinput) ! first get the DFT of the data
    do np=1,nzstepp2
        value = fftvalues(np)
        magnitude = value**2
        if (value==0.d0) then
            phase = dcmplx(0.d0,0.d0)
        else
            phase = datan2(dimag(value),dreal(value))
        endif
        fftvalues(np) = dcmplx(magnitude,phase)
    enddo
end subroutine

!------------------------------------------------------------------------------------------------
subroutine fft_plot(fftinput,filename)
use debug
complex*16, dimension(:,), intent(in) :: fftinput ! function values for the FFT
character(len=*) intent(in) :: filename
integer :: np
real*8 :: momentum, phase
complex*16 :: value
    call fftInverse(fftinput)
    open(unit=800,file=filename,status="replace",access="sequential")
    write(800,'(5A12)') "Momentum","Psi_Real","Psi_Imag","Psi_Abs","Psi_Phase"
    do np=1,nzstepp2
        value = fftvalues(np)
        momentum = -pmax + (np-1)*deltap
        if (value==0.d0) then
            phase = dcmplx(0.d0,0.d0)
        else
            phase = datan2(dimag(value),dreal(value))
        endif
        write(800,'(5E12.4)') momentum, value, abs(value), phase
    enddo
    close(800)
end subroutine
module diag
use progvars;
implicit none
integer, private :: nzstep1 ! the dimension of the 1D potentials/wavefunctions
real*8, private :: deltaz1 ! the grid spacing
real*8, private :: mass1     ! the mass1 of particles in a.u.
interface diag_release              ! release the objects TEnergies or TStates if allocated
module procedure diag_release_TEnergies, diag_release_TStates
! define different procedures for the types
end interface
interface diag_diagonalize     ! the working horse. diagonalize the potential array.
module procedure diag_diagonalize_TEnergies, diag_diagonalize_TStates
! define different procedures for the types
end interface
interface diag_plot                                       ! Plot the results to file
module procedure diag_plot_TEnergies, diag_plot_TStates ! define diff. proceds for the types
end interface
contains
subroutine diag_init(zdim,dz,particlemass1) 20
use debug
integer, intent(in) :: zdim
real*8, intent(in)  :: dz, particlemass1
nzstep1 = zdim
25
deltaz1 = dz
mass1   = particlemass1
call debugmsg(5,1,"DIAG_INIT: diagonalization routine initialized.")
end subroutine

!------------------------------------------------------------------------------------------------
subroutine diag_done 30
use debug
call debugmsg(5,1,"DIAG_DONE: diagonalization routine closed.")
end subroutine

!------------------------------------------------------------------------------------------------ 35
subroutine diag_release_TEnergies(energies)
use debug
type(TEnergies), intent(inout) :: energies           ! we want to release this object
integer :: iDeallocStatus     ! return value
energies%numbound = 0                                ! we have zero bound states from now on
if (associated(energies%energyarr)) then
40
deallocate(energies%energyarr,stat=iDeallocStatus)
if (iDeAllocStatus /= 0) then
        print *,"ERROR: can't deallocate DIAGONALIZATION ENERGY array"
50
        stop
endif
call debugmsg(10,1,"DIAG_RELEASE: DIAGONALIZATION ENERGY array destroyed")
endif
if (associated(energies%wavefunctions)) then
60
deallocate(energies%wavefunctions,stat=iDeallocStatus)
if (iDeAllocStatus /= 0) then
        print *,"ERROR: can't deallocate DIAGONALIZATION WAVE FUNCTION array"
65
        stop
endif
call debugmsg(10,1,"DIAG_RELEASE: WAVE FUNCTION array destroyed")
end subroutine

!------------------------------------------------------------------------------------------------
subroutine diag_release_TStates(states)
use debug
type(TStates), intent(inout) :: states             ! we want to release this object
integer :: iDeallocStatus     ! return value
states$numbound = 0                                ! we have zero bound states from now on
if (associated(states$energyarr)) then
70
deallocate(states$energyarr,stat=iDeallocStatus)
if (iDeAllocStatus /= 0) then
        print *,"ERROR: can't deallocate DIAGONALIZATION ENERGY array"
80
        stop
endif
call debugmsg(10,1,"DIAG_RELEASE: DIAGONALIZATION ENERGY array destroyed")
endif
if (associated(states$wavefunctions)) then
85
deallocate(states$wavefunctions,stat=iDeallocStatus)
if (iDeAllocStatus /= 0) then
        print *,"ERROR: can't deallocate DIAGONALIZATION WAVE FUNCTION array"
90
        stop
endif
call debugmsg(10,1,"DIAG_RELEASE: WAVE FUNCTION array destroyed")
end subroutine
!------------------------------------------------------------------------------------------------

subroutine diag_diagonalize_TEnergies(potential, energies) 75
! this routine diagonalizes the 1d hamiltonian given only by it's potential
use debug
real*8, pointer :: potential(:)            ! the potential array
type(TEnergies), intent(inout) :: energies                ! type for the returned energies
integer :: iAllocStatus            ! return value
real*8, allocatable :: subsuper(:), diagarr(:)  
! the diagonal, sub- and super-diagonals of the Hamiltonian
real*8 :: mine                    ! minimum bound energy
if (associated(energies%energyarr)) then
deallocate(energies%energyarr,stat=iAllocStatus)
if (iAllocStatus /= 0) then
  print *,"ERROR: can't deallocate DIAGONALIZATION ENERGY array"
stop
endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION ENERGY array destroyed")
endif
energies%numbound = 0                              ! first we start with 0 bound states
allocate(subsuper(nzstep1), diagarr(nzstep1), stat=iAllocStatus)
if (iAllocStatus /= 0) then
  print *,"ERROR: can't allocate tridiagonal Hamiltonian array"
stop
endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: tridiagonal Hamiltonian array allocated")
diagarr  = potential + 1.d0/(mass1*deltaz1**2)      ! the diagonal array of the Hamiltonian
subsuper = -1.d0/(2.d0 * mass1 * deltaz1**2)        ! the sub- and super-diagonals of H
mine = min(potential(1),potential(nzstep1))       ! find the minimum bound state energy
energies%numbound = count(diagarr < mine)         ! count the number of bound states
allocate(energies%energyarr(energies%numbound),stat=iAllocStatus)
if (iAllocStatus /= 0) then
  print *,"ERROR: can't allocate DIAGONALIZATION ENERGY array"
stop
endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION ENERGY array allocated")
call dtqli(diagarr,subsuper)                      ! call the routine from Numerical Recipes
mine = min(potential(1),potential(nzstep1))       ! find the minimum bound state energy
energies%energyarr = count(diagarr < mine)         ! count the number of bound states
allocate(energies%energyarr(energies%numbound),stat=iAllocStatus)
if (iAllocStatus /= 0) then
  print *,"ERROR: can't allocate DIAGONALIZATION ENERGY array"
stop
endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION ENERGY array allocated")
energies%energyarr = pack(diagarr, diagarr<mine)  
! copy only the corresponding energies into the output
deleallocate(subsuper, diagarr,stat=iAllocStatus)
if (iAllocStatus /= 0) then
  print *,"ERROR: can't deallocate tridiagonal Hamiltonian array"
stop
endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: tridiagonal Hamiltonian array released")
end subroutine diag_diagonalize_TEnergies
!------------------------------------------------------------------------------------------------

subroutine diag_diagonalize_TStates(potential, states) 125
! this time WITH wave functions
use debug
use wfmath
implicit none;
real*8, pointer :: potential(:)            ! the potential array
type(TStates), intent(inout) :: states         ! type for the returned wave functions
integer :: iAllocStatus   ! return value
! the diagonal, sub- and super-diagonals of the Hamiltonian
real*8, allocatable :: subsuper(:), diagarr(:)
real*8, allocatable :: wavefunctions(:, :)    ! temporary wave function array
real*8 :: mine                    ! minimum bound energy
integer :: n
if (associated(states%energyarr)) then
deallocate(states%energyarr,stat=iAllocStatus)
if (iAllocStatus /= 0) then
  print *,"ERROR: can't deallocate tridiagonal Hamiltonian array"
stop
endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION ENERGY array released")
end subroutine diag_diagonalize_TStates
!------------------------------------------------------------------------------------------------
print *, "ERROR: can't deallocate DIAGONALIZATION ENERGY array", iAllocStatus
stop
endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION ENERGY array destroyed")
endif

if (associated(states%wavefunctions)) then
  deallocate(states%wavefunctions,stat=iAllocStatus)
endif

if (iAllocStatus /= 0) then
  print *, "ERROR: can't deallocate DIAGONALIZATION WAVE FUNCTION array", iAllocStatus
  stop
endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION WAVE FUNCTION array destroyed")
endif

states%numbound = 0                                     ! first we start with 0 bound states
allocate(subsuper(nzstep1),diagarr(nzstep1),stat=iAllocStatus)
if (iAllocStatus /= 0) then
  print *, "ERROR: can't allocate tridiagonal Hamiltonian array"
  stop
endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: tridiagonal Hamiltonian array allocated")
allocate(wavefunctions(nzstep1,nzstep1),stat=iAllocStatus)
if (iAllocStatus /= 0) then
  print *, "ERROR: can't allocate temporary wave function array"
  stop
endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: temporary wave function array allocated")
diagarr = potential + 1.d0/(mass1*deltaz1**2)       ! the diagonal array of the Hamiltonian
subsuper = -1.d0/(2.d0 * mass1 * deltaz1**2)        ! the sub- and super-diagonals of H
wavefunctions = 0.d0
do n=1, nzstep1
  wavefunctions(n,n) = 1.d0                       ! fill with identity matrix
enddo
call debugmsg(5,1,"DIAG_DIAGONALIZE: diagonalizing potential - energies and wave functions...")
call dtqli(diagarr,subsuper,wavefunctions)        ! call the routine from Numerical Recipes
mine = min(potential(1),potential(nzstep1))       ! find the minimum bound state energy
states%numbound = count(diagarr < mine)           ! count the number of bound states
allocate(states%energyarr(states%numbound),stat=iAllocStatus)
if (iAllocStatus /= 0) then
  print *, "ERROR: can't allocate DIAGONALIZATION ENERGY array"
  stop
endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION ENERGY array allocated")
allocate(states%wavefunctions(states%numbound,nzstep1),stat=iAllocStatus)
if (iAllocStatus /= 0) then
  print *, "ERROR: can't allocate DIAGONALIZATION WAVE FUNCTION array"
  stop
endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION WAVE FUNCTION array allocated")
! copy only the corresponding energies into the output
states%energyarr = pack(diagarr, diagarr<mine)
do n=1, nzstep1
  ! and copy the wave functions
  states%wavefunctions(:,n) = pack(wavefunctions(n,:), diagarr<mine)
enddo
do n=1, states%numbound
  call wfmath_normalize(states%wavefunctions(n,:)) ! we like normalized wave functions
enddo
deallocate(subsuper,diagarr,wavefunctions,stat=iAllocStatus)
if (iAllocStatus /= 0) then
  print *, "ERROR: can't deallocate diagonalization arrays"
  stop
endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: diagonalization arrays released")
end subroutine diag_diagonalize_TStates

