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Abstract 

Studies commonly focus on estimating a mean treatment effect in a population. However, 

in some applications the variability of treatment effects across individual units may help to 

characterize the overall effect of a treatment across the population.  Consider a set of treatments, 

{T,C}, where T denotes some treatment that might be applied to an experimental unit and  C 

denotes a control. For each of ὔ experimental units, the duplet {ὶ , ὶ }, Ὥ ρȟςȟȣȟὔ, 

represents the potential response of the Ὥth experimental unit if  treatment were applied and the 

response of the experimental unit if  control were applied, respectively.  The causal effect of T 

compared to C is the difference between the two potential responses, ὶ  ὶ .  Much work has 

been done to elucidate the statistical properties of a causal effect, given a set of particular 

assumptions.  Gadbury and others have reported on this for some simple designs and primarily 

focused on finite population randomization based inference. When designs become more 

complicated, the randomization based approach becomes increasingly difficult.  

Since linear mixed effects models are particularly useful for modeling data from complex 

designs, their role in modeling treatment heterogeneity is investigated.  It is shown that an 

individual treatment effect can be conceptualized as a linear combination of fixed treatment 

effects and random effects.  The random effects are assumed to have variance components 

specified in a mixed effects ñpotential outcomesò model when both potential outcomes, ὶȟὶ, 

are variables in the model. The variance of the individual causal effect is used to quantify 

treatment heterogeneity. Post treatment assignment, however, only one of the two potential 

outcomes is observable for a unit. It is then shown that the variance component for treatment 

heterogeneity becomes non-estimable in an analysis of observed data.  Furthermore, estimable 

variance components in the observed data model are demonstrated to arise from linear 

combinations of the non-estimable variance components in the potential outcomes model.  

Mixed effects models are considered in context of a particular design in an effort to illuminate 

the loss of information incurred when moving from a potential outcomes framework to an 

observed data analysis. 
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Abstract 

Studies commonly focus on estimating a mean treatment effect in a population. However, 

in some applications the variability of treatment effects across individual units may help to 

characterize the overall effect of a treatment across the population.  Consider a set of treatments, 

{T,C}, where T denotes some treatment that might be applied to an experimental unit and  C 

denotes a control. For each of ὔ experimental units, the duplet {ὶ , ὶ}, Ὥ ρȟςȟȣȟὔ, 

represents the potential response of the Ὥth experimental unit if  treatment were applied and the 

response of the experimental unit if  control were applied, respectively.  The causal effect of T 

compared to C is the difference between the two potential responses, ὶ  ὶ.  Much work has 

been done to elucidate the statistical properties of a causal effect, given a set of particular 

assumptions.  Gadbury and others have reported on this for some simple designs and primarily 

focused on finite population randomization based inference. When designs become more 

complicated, the randomization based approach becomes increasingly difficult.  

Since linear mixed effects models are particularly useful for modeling data from complex 

designs, their role in modeling treatment heterogeneity is investigated.  It is shown that an 

individual treatment effect can be conceptualized as a linear combination of fixed treatment 

effects and random effects.  The random effects are assumed to have variance components 

specified in a mixed effects ñpotential outcomesò model when both potential outcomes, ὶȟὶ, 

are variables in the model. The variance of the individual causal effect is used to quantify 

treatment heterogeneity. Post treatment assignment, however, only one of the two potential 

outcomes is observable for a unit. It is then shown that the variance component for treatment 

heterogeneity becomes non-estimable in an analysis of observed data.  Furthermore, estimable 

variance components in the observed data model are demonstrated to arise from linear 

combinations of the non-estimable variance components in the potential outcomes model.  

Mixed effects models are considered in context of a particular design in an effort to illuminate 

the loss of information incurred when moving from a potential outcomes framework to an 

observed data analysis. 
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Chapter 1 - Introduction 

 Treatment heterogeneity refers to the variability of a treatment effect across individuals in 

a population. The term treatment effect implies a comparison of one level of treatment against 

another.  To state that a treatment effect varies across individuals implies that this comparison of 

treatment levels is made within an individual.  Although such variability has often been 

acknowledged as an important consideration in the application of experimental findings to 

prospective individual experimental units (EU), many experimental design settings preclude the 

comparison of treatment within an individual EU.  Consequently, a measure of treatment 

heterogeneity is not directly estimable.  Therefore, in order to facilitate some sort of decision 

about the use of treatment in individual EUôs, general statistical information is gathered about 

the average or mean effect and then that same information is applied to the individual (cf. 

Marshall, 1997).  It should be noted, however, that the mean effect may be misleading when the 

effect of a treatment varies widely across individuals.  If individual treatment variation is large 

with respect to the mean, then the mean treatment effect may appear to be favorable for one 

treatment over another while the other treatment may be more favorable for a non-negligible 

proportion of the EUôs in the population.  

 Crossover designs are one type of experimental design that allows observation of an 

ñindividual treatment effectò because an individual crosses over from one treatment to another 

after a washout period, thereby providing observable responses to each of the two treatments. 

Therefore, they have been recommended as a design that provides more capability of evaluating 

treatment heterogeneity in a study (cf., Senn, 2001).  However, estimating treatment 

heterogeneity, even in crossover designs, can involve assumptions that are not always explicitly 

stated or apparent in random effects models.  More about these assumptions will be discussed in 

the next chapter.  

 Another approach to assessing treatment heterogeneity is the use of a potential outcomes 

framework.  Potential outcomes (Rubin, 1974) can help elucidate the role of treatment 

heterogeneity in a statistical analysis.  In this framework, an unobservable, individual treatment 

effect is defined.  It is the variance of this individual difference that is of primary interest.   

 This research explores issues that arise when estimating a variance of individual 

treatment effects. This variance serves to quantify the degree of treatment heterogeneity in a 
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population. Concepts presented here should be useful for applications where estimating this 

variance, in addition to estimating a mean effect, may be of interest.  

 1.1 Potential Outcomes 

 1.1.1 Causal Effect and the Fundamental Problem of the Causal Inference 

Consider a set of treatments, Ὕȟὅ say, where Ὕ denotes some treatment that might be 

applied to an EU and  ὅ denotes a control that also might be applied to an EU. For each EU, 

consider the duplet {ὶ, ὶ}, which represents the potential response of the experimental unit if  

treatment were applied and the response of the experimental unit if  control were applied, 

respectively.  The true causal effect of Ὕ compared to ὅ, denoted Ὠ, is the difference between the 

two potential responses.  That is,  

 

Ὠ ὶ ὶ                                                                   ρȢρ  

 

  Notice that it is important to use terminology such as ñimagineò, ñconsiderò, or 

ñconceptualizeò when discussing potential outcomes as it is impossible to simultaneously 

observe all potential outcomes for a given experimental unit at a particular time.  Only one of the 

potential responses is actually observable.  This constraint of a potential outcomes framework 

has been called the fundamental problem of causal inference (Holland, 1986). 

Although direct observation of the true causal effect is unachievable, the potential 

outcomes framework is still a very viable pedagogical tool for conceptualizing varying responses 

to the application of different treatments.  As discussed in the next chapter, much work has been 

done to elucidate the statistical properties of a causal effect, given a particular set of 

assumptions.   

 1.1.2 The Randomization Mechanism and Naïve Difference 

 As noted above, only one potential response may be observed for a given EU at a given 

time.  The question then becomes which of the potential outcomes should be selected for the 

observable outcome and how should that choice be made.  From a statistical perspective, the 

inherent answer is to permit random chance to select the observable responses from the potential 

responses. 
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 Define a random indicator variable, ὡ  , such that 

 

ὡ
 ρȟὭὪ Ὦ ὩὼὴὩὶὭάὩὲὸὥὰ όὲὭὸ ὶὩὧὩὭὺὩί Ὕ

 πȟὭὪ Ὦ ὩὼὴὩὶὭάὩὲὸὥὰ όὲὭὸ ὶὩὧὩὭὺὩί ὅ 
 

 

Define the observable outcome of the Ὦ  experimental unit, Ὑ, as follows: 

 

Ὑ ὶ Ͻὡ ὶ Ͻρ ὡ  

 

where ὶ  and ὶ  are the potential responses of the Ὦ  experimental  unit.  In potential outcomes 

literature, the probability distribution of ὡ  is referred to as the randomization mechanism.   

 Once the samples have been selected, define the usual mean difference using the 

observable outcomes  

 

Ὀ ὙϽ ὙϽ
ρ

ὲ
ὶ Ͻὡ

ρ

ὲ
ὶ ρ ὡ                            ρȢς 

 

where ὙϽ is the arithmetic average of the ὲ  responses for those units whose potential response 

under Ὕ was selected to be observed and ὙϽ is the arithmetic average of the ὲ responses of 

those units whose potential response under ὅ was selected to be observed.  We distinguish Ὀ 

from the true individual causal effect given in (1.1) by referring to Ὀ as the naïve difference or 

the naïve effect.  In a usual two-sample completely randomized design (CRD), the mean in (1.2) 

would be an estimator for a population mean. Here, however, it is interpreted more generally as a 

naïve effect in a CRD because it is the only effect that could be attributed to individuals and 

would be a naïve version of the true quantity in (1.1). In later designs, such as the matched pairs 

design, the naïve effect would be a paired difference and would serve as a naïve version for the 

true effect for two individuals in a pair. More distinction between ñnaµveò individual effects 

versus their true counterparts will be discussed in later sections. 
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Employing the randomization mechanism effectively removes one-half of the potential 

outcomes to yield the observable data.  Removing one-half of the data alters the dataset in such a 

way that certain quantities become inestimable.  Consequently, information about pertinent 

effects is lost.  A reasonable question to ask is ñWhat information is no longer available after 

implementing the randomization mechanism?ò  Answering this question is a key component to 

relating a potential outcomes model to an observable data model.  Throughout this paper, it is 

assumed that estimable effects in a potential outcomes model that are no longer estimable after 

implementing the randomization mechanism are not removed from the model but, are 

confounded together to produce the ñresidualò term in the corresponding observable data model.  

Thus an observable data model produced from a potential data model contains the estimable 

effects in the potential outcomes model that remain estimable after implementing the 

randomization mechanism and the ñresidualò term consisting of the effects from the potential 

data model that are confounded. 

 1.1.3 Inference Space and Statistical Properties of Potential Outcomes 

 In the potential outcomes framework, we conceptualize the experimental process as the 

selection of a finite set of ὔ duplets (F) from an infinite population of duplets (ɱ).  Each duplet 

contains the set of potential responses for an EU.  A randomization mechanism is then employed 

to the duplets in F to select which EUôs have their potential response under treatment selected as 

the observable response and which EUôs have their potential response under control selected as 

the observable response.  As in the ñusualò experimental setting, the end result is a collection of 

ὲ  EUôs receiving  Ὕ and ὲ EUôs receiving ὅ, where ὔ ὲ ὲ .  From a broad inference 

space perspective, the duplets are independent of one another, and the potential responses within 

a duplet follow the joint distribution: 

 

ὶ

ὶ ͯ
‘
‘ ȟ

„ ” Ͻ„„

” Ͻ„„ „
                                       ρȢσ 

 

where ”  is the correlation of the potential outcomes.  It should be expected that the two 

potential responses are correlated as they are potential responses of the same individual under 

different treatment conditions.  The correlation, however, is non-estimable due to the 

fundamental problem of causal inference. 
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 Much work has been done to elucidate the statistical properties of Ὠ, defined in (1.1), 

under certain sets of assumptions.  With Ὀ given in (1.2), it can be shown that  

 

Ὁ Ὀ Ὁ Ὁ ὈȿὊ Ὁ ὨӶ ‘                                      ρȢτ 

 

where ὨӶ В Ὠ, where  ‘ ‘ ‘, and where the unconditional expectation is with 

respect to the distribution in (1.3) from which the finite set F is selected. 

 Similarly, based on the properties of conditional variance and assuming uniform 

randomization,  

 

ὺὥὶὈ ὺὥὶὉ ὈȿὊ Ὁ ὺὥὶὈȿὊ ὺὥὶὨӶ Ὁ ὺὥὶὈȿὊ Ȣ           ρȢυ 

 

Notice that 

ὺὥὶὈ ὺὥὶὨӶ                                                               ρȢφ 

with equality if and only if ὺὥὶὈȿὊ π.  In other words, the equality holds if all of the 

variability in the estimator Ὀ for ‘ is in the selection of the finite set F from the broader 

population. The inequality incorporates random variability resulting from the treatment 

assignment mechanism 

 

 1.2 Overview of Research 

Identifying the presence of treatment heterogeneity is the first step in determining 

whether one treatment compared to another is uniformly more efficacious for all EUôs within a 

given population or whether the efficacy of one treatment compared with another depends on the 

EU under consideration.  If treatment heterogeneity exists, then it would be reasonable to try and 

identify the most effective treatment for a particular EU, based on the individual characteristics 

of that EU. 

Treatment heterogeneity has been clearly defined in terms of the variance of a true causal 

effect by Gadbury et. al (2001), among others, using a potential outcomes framework.  The 

statistical properties of this variance compared with the variance of a naïve effect have also been 
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considered from a finite population perspective, where the naïve effect depends on the design.  

More details on this and other pertinent results from published literature will be presented in 

Chapter 2.  From an infinite population perspective, Senn (2001) discusses an estimable subject-

by-treatment variance in a repeated measures crossover model. Based on results presented in 

Chapter 3, relating this subject-by-treatment variance to the variance of the true causal effect 

requires additional assumptions.   

To my knowledge, no one has tied the quantities defined in a potential outcomes 

framework that describe treatment heterogeneity to the components of an infinite-population 

linear model.  Linear models and, in particular, linear mixed models are quite flexible for 

modeling data from complex experimental designs. Investigating treatment heterogeneity in data 

from complex designs using a randomization based approach on a finite population becomes 

nearly intractable for complex designs (cf. Ndum et al., 2012).  In particular, some designs 

analyzed by linear mixed models produce an estimate of a subject-treatment interaction variance 

component, but it is not clear how this component relates to the variance of true effects and/or 

what assumptions are required to equate the two.  It is the goal of this research to, first relate 

potential outcomes to a linear model in a two-sample completely randomized design (CRD) and 

detail the loss of information that occurs when moving from a potential outcomes framework to 

an observable model setting.  In addition, I will describe new information gained about treatment 

heterogeneity by considering increasingly complex experimental designs.  In particular, I will 

show that, while the variance of the true causal effect remains inestimable, it can be bounded 

above, and in some designs, bounded above and below, by linear combinations of estimable 

variance components associated with random effects from the observable linear model.  The 

purpose of this research is to clearly delineate the assumptions necessary to equate treatment 

heterogeneity in a potential outcomes framework to estimable components of an observable data 

model.   

Chapter 3 presents the results of this process carried out under the assumptions of 

independent random effects and Gaussian data.  In Chapter 4, issues raised in Chapter 3 

concerning correlation and the relationship of model sums of squares to finite population 

variance estimates are resolved.  Chapters 5 and 6 contain papers prepared for submission in 

peer-reviewed journals.  Both chapters include extensions of the research in Chapter 3 to more 

complex treatment structures.  Chapter 6 also includes a discussion of the extension of this work 
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to generalized linear mixed models.  SAS codes used in Chapters 3 through 6 are standard SAS 

codes, and are available upon request.  I conclude with a discussion of ideas for future work in 

Chapter 7.  
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Chapter 2 - Review of Literature 

This chapter reviews the statistical literature on potential outcomes, treatment 

heterogeneity and linear models.  This is not intended to be an exhaustive review of the pertinent 

literature on these topics, but it is intended to serve as a summary of the key contributions 

addressing the question at hand, namely how to model data when individual treatment 

heterogeneity is suspected. 

 2.1 Potential Outcomes 

 In 1990, Terrance P. Speed and Dorota M. Dabrowska edited and translated from Polish 

into English a 1923 publication by Jerzy Neyman in which he states, 

 

ñélet us consider a field divided into m equal plots and let ὟȟὟȟỄὟ  be the true yields of a 

particular variety on each of these plotséIf we could repeat the measurement of the yield on the 

same fixed plot under the same conditions, we could use the above definition of the true yield. 

However, since we can only repeat the measurement of a particular observable yield, and this 

measurement can be made with high accuracy, we have to suppose that the observable yield is 

essentially equal to Ὗéò 

 

Thus, we likely have one of the first references to what has come to be known as potential 

outcomes.  In his discussion following the Dabrowska and Speed translation of Neymanôs 1923 

work, Rubin (1990, p.479), often himself credited with first formalizing the potential outcomes 

framework (1974), states, ñWithout a doubt, Neyman (1923) is an important, but previously 

unposted milestone, in statistics.  éwith respect to his definition of causal effects, although the 

underlying implicit definition was relatively common prior to 1923, Neyman certainly appears to 

be the first to formalize it.ò  

Rubin (1974) utilized this potential outcomes framework to first formally define the 

causal effect of a treatment versus control as the difference in potential outcomes for a particular 

EU.  Rubin highlights three important points related to a causal effect.  First, a causal effect 

requires a comparison of two treatments.  This point is reiterated by Holland (1986) in his 
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discussion of Rubinôs Model for Causal Inference.  Second, the causal effect cannot be measured 

since potential outcomes cannot be measured simultaneously.  Holland referred to this property 

as the Fundamental Problem of Causal Inference.  Rosenbaum and Rubin (1983) later wrote that 

this Fundamental Problem of Causal Inference can be construed as a missing data problem since 

either the potential outcome under treatment or the potential outcome under control is missing. 

Finally, Rubin maintained that an assumption he termed stable unit treatment value 

assumption (SUTVA-Rubin, 1980, 1986) must hold in order for a question to be well formulated 

enough to have causal answers.  This was a generalization of ideas described by Cox (1958).  

SUTVA is the a priori assumption that the value of the response for a particular EU exposed to a 

particular level of treatment will be the same regardless of how the assignment of treatment to 

the EU is made, and regardless of what levels of treatment are assigned to other EUôs under 

consideration.  This assumption should hold for all EUôs under consideration in a study.  For the 

purposes of this research, it is assumed that SUTVA holds for all experimental designs under 

consideration.  

Potential outcomes are contrasted to observable outcomes, which can be thought of as the 

realization of one of the potential outcomes via some selection process.  As noted previously, the 

inherent selection process for choosing which of the potential outcomes is selected as the 

observable outcome is a random process.  Rubin (1978; p.34 ) states that a treatment assignment 

should be made according to a defined randomization mechanism and ñénot according to ad 

hoc decisions of the experimenters or the subjects of experiments.ò  He proceeds to describe a 

process under which an experimenter could move from a conceptual collection of data to an 

observed dataset.  The conceptual data set includes all covariates measured on all EUôs and all 

possible values of variables affected by level of treatment assigned to EU under every possible 

level of treatment.  The observable dataset contains only pieces of information found in the 

conceptual dataset.  As part of this process, Rubin (1978) defines a random vector, which can 

take on one of ὸ ρ values πȟρȟςȣὸ, where ὸ  is the number of  treatment levels under 

consideration. The probability distribution of this random vector is referred to as the 

randomization mechanism.  Furthermore, Rubin(1978, p.42-43) describes circumstances under 

which the randomization mechanism is ignorable. 

Rosenbaum and Rubin (1983) refined Rubinôs (1978) concept of ignorable treatment 

assignment when they defined a strongly ignorable treatment assignment.  They argued that the 
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conditional independence, or lack thereof, of the potential responses and randomization 

mechanism given a vector of possible covariates that affect both treatment assignment and 

potential responses is a characteristic difference between randomized and non-randomized trials.  

If this conditional independence exists, then the treatment assignment mechanism is said to be 

strongly ignorable.  A strongly ignorable treatment assignment mechanism is a hallmark of a 

properly designed, randomized experiment.  Unless otherwise noted, a strongly ignorable 

treatment assignment is assumed for the purposes of this research. 

 2.2 Treatment Heterogeneity 

In a 1997 feature article concerning the foundations of personalized medicine, Andrew 

Marshall (p. 954) wrote,  

 

ñéMedicine today is geared around taking statistical information about the general 

population and then applying it to the individualéò 

 

If either unit homogeneity or a constant effect (Holland, 1986) are valid assumptions in the 

experimental process, then this method of prescribing a level of treatment for a particular EU is 

valid.  Holland defined unit homogeneity as the assumption that the same level of treatment 

applied to distinct EUôs yields an identical response for each EU.  The definition of constant 

effect permits distinct EUôs receiving the same level of treatment to exhibit varying responses; 

however, from a potential outcomes framework perspective, it is assumed that the difference in 

potential outcomes within an individual EU is constant across EUôs in a population. 

The decision of selecting a particular level of treatment for an individual EU becomes 

increasingly complex if the true, causal effect of treatment compared with control varies across 

units of a population.  While valid estimates of the mean response are still obtainable, the utility 

of applying average results to individual EUôs is called into question.  Hwang et. al (1978) 

discuss a phenomenon they observed in bioequivalence studies which they termed subject-by-

formulation interaction.  They pointed out that two treatments that appear similar on the average 

could perform very differently in individual subjects.  Others have investigated the same 

phenomenon, although they may have used different terminology.  Cox (1992) used the term 

treatment-by-patient interaction and Gadbury et al. (2001) defined what they termed subject-
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treatment (S-T) interaction.  All of these ideas attempt to capture the idea that heterogeneity of 

treatment effects exist at the individual level. 

A consequence of this heterogeneity is that different individuals or groups of individuals 

may respond to treatment in opposite directions, with treatment Ὕ having higher efficacy for 

some and treatment ὅ having higher efficacy for others. At times, this form of treatment 

heterogeneity may be accounted for by group or subset identification.  The term qualitative 

interaction (QI) has been used to describe this condition at the subset level (Peto, 1982).   Gail 

and Simon (1985) developed a test to detect a QI, and when such tests are significant, optimal 

treatments may differ across subsets (Byar and Corle, 1977). 

Currently, the study of subset interaction alone may be too restrictive in light of existing 

research objectives in areas such as personalized nutrition, health care, and behavioral therapy 

(Lewis and Burton-Freeman, 2010; Marshall, 1997).  For example, Kent and Hayward (2007, p. 

1209) report, ñThere remain important differences between individuals in each treatment group 

that can dramatically affect the likelihood of benefiting from or being harmed by a therapy.ò  

The possibility of quantifying individual treatment heterogeneity brings the hope of identifying 

patients who may respond more favorably to one treatment over another based on personal 

attributes of the patient.  However, there are those who view evaluating treatment heterogeneity 

from an individual perspective as a formidable challenge.  For example, Senn (2001, p.1479) 

stated that personalized care ñéMay be rather more difficult to realize than has been 

supposedéò 

 Many methods that estimate a variance associated with treatment heterogeneity are 

actually evaluating observable consequences of treatment heterogeneity (e.g., variability across 

subsets of a population) rather than assessing treatment heterogeneity at the individual level.  

Hence, there is the necessity for a framework that can accommodate a single, individual EU.  

The potential outcomes framework is one such a framework.  Other approaches may make 

assumptions that are not verifiable in observed data. For example, crossover designs have been 

utilized to try and quantify individual treatment heterogeneity.  In such a case, one assumption 

would be that an observed individual treatment effect in a crossover design is equal to the true 

individual effect of treatment. The issues involved with making this type of assumption were 

recently discussed in Poulson et al. (2012).  Senn (2001) notes that a subject-by-treatment effect 

is estimable in an observable, repeated-measures crossover design in which EUôs are measured 
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more than once on each treatment.  Even so, in order to completely characterize the variability of 

response as either between-EU variability or subject-by-treatment variability, one must assume 

no variability in EU effect over time and no variability in subject-by-treatment effect over time. 

Using potential outcomes and adapting their notation to match that defined in Chapter 1, 

Gadbury et al. (2001) used the definition of a ótrueô individual effect from (1.1) to delineate 

assumptions about ὺὥὶὨ.   They show, given that (ὶ, ὶ) originate from an infinite bivariate 

normal distribution defined in (1.3), then 

 

„ ὺὥὶὨ „ „ ς„„” Ȣ                                           ςȢρ 

 

Notice that (2.1) can be bounded by taking ” ρ, and estimating all other parameters in 

ρȢσ from the observed data.  Furthermore, they show that the proportion of the population 

receiving a harmful effect, or a negative effect, from Ὕ, is given by ὖὨ π ɮ , and 

may also be bounded.  These bounds are given by 

 

ɮ
‘

„ „ ς„„
ὖὨ π ɮ

‘

„ „ ς„„
Ȣ              ςȢς 

 

Note that, as in (2.1), the upper bound is achieved when ”  ρ and the lower bound is 

achieved when  ” ρ . Without loss of generality, assume ‘ π.  Then, when ” ρ and 

„ „, a condition which indicates a constant individual effect (Holland, 1986), then ὖὨ

π π.  Gadbury and Iyer (2000) provide maximum likelihood estimates for the parameters 

‘ȟ„ȟÁÎÄ „ so that large sample confidence intervals can be placed on lower and upper 

bounds for ὖὨ π using estimates from the observed data.  They also consider the role of a 

covariate in tightening the bounds.   

For certain designs, treatment heterogeneity has been accommodated in a general linear 

model (LM) or a linear mixed model (LMM) by including a subject-by-treatment effect.  Wilk 

and Kempthorne (1955) modeled a subject-by-treatment effect as a fixed effect.  First, they 

assumed a value of zero for the fixed subject-by-treatment effect in all subjects and all treatment 

combinations.  Subsequent analyses assumed that the sum of fixed subject-by-treatment effects 
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over all units in a population receiving a particular treatment combination was zero.  Ghosh and 

Crosby (2005) utilized clustering techniques in a crossover design to generate subgroups which 

they then considered replicates of one ñsubjectò in order to estimate differences in subject-by-

treatment effects.  Kramer et al. (2011) presented a method in which they subtracted the 

estimated fixed effects from the observations in a crossover design and applied principle 

component analysis to residuals in order to isolate a subject-by-treatment effect.  

 2.2.1 Statistical Properties of d:  Broad vs. Narrow Scope of Inference 

 McLean et al. (1991) define two possible scopes of inference:  ñthe narrow inference 

spaceò and ñthe broad inference space.ò  The narrow inference space presumes that once a finite 

set of EUôs is selected from an infinite set, inference is specific to the finite set. A broad scope of 

inference extends inference to the population from which the finite set is selected.  Extending the 

narrow scope of inference to the broad scope of inference is valid only if the finite set is 

representative of the broader population. 

Historically, statistical inference on parameters in a potential outcomes framework has 

often been carried out under the assumption of a finite population from which a sample was 

taken. Neyman (1923), Rubin (1974) and Gadbury (2001) showed that the expectation with 

respect to the randomization distribution of the naïve effect is the causal effect in a two-sample 

CRD.  That is,  

 

Ὁ ὈȿὊ ὨӶ. 