!------------------------------------------------------------------------------------------------
subroutine diag_plot_TEnergies(energies,filename)
use debug
use strings
type(TEnergies), intent(in) :: energies       ! this is what we plot
character(len=*) , intent(in) :: filename
integer :: n
open (unit=900,file=trim(concat(filename,"_energies.dat")),status="replace",access="sequential")
write (900,'(3A12)') "State","Energy_au","Energy_eV"
do n=1,energies%numbound
   write (900, '(I12,2E12.4)') n,energies%energy(arr(n),energies%energy(arr(n))*27.2114d0
enddo
close (900)
call debugmsg(5,2,"DIAG_PLOT: energies plotted to file")
end subroutine diag_plot_TEnergies

subroutine diag_plot_TStates(states,filename)
use debug
use strings
type(TStates), intent(in) :: states ! this is what we plot
character(len=*) intent(in) :: filename
integer :: n
open (unit=901,file=trim(concat(filename,"_wavefunctions.dat")),status="replace",access="sequential")
write (901,'(e12.4,$)') states%energy(arr(:,n))*27.2114d0
do n=1,nzstep1
   write (901,'(e12.4,$)') cdabs(states%wavefunctions(:,n))**2
   write (901,*)
enddo
close (901)
call debugmsg(5,2,"DIAG_PLOT: wave functions plotted to file")
end subroutine diag_plot_TStates

function dpythag(a, b) result(c)
! using Phytagoras a^2 + b^2 = c^2 for a triangle, calculate c in a numerically stable way.
real*8, intent(in) :: a, b
real*8
   :: absa, absb
real*8 :: c
absa=dabs(a)
absb=dabs(b)
if(absa.gt.absb) then
   c=absa*dsqrt(1.d0+(absb/absa)**2)
else
   if(absb.eq.0.d0) then
      c=0.d0
   else
      c=absb*dsqrt(1.d0+(absa/absb)**2)
   endif
endif
return
end function dpythag

subroutine dtqli(d,e,z)
! solver routine from Numerical Recipes for a tridiagonal linear equation
! the diagonal and sub- super-diagonals
real*8, dimension(:,:), intent(inout) :: d, e
! returns the wave functions. Must identity matrix at call
real*8, dimension(:,,:), intent(inout), optional :: z
integer
   :: n, np, i, iter, k, l , m
real*8
   :: b, c, dd, f, g, p, r, s
np = size(d)
n = np
if (present(z)) then
   write (*,*) 'DTQLI: diagonalization with eigenvectors'
else
   write (*,*) 'DTQLI: diagonalization, only eigenvalues'
endif
write ('*',*) 'matrix is',np,'x',np
do i=2,n
   e(i-1)=e(i)
enddo
if(neq.0.d0) then
   do 15 l=1,n
      iter=0
   1      do m=l,n-1
      dd=dabs(d(m))+dabs(d(m+1))
      if(dd.eq.e(l)) then
         e(l)=e(l)+dd
      else
         c=0.d0
      endif
   15   enddo
   do l=1,n
      iter=iter+1
      do m=l,n
         dd=dabs(d(m))+dabs(d(m+1))
         if(dd.eq.e(m)) then
            e(m)=e(m)+dd
         else
            c=0.d0
         endif
      enddo
   enddo
   if(iter.eq.10) then
      write (*,*) 'DTQLI: diagonalization failed!
   endif
   c=0.d0
285   if (iter.eq.30) pause 'too many iterations in tqli'
   iter=iter+1
   g=(d(l+1)-d(l))/(2.d0*e(l))
   r=dpythag(g,1.d0)
   g=d(m)-d(l)+e(l)/(g+sign(r,g))
   s=1.d0
   c=1.d0
290   p=0.d0
   do 14 i=m-1,l,-1
   f=s*e(i)
   b=c*e(i)
   r=dpythag(f,g)
295   e(i+1)=r
   if(r.eq.0.d0) then
   d(i+1)=d(i+1)-p
   e(m)=0.d0
   goto 1
   endif
   s=f/r
   c=g/r
300   e(i+1)=r
   r=(d(i)-g)*s+2.d0*c*b
   p=s*r
   d(i+1)=g+p
   g=c*r-b
310   ! omit lines from here ...
   if (present(z)) then
   do k=1,n
   f=z(k,i+1)
   z(k,i+1)=s*z(k,i)+c*f
   z(k,i)=c*z(k,i)-s*f
   enddo
   endif
   ! to here when finding only eigenvalues.
14   continue
320   d(l)=d(l)-p
   e(l)=g
   e(m)=0.d0
   goto 1
15   continue
325   return
end subroutine dtqli
end module diag

C.11 Module Debug (debug.f90)

module debug
implicit none
integer, private :: global_debug_level, global_debug_mask
5 integer, private :: debugoutput = 0
contains
subroutine setdebug(level,mask)
   integer, intent(in) :: level, mask
   global_debug_level = level
   global_debug_mask = mask
end subroutine setdebug

!--------------------------------------------------------------------------------
subroutine debugmsg(level, mask, msg)
   integer :: level, mask
   character(len = *) :: msg
   if (((level.le.global_debug_level).or.(iand(mask,global_debug_mask).eq.mask)).and.(debugoutput.eq.0)) then
      print *, msg
   endif
end subroutine debugmsg

end module debug
module debug
    subroutine debug_off
        debugoutput = debugoutput + 1
    end subroutine debug_off

    subroutine debug_on
        if ( debugoutput > 0 ) debugoutput = debugoutput - 1
    end subroutine debug_on
end module debug

C.12 Module Files (filesWin.f90)

module files
    implicit none
    contains
    subroutine EnsureFolderExists(folder)
        character(len=*) , intent(in) :: folder
        character(len=120) :: folderName
        logical :: dir_e
        folderName = folder // '.';
        ! a trick to be sure docs is a dir
        inquire( file= trim(folderName), exist=dir_e )
        if ( dir_e ) then
            write(*,*), "dir exists!"
        else
            ! workaround: it calls an extern program...
            call system('mkdir ' // folder);
        end if
    end subroutine EnsureFolderExists
end module files

C.13 Module strings (strings.f90)

module strings
    implicit none
    contains
    function concat(s1, s2)
        character(len=*) , intent(in) :: s1, s2
        character(len=len_trim(s1)+len_trim(s2)) :: concat
        concat = trim(s1) // trim(s2)
    end function concat

    function rmblank(s)
        character(len=*) , intent(in) :: s
        character(len=len_trim(s)) :: rmblank
        integer :: i,j
        j = 0
        do i=1, len(s)
            if (s(i:i).ne.' ') then
                j = j + 1
                rmblank(j:j) = s(i:i)
            endif
        enddo
        rmblank = trim(rmblank) ! final adjustment
    end function rmblank

    function uppercase(s)
        ! returns an uppercase version of a string.
        implicit none
        integer :: i,j,n
        character(len=*) , intent(in) :: s
        character(len=len(s)) :: uppercase
        uppercase = s
        n = len_trim (uppercase)
    end function uppercase
end module strings
do i = 1, n
  j = ichar(uppercase(i:i))
  if (97 <= j .and. j <= 122) uppercase(i:i) = char(j - 32)
end do
return
end function uppercase

function system_checkvariable(var,value) result(exists)
character(len=*), intent(in) :: var
character(len=*), intent(out) :: value
logical :: exists
character(len=128) :: argument,variable
integer :: iargc, iargcount, i
integer :: splitpos
iargcount = iargc() ! return the number of argument values
do i=1, iargcount
  call getarg(i,argument)
  splitpos = scan(argument,"=")
  if (splitpos.ne.0) then
    variable = uppercase(trim(argument(1:splitpos-1)))
    if (variable.eq.uppercase(trim(var))) then
      exists = .true.
      value = trim(argument(splitpos+1:len(argument)))
    endif
  endif
enddo
exists=.false.
value = ""
return
end function system_checkvariable

function system_checkcommand(var) result(exists)
character(len=*), intent(in) :: var
logical :: exists
character(len=128) :: argument,variable
integer :: iargc, iargcount, i
integer :: splitpos
iargcount = iargc() ! return the number of argument values
do i=1, iargcount
  call getarg(i,argument)
  splitpos = scan(argument,"=")
  if (splitpos.eq.0) then
    variable = uppercase(trim(argument))
    if (variable.eq.uppercase(trim(var))) then
      exists = .true.
      return
    endif
  endif
enddo
exists=.false.
return
end function system_checkcommand

function system_realvariable(var,default) result(value)
use debug
character(len=*), intent(in) :: var
character(len=80) :: argvalue
real*8 :: value, default
value = default
if (system_checkvariable(var,argvalue)) then
  read (argvalue,*) value
  write (argvalue,'(2A,A10,D10.4)') "SYSTEM: used variable ",trim(uppercase(var))," ",value
  call debugmsg(5,8,trim(argvalue))
endif
return
end function system_realvariable
Appendix D - Two-state code

This appendix describes the source code used in the calculations including dipole couplings. It is written in FORTRAN-90. The code has a main programm that uses several subroutines and functions that are divided into different files.

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDSE.f90</td>
<td>Main program</td>
</tr>
<tr>
<td>tdsePumpProbe.F90</td>
<td>Pump and Probe subroutines</td>
</tr>
<tr>
<td>progvars.f90</td>
<td>Defining program variables and default values.</td>
</tr>
<tr>
<td>wfMath.f90</td>
<td>Same as C3</td>
</tr>
<tr>
<td>wfPot.f90</td>
<td>Same as C4 but with two more potentials.</td>
</tr>
<tr>
<td>params.f90</td>
<td>Same as C5</td>
</tr>
<tr>
<td>CN.f90</td>
<td>Same as Appendix C6</td>
</tr>
<tr>
<td>FT.f90</td>
<td>Same as Appendix C7</td>
</tr>
<tr>
<td>adk.f90</td>
<td>ADK depletion and transition subroutines.</td>
</tr>
<tr>
<td>fft.f90</td>
<td>Same as C9</td>
</tr>
<tr>
<td>diag.f90</td>
<td>Same as Appendix C10</td>
</tr>
<tr>
<td>debug.f90</td>
<td>Same as Appendix C11</td>
</tr>
<tr>
<td>fileswin.f90</td>
<td>Same as Appendix C12</td>
</tr>
<tr>
<td>strings.f90</td>
<td>Same as Appendix C13</td>
</tr>
</tbody>
</table>

D.1 Main Program (tdse.f90)

```fortran
program main
    use progvars;
    implicit none

    Tend           = 413.2     !time propagated after probe pulse
    boundStateCutOff= 200     !cut for bound part of WF.

    molecule   = "D2";
    inputFolder = "input/H2curves-0.05-100/";
    curve2  = "H2+pot_gerade.dat";
    curve3  = "H2+pot_ungerade.dat"
    curve4  = "H2+dpcouplings-0.05.dat"
    outputFolder= "Output\D2\CP_False-ADK_False\"

    call RunOnce();

    print *, 'program completed'
```

150
end program main

!--------------------------------------------------------------------------------
subroutine RunOnce()
  use progvars
  use files
  use tdaePumpProbe;
  use tdaeMethods;
  use strings;
  use timer;
  use adk;
  implicit none
  call timer_start();
  call timer_printcurrenttime();
  call EnsureFolderExists(outputFolder);
  call init(); print *, 'init completed';
  call timer_printcurrenttime();
  call find_groundstate(psiground,.true.); print *, 'find_groundstate completed';
  call timer_printcurrenttime();
  call Apply_ADK(psiground);
  call printpsi(psiground,trim(concat(outputFolder,"psiground_ADK.dat")))
  call timer_printcurrenttime();
!
  call calculate_energy(psiground); print *, 'calculate_energy completed';
  call timer_printcurrenttime();
  call adk_init();
  call Run();
  call adk_done();
  print *, 'run completed';
  call cleanup();
  print *, 'cleanup completed';
  call timer_stop();
  print *, 'timer stop completed';
  call timer_writeelapsedtimetofile(trim(concat(outputFolder,"timing.txt")));
  print *, 'completed completed';
end subroutine RunOnce

!_______________________________input parameters____________________________
subroutine init
  use progvars
  use strings;
  use wfMath;
  use wfPot;
  use tdaeMethods;
  implicit none
  integer :: nloop
  real*8 :: widthz,pz
  select case (trim(molecule))
    case("H2")
      mass = 917.66d0; nz = 2048; deltaz = 0.05d0;
case("D2")
    mass = 1835.241507d0; nz = 1024; deltaz = 0.05d0;
end select

case("N2")
    mass = 12846.69099d0; nz = 512; deltaz = 0.01d0;
end select

case("O2")
    mass = 14681.93206d0; nz = 8192; deltaz = 0.005d0;
end select

case("Ar2")
    mass = 36447.94123d0; nz = 65536; deltaz = 0.002d0;
end select

maxt = 33072.80d0 !800fs                 ! maximum time
deltat = 1.0d0                             ! delta time
widthz = 1.0d0                             ! width of the gaussian
minz = 0.05d0                            ! minimum z in a.u.
maxz = nz * deltaz                        ! maximum z in a.u.
centerz = 2.1d0                             ! center of the gaussian
nt = NINT(maxt/deltat)                     ! time steps
pz = 0.d0                              ! not used currently

! ______________________________FFT Section____________________________________________

deltafft = 20.d0* deltat  !1.0d0*deltat ! time step for FFT
nfft = NINT(maxt/deltafft)         ! no of steps for FFT

! ___________________________absorber parameters_____________________________________

fadewidth = 10.d0                 ! the width of the absorber in a.u.
fadestrength = 0.01d0                ! the maximum height of the negative imaginary potential

! ___________________________E FIELD section___________________________________________

Ewidth = 1446.2d0        !35fs             ! width of the envelope
Eo = 0.053            !E14              ! field amplitude
Eomega = 0.057d0         !800nm            ! laser frequency
Eomega = 0.033d0         !1400nm           ! laser frequency
Ephi = 0.d0                              ! carrier envelope phase
Eto = 1000.d0                           ! ecenter of the Gaussian envelope
EoPed = 0.0755 !2E14
EomegaPed = Eomega
EphiPed = 0.d0
EtoPed = 1000.d0
EoPump = 0.053 !E14 0.00285d0
EomegaPump = 0.057d0
EphiPump = 0.d0
EtoPump = 0.d0
includeAbsorber = .true.                   ! switch for absorber
includeField = .true.                     ! switch for efield
includePedestal = .false.                   ! switch for pedestal
includeConstantPump = .true.               ! switch for efield
useADK = .false.                           ! ADK switch
calculatePowerSpectra = .true.
calculateKERPowerSpectra = .true. !.false.