 

Based on the properties of conditional expectation, it is rather straight-forward to see that both 

the naïve effect and the true causal effect are unbiased estimators of the true super-population 

difference, ‘, as shown in equation (1.4).  When considering the variance of the naïve effect 

with respect to the randomization distribution in a two-sample CRD, Neyman (1935) observed 

and Gadbury (2001) showed that the ñnaturalò estimate of the finite population variance of the 

naïve effect taken with respect to the randomization distribution and computed from observable 

data is biased.  That is, if we denote the ñnaturalò estimate of ὺὥὶὈȿὊ  based on observable 

data as ὺὥὶὈȿὊ , which Gadbury (2001) considered to be the common pooled estimator of 

ὺὥὶὈȿὊ , and take its expectation, then  
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ὉὺὥὶὈȿὊ ὺὥὶὈȿὊ Ȣ 

 

Furthermore, Gadbury(2001) showed that the bias was a function of the finite population 

variance of the causal effect taken with respect to the randomization distribution, ὺὥὶὨȿὊ . 

The description of statistical properties of the true causal effect has also been extended to 

include more complex experimental designs than simply the two-sample CRD.  In Gadbury et al. 

(2004), a matched-pairs design was considered where outcomes were binary and in Albert et al. 

(2005) a blocked design was considered with, again, binary outcomes. The latter paper produced 

nonparametric estimates in a randomization based framework. For continuous outcomes, results 

for estimating individual treatment heterogeneity in designs beyond a two-sample CRD were 

derived in the context of finite population, randomization-based inference. This was done for a 

matched-pairs design and a balanced two-period-two treatment crossover design (Gadbury 2001; 

see Gadbury, 2010, for a summary of some results). It should be noted that randomization 

techniques for deriving estimators of an S-T variance become increasingly intractable as designs 

become more complex. 

Dawid (2000) elegantly considered the potential outcome framework from a broad scope 

of inference perspective.  He clearly defined the joint distributional assumptions commonly 

imposed on the bivariate potential outcomes, and delineated the Fundamental Problem of Causal 

Inference as a problem of identifying the correlation between potential outcomes within an 

experimental unit.  Furthermore, he also discussed the assumption of unit-treatment additivity 

and how the failure of this assumption to hold leads to a non-uniform causal treatment effect 

across EUôs.  He even noted the relationship of the variance of the naïve effect and the variance 

of the true effect given in equation (1.6) from a broad scope of inference perspective.  

Unfortunately, it seems that the ambiguity produced by the Fundamental Problem of Causal 

Inference soured Dawid on the potential outcomes approach as a pedagogical tool to investigate 

the nature of causation. He favored a decision-analytic approach in which he used the 

identifiable marginal distributions of responses under both treatment and control in addition to a 

specified loss function to predict the response of a future EU.  It should be noted that Dawid 

(2000) considered only the two-sample CRD and did not explore the potential outcomes model 

in more complex experimental designs. 
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 2.2.2 Treatment Heterogeneity and Unit-Treatment Additivity 

In 1947, Cochran described the consequences of carrying out the usual analysis of 

variance (ANOVA) when basic assumptions were not satisfied.  Four basic assumptions were 

considered, the first being that treatment effects and environmental effects, like block effects in a 

randomized block design or row and column effects in a Latin square design, should be additive, 

not multiplicative.  Cox (1958, pp. 14-17) extended this idea of additivity from treatment effects 

and environmental effects to treatment effects and subject effects.  Cox wrote that many 

fundamental experiments assume that the observation obtained when applying a particular 

treatment to a particular unit is assumed to be an additive relationship of a quantity depending 

only on the particular unit and a quantity depending on the treatment assigned.  He noted that, 

assuming fixed treatment effects, one consequence to this additive assumption of units and 

treatments was that the true, causal effect was constant across subjects.  Later, Cox (1992) 

termed this assumption of additivity between unit and level of treatment unit-treatment 

additivity.  The statistical model based on this assumption is frequently referred to as the additive 

treatment model.  Adapting Coxôs (1992; p.295) notation to fit the notation presented in Chapter 

1, this additive treatment model can be written 

ὶ ὶ Ὠ                                                                  ςȢσ 

where Ὠ is assumed to be constant and Ὦ ρȟςȟȣȟὔ. 

Due to the Fundamental Problem of Causal Inference, the assumption of unit-treatment 

additivity cannot be directly checked.  While no specific measures exist to show that unit-

treatment additivity holds, there are several indicators that unit-treatment additivity fails to hold.  

One such indicator is considered below. 

One of the fundamental consequences of the unit-treatment additivity assumption holding 

is that the dispersion of potential responses around some measure of center is the same for the 

potential responses under treatment as the potential responses under control.  Thus, if the 

variance of the responses under Ὕ and the variance of the responses under ὅ are vastly dissimilar, 

then this may be an indication that unit-treatment additivity does not hold.  Cox (1992) 

recommends a non-linear transformation of the responses in order for unit-treatment additivity to 

be achieved.  One example of such a transformation is the natural-logarithm transformation.  

Consider the case where   

ὶ Ͻὶ = , 
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for some  ρ.  This is not an additive model as defined above.  If this assumed model is true, it 

is very easily shown that  

 ὺὥὶὶ Ͻὺὥὶὶ ὺὥὶὶ Ȣ 

But, by applying the natural logarithm transformation, it is possible to achieve an additive 

treatment model on the log-scale as follows: 

ÌÎὶ ÌÎ ὶ ÌÎ . 

The above scenario is just one possible way in which dissimilar variances between 

outcomes receiving treatment and outcomes receiving control indicate a failure of the additive 

treatment model assumption to be satisfied.  Consider a second situation which amounts to a 

variation on the additive treatment model given in (2.3) in which Ὠ is permitted to vary 

according to the experimental unit, rather than remaining constant across all experimental units.  

In essence, each EU is permitted its own causal effect.  Again utilizing notation defined in 

Chapter 1 with Coxôs (1992) notation, this model might be written as  

 

 ὶ ὶ ὨȟὮ ρȟςȟȣȟὔȢ                                                     ςȢτ 

 

A model of this form may arise as a result of interaction between level of treatment and a unitôs 

covariate.  These are the circumstances under which Gadbury et. al (2001) defined S-T 

interaction.  

 From a finite population perspective, where Ὠ is considered a fixed quantity, one 

difficulty in working with a model like that in (2.4) is that the number of parameters under 

consideration can quickly escalate.  In a situation where a typical null hypothesis might be of the 

form, ὌȡὨ Ὠ Ễ Ὠ , the results of the test or estimates of a set of confidence intervals 

may be incomprehensible.  Typically, methods are sought that reduce the dimension of the vector 

of parameters under consideration.  One such approach is to take an infinite population 

perspective and consider the Ὠᴂί as a random sample from some distribution such that  

 

Ὠͯʈȟ„  
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thus reducing the complexity of the problem by considering only two parameters: ʈȟ„ .   It 

should be straightforward to see that if model in equation (2.4) is true, then  

 

ὺὥὶὶ ὺὥὶὶ „ ςϽὧέὺὶȟὨ Ȣ 

 

The variances of the potential outcomes are equal if and only if  

 

„ ςϽὧέὺὶȟὨ  „ „ ς„„” ς„„” ς„  

„ „ πȢ                                                                     ςȢυ 

 

Otherwise, heteroscedasticity of variances exists.   

To clearly understand the relationship between treatment heterogeneity and 

heteroscedasticity of variances, consider equation (2.1) as a function of ” , the correlation 

between potential outcomes given in (1.3).  Notice that (2.1) achieves a maximum when 

” ρ and a minimum when ” ρ. Also note that when ” ρ, „ „ „  and 

when ” ρ, „ „ „ .  So even though „  is not identifiable in an observable 

model setting, it can be bounded as follows: 

 

π „ „ „ „ „                                                   ςȢφ 

 

It should be clear from (2.6) that „ π when „ „  and ” ρ.  Thus „ π implies 

homoscedasticity of variances and (2.5) holds.  It should also be clear from (2.6) that if 

heteroscedasticity of variance exists, then „ π. 

It should be noted that it is possible for „ „  and yet the unit-treatment additivity 

assumption to still be violated.  Note that (2.5) implies homoscedasticity of variances regardless 

of the value of ” .  Thus if „ „  but ” ρ, then (2.5) still holds even though „ π, 

indicating the presence of treatment heterogeneity.  If it were possible to estimate some quantity 

that indicated the existence of treatment heterogeneity, then this estimate might provide evidence 

that the unit-treatment additivity assumption is violated, even when the variances of the potential 

outcomes are equal. 
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 2.2.3 The Role of Covariates in Identifying Treatment Heterogeneity 

As it has already been noted, the nature of treatment heterogeneity and its impact on 

choice of treatment for an individual EU has interested researchers from a variety of fields for 

decades.  In particular there is a wide assortment of subset treatment heterogeneity literature in 

clinical trials research.  Subset treatment heterogeneity differs from individual treatment 

heterogeneity in that subset interaction (SI) occurs when the effects of Ὕ and/or ὅ change based 

on the subset identifiable by an observable covariate (Milliken and Johnson, 1984, p. 113).  As 

Poulson et al. (2012) point out, individual treatment heterogeneity can be construed as subset 

treatment heterogeneity with the size of the subset equal to 1 EU.  Therefore, individual 

treatment heterogeneity might be considered one form of subset treatment heterogeneity and it 

would seem beneficial to consider methods developed to identify and interpret subset interaction 

based on observable covariates in an attempt to elucidate the nature of individual treatment 

heterogeneity. 

Byar and Corle (1977) began to develop the use of multivariate regression methods to 

define subsets for which Ὕ or ὅ may be superior; however, they cautioned that ñThe proof of any 

conclusions tentatively drawn must depend on future experiments designed specifically to test 

the results suggested by the analysisò (Byar and Corle , 1977; p. 458).  Later, Peto (1982) 

distinguished between quantitative subset interaction and qualitative subset interaction, the 

former meaning a change in magnitude of effect only across subsets, and the latter taken to mean 

a change in magnitude and direction of effects across subsets.  Gail and Simon (1985), Silvapulle 

(2001), and Li and Chan (2006) all developed formal tests for qualitative interaction based on 

subsets formed using values of observable covariates. 

While no such formal test for the existence of individual treatment heterogeneity has 

been developed, covariate information has been used to gain additional information about model 

parameters that would indicate the presence of individual treatment heterogeneity.   Gadbury et 

al. (2001) showed that using a continuous covariate, say Z, that is not affected by the treatment 

and that augments the potential outcomes, the overall variability of individual effects can be 

reduced.  The results shown here have been adapted to accommodate the notation presented in 

Chapter 1.  Assume that the distribution of Ὠ given ὤ ᾀ is normal with conditional mean  

 

‘ȿ ‘ ‘   ᾀ ‘                                        ςȢχ 
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and conditional variance 

 

„ȿ „ȿ „ȿ ς„ȿ„ȿ” ȿȢ                                             ςȢψ 

 

  and   in ςȢχ are the slope coefficients between Z and ὶ and Z and ὶ, respectively, and 

” ȿ in ςȢψ is the partial correlation of ὶ and ὶ given Z. The conditional variances, „ȿ and 

„ȿ , are allowed to be different across the two treatment groups but are assumed not to depend 

on the value of Z. Coupled with ςȢχ and ςȢψ, Gadbury et al. (2001) showed that 

 

„ „ȿ „ȿ ς„ȿ„ȿ ρ ” ȿ   „Ȣ 

 

Therefore, if evidence showed that   , „ȿ may be less than „  making it possible to 

reduce the bounds on ὖὨ π over ὤ ᾀ.  Thus similar to ςȢς the proportion of the 

population receiving a harmful effect under Ὕ for a particular value of ᾀ ᾀ may be bounded 

by  

 

ɮ
ȿ

ȿ ȿ ȿ ȿ

ὖὨ π ɮ
ȿ

ȿ ȿ ȿ ȿ

ȟ           ςȢω  

 

by letting the partial correlation ” ȿ be 1 and -1, respectively.   Confidence intervals for the 

bounds on ὖὨ π  given in ςȢω can be derived using bootstrap samples from the 

observed data or using asymptotic properties of maximum likelihood estimators (cf. Gadbury et 

al., 2001). 

 Zhang et al. (2013) used covariate information to tighten the bounds given in Gadbury et 

al. (2004) for the proportion of a population experiencing a detrimental treatment effect when 

potential responses were binary instead of continuous (i.e.- a potential response under ὅ  

indicating success and a potential response under Ὕ indicating failure).  Methods were presented 

under three sets of assumptions pertaining to the conditional independence of potential responses 

given a set of covariates. 
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 2.3 Linear Models 

As stated in section 1.2 of Chapter 1, one of the purposes of this research is to tie the 

potential outcomes framework to a linear model.  The following section briefly reviews the 

pertinent literature pertaining to the development of statistical linear models. 

Statistical models are concerned with relating the observations from a set of data to a set 

of components that is believed to give rise to the dataset.  Based on statistical models, an attempt 

is made to make inference about these components.  In earliest forms, a statistical model required 

three parts:  the observation, the deterministic component, and the random components.  

Deterministic components (also referred to as systematic components) are considered to be 

determined by the level of treatment assigned to a particular EU.  These deterministic 

components are assumed to be fixed constants.  The random components describe how each 

individual response varies about the systematic component.  As Stroup (2013) notes, the random 

component is a characterization of the uniqueness of the individual EU.  By carefully stating 

relevant assumptions, the most common form of a statistical model takes the following generic 

form (Gbur et. al,2012): 

 

έὦίὩὶὺὥὸὭέὲὨὩὸὩὶάὭὲὭίὸὭὧ ὧέάὴέὲὩὲὸὶὥὲὨέά ὧέάὴέὲὩὲὸ 

 

While, technically, statistical models are approximations and it is unlikely that data are generated 

according to such a pedestrian process, the development of more complex approximations based 

upon this simple linear relationship has provided meaningful methods (i.e. logistic regression, 

Generalized Linear Mixed Models, etc.) of analyzing data that are vastly different than those data 

typically presented in an introductory statistical setting. 

 2.3.1 General Linear Models (LMôs) and Linear Mixed Models (LMMôs) 

A complete history of the origins of the statistical linear model is well beyond the scope 

of this dissertation.  Even if it were to be attempted, it would be imprudent to think that this 

author would be able to offer much in the way of additional information to what has already been 

summarized by those who are far more qualified to give attention to the subject.  The interested 

reader is referred to the following three works in particular for a rather detailed history of the 
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general linear model:  Eisenhart (1947), Scheffe (1956), and Searle et. al (1992, chapter 2).  The 

following section is simply a brief overview of what is contained therein. 

It is interesting to note that statistical modeling seems to have originated in the field of 

astronomy.  In particular, Scheffe (1956, p.255) notes ñéVery explicit use of a variance-

components model for the one-way layout is made by Airy (1861, Part IV), with all the subscript 

notation  necessary for clarityéAiry assumes the following structure for the Ὦ  observation on 

the Ὥ  night: 

ώ ‘ ὧ Ὡ  

 

where ‘ is the general mean or ótrueô value and the {ὧ} and {Ὡ} are random effectséò 

Searle et al. (1992) detail additional contributions to statistical modeling and variance component 

estimation throughout the latter part of the 19
th
 century and the early part of the 20

th
 century 

including the likes of Tippett (1931), Fisher (1918, 1925; although he did not explicitly apply 

linear modeling) and Neyman (1935). 

 Eisenhart (1947) distinguished between two types of linear statistical models, which he 

termed Model I and Model II.  The former has come to be known as the fixed-effect or general 

linear model (LM) while the latter has come to be known as the random-effects model.  Under 

the assumptions of the LM, responses are independently distributed, Gaussian random variables 

with a common variance and a mean that is taken to be fixed constant.  Means of the responses 

may possibly differ depending on which level or combination of treatment factors are applied to 

the EU, however any difference between two means of interest is also taken to be a fixed 

quantity.   Under the assumptions of the random-effects model, all treatment factors that are 

thought to affect the value of a response are considered random variables with a common mean 

of zero, but possibly different variances for each factor.  Thus all observations, regardless of 

level or combination of treatment factor applied to the EU, are thought to vary around one 

common mean. Statistical models containing both fixed and random effects have been termed 

linear mixed models (LMM). 

 Over the past 40-50 years, statistical modeling has become a foundation in most 

introductions to statistical analysis.  As such, there is a vast body of literature detailing methods 

for estimation of mean treatment effects, variance component estimation, inference procedures,  
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and confidence interval estimation in LMô s random effect models and LMMôs.  Among the most 

notable are Searle (1971), Rao (1973), Graybill (1976), and Hocking (1985). 

 2.3.2 Generalized Linear Models(GLMôs) 

In the previous section, it was noted that the LM and the LMM had the following two 

defining characteristics:  first, the random components of the model were assumed to follow a 

normal distribution; second, the responses were modeled as a linear combination of fixed and 

random effects.  The natural sequela of such investigations is to consider a scenario in which the 

responses do not follow a normal distribution.  The following sections summarize the pertinent 

literature pertaining to such an investigation. 

Although analyses pertaining to certain instances of non-normal data existed dating back 

to the mid 1930ôs, usually incorporating some transformation of the data, it was Nelder and 

Wedderburn (1972) that clearly described a theory for modeling non-normally distributed data 

which they termed Generalized Linear Models (GLM), so as not to be confused with the general 

linear model (LM) of the previous section.  They described a method in which they used iterative 

weighted linear regression to arrive at maximum likelihood estimates of distribution parameters 

for distributions that were members of the exponential family.  Furthermore, they modeled the 

mean of the responses as a monotonic transformation of a linear model.  It should be noted that 

the linear models in this context contained fixed effects only. 

Wedderburn (1974) extended these results so that in order to obtain parameter estimates, 

one need not know the actual distribution of the data, but must specify a quasi-likelihood 

function which is a function the defines the relationship between the mean and variance of the 

distribution.  Wedderburn (1974) showed that a quasi-likelihood function possessed properties 

similar to properties of log-likelihood functions and thus maximum quasi-likelihood estimates of 

the distribution parameters could be obtained using iterative estimation procedures.  Finally, he 

demonstrated that estimates obtained using maximum likelihood estimation as in Nelder and 

Wedderburn (1972) were a particular case of the quasi-likelihood approach. 

 2.3.3 Generalized Linear Mixed Models (GLMM) 

After Nelder and Wedderburn (1972) published their results on GLMôs, the next logical 

progression was to try and extend the GLM to include both fixed effects and random effects in 

the monotonically transformed linear model.  Models that included both fixed and random 
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effects for non-normal data have become known as Generalized Linear Mixed Models (GLMM).  

Many researchers sought to do this from the mid 1980ôs to the mid 1990ôs.  Two papers in 

particular are noted here.  Breslow and Clayton (1993) and Wolfinger and OôConnell (1993) 

both demonstrated that estimates for fixed effects and random effects could be found by solving 

what have been termed the general mixed model equations (cf. Littell et. al, 2006; Ch. 14) which 

are a type of extension of mixed model equations to a non-normal setup.  In both papers, iterated 

techniques were used to arrive at solutions rather than more cumbersome numerical methods that 

had been used previously to estimate effects in GLMMôs.  The difference between Breslow and 

Clayton (1993) and Wolfinger and OôConnell (1993), as the latter pointed out, was the 

assumptions about the values that certain model parameters could take.  By constraining the 

dispersion or scale parameter defined in Wolfinger and OôConnell to equal 1, they demonstrated 

an equivalent analysis to that produced by Breslow and Clayton (1993).  Thus Wolfinger and 

OôConnellôs (1993) method may be thought of as a generalization of Breslow and Claytonôs 

(1993) method.  It should also be noted that Wolfinger and OôConnellôs work (1993) forms the 

basis of the theory underlying PROC GLIMMIX in SAS. 
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Chapter 3 - Completed Research:  Gaussian Data 

 3.1  Model Assumptions and Simulation Methods 

This chapter presents results for potential outcome models and observable data models in 

each of five common experimental designs, assuming Gaussian random effects.  The five 

experimental designs included the Two-Sample CRD, the Matched Pair Design (RCBD); the 

Generalized Complete Block Design (GRCBD) containing two observations per level of 

treatment, Ὕ and ὅ within each block;  the Two-Period-Two-Treatment Crossover Design; and 

the Repeated Measures Crossover Design with Two Treatments where each level of treatment is 

randomly assigned to two of four total time periods for each EU.  Some of the material presented 

in this chapter on the CRD and RCBD designs has been reviewed and published in Richardson 

and Gadbury (2012).  

Stroup (2013) developed a method termed What Would Fisher Do (WWFD) to correctly 

identify the components of the LMM.  This method was based on the contribution Fisher made 

to a discussion paper authored by Yates (1935). We adapted this method and applied it to the 

potential outcomes framework to identify the potential LMMôs for the experimental designs 

presented in the subsequent sections.  As in Wilk and Kempthorne (1955), we assume no 

technical error.      

For each of the five experimental designs, models were considered for each of two 

variance/covariance structures.  The first structure assumes that all random effects are mutually 

independent of one another and that each random effect has its own variance component that is 

common to both levels of treatment, Ὕ and ὅ.   This variance structure will be referred to as the 

common variance structure. The second structure still assumes mutual independence of random 

effects, however outcomes under treatment are permitted a distinct variance component from 

outcomes under control.  This variance structure will be referred to as the distinct variance 

structure.  Only pertinent results for the distinct variance structure will be given in this chapter.  

See Appendix A for a set of complete results, including the common variance structure.  Under 

both sets of assumptions for all experimental designs, the expectation of all random effects is 

assumed to be zero.  With this structure, the treatment heterogeneity variance for the particular 

design is derived using potential outcomes and is shown to be linear combinations of variance 

components. Then the model is defined in terms of observable data and, where appropriate, the 
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variance of a naïve version of a treatment heterogeneity is derived. The connections between the 

naïve version and the true variance of individual effects are then established. The assumptions 

required to equate the two, or to bound the latter by estimable quantities are stated. 

Derived results are illustrated using simulated data.  Using SAS statistical software, 

potential outcomes data were simulated for each experimental design, under relevant 

assumptions.  A total of Ὓ ρππ simulations were performed.  Within each simulation, data 

were simulated for three distinct sample sizes.  Unless otherwise specified, it is assumed that 

there are ὔ total EUôs in an observable experiment. Consequently, there are ὸὔ responses in a 

potential outcomes framework, one response for each of ὸ levels of treatment imagined to have 

been simultaneously applied to each of ὔ EUôs.  For all experimental designs in the following 

sections, ὸ ς.  The resulting number of responses in each potential outcome framework will be 

highlighted for each experimental design in the results sections below.  Where applicable, ὲ   

and ὲ refer to the number of subjects per treatment level, Ὕ and ὅ, respectively.  For the 

purposes of these simulations, we assumed designs were balanced.  That is, we assumed 

ὲ ὲ ὲ.  

PROC GLIMMIX was then utilized on the simulated data to obtain REML estimates of:  

(1) the difference in fixed treatment effects between the two potential outcomes,  (2) the 

variances of the random effects included in the potential model, and (3) the variance of the 

difference in the two potential outcomes, denoted ὺὥὶὨ.   

Next, one-half of the data were removed to simulate observed data under uniformly 

random treatment assignment.  Of the observations that were removed, one-half were treatment 

potential responses, and one-half were control potential responses.  PROC GLIMMIX was again 

utilized on the observed data to obtain REML estimates of:  (1) the difference in fixed treatment 

effects between the two treatment groups, (2) the variances of identifiable random effects in the 

observable model, (3) the variance of the linear combination of non-identifiable random effects 

that constitute the residual term or error variance in the observable data model, and (4) the 

variance of the naive difference in observable data, denoted ὺὥὶὈ . 

Boxplots of estimates resulting from the Ὓ ρππ  simulations were plotted for each of 

the three sample sizes to examine the shape and spread of the distribution of parameter estimates.   

The mean, median, minimum, maximum and standard deviation of the 100 parameter estimates 



26 

 

were computed.  Then the mean of the Ὓ ρππ simulations was compared to the simulated 

value for each of the respective estimates. 

 3.2  Two-Sample CRD 

Table 3.1 gives the effects and assumptions for both potential and observable models.  A 

direct relationship between the two models is established by defining 

 

Ὡ ί ί†                                                                   σȢρ 

 

since multiple observations per subject are ñlostò when the randomization mechanism is invoked.  

Thus the residual term in the observable two-sample CRD consists of the confounded subject and 

subject-by-treatment effects from the potential model.  If such confounding occurs, then 

 

„ „ „Ƞ Ὥ ὝȟὅȢ                                                      σȢς 

 

by the independence assumptions given in Table 3.1.  Under the assumption of unit-treatment 

additivity, ί† π ÆÏÒ ÁÌÌ Ὥ ÁÎÄ Ὦ and  

Ὡ ίȢ 

Thus 

„ „ „  

 

irrespective of the level of treatment assigned to the Ὦ  EU.  

 

Model Model Parameters Assumptions 

Potential Model ὶ ‘ † ί ί†ȟ    

 Ὥ ὝȟὅȠ   
 Ὦ ρȟςȟȣȟὔ ὉὟᴂί 

 

ίͯ ὭὭὨ ὔπȟ„  

ί†
ί† ὓͯὠὔ

π
π
ȟ
„ π

π „
 

ί and ί† are independent. 

 

 

Observable Model 

 

Ὑ ‘ † Ὡȟ     

Ὥ ὝȟὅȠ    
Ὦ ρȟςȟȣȟὲ  

ὉὟί ὴὩὶ ὰὩὺὩὰ έὪ ὸὶὸ 

 

Ὡ
Ὡ ὓͯὠὔ

π
π
ȟ
„ π

π „
 

  
 

Table 3.1 Model effects and assumptions in a 2-sample CRD. 
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Define the true causal effect to be the difference in potential outcomes for the Ὦ  EU.  

That is 

 

Ὠ ὶ ὶ  Ȣ                                                          σȢσ 

 

Given the potential model and assumptions in Table 3.1, the variance of the true causal effect is 

readily seen to be 

ὺὥὶὨ ὺὥὶ‘ † ί ί† ‘ † ί ί†  

ὺὥὶ† † ί† ί† ὺὥὶί† ί†    „ „                        σȢτ 

 

Since only one observation per EU is recorded, an individual naïve effect is undefined in 

the 2-sample CRD.  However, it is possible to compute the variance of an average naïve effect, 

Ὀ, defined in (1.2).  Under the model assumptions given above, the variance of the average naïve 

effect is given by 

 

ὺὥὶὈϽ ὺὥὶ
ρ

ὲ
Ὑ

ρ

ὲ
Ὑ  

ρ

ὲ
ὺὥὶ ί ί†

ρ

ὲ
ὺὥὶ ί ί†   

„ „

ὲ

„ „

ὲ

„

ὲ

„

ὲ

„ „

ὲ
ȟύὬὩὲ ὲ ὲ ὲȢ               σȢυ 

 

Writing the result in (3.5) in terms of quantities from the potential model in Table 3.1 gives, 

 

ὺὥὶὈϽ
ς„ „ „

ὲ
 

ᵼ 

ὲϽὺὥὶὈϽ ς„ „ „ „ „ ς„ ὺὥὶὨ                      σȢφ 
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Figure 3.1 Bounding the Individual Causal Effect: 2-Sample CRD. 

 ὲϽὺὥὶὈϽ ὺὥὶὨ Ȣ  Box plots of the Ὓ ρππ estimates of ὲϽὺὥὶὈϽ at N=10, 30, and 100 Dotted lines 

represent values used in the simulation design. 
 

when the design is balanced. ὺὥὶὈϽ is estimable in observable data but the individual 

components are not. As demonstrated in Figure 3.1, one can see that ὲ ϽὺὥὶὈϽ is an estimable 

upper bound for ὺὥὶὨ , the variance of individual effects. Equation (3.6) also demonstrates 

that equality of ὺὥὶὨ  and ὺὥὶὈϽ is achieved when „ π.  Recall that „  is the variance 

attributed to EUôs, so equality of ὺὥὶὨ  and ὺὥὶὈϽ would require that all Ὦ ρȟςȟȣὔ EUôs 

in the experiment be identical to one another in every respect except which level of treatment 

they were assigned to receive.  

A comparison of ὺὥὶὨ  with ὺὥὶὈϽ might seem a bit unusual since ὺὥὶὈϽ is 

computed based on aggregate information from a sample and ὺὥὶὨ  is computed based on 

information available from a single EU.  Therefore it is possible to define 

 

ὨϽ
ρ

ὔ
ὶ ὶ                                                              σȢχ 

and note 
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ὺὥὶὨϽ
ρ

ὔ
ὺὥὶ ὶ ὶ

ρ

ὔ
ὺὥὶ ί† ί†  

 

„ „

ὔ

ὺὥὶὨ

ὔ
                                                             σȢψ 

 

Combining the results of (3.6) and (3.8), note that  

ὺὥὶὨϽ
ὺὥὶὨ

ὔ

ὲ ϽὺὥὶὈϽ
ὔ

ὺὥὶὈϽ
ς

 

ᵼ 

ὺὥὶὨϽ  
ὺὥὶὈϽ
ς

                                                               σȢω 

when a two-sample CRD is balanced.  

Figure 3.2 illustrates the results of (3.9).   For each sample size, boxplots of the Ὓ ρππ 

values for Ͻ and ὺὥὶὨϽ are shown.  Estimates of Ͻ are shown in blue and estimates 

for ὺὥὶὨϽ in red.  For each sample size, the mean value of the ρππ estimates of Ͻ is 

greater than the mean value of the ρππ estimates of ὺὥὶὨϽ. 

 

 

Figure 3.2 Bounding the Average Causal Effect:  2-Sample CRD. 



30 

 

 Tables 3.2 (i), 3.2 (ii), and 3.2 (iii) give more specific results of all effects of interest 

based on Ὓ ρππ simulated data sets.  Values represent the mean and standard error of 

estimates across the Ὓ ρππ data sets.  Table 3.2 (i) gives results for the fixed treatment effect 

for the model fit to both potential and observable data, Table 3.2 (ii) shows the results for the 

random effects in the potential model and Table 3.2 (iii) the results for the random effects in the  

observable model.  In all cases, as the sample size increased from 10 to 30 to 100, the variability 

of the effect estimates around the true simulated value decreased, and in all cases, the estimated 

value of the simulation parameter based on the Ὓ ρππ simulations is within 2 standard errors 

of the true value. Comparing the standard errors of the estimates between potential data and 

observable data in Tables 3.2 (ii) and 3.2 (iii) reveals a larger standard error for the observable 

estimates.  This is to be expected as the observable estimates are computed from half the data, 

compared with the potential data.  

Of particular note is that the estimates of ὺὥὶὨ  given in Table 3.2 (ii) seem to be 

reasonable estimates of the theoretical value derived in (3.4).  In these simulations, „ υ and 

„ ς.  Thus by (3.4), ὺὥὶὨ „ „ υ ς χ.  Indeed, Table 3.2 (ii) demonstrates 

that the potential model estimates of ὺὥὶὨ  were within two standard errors of χ for each of 

the three distinct sample sizes.  Furthermore, notice that the estimates for  „  and „  given in 

Table 3.2 (iii) also seem to be reasonable estimates of the theoretical value derived in (3.2), 

where it was assumed that the subject and subject-by-treatment effects from the potential model 

were confounded to form the residual term in the observable model.  Assuming „ ςȟ„ υ 

and „ ς, then „ χ and „ τ based on (3.2).  The results in Table 3.2 (iii) demonstrate 

that the estimates of „  and „  are within two standard errors of χ and τ, respectively, for each 

of the three sample sizes considered. 

For the two-sample CRD, a comparison was made of two methods for computing 

estimates of both ὺὥὶὨ  and ” , the correlation seen in the distribution specified in equation 

(1.3).  Recall that neither quantity is estimable in an observable model.  As such, this comparison 

was made in the potential model only. Estimates of ὺὥὶὨ  were computed using one of two 

methods. The first method, termed Model ὺὥὶὨ  and denoted ὺὥὶὨ , was computed by 

summing the variance component estimates obtained from the PROC GLIMMIX procedure.   
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Table 3.2 2-Sample CRD Simulation Results.   
Values represent the average and standard error of treatment effect estimates across Ὓ ρππ simulations in both 

the potential and observable data models for N=10, 30, and 100 for (i) Fixed Effects.  (ii) Potential Random Effects. 

(iii)  Observable Random Effects.   

 

 

The second method entailed computing the difference in potential responses for each subject and 

then estimating the variance of these differences using PROC UNIVARIATE in SAS.  This 

method is termed Estimated ὺὥὶὨ  and denoted ὺὥὶὨ .   Table 3.3 gives the results of this 

comparison for one of the Ὓ ρππ  simulations only.  Results of the comparison in the 2-sample 

CRD demonstrate that the two methods of estimation yield identical estimates for all 3 sample 

sizes. 

Fixed  

Effect 

(Potential) 

 

Simulated 

Value 

 

 

2N Ὓ ρππ 

 

Average 

Ὓ ρππ 

 

Std. Error  

 Fixed 

Effect 

(Obs.) 

 

Simulated 

Value 

 

 

N Ὓ ρππ 

 

Average 

Std.  

Error  

 Ὓ ρππ 

† † 3 20 3.11 0.10  † † 3 10 3.08 0.14 

  60 3.04 0.05    30 3.08 0.09 

  200 3.03 0.03    100 3.07 0.05 

     (i) 

Potential 

Variance 

Simulated 

Value 

 

2N 

Average 

 Ὓ ρππ 
Std. Error  

 Ὓ ρππ 

Subject 2 20 1.85 0.18 

  60 2.15 0.11 

  200 2.03 0.06 

     

Subject*Trt 5 20 5.06 0.27 

  60 5.25 0.17 

  200 4.96 0.10 

     

Subject*Ctrl 2 20 2.11 0.16 

  60 1.98 0.10 

  200 1.99 0.06 

     

ὺὥὶὨ  7 20 7.18 0.31 

  60 7.22 0.18 

  200 6.95 0.11 

     (ii)  

Observable 

Variance 

Simulated 

Value 

 

N 

Average 

 Ὓ ρππ 
Std. Error  

 Ὓ ρππ 

Trt Residual 7 10 7.25 0.50 

  30 7.33 0.27 

  100 6.82 0.15 

     

Ctrl Residual 4 10 4.00 0.27 

  30 4.29 0.16 

  100 4.10 0.08 

     (iii)  
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Estimation of ”  was also carried out using one of two methods.  The first method, 

denoted Model Correlation, estimated the intra-class correlation coefficient from the variance 

component estimates from PROC GLIMMIX.  That is 

 

”
„

„ „ Ͻ„ „
Ȣ 

 

Model correlation estimates are required to be non-negative by the assumptions given in Table 

3.1.  The default procedure of PROC GLIMMIX for handling negative variance component 

estimates is to replace the negative estimate equal to zero.  Thus, anytime PROC GLIMMIX 

encountered a negative estimate of „ , the estimate of Model Correlation was also zero.  The 

second estimate of ” , denoted ” , was computed by passing the simulated potential outcomes 

to PROC CORR in SAS where the Pearson correlation coefficient was computed.  That is,  

 

”
В ὶ ὶӶϽ ὶ ὶӶϽ

В ὶ ὶӶϽϽВ ὶ ὶӶϽ

Ȣ 

 

This method is termed Estimated Correlation and permitted negative correlation coefficient 

estimates.  Results given in Table 3.3 indicate that the two methods yielded identical estimates of 

correlation.  This provides reassurance that the linear mixed effects model is providing estimates 

of the correlation in potential outcomes data that yields the same value as Pearsonôs computed 

correlation on the set of N bivariate potential outcomes.  Recall that ”  is the only quantity 

given in equation (2.1) that is nonestimable from observable data.  Therefore since ”  is 

nonestimable  in an observable model, ὺὥὶὨ  is nonestimable in an observable model.  As  

 

 

 

 

 
Table 3.3 Different Methods of Estimation:  2-Sample CRD. 

Comparison for var(dj) and ”  . 

 

2N 

Model 

var(dj) 

Estimated  

var(dj) 

Model 

Correlation 

Estimated 

Correlation 

20 3.87 3.87 0.20 0.20 

60 11.90 11.90 0.16 0.16 
200 6.98 6.98 0.36 0.36 
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such, any attempt to describe the loss of information incurred by moving from a potential model 

to an observable model ought to appropriately estimate ”  in the potential data setting.  The 

only times these two estimates of ”  differed were when PROC GLIMMIX encountered a 

negative estimate of „  and replaced the estimate with zero.  The corresponding Estimated 

Correlation estimate was always negative in such situations.  Specifying the potential LMM in 

such a way as to accommodate a negative correlation between potential outcomes under 

treatment and potential outcomes under control is discussed further in Chapter 4. 

 The connection between models for potential versus observable outcomes when 

evaluating individual treatment heterogeneity lacks some intuition in the CRD because there is 

not an actual naïve individual effect that can be defined, other than the sample mean difference. 

Other designs provide more intuition by having a naïve effect that makes more sense when 

attributing it to the individual. 

 3.3  RCBD 

Table 3.4 gives the effects and model assumptions for the matched-pairs analysis.  These 

results are easily extended to a conventional randomized complete block design, but for the 

purposes of these simulations, only the matched-pairs design is considered here.  A direct 

relationship between the observable model and the potential model may be established by 

defining  

 

Ὡ ί ὦ† ί†                                                     σȢρπ 

 

since multiple observations per subject within a block and multiple observations under a 

specified treatment within a block are ñlostò when the randomization mechanism is invoked.  

Thus the residual term in the observable matched-pairs design consists of the confounded 

subject-within-block, block-by-treatment and subject-within-block-by-treatment effects from the 

potential model.  If such confounding occurs, then  

 

„ „ „ „ Ƞ Ὧ Ὕȟὅ                                                σȢρρ 
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Model Model Parameters Assumptions 

Potential Model ὶ ‘ ὦ ί † ὦ† ί†     

 Ὥ ρȟςȟȣȟὄ ὴὥὭὶίȠ 
Ὦ ρȟς ὉὟᴂί ύὭὸὬὭὲ ὥ ὴὥὭὶ 

 Ὧ Ὕȟὅ 

 

ὦͯ ὭὭὨ ὔπȟ„  

ί ὭͯὭὨ ὔπȟ„  

ὦ†ͯ ὭὭὨ ὔπȟ„  

 

ί†
ί† ὓͯὠὔ

π
π
ȟ
„ π

π „
 

 

ὦȟί ȟὦ† and ί†  are mutually 

independent. 

 

 

Observable Model 

 

Ὑ ‘ ὦ † Ὡ ȟ  

 Ὥ ρȟςȟȣȟὄ ὴὥὭὶίȠ 
Ὦ ρ ὉὟ ύὭὸὬὭὲ ὥ ὴὥὭὶ ὶὩὧὩὭὺὭὲὫ Ὕὶὸ Ὧ 

Ὧ Ὕȟὅ    
 

 

ὦͯ ὭὭὨ ὔπȟ„  

 

Ὡ
Ὡ ὓͯὠὔ

π
π
ȟ
„ π

π „
 

  
ὦ, Ὡ , and Ὡ  are mutually 

independent 

 

Table 3.4 Model effects and assumptions in a RCBD. 

 

 

under the assumptions given in Table 3.4.  Furthermore, under the assumption of additivity, both 

unit-treatment additivity and block-treatment additivity, ὦ† ί† π ÆÏÒ ÁÌÌ Ὥ ÁÎÄ Ὦ and  

Ὡ ί Ȣ 

Thus 

„ „ „  

 

irrespective of the level of treatment assigned to the Ὦ  EU.  

Define the true causal effect to be the difference in potential outcomes for the Ὦ  EU 

within the Ὥ  pair.  That is 

 

Ὠ ὶ ὶ   Ȣ                                                          σȢρς 

 

Given the model assumptions in Table 3.4, the variance of the true effect is given by 

 

ὺὥὶὨ ὺὥὶ‘ † ὦ ί ὦ† ί† ‘ † ὦ ί ὦ† ί†  
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ὺὥὶὦ† ὦ† ί† ί†  

ς„ „ „                                                      σȢρσ 
 

 

The structure of the matched-pairs design lends itself to an intuitive definition of naïve 

effect. This is defined as the difference between the EU receiving treatment and the EU receiving 

control within the Ὥ  pair and is given by  

 

Ὀ Ὑ Ὑ Ȣ                                                                     σȢρτ 

 

Ὀ may be thought of as a naïve version of the true, individual causal effect for the two units in 

the Ὥ  pair, which here would be given by Ὠ and Ὠ .  Given the model assumptions in Table 

3.4, the variance of the naïve effect is given by 

 

ὺὥὶὈ ὺὥὶ‘ † ὦ ί ὦ† ί† ‘ † ὦ ί ὦ† ί†   

ὺὥὶί ί ὦ† ὦ† ί† ί†   

„ „  

ς„ ς„ „ „                                             σȢρυ 
 

where the final equality in (3.15) follows from equation (3.11). 

Notice,  Ὀ is the difference between the observable treatment value and the observable 

control value within the Ὥ  block/pair.  Denote different EUôs within the same pair as Ὦ and Ὦᴂ.  

The difference in (3.14) is across EUôs so the difference in random subject terms, ί ί , 

remains as a component of Ὀ .  Contrast this to ὺὥὶὨ , where the subject effect is removed 

because the difference in potential outcomes is within the same EU.  Also notice that based on 

(3.11), (3.13) and (3.15), ὺὥὶὈ  is an estimable upper bound for ὺὥὶὨ  since 

 

ὺὥὶὈ ς„ ὺὥὶὨ  

ᵼ 

ὺὥὶὨ ὺὥὶὈ  

ᵾ 

ὺὥὶὨ ς„ ὺὥὶὨ  
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ᵾ 

ὺὥὶὨ ς„ ς„ „ „  

ᵾ 

ὺὥὶὨ „ „ Ȣ                                                    σȢρφ 

 

The third line of equation (3.16) demonstrates that equality of ὺὥὶὨ  and ὺὥὶὈ  is achieved 

when „ π.  Recall that „  is the variance attributed to EUôs within a pair.  It would be 

reasonable to expect that as the quality of matching improves, „  decreases, and consequently 

ὺὥὶὈ  nears ὺὥὶὨ .  If a perfect match of EUôs within pair were achievable in an 

observable model setting so that „ π, then the estimate of ὺὥὶὈ  from observed data could 

indeed be considered an estimate of ὺὥὶὨ Ȣ  Otherwise, ὺὥὶὈ  serves as an estimable upper 

bound of ὺὥὶὨ . 

Tables 3.5 (i), 3.5 (ii), and 3.5 (iii) give the results of all effects of interest based on 

Ὓ ρππ simulated data sets.  Within each simulation, the following numbers of blocks of size 

ὲ ς were considered:  ὄ ρπȟὄ σπȟὥὲὨ ὄ ρππ.  The resulting number of responses in 

the potential outcome framework is given by ςὔ ςϽὄὲ τὄ and the resulting number of 

EUôs in the entire observable experiment was given by ὔ ὄὲ ςὄ.  Values represent the 

mean and standard error of estimates across the Ὓ ρππ data sets.  Table 3.5 (i) gives results for 

the fixed treatment effect for the model fit to both potential and observable data, Table 3.5 (ii) 

shows the results for the random effects in the potential model and Table 3.5 (iii) the results for 

the random effects in the observable model.  In all cases, as the block size increased from 10 to 

30 to 100, the variability of the effect estimates around the true simulated value decreased.  For 

most effects under consideration with ὄ ρππ, the true simulated value is within one or two 

standard errors of the mean of the Ὓ ρππ estimates.  All were within three standard errors of 

the mean across the Ὓ ρππ estimates at ὄ ρππ.  This would indicate that as the block size 

increases, the REML estimates of these effects are reasonable estimates.  Comparing the 

standard errors of the estimates between potential data and observable data in Tables 3.5 (ii) and 

3.5 (iii) reveals a larger standard error for the observable estimates, as expected because they are 

computed from half the data versus the potential model.  
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Table 3.5 Matched-Pairs/RCBD Simulation Results.   

Values represent the average and standard error of treatment effect estimates across Ὓ ρππ simulations in both 

the potential and observable data models for B=10, 30, and 100 of size 2 for (i) Fixed Effects.  (ii) Potential 

Random Effects. (iii)  Observable Random Effects. 

 

Fixed  

Effect 

(Potential) 

 

Simulated 

Value 

 

 

2N Ὓ ρππ 

 

Average 

Ὓ ρππ 

 

Std. Error  

 Fixed 

Effect 

(Obs.) 

 

Simulated 

Value 

 

 

N Ὓ ρππ 

 

Average 

Std.  

Error  

 Ὓ ρππ 

† † 7 40 6.97 0.12  † † 7 20 6.90 0.16 

  120 7.03 0.06    60 6.98 0.09 

  400 7.06 0.03    200 7.06 0.05 

     (i) 

Potential 

Variance 

Simulated 

Value 

 

2N 

Average 

 Ὓ ρππ 
Std. Error  

 Ὓ ρππ 

Block 10 40 9.67 0.63 

  120 9.68 0.42 

  400 9.94 0.22 

     

Block*Trt 3 40 3.06 0.25 

  120 3.09 0.14 

  400 3.06 0.07 

     

Subject 4 40 3.94 0.23 

  120 4.00 0.15 

  400 3.83 0.08 

     

Subject*Trt 6 40 5.57 0.30 

  120 6.03 0.19 

  400 6.00 0.09 

     

Subject*Ctrl 2 40 2.03 0.18 

  120 1.97 0.13 

  400 2.07 0.07 

     

ὺὥὶὨ  14 40 13.73 0.51 

  120 14.19 0.26 

  400 14.19 0.15 

     (ii)  

Observable 

Variance 

Simulated 

Value 

 

N 

Average 

 Ὓ ρππ 
Std. Error  

 Ὓ ρππ 

Block 10 20 9.32 0.68 

  60 9.63 0.48 

  200 9.93 0.24 

     

Trt  Residual 13 20 12.39 0.83 

  60 13.34 0.51 

  200 13.20 0.28 

     

Ctrl Residual 9 20 9.88 0.73 

  60 9.33 0.44 

  200 9.00 0.20 

     

ὺὥὶὈ  22 20 22.64 1.11 

  60 22.68 0.63 

  200 22.19 0.31 

     (iii)  
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Once again, it noteworthy that the estimates of ὺὥὶὨ  given in Table 3.5 (ii) 

correspond the theoretical value derived in (3.13).  The relevant values used in these simulations 

were „ σȟ„ φȟÁÎÄ „ ς.  By (3.13), ὺὥὶὨ ς„ „ „ ςϽσ

φ ς ρτ.  Results in Table 3.5 (ii) demonstrate that the model estimates of ὺὥὶὨ  are 

reasonably close to ρτ.  The estimates for „  and „  given in Table 3.5 (iii) also seem to be 

reasonable estimates of the theoretical value derived in (3.11), where it was assumed that 

subject-within-block, block-by-treatment and subject-within-block-by-treatment effects in the 

potential model are confounded to form the residual term in the observable model. 

Figure 3.3 illustrates the result in (3.16).  Dotted lines represent the true values used in 

the simulation.  The upper line corresponds to the simulated value of ὺὥὶὈ  and the lower line 

corresponds to the value of ὺὥὶὨ .  The difference between the upper and lower dotted line 

should be equal to ς„ , as demonstrated above.  Indeed, in these particular simulations, „ τ,  

thus the distance between the two dotted lines can be seen to be ς„ ςϽτ ψ.  Notice that as  

the block size increased from 10 to 30 to 100, the variability of the effect estimates around the  

true simulated value decreased.  When ὄ ρππ, the true simulated value is within one standard 

error of the mean of the Ὓ ρππ estimates.  This would indicate that as the block size increases,  

 

 

Figure 3.3  Bounding the Individual Causal Effect: Matched-Pairs Design. 

ὺὥὶὈ ὺὥὶὨ Ȣ  Box plots of the Ὓ ρππ estimates of ὺὥὶὈ  at B=10, 30, and 100 blocks of size 2.  Dotted 

lines represent values used in the simulation design. 
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the REML estimates are reasonable estimates.  In addition, notice the distributions of the effect 

estimates became more symmetric as the number of blocks increased. 

 Once again, two methods of estimating ὺὥὶὨ  were compared, the first method 

utilizing estimated model components to compute the estimate of ὺὥὶὨ , denoted by  

ὺὥὶὨ ,  and the second estimating ὺὥὶὨ  directly using the sample variance from the 

simulated data, ὺὥὶὨ .  Table 3.6 gives the results of the comparison.  Recall that in the two-

sample CRD, these two methods of computation yielded identical results.  However here, the 

two methods of computation yielded slightly differing values.  To see why, consider the 

computation of ὺὥὶὨ  under the assumption that „ „ „ :  

ὺὥὶὨ
ρ

ςὄ ρ
Ὠ ὨӶϽϽ  

 

ςὄ ρὺὥὶὨ Ὠ ὨӶϽϽ                                       σȢρχ 

 

As shown in Appendix B.1, the sum of squares in (3.17) can be written as follows: 

Ὠ ὨӶϽϽ ςϽὛὛ ὛὛ                                     σȢρψ 

 

where ὛὛ is the sum of squares of the block-by-treatment effect and ὛὛ is the sum of squares 

due of subject-by-treatment effect. Both ὛὛ and ὛὛ are defined in Appendix B.1.  Thus 

 

ὺὥὶὨ
ρ

ςὄ ρ
ϽςϽὛὛ ὛὛ ςϽ

ὛὛ

ςὄ ρ

ὛὛ

ςὄ ρ
Ȣ          σȢρω 

 

However, estimating ὺὥὶὨ   from (3.13) yields 

 

ὺὥὶὨ ςϽ„ „ „ ς
ὓὛ ὓὛ

ς
ςὓὛ  
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Table 3.6 Different Methods of Estimation:  Matched-Pairs 

 Comparison of var(dij). 

 

 

ὓὛ ὓὛ
ὛὛ

ὄ ρ

ὛὛ

ὄ
                                            σȢςπ 

where ὓὛ  is the mean square of the block-by-treatment effect and ὓὛ  is the mean square of 

the subject-by-treatment effect.  Thus from (3.19) and (3.20), one can see that 

 

ςϽ
ὛὛ

ςὄ ρ

ὛὛ

ςὄ ρ

ὛὛ

ὄ ρ

ὛὛ

ὄ
 ᵼ ὺὥὶὨ ὺὥὶὨ        σȢςρ 

where the inequality is due to degrees of freedom associated with sums of squares terms in the 

linear model. 

 3.4  GRCBD 
The potential model for the generalized complete block design in which each level of 

treatment is replicated more than once, is almost exactly the same model as the potential model 

in the matched pair analysis, with the caveat that our number of subjects within a block is now 

greater than 2.  For the case considered here, blocks of size ὲ τ are assumed.  Consequently, 

everything that is estimable in the matched pair potential analysis is also estimable in the 

generalized complete block design setting.  In addition, the variance of a random block-by-

treatment effect becomes identifiable in the GRCBD since multiple observations per treatment 

are observable within the same block.  Table 3.7 gives the effects and assumption for both the 

potential and observable models in the GCBD. 

 Because the random block-by-treatment effect becomes identifiable in a GRCBD, a direct 

relationship between the observable model and the potential model may be established by 

defining 

 

Ὡ ί ί†                                                               σȢςς 

 

 

2N 

Model 

var(dij) 

Estimated  

var(dij) 

20 7.92 7.82 

60 13.20 13.25 
200 15.24 15.13 
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Model Model Parameters Assumptions 

Potential Model ὶ ‘ ὦ ί † ὦ† ί†  

 Ὥ ρȟςȟȣȟὄ ὦὰέὧὯίȠ   
 Ὦ ρȟςȟȢȢτ ίόὦὮὩὧὸί ύὭὸὬὭὲ ὥ ὦὰέὧὯȠ 

Ὧ Ὕȟὅ 

 

 

ὦͯ ὭὭὨ ὔπȟ„  

ί ὭͯὭὨ ὔπȟ„  

ὦ†ͯ ὭὭὨ ὔπȟ„  

 

ί† 
ί† 

ὓͯὠὔ
π
π
ȟ
„ π

π „
 

 

ὦȟί ȟὦ† and ί†  are mutually 

independent. 

 

 

Observable Model 

 

Ὑ ‘ ὦ † ὦ† Ὡ  

 Ὥ ρȟςȟȣȟὄ ὦὰέὧὯίȠ 
 Ὦ ρȟς ίόὦὮὩὧὸί ύὭὸὬὭὲ ὥ ὦὰέὧὯ έὲ ὸὶὸ ὯȠ 

Ὧ Ὕȟὅ 

   
 

 

ὦͯ ὭὭὨ ὔπȟ„  

ὦ†ͯ ὭὭὨ ὔπȟ„  

 

Ὡ
Ὡ ὓͯὠὔ

π
π
ȟ
„ π

π „
 

  
ὦ, ὦ†, Ὡ , and Ὡ  are mutually 

independent 

 

Table 3.7 Model effects and assumptions in a GRCBD. 

 

since multiple observations on subject within a block are ñlostò when the randomization 

mechanism is invoked.  Thus the residual term in the observable GRCBD consists of the 

confounded subject-within-block and subject-within-block-by-treatment effects from the 

potential model.  If such confounding occurs, then  

 

„ „ „ Ƞ Ὧ Ὕȟὅ                                                      σȢςσ 

 

under the assumptions given in Table 3.7.  Furthermore, under the assumption of unit-treatment 

additivity, ί†  π ÆÏÒ ÁÌÌ ὭȟὮȟÁÎÄ Ὧ and  

 

Ὡ ί Ȣ 

Thus 

 

„ „ „  

 

irrespective of the level of treatment assigned to the Ὦ  EU. 
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The definitions of Ὠ  and ὺὥὶὨ  remain unchanged from those given in (3.12) and 

(3.13), respectively.  What does change, however, is the definition of the naïve effect. 

Recall that the structure of the matched-pairs design lent itself to an intuitive definition of 

naïve effect, Ὀ given in (3.14).  However in the GRCBD with 4 EUôs per block, there are 4 

possible Ὀί that can be defined within a block given the random treatment assignment of EUôs. 