!____________________________Printing & Plotting Filters________________________________

printFilter = nz
maxFrequencyFilter = 500
printInterval = 100 !200
! print filter upper boundary check
if(printFilter > nz) then
    printFilter = nz
end if
call allocateArrays();
do nloop = 1,nz
    Z(nloop) = minz+ (nloop)* deltaz;
    P(nloop) = 2*pi*(nloop-(nz/2)-1)/(maxz-minz);
    E(nloop) = 27.2*(P(nloop)**2)/(4.d0*mass);
end do
end do

call wfmath_gaussian(psiground, widthz, pz)
call setabsorber_right(fadewidth, faedestrength)
call printpsi(psiground, trim(concat(outputFolder,"psi_gausssian.dat")))
call potentials_init(nz) !initialize potential arrays
call read_potential();

end subroutine init

!--------------------------------------------------------------------------------
subroutine read_potential()
use progvars;
use strings;
use wfPot;
call potentials_readfromfile_activate(trim(concat(inputFolder,curve1)),1)
call potentials_readfromfile_activate(trim(concat(inputFolder,curve2)),2);
call potentials_readfromfile_activate(trim(concat(inputFolder,curve3)),3)
call potentials_readfromfile_activate(trim(concat(inputFolder,curve4)),4)
end subroutine read_potential

!_________________________________Allocate_________________________
subroutine allocateArrays
use progvars
implicit none
integer i,j
allocate(Z(nz), stat = iAllocStatus)
if (iAllocStatus /= 0) then
  print *,"ERROR: can't allocate position vector Z"
  stop
endif
allocate(psiground(nz), psigerade(nz), psiungerade(nz), psitotal(nz), stat = iAllocStatus)
if (iAllocStatus /= 0) then
  print *,"ERROR: can't allocate wave function psi, psitotal, psigerade, psiungerade"
  stop
endif
allocate(K(nz), P(nz), E(nz), stat = iAllocStatus)
if (iAllocStatus /= 0) then
  print *,"ERROR: can't allocate K, P, E"
  stop
endif
allocate(absorber(nz), stat = iAllocStatus)
if (iAllocStatus /= 0) then
  print *,"ERROR: can't allocate Vector absorber"
  stop
endif
if(calculatePowerSpectra .eq. .true.) then
  allocate(fftarray(nz,nfft), stat = iAllocStatus)
  if (iAllocStatus /= 0) then
    print *,"ERROR: can't allocate Array FFT"
    stop
  endif
  fftarray = czero;
endif
if(calculateKERPowerSpectra .eq. .true.) then
  allocate(KER_fftarray(nz/2,nfft), stat = iAllocStatus)
  if (iAllocStatus /= 0) then
    print *,"ERROR: can't allocate Array KER_FFT"
    stop
  endif
  KER_fftarray = czero;
endif

end subroutine allocateArrays

end program wavefunctionПроцентный
if(calculatePowerSpectra .eq. .true. .OR. calculateKERPowerSpectra .eq. .true.) then
allocate(fftinput(nfft), stat = iAllocStatus)
if (iAllocStatus /= 0) then
    print *,"ERROR: can't allocate Array FFT Input"
    stop
end if
fftinput = czero;
end if

psiground = czero
psigerade = czero
psiungerade = czero
psitotal = czero
absorber = 1.d0
K = 0.0d0;
E = 0.0d0;
P = 0.0d0;

dend subroutine

!_________________________clean___________________________

subroutine cleanup
use progvars
use wfPot
implicit none
deallocate(Z);
deallocate(psiground);
deallocate(psigerade);
deallocate(psiungerade);
deallocate(absorber);
deallocate(K);
deallocate(P);
deallocate(E);
if(calculatePowerSpectra .eq. .true.) then
deallocate(fftarray);
end if
if(calculateKERPowerSpectra .eq. .true.) then
deallocate(KERfftarray);
end if
if(calculatePowerSpectra .eq. .true. .OR. calculateKERPowerSpectra .eq. .true.) then
deallocate(fftinput);
end if
call potentials_done();
end subroutine

D.2 Run subroutine (tdsePumpProbe.F90)

module tdsePumpProbe
implicit none
contains
5 !------------------------------------------------------------------
   subroutine Run()
       call RunLoopOpt();
   end subroutine Run

10 subroutine RunLoopOpt()
   use progvars;
   use strings;
   use wfMath;
   use wfPot;
   use tdseMethods;
   use fourier;
   use Timer;
   implicit none
   integer :: ftloop, file_kertotal_endtime=710;
20 complex*16 :: psifreeq(nz),psifreequg(nz), dipole;
   real*8 :: probestarttime = 0.0d0, probeendtime=0.0d0, savetime =-0.0d0;

character(255) :: filename = ' '

!init fft arrays for KER
call MethodInit();
call fourierInit(nz,deltaz,mass);
call potentials_setactive(2);
psifreeg = psiground;
psifreeug = 0.0d0;
! print the enery list for KER
call PrintKEREnergy();

!open files
open(unit=104,file=trim(concat(outputFolder,"wf_position.dat")),status="replace",access="sequential",recl=1024)
open(unit=105,file=trim(concat(outputFolder,"wfunc_midpulse.dat")),status="replace",access="sequential",recl=1024)
open(unit=106,file=trim(concat(outputFolder,"wfunc_endtime.dat")),status="replace",access="sequential",recl=1024)
open(unit=107,file=trim(concat(outputFolder,"KER.dat")),status="replace",access="sequential",recl=1024)
open(unit=file_kertotal_endtime,file=trim(concat(outputFolder,"KER_fft_total_endtime.dat")),status="replace",access="sequential",recl=1024)

call timer_printcurrenttime();

do fftloop = 0 , nfft-1 ! external loop for fft loop
    print *, fftloop, " of ", nfft
    call timer_printcurrenttime();
    Eto = deltsfft * fftloop;
    probestarttime = Eto - (EWidth*2.0d0)
    probeendtime = Eto + (EWidth*2.0d0)
    if(probestarttime <0.0d0) then
        probestarttime = 0.0d0;
    end if
    psigerade = psifreeg;
    psiungerade = psifreeug;

    !propagate field free from time zero(or savetime) to start pulse
    !starttime= 0.0d0; endtime = probestarttime;
    call PropagateInTimeEx(savetime, probestarttime,.true., .false.);
    savetime = probestarttime;
    psifreeg = psigerade;          ! save psigerade after free propogation to psifreeg
    psifreeug = psiungerade;       ! save psiungerade after free propogation to psifreeug

    !propagate start pulse to mid pulse = MID PULSE
    !starttime= probestarttime; endtime = Eto;
    call PropagateInTime(probestarttime, Eto, .true.);

    dipole = wfmath_pos(psitotal);
    write(104,'(E13.4E3 ,E13.4E3)') Eto, dreal(dipole);
    write(105,'(E12.4,$)') cdabs(psitotal**2) !save the wave function at mid probe pulse

    if(calculatePowerSpectra .eq. .true.) then
        fftarray(:,fftloop+1) = cdabs(psitotal(:,)**2) !copy psitotal^2 to fftarray
    endif

    !propagate mid pulse to end pulse = END PULSE  - no do
    !starttime= Eto; endtime = probeendtime;
    call PropagateInTime(Eto+deltat, probendtime + Tend, .true.);

    write(106,'(E12.4,$)') cdabs(psitotal**2) ! save the wave function at mid probe pulse

    if(calculateKERPowerSpectra .eq. .true.) then
        call CalculateAndPrintKER(file_kertotal_endtime,psitotal,fftloop);
        !call CalculateAndPrintKERNoShift(file_kertotal_endtime,psitotal);
    endif
enddo
endif

call timer_printcurrenttime();
close(104);
close(105);
!close KER output file
close(file_ker_total_endtime);
call MethodCleanup();
call fourierCleanup();
call PrintEnergyFile();
if(calculatePowerSpectra .eq. .true.) then
call PowerSpectraFFT();
end if
if(calculateKERPowerSpectra .eq. .true.) then
call KERPowerspectraFFT();
end if
end subroutine RunLoopOpt

!--------------------------------------------------------------------------------

subroutine PropagateInTime(starttime,endtime,usefield)
real*8, intent(in) :: starttime         ! start time for propagation
real*8, intent(in) :: endtime           ! end time for propagation
logical, intent(in) :: usefield          ! whether to use efield or not

end subroutine PropagateInTimeEx(starttime,endtime,usefield, .true.);
end subroutine PropagateInTime

!--------------------------------------------------------------------------------

subroutine PropagateInTimeEx(starttime,endtime,usefield, useadktransition)
use progvars;
use wfMath;
use wfPot;
use tdseMethods;
use adk;
implicit none;

real*8, intent(in) :: starttime         ! start time for propagation
real*8, intent(in) :: endtime           ! end time for propagation
logical, intent(in) :: usefield          ! whether to use efield or not
logical, intent(in) :: useadktransition ! whether to use useadktransition

integer tloop, timestep;
real*8 etime, efield;
complex*16 rdeltat;
rdeltat = CMPLX(deltat,0.d0);
timestep= NINT((endtime-starttime) / deltat);
if(timestep>0) then
  do tloop = 0, timestep                      !internal deltat loop
    etime   =  starttime + (tloop*deltat);  !print *,  etime;
    if(includeField .AND. usefield) then
      efield  = wfmath_efield(etime)
    else
      efield  = 0.0d0;
    end if
  end do
write(124,'(E12.4,E12.4)') etime, efield;

if(useADK .eq. .true. .and. useadktransition .eq. .true. ) then
  ! couple H2+ wave functions to the p+p curve
  call adk_transition(deltat/2.0d0, efield);
end if

! do one coupling between H2+ gerade/ungerade curves for half timestep
  call coupleH2Plus(deltat/2.0d0, efield)

  ! propagate in the ungerade potential
  call potentials_setactive(3);
  call propagate(psiungerade, rdeltat, 0.0d0, includeAbsorber);

  ! propagate in the gerade potential
  call potentials_setactive(2);
  call propagate(psigerade, rdeltat, 0.0d0, includeAbsorber);
  call coupleH2Plus(deltat/2.0d0, efield);

psitotal = psigerade + psiungerade;

end do
end if

end subroutine PropagateInTimeEx

!--------------------------------------------------------------------------------
subroutine CalculateAndPrintKER(file_kertotal_endtime,wfunc,fftloop)
  use progvars;
  use fourier;
  use tdseMethods;
  implicit none;
  integer               , intent(in) :: file_kertotal_endtime,fftloop;
  complex*16, allocatable, intent(inout) :: wfunc(:)
  integer :: zloop;
  real*8 :: Pabs,val;

  K = czero;
  fouriervalues = czero;

  if (boundStateCutOff>0) then
    wfunc(1:boundStateCutOff) = 0.0d0;    !250*0.02=5 a.u. 210
  endif
  call fourierForward(wfunc);
  call FTShift(nz,fouriervalues,K);
  do zloop= nz/2,1,-1
    Pabs = abs(P(zloop));
    if (Pabs .eq. 0.0d0) then
      Pabs = 1E-18;
    end if
    val = cdabs(K(zloop))**2 /Pabs;
    KERfftarray(zloop,fftloop+1) = val;
    write(file_kertotal_endtime,'(E13.4,$)') val;
  end do
  write(file_kertotal_endtime,*);
end subroutine CalculateAndPrintKER;
end module tdsePumpProbe
module progvars

! use vdetect;
implicit none

5
type :: TEnergies                            ! declare a type array for bound state energies
  integer :: numbound   ! number of bound states
  real*8, pointer :: energyarr(:)     ! the array with the bound energies
end type

10
type :: TStates                              ! declare a type array for bound wave functions
  integer :: numbound   ! number of bound states, identical to TEnergies
  real*8, pointer :: energyarr(:)             ! the array with the bound energies
  complex*16, pointer :: wavefunctions(:,,:)       ! the array with the wave functions
end type

15

! Variable definitions
real*8 :: mass         ! particle mass
real*8 :: maxz         ! maximum x
real*8 :: minz         ! minimum x
real*8 :: deltzaz       ! step size in x direction
real*8 :: centerz      ! initial position in gaussian
real*8 :: maxt         ! maximum time
real*8 :: deltat       ! delta time
integer :: nz           ! no of steps in x direction (no of points in grid):(maxx/deltax)
integer :: nt           ! no of time steps
real*8 :: deltafft     ! time step for FFT
integer :: nfft         ! no of time/frequency steps for FFT
real*8, pointer :: Z(:),P(:),E(:)
real*8, pointer :: potential(:), coupling(:), potderivative(:);  

20

! initial wavefunction array
complex*16, allocatable :: psiground(:,), psigerade(:,),psiungerade(:,), psitotal(:)
complex*16, allocatable :: K(:);

25

40

!_________________absorber section____________________________________________________
real*8 :: fadewidth                    ! the width of the absorber for the electrons
real*8 :: fadestrength                 ! the strength of the absorbing border potential
real*8, pointer :: absorber(:)          ! absorber potential

45

!_________________________Probe (E FIELD) section______________________________________
real*8 :: Eo                           ! field amplitude
real*8 :: Eomega                       ! laser frequency
real*8 :: Ephi                         ! carrier envelope phase
real*8 :: Ewidth                       ! width of the envelope
real*8 :: Eto                          ! center of the gaussian envelope
logical :: includeField                 ! switch for using field

50

!__________________pedestal section _________________________________________________
real*8 :: EoPed                        ! pedestal field amplitude
real*8 :: EwidthPed                    ! width of the pedestal envelope
real*8 :: EomegaPed                    ! pedestal laser frequency
real*8 :: EphiPed                      ! carrier envelope phase
real*8 :: EtoPed                       ! center of the gaussian envelope
logical :: includePedestal              ! switch for pedestal

!_________________________ Pump Section_____________________________________________
real*8 :: EoPump       !(pulseint)
real*8 :: EwidthPump   !(pulselength)
real*8 :: EomegaPump   !(pulseomega)
real*8 :: EphiPump     !(pulsephase)   75
real*8 :: EtoPump      ! center of the pump envelope

logical :: includeConstantPump    ! switch for setting constant pump

!_________________________ Power Spectra FFT Section_________________________________
real*8, pointer :: fftarray(:,:)    ! array for FFT
complex*16, pointer :: fftinput(:)      ! the complex version for one R parameter
logical :: calculatePowerSpectra  = .true. ! .false.;

!_________________________ KER Power Spectra FFT Section_____________________________
real*8, pointer :: KERfftarray(:,:)    ! array for FFT
logical :: calculateKERPowerSpectra  = .true. !.false.;

!___________________________________Diagonalization Section________________________
type(TStates) :: states    ! object with wave functions and energies from diagonalization

!________________________ Memory allocation_________________________________________
integer :: iAllocStatus

!_____________________________Printing & Plotting Filters__________________________
integer :: printFilter
integer :: maxFrequencyFilter
integer :: printInterval

real*8 :: frequencyInTHZ = 6579.7d0

!___________________________________Method Selection_________________________________
character(len=2),parameter :: CNMethod  = "CN"        ! Crank-Nicholson method
character(len=2),parameter :: FTMethod  = "FT"        ! FFT method

character(len=2)   :: useMethod  = CNMethod
!character(len=2)   :: useMethod  = FTMethod

!___________________________________ Output selection _____________________________
character(len=120) :: inputFolder  = "input/" ;
character(len=120) :: outputFolder;
character(len=120) :: curve1, curve2, curve3, curve4;
character(len=10)  :: molecule  = "D2";

character(len=255) :: diagFolder  = "input/diag/" ;

!___________________________________ ADK Section ________________________________
logical :: useADK = .true. ;

real*8 :: e_adk       = dexp(1.d0)    ! the Euler constant
real*8 :: pi_adk      = dacos(-1.d0)  ! well guess - what could this be...

! the total charge of the ION (after the ADK transition)
real*8 :: ioncharge   = 1.0d0

end module progvars

D.4 Module ADK ionization (adk.f90)
! Date     : 01 Dec 2006
! Note     : This module is in order to avoid an IFORT compiler bug regarding
!            array passing subroutines

10 !-------------------------------------------------------------------------------- 10
! usage:
!
! ADK_DEPLETE
! ADK_TRANSITION
!
!
module adk
implicit none

20 !Declare ADK static variables to speed up the calculation of ADK rates
!lump all the R-dependent factors in here - ground
real*8, allocatable :: adk_const(:)
! sqrt(2*I_p) - wave vector to ionize from ground
real*8, allocatable :: adk_kappa(:)
contains
!--------------------------------------------------------------------------------

25 subroutine adk_deplete(psiin, potlo, pothi, ioncharge, pulseint, pulselength, pulseomega, pulsephase)
!
20 ! ADK routine for improved Franck-Condon transition but based on atomic ADK rates for
! The initial wave packet WAVEFUNCTION is originally moving in the lower potential POTLO
! and exposed to the given ionizing pulse. Static ADK rates for varying field is used rather
! than cycle averaged in order to account for really short pulses and the rapid change in
! envelope. The given wave function DOES NOT propagate during the pulse, thus the routine
! still assumes instantaneous ADK depletion and is therefore limited to very short pulses.
! Output is given in WAVEFUNCTION as the remaining part of the original wave function and
! the ionized wave function moving in the upper potential POTHI can be estimated as
! (original wave function) - (final wave function).
!
30 ! lets start off with something round...
real*8, parameter :: pi = 3.141592653589793238462643d0
! number of sampling points per laser cycle
integer, parameter :: ncyclesteps = 128
! multiplier for the pulselength for total transition time
real*8, parameter :: sigmawidth = 2.d0
! the delta t for the ADK calculation
real*8, parameter :: timestep
! well - the current time of the pulse
real*8, parameter :: currenttime

35 ! for the time step loop
integer :: nt, ntimesteps
! the envelope of the electric field of the laser pulse
real*8, parameter :: fieldenv
! the laser pulse carrier envelope phase
real*8, parameter :: fieldphase
! thats the electric field strengh of the laser we need
real*8, parameter :: efield
! but only the magnitude of the field matters for ADK
real*8, parameter :: fieldabs

40 ! error check
integer :: iAllocStatus
! for precomputing ADK constants
real*8, dimension(:), allocatable :: kappa, adkconst
! integrate it and you still have the same function...
real*8, allocatable :: e

45 ! for loop through the R values
integer :: nR, nRstep

use wfmath
!
40 ! the initial wave function for ionization, also return value
complex*16, dimension(:), intent(inout) :: psiin(:)
! both potential curves considered for the ADK transition
real*8, dimension(:), intent(in)        :: potlo, pothi
! the total charge of the ION (after the ADK transition)
real*8, intent(in)                      :: ioncharge
! the laser parameters
real*8, intent(in)                      :: pulseint, pulselength, pulseomega, pulsephase
real*8 :: rate

! size of the wave function array in R
nRstep = size(psin)
! allocate some memory for precomputing some static values
allocate(kappa(nRstep), adkconst(nRstep), stat=iAllocStatus)
if (iAllocStatus /= 0) then
  print *,"ERROR: can't allocate temporary ADK work arrays"
  stop
endif

! now procompute the static part of the ADK rates
! the Euler constant
e = dexp(1.d0)
! sqrt(2*I_p)/Z with I_p the ionization potential
kappa = dsqrt(2.d0 * (pothi - potlo))/ioncharge
adkconst = (3.d0*e/pi)**1.5d0 &
           *(kappa**4.5d0)/(ioncharge**2.5d0) &
           *(4.d0*e*(kappa**4)/ioncharge)**(2.d0*ioncharge/kappa-1.5d0)

! calculate an appropriate timestep for each ADK transition
timestep = 2.d0*pi / (pulseomega * ncyclesteps)
! how many time steps do we have in total?
ntimesteps = nint(sigmawidth*pulselength/timestep)
do nt=0, ntimesteps-1 ! The ADK time loop
  currenttime = -sigmawidth*pulselength/2.d0 + timestep*nt
! get ma a clock reading
  ! Calculate the electric field strengh of the laser at the current time
  fieldenv = dsqrt(pulseint) * dexp(- 2.d0 * dlog(2.d0) * (currenttime**2) / (pulselength**2) )
  ! the current laser phase with respect to the maximum of the pulse
  fieldphase = dmod(pulseomega*currenttime+pulsephase,2*pi)
  efield = fieldenv * dcos(fieldphase)
  ! ADK only depends on the magnitude of the electric field
  fieldabs = dabs(efield)

! next timestep, if field strength is not large enough
if (fieldabs < 1.d-4) cycle

! now comes the ADK part -
! loop through all R value and see how much wave function we will loose
!$OMP PARALLEL DO SCHEDULE(STATIC,1) PRIVATE(nR, rate)
do nR=1, nRstep
  ! the current ADK rate at given internuclear distance
  rate = adkconst(nR) * (fieldabs**(1.5d0 - 2.d0*ioncharge/kappa(nR))) &
      *dexp(-2.d0*kappa(nR)**3/(3.d0*fieldabs))
  ! and the depleted ground state wave function
  psiin(nR) = psiin(nR)*(1.d0 - dsqrt(dabs(rate*timestep)))
endo
!$OMP END PARALLEL DO

endo ! (* time loop *)

! and finally remove the precomputed arrays again
deallocate(kappa, adkconst, stat=iAllocStatus)
if (iAllocStatus /= 0) then
  print *,"ERROR: can't deallocate temporary ADK work arrays"
  stop
endif
end subroutine adk_deplete

!--------------------------------------------------------------------------------
subroutine adk_init
! initialize the ADK rate arrays and precompute the static variables
! IMPORTANT: it is assumed that the GERADE curve is POTENTIAL(2) and the
! UNGERADE curve is POTENTIAL(3)!!!
150 The molecular ADK rates are taken from eq. (5) of J. P. Brichta et al.,

use progvars
use wfPot
use debug

implicit none

integer :: adkAllocStatus ! for I/O operation
integer :: nR
real*8 :: rpos, adkground ! position and ADK rates
real*8 :: maxfield ! the maximum electric field strenth of the laser

allocate(adk_const(nz), adk_kappa(nz), stat=adkAllocStatus)
if (adkAllocStatus /= 0)
  print *, "ERROR: can't allocate ADK arrays"
  stop
endif

! now precompute the static part of the ADK rates
! sqrt(2*I_p) with I_p the ionization potential
adk_kappa = dsqrt(2.d0 * (pot_curve2 - pot_curve1))
adk_const = (3.d0*e_adk/pi_adk)**1.5d0 &
  *(adk_kappa**4.5d0)/(ioncharge**2.5d0) &
  *(4.d0*e_adk*(adk_kappa**4)/ioncharge)**(2.d0*ioncharge/adk_kappa-1.5d0)
call debugmsg (5,1,"adk_init: ADK arrays allocated, precomputed and plotted")
end subroutine

--------------------------------------------------------------------------------

subroutine adk_transition(timestep, fieldstrength)
! this routine does the ADK rate depletion of both H2+ curves to the p+p Coulomb
! explosion curve. The ADK rate acts like a optical potential damping the H2+ wave
! functions but cannot coherently build up the correct wave function on the 2H+ curve due
! to the lost phase information. Instead we poppulate the upper potential curve
! constructively and do not propagate this wave function.

use progvars

implicit none

real*8, intent(in) :: timestep;
real*8, intent(in) :: fieldstrength;
real*8 :: fieldabs;
integer :: nR;
complex*16 :: tmpground;
real*8 :: adkground;
fieldabs = dabs(fieldstrength)
if (fieldabs < 1.d-4) return;

! The ADK rate transitions are pointwise for every R. We go pointwise through the wave
! functions, therefore we can have this loop running in parallel using OpenMP
! Since the routine will be called quite often, it has been optimized for speed.
!
!$OMP PARALLEL DO SCHEDULE(STATIC,1) PRIVATE(nR, tmpg, tmpu, adkg, adku)
do nR=1, nz
  ! the current ADK rate from the gerade curve
  adkground = adk_const(nR) * (fieldabs**(1.5d0 - 2.d0*ioncharge/adk_kappa(nR))) &
    *dexp(-2.d0*adk_kappa(nR)**3/(3.d0*fieldabs))
  ! the ADK transition amplitude subtracted from orginal
  tmpground = psiground(nR) - (dsqrt(dabs(adkground*timestep)) * psiground(nR));

end subroutine
! depletion of the ground state wave function added to gerade
psigerade(nR) = psigerade(nR) + tmpground;

enddo
!$OMP END PARALLEL DO
end subroutine adk_transition
!--------------------------------------------------------------------------------
subroutine adk_done
! destroy the ADK arrays
use progvars
use debug

implicit none

integer :: adkAllocStatus  ! for I/O operation

deallocate(adk_const, adk_kappa, stat=adkAllocStatus)
if (adkAllocStatus /= 0) then
print *,"ERROR: can't deallocate ADK arrays"
stop
endif

call debugmsg (5,1,"adk_done: ADK arrays destroyed")

end subroutine adk_done

end module adk
Appendix E - GAMESS input-output

This appendix summarizes the construction of inputs, compiling, running, and generating outputs in the GAMESS code [*](see remarks at the end of the Appendix). First, the construction of the input files for potential curve and dipole-coupling-element calculations for H₂, H₂⁺, O₂ and O₂⁺ are given. Second, the compilation procedure is summarized. Below, the Table summarizes the input-output files.