Selecting which treatment observation and which control observation to use in the computation 

of Ὀ in order to accurately reflect the true value of Ὀ is not at all intuitive.  It seems more 

reasonable to consider the average difference in outcomes for EUôs assigned treatment and EUôs 

assigned control.   More formally, for the two units receiving treatment Ὕ, define 

ὙϽ
ρ

ς
Ὑ  

 

and, for the two receiving treatment ὅ, 

 

ὙϽ
ρ

ς
Ὑ  

 

so that 

ὈϽ ὙϽ ὙϽ  Ȣ                                                         σȢςτ 
 

 

Under the model assumptions given in Table 3.7 

 

ὺὥὶὈϽ ὺὥὶ

ở

Ở
ờ

ρ

ς
‘ ὦ † ί ὦ† ί† 

ȡ

ρ

ς
‘ ὦ † ί ὦ† ί† 

ȡ Ợ

ỡ
Ỡ

 

 

ὺὥὶ

ở

Ở
ờ
‘ † ὦ ὦ†

ρ

ς
ί ί† 

ȡ

‘ † ὦ ὦ†
ρ

ς
ί ί† 

ȡ Ợ

ỡ
Ỡ
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ὺὥὶὦ† ὦ†
ρ

ς
ί ί† 

ȡ

ί ί† 
ȡ

 

 

ς„
ρ

ς
ὺὥὶ ί ί† 

ȡ

ρ

ς
ὺὥὶ ί ί† 

ȡ

 

 

ς„
ρ

τ
Ͻς„ „

ρ

τ
Ͻς„ „  

 

ς„
ρ

ς
„ „

ρ

ς
„ „  

 

ς„ „
„ „

ς
 

ς„
„ „

ς
                                                 σȢςυ 

 

where the final equality in (3.25) follows from (3.23).  The variance in (3.25) is estimable, but of 

the individual components in the potential model given in Table 3.7, only „  is estimable.  The 

linear combinations „ „  and „ „  are estimable, but the individual components are 

not.   Multiplying both sides of the equality in (3.25) by four yields 

 

τϽὺὥὶὈϽ ψ„ τ„ ς„ „  

φ„ „ „ ς„ ς„ „ „  

φ„ „ „ ς„ ὺὥὶὨ  

ᵼ 

 τϽὺὥὶὈϽ φ„ „ „ ς„ „ „ ς„ ὺὥὶὨ            σȢςφ 

 

and one can see that an estimable upper bound for ὺὥὶὨ  has been established, since „ , „ , 

and „   are all estimable in a GRCBD.  Recall the definition of ὺὥὶὨ given in (3.13).  Then 

based on the first line given in equation (3.26), equality of ὺὥὶὨ  and ςϽὺὥὶὈϽ is achieved 

when „ „ π.  From Table 3.7, „  is the variance attributed to applying the Ὧ  level of 

treatment to the Ὥ  block and „  is the variance attributed to EUôs within a pair.  Also recall that 
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„ π is a consequence of the additivity of block and treatment effects.  So if additivity of 

block and treatment effects holds, but unit-treatment additivity does not, and perfect matching 

within a block of all ὲ τ EUôs occurs, then twice the estimate of ὺὥὶὈϽ from observed data 

could indeed be considered an estimate of ὺὥὶὨ Ȣ  However if the assumption of additivty of 

block and treatment effects is valid, then ὺὥὶὨ  given in (3.13) reduces to „ „ , which 

is equivalent to ὺὥὶὨ , the variance of the causal effect defined for the two-sample CRD, 

given in (3.4) 

Furthermore, from (3.13)  

ὺὥὶὨ ς„ „ „  

ᵼ 

ὺὥὶὨ „ „ ς„  

ᵼ 

ς„ ὺὥὶὨ                                                            σȢςχ 

 

and since „  is estimable in a GRCBD, an estimable lower bound has been established for 

ὺὥὶὨ .  Combining the results of (3.26) and (3.27), one can see 

 

ς„ ὺὥὶὨ ςϽὺὥὶὈϽ „  

ᵾ 

 ς„ ὺὥὶὨ ς„ ὺὥὶὨ  

ᵾ 

ς„ ὺὥὶὨ ς„ ς„ „ „  

ᵾ 

 ς„ ὺὥὶὨ ς„ „ „                                     σȢςψ 

 

In the matched-pairs analysis, the trivial lower bound of zero and a non-trivial estimable 

upper bound for ὺὥὶὨ  were demonstrated in (3.16).  However, here in the GRCBD, both a 

non-trivial lower bound and upper bound have been established.  The lower bound, ς„ , is non-

trivial if the assumption of additivity of block and treatment effects fails to hold.  It is important 
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to note that the upper bound in (3.16) and (3.28) are identical in terms of the potential model 

parameters given in Tables 3.4 and 3.7, respectively.  This upper bound is ς„ ς„

„ „ .  From an observable model perspective, the difference between the matched-pairs 

design and the GRCBD can be described by the respective difference in residual variances given 

in (3.11) and (3.23).  According to (3.11), ς„ ς„ „ „ „ „  in the 

matched-pairs design, however, in the GRCBD, ς„ ς„ „ „ ς„

„ „ , according to (3.23). 

 Equations (3.25) and (3.26) can be extended to accommodate a balanced GRCBD with 

more than 4 EUôs per block.  The following equations give the general result for any balanced 

GRCBD with blocks of size ὲ. 

 

ὺὥὶὈϽ ς„
τ

ὲ
„

ς

ὲ
„ „                                  σȢςω 

and 

ὲϽὺὥὶὈϽ ὺὥὶὨ ςὲ ρ„ τ„ „ „  

 

             ὲϽὺὥὶὈϽ ςὲ ρ„ „ „ ὺὥὶὨ ς„  

ς„ „ „ ς„  

ς„ „ „                                                      σȢσπ 

 

As in the 2-sample CRD, comparison of ὺὥὶὨ  with ὺὥὶὈϽ may not be intuitive 

since ὺὥὶὈϽ is computed based on aggregate information from a sample and ὺὥὶὨ  is 

computed based on information available from a single EU.  Therefore define 

  

ὨӶϽ
ρ

τ
Ὠ

ρ

τ
ὶ ὶ                                        σȢσρ 

 

to compare and contrast with ὈϽ.  For  ὨӶϽ defined in (3.31), 

ὺὥὶὨӶϽ ὺὥὶ
ρ

τ
‘ † ὦ ί ὦ† ί† ‘ † ὦ ί ὦ† ί†  
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ὺὥὶ
ρ

τ
ὦ† ὦ† ί† ί†  

ὺὥὶὦ† ὦ†
ρ

τ
ί† ί†  

 

ς„
ρ

τ
τ„ τ„   

ς„
„ „

τ
                                               σȢσς 

 

By the same reasoning used in using (3.27), it is easily seen that ς„  is also an estimable lower 

bound for ὺὥὶὨӶϽ. 

 Comparing and contrasting ὺὥὶὨӶϽ to ὺὥὶὈϽ, notice that ὺὥὶὈϽ can be written 

ὺὥὶὈϽ ς„ „
„ „

ς
 

ς„
τ„

τ
ςϽ
„ „

τ
 

ς„
ς„

τ

„ „

τ

„ „

τ
 

ὺὥὶὨӶϽ
ς„

τ

„ „

τ
 

ς„ ςϽ
„ „

τ
                                                 σȢσσ 

 

where the final two equalities in (3.33) follows from (3.23) and (3.32).  Writing ὺὥὶὈϽ in this 

form, notice that  

 

ς„ ὺὥὶὨӶϽ ὺὥὶὈϽ
„ „

τ
 

ᵾ 

ς„ ὺὥὶὨӶϽ ς„
„ „

τ
                                  σȢστ 
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thus, estimable upper and lower bounds of ὺὥὶὨӶϽ have been established. 

 Equations (3.32), and (3.33) can also be extended to accommodate a GRCBD with more 

than 4 EUôs per block.  The following equations give the general result for any balanced 

GRCBD with blocks of size ὲ. 

 

ὺὥὶὨӶϽ ς„
„ „

ὲ
                                           σȢσυ 

and 

 

ὺὥὶὈϽ ὺὥὶὨӶϽ
τ

ὲ
„

„ „

ὲ
 

ᵾ 

ὺὥὶὈϽ ς„ ςϽ
„ „

ὲ
                                      σȢσφ 

 

It would be reasonable to consider the behavior of ὺὥὶὨӶϽ as ὲ increases.  From (3.35), notice 

 

ÌÉÍ
ᴼ
ὺὥὶὨӶϽ ÌÉÍ

ᴼ
ς„

„ „

ὲ
ς„                 σȢσχ 

 

which shows that the variance of a block average converges to the variance component 

associated with a block-treatment random effect. 

Notice that the results given in (3.28) and (3.34) are not the same result.  The result in 

(3.28) is a statement with respect to individual treatment heterogeneity.  The result from (3.34) is 

a statement about the average casual effect within a block.  As such, there is no comparable 

result to (3.37) for ὺὥὶὨ .  The variance of the true, individual causal effect given in (3.28) is 

a fixed population parameter, thus extending the matched-pairs design to a balanced GRCBD 

with blocks of size ὲ only permits an estimable lower bound.  Extending the design does not 

change either the value of  ὺὥὶὨ  or the estimable upper bound.  

As with the RCBD, ὄ ρπȟὄ σπȟὥὲὨ ὄ ρππ blocks of size four were considered.  

Thus the resulting number of responses in the potential outcome framework is given by ςὔ ςϽ
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ὄὲ ψὄ and the resulting number of EUôs in the entire observable experiment was given by 

ὔ ὄὲ τὄ. 

Tables 3.8 (i), 3.8 (ii), and 3.8 (iii) give the results interest based on Ὓ ρππ simulated 

data sets.  Values represent the mean and standard error of estimates across the Ὓ ρππ data 

sets.  Table 3.8 (i) gives results for the fixed treatment effect for the model fit to both potential 

and observable data, Table 3.8 (ii) shows the results for the random effects in the potential model 

and Table 3.8 (iii) the results for the random effects in the observable model.  As in the RCBD, 

as the block size increased from 10 to 30 to 100, the variability of the effect estimates around the 

true simulated value decreased.  For most effects under consideration with ὄ ρππ, the true 

simulated value is within one or two standard errors of the mean of the Ὓ ρππ estimates.  All 

were within three standard errors of the mean across the Ὓ ρππ estimates at ὄ ρππ.  This 

would indicate that as the block size increases, the REML estimates of these effects are 

reasonable estimates.  Comparing the standard errors of the estimates between potential data and 

observable data in Tables 3.8 (ii) and 3.8 (iii), notice that the standard errors for the observable 

estimates are larger.  This is to be expected since these estimates are computed with one-half of 

the data available for the potential model estimates. 

As in the two-sample CRD and matched-pairs design, the estimates of ὺὥὶὨ  given in 

Table 3.8 (ii) correspond to the theoretical value derived in (3.13).  Furthermore, the estimates of  

ὺὥὶὨӶϽ also correspond to the theoretical values derived in (3.32).  The relevant values used in 

simulation to establish (3.13) and (3.32) were „ σȟ„ φȟÁÎÄ „ ς.  Once again, the 

estimates for „  and „  given in Table 3.8 (iii) also seem to be reasonable estimates of the 

theoretical value derived in (3.23), where it was assumed that subject-within-block and subject-

within-block-by-treatment effects in the potential model are confounded to form the residual 

term in the observable model.  Relevant simulation values demonstrating the result of (3.23) are  

„ τȟ„ φȟÁÎÄ „ ς. 

Figure 3.4 demonstrates the results of (3.28).  Dotted lines represent the true values used 

in simulation.  The upper line corresponds to the simulated value of ὺὥὶὨ ς„ , the middle 

line corresponds to the value of ὺὥὶὨ , and the lower li ne represents the lower bound of 

ὺὥὶὨ , ς„ .  The difference between the upper and middle dotted line should be equal to 

ς„ , as demonstrated in (3.28).  In these particular simulations, „ τ, thus the distance  
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Fixed  

Effect 

(Potential) 

 

Simulated 

Value 

 

 

2N Ὓ ρππ 

 

Average 

Ὓ ρππ 

 

Std. Error  

 Fixed 

Effect 

(Obs.) 

 

Simulated 

Value 

 

 

N Ὓ ρππ 

 

Average 

Std.  

Error  

 Ὓ ρππ 

† † 7 80 6.98 0.08  † † 7 40 6.91 0.12 

  240 6.97 0.05    120 6.92 0.06 

  800 6.99 0.03    400 6.98 0.04 

       (i) 

 

 

Potential 

Variance 

Simulated 

Value 

 

2N 

Average 

 Ὓ ρππ 
Std. Error  

 Ὓ ρππ 

Block 10 80 9.77 0.58 

  240 9.95 0.34 

  800 9.96 0.19 

     

Block*Trt 3 80 3.37 0.20 

  240 2.90 0.10 

  800 2.95 0.06 

     

Subject 4 80 4.07 0.15 

  240 3.99 0.09 

  800 4.00 0.05 

     

Subject*Trt 6 80 6.01 0.19 

  240 5.94 0.10 

  800 5.86 0.06 

     

Subject*Ctrl 2 80 2.11 0.14 

  240 2.02 0.07 

  800 2.07 0.04 

     

ὺὥὶὨ  14 80 14.87 0.46 

  240 13.76 0.23 

  800 13.81 0.13 

     

ὺὥὶὨӶϽ 8 80 8.78 0.40 

  240 7.80 0.21 

  800 7.87 0.12 

     

     (ii)  
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Table 3.8 GRCBD Simulation Results. 

Values represent the average and standard error of treatment effect estimates across Ὓ ρππ simulations in both 

the potential and observable data models for B=10, 30, and 100 of size 4 for (i) Fixed Effects.  (ii) Potential 

Random Effects. (iii)  Observable Random Effects.   

 

 

between the upper two dotted lines is ς„ ςϽτ ψ.  Indeed, note from Figure 3.4 that the 

same distance is seen to be ςς ρτ ψ.  Also notice that Figure 3.4 is nearly identical to Figure 

3.3 from the matched-pairs design, except that Figure 3.4 now shows the estimable lower bound 

of Ὠ  .  The upper bounds of ὺὥὶὨ  in both Figure 3.3 and 3.4 occur at the same value, 22. 

Figure 3.5 illustrates the result in (3.34).  Dotted lines represent the true values used in 

simulation.  The upper line corresponds to the simulated value of ὺὥὶὈϽ, the middle line  

Observable 

Variance 

Simulated 

Value 

 

N 

Average 

 Ὓ ρππ 
Std. Error  

 Ὓ ρππ 

Block 10 40 9.88 0.63 
  120 10.01 0.38 

  400 9.95 0.22 

     

Block*Trt 3 40 3.46 0.31 

  120 2.82 0.18 

  400 2.91 0.11 

     

Trt  Residual 10 40 10.43 0.47 

  120 9.92 0.24 

  400 9.73 0.15 

     

Ctrl Residual 6 40 5.96 0.35 

  120 6.04 0.17 

  400 6.21 0.08 

     

ὺὥὶὈϽ 14 40 14.78 0.58 

  120 13.58 0.35 

  400 13.81 0.21 

     

ὟὴὴὩὶ ὄέόὲὨ ὺὥὶὨ  22 40 23.31 0.57 

  120 21.61 0.40 

  400 21.75 0.24 

     

ὟὴὴὩὶ ὄέόὲὨ ὺὥὶὨӶϽ 10 40 11.01 0.56 

  120 9.63 0.34 

  400 9.80 0.21 

     

ὒέύὩὶ ὄέόὲὨ  6 40 6.92 0.61 

  120 5.64 0.35 

  400 5.81 0.22 

(iii)  
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Figure 3.4 Bounding the Individual Causal Effect: GRCBD. 

 ς„ „ „ ὺὥὶὨ ς„ Ȣ  Box plots of the Ὓ ρππ estimates of ς„ „ „  at B=10, 30, 

and 100 blocks of size 4.  Dotted lines represent values used in the simulation design. 

 

 

 

 

 

Figure 3.5 Bounding the Average Causal Effect:  GRCBD. 

 ς„ ὺὥὶὨӶϽ ς„ Ȣ  Boxplots of the Ὓ ρππ estimates of  ς„  at B=10, 30, and 100 

blocks of size 4.  Dotted lines represent values used in the simulation design. 
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corresponds to the value of ὺὥὶὨӶϽ, and the lower line represents the lower bound of ὺὥὶὨӶϽ, 

ςϽ„ .  The difference between the upper and middle dotted line should be equal to „

, as demonstrated in (3.33).  In these particular simulations, „ τ, „ φ, and 

„ ς thus the distance between the upper two dotted lines is „ τ ς φ.   

Indeed note from Figure 3.5 that the same distance is seen to be ρς φ φ.  In both Figure 3.4 

and Figure 3.5, the variability of the effect estimates around the true simulated value decreased 

as the block size increased from 10 to 30 to 100.  When ὄ ρππ, the true simulated value is 

within one standard error of the mean of the Ὓ ρππ estimates.  This would indicate that as the 

block size increases, the REML estimates are reasonable estimates.  In addition, notice the 

distributions of the effect estimates became more symmetric as the number of blocks increased. 

 Table 3.9 gives the results of the comparison of ὺὥὶὨ  and ὺὥὶὨ .  As in matched-

pairs designs, the two estimates do not coincide.  To see why,  consider the relationship between  

the estimates given in (3.21).  Here we alter (3.21) slightly to reflect changes in degrees of 

freedom that occur due to the fact that there are now 4 EUôs per block instead of 2 as in the 

matched-pairs design.  Even with this slight alteration, the inequality in (3.21) still holds.  That 

is,  

 

ςϽ
ὛὛ

τὄ ρ

ὛὛ

τὄ ρ

ὛὛ

ὄ ρ

ὛὛ

σὄ
 ᵼ ὺὥὶὨ ὺὥὶὨ Ȣ              σȢσψ 

 

 

 

 

 

 
Table 3.9 Different Methods of Estimation:  GRCBD. 

 Comparison of var(dij). 

 

 

 

2N 

Model 

var(dij) 

Estimated  

var(dij) 

80 12.65 12.60 
240 12.30 12.15 

800 11.66 11.57 
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 3.5  Two-Period-Two-Treatment Crossover Design 
In an observable two-period-two-treatment crossover design, EUôs are randomly assigned 

to one of two groups in which one group receives treatment at time period 1 followed by control 

at time period 2.  The other group receives control at time period 1 followed by treatment at time 

period 2.  Regardless of which sequence an EU receives, two responses are measured for each 

EU, one response under treatment and one response under control.  Random assignment to the 

different sequences prevents the confounding of period effect and treatment effect.  The model 

for the two-period-two-treatment crossover design can be thought of as an extension of the 

matched-pairs design in which the EU from the crossover design now takes on the role of the 

block in the matched-pairs design and the period from the crossover design takes on the role of 

the EU in the matched-pairs design.  One significant disparity between the two designs is that 

periods and EUôs are crossed in a crossover design (i.e. a response is measured in every EU at 

every period) while EUôs are nested within blocks in a RCBD.    Table 3.10 gives the effects and 

assumption for both the potential and observable models in the two-period-two-treatment 

crossover design, assuming no carry-over effect.  

A direct relationship between the observable model and the potential model may be 

established by defining 

 

Model Model Parameters Assumptions 

Potential Model ὶ ‘ ί “ ί“ † ί† “† ί“†    

 

 Ὥ ρȟςȣὔ ὉὟᴂίȠ    
Ὦ ρȟς ὴὩὶὭέὨίȠ   Ὧ Ὕȟὅ 

ίͯ ὭὭὨ ὔπȟ„  

ί“ͯ ὭὭὨ ὔπȟ„  

ί†
ί† ὓͯὠὔ

π
π
ȟ
„ π

π „
 

ί“†ͯ ὭὭὨ ὔπȟ„  

 

ίȟί“ȟί†  and ί“† are 

mutually independent. 

 

 

Observable Model 

 

Ὑ ‘ ί “ † “† Ὡ   

 

Ὥ ρȟςȣὔ ὉὟᴂίȠ    
 Ὦ ρȟς ὴὩὶὭέὨί  
Ὧ Ὕȟὅ 

 

 

ίͯ ὭὭὨ ὔπȟ„  
Ὡ
Ὡ ὓͯὠὔ

π
π
ȟ
„ π

π „
 

  
ί, Ὡ , and Ὡ  are mutually 

independent 

 

Table 3.10 Model effects and assumptions in a Two-Period-Two-Treatment Crossover. 

 



54 

 

Ὡ ί“ ί† ί“†                                                        σȢσω 

 

since multiple observations per subject-period combination and multiple observations of subject-

treatment combinations are ñlostò by invoking the randomization mechanism.  Consequently, it 

is reasonable to conclude that the subject-by-period, the subject-by-treatment, and the subject-

by-period-by-treatment effect from the potential model are confounded together in order to form 

the residual term in the observable model.  If such confounding occurs, then  

 

„ „ „ „ ȠὯ Ὕȟὅ                                               σȢτπ 

 

under the assumptions given in Table 3.10.  Furthermore, under the assumption of unit-treatment 

additivity, ί“ ί† ί“† π ÆÏÒ ÁÌÌ ὭȟὮ ÁÎÄ Ὧ and  

 

Ὡ π 

 

irrespective of the level of treatment assigned to the Ὥ  EU at the Ὦ  period.  This implies that 

the only random variability in responses in a two-period-two-treatment crossover is due to the 

random variability of EUôs.  The above assumption of unit-treatment additivity assumes 

additivity at each time period so that the true individual causal effect is constant across both time 

periods. 

In every experimental design considered to this point, the observable data model 

generated by confounding effects from the potential model has agreed with some form of a 

ñstandardò model for that particular design.  Considering the two-period-two-treatment crossover 

design, the observable model here may not be readily recognizable.  A common, standard 

crossover model assuming no carry-over effects might look something like 

 

Ὑ ‘ “ †  Ὡǿ                                                     σȢτρ 

 

where Ὑ  is the response of the Ὥ  EU, Ὥ ρȟςȟȢȢȟὔ, at the Ὦ  time period, Ὦ ρȟς, on the Ὧ  

level of treatment, Ὧ Ὕȟὅ receiving the ὰ  treatment sequence, ὰ ρȟς.  Without loss of 
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generality, define  as the sequence effect resulting from a Ὕȟὅ sequence and  as the 

sequence effect of resulting from a ὅȟὝ sequence.  The indices Ὧ and ὰ are related since the 

indices of treatment sequence, ὰ ρȟς, arise from combinations of the indices of treatment, 

Ὧ Ὕȟὅ, and time period, Ὦ ρȟς.  Therefore the effect of may be thought of as the fixed 

effect of receiving treatment Ὧ Ὕ at time period Ὦ ρ followed by treatment Ὧ ὅ at time 

period Ὦ ς.  The effect of may be thought of as the fixed effect of receiving treatment Ὧ ὅ 

at period Ὦ ρ followed by treatment Ὧ Ὕ at period Ὦ ς.  Conversely, if the sequence and 

the time period are known, then the level of treatment applied at that time period is known.  All 

other effects are previously defined in Table 3.10. 

The observable data models given in Table 3.10 and (3.41) differ in the following 

respects:   there is no sequence effect in the model given in Table 3.10 and there is no random 

subject effect in the model given in (3.41).  The following is a brief explanation of the 

discrepancies.    First, define Ὡǿ in (3.41) as 

 

Ὡǿ ίὭ Ὡ  

 

where Ὡ  is given in Table 3.10.  It has been noted above that under the assumption of unit-

treatment additivity,  

 

Ὡ πȢ 

Therefore,  

 

Ὡǿ ίὭ 

and  

ὺὥὶὙ „  

 

if unit-treatment additivity holds. 

Second, from a potential outcomes point of view, treatment sequence is an artifact of the 

implementation of the random treatment assignment mechanism producing a certain level of 

treatment at a particular time period.  Assuming uniform randomization, one could argue, as we 

do here, that there is no reason to expect a significant effect due to groups of EUôs other than the 
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fact that different treatment sequences were applied to the groups.  Furthermore, notice that the 

indices of the period-by-treatment effect inform us of which treatment was applied at which time 

period.  Therefore, a significant difference between the two groups to which treatment sequences 

were applied should be attributed to period-by-treatment effects instead of group effects.  

Without loss of generality, if we define  as the sequence effect resulting from a Ὕȟὅ 

sequence and  as the sequence effect of resulting from a ὅȟὝ sequence, the observable data 

models given Table 3.10 and (3.41) are equivalent under the following assumptions: 

 

Ὥ “† “† ρ 

ὭὭ “† “† ς                                                    (3.42) 

ὭὭὭ ὩὭὮὰί ὩὭὮὯ 

 

Therefore, the model in (3.41) may be thought of as a specific case of the model in Table 3.10 

Using the potential and observable model in Table 3.10, the existence of a difference in 

sequence effects is something that can be tested, even if the assumptions in (3.42) do not hold.  

Consider the following null hypothesis of no mean sequence effect under our particular model: 

 

Ὄȡ ‘ ‘ ‘ ‘                                              σȢτσ 
 

 

In other words, as long as the effect of treatment is defined as the difference in observations 

under treatment and observations under control (cf., equations (1.1),(1.2), (3.9)), the null 

hypothesis given in (3.43) assumes that the effect of a Ὕȟὅ sequence is the same as a ὅȟὝ 

sequence.  By substituting the fixed effects from our model in Table 3.10, we can re-write the 

null hypothesis 

 

Ὄȡ  ‘ “ † “† ‘ “ † “† ‘ “ † “† ‘ “ † “† 

ᵼ 

Ὄȡ “ “ † † “† “† “ “ † † “† “†  

 

Re-arranging we write 

ὌȡςϽ “ “ “† “† “† “† π 
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ᵼ 

Ὄȡ “ “
ρ

ς
“† “†

ρ

ς
“† “† π 

ᵼ 

Ὄȡ “ “ “†Ͻ “†Ͻ π 

 

It is important to note that all of the parameters of interest in testing for a difference in mean 

sequence effects are estimable in both the observable and potential data models.  For the 

purposes of the following simulations, values of “ȟ“ȟ“†ȟ“†ȟ“†ȟÁÎÄ “† were chosen 

so that  “ “ “†Ͻ “†Ͻ π.  Consequently, no mean sequence effect was present. 

Define the true causal effect to be the difference in potential outcomes for the Ὥ  EU in 

the Ὦ  time period.  That is 

 

Ὠ ὶ ὶ   Ȣ                                                          σȢττ 

 

Given the model assumptions in Table 3.10, the variance of the true effect is given by 

 

ὺὥὶὨ ὺὥὶ
‘ ί “ ί“ † ί† “† ί“†
‘ ί “ ί“ † ί† “† ί“†  

ὺὥὶ† † ί† ί† “† “† ί“† ί“† 

„ „ ς„                                                      σȢτυ 

 

As was the case with the RCBD, the structure of the two-period-two-treatment crossover 

design lends itself to an intuitive definition of naïve effect. This is defined as the difference 

between the response under treatment and the response under control for the Ὥ  EU, irrespective 

of which time period treatment and control were applied. Thus  

 

Ὀ Ὑ Ὑ Ȣ                                                                     σȢτφ 
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Ὀ may be thought of as a naïve version of the true individual causal effect for the two time 

periods in the Ὥ  EU, which here would be given by Ὠ and Ὠ .  Given the model assumptions 

in Table 3.10, the variance of the naïve effect is given by 

 

ὺὥὶὈ ὺὥὶ‘ ί “ † “† Ὡ ‘ ί “ † “† Ὡ  

ὺὥὶ“ “ † † “† “† Ὡ Ὡ  

ςϽ„ „ „ „ „ „                                 σȢτχ 

 

where the final equality in (3.47) follows from (3.40).  Since Ὀ is the difference between the 

observable treatment value and the observable control value within the Ὥ  EU, this difference is 

across time periods within the same EU so the difference in the random subject-by-period 

effects, ί“ ί“, remains as a component of Ὀ .  Contrast this to Ὠ , which is the difference 

between potential outcomes within the Ὦ  period for the Ὥ  EU.  Since the potential outcomes 

are defined within the same period and the same subject, the subject-by-period effect is removed.  

Note that the variance in (3.47) is estimable, but none of the individual components from the 

potential model given in Table 3.10 are estimable.  However, using equations (3.40), (3.45), and 

(3.47), ὺὥὶὈ  can be written 

 

ὺὥὶὈ ςϽ„ ὺὥὶὨ  

ᵼ 

ὺὥὶὨ ὺὥὶὈ  

ᵾ 

ὺὥὶὨ ς„ ὺὥὶὨ  

ᵾ 

ὺὥὶὨ ς„ ς„ „ „  

ᵾ 

ὺὥὶὨ „ „                                                       σȢτψ 

 

and an estimable upper bound of for  ὺὥὶὨ  has been established. 
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 The third line of equation (3.48) demonstrates that equality of ὺὥὶὨ  and ὺὥὶὈ  is 

achieved when „ π.  Recall that „  is the variance in a response attributed to that response 

being measured at the Ὦ  time period in the Ὥ  EU, regardless of which level of treatment was 

applied at that time period.  If the effect of the Ὦ  time period is “ with probability 1 for 

ρȟςȣὔ EUôs , then the estimate of ὺὥὶὈ  from observed data could indeed be considered 

an estimate of ὺὥὶὨ Ȣ 

Tables 3.11 (i), 3.11 (ii), and 3.11 (iii) give the results of all effects of interest based on 

Ὓ ρππ simulated data sets.  Within each simulation, ὔ ρπȟὔ σπȟ and ὔ ρππ EUôs were 

considered.  In the potential model, a potential response is considered for each EU at each time 

period, thus the resulting number of responses in the potential outcome framework is given by 

ςϽ0Ͻὔ ςϽςὔ τὔ, where 0 is the number of periods under consideration.  For this 

particular design, 0 ς.  The resulting number of responses in the entire observable experiment 

was given by 0Ͻὔ ςὔ.  Values represent the mean and standard error of estimates across the 

Ὓ ρππ data sets.  Table 3.11 (i) gives results for the fixed treatment effect for the model fit to 

both potential and observable data, Table 3.11 (ii) shows the results for the random effects in the 

potential model and Table 3.11 (iii) the results for the random effects in the observable model.  

For most effects under consideration, the true simulated value is within one or two standard 

errors of the mean of the Ὓ ρππ estimates.  All were within three standard errors of  

the mean across the Ὓ ρππ estimates at ὔ ρππ.  This would indicate that as the number of 

EUôs increases, the REML estimates of these effects are reasonable estimates.  Comparing the 

standard errors of the estimates between potential data and observable data in Tables 3.11 (ii) 

and 3.11 (iii) reveals a larger standard error for the observable estimates, as expected because 

they are computed from half the data versus the potential model. 

As has been consistent in all other designs considered, the estimates of ὺὥὶὨ  given in 

Table 3.11 (ii) correspond the theoretical value derived in (3.45).  Relevant simulation values 

demonstrating (3.45) are „ χȟ„ ςȟÁÎÄ „ ς.  The estimates for „  and „  given in 

Table 3.11 (iii) also seem to be reasonable estimates of the theoretical value derived in (3.40), 

where it was assumed that subject-by-period, the subject-by-treatment, and the subject-by-

period-by-treatment effects in the potential model are confounded to form the residual term in  
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Table 3.11 Two-Period-Two-Treatment Crossover Simulation Results.   

Values represent the average and standard error of effect estimates across Ὓ ρππ simulations in both the 

potential and observable data models for N=10, 30, and 100 for (i) Fixed Treatment Effects.  (ii) Potential Random 

Effects. (iii)  Observable Random Effects.   

 

Fixed  

Effect 

(Potential) 

 

Simulated 

Value 

 

 

4N Ὓ ρππ 

 

Average 

Ὓ ρππ 

 

Std. Error  

 Fixed 

Effect 

(Obs.) 

 

Simulated 

Value 

 

 

2N Ὓ ρππ 

 

Average 

Std.  

Error  

 Ὓ ρππ 

† † 7 40 6.87 0.12  † † 7 20 6.85 0.18 

  120 6.96 0.06    60 6.95 0.08 

  400 6.98 0.04    200 6.98 0.05 

     (i) 

Potential 

Variance 

Simulated 

Value 

 

4N 

Average 

 Ὓ ρππ 
Std. Error  

 Ὓ ρππ 

Subject 10 40 9.12 0.65 
  120 9.38 0.40 

  400 9.81 0.23 

     

Subject*Period 3 40 3.22 0.22 

  120 3.20 0.10 

  400 2.96 0.06 

     

Subject*Trt 7 40 5.92 0.40 

  120 6.77 0.27 

  400 7.10 0.15 

     

Subject*Ctrl 2 40 3.71 0.42 

  120 2.70 0.25 

  400 2.09 0.13 

     

Subject*Period*Trt 2 40 1.93 0.08 

  120 2.00 0.05 

  400 2.03 0.03 

     

ὺὥὶὨ  13 40 13.49 0.55 

  120 13.47 0.32 

  400 13.25 0.13 

     (ii)  

Observable 

Variance 

Simulated 

Value 

 

2N 

Average 

 Ὓ ρππ 
Std. Error  

 Ὓ ρππ 

Subject 10 20 9.54 0.71 

  60 9.59 0.44 

  200 9.81 0.25 

     

Trt  Residual 12 20 11.37 0.83 

  60 11.83 0.46 

  200 12.15 0.25 

     

Ctrl Residual 7 20 8.70 0.76 

  60 7.73 0.38 

  200 7.15 0.20 

     

ὺὥὶὈ  19 20 20.08 1.14 

  60 19.55 0.53 

  200 19.30 0.26 

     (iii)  
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Figure 3.6 Bounding the Individual Causal Effect: Two-Period-Two-Treatment Crossover. 

ὺὥὶὈ ὺὥὶὨ Ȣ  Boxplots of the Ὓ ρππ estimates of ὺὥὶὈ  at N=10, 30, and 100 EUôs.  Dotted lines 

represent values used in the simulation design. 

 

 

the observable model.  Relevant simulation values for the result in (3.40) are „ σȟ„

χȟ„ ςȟÁÎÄ „ ς. 

Figure 3.6 illustrates the result in (3.48).  Dotted lines represent the true values used in 

simulation.  The upper line corresponds to the simulated value of ὺὥὶὈ  and the lower line 

corresponds to the value of ὺὥὶὨ .  The difference between the upper and lower dotted line 

should be equal to ςϽ„ , as demonstrated in (3.48).  In these particular simulations, „ σ, 

thus the distance between the upper two dotted lines is ςϽ„ ςϽσ φ.  Indeed note from 

Figure 3.6 that the same distance is seen to be ρω ρσ φ.  As the number of EUôs  increased 

from 10 to 30 to 100, the variability of the effect estimates around the true simulated value 

decreased.  When ὔ ρππ, the true simulated value is within one standard error of the 

mean of the Ὓ ρππ estimates.  This would indicate that as the number of EUôs increases, the 

REML estimates are reasonable estimates.  In addition, notice the distributions of the effect 

estimates became more symmetric as the number of blocks increased. 

 Table 3.12 gives the results of the comparison of ὺὥὶὨ  and ὺὥὶὨ .  Recall that 

ὺὥὶὨ , was computed using the variance component estimates obtained from the PROC 

GLIMMIX procedure and ὺὥὶὨ  represents the estimate of ὺὥὶὨ  based on the computed  
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Table 3.12 Different Methods of Estimation:  Two-Period-Two-Treatment Crossover. 

 Comparison of var(dij). 

 

difference in potential responses for each subject across both periods.   As in matched-pairs 

designs and the GRCBD, the two estimates do not coincide.  To this point, no result analogous to 

that shown in Appendix B.1 has been derived for the two-period-two-treatment crossover design.  

An extension of the result given in Appendix B.1 to a two-period-two-treatment crossover is 

discussed in Chapter 4. 

 3.6  Repeated Measures Two-Treatment Crossover Design 
As was the case with the matched-pairs design compared with the GRBCD, the potential 

model for the repeated measures two-treatment crossover design is nearly identical to the 

potential model in the two-period-two-treatment crossover design, with the caveat that the 

number of periods crossed with each subject totals four or more periods.  Each EU, therefore, 

receives each treatment at least twice.  Consequently, everything that is estimable in the potential 

two-period-two-treatment crossover model is also estimable in the potential repeated measures 

two-treatment crossover setting.  In the observable model, there are now multiple observations 

on each treatment for each EU that are observable, so the variance of a random subject-by-

treatment effect is estimable. 

Table 3.13 gives the effects and assumption for both the potential and observable models 

in the repeated measures two-treatment crossover.   

A direct relationship between the observable model and the potential model may be 

established by defining 

 

Ὡ ί“ ί“†                                                            σȢτω 

 

since multiple observations per subject-period combination are ñlostò by invoking the 

randomization mechanism.  Consequently, it is reasonable to conclude that the subject-by-period, 

and the subject-by-period-by-treatment effect from the potential model are confounded together 

in order to form the residual term in the observable model.  If such confounding occurs, then  

 

4N 

Model 

var(dij) 

Estimated  

var(dij) 

40 5.44 6.88 
120 8.48 10.35 

400 13.51 14.76 
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Model Model Parameters Assumptions 

Potential Model ὶ ‘ ί “ ί“ † ί† “† ί“†    

 

 Ὥ ρȟςȣὔ ὉὟᴂίȠ    
Ὦ ρȟτ ὴὩὶὭέὨίȠ   Ὧ Ὕȟὅ 

ίͯ ὭὭὨ ὔπȟ„  

ί“ͯ ὭὭὨ ὔπȟ„  

ί†
ί† ὓͯὠὔ

π
π
ȟ
„ π

π „
 

ί“†ͯ ὭὭὨ ὔπȟ„  

 

ίȟί“ȟί†  and ί“† are 

mutually independent. 

 

 

Observable Model 

 

Ὑ ‘ ί “ † “† ί† Ὡ   

 

Ὥ ρȟςȣὔ ὉὟᴂίȠ    
 Ὦ ρȟτ ὴὩὶὭέὨί  
Ὧ Ὕȟὅ 

 

 

ίͯ ὭὭὨ ὔπȟ„  

ί†
ί† ὓͯὠὔ

π
π
ȟ
„ π

π „
 

Ὡ  ͯὭὭὨ ὔπȟ„  

  
ί, ί†ȟί†, and Ὡ  are 

mutually independent 

 

Table 3.13 Model effects and assumptions in a Repeated Measures Two-Treatment Crossover. 

 

 

„ „ „                                                                 σȢυπ 

 

under the assumptions given in Table 3.13.  Furthermore, under the assumption of unit-treatment 

additivity, ί“ ί† ί“† π ÆÏÒ ÁÌÌ ὭȟὮ ÁÎÄ Ὧ and  

 

Ὡ π 

 

irrespective of the level of treatment assigned to the Ὥ  EU at the Ὦ  period.  This implies that 

the random variability in responses in a repeated measures two-treatment crossover is due to the 

random variability of EUôs and the random variability of EUôs receiving a particular level of 

treatment.  

The definition of Ὠ  and thus, the resulting ὺὥὶὨ  remain unchanged from that given 

in (3.44) and (3.45), respectively.  However, a new definition of the naïve effect from that given 

in the two-period-two-treatment crossover design is required. 
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Recall that the structure of the two-period-two-treatment crossover design lent itself to an 

intuitive definition of naïve effect, Ὀ given in (3.46).  However in the repeated measures two-

treatment crossover design with each EU exhibiting a response at each of 4 different time 

periods, there are 4 possible Ὀί that can be defined for a given subject, depending on the 

random treatment assignment of treatment to periods. Selecting which treatment period and 

which control period to use in the computation of Ὀ in order to accurately reflect the true value 

of Ὀ is not intuitive.  It seems more reasonable to consider the average difference in outcomes 

for periods assigned treatment and periods assigned control.   More formally, for the two periods 

receiving treatment Ὕ, define 

ὙϽ
ρ

ς
Ὑ  

 

and, for the two periods receiving treatment ὅ 

 

ὙϽ
ρ

ς
Ὑ  

 

so that 

ὈϽ ὙϽ ὙϽ  Ȣ                                                         σȢυρ 
 

Given the model assumptions in Table 3.13, 

ὺὥὶὈϽ ὺὥὶ

ở

Ở
Ở
ờ

ρ

ς
‘ ί “ ί“ † ί† “† ί“†

ȡ

ρ

ς
‘ ί “ ί“ † ί† “† ί“†

ȡ Ợ

ỡ
ỡ
Ỡ

 

 

ὺὥὶ

ở

Ở
Ở
ờ

‘ ί † ί†
ρ

ς
“ ί“ “† ί“†

ȡ

‘ ί † ί†
ρ

ς
“ ί“ “† ί“†

ȡ Ợ

ỡ
ỡ
Ỡ
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ὺὥὶ

ở

Ở
ờ
ί† ί†

ρ

ς

ụ
Ụ
Ụ
Ụ
ợ “ ί“ “† ί“†

ȡ

“ ί“ “† ί“†

ȡ Ứ
ủ
ủ
ủ
Ủ

Ợ

ỡ
Ỡ

 

 

„ „
ρ

ς
ὺὥὶ ί“ ί“†

ȡ

ρ

ς
ὺὥὶ ί“ ί“†

ȡ

 

 

„ „
ρ

ς
Ͻς„ „

ρ

ς
Ͻς„ „  

 

„ „
ρ

ς
„ „

ρ

ς
„ „  

 

„ „ ςϽ
„ „

ς
 

„ „ „ „  

„ „ „                                                          σȢυς 

 

where the final equality in (3.52) follows from (3.50).  The variance in (3.52) is estimable, but of 

the individual components from the potential model given in Table 3.13, only „  and „  are 

estimable.  Multiplying both sides of the equality in (3.52) by four yields 

 

τϽὺὥὶὈϽ τ„ „ τ„ „  

σ„ „ ς„ „ „ ς„ ς„  

σ„ „ ς„ ς„ ὺὥὶὨ  

 

τϽὺὥὶὈϽ σ„ „ ς„ „ „ ς„ ὺὥὶὨ ς„          σȢυσ 

 

and one can see that an estimable upper bound for ὺὥὶὨ  has been established, since „ , „ , 

and „  are all estimable in a repeated measures two-treatment crossover design.  Recall the 

definition of ὺὥὶὨ  from (3.45).  From equation (3.53), notice that equality of ὺὥὶὨ  and 
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the upper bound given in (3.53) is achieved when „ π.  If  „ π, then the estimate 

„ „ ς„  from observable data can indeed be considered an estimate of ὺὥὶὨ . 

Furthermore, from (3.45)  

 

ὺὥὶὨ „ „ ςϽ„  

ᵼ 

ὺὥὶὨ ςϽ„ „ „  

ᵼ 

„ „ ὺὥὶὨ                                                      σȢυτ 

 

and since „  and „  are estimable in a repeated measures two-treatment crossover design, an 

estimable lower bound has been established for ὺὥὶὨ .  Combining the results of (3.53) and 

(3.54), one can see 

 

„ „ ὺὥὶὨ τϽὺὥὶὈϽ σ„ „ ς„  

ᵾ 

„ „ ὺὥὶὨ ὺὥὶὨ ς„  

ᵾ 

„ „ ὺὥὶὨ „ „ ς„ ς„  

ᵾ 

„ „ ὺὥὶὨ „ „ ς„                                σȢυυ 

 

In the two-period-two-treatment crossover analysis, the trivial lower bound of zero and a 

non-trivial estimable upper bound for ὺὥὶὨ  were demonstrated in (3.48).  However, here in 

the repeated measures two-treatment crossover design, both a non-trivial lower bound and upper 

bound have been established.  The lower bound, „ „ , is a partial description of treatment 

heterogeneity.  More on this later.  The upper bound in (3.48) and (3.55) are identical in terms of 

the potential model parameters given in Tables 3.10 and 3.13, respectively.  This upper bound is 

„ „ ς„ ς„ .  From an observable model perspective, the difference between the 
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two-period-two-treatment crossover design and the repeated measures two-treatment crossover 

can be described by the respective difference in residual variances given in (3.40) and (3.50).  

According to (3.40), „ „ ς„ ς„ „ „  in the two-period-two-treatment 

crossover design, however, in the repeated measures two-treatment crossover design, „

„ ς„ ς„ „ „ ς„ , according to (3.50). 

Equations (3.52) and (3.53) can be extended to accommodate a repeated measures two-

treatment crossover design with more than 4 periods.  The following equations give the general 

result for any balanced repeated measures two-treatment crossover design with ὖ periods. 

 

ὺὥὶὈϽ „ „
τ

ὖ
Ͻ„ „ „ „ τϽ

„

ὖ
              σȢυφ 

and 

 

ὖϽὺὥὶὈϽ ὖ ρ „ „ ς„ ς„ ὺὥὶὨ  

ᵼ 

ὖϽὺὥὶὈϽ ὖ ρ „ „ ς„ ὺὥὶὨ ς„  

„ „ ς„ ς„  

„ „ ς„                                                        σȢυχ 

 

As in the two-sample CRD and GRCBD, comparison of ὺὥὶὨ  with ὺὥὶὈϽ may not 

seem intuitive since ὺὥὶὈϽ is computed based on aggregate information from a sample and 

ὺὥὶὨ  is computed based on information available from a single EU.  Therefore define 

  

ὨӶϽ
ρ

τ
Ὠ

ρ

τ
ὶ ὶ                                        σȢυψ 

 

to compare and contrast with ὈϽ.  Given the model assumptions in Table 3.13, 

 

ὺὥὶὨӶϽ ὺὥὶ

ρ

τ
‘ ί “ ί“ † ί† “† ί“†

               ‘ ί “ ί“ † ί† “† ί“†
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ὺὥὶ
ρ

τ
ί† ί† ί“† ί“†  

ὺὥὶί† ί†
ρ

τ
ί“† ί“†  

 

„ „
ρ

τ
τϽςϽ„  

„ „ ςϽ
„

τ
„ „

„

ς
                             σȢυω  

 

  Using a similar argument given (3.54), it is easily seen that „ „  is also an estimable 

lower bound for ὺὥὶὨӶϽ. 

 Comparing and contrasting ὺὥὶὨӶϽ to ὺὥὶὈϽ, notice that ὺὥὶὈϽ can be written 

 

ὺὥὶὈϽ „ „ „  

„ „ „ „  

„ „
„

ς

„

ς
„  

ὺὥὶὨӶϽ „
„

ς
 

ὺὥὶὨӶϽ
„

ς

„

ς
                                                    σȢφπ 

 

where the final equality in (3.60) follows from (3.50).  Writing ὺὥὶὈϽ in this form and noting 

the argument in (3.54) establishing an estimable lower bound for ὺὥὶὨӶϽ, one can see 

 

„ „ ὺὥὶὨӶϽ ὺὥὶὈϽ
„

ς
 

ᵾ 

„ „ ὺὥὶὨӶϽ „ „  
„

ς
Ȣ                                  σȢφρ 
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By (3.61), estimable upper and lower bounds of ὺὥὶὨӶϽ have been established. 

 Equations (3.59) and (3.60) can also be extended to accommodate a repeated measures 

two-treatment crossover design with more than 4 periods.  The following equations give the 

general result for any balanced repeated measures two-treatment crossover design with ὖ 

periods. 

ὺὥὶὨӶϽ „ „ ςϽ
„

ὖ
                                             σȢφς 

 

ὺὥὶὈϽ ὺὥὶὨӶϽ
τ

ὖ
Ͻ„

ς

ὖ
Ͻ„  

ᵾ 

ὺὥὶὈϽ ὺὥὶὨӶϽ
ς

ὖ
Ͻ„

ς

ὖ
Ͻ„  

ᵾ 

ὺὥὶὈϽ „ „ τϽ
„

ὖ
                                           σȢφσ 

 

It would be reasonable to consider the behavior of ὺὥὶὨӶϽ as ὖ increases.  From (3.62), notice 

 

ÌÉÍ
ᴼ
ὺὥὶὨӶϽ ÌÉÍ

ᴼ
„ „ ςϽ

„

ὖ
„ „                 σȢφτ 

 

which shows that the variance of an average effect for an EU converges to the sum of the 

variance component associated with subject-by-treatment random effects. 

Notice that the results given in (3.55) and (3.61) are not the same result.  The result in 

(3.55) is a statement with respect to individual treatment heterogeneity.  The result from (3.61) is 

a statement about the average casual effect within a block.  As such, there is no comparable 

result to (3.64) for ὺὥὶὨ .  The variance of the true, individual causal effect given in (3.55) is 

a fixed population parameter, thus extending the two-period-two-treatment crossover design to a 

balanced repeated measures two-treatment crossover design with ὖ periods only permits an 

estimable lower bound.  Extending the design does not change either the value of  ὺὥὶὨ  or 

the estimable upper bound.  
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Tables 3.14 (i), 3.14 (ii), and 3.14 (iii) give the results of all effects of interest based on 

Ὓ ρππ simulated data sets.  In contrast to the other designs considered, the number of EUôs 

was altered slightly to accommodate balance with respect to the six different possible treatment 

sequences.  The number of sequences was a consequence of considering four time periods 

instead of two.  So for this design only, ὔ ρςȟὔ σφȟὥὲὨ ὔ ρςπ EUôs were considered in 

simulation.  In the potential model, a potential response is considered for each EU at each time 

period, thus the resulting number of responses in the potential outcome framework is given by 

ςϽ0Ͻὔ ςϽτὔ ψὔ, where 0 is the number of periods under consideration.  For this 

particular design, 0 τ.  The resulting number of responses in the entire observable experiment 

was given by 0Ͻὔ τὔ.  Values represent the mean and standard error of estimates across the 

Ὓ ρππ data sets.  Table 3.14 (i) gives results for the fixed treatment effect for the model fit to 

both potential and observable data, Table 3.14 (ii) shows the results for the random effects in the 

potential model and Table 3.14 (iii) the results for the random effects in the observable model.  

For most effects under consideration, the true simulated value is within one or two standard 

errors of the mean of the Ὓ ρππ estimates.  All were within three standard errors of the mean 

across the Ὓ ρππ estimates at ὔ ρππ.  This would indicate that as the number of EUôs 

increases, the REML estimates of these effects are reasonable estimates.  Comparing the 

standard errors of the estimates between potential data and observable data in Tables 3.14 (ii) 

and 3.14 (iii) reveals a larger standard error for the observable estimates, as expected because 

they are computed from half the data versus the potential model. 

As has been consistent in all other designs considered, the estimates of ὺὥὶὨ  given in 

Table 3.14 (ii) correspond the theoretical value derived in (3.45).  Furthermore, the estimates of 

ὺὥὶὨӶϽ given in Table 3.14 (ii) correspond the theoretical value derived in (3.59).  Relevant 

simulation values demonstrating the results in (3.45) and (3.59) are „ χȟ„ ςȟÁÎÄ „

ς.  The estimates for „  and „  given in Table 3.14 (iii) also seem to be reasonable estimates of 

the theoretical value derived in (3.50), where it was assumed that subject-by-period and the 

subject-by-period-by-treatment effects in the potential model are confounded to form the residual 

term in the observable model.  Relevant simulation values for the result in (3.50) are „

σ ÁÎÄ „ ς. 
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Fixed  

Effect 

(Potential) 

 

Simulated 

Value 

 

 

8N Ὓ ρππ 

 

Average 

Ὓ ρππ 

 

Std. Error  

 Fixed 

Effect 

(Obs.) 

 

Simulated 

Value 

 

 

4N Ὓ ρππ 

 

Average 

Std.  

Error  

 Ὓ ρππ 

† † 7 96 6.91 0.10  † † 7 48 6.86 0.12 

  288 6.99 0.05    144 6.99 0.06 

  960 7.02 0.03    480 7.04 0.04 

       (i) 

 

 

Potential 

Variance 

Simulated 

Value 

 

8N 

Average 

 Ὓ ρππ 
Std. Error  

 Ὓ ρππ 

Subject 10 96 8.99 0.53 

  288 9.65 0.32 

  960 10.09 0.17 

     

Subject*Period 3 96 3.05 0.11 

  288 3.01 0.06 

  960 3.04 0.03 

     

Subject*Trt  7 96 6.45 0.42 

  288 6.93 0.24 

  960 6.83 0.13 

     

Subject*Ctrl 2 96 2.69 0.31 

  288 2.24 0.17 

  960 2.12 0.10 

     

Subject*Period*Trt  2 96 2.01 0.05 

  288 2.02 0.03 

  960 1.99 0.01 

     

ὺὥὶὨ  13 96 13.17 0.45 

  288 13.20 0.25 

  960 12.93 0.12 

     

ὺὥὶὨӶϽ 10 96 10.15 0.44 

  288 10.17 0.24 

  960 9.95 0.12 

     

     (ii)  
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Table 3.14 Repeated Measures Two-Treatment Crossover Simulation Results.   

Values represent the average and standard error of effect estimates across Ὓ ρππ simulations in both the 

potential and observable data models for N=12, 36, and 120 for (i) Fixed Treatment Effects.  (ii) Potential Random 

Effects. (iii)  Observable Random Effects.   

 

 

Figure 3.7 illustrates the result in (3.55).  Dotted lines represent the true values used in 

simulation.  The upper line corresponds to the simulated value of „ „ ς„ , the middle 

line corresponds to the value of ὺὥὶὨ , and the lower line represents the lower bound of 

ὺὥὶὨ ȟ„ „ .  The difference between the upper and middle dotted line should be equal 

to ς„ , as demonstrated in (3.55).  In these particular simulations, „ σ thus the anticipated 

distance between the upper two dotted lines is ς„ ςϽσ φ.  Indeed note from Figure 3.7 

that the distance between the upper and middle dotted lines is seen to be ρω ρσ φ.  Also  

 

Observable 

Variance 

Simulated 

Value 

 

4N 

Average 

 Ὓ ρππ 
Std. Error  

 Ὓ ρππ 

Subject 10 48 8.98 0.60 
  144 9.76 0.32 

  480 10.06 0.17 

     

Subject*Trt  7 48 6.75 0.53 

  144 7.13 0.29 

  480 6.92 0.18 

     

Subject*Ctrl 2 48 3.18 0.42 

  144 2.04 0.21 

  480 2.08 0.14 

     

Residual 5 48 5.06 0.17 

  144 4.98 0.09 

  480 5.00 0.05 

     

 ὺὥὶὈϽ 14 48 14.99 0.61 

  144 14.15 0.31 

  480 13.99 0.18 

     

ὟὴὴὩὶ ὄέόὲὨ ὺὥὶὨ  19 48 20.05 0.64 

  144 19.14 0.32 

  480 18.99 0.19 

     

ὟὴὴὩὶ ὄέόὲὨ ὺὥὶὨӶϽ 11.5 48 12.46 0.62 

  144 11.66 0.31 

  480 11.49 0.19 

     

ὒέύὩὶ ὄέόὲὨ  9 48 9.93 0.63 

  144 9.17 0.32 

  480 9.00 0.19 

(iii)  
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Figure 3.7 Bounding the Individual Causal Effect: Repeated Measures Two-Treatment Crossover Design. 