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.I</td>
<td>H₂ optimization</td>
<td>A.O.</td>
</tr>
<tr>
<td>B.I.</td>
<td>H₂⁺ optimization</td>
<td>B.O.</td>
</tr>
<tr>
<td>C.I.</td>
<td>H₂⁺ energy</td>
<td>C.O.</td>
</tr>
<tr>
<td>D.I.</td>
<td>H₂ energy</td>
<td>D.O.</td>
</tr>
<tr>
<td>E.I.</td>
<td>H₂⁺ dipole couplings</td>
<td>-</td>
</tr>
<tr>
<td>F.I.</td>
<td>O₂ optimization</td>
<td>F.O.</td>
</tr>
<tr>
<td>G.I.</td>
<td>O₂⁺ optimization</td>
<td>-</td>
</tr>
<tr>
<td>H.I.</td>
<td>O₂⁺ energy</td>
<td>H.O.</td>
</tr>
<tr>
<td>J.I.</td>
<td>O₂⁺ dipole coupling</td>
<td>J.O.</td>
</tr>
</tbody>
</table>

Sections A.I through J.I. correspond to the list of inputs, and the sections A.O through J.O correspond to outputs.

The potential-curve (and dipole coupling) calculation procedure is as follows. First, we optimize the geometry of a given molecule. As an example, for the H₂ molecule the input file for geometry optimization is given below:

```plaintext
A.I. Input for H₂ optimization calculations:

$CONTRL RUNTYP=optimize SCFTYP=RHF ISPHER=1 $END
$SYSTEM TIMLIM=90000 mwords=100 $END
$BASIS GBASIS=CCT $END
$STATPT OPTTOL=0.00001 NSTEP=20 $END
$DATA
  H₂ optimization - cartesian coordinates
Dnh 4

H     1.0  0.0000000000  0.0000000000  0.4407446852
$END
```

Here we explain each term in the input file. More details can be found below [*].

The “control” group identifies the type of wavefunctions and the type of calculation to be done; it also specifies the charge and spin of the molecule, the coordinate system, the use of core potentials, spherical harmonics, and similar types of parameters.
RUNTYP=optimize --- computation type, in this case geometry optimization
SCFTYP=RHF    ---- Restricted Hartree-Fock calculation
ISPHER=1    --- spherical harmonics option (Cartesian basis functions). Used for basis set.

The “system” group governs computer-related options.
Basis types and related parameters are given in “Basis” group.
GBASIS=CCT    --- Dunning-type correlation consistent basis sets (cc-pVnZ). For the general case, CCn - n=T means triplet.

“Data” covers the characteristics of the molecule, such as the number of atoms and the geometry. In our case, we have two H atoms located at coordinates (0, 0, 0.44…) and (0, 0, - 0.44…) due to the D_{4h} symmetry. For diatomic molecules symmetry should be D_{∞h}, but calculations cannot be done with an infinite number of basis sets so GAMESS sets the symmetry for diatomic molecules as D_{4h}.

As an example, geometry optimization is given for the H_{2}^{+} molecular ion below:

```
B.I. Input for H_{2}^{+} optimization calculations:

$CONTRL RUNTYP=optimize SCFTYP=UHF ICHARG=1 MULT=2 ISPHER=1 $END
$SYSTEM TIMLIM=90000 mwords=100 $END
$BASIS GBASIS=CCT $END
$STATPT OPTTOL=0.00001 NSTEP=20 $END
$DATA
H2+ optimization
Dnh 4
H 1.0 0.0000000000 0.0000000000 0.3561149584
$END
```

The next step is to use the optimized geometry in the actual calculations for the energy. GAMESS calculates the energy (in a.u.) for a given internuclear distance R (in Angstroms), so one needs to repeat the calculations for different R (that means constructing different input files for different internuclear distances and running them). As an example, the energy calculations for one R=1.057 Å for the H_{2}^{+} molecular ion is given below:

```
C.I. Input for H_{2}^{+} energy curve calculations:

$CONTRL RUNTYP=energy SCFTYP=MCSCF ICHARG=1 MULT=2 ISPHER=1 $END
$SYSTEM TIMLIM=90000 mwords=100 $END
$BASIS GBASIS=CCT $END
$STATPT OPTTOL=0.00001 NSTEP=20 $END
$DET NCORE=0 NACT=2 NELS=1 NSTATE=2 WSTATE(1)=0.1,0.9 $END
$GUESS GUESS=MOREAD norb=28 $END
$DATA
H2+ energies
```

165
The “VEC” group was taken from the “file name”.dat file of the optimization run of H2⁺. For the energy calculations at different internuclear distances, one needs to add 0.1 Å (or any step size interval preferred) to the internuclear distance (in this case Z=0.52857...) of H⁺ (molecule is aligned along Z axis, thus Z coordinate corresponds to the internuclear distance).

An example of H2 ground state calculations is given below. Please note that here RUNTYP = surface is used (not energy). In this case GAMESS calculates energies for different internuclear distances automatically. There is no need to manually add 0.1 Å and generate another input file for different internuclear distance. Note that for some reason the RUNTYP=surface does not give correct values for heavier molecules.

**D.I. Input for H₂ energy curve calculations:**

```plaintext
$CONTRL RUNTYP=surface SCFTYP=RHF CCTYP=EOM-CCSD ICHARG=0 MULT=1 $END
$SYSTEM TIMLIM=90000 mwords=100 $END
$BASIS GBASIS=STO NGAUSS=3 $END
$STATPT OPTTOL=0.00001 NSTEP=20 $END
$CCINP MAXCC=1000 $END
$SURF ivec1(1)=1,2 igrp1=2 disp1=0.1 ndisp1=50 orig1=-0.5 $END
$DATA
H2 energies
Dnh 4
H 1.0 0.0000000000 0.0000000000 0.3561149584 $END
```

An example for the calculation of the dipole matrix elements for H₂⁺ states is given below:

**E.I. Input for H₂⁺ dipole coupling element calculations:**

```plaintext
$CONTRL RUNTYP=TRANSITN SCFTYP=NONE CITYP=GUGA ICHARG=1 MULT=2 ISPHER=1 $END
$SYSTEM TIMLIM=90000 mwords=100 $END
$BASIS GBASIS=CCT $END
$STATPT OPTTOL=0.00001 NSTEP=20 $END
$TRANST OPERAT=DM NFZC=0 IROOTS(1)=2 NOCC=3 $END
$DRT1 GROUP=c1 IEXCIT=2 NFZC=0 NDOC=0 NALP=1 NEXT=-1 NVAL=2 $END
$DATA
H2+ energies
Dnh 4
```

166
\[
\begin{array}{cccc}
H & 1.0 & 0.0000000000 & 0.0000000000 & 0.5285771035 \\
\$END \\
\$VEC1 \\
1 & 1 & 2.43921181E-01 & 3.14632011E-01 & 2.61389538E-02 & 0.00000000E+00 & 0.00000000E+00 \\
1 & 2 & 2.44757728E-02 & 0.00000000E+00 & 0.00000000E+00 & 4.01315821E-02 & -2.46399747E-03 \\
1 & 3 & -2.46399747E-03 & 4.92799493E-03 & 0.00000000E+00 & 0.00000000E+00 & 0.00000000E+00 \\
1 & 4 & 2.43921181E-01 & 3.14632011E-01 & 2.61389538E-02 & 0.00000000E+00 & 0.00000000E+00 \\
\$END
\end{array}
\]

---

**H$_2$ (H$_2^+$) molecule outputs**

---

**A.O. Output for H$_2$ optimization calculations:**

---

Echo of the first few input cards -

```
INPUT CARD> $CONTRL RUNTYP=optimize SCFTYP=RHF $END
INPUT CARD> $SYSTEM TIMLIM=90000 mwords=100 $END
INPUT CARD> $BASIS GBASIS=STO NGAUSS=3 $END
INPUT CARD> $STATPT OPTTOL=0.00001 NSTEP=20 $END
INPUT CARD> $DATA
```

**Input card for H$_2$ optimization - cartesian coordinates**

```
INPUT CARD>H2 optimization - cartesian coordinates
```

**Input card for Dnh 4**

```
INPUT CARD> H 1.0 0.0000000000 0.0000000000 0.4407446852
```

**Input card for$END**

```
100000000 WORDS OF MEMORY AVAILABLE
```

**Basis options**

- **GBASIS=STO**
- **IGAUSS=3**
- **POLAR=NONE**
- **NDFUNC=0**
- **NFFUNC=0**
- **DIFFSP=F**
- **NPFUNC=0**
- **DIFFS=F**
- **BASNAM**

**Run title**

```
H2 optimization - cartesian coordinates
```

**The point group of the molecule is DNH**

**The order of the principal axis is 4**

<table>
<thead>
<tr>
<th>Atom</th>
<th>Atomic charge</th>
<th>Atomic coordinates (bohr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.0</td>
<td>0.0000000000 0.0000000000 -0.8328866856</td>
</tr>
<tr>
<td>H</td>
<td>1.0</td>
<td>0.0000000000 0.0000000000 0.8328866856</td>
</tr>
</tbody>
</table>

**Internuclear distances (Angs.)**

```
1 H     2 H
1 H 0.0000000 0.8814894 *
2 H 0.8814894 * 0.0000000
```

* ... less than 3.000

**Atomic basis set**

```
The contracted primitive functions have been unnormalized
The contracted basis functions are now normalized to unity
```

<table>
<thead>
<tr>
<th>Shell type</th>
<th>Primitive</th>
<th>Exponent</th>
<th>Contraction coefficient(s)</th>
</tr>
</thead>
</table>

---

167
TOTAL NUMBER OF BASIS SET SHELLS = 2
NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 2
NUMBER OF ELECTRONS = 2
CHARGE OF MOLECULE = 0
SPIN MULTIPLICITY = 1
NUMBER OF OCCUPIED ORBITALS (ALPHA) = 1
NUMBER OF OCCUPIED ORBITALS (BETA) = 1
TOTAL NUMBER OF ATOMS = 2
THE NUCLEAR REPULSION ENERGY IS 0.6003217588

THIS MOLECULE IS RECOGNIZED AS BEING LINEAR,
ORBITAL LZ DEGENERACY TOLERANCE ETOLLZ= 1.00E-06

$NEO OPTIONS

$CONTRL OPTIONS

$SYSTEM OPTIONS

PROPERTIES INPUT

INTEGRAL TRANSFORMATION OPTIONS
MPTRAN = 0  DIRTRF = F
AOINTS =DUP

----------------------
INTEGRAL INPUT OPTIONS
----------------------
NOPK = 1  NORDER= 0  SCHWRZ= F

THE POINT GROUP IS DNH, NAXIS= 4, ORDER=16

DIMENSIONS OF THE SYMMETRY SUBSPACES ARE
A1G = 1  A1U = 0  B1G = 0  B1U = 0  A2G = 0  A2U = 1  B2G = 0  B2U = 0  EG = 0  EU = 0

..... DONE SETTING UP THE RUN .....  
STEP CPU TIME = 0.02  TOTAL CPU TIME = 0.0 ( 0.0 MIN) 
TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 106.67%

------------------------------------------
STATIONARY POINT LOCATION RUN
------------------------------------------

OBTAINING INITIAL HESSIAN, HESS=GUESS

PARAMETERS CONTROLLING GEOMETRY SEARCH ARE
METHOD =QA              UPHESS =BFGS
NNEG = 0  NFRZ = 0
NSTEP = 20  IFOLOW = 1
HESS =GUESS  RESTART = F
IHREP = 0  HSEND = F
NPRT = 0  NPUN = 0
OPTTOL = 1.000E-05  RMIN = 1.500E-03
RMAX = 1.000E-01  RLIM = 7.000E-02
DXMAX = 3.000E-01  PURIFY = F
MOVI = F  TRUPD = T
TRMAX = 5.000E-01  TRMIN = 5.000E-02
ITMAT = 5  STPT = F
STSTEP = 1.000E-02  PROJECT= T

BEGINNING GEOMETRY SEARCH POINT NSERCH= 0 ...

***** EQUILIBRIUM GEOMETRY LOCATED *****

COORDINATES OF SYMMETRY UNIQUE ATOMS (ANGS)

<table>
<thead>
<tr>
<th>ATOM</th>
<th>CHARGE</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.0</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.3561149584</td>
</tr>
</tbody>
</table>

COORDINATES OF ALL ATOMS ARE (ANGS)

<table>
<thead>
<tr>
<th>ATOM</th>
<th>CHARGE</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.0</td>
<td>-0.0000000000</td>
<td>-0.0000000000</td>
<td>-0.3561149584</td>
</tr>
<tr>
<td>H</td>
<td>1.0</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.3561149584</td>
</tr>
</tbody>
</table>

INTERNAL DISTANCES (ANGS.)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 H</td>
<td>2 H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 H</td>
<td>0.0000000</td>
<td>0.7122299 *</td>
<td></td>
</tr>
<tr>
<td>2 H</td>
<td>0.7122299 *</td>
<td>0.0000000</td>
<td></td>
</tr>
</tbody>
</table>

* ... LESS THAN 3.000

---
The equilibrium geometry (in red) is given in Angstroms. One of the H atoms is located at \( Z = 0.356 \, \text{Å} \) and the other is at \( Z = -0.356 \, \text{Å} \). The internuclear distance in atomic units \( R = 2 \times 0.35611 \, \text{Å} / 0.529 = 1.35 \, \text{a.u.} \)

**B.O. Output for \( H_2^+ \) optimization calculations:**

```
ECHO OF THE FIRST FEW INPUT CARDS -
INPUT CARD> $CONTRL RUNTYP=optimize SCFTYP=UHF ICHARG=1 MULT=2 ISPHER=1 $END
INPUT CARD> $SYSTEM TIMLIM=90000 mwords=100 $END
INPUT CARD> $BASIS GBASIS=CCT $END
INPUT CARD> $STATPT OPTTOL=0.00001 NSTEP=20 $END
INPUT CARD> $DATA
INPUT CARD> H2+ optimization
INPUT CARD> H 1.0 0.0000000000 0.0000000000 0.3561149584
INPUT CARD> $END
10000000 WORDS OF MEMORY AVAILABLE

BASIS OPTIONS
--------------
GBASIS=CCT IGAUSS= 0 POLAR=NONE
NDFUNC= 0 NFFUNC= 0 DIFFS= F
NPFUNC= 0 DIFFSP= F BASNAM=

RUN TITLE
---------
H2+ optimization

THE POINT GROUP OF THE MOLECULE IS DNH
THE ORDER OF THE PRINCIPAL AXIS IS 4

<table>
<thead>
<tr>
<th>ATOM</th>
<th>ATOMIC CHARGE</th>
<th>X (BOHR)</th>
<th>Y (BOHR)</th>
<th>Z (BOHR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.0</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.6729596915</td>
</tr>
<tr>
<td>H</td>
<td>1.0</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.6729596915</td>
</tr>
</tbody>
</table>

INTERNUCLEAR DISTANCES (ANGS.)
--------------------------------
1 H 2 H

1 H 0.00000000 0.7122299 *
2 H 0.7122299 * 0.0000000

* ... LESS THAN 3.000

***** EQUILIBRIUM GEOMETRY LOCATED *****

COORDINATES OF SYMMETRY UNIQUE ATOMS (ANGS)
---------------------------------------------
<table>
<thead>
<tr>
<th>ATOM</th>
<th>CHARGE</th>
<th>X (BOHR)</th>
<th>Y (BOHR)</th>
<th>Z (BOHR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.0</td>
<td>-0.0000000000</td>
<td>0.0000000000</td>
<td>0.5285771035</td>
</tr>
</tbody>
</table>

COORDINATES OF ALL ATOMS ARE (ANGS)
-------------------------------------
<table>
<thead>
<tr>
<th>ATOM</th>
<th>CHARGE</th>
<th>X (BOHR)</th>
<th>Y (BOHR)</th>
<th>Z (BOHR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.0</td>
<td>-0.0000000000</td>
<td>0.0000000000</td>
<td>-0.5285771035</td>
</tr>
<tr>
<td>H</td>
<td>1.0</td>
<td>-0.0000000000</td>
<td>0.0000000000</td>
<td>0.5285771035</td>
</tr>
</tbody>
</table>

INTERNUCLEAR DISTANCES (ANGS.)
--------------------------------
1 H 2 H

1 H 0.00000000 1.0571542 *
```
The equilibrium geometry (in red) is given in Angstroms. One of the H atoms is located at $Z = 0.5286 \text{Å}$ and the other is at $Z = -0.5286 \text{Å}$. The internuclear distance in atomic units $R = 2 \times 0.35611 \text{Å}/0.529 = 1.998$ a.u.

---

**D.O.** Output for $H_2^+$ energy calculations:

```
ECHO OF THE FIRST FEW INPUT CARDS -
INPUT CARD> $CONTRL RUNTYP=energy SCFTYP=MCSCF ICHARG=1 MULT=2 ISPHER=1 $END
INPUT CARD> $SYSTEM TIMLIM=90000 mwords=100 $END
INPUT CARD> $BASIS GBASIS=CCT $END
INPUT CARD> $STATPT OPTTOL=0.00001 NSTEP=20 $END
INPUT CARD> $DET NCORE=0 NACT=2 NELS=1 NSTATE=2 WSTATE(1)=0.1,0.9 $END
INPUT CARD> $GUESS GUESS=MOREAD norb=28 $END
INPUT CARD> $DATA
INPUT CARD>H2+ energies
INPUT CARD>Dnh  4
INPUT CARD>
INPUT CARD> H 1.0   0.0000000000   0.0000000000   0.5285771035
INPUT CARD> $END
INPUT CARD> $VEC
INPUT CARD> 1  1 2.43921181E-01 3.14632011E-01 2.61389538E-02 0.00000000E+00 0.00000000E+00
INPUT CARD> 1  2 2.44757728E-02 0.00000000E+00 0.00000000E+00 4.01315821E-02-2.46399747E-03
... 
CI EIGENVECTORS WILL BE LABELED IN GROUP=C1
PRINTING ALL NON-ZERO CI COEFFICIENTS
STATE   1  ENERGY=        -0.6022446912  S=  0.50  SZ=  0.50  SPACE SYM=A
ALPH|BETA| COEFFICIENT
----|----|------------
10 | 00 |   1.0000000
STATE   2  ENERGY=        -0.1664191926  S=  0.50  SZ=  0.50  SPACE SYM=A
ALPH|BETA| COEFFICIENT
----|----|------------
01 | 00 |   1.0000000
```

State 1 is $1s\sigma_g$ and state 2 is $2p\sigma_u$.

---

**C.O.** Output for $H_2$ energy calculations:

```
ECHO OF THE FIRST FEW INPUT CARDS -
INPUT CARD> $CONTRL RUNTYP=surface SCFTYP=RHF CCTYP=EOM-CCSD ICHARG=0 MULT=1 $END
INPUT CARD> $SYSTEM TIMLIM=90000 mwords=100 $END
INPUT CARD> $BASIS GBASIS=STO NGAUSS=3 $END
INPUT CARD> $STATPT OPTTOL=0.00001 NSTEP=20 $END
INPUT CARD> $CCINP MAXCC=10000 $END
INPUT CARD> $SURF ivec1(1)=1,2 igrp1=2 disp1=0.1 ndisp1=50 orig1=-0.5 $END
INPUT CARD> $DATA
INPUT CARD>H2 energies
INPUT CARD>Dnh  4
INPUT CARD>
INPUT CARD> H 1.0   0.0000000000   0.0000000000   0.3561149584
INPUT CARD> $END
```
As mentioned above, GAMESS calculates energies for different internuclear distances (in red) with steps of 0.1 Å that can be changed by changing disp1=0.1.

---

**Inputs for \( \text{O}_2 \) \( (\text{O}_2^-) \) molecule**

**F.I. Input for \( \text{O}_2 \) optimization calculations:**

```
$CONTRL RUNTYP=optimize SCFTYP=ROHF MULT=3 ISPHER=1 $END
$SYSTEM TIMLIM=90000 mwords=100 $END
$BASIS GBASIS=CCT $END
$STATPT OPTTOL=0.00001 NSTEP=20 $END
$DATA
O2 optimization - cartesian coordinates
Dnh 4
```
G.I. Input for \( \text{O}_2^+ \) optimization calculations:

\[
\begin{align*}
\text{CONTRL} & \quad \text{RUNTYP=optimize} \quad \text{SCFTYP=ROHF} \quad \text{ICHARG=1} \quad \text{MULT=2} \quad \text{ISPHER=1} \\
\text{SYSTEM} & \quad \text{TIMLIM=90000} \quad \text{mwords=100} \\
\text{BASIS} & \quad \text{GBASIS=CCT} \\
\text{STATPT} & \quad \text{OPTTOL=0.000001 NSTEP=20} \\
\text{DATA} & \\
\text{O2 optimization - cartesian coordinates} \\
\text{Dnh 4} \quad \text{O} & \quad 8.0 \quad 0.0000000000 \quad 0.0000000000 \quad 0.72 \\
\end{align*}
\]

H.I. Input for \( \text{O}_2^+ \) energy curve calculations:

\[
\begin{align*}
\text{CONTRL} & \quad \text{RUNTYP=energy} \quad \text{SCFTYP=MCSCF} \quad \text{ICHARG=1} \quad \text{MULT=2} \quad \text{ISPHER=1} \\
\text{SYSTEM} & \quad \text{TIMLIM=90000} \quad \text{mwords=100} \\
\text{BASIS} & \quad \text{GBASIS=CCT} \\
\text{SURF} & \quad \text{ivec1(1)=1,2 igrp1=2 disp1=0.1 ndisp1=80 orig1=0} \\
\text{DET} & \quad \text{NCORE=4 NACT=6 NELS=7 NSTATE=22} \\
\text{DET} & \quad \text{WSTATE(1)=1,1,1,1,1,1,1,1,1,1,1,1,1,1} \\
\text{GUESS} & \quad \text{GUESS=MOREAD norb=60} \\
\text{DATA} & \\
\text{O2p MCSCF energy- cartesian coordinates} \\
\text{Dnh 4} \quad \text{O} & \quad 8.0 \quad 0.0000000000 \quad 0.0000000000 \quad 0.5435216138 \\
\text{VEC} & \\
1 & 1 \quad 6.90462181E-01 \quad 5.06682505E-04 \quad 3.08141581E-01 \quad 1.25056362E-03 \quad -0.00000000E+00 \\
1 & 2 \quad -0.00000000E+00 \quad 2.05835947E-03 \quad -0.00000000E+00 \quad -0.00000000E+00 \quad -4.74935703E-04 \\
1 & 3 \quad -0.00000000E+00 \quad -0.00000000E+00 \quad 1.89563601E-04 \quad -7.68704919E-05 \quad -7.68704919E-05 \\
1 & 4 \quad 1.53740984E-04 \quad -0.00000000E+00 \quad -0.00000000E+00 \quad -0.00000000E+00 \quad 1.30415410E-04 \\
\end{align*}
\]

The “VEC” group was taken from the ***.dat file of the optimization run of \( \text{O}_2^+ \). J.I. Input for \( \text{O}_2^+ \) dipole coupling element calculations:

\[
\begin{align*}
\text{CONTRL} & \quad \text{RUNTYP=TRANSITN} \quad \text{SCFTYP=NONE} \quad \text{CITYP=GUGA} \quad \text{ISPHER=1} \quad \text{ICHARG=1} \quad \text{MULT=2} \\
\text{SYSTEM} & \quad \text{TIMLIM=90000} \quad \text{mwords=100} \\
\text{BASIS} & \quad \text{GBASIS=CCT} \\
\text{STATPT} & \quad \text{OPTTOL=0.000001 NSTEP=20} \\
\text{DATA} & \\
\text{O2p MCSCF energy- cartesian coordinates} \\
\text{Dnh 4} \quad \text{O} & \quad 8.0 \quad 0.0000000000 \quad 0.0000000000 \quad 0.5435216138 \\
\text{VEC1} & \\
1 & 1 \quad 6.90602729E-01 \quad 8.53547880E-04 \quad 3.05582604E-02 \quad 8.28470661E-04 \quad -0.00000000E+00 \\
1 & 2 \quad -0.00000000E+00 \quad 3.05629834E-03 \quad -0.00000000E+00 \quad -0.00000000E+00 \quad 7.59436047E-04 \\
\end{align*}
\]
outputs for $O_2 (O_2^+)$ molecule

**F.O. Output for $O_2$ optimization calculations**

...  

...  

13-0.00000000E+00-0.00000000E+00 4.99154416E-04-2.15514717E-04  
14 4.31029435E-04-0.00000000E+00-0.00000000E+00 9.31725941E-05  
...