„ „ ς„ ὺὥὶὨ „ „ Ȣ  Boxplots of the Ὓ ρππ estimates of „ „ ς„  at N=12, 

36, and 120 EUôs measured at 4 time periods.  Dotted lines represent values used in the simulation design. 

 

 

 

 

 

Figure 3.8 Bounding the Average Causal Effect:  Repeated Measures Two-Treatment Crossover Design. 

„ „ ὺὥὶὨӶϽ „ „ Ȣ  Boxplots of the Ὓ ρππ estimates of „ „  at N=12, 36, 

and 120 EUôs measured at 4 time periods.  Dotted lines represent values used in the simulation design. 
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notice that the upper bounds of ὺὥὶὨ  in both Figure 3.6 and 3.7 occur at the same value, 19.  

This confirms that the upper bound of ὺὥὶὨ is the same in both the two-period-two-treatment 

crossover design and the repeated measures two-treatment crossover design.  

Figure 3.8 illustrates the result in (3.61).  Dotted lines represent the true values used in 

simulation.  The upper line corresponds to the simulated value of „ „ , the middle 

line corresponds to the value of ὺὥὶὨӶϽ, and the lower line represents the lower bound of 

ὺὥὶὨӶϽȟ„ „ .  It can be shown that the difference between the upper and middle dotted 

line should be equal to .  In these particular simulations, „ σ thus the anticipated distance 

between the upper two dotted lines is ρȢυ.  Indeed note from Figure 3.8 that the 

distance between the upper and middle dotted lines is seen to be ρρȢυ ρπ ρȢυ.  In both 

Figure 3.7 and 3.8, as the number of EUôs  increased from 12 to 36 to 120, the variability of the 

effect estimates around the true simulated value decreased.  When ὔ ρςπ, the true simulated 

value is within one standard error of the mean of the Ὓ ρππ estimates.  This would indicate 

that as the number of EUôs increases, the REML estimates are reasonable estimates.  In addition, 

notice the distributions of the effect estimates became more symmetric as the number of EUôs 

increased. 

 It should not be overlooked that „  and „  were the inestimable quantities that 

identified the presence of treatment heterogeneity in the two-sample CRD when either „  or „  

were non-zero.  By considering a more complex experimental design, these previously 

inestimable quantities have become estimable, and treatment heterogeneity may be partially 

described from observable data in a repeated measures two-treatment crossover.  However, the 

estimates of „  and „  still do not completely characterize treatment heterogeneity, at least not 

without additional assumptions.  The assumptions required for treatment heterogeneity to be 

completely described and the consequences of those assumptions in the current experimental 

setting are now considered. 

 Recall that in (3.45), ὺὥὶὨ  was defined as the linear combination of „ ȟ„ , and  

„ .  Estimable quantities from observable data include „  and „ , but „  is not estimable in 

the observable data model, therefore ὺὥὶὨ  is not estimable.  Under the assumption that 

„ π, however, ὺὥὶὨ  is completely characterized by „  and „  so that ὺὥὶὨ  
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becomes estimable in the observable data model.  Coincidently, if  „ π, then ὺὥὶὨ  

given in (3.45) and ὺὥὶὨ  given in (3.4) are equivalent, where ὺὥὶὨ  is the variance of the 

true causal effect for the Ὦ  EU in a two-sample CRD. 

 But, practically speaking, what does it mean that „ π?  Recall, ί“† is the effect 

produced by applying the Ὧ  level of treatment at the Ὦ  period to the Ὥ  EU.  It may be helpful 

to contrast ί“† with the fixed effect “†, which is the effect produced by applying the Ὧ  

level of treatment at the Ὦ  period.  Under the assumptions given in Table 3.13, the sum of these 

two effects yields the following random effect: 

 

“† ί“† ὭͯὭὨ ὔ“†ȟ„ Ƞ                                          σȢφυ 

Ὥ ρȟςȢȢὔȟὮ ρȟςȢȢτȟὯ Ὕȟὅ 

 

So if no variability is produced by applying the Ὧ  level of treatment at the Ὦ  period across 

Ὥ ρȟςȢȢὔ EUôs, then „ π.  In other words, applying the Ὧ  level of treatment at the Ὦ  

period to the Ὥ  EU yields the effect “† with probability 1 for Ὥ ρȟςȢȢὔ when „ π.  

Since „  is not estimable in an observable model, the validity of this assumption cannot be 

tested. 

 Table 3.15 gives the results of the comparison of ὺὥὶὨ  and ὺὥὶὨ .  As in 

matched-pairs designs, GRCBD, and the two-period-two-treatment crossover design, the two 

estimates do not coincide.  To this point, no result analogous to that shown in Appendix B.1 has 

been derived for the Repeated measures two-treatment crossover design.  These results will be 

discussed further in Chapter 4. 

 

 

 

 

 

Table 3.15 Different Methods of Estimation:  Repeated Measures Two-Treatment Crossover Design. 

 Comparison of var(dij). 

 

 

8N 

Model 

var(dij) 

Estimated  

var(dij) 

96 9.40 12.29 
288 16.43 18.88 

960 15.53 17.36 
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 3.7  Summary 
In the preceding sections, models for potential outcomes were derived for each of five 

common experimental designs.  All models assumed Gaussian responses.  Pertinent model 

assumptions have been stated for each design.  In the two-sample CRD, it was shown that for a 

non-negative correlation between potential outcomes under treatment and potential outcomes 

under control, estimates of this correlation using model components yielded identical results to 

those estimates obtained by computing Pearsonôs correlation on the set of N bivariate potential 

outcomes. 

Using the potential models, a definition of treatment heterogeneity has been clearly 

defined in terms of potential model components. Simulations confirmed that using REML 

estimates of the potential model components to estimate treatment heterogeneity yielded 

reasonable results for all experimental designs. 

Furthermore, ñusualò observable models for each experimental design and the 

corresponding potential models were linked by defining the residual term in the observable 

model to be the sum of the confounded effects from the potential model.   These potential model 

effects were confounded together by removing one-half of the data to mimic the implementation 

of a uniform randomization mechanism.  Once again, simulations demonstrated that this 

relationship between observable and potential models was reasonable, as REML estimates of the 

observable residual were ñcloseò to the sum of the confounded potential model effects used to 

produce the simulated potential data. 

Naïve estimates of treatment heterogeneity were defined for each observable model and 

the variance of these naïve effects were given in terms of the variance of the appropriate 

potential model components.  In all experimental designs, the variance of the naïve estimate of 

treatment heterogeneity served as an upper bound for the variance of the true, causal effect.  In 

more complex designs (i.e.-GRCBD, and repeated measures two-treatment crossover), lower 

bounds for the variance of the true, causal effect were also established.  Simulations confirmed 

both the existence and accuracy of these bounds.  Furthermore, for each design, the assumptions 

required to equate the variance of the naïve effect and the variance of the true, causal effect were 

presented. 

Finally, it was demonstrated that some inestimable quantities in relatively simple 

experimental designs become estimable by increasing the complexity of the design.  In 
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particular, the variance associated with a subject-by-treatment effect becomes estimable by 

moving from a two-period-two-treatment crossover design to a repeated measures two-treatment 

crossover design. The fact that this variance is estimable in a repeated measures two-treatment 

crossover design has been noted previously Senn (2001); however, it was not clear how this 

component was related to the variance of true effects and/or what assumptions were required to 

equate the two.  The results presented here clearly identify the relationship between the estimable 

variance of a subject-by-treatment effect and treatment heterogeneity and the appropriate 

assumptions required to equate the two have been described.  
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Chapter 4 - Proposed Research Completed 

The following chapters represent the work that was proposed to complete this dissertation 

research.  Topics in Chapter 4 clarify results presented in Chapter 3.  Topics included in Chapters 

5 and 6 serve as extensions of the research presented in Chapter 3.  Further research ideas are 

also presented in Chapter 7. 

 4.1  Discrepancy of Model ○╪►▀ and Estimated ○╪►▀ 
For each of the five experimental designs presented in Chapter 3, two methods of 

computing the variance of the individual causal effect, ὺὥὶὨ and ὺὥὶὨ, were compared.  

Both methods used estimates from the potential model only.  ὺὥὶὨ was termed Model ὺὥὶὨ 

and was computed using the appropriate variance component estimates obtained from the PROC 

GLIMMIX procedure.  ὺὥὶὨ was termed Estimated ὺὥὶὨ and was computed by estimating 

the variance of the difference in potential responses for each EU using PROC UNIVARIATE in 

SAS. 

Of the five experimental designs, only the two-sample CRD yielded identical estimates 

between the two methods.  Discrepancies observed in the matched-pairs design and GRCBD 

were shown in Appendix B.1 to be due to degrees of freedom associated with sums of squares 

terms in the linear model.  However, the proof presented in Appendix B.1 assumed 

homoscedasticity of variances for potential outcomes.  Furthermore, no comparable proof has yet 

been established for the crossover designs presented in Chapter 3.  

The results given in Appendix B.1 can be extended to a two-period-two treatment 

crossover design by considering the computation of ὺὥὶὨ  under the homoscedastic 

assumption that „ „ „ :  

ὺὥὶὨ
ρ

ςὔ ρ
Ὠ ὨӶϽϽ  

 

ςὔ ρὺὥὶὨ Ὠ ὨӶϽϽ                                       τȢρ 

 

As shown in Appendix B.2, the sum of squares in (4.1) can be written as follows: 
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Ὠ ὨӶϽϽ ςϽὛὛ ὛὛ ὛὛ                                     τȢς 

 

where ὛὛ is the sum of squares due to the subject-by-treatment effect, ὛὛ is the sum of 

squares due to the period-by-treatment effect and ὛὛ  is the sum of squares due to the subject-

by-period-by-treatment effect.  Theses sums of squares are defined in Appendix B.2.  Thus 

 

ὺὥὶὨ
ρ

ςὔ ρ
ϽςϽὛὛ ὛὛ ὛὛ ςϽ

ὛὛ

ςὔ ρ

ὛὛ

ςὔ ρ

ὛὛ

ςὔ ρ
Ȣ        τȢσ 

 

However, estimating ὺὥὶὨ   from (3.45) yields 

 

ὺὥὶὨ „ „ ςϽ„ ς
ὓὛ ὓὛ

ς
ςὓὛ  

ὓὛ ὓὛ
ὛὛ

ὔ ρ

ὛὛ

ὔ ρ ὖ ρ Ὕ ρ
                        τȢτ 

where ὓὛ  is the mean square of the subject-by-treatment effect and ὓὛ  is the mean square 

of the subject-by-period-by-treatment effect.  Thus from (4.3) and (4.4), one can see that 

 

ςϽ
ὛὛ

ςὔ ρ

ὛὛ

ςὔ ρ

ὛὛ

ςὔ ρ

ὛὛ

ὔ ρ

ὛὛ

ὔ ρ ὖ ρ Ὕ ρ
 

 ᵼ ὺὥὶὨ ὺὥὶὨ                                                          τȢυ 

 

where the inequality is due to degrees of freedom associated with sums of squares terms in the 

linear model and the additional sums of squares due to a period-by-treatment effect in the 

computation of ὺὥὶὨ . 

 

 4.2  Correlation 
In section 3.2, two methods for computing the correlation between potential outcomes 

under treatment and potential outcomes under control in the two-sample CRD were also 

compared.  One method used estimated variance components to compute an intra-class 
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coefficient.  The second method used Pearsonôs computed correlation coefficient as an estimate 

of correlation.  Recall that the estimates were identical so long as Pearsonôs computed correlation 

was non-negative.  When Pearsonôs computed correlation returned a negative estimate, the 

corresponding intra-class correlation estimate was always zero.  Based on the model assumptions 

given in Table 3.1, the intra-class correlation estimate is required to be non-negative since the 

covariance between the potential response under treatment and the potential response under 

control within the same EU is „ , the variance attributed to the EU regardless of the level of 

treatment applied.  Also recall that equation (2.6) gave bounds for „ , the variance of the 

individual causal effect.  The upper bound and lower bound were determined by assuming 

” ρ and ” ρ respectively, where ”  is the correlation between potential outcomes 

given in (1.3).  However, if the correlation between potential outcomes is restricted to being non-

negative, as is the case for intra-class correlation under the assumption of the model given in 

(3.1), then different bounds from those given in (2.6) would be achieved.  That is, 

 

π „ „ „ „ „ Ȣ                                                       τȢφ 

 

Further investigation of the discrepancy between (4.6) and (2.6) is warranted.  Results are given 

in section 4.2.1. 

 A second issue that may be related to the nature of the correlation between potential 

responses relates to the assumption of unit-treatment additivity.  Recall that if unit-treatment 

additivity holds, then the variance of the true causal effect, „ , is zero.  Gadbury et. al (2001) 

demonstrated that based on the definition of „  given in (2.1), „ π if and only if the 

following two conditions hold: 

Ὥ „ „  

and                                                                 τȢχ 

ὭὭ ” ρ 

However, given the results of equation (3.4), „ π if and only if „ „ π.  Assuming 

the intra-class correlation definition 

 

”
„

„ „ Ͻ„ „
                                                        τȢψ 
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„ „ π forces ” ρ.  The results given here for „ π differ from those given in the 

literature.  Resolving these differences in conditions under which „ π needs to be carefully 

considered.   Part of resolving these differences will include a description of how the bounds for 

„ or conditions for estimability of „  relate to correlation assumptions in the potential data 

model.  This is discussed further in section 4.2.2. 

 4.2.1 Pearson Correlation vs. Intra-class Correlation:  Determining Bounds 

According the model and assumptions for the two-sample CRD given in Table 3.1, the 

joint distribution of the random effects in the potential LMM are 

 

ί
ί†
ί†

ὓͯὠὔ
π
π
π
ȟ

„ π π

π „ π

π π „

 

 

In order to resolve the discrepancy between (4.6) and (2.6), assume a more general multivariate 

normal distribution of the random effects in the potential LMM such as 

 

ί
ί†
ί†

ὓͯὠὔ
π
π
π
ȟ

„ ” „„ ” „„

” „„ „ ” „ „

” „„ ” „ „ „

Ȣ             τȢω 

 

According to the potential model given in Table 3.1 

 

Ὥ   ὺὥὶὶ „ „ ς”„„ȠὭ Ὕȟὅ 

ὭὭ ὧέὺὶȟὶ Ὁί Ὁίί† Ὁίί† Ὁί†ί†

„ ” „„ ” „„ ” „ „ Ȣ 

so that 

ὶ
ὶ ὓͯὠὔ

‘ †
‘ † ȟ

„ „ ς” „„ „ ” „„ ” „„ ” „ „

„ ” „„ ” „„ ” „ „ „ „ ς” „„
Ȣ 

 

Now reconsider the intra-class correlation given in (4.8) under these revised assumptions about 

the random effects in the potential LMM 
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”
„ί
ς ”

ίὝ
„ί„ίὝ ”ίὅ„ί„ίὅ ”ίὝὅ„ίὝ„ίὅ

„ί
ς „ίὝ

ς ς”
ίὝ
„ί„ίὝϽ„ίς „ίὅ

ς ς”
ίὅ
„ί„ίὅ

Ȣ                               τȢρπ 

 

Notice that the intra-class correlation is no longer restricted to being non-negative.  That is,   

ρ ” ρ depending on the values of „ , ” , ” , and ” .  The intra-class correlation in 

(4.8) can be derived from (4.10) if  the assumption ” ” ” π holds.  Under this 

assumption, the value of ”  must be non-negative. 

By permitting a more general multivariate distribution on the random effects as in (4.9), a 

result synonymous with the result given in (2.6) may be obtained.  Reconsider the ὺὥὶὨ , now 

under the more general assumptions given in (4.9): 

 

ὺὥὶὨ ὺὥὶὶ ὶ „ „ ς” „ „ Ȣ 

 

Upper and lower bounds are achieved by assuming ” ρ and ” ρ, respectively, so 

that 

π „ „ „ „ „                                            τȢρρ 

 

It should be noted that these bounds are not estimable in a two-sample CRD. 

 4.2.2 Pearson Correlation vs. Intra-class Correlation:  Conditions for Zero Variance 

From (4.11), „ π if and only if ” ρ and „ „ .  Denote this common 

variance as „ .  If we impose these conditions on the definition of ”  given in (4.10), then 

 

”
„ ” ” „„ „

„ „ ς” „„ Ͻ„ „ ς” „„
Ȣ 

 

Notice that even though ” ρ and „ „ „ , ”  is not necessarily 1 and „  is not 

necessarily equal to „ .  In order to accomplish the necessary requirements for „ π from 

(2.6), the additional assumption that ” ”  is required.  Denote this common correlation as 

” .  If we assume (i) ” ρ, (ii) „ „ „  and (iii) ” ” ”  then 
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”
„ ς”„„ „

„ „ ς”„„ Ͻ„ „ ς”„„
ρ 

 

and 

„ „ „ „ ς”„„  

 

and the necessary assumptions required for „ π from (2.6) are met.  It is worth noting that if 

” ρ and  „ „ „ , then „ π even if ” ”  so that „ „ . 

 4.2.3 Summary 

Using linear mixed models to delineate the assumptions necessary to equate treatment 

heterogeneity in a potential outcomes framework to estimable components of an observable data 

model yielded some surprising results, compared with those results published from a finite-

population perspective.  For complex designs in particular, the estimates of „  using linear 

mixed model components did not always match the finite-population estimates of „ .  

Furthermore, intra-class correlation estimates based on LMM variance components matched 

Pearson correlation estimates for non-negative values only.  By carefully considering the model 

assumptions used in linear mixed models and relating model variance component estimates to 

the finite-population estimate of „  through the use of sums of squares, these discrepancies 

have been resolved. 
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Chapter 5 - Identifying Treatment Heterogeneity in Complex 

Designs:  A Linear Mixed Effects Models Approach 

The following chapter is a paper submitted to a peer-reviewed journal.  The concepts discussed 

in this dissertation are further developed to accommodate a more complex treatment structure 

and then applied to an illustrative data example. 

 

 5.1.Abstract 

A treatmentôs efficacy or safety is often assessed by a study of the mean effect of a 

treatment with respect to some reference treatment.  If a treatment effect is highly variable across 

units in a population, then applying information about the mean effect to each individual unit 

cannot be recommended since there may exist a non-negligible portion of the population that 

experiences an individual effect in the opposite direction of the mean effect. This variability of a 

treatment effect is referred to as treatment heterogeneity. 

Using a potential outcomes framework, treatment heterogeneity for several simple 

designs has been investigated using a randomization based approach. However, as experimental 

designs become more complicated, a randomization-based approach becomes increasingly 

intractable. We present an approach to derive a ñpotential outcomesò linear mixed effects model.  

From this model, treatment heterogeneity is conceptualized as a linear combination of potential 

model variance components. These variance components are non-estimable in observable data, 

but estimable bounds exist that depend on the experimental design and they arise from linear 

combinations of the non-estimable potential model variance components.   A specific application 

of these results to a 2x2 factorial treatment structure in a 4-period cross-over experimental design 

is presented. Assumptions required for equating naïve estimates from observable data to those 

that could be obtained from potential outcomes data are discussed. 
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 5.2. Introduction  

 Treatment heterogeneity refers to the variability of a treatment effect across individuals in 

a population.  Although such variability has sometimes been acknowledged as an important 

consideration in experimental studies, decisions about the use of treatment generally make use of 

statistical information gathered about the mean effect and then apply that same information to the 

individual (cf. Marshall, 1997).  When there is a high degree of treatment heterogeneity in a 

population, there may be a non-negligible proportion of the population responding differently to 

a treatment, and possibly in the opposite direction, from the average subject.  

 Quantifying the degree of treatment heterogeneity is facilitated by potential outcomes 

(Rubin, 1974). Consider a set of treatments, Ὕȟὅ, where Ὕ denotes some test treatment and  ὅ 

denotes a reference or perhaps a control treatment.  For each subject there is a duplet, {ὶ, ὶ}, 

which represents the potential outcome to the test treatment and to the control treatment, 

respectively. At any particular time point, either ὶ or ὶ is observable for an individual so that 

the individual causal effect,  Ὠ ὶ ὶ, cannot be observed ï what Holland (1986) referred to 

as the fundamental problem of causal inference. As in Gadbury (2010) or in Poulson et al. 

(2012), treatment heterogeneity is quantified by „ ὠὥὶὨ, a nonestimable quantity since 

there is no information in observable data on the correlation between ὶ and ὶ.  If we suppose, 

as in Gadbury and Iyer (2000) or Poulson et al., (2012) that the duplets arise from an infinite 

population model given by 

 

ὶ
ὶ ͯ

‘
‘ ȟ

„ ” „„

” „„ „
ȟ                                                  υȢρ 

 

then it is easy to see that „ „ „ „ „ . Thus, non-estimable treatment 

heterogeneity can be bounded by estimable quantities, resulting from setting the non-estimable 

correlation, ” , equal to 1 and -1. Bounds can be tightened using covariate information 

(Gadbury et al., 2001; Poulson et al., 2012), and estimates of treatment heterogeneity can be 

obtained using assumed conditional independence between potential outcomes given covariates 

(Zhang et al. 2013). 

 As experimental designs become more sophisticated, more information about treatment 

heterogeneity may become available. If a blocking or subsetting variable is available, then there 
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are methods that can detect the presence of treatment heterogeneity and potential qualitative 

interactions, the latter meaning that the direction of a treatmentôs effect differs across subsets 

(e.g., Byar and Corle 1977; Simon 1982; Gail and Simon 1985; Silvapulle 2001; Li and Chan 

2006).  In repeated measures designs or cross-over designs, there is a true individual treatment 

effect at each time period, and some have demonstrated the use of mixed-effects models fit to 

data from cross-over designs that estimated a subject-treatment (S-T) interaction variance (e.g., 

Hauck et al. 2000; Endrenyi and Tothfalusi 1999).  However, the estimated variance computed 

from observed data may not equal a variance of true individual effects without certain 

assumptions and/or depending upon how one defines an individual effect in multiple period 

designs. In more complex designs, it is not always clear what these assumptions are and whether 

or not they are reasonable for the application. The relationship between an estimable S-T 

variance component and the true variance of an individual effect defined in a potential outcomes 

framework remains unclear. 

 In this paper a data example from a 2x2 treatment structure applied to a 4-period cross-

over design is analyzed. These data were collected to investigate the effect of diet and plant 

sterols on blood low-density lipoprotein cholesterol levels. Dietary or nutritional 

recommendations for health that are reported in the literature and media can be a source of 

considerable confusion to the public. Discussions relating to this, though with different 

perspectives, can be found in a popular book by Campbell and Campbell (2005) and at The 

Weston A. Price Foundation (http://www.westonaprice.org/). Thus, it seems pertinent to consider 

an application area where an investigation into treatment heterogeneity may yield additional 

insights regarding a treatmentôs behavior on a population beyond what is told by a study of mean 

effects.  

 The data considered here resulted from a double-blind, randomized cross-over design, 

and were reported in Chen et al, 2009 and Kramer et al, 2011. The purpose of Chen et al, (2009) 

was to determine if the main effects of two levels of diet and two levels of supplemented plant 

sterols on low-density lipoprotein cholesterol (LDLC) blood concentrations were additive.  In a 

subsequent publication (Kramer et al, 2011), these data were used as an illustrative example 

while investigating the use of multiplicative decomposition techniques to estimate a subject-by-

diet interaction effect since experience suggested the LDLC responses to diet tend to be subject-

specific.  

http://www.westonaprice.org/
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 The method proposed here first conceptualizes the potential outcomes in a design and 

quantifies treatment heterogeneity as a linear combination of variance components in a linear 

mixed effects model (LMM). Then the randomization mechanism is invoked to produce 

observable data and variance components that are no longer estimable in observable data, at least 

not without assumptions.  A key step in comparing the potential and observable LMMôs is the 

appropriate identification of the potential LMM.  This is accomplished using a technique 

proposed by Fisher in a discussion of Yatesô paper on complex experiments (1935) where Fisher 

demonstrated that the choice of an experimental design is the choice of how a topographical 

layout of the experiment is related to the treatment structure of an experiment. Stroup (2013) 

adapted Fisherôs approach as a means of correctly identifying the appropriate components of an 

observable LMM, and termed the approach ñWhat Would Fisher Doò (WWFD).  Using Stroupôs 

WWFD method, we further adapt Fisherôs approach to accommodate a potential outcomes 

framework, and then consider what information is ñlostò when the randomization mechanism is 

invoked, that is, we use the potential LMM as a template to arrive at the observable LMM.  This 

process is an important step in the appropriate estimation of effects in the observable model as 

misspecification of the model in PROC GLIMMIX has been demonstrated to alter both model 

effect estimation and inference (Boykin et al., 2010). 

For ease of illustration, the WWFD idea is first presented in the context of a 

straightforward two-sample completely randomized design (CRD). We then use the technique on 

the diet and plant sterol data example from a 2x2 treatment structure applied to a 4-period cross-

over design, previously described.  Considering the potential LMM clarifies the assumptions 

necessary to equate estimable variances to the variances of the individual effects.  Furthermore, 

additional information regarding treatment heterogeneity that is not estimable in a traditional 2x2 

factorial design at one time period becomes available due to the cross-over nature of this design. 

This additional information hints at what might be surmised about treatment heterogeneity with 

added time periods, if practical, and what assumptions would be required to directly estimate a 

treatment heterogeneity variance. We conclude with a discussion.  

 5.3. WWFD in a Two-Sample CRD  

A simple two-sample CRD is used to illustrate basic principles that may be extended to 

accommodate more complex experimental designs.  Consider a two-sample CRD in which a 
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random effect arising from the application of the Ὦ  level of treatment to the Ὥ  experimental 

unit (EU) is permitted.  Potential outcomes consist of two sets of ὔ responses, where each of the 

ὔ EUôs simultaneously contribute one response to each of the two sets so that EUôs are crossed 

with sets. The structure for the potential outcomes framework and corresponding degrees of 

freedom given in Table 5.1 (i) are a completely topographical analysis in that the total degrees of 

freedom for the experiment are accounted for, independent of the treatment structure.  The 

treatment structure and its corresponding degrees of freedom are given in Table 5.1 (ii).  

ñParallelsò in Table 5.1 (ii) was a term used by Fisher to represent the number of times a level of 

treatment must be prepared to accommodate a given sample size.  In this case, there are two 

levels of treatment and each level of treatment must be prepared N times, once for each EU; 

therefore, the degrees of freedom associated with Parallels is 2*(N-1). Both the Topographical 

and Treatment aspects completely account for the total degrees of freedom in the experiment. Per 

Fisherôs instruction that the choice of an experimental design is the choice of which components 

from the topographical and treatment aspects are permitted to correspond, we combine these two 

aspects in Table 5.1 (i) and (ii) by choosing the degrees of freedom associated with ñTrtò in 

Table 5.1 (ii) to correspond to the degrees of freedom associated with ñSetò in Table 5.1 (i). That 

is, assume that any difference between sets is attributed to the level of treatment applied to that 

set and not to characteristics inherent to the set.  Accordingly, we choose the degrees of freedom 

associated with ñParallelsò in the Table 5.1 (ii) to be partitioned into the degrees of freedom 

associated with ñEUò and ñSet*EUò in the Table 5.1 (i).  That is, we assume that differences in 

responses within a set are due to either inherent characteristics of the EU or the application of a 

level of treatment to a particular EU rather than differences in the preparation of a particular 

level of treatment. The resulting combined ANOVA table is given in Table 5.1 (iii) by replacing 

ñSetò with ñTrtò everywhere ñSetò appears in Table 5.1 (i): 

 

Topographical Trt Combined 

Source d.f. Source d.f. Source d.f. 