$END

---

**ECHO OF THE FIRST FEW INPUT CARDS -**  
**INPUT CARD>** $CONTRL RUNTYP=optimize SCFTYP=ROHF MULT=3 ISPHER=1 $END  
**INPUT CARD>** $SYSTEM TIMLIM=90000 mwords=100 $END  
**INPUT CARD>** $BASIS GBASIS=CCT $END  
**INPUT CARD>** $STATPT OPTTOL=0.00001 NSTEP=20 $END  
**INPUT CARD>** $DATA  
**INPUT CARD>** O2 optimization - cartesian coordinates  
**INPUT CARD>** $END  
**INPUT CARD>** O 8.0 0.0000000000 0.0000000000 0.72  
**INPUT CARD>** $END  
100000000 WORDS OF MEMORY AVAILABLE  

**BASIS OPTIONS**  
-------  
GBASIS=CCT IGAUSS=0 POLAR=None  
NDFUNC=0 NFFUNC=0 DIFFSP=F  
NPFUNC=0 DIFFS=F BASNAM=  

**RUN TITLE**  
-------  
O2 optimization - cartesian coordinates  

THE POINT GROUP OF THE MOLECULE IS DNH  
THE ORDER OF THE PRINCIPAL AXIS IS 4  

**ATOM**  
**COORDINATES (BOHR)**  
**CHARGE** **X** **Y** **Z**  
O 8.0 0.0000000000 0.0000000000 -1.3606027112  
O 8.0 0.0000000000 0.0000000000 1.3606027112  

**INTERNUCLEAR DISTANCES (ANGS.)**  
-----------------  
1 O 2 O  
1 O 0.0000000 1.4400000 *  
2 O 1.4400000 * 0.0000000  
*... LESS THAN 3.000  

**ATOMIC BASIS SET**  
-----------------  
THE CONTRACTED PRIMITIVE FUNCTIONS HAVE BEEN UNNORMALIZED  
THE CONTRACTED BASIS FUNCTIONS ARE NOW NORMALIZED TO UNITY  

**SHELL TYPE** **PRIMITIVE** **EXONENT** **CONTRACTION COEFFICIENT(S)**  
O  
11 S 1 15330.0000000 0.000520198307  
11 S 2 2299.0000000 0.004023344781  
11 S 3 522.4000000 0.020729083329  
11 S 4 147.3000000 0.081082327080  
11 S 5 47.5500000 0.236226352118  
11 S 6 16.7600000 0.443518209420  

174
TOTAL NUMBER OF BASIS SET SHELLS = 20
NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 70
NOTE: THIS RUN WILL RESTRICT THE MO VARIATION SPACE TO SPHERICAL HARMONICS.
THE NUMBER OF ORBITALS KEPT IN THE VARIATIONAL SPACE WILL BE PRINTED LATER.
NUMBER OF ELECTRONS = 16
CHARGE OF MOLECULE = 0
SPIN MULTIPlicity = 3
NUMBER OF OCCUPIED ORBITALS (ALPHA) = 9
NUMBER OF OCCUPIED ORBITALS (BETa) = 7
TOTAL NUMBER OF ATOMS = 2
THE NUCLEAR REPULSION ENERGY IS 23.5189888551

THIS MOLECULE IS RECOGNIZED AS BEING LINEAR,
ORBITAL LZ DEGENERACY TOLERANCE ETOLLZ= 1.00E-06

$NEO OPTIONS
-------------
NUNIQN= 0 BASNuc=DZSNB NEOscF=None
NEOCI =None NUMult= 2 NUCSt = 1
NAUXN= 0 VNUCEX= F NUCOPT= F
NTAUxB= 0 NEOHSS= F HSSINI=READh
HSSUPD=POwELLUp DINUC= F SYMNUC= F
QMTOLN= 0.0E+00 USRDEX= F
POSNEO= F POSFRP= F
NEONCI= F LOCORB= 0

$CONTRL OPTIONS
---------------
SCFTYP=ROHF RUNTYP=OPTIMIZE EXETYP=RUN
MPLEVl= 0 CITYP =NONE CcTYP =NONE VBTP =NONE
DPTYP=NONE TDDFT =NONE
MULT = 3 ICHARG= 0 NZVAR = 0 COORD =UNIQUE
PP =NONE RELWFn=None LOCAL =NONE NUMGRD= F
ISPHER= 1 NOSYM = 0 MAXIT = 30 UNITS =ANGS
PLTORB= F MOLPLT= F AIMPAC= F FRIEND= F
NPRINT= 7 IREST = 0 GEOM =INPUT
NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9
INTTYP=BEST GRIDTYP=BEST QMttOL= 1.0E-06

***** EQUILIBRIUM GEOMETRY LOCATED *****
COORDinATES OF SYMMETRY UNIQUe ATOMS (ANGS)
The equilibrium geometry (in red) is given in Angstroms. One O atom is at $Z = 0.576$ Å and the other is at $Z = -0.576$ Å. The internuclear distance in atomic units $R = (2 \times 0.576165 / 0.529)$ Å = 2.178318 a.u.

**H.O. Output for $O_2$ energy calculations**

---

**ECHO OF THE FIRST FEW INPUT CARDS**

**INPUT CARD> $CONTRL RUNTYP=energy SCFTYP=MCSCF ICHARG=1 MULT=2 ISPHER=1 $END**

**INPUT CARD> $SYSTEM TIMLIM=90000 mwords=100 $END**

**INPUT CARD> $BASIS GBASIS=CCT $END**

**INPUT CARD> $SURF ivec1(1)=1,2 igrp1=2**

**INPUT CARD> disp1=0.1 ndisp1=80 orig1=0 $END**

**INPUT CARD> $DET NCORE=4 NACT=6 NELS=7 NSTATE=22 $END**

**INPUT CARD> $DET WSTATE(1)=1,1,1,1,1,1,1,1,1,1,1,1,1,1 $END**

**INPUT CARD> $DET IROOT=14 $END**

**INPUT CARD> $GUESS GUESS=MOREAD norb=60 $END**

**INPUT CARD> $DATA**

**INPUT CARD> O2p MCSCF energy- cartesian coordinates**

**INPUT CARD> Dnh 4**

**INPUT CARD> O 8.0 0.0000000000 0.0000000000 0.5435216138**

**INPUT CARD> $END**

**INPUT CARD> $VEC**

**INPUT CARD> 1 1 6.90462181E-01 5.90682505E-04 3.08141581E-02 1.25056362E-03-0.00000000E+00**

---

**LAGRANGIAN CONVERGED**

---

**FINAL MCSCF ENERGY IS** $-148.7396712377$ **AFTER 11 ITERATIONS**

**-MCXI- BASED ON OPTIMIZED ORBITALS**

---

**PLEASE NOTE: IF THE ACTIVE ORBITALS ARE CANONICALIZED BELOW,**

**THE FOLLOWING CI EXPANSION COEFFICIENTS AND THE DENSITY DO NOT**

**CORRESPOND TO THE PRINTED ORBITALS. THE PRINTED EXPANSIONS MATCH**

**THE ORBITALS USED DURING THE LAST ITERATION. IF YOU WISH TO SEE**

**CI EXPANSIONS BASED ON THE CANONICAL (OR NATURAL) ORBITALS,**

**YOU MUST RUN A CI CALCULATION WITH THAT ORBITAL CHOICE READ IN $VEC.$**
CI EIGENVECTORS WILL BE LABELED IN GROUP=C1
PRINTING CI COEFFICIENTS LARGER THAN  0.050000

<table>
<thead>
<tr>
<th>STATE</th>
<th>ENERGY</th>
<th>S</th>
<th>SZ</th>
<th>SPACE SYM=A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-149.3507802341</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALPHA</th>
<th>BETA</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>111010</td>
<td>111000</td>
<td>0.9624018</td>
</tr>
<tr>
<td>101110</td>
<td>101100</td>
<td>-0.1701232</td>
</tr>
<tr>
<td>111010</td>
<td>001110</td>
<td>0.0849530</td>
</tr>
<tr>
<td>110011</td>
<td>011010</td>
<td>0.0582635</td>
</tr>
<tr>
<td>111010</td>
<td>010011</td>
<td>0.0543940</td>
</tr>
<tr>
<td>110011</td>
<td>110001</td>
<td>0.0524254</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATE</th>
<th>ENERGY</th>
<th>S</th>
<th>SZ</th>
<th>SPACE SYM=A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-149.3506810746</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALPHA</th>
<th>BETA</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>111100</td>
<td>111000</td>
<td>0.9623072</td>
</tr>
<tr>
<td>011110</td>
<td>011010</td>
<td>0.1708770</td>
</tr>
<tr>
<td>111100</td>
<td>001110</td>
<td>0.0847515</td>
</tr>
<tr>
<td>110101</td>
<td>101100</td>
<td>-0.0580896</td>
</tr>
<tr>
<td>111100</td>
<td>100101</td>
<td>-0.0542410</td>
</tr>
<tr>
<td>110101</td>
<td>110001</td>
<td>0.0524191</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATE</th>
<th>ENERGY</th>
<th>S</th>
<th>SZ</th>
<th>SPACE SYM=A</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-149.0967759996</td>
<td>1.50</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALPHA</th>
<th>BETA</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>011110</td>
<td>111000</td>
<td>0.5720578</td>
</tr>
<tr>
<td>111100</td>
<td>011010</td>
<td>0.5720578</td>
</tr>
<tr>
<td>111010</td>
<td>011100</td>
<td>-0.5720578</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATE</th>
<th>ENERGY</th>
<th>S</th>
<th>SZ</th>
<th>SPACE SYM=A</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-149.0964642230</td>
<td>1.50</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALPHA</th>
<th>BETA</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>111100</td>
<td>101010</td>
<td>0.5720447</td>
</tr>
<tr>
<td>111010</td>
<td>101100</td>
<td>-0.5720447</td>
</tr>
<tr>
<td>101110</td>
<td>111000</td>
<td>0.5720447</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATE</th>
<th>ENERGY</th>
<th>S</th>
<th>SZ</th>
<th>SPACE SYM=A</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-149.0520698627</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALPHA</th>
<th>BETA</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>111010</td>
<td>011100</td>
<td>0.6158673</td>
</tr>
<tr>
<td>111100</td>
<td>101100</td>
<td>-0.5472204</td>
</tr>
<tr>
<td>011110</td>
<td>111000</td>
<td>0.5046989</td>
</tr>
<tr>
<td>111010</td>
<td>101010</td>
<td>0.1743647</td>
</tr>
<tr>
<td>111100</td>
<td>011010</td>
<td>0.1111683</td>
</tr>
<tr>
<td>011110</td>
<td>001110</td>
<td>-0.0637585</td>
</tr>
<tr>
<td>101110</td>
<td>010101</td>
<td>-0.0518447</td>
</tr>
<tr>
<td>100111</td>
<td>011100</td>
<td>0.0505619</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATE</th>
<th>ENERGY</th>
<th>S</th>
<th>SZ</th>
<th>SPACE SYM=A</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-149.0520086510</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALPHA</th>
<th>BETA</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>111100</td>
<td>101010</td>
<td>0.6129513</td>
</tr>
<tr>
<td>111010</td>
<td>011010</td>
<td>-0.5502528</td>
</tr>
<tr>
<td>101110</td>
<td>111000</td>
<td>-0.5052103</td>
</tr>
<tr>
<td>111100</td>
<td>011100</td>
<td>0.1758562</td>
</tr>
<tr>
<td>111010</td>
<td>101100</td>
<td>0.1077410</td>
</tr>
<tr>
<td>101110</td>
<td>001110</td>
<td>0.0633246</td>
</tr>
<tr>
<td>011110</td>
<td>100011</td>
<td>-0.0517026</td>
</tr>
<tr>
<td>010111</td>
<td>101010</td>
<td>0.0504117</td>
</tr>
<tr>
<td>STATE</td>
<td>ENERGY=</td>
<td>S=</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>7</td>
<td>-149.0183209308</td>
<td>1.50</td>
</tr>
</tbody>
</table>

**ALPHA | BETA | COEFFICIENT**

| 111010 | 110100 | 0.5664673 |
| 111100 | 110010 | -0.5664673 |
| 110110 | 111000 | -0.5664673 |
| 101110 | 010110 | 0.0902954  |
| 011110 | 100110 | -0.0902954 |
| 110110 | 001110 | -0.0902954 |

<table>
<thead>
<tr>
<th>STATE</th>
<th>ENERGY=</th>
<th>S=</th>
<th>SZ=</th>
<th>SPACE SYM=A</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>-149.0046104820</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

**ALPHA | BETA | COEFFICIENT**

| 111100 | 101010 | 0.4973532 |
| 111010 | 101100 | 0.4963582 |
| 111010 | 011010 | 0.4943406 |
| 111100 | 011100 | -0.4939782 |

<table>
<thead>
<tr>
<th>STATE</th>
<th>ENERGY=</th>
<th>S=</th>
<th>SZ=</th>
<th>SPACE SYM=A</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>-149.0046104753</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

**ALPHA | BETA | COEFFICIENT**

| 111010 | 101010 | 0.4970304 |
| 111100 | 101100 | -0.4966890 |
| 111100 | 011010 | -0.4946560 |
| 111100 | 011100 | -0.4936548 |

<table>
<thead>
<tr>
<th>STATE</th>
<th>ENERGY=</th>
<th>S=</th>
<th>SZ=</th>
<th>SPACE SYM=A</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-148.9463646876</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