Set 2-1 Trt 2-1 Trt 2-1 

EU N-1 ñparallelsò 2(N-1) EU N-1 

Set*EU (2-1)*(N-1) Trt*EU (2-1)*(N-1) 

Total 2N-1 Total 2N-1 Total 2N-1 

(i) (ii) (iii) 
Table 5.1 Potential WWFD ANOVA Structure:  Two-Sample CRD 

 (i) Topographical, (ii) Treatment, and (iii) Combined ANOVA structures for a Potential two-sample CRD. 
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Using the components of the combined ANOVA table above as a guide, the resulting potential 

LMM is  

 

ὶ ‘ ί † ί†                                                          υȢς 

Ὥ ρȟςȟȣȟὔ ίόὦὮὩὧὸίȠ Ὦ Ὕȟὅ 
 

where ί represents a random effect of the Ὥ  EU, † represents a fixed effect of the Ὦ  level of 

treatment, and ί† represents the random effect of the Ὦ  level of treatment applied to the Ὥ  

EU.  In a model assuming no technical error, ί† would be considered the experimental error. 

 Under the ñusualò set of experimental circumstances for random effects models, the 

following distributional properties of ί and ί† are assumed: 

 

ίͯ ὭὭὨ ὔπȟ„  

ί†ͯ ὭὭὨ ὔπȟ„                                                                   υȢσ 

ί ὥὲὨ ί† ὥὶὩ άόὸόὥὰὰώ ὭὲὨὩὴὩὲὨὩὲὸȢ 

 

One can allow for different variance components for ί†for Ὦ Ὕȟὅ, but this is unnecessary for 

illustrating the ideas here. Invoking the randomization mechanism effectively removes one-half 

of the data so that each EU is now represented only once within a set instead of being 

represented in both sets.  This results in two distinct sets of responses with ὲ  EUôs in each 

set, assuming a balanced design.  This effectively removes the ñSet*EUò term from Table 5.1 (i) 

and replaces it with an ñEU(set)ò term.  Also notice that the degrees of freedom associated with 

ñParallelsò in Table 5.1 (ii) is reduced since each level of treatment need be prepared only ὲ 

times instead of ὔ.  Table 5.2 (i) and (ii) demonstrate how the Topographical and Treatment 

structures are altered after the randomization mechanism is invoked. 

Based on this new Combined ANOVA table given in Table 5.2 (iii), the observable LMM 

can be written  

 

Ὑ ‘ † ‐ 

Ὥ ρȟςȟȣȟὲȟ Ὦ Ὕȟὅ 
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Topographical Trt Combined 

Source d.f. Source d.f. Source d.f. 

Set 2-1 Trt 2-1 Trt 2-1 

EU(Set) N-1 
2(n-1) 

ñparallelsò 2(N-1) 
2(n-1) 

EU(Trt) N-1 
2(n-1) 

Set*EU (2-1)*(N-1) Trt*EU (2-1)*(N-1) 

Total 2N-1 
2n-1 

Total 2N-1 
2n-1 

Total 2N-1 
2n-1 

(i) (ii) (iii) 
Table 5.2 Observable WWFD ANOVA Structure:  Two-Sample CRD 

(i) Topographical, (ii) Treatment, and (iii) Combined ANOVA structures for an Observable two-sample CRD. 

 

where ὲ is the number of EUôs per level of treatment, such that ὔ  ὲ  ὲ ςὲ in a 

balanced two-sample CRD (i.e., ὲ  ὲ ὲ), and ‐ is the usual error term in a two-sample 

CRD. 

A direct relationship between the potential and observable models can be established by 

defining  

 

‐ ί ί† 

 

Based on the distributional assumptions in (5.3), the error variance in the observable model, 

denoted „ , is given by 

 

„ „ „  
 

There is not enough experimental material in the observable model framework to 

estimate all effects of interest specified in the potential model.  In the observable model, only the 

linear combination of the variance components of subject and subject-by-treatment effects can be 

estimated.  If the potential framework were feasible, both the variance of the subject effect and 

the variance of the subject-by-treatment effect would be estimable. 

With the potential LMM given in (5.2), Ὠ is given by, 

 

Ὠ † † ί† ί†Ȣ 
 

Using the distribution of Ὠ given in (5.3) and the model distributional assumptions in (5.3) gives  
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Ὠ ὭͯὭὨ ὔ † † ȟς„ Ȣ 
 

If „ π, then „ ς„ π, and treatment heterogeneity exists. Bounds for „  using this 

structure are different from the trivial ones given following equation (5.1). These bounds depend 

on the non-estimable individual variance components, „ȟ„ , that are estimable as a linear 

combination. Still, an estimable upper bound is given by ς„  but the lower bound is zero. The 

non-estimable correlation in (5.1) is now the intra-class correlation, ȟ and the lower bound 

for this quantity is zero rather than -1. Allowing for a negative correlation between potential 

outcome variables requires specifying a bivariate distribution of random effects where the 

random effects are not independent. We have not seen this done when applying linear mixed 

effects models to data arising from experimental designs.  

For this simple design, relating the quantities in an observable model to those in the 

potential model takes some thought. But it highlights the information that gets lost as one moves 

from potential to observable data and, thus, what quantities in a model become inestimable. The 

relationship between the potential model and observable model is not as explicit in more 

complicated designs, but the WWFD technique can still be used to relate quantities in a potential 

LMM to those in an observable LMM for any particular experimental design.  

 5.4. 2x2 Treatment Structure in a Cross-over Design:  A Data Example 

 5.4.1. Data Description 

 Each of 22 subjects (13 male, 9 female) was assigned to receive each of four treatment 

combinations of diet and plant sterols in random order for a period of 28 days (Chen et al., 

2009).  There were no washout periods between 28-day intervals.  Two levels of treatment were 

considered for each treatment factor.  The levels of diet were a typical American diet (TAD) 

versus a recommended cholesterol-lowering Step-1 diet (STP).  The levels of plant sterol (PSE) 

were 0 g/day and 3.3 g/day incorporated into the diet.  At each period, the study design 

resembled a 2 x 2 factorial treatment structure with two levels of each treatment factor assigned 

to each subject. At the end of the four periods, each subject had received all combinations of the 

two treatments.   
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 A number of blood compounds were measured, however only LDLC (mmol/L) 

measurements are discussed here. LDLC responses represent the average LDLC values from two 

samples taken at day 22 and day 24 of each 28-day period.  Baseline (pre-experiment) 

measurements were taken the week prior to the initiation of the first, randomly-assigned 

treatment combination. The outcome is a change from baseline with negative values meaning a 

decrease from baseline.  

 5.4.2 Applying WWFD to this Design 

 The previous discussion related to a two-sample CRD can be extended to accommodate a 

factorial treatment structure with two treatment factors, ȟ,  each having two levels, Ὕȟὅ.  

The entire set of possible treatment combinations in this 2x2 factorial experiment is the set 

ὝὝȟὝὅȟὅὝȟὅὅ, where the level of  is given first followed by the level of . For the LDLC 

data, a treatment level Ὕ denotes the STP diet for  and the 3.3 g/day dose of PSE for  (i.e., the 

respective ὅ treatment levels are TAD for  and 0 g/day of PSE for ). A design consisting of 

more than two levels of treatment per treatment factor could also be accommodated. 

 For each EU, potential outcomes are a 4-tuple {ὶ , ὶ ȟὶ ȟὶ }, which represents the 

potential response of the Ὥ  EU under each of the four possible treatment combinations arising 

from the factorial treatment structure, with only one being observable at a particular time. The 

observed response of the Ὥ  EU at a particular time is given by, 

 

Ὑ ὶ Ὗὡ ὶ Ὗ ρ ὡ ὶ ρ Ὗ ὡ ὶ ρ Ὗ ρ ὡ , 

  

where 

 

Ὗ
ρȟὭὪ  Ὕ Ὢέὶ ὸὬὩ Ὥ ὉὟ

  πȟὭὪ  ὅ Ὢέὶ ὸὬὩ Ὥ ὉὟ 
 

and 

ὡ
ρȟὭὪ  Ὕ Ὢέὶ ὸὬὩ Ὥ ὉὟ

  πȟὭὪ  ὅ Ὢέὶ ὸὬὩ Ὥ ὉὟȢ
 

 

We assume uniform randomization and independence of Ὗ and ὡ.   

 To extend the 2x2 factorial potential outcomes framework to a 4-period cross-over 

design, we assume a unique set of four potential responses at every time period, one response per 
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treatment combination per period. There are a total of 16 potential responses per EU are 

permitted across the entire experiment. We suppose that the randomization mechanism randomly 

selects a sequence of responses across the four periods for every EU so that every EU receives 

every treatment combination once across the four periods. 

Using Stroupôs WWFD method, the following potential LMM for a 2x2 factorial 

treatment structure in a 4-Period cross-over design is obtained: 

 

ὶ ‘ ί “ ί“    ί ί ί “ “ 

“ ί“ ί“ ί“                                           υȢτ  

 Ὥ ρȟςȟȣȟὔ ὉὟίȠ Ὦ ρȟςȟσȟτ ὴὩὶὭέὨίȠὯ Ὕȟὅ ὰὩὺὩὰί έὪ ὨὭὩὸȠὰ Ὕȟὅ ὰὩὺὩὰί έὪ ὖὛὉ   
 

where ί represents a random effect of the Ὥ  EU;  “ represents the fixed effect of the Ὦ  

period;  ί“ represents a random interaction effect of the Ὥ  EU measured at the Ὦ  period;    

represents a fixed effect of the Ὧ  level of diet;  represents a fixed effect of the ὰ  level of 

PSE;  represents a fixed interaction effect of the Ὧ  level of diet combined with the ὰ  

level of PSE; ί represents a random interaction effect of the Ὧ  level of diet applied to the 

Ὥ  EU; ί represents a random interaction effect of the ὰ  level of PSE applied to the Ὥ  EU; 

ί represents a random interaction effect of the Ὧ  level of diet combined with the ὰ  level 

of PSE applied to the Ὥ  EU; “  represents a fixed interaction effect of the Ὧ  level of diet 

applied at the Ὦ  period; “ represents a fixed interaction effect of the ὰ  level of PSE applied 

at the Ὦ  period; “ represents a fixed interaction effect of the Ὧ  level of diet combined 

with the ὰ  level of PSE applied at the Ὦ  period; ί“ represents a random interaction effect 

of the Ὧ  level of diet applied to the Ὥ  EU at the Ὦ  period; ί“ represents a random 

interaction effect of the ὰ  level of PSE applied to the Ὥ  EU at the Ὦ  period; and ί“ 

represents a random interaction effect of the Ὧ  level of diet combined with the ὰ  level of PSE 

applied to the Ὥ  EU at the Ὦ  period, and should be considered experimental error.   

The distributional assumptions of the random effects are as follows: 

 

ίͯ ὭὭὨ ὔπȟ„  

ί“ͯ ὭὭὨ ὔπȟ„  

ίͯ ὭὭὨ ὔπȟ„  

ίͯ ὭὭὨ ὔπȟ„                                                               υȢυ 
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ίͯ ὭὭὨ ὔπȟ„  

ί“ͯ ὭὭὨ ὔπȟ„  

ί“ͯ ὭὭὨ ὔπȟ„  

ί“ͯὭὭὨ ὔπȟ„  

ίȟί“ȟίȟίȟ  ίȟί“ȟί“ ὥὲὨ ί“ are mutually independent. 

 

The resulting observable LMM for this design is 

 

Ὑ ‘ ί “    ί ί “ “ “ ‐         υȢφ 

  Ὥ ρȟςȟȣȟὔ ὉὟίȠ Ὦ ρȟςȟσȟτ ὴὩὶὭέὨίȠὯ Ὕȟὅ ὰὩὺὩὰί έὪ ὨὭὩὸȠὰ Ὕȟὅ ὰὩὺὩὰί έὪ ὖὛὉ    

 

where ‐  is comprised of the confounded potential model effects for which there is not enough 

experimental material in the observable model framework to estimate. In the observable model, 

‐  is considered experimental error. All other effects maintain the same definition as in the 

potential LMM. 

A direct relationship between the observable model and the potential model is established 

by defining  

 

‐ ί“ ί ί“ ί“ ί“Ȣ 

 

Given the distributional assumptions specified in (5.5),  

 

„ „ „ „ „ „ Ȣ 

 

 According to the model given in (5.4), a true causal effect at each of the four periods can 

be defined as  

Ὠȿ ὶ ὶ ȟ 

Ὠȿ ὶ ὶ ȟ 

Ὠȿ ὶ ὶ ȟ 

Ὠȿ ὶ ὶ   

 

for the Ὥ  EU at the Ὦ  period. For each EU there are 16 causal effects across the four periods. 



95 

 

Based on the model assumptions given in (5.5) , ὺὥὶὨȿ ὺὥὶὨȿ  and 

ὺὥὶὨȿ ὺὥὶὨȿ . Denote these two variances ὺὥὶὨȿ  and ὺὥὶὨȿ , 

respectively. Writing these variances in terms of the potential LMM variance components yields  

 

ὺὥὶὨȿ ς„ „ „ „  

and                                                                                                                                                                υȢχ 

ὺὥὶὨȿ ς„ „ „ „ Ȣ 

 

„  and „  are estimable in observable data because there are multiple observations per EU on a 

particular level of diet (but differing levels of PSE) and multiple observations per EU on a 

particular level of PSE (but differing levels of diet). This permits an estimable lower bound since 

 

ς„ ὺὥὶὨȿ  

and                                                                                                                                                                υȢψ 

ς„ ὺὥὶὨȿ  

 

 The cross-over nature of this design permits the definition of an observable, naïve version 

of individual effects.  Four naïve differences are 

 

Ὀȿ Ὑ Ὑ ȟ      

Ὀȿ Ὑ Ὑ ȟ 

Ὀȿ Ὑ Ὑ ȟ                                                          υȢω 

Ὀȿ Ὑ Ὑ Ȣ  

 

Two distinct variances for the naïve individual effects defined in (5.9) emerge from this 

design. They are, ὺὥὶὈȿ ὺὥὶὈȿ  and ὺὥὶὈȿ ὺὥὶὈȿ  based on the 

assumptions in (5.5).  Denote these variances as ὺὥὶὈȿ  and ὺὥὶὈȿ , respectively, 

then,   

 

ὺὥὶὈȿ ὺὥὶὙ Ὑ ς„ „  

and                                                                                                                                                              υȢρπ 

ὺὥὶὈȿ ὺὥὶὙ Ὑ ς„ „  
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where j and jô indicate two different periods. Estimable upper bounds of the true variances of the 

individual effects can be established since  

 

 

ς„ „ ς„ „ „ „ „ „  

ς„ ς„ ὺὥὶὨȿ  

and                                                                                                                                                              υȢρρ 
 

ς„ „ ς„ „ „ „ „ „  

ς„ ς„ ὺὥὶὨȿ Ȣ 

 

Combining the results in (5.8) and (5.11), we have  

 

ς„ ὺὥὶὨȿ ὺὥὶὈȿ  

and                                                                                                                                                              υȢρς 

ς„ ὺὥὶὨȿ ὺὥὶὈȿ  

 

where the upper bounds are given in (5.10). The difference between the upper and lower bounds 

is equal to ς„ .   

 Comparing the lower bounds established in (5.12) with the results of a traditional 2x2 

factorial design carried out at a single time period yields an important distinction. In a standard 

2x2 factorial design, a single observable response is permitted for each EU at a single time 

period under only one level of diet combined with only one level of PSE.  By construction of the 

design, then, none of the variance components given in (5.7) are individually estimable from 

observable data in this design.  Consequently, the most that can be stated about the lower bound 

of the variance of an individual effect is that it is non-negative.  Thus, the extension of the 2x2 

factorial to a cross-over design yields additional information regarding treatment heterogeneity 

and provides an estimable lower bound. 

 If it were possible and practical to extend the design to permit eight time periods instead 

of four, and each of the four diet-by-PSE combinations were randomly assigned to two of the 

eight time periods, then the subject-by-diet-by-PSE variance component would become 

estimable. So by extending the design to a repeated measures cross-over design, previously non-

estimable components of the variances given in (5.7) become estimable. Additional discussion 
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regarding repeated measures cross-over designs for evaluating treatment heterogeneity can be 

found in Senn (2001). 

 5.4.3 Results of Analysis 

 Using PROC GLIMMIX, we analyzed the LDLC data according to the model given in 

(5.6) where   represents a fixed diet effect and   represents a fixed PSE effect.  Table 5.3(i) 

gives the results for tests of fixed effects in the model. Table 5.3 (ii) presents the estimates of  

interest and standard errors for both fixed and random effects. A negative value represents a 

reduction in LDLC levels.   

 Our results demonstrate that the STP diet significantly lowers mean LDLC compared 

with the TAD diet (P = 0.012), and the introduction of 3.3 g/day of PSE significantly reduces 

mean LDLC compared with 0 g/day of PSE (P < 0.0001).  The interaction between diet and PSE 

is not significant. Period-by-treatment interactions, Period-by-Diet, Period-by-PSE, and Period-

by-Diet-by-PSE, are also not significant. These results are consistent with those published by 

Chen et al, although estimates and P-values are slightly different. Chen et al. accounted for 

individual differences by including a base-line LDLC measurement in the model and a random 

subject effect. The remaining residuals were fit with a one parameter autoregressive correlation 

structure.  

Further analyses not shown here demonstrated that adding a base-line LDLC 

measurement to the model affected the estimate of the EU variance component but not the 

estimates of the EU-by-diet, the EU-by-PSE, or the residual variances. The estimates of the 

variance components in Table 5.3 (ii) give rise to estimable bounds of the variance of individual 

effects established in (5.12).  Gadbury and Iyer (2000) describe a process by which the 

proportion of EUôs in a population experiencing an unfavorable response can be estimated, 

assuming a normal distribution for individual effects.  In this case, an unfavorable response 

would be considered an elevation in blood LDLC levels even though, on average, a reduction in 

LDLC levels was observed.  Without loss of generality, assume ‘ π.  Then, the proportion of 

EUôs experiencing an unfavorable response in this particular experimental setting is given by 

 

ὖ ὖὨ π ρ ɮ , 
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where ‘ is the mean effect of one level of treatment compared to the other. Table 5.4 gives the 

estimated upper and lower bounds of the variance of the individual causal effects. In addition to 

the estimable bounds we used ὄ υπ bootstrap (Efron and Tibshirani, 1994) samples to 

compute the bootstrap standard error of both the upper and lower bounds. These bootstrap 

standard errors, as well as the corresponding estimates of ὖ,  are given in Table 5.4.  The 

difference between the estimable upper and lower bounds for both variances of interest is 0.0223. 

This is twice the estimate of  „  given in Table 5.3 (ii).  Also notice that for both variances of 

interest, the estimate of the lower bound is more than two bootstrap standard errors above zero. 

Thus, the data suggest that treatment heterogeneity exists for both Diet and PSE effects. 

 

Type III Tests of  Fixed Effects 

Fixed Effect F-Value P-value 

0ÅÒÉÏÄ 2.05 0.1601 

$ÉÅÔ 7.52 0.0122 

03% 70.44 <.0001 

$ÉÅÔ0z3% 0.21 0.6543 

0ÅÒÉÏÄ$zÉÅÔ 1.02 0.4181 

0ÅÒÉÏÄ0z3% 1.50 0.2642 

0ÅÒÉÏÄ$zÉÅÔ0z3% 1.36 0.3009 

(i) 

   

Estimates:  LDLC (mmol/L)  

Difference Estimate Std. Error  

Diet:  STP-TAD -0.1637 0.0597 

PSE: 3.3 g/day ï 0 g/day -0.4491 0.0535 

   

Variance Component Estimate Std. Error  

„ 0.2095 0.0754 

„  0.0332 0.0125 

„  0.0256 0.0104 

„ 0.0112 0.0041 

(ii)  

Table 5.3  SAS PROC GLIMMIX Results. 

 (i)Type III Tests for Fixed Effects.  (ii) Estimates of the difference in levels of Diet and PSE with standard errors 

and estimates of the variance of random effects with estimated standard errors. 
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Individual Effect  Estimate Bootstrap SE Estimate of ╟  Bootstrap SE ╟  

○╪►▀░▒ȿ╓░▄◄     

Lower Bound 0.0511 0.0220 0.0235 0.0288 

Upper Bound 0.0734 0.0206 0.0487 0.0339 

○╪►▀░▒ȿ╟╢╔     

Lower Bound 0.0665 0.0288 0.2628 0.0809 

Upper Bound 0.0888 0.0271 0.2914 0.0647 

 
Table 5.4 Estimable Bounds for the Variance of Individual Effects. 

Estimates of the upper and lower bounds given in equation (12) with bootstrap standard errors and estimates of ὖ 

with bootstrap standard errors. 

 

 5.5. Discussion and Conclusion 

In cases where treatment heterogeneity is suspected, it would be prudent design 

experiments in such a way as to investigate the presence of treatment heterogeneity in addition to 

estimating a mean effect before a claim of the superiority of one treatment over another is 

established (Longford, 1999). The variance of an individual effect is the parameter of interest 

when assessing treatment heterogeneity, with a non-zero value indicating the presence of 

treatment heterogeneity. If the estimate of the lower bound is substantially greater than zero, one 

might conclude that treatment heterogeneity is present.  Likewise, if an estimable upper bound is 

very close to zero then one might conclude that the treatment is having a similar effect on 

individuals across a population. Experimental designs in which an estimable lower and/or upper 

bound can be established permit the investigation of treatment heterogeneity essentially ñwithout 

costò in the sense that no new data are needed to confirm the presence of treatment 

heterogeneity. Furthermore, a comparison of the observable LMM and potential LMM for a 

given experimental design delineates the information about causal effects that is lost in moving 

from potential to observable data, and what assumptions about non-estimable quantities (or 

design modifications) are needed to evaluate treatment heterogeneity in observable data. 

We demonstrated that the extension of a traditional 2x2 factorial treatment structure to a 

four-period cross-over design permits the estimation of both an upper and lower bound of the 

variance of an individual effect, defined in a potential outcomes framework. Given the estimated 

bounds of the individual effects and the bootstrap standard errors, it was reasonable to conclude 

that treatment heterogeneity exists when considering the effect of diet (TAD vs. STP) and PSE (0 

mg/day vs.3.3 mg/day). Furthermore, we estimated the proportion of EUôs experiencing an 
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unfavorable effect. The point estimates of ὖ indicate that there could exist certain EUôs for 

which the TAD is a more favorable diet than the STP and certain EUôs for which 0 g/day of PSE 

could be more favorable than 3.3 g/day of PSE even though, on average, the STP diet and the 3.3 

g/day of PSE appeared to be more favorable for lowering LDLC levels. Poulson et al. (2012) 

called this an individual qualitative interaction (IQI). However, after considering standard errors 

of estimated bounds for ὖ, statistically it appears that only diet may have an IQI.  

The difference between the estimable upper and lower bounds of the variance of 

individual effects is comparatively small.  This is because the variability explained by the 

random residuals is less than the variability explained by the other random effects, based on the 

estimates given in Table 5.3 (ii) („ πȢπρρς). The majority of variability in responses is 

accounted for by the variability due to the random EU effect („ πȢςπωυ).  In other words, 

while treatment heterogeneity likely exists, the amount of total variability in responses explained 

by the variability of individual effect is small compared to the variability inherent to EUôs 

selected from a given population. 

Consideration of (5.7), (5.8), (5.10), and (5.11) reveals the required assumptions to 

equate the variance of individual effects with the corresponding naïve estimates available from 

observable data.  From (5.7) and (5.8), ς„ ὺὥὶὨȿ  and ς„ ὺὥὶὨȿ  if we are 

willing to assume that „ „ „ „ π; that is , if we are willing to assume 

that the diet-by-sterol effect, the period-by-diet effect, the period-by-sterol effect, and the period-

by-diet-by-sterol effect are all constant across EUôs in a population.  If we are willing to make 

these assumptions, then the estimable lower bounds of ὺὥὶὨȿ  and ὺὥὶὨȿ   become 

estimates of the variance of the respective individual effects.  If we assume „ „

„ π, that is, if the period effect, the period-by-diet effect, and the period-by-sterol effect are 

all constant across EUôs in a population, then the estimable upper bounds become estimates of 

ὺὥὶὨȿ  and ὺὥὶὨȿ . Though the potential LMM helps to clarify what assumptions 

are needed to equate estimated bounds with estimated treatment heterogeneity, these assumptions 

cannot be directly tested using observable data from this design.  

 Senn (2001) noted that studies are rarely designed to separate information on an 

individual effect from other sources of variability. In the two-sample CRD and traditional 2x2 

factorial designs, only estimable upper bounds can be established. While knowledge of this 
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upper bound informs the ñworst-caseò scenario regarding the estimate of ὖ (e.g.- a larger 

variance yields a larger ὖ), it is the estimable lower bound that informs the presence of 

treatment heterogeneity.  If treatment heterogeneity is suspected and a design permitting an 

estimable lower bound of the variance of an individual effect is possible, then estimating the 

degree of treatment heterogeneity in addition to a mean treatment effect should be of value when 

characterizing a treatment effect across an entire population. 

While the statistical methods presented here may be used to quantify the degree of 

treatment heterogeneity in these data, they cannot explain the source of the treatment 

heterogeneity.  Further research is required to investigate the possible causes of treatment 

heterogeneity in LDLC response to different diets and amounts of PSE. The data example was 

used for illustration and not to confirm a superiority of one treatment over another. The sample 

size was small and other issues such as treatment compliance were not considered.   
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 5.6 Supplementary Material 

The following supplementary material is included for the benefit of the reader, and 

describes how the potential LMM was generated.  This material was omitted from the body of 

the paper due to space concerns. 

 

 

Topographical Trt Combined 

Source d.f. Source d.f. Source d.f. 

Replicate 4-1=3 Period 4-1=3 Period 4-1=3 

Row(Rep) 4(2-1)=4 Diet 2-1=1 Diet 2-1=1 

Period*Diet 3x1=3 Period*Diet 3x1=3 

Col(Rep) 4(2-1)=4 PSE 2-1=1 PSE 2-1=1 

Period*PSE 3x1=3 Period*PSE 3x1=3 

Row(Rep)*Col(Rep) 4(1x1)=4 Diet*PSE 1x1=1 Diet*PSE 1x1=1 

Period*Diet*PSE 3x1=3 Period*Diet*PSE 3x1=3 

Subject N-1 Parallels 16(N-1) Subject N-1 

Subject*Rep 3(N-1) Subject*Period 3(N-1) 

Subject* Row(Rep) 4(N-1) Subject* Diet (N-1) 

Subject*Period*Diet 3(N-1) 

Subject* Col(Rep) 4(N-1) Subject* PSE (N-1) 

Subject*Period*PSE 3(N-1) 

Subject* Row(Rep)*Col(Rep) 4(N-1) Subject* Diet*PSE (N-1) 

Subject*Period*Diet*PSE 3(N-1) 

Total 16N-1 Total 16N-1 Total 16N-1 

(i) (ii) (iii) 

 

Potential Model WWFD:2x2 Factorial in a Repeated Measures Cross-over Design. 