**ALPHA | BETA | COEFFICIENT**

| 111010 | 110100 | 0.6889153 |
| 111100 | 110010 | 0.6886060 |
| 101110 | 010110 | 0.1428209 |
| 011110 | 100110 | 0.1427614 |

<table>
<thead>
<tr>
<th>STATE</th>
<th>ENERGY=</th>
<th>S=</th>
<th>SZ=</th>
<th>SPACE SYM=A</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>-148.6986348926</td>
<td>1.50</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

**ALPHA | BETA | COEFFICIENT**

| 011110 | 101100 | 0.5618101 |
| 111110 | 001110 | 0.5618101 |
| 101110 | 011100 | -0.5618101 |
| 010111 | 111000 | 0.0974533 |
| 111010 | 010101 | 0.0953235 |
| 110101 | 011010 | -0.0947354 |
| 111100 | 010011 | -0.0840480 |
| 110011 | 011100 | 0.0834599 |
| 011110 | 110001 | 0.0813301 |

Because in the input for a fixed internuclear distance $R$ we had NSTATE=22, the output will have 22 energy states (in red). Alpha and beta are the spin up and spin down electronic states, and depending on the configuration we have different states. For example, the ground state of $O_2^+$ has the configuration $(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^2(2\sigma_u)^2(3\sigma_g)^2(3\sigma_u)^4(1\pi_g)^4(1\pi_u)^1(3\pi_u)^0$, thus missing an electron from $1\pi_g$ (See appendix G). In the input, the $1\sigma_g, 1\sigma_u, 2\sigma_g, 2\sigma_u$ orbitals are assumed to be fixed, and electrons are allowed to move around only on the $3\sigma_g, 1\pi_u, 1\pi_g, 3\pi_u$ orbitals. There
are 6 orbitals with 2 spaces for electrons (spin up and spin down) on each. For STATE 1 in the
output under ALPHA and BETA, we have $111010 \mid 111000$, meaning that we have a
$KK(3\sigma_g)^2(1\pi_u)^4(1\pi_u)(3\sigma_u)^0$ configuration ($KK=(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^2(2\sigma_u)^2$).

$S= 0.5$ or $S=1.5$ is indicative of doublet or quartet states. One needs to repeat this
calculation for different $R$.

---

**J.O. Output for $O_2$**

dipole coupling element calculations:

---

ECHO OF THE FIRST FEW INPUT CARDS -

179

...
STATE # 3 ENERGY = -149.081770996

CSF COEF OCCUPANCY (IGNORING CORE)
--- ---- --------- --------- -----
5 -0.104469 2211221100
8 -0.106718 2121212000
12 -0.059513 1221122000
23 0.809561 2212211000
30 -0.106718 2122121000
32 0.534715 1222211000
523 -0.057262 2201212100
638 -0.057262 2202121100
693 -0.061688 2112211100

THE PROJECTION OF THIS CI STATE ONTO SPACE SYMMETRY A2G WEIGHS 9.6721E-01
THE PROJECTION OF THIS CI STATE ONTO SPACE SYMMETRY B2G WEIGHS 3.2794E-02

---- LENGTH FORM ----

THE NEXT PAIR ARE THE SAME STATE, SO THIS IS AN EXPECTATION VALUE, RATHER THAN A TRANSITION MOMENT.

CI STATE NUMBER= 1 1 STATE MULTIPLICITY= 4 4
NUMBER OF CSF-S= 1932 1932
STATE ENERGIES -149.1185164863 -149.1185164863
TRANSITION ENERGY= 0.0000E+00 [1/SEC] = 0.00 [1/CM] = 0.00 [EV]
TRANSITION DIPOLE = -0.000000 -0.000000 0.000000 BOHR
TRANSITION DIPOLE = -0.000000 -0.000000 0.000000 0.000000 E*BOHR
TRANSITION DIPOLE = -0.000000 -0.000000 0.000000 0.000000 DEBYE
STEP CPU TIME = 0.02 TOTAL CPU TIME = 44.3 (0.7 MIN)
TOTAL WALL CLOCK TIME= 44.8 SECONDS, CPU UTILIZATION IS 98.90%

CI STATE NUMBER= 1 2 STATE MULTIPLICITY= 4 4
NUMBER OF CSF-S= 1932 1932
STATE ENERGIES -149.1185164863 -149.1185164863
TRANSITION ENERGY= 1.8701E+02 [1/SEC] = 0.00 [1/CM] = 0.00 [EV]
TRANSITION DIPOLE = -0.000091 -0.332025 0.000000 0.332025 E*BOHR
TRANSITION DIPOLE = -0.000231 -0.843930 0.000000 0.843930 DEBYE
OSCILLATOR STRENGTH = 0.002701
EINSTEIN COEFFICIENTS: A= 1.1715E+05 1/SEC; B= 4.4738E+07 SEC/G
STEP CPU TIME = 0.00 TOTAL CPU TIME = 44.3 (0.7 MIN)
TOTAL WALL CLOCK TIME= 44.8 SECONDS, CPU UTILIZATION IS 98.90%

CI STATE NUMBER= 1 3 STATE MULTIPLICITY= 4 4
NUMBER OF CSF-S= 1932 1932
STATE ENERGIES -149.1185164863 -149.0817709959
TRANSITION ENERGY= 2.4177E+14 [1/SEC] = 8064.52 [1/CM] = 1.00 [EV]
CENTER OF MASS = X [C] Y [C] Z [Z] NORM
TRANSITION DIPOLE = -0.000091 -0.332025 -0.000000 0.332025 E*BOHR
OSCILLATOR STRENGTH = 0.002701
EINSTEIN COEFFICIENTS: A= 1.7150E+05 1/SEC; B= 4.4738E+07 SEC/G
STEP CPU TIME = 0.00 TOTAL CPU TIME = 44.3 (0.7 MIN)
TOTAL WALL CLOCK TIME= 44.8 SECONDS, CPU UTILIZATION IS 98.90%

...
which states are there, one needs to look at OCCUPANCY. There are nine numbers given under
the occupancy out of which the first 8 are: $2\sigma_g$, $2\sigma_u$, $3\sigma_g$, two $1\pi_u$, two $1\pi_g$, and $3\sigma_u$ orbitals, and
one extra virtual orbital. The $2221110000$ combination means we have 2 electrons in each of the
$2\sigma_g$, $2\sigma_u$, and $3\sigma_g$ orbitals, 2 electrons on $1\pi_u^x$, one on $1\pi_u^y$, one electron in each of the $1\pi_g^x$ and
$1\pi_g^y$ orbitals, and nothing in $3\sigma_u$ (see Appendix G). This combination corresponds to an $a^4\Pi_u$ state
(see Chapter 5). If one needs to find the dipole coupling matrix elements between $a^4\Pi_u$ and
some other state, for example $f^4\Pi_g$ (222111200), a state with corresponding electron combination
needs to be found.

**E.1 Compiling and running WIN-GAMESS**

In the WinGAMESS version of GAMESS, compiling of the input file is possible with
“batmaker.exe”.

Step1: Double-click on “batmaker.exe” (batmaker). The window shown in Fig.E1 will pop up.
Step2: One can add an input file by clicking on the “Add file to list” button (Fig.E1, E2). After
collecting the input file, the executable ***.bat file needs to be named and saved in the preferred
output folder (Fig.E3).

Step3: Double-click on the generated ***.bat file in the output folder (where it has been
saved) and GAMESS will run. Generated output files will be located in the preferred output
folder where the input and .bat files were saved (note that ***.dat files required for $VEC$ are
generated in the “C:\WinGAMESS\temp” folder).

For further information, please consult the GAMESS website [*]
Figure 7 “Batmaker” compiler display.
Figure 8 Choosing input files already generated.
Figure 9 Choosing the name and place for outputs and .bat file.

[*] Website for GAMESS: http://www.msg.ameslab.gov/gamess/documentation.html
Appendix F - Atomic units and useful formulas

The SI unit system is based on four constants of nature: length - meter, time - second, mass - kilogram, and current - ampere. In atomic physics, it is more convenient to use atomic units, where,

Atomic unit of action: \( \hbar = 1 \)

Atomic unit of mass: \( m_e = 1 \)

Atomic unit of charge: \( e = 1 \)

Atomic unit of the Coulomb force constant: \( 1/4\pi\varepsilon_0 = 1 \)

The unit of length in atomic units is the Bohr radius of the hydrogen atom. The Bohr radius is the radius of the orbit of the electron in the ground state of hydrogen:

\[
a_0 = \frac{(4\pi\varepsilon_0)\hbar^2}{m_e^2} = 5.29177 \times 10^{-11} m \tag{A.1}
\]

The unit of mass is taken to be the mass of the electron, the unit of charge is the electron's charge, and the unit of angular momentum is \( \hbar \). The unit of velocity is taken to be the velocity of the electron in the first Bohr orbit of hydrogen:

\[
v_0 = \frac{e^2}{(4\pi\varepsilon_0)\hbar} = \alpha c , \tag{A.2}
\]

where \( \alpha \) is the fine structure constant and equal to 1/137 and \( c \) is the speed of the light, so in atomic units the speed of light is 137.

In atomic units, the energy level for the principal quantum number \( n \) is:

\[
E_n = -\frac{z^2}{2n^2} \tag{A.3}
\]

For hydrogen, the energy in atomic units is -0.5, such that the atomic unit of energy (which is called hartree) is 27.2 eV. The table below summarizes conversion from atomic units to SI units.
<table>
<thead>
<tr>
<th>dimension</th>
<th>formula</th>
<th>a.u.</th>
<th>SI units</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>$a_0$</td>
<td>1</td>
<td>$5.29177 \times 10^{-11}$ m</td>
</tr>
<tr>
<td>time</td>
<td>$a_0/v_0$</td>
<td>1</td>
<td>$2.41888 \times 10^{-17}$ s</td>
</tr>
<tr>
<td>mass</td>
<td>$m_e$</td>
<td>1</td>
<td>$9.10938 \times 10^{-31}$ kg</td>
</tr>
<tr>
<td>charge</td>
<td>$q_e$</td>
<td>1</td>
<td>$1.60218 \times 10^{-19}$ C</td>
</tr>
<tr>
<td>velocity</td>
<td>$v_0$</td>
<td>1</td>
<td>$2.18769 \times 10^{6}$ m/s</td>
</tr>
<tr>
<td>intensity</td>
<td>$1/2 e_0(e/(4 \pi e_0 a_0^2))^2$</td>
<td>1</td>
<td>$3.50953 \times 10^{16}$ W/cm²</td>
</tr>
<tr>
<td>energy</td>
<td>$e^2/(4 \pi e_0 a_0)$</td>
<td>1</td>
<td>$27.2116$ eV = 1 hartree</td>
</tr>
<tr>
<td>momentum</td>
<td>$m_e v_0$</td>
<td>1</td>
<td>$1.99285 \times 10^{-24}$ kg m/s</td>
</tr>
<tr>
<td>angular moment</td>
<td>$\hbar = a_0 m_e v_0$</td>
<td>1</td>
<td>$1.05457 \times 10^{-34}$ kg m²/s</td>
</tr>
<tr>
<td>frequency</td>
<td>$v_0/(2\pi a_0)$</td>
<td>1</td>
<td>$6.57969 \times 10^{15}$ Hz</td>
</tr>
<tr>
<td>angular frequency</td>
<td>$v_0/a_0$</td>
<td>1</td>
<td>$4.13414 \times 10^{16}$ Hz</td>
</tr>
<tr>
<td>action</td>
<td>$\hbar = e^2/(4 \pi e_0 v_0)$</td>
<td>1</td>
<td>$1.05457 \times 10^{-34}$ J s</td>
</tr>
<tr>
<td>electric field</td>
<td>$e/(4 \pi e_0 a_0^2)$</td>
<td>1</td>
<td>$5.14221 \times 10^{11}$ V/m</td>
</tr>
<tr>
<td>magnetic field</td>
<td>$\hbar/(e a_0^2)$</td>
<td>1</td>
<td>$2.35052 \times 10^{5}$ T</td>
</tr>
</tbody>
</table>

Table F.1 Conversion from atomic units to SI units
Appendix G - Molecular orbital diagrams for diatomic molecules

For diatomic molecules, the electronic configurations look like those shown in Fig. G1 for the example of the electronic configurations of N\textsubscript{2} and O\textsubscript{2} [Harris-78]. A molecular orbital scheme similar to N\textsubscript{2} is used for Li\textsubscript{2}-N\textsubscript{2} diatomic molecules and a scheme similar to O\textsubscript{2} is used for F\textsubscript{2}.

Figure 10 Molecular orbital diagram for N\textsubscript{2} and O\textsubscript{2} molecules.
My publications related to the thesis work


Work to be published