 

 

 

 

 

 

 

 

 

 

2x2 Treatment Structure in a 4-Period Cross-over Plot Plans.  An abbreviated representation 

of the plot plan for the potential outcomes framework.   

  

 Part of 4-Tuple Receiving:    Part of 4-Tuple Receiving: 

EU TT TC CT CC  EU TT TC CT CC 

1 TT TC CT CC  1 TT TC CT CC 

2 TT TC CT CC ... 2 TT TC CT CC 

... ... ... ... ...  ... ... ... ... ... 

N-1 TT TC CT CC  N-1 TT TC CT CC 

N TT TC CT CC  N TT TC CT CC 

Period 1 ... Period 4 
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Chapter 6 - Identifying Treatment Heterogeneity in GLMMôs 

 6.1  GLMM:  Logistic Regression 
For all five experimental designs in Chapter 3, a Gaussian distribution of responses was 

assumed.  Thus, the results given in Chapter 3 are confined to the LMM setting.  The obvious 

question remains whether or not the ideas presented in Chapter 3 can be extended to a non-

Gaussian distribution.  The ὄὭὲέάὭὥὰὲȟ“ distribution will be considered for the purposes of 

this research, where ὲ represents the number of independent Bernoulli trials and “ is the 

probability of success in a binomial process.  I will pursue modeling potential outcomes using 

logistic regression, although many of the ideas presented here for the binomial process should be 

extendable to any of the distributions in the exponential family for which GLMM theory holds. 

The first step in extending the results from Chapter 3 to a logistic regression setting is to 

clearly define what is meant by treatment heterogeneity.  While considering binary outcomes in a 

matched-pairs design, Gadbury et. al (2004) used the same definition of treatment heterogeneity 

as has already been presented in Chapter 3.  That is, they defined the causal effect as the 

difference in the potential outcome under treatment and the potential outcome under control.  

Adapting their notation to fit that given in Chapter 1,  

 

Ὠ ὶ ὶȟ                                                                  φȢρ 

 

they showed that in the binary data setting, the causal effect may take on one of three possible 

values, ρȟπȟÏÒ ρ.  Gadbury et. al (2004) defined probabilities for each of these three possible 

outcomes, noting that ὖὨ ρ represented the probability of an individual experiencing a 

detrimental treatment effect.  They further defined the average causal effect,  

 

ὉὨ Ὁὶ Ὁὶ ὖὶ ρ ὖὶ ρ  

 

and demonstrated that ὉὨ could be estimated from observable data. 

 In a binomial setting, the definition of Ὠ given in (6.1) could take on one of ςὲ ρ 

possible discrete values.  Depending on the number of Bernoulli trials, assigning probabilities to 
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each of these possible values may quickly become cumbersome.  I propose defining the 

individual causal effect in a slightly different manner.  Instead of defining a causal effect as a 

difference as in (6.1), define it in terms of an odds ratio (or) 

 

έὶ

“
ρ “

“
ρ “

 

                                                                        φȢς 

ὰέὫὭὸέὶ ὰέὫὭὸ“ ὰέὫὭὸ“  

 

where “  is the potential probability of success for an individual EU receiving treatment and “  

is the potential probability of success if the same EU had received control. 

Treatment heterogeneity, then, permits each EU its own probability of success under 

treatment and its own probability of success under control. Consider a set of Ὦ ρȟςȟȣὔ EUôs, 

each exhibiting a set of potential responses, {ὶ , ὶ },  such that 

 

ὶ ὄͯὭὲέάὭὥὰὲȟ“ Ƞ Ὥ ὝȟὅȢ                                          φȢσ 

 

Extending our definition of causal effect in (6.2), we have   

 

έὶ

“

ρ “

“

ρ “

 

                                                                               φȢτ 

ὰὲέὶ ὰέὫὭὸ“ ὰέὫὭὸ“  

 

 

so that each EU is permitted its own individual causal effect. 

Once treatment heterogeneity and an individual causal effect have been clearly defined, it 

should be relatively straight-forward to see that logistic regression is an intuitive approach to 
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modeling the “ᴂί referenced in equation (6.3).  Preliminary results for the 2-Sample CRD are 

presented here.  For convenience, results are presented under the assumption of homoscedasticity 

of variances. 

  Table 6.1 gives the logistic regression model assumptions for both the potential and 

observable data models.  A direct relationship between the two models is established by defining 

 

ίǿ ί ί†                                                                   φȢυ 

 

Logistic Regression Model Model Parameters Assumptions 

Potential Model ὶȿίȟί†ͯ ὄὭὲέάὭὥὰὲȟ“  

ὰέὫὭὸ“ ‘ † ί ί†ȟ    

 Ὥ ὝȟὅȠ   
 Ὦ ρȟςȟȣȟὔ ὉὟᴂί 

 

ίͯ ὭὭὨ ὔπȟ„  

ί†ͯ ὭὭὨ ὔπȟ„  

ί and ί† are independent. 

 

 

Observable Model 

 

ὶȿίǿͯ ὄὭὲέάὭὥὰὲȟ“  

ὰέὫὭὸ“ ‘ † ίǿȟ     

Ὥ ὝȟὅȠ    
Ὦ ρȟςȟȣȟὲ  

ὉὟί ὴὩὶ ὰὩὺὩὰ έὪ ὸὶὸ 

 

ίǿͯ ὭὭὨ ὔπȟ„  

  
 

Table 6.1 Logistic Regression Model effects and assumptions in a 2-sample CRD. 

 

since multiple observations per subject are ñlostò when the randomization mechanism is invoked.  

Thus the residual term, ίǿ, in the observable 2-sample CRD consists of the confounded subject 

and subject-by-treatment effects from the potential model.  If such confounding occurs, then 

 

„ „ „Ȣ 

 

by the independence assumptions given in Table 6.1.  As in Chapter 3, the assumption of unit-

treatment additivity in combination with those specified in Table 6.1 mean 

ί† π ÆÏÒ ÁÌÌ Ὥ ÁÎÄ Ὦ and  

ίǿ ίȢ 

Thus 

„ „  
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irrespective of the level of treatment assigned to the Ὦ  EU.   This means that if unit-treatment 

additivity holds in a 2-sample CRD, then the only variability in ὰέὫὭὸ“  is due to 

characteristics inherent to the EUôs so that ὰὲέὶ ὰέὫὭὸ“ ὰέὫὭὸ“  is constant for all 

Ὦ ρȟςȟȣὔ EUôs.  

 Defining causal effect as in (6.4) and under the potential model assumptions given in 

Table 6.1,  

ὰὲέὶ † † ί† ί† ὭͯὭὨ ὔ‘ȟςϽ„ίὸ
ς                          φȢφ 

 

where ‘ is defined as in (1.4).  Exponentiating (6.6) gives 

 

έὶ Ὡὼὴ† † ί† ί† ὰͯέὫὲέὶάὥὰ‘ȟςϽ„ίὸ
ς Ȣ              φȢχ 

 

This implies that in the logistic regression setting, treatment heterogeneity can be quantified in 

terms of the scale parameter associated with έὶ instead of ὺὥὶὨ , as was done in the two-

sample CRD in section 3.2. 

 As with Gaussian responses presented in section 3.2, an average naïve effect must be 

used to estimate the individual causal effect given in (6.4), as an individual naïve effect is 

undefined in the two-sample CRD.  Define the average naïve effect in the logistic regression 

setting as 

 

ὰὲὕὙϽ † †
ρ

ὲ
ί ί†

ρ

ὲ
ί ί† Ȣ                        φȢψ 

 

According to the assumptions given in Table 6.1,  

 

ὕὙϽͯὰέὫὲέὶάὥὰ‘ȟςϽ
„Ὓ
ς „ίὸ

ς

ὲ
                                      φȢω 

 

if (6.8) is exponentiated, and the 2-sample CRD is balanced. 
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 Define „  as the scale parameter given in (6.7) and „
Ͻ

 as the scale parameter given 

in (6.9) and notice that  

 

„ ὲϽ„
Ͻ

 

 

so ὲϽ„
Ͻ

 is an estimable upper bound for „ . 

 One difficulty in obtaining estimates of „  and „  in logistic regression is that variance 

components in PROC GLIMMIX are not estimated using REML techniques.   By default, PROC 

GLIMMIX utilizes pseudo-likelihood (PL) methods to estimate model parameters.  However, PL 

methods can produce estimates that are biased (Pinheiro and Chao, 2006).  Initial results in the 

logistic regression setting verified the presence of bias in model parameter estimates. 

 Integral approximation techniques exist in PROC GLIMMIX that serve as alternative 

methods to PL-estimation.  LaPlace approximation and adaptive Gauss-Hermite quadrature are 

both still capable of producing biased results, but the bias is typically smaller using these 

estimation techniques compared with PL-estimation  (Pinheiro and Chao, 2006).  Adaptive 

Gauss-Hermite quadrature was utilized in producing the preliminary results that follow.  

Although a relationship between the lognormal distribution and the logistic regression model 

given in Table 6.1 likely exists based on (6.7) and (6.9), it is unclear how to properly relate the 

adaptive Gauss-Hermite quadrature estimates of „  and „  to the estimated scale parameter of a 

lognormal distribution, given a set of observable binomial data.  Describing this relationship 

remains a topic of further investigation.  It is encouraging, however, that reasonable estimates of 

model variance components can be obtained for both the potential and observable data models.  

Tables 6.2 (i), 6.2 (ii), and 6.2 (iii) give more specific results of some of the effects of 

interest based on Ὓ ρππ  simulated data sets.  Values represent the mean and standard error of 

estimates across the Ὓ ρππ  data sets.  Table 6.2 (i) gives results for the fixed treatment effect 

for the model fit to both potential and observable data, Table 6.2 (ii) shows the results for some 

of the random effects in the potential model and Table 6.2 (iii) some of the results for the random 

effects in the observable model.  In all cases, as the sample size increased from 10 to 30 to 100, 

the variability of the effect estimates around the true simulated value decreased, and in most 

cases, the estimated value of the simulation parameter based on the Ὓ ρππ simulations is 

within 3 standard errors of the true value. 
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 Of particular note, the estimates for  „  given in Table 6.2 (iii) estimate the theoretical 

value derived in (6.5), where it was assumed that the subject and subject-by-treatment effects 

from the potential model were confounded to form the residual term in the observable model.  

Letting „ ς and „ ρ, then „ σ based on (6.5).  The results in Table 6.2 (iii) 

demonstrate that the estimates of „  are reasonably close to 3, for ὔ ρππ. 

 

 

Table 6.2 2-Sample CRD Logistic Regression Simulation Results. 

Values represent the average and standard error of treatment effect estimates across Ὓ ρππ simulations in both 

the potential and observable data models for N=10, 30, and 100 for (i) Fixed Effects.  (ii) Potential Random Effects. 

(iii)  Observable Random Effects. 

  

 

  

Fixed  

Effect 

(Potential) 

 

Simulated 

Value 

 

 

2N Ὓ ρππ 

 

Average 

Ὓ ρππ 

 

Std. Error  

 Fixed 

Effect 

(Obs.) 

 

Simulated 

Value 

 

 

N Ὓ ρππ 

 

Average 

Std.  

Error  

 Ὓ ρππ 

† † 3 20 3.03 0.06  † † 3 10 3.13 0.12 

  60 3.00 0.03    30 3.03 0.07 

  200 2.99 0.01    100 3.04 0.03 

     (i) 

Potential 

Random Effect 

Simulated 

Value 

 

2N 

Average 

 Ὓ ρππ 
Std. Error  

 Ὓ ρππ 

„ 2 20 1.82 0.12 

  60 1.91 0.07 

  200 1.98 0.04 

     

„  1 20 0.94 0.06 

  60 0.99 0.03 

  200 1.01 0.02 

     (ii)  

Observable 

Random Effect 

Simulated 

Value 

 

N 

Average 

 Ὓ ρππ 
Std. Error  

 Ὓ ρππ 

„ 3 10 2.33 0.13 

  30 2.82 0.08 

  100 2.97 0.05 

     (iii)  
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 6.2  Treatment Heterogeneity in Generalized Linear Mixed Models 
The following section is a paper being prepared for submission to a peer-reviewed journal.  The 

basis of this paper is an extension of the concepts previously discussed in Chapter 6, using a real 

data example for illustration.  For completeness, the paper is presented in tact so the reader may 

note that some material setting the framework for the problem is repeated here. 

6.2.1 Abstract 
For continuous data, quantifying treatment heterogeneity is facilitated through potential 

outcomes by considering the variance of an individual effect, defined as the difference in 

potential outcomes.  As the complexity of an experimental design increases, using the same 

definition of individual effect for discrete data becomes increasingly intractable.  In this paper, 

the definition of individual effect is altered slightly to accommodate a potential outcomes 

analysis for a generalized linear mixed model (GLMM).  Treatment heterogeneity is 

conceptualized as a linear combination of potential model variance components, modeled on the 

link scale. These variance components are non-estimable in observable data, but estimable 

bounds that arise from linear combinations of the non-estimable potential model variance 

components exist and depend on the experimental design. 

These methods are presented in the context of a 2x2 treatment structure applied to a 

randomized complete block design with repeated measures where responses are assumed to 

follow a binomial distribution.  Only data from a single period are considered for analysis.  The 

data were collected as part of investigation of the effect of vaccine (VAC) administration and 

direct-fed microbial (DFM) on the fecal shedding of E. coli O157:H7 in a commercial setting. 

 6.2.2. Introduction 

 Treatment heterogeneity refers to the variability of a treatment effect across individuals in 

a population.  Studies often focus on estimation of a mean treatment effect (cf. Marshall, 1997), 

but when there is a high degree of treatment heterogeneity in a population, there may be a non-

negligible proportion of the population responding differently to a treatment, and possibly in the 

opposite direction, from the average subject.  

 Quantifying the degree of treatment heterogeneity is facilitated by potential outcomes 

(Rubin, 1974). Consider two treatments, Ὕȟὅ, where Ὕ denotes some test treatment and  ὅ 

denotes a reference or perhaps a control treatment.  For each subject, imagine a duplet of 
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responses, {ὶ, ὶ}, which represents the potential outcome to the test treatment and to the 

control treatment, respectively. The individual causal effect can be defined as  Ὠ ὶ ὶ, 

which cannot be observed since either ὶ or ὶ , but not both, may be observed at any particular 

time point.  When responses are continuous, treatment heterogeneity has been quantified by 

„ ὠὥὶὨ, a nonestimable quantity since there is no information in observable data on the 

correlation between ὶ and ὶ.  However, bounds for „  can be defined that are estimable in 

observed data (cf. Gadbury and Iyer 2000, Poulson et al., 2012).  Kaiser and Gadbury (2013) 

recently made use of this result in evaluating the presence of treatment heterogeneity in 

published weight loss clinical trials.  Using a technique called What Would Fisher Do (WWFD, 

Stroup 2013) applied to a potential outcomes framework, Richardson and Gadbury (2012, 2013-

in progress) used a linear mixed model (LMM) approach to evaluate treatment heterogeneity in 

complex designs. They were able to elucidate the necessary assumptions required to equate the 

variance of naïve estimates of treatment heterogeneity from observable data in complex designs 

with the variance of the true individual effects. 

In this paper, a data example from a 2 x 2 factorial treatment structure applied to a 

randomized complete block design (RCBD) with four experimental units (EUôs) per block is 

analyzed.  These data were collected to investigate the effect of vaccine (VAC) and direct-fed 

microbial (DFM) on the fecal shedding of E. coli O157:H7 in a commercial setting (Cull et al, 

2012).  The actual data were collected from a RCBD with repeated measures where each of four 

treatment combinations of VAC and DFM were applied to one of four pens blocked by 

allocation date since seasonal effects associated with degree of fecal shedding (i.e.ðhigher 

shedding in summer) have been well documented.  For purposes of simplicity, we consider data 

from a single period only, however, these methods may be extended to accommodate repeated 

measures across four periods.  Pre-harvest interventions that reduce fecal shedding of E. coli 

O157:H7 have important food safety and commercial economic implications.  Blanket 

administration of treatment based only on average effects when there may exist a non-negligible 

portion of a population that experiences an unfavorable individual effect is not a trivial matter.  

Thus, quantifying the degree of treatment heterogeneity associated with these treatments beyond 

an average affect seems appropriate. 

Thirty fresh fecal samples were collected from pens each week over a period of four 

consecutive weeks.  Fecal samples were assessed for the presence (positive) or absence 
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(negative) of the E. coli O157:H7 bacteria.  Pen-level proportions were fit using a generalized 

linear mixed model (GLMM) assuming a binomial distribution on thirty independent trials with a 

logit link function.  Outcomes were the proportion of positive samples from each collection. 

When the potential responses are not continuous, a different approach to treatment 

heterogeneity may be required.  Gadbury et al (2004) considered binary response and defined Ὠ 

as a multinomial response taking on one of three distinct values, π, ρ, or ρ.  They established 

bounds for the probability of an EU experiencing an unfavorable effect of the test treatment 

compared with the reference in a matched pairs design. Albert et al (2005) extended those results 

to a blocked design with binary outcomes.  Zhang et al (2013) further extended these results 

from Gadbury  et al (2004) to incorporate information on treatment heterogeneity from known 

covariates and repeated measures. 

 The method proposed here compares a GLMM derived under a potential outcomes 

framework to the usual observable GLMM.  A comparison of the potential and observable 

GLMMôs reveals components associated with treatment heterogeneity that are estimable in the 

potential GLMM but not in the observable GLMM, at least not without non-trivial assumptions. 

A key step in comparing the potential and observable GLMMôs is the appropriate identification 

of the potential GLMM.  This is accomplished by adapting Stroupôs WWFD (2013) technique to 

accommodate a potential outcomes framework. 

 In the subsequent sections, we i) use Stroupôs WWFD technique to develop a potential 

GLMM linear predictor and corresponding observable GLMM linear predictor; ii) re-define 

treatment heterogeneity in terms of GLMM components; iii) establish estimable bounds for 

model parameters quantifying treatment heterogeneity; and iv) apply these results to the E.coli 

data, first at one collection period and then across the four collection periods.  

 

 6.2.3. Potential and Observable GLMM Models 

 In order to accommodate a GLMM analysis, the traditional potential outcomes 

framework is slightly altered.  Imagine a collection of non-continuous potential responses as in 

(1), except for each potential response, there exists an underlying parameter (or set of 

parameters) giving rise to a non-continuous potential response.  These underlying parameters 

may be EU-specific and may possibly differ depending on the level of treatment the EU receives.  
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For the E. coli data in particular, imagine that each pen in each block is afforded a 4-tuple of 

potential binomial responses at each collection period.  These potential responses are based on a 

4-tuple of underlying binomial probabilities, one for each VAC-DFM combination, on thirty 

independent Bernoulli trials. When the randomization mechanism is invoked in a potential 

GLMM, one potential response is selected as the observable response. This is tantamount to 

selecting one of the underlying potential parameters as the observable parameter under which the 

observable response is generated. We use the potential GLMM as a template to arrive at the 

observable GLMM.  This process is an important step in the appropriate estimation of effects in 

the observable model as misspecification of the model in PROC GLIMMIX has been 

demonstrated to alter both model effect estimation and inference (Boykin et al., 2010). 

The WWFD method is based on a discussion by Fisher of Yatesô paper on complex 

experiments (1935) where Fisher demonstrates that the choice of an experimental design is the 

choice of how a topographical layout of the experiment is related to the treatment structure of an 

experiment.  The potential responses are given for the Ὦ  pen in the Ὥ  block receiving the Ὧ  

level of VAC combined with the ὰ  level of DFM; Ὥ ρȟςȟȣȟρπ allocation dates; Ὦ ρȟςȟσȟτ 

pens; Ὧ Ὕȟὅ levels of VAC; and ὰ Ὕȟὅ levels of DFM.  

The potential outcomes framework results in four simultaneous replicate sets of 40 

responses, one replicate set receiving each of the four VAC-DFM combinations.  Figure 6.1 (i) 

gives a plot plan for the potential outcomes layout of this experiment.  Notice that every pen and 

every block is represented in every replicate set.  By virtue of the factorial treatment structure, 

every block and every pen receive every level of VAC, every level of DFM and every level of 

VAC-DFM treatment combination in the potential outcomes structure. Thus, from a potential 

outcomes perspective, block and pen are crossed with each main effect and treatment 

combination. 

A topographical layout of the experiment at a single time period is given in Table 6.3 (i).  

Table 6.3 (ii) gives the factorial treatment layout of the experiment, accounting for the total 

degrees of freedom in the experiment. ñParallelsò was a term used by Fisher and may be thought 

of the number of times a particular VAC-DFM combination needs to be replicated in order to 

carry out the entire experiment.  In this case, there are 4 VAC-DFM combinations and each 

combination must be replicated 40 times to accommodate the potential outcomes framework. 
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Using the combined ANOVA table in Table 6.3 (iii ) as a guide, the linear predictor for 

the potential outcomes experiment is given by  

 

ὰέὫὭὸ“ ‘ ὦ ὴ  † ὦ ὦ† † ὦ† ὴ ὴ† ὴ†       (6.10) 
Ὥ ρȟςȟȣȟρπ allocation dates; Ὦ ρȟςȟσȟτ pens; Ὧ Ὕȟὅ levels of VAC; and ὰ Ὕȟὅ levels of DFM 

 

where “  represents the binomial probability of the Ὦ  pen in the Ὥ  block receiving the 

combination of the Ὧ  level of VAC and the  ὰ  level of DFM;  ὦ is the random effect of the 

Ὥ  block (i.e.ðallocation date); ὴ  is the random effect of the Ὦ  pen in the Ὥ  block;   

represents the fixed effect of the Ὧ  level of VAC; † represents the fixed effect of the ὰ  level 

of DFM; ὦ represents the random effect arising from the application of Ὧ  level of VAC  to 

the Ὥ  block; ὦ† represents the random effect arising from the application of ὰ  level of DFM  

to the Ὥ  block;  † represents the fixed interaction effect of the Ὧ  level of VAC combined 

with the ὰ  level of DFM; ὦ† represents the random interaction effect arising from the 

application of the Ὧ  level of VAC combined with the  ὰ  level of DFM to the  Ὥ  block;  

ὴ  represents the random interaction of the Ὧ  level of VAC applied to the Ὦ  pen in the 

Ὥ  block;  ὴ†  represents the random interaction of the ὰ  level of DFM applied to the Ὦ  

pen in the Ὥ  block; and  ὴ†  represents the random interaction effect arising from the 

application of the Ὧ  level of VAC combined with the  ὰ  level of DFM to the Ὦ  pen in the Ὥ  

block. 

For a distribution in which the estimation of a scale parameter is of interest, the final term 

in the model, ὴ† , would be considered the residual or error term, and would be utilized in 

the estimation of the error variance.  However, for a distribution belonging to the one-parameter 

exponential family, like the binomial distribution, there is no scale parameter to estimate.   

Consequently, this final source of variability must play either a different role than that of the 

Gaussian residual term, or no role at all (Stroup, 2013).  It is common practice to assume no 

variability can be attributed to the final term and remove it from the model.  For now, it will be 

left in the model in order for the potential model to account for all degrees of freedom in the 

experiment.  Further discussion for the interested reader can be found in Stroup (2013, pp. 112-

114).  The distributional assumptions in probability distribution form (Stroup, 2013) are as 

follows: 
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Data: 

ὶ ȿ▲ͯ ὄὭὲέάὭὥὰσπȟ“  

 

where ▲ is a vector of the following random effects: 

 

ὦͯ ὭὭὨ ὔπȟ„  

ὴ ὭͯὭὨ ὔπȟ„  

ὦ ὭͯὭὨ ὔπȟ„  

ὦ†ͯ ὭὭὨ ὔπȟ„                                                             φȢρρ 
ὦ†ͯ ὭὭὨ ὔπȟ„  

ὴ ὭͯὭὨ ὔπȟ„  

ὴ† ὭͯὭὨ ὔπȟ„  

ὴ† ὭͯὭὨ ὔπȟ„  

 

ὦȟὴ ȟὦȟὦ†ȟ  ὦ†ȟὴ ȟὴ†  ὥὲὨ ὴ†  are mutually independent. 

 

Previously published results (Richardson and Gadbury, 2012; Richardson and Gadbury 

2013-in progress) have shown that an observable model can be derived from a potential model 

by considering the information lost after invoking the randomization mechanism resulting in the 

removal of a portion of potential data.  Figure 6.1 (ii) represents a plot plan after the 

randomization mechanism has been invoked and three-fourths of the potential data have been 

removed.  By removing three-fourths of the data, the following information is lost: 

(i) Multiple observations per block on the same DFM-VAC combination 

(ii)  Multiple observations per pen within a block 

(iii) Multiple observations per pen within a block on the same level of VAC 

(iv) Multiple observations per pen within a block on the same level of DFM 

The resulting observable linear predictor is given by: 

 

ὰέὫὭὸ“ ‘ ὦ  † ὦ ὦ† † ὦ†                                               (6.12) 
Ὥ ρȟςȟȣȟρπ allocation dates; Ὧ Ὕȟὅ levels of VAC; and ὰ Ὕȟὅ levels of DFM 

 

where the pen within block can be identified by the VAC-DFM combination if the randomization 

scheme is known.  All other effects are defined as in the potential outcomes framework. 

A direct relationship between the observable model and the potential model is established 

by defining  
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ὦ† ὴ ὦ† ὴ ὴ† ὴ† Ȣ 

 

Given the distributional assumptions specified in (6.11),  

 

„ „ „ „ „ „ Ȣ                                               φȢρσ 
 

 Table 6.4 gives the WWFD result for this experiment design.  Since there is no scale 

parameter to estimate, a usual observable GLMM approach attributes any remaining variability 

in the linear predictor after fitting the VAC and DFM main effects, VAC-by-DFM interaction, 

and block-by-VAC and block-by-DFM interactions to block-by-VAC-by-DFM interaction.  By 

first considering the potential GLMM linear predictor, the assumptions required to substantiate 

this assertion become clear.  In particular, by considering the variance components in (6.13), 

„ „  only when „ „ „ „ π.  So, if one is willing to assume no 

variability due to pen, no variability in VAC effect across pens, no variability in DFM effect 

across pens, and no variability in VAC-DFM interaction across pens, then the block-by-treatment 

interaction effect completely explains any remaining variability after the main effects (fixed), the 

interaction effect (fixed) and the random block and block-by-main effect interactions have been 

included in the model. 

 

 6.2.4. GLMM In dividual Effects 

 Previous work with binary potential outcomes (Gadbury et al., 2004; Zhang et al. 2013) 

has utilized the traditional definition of an individual effect.  Extending the traditional definition 

of individual effect to the binomial distribution results in ςὲ ρ possible values of Ὠ ὶ

ὶ, where ὲ is the number of Bernoulli trials (i.e. ὲ σπ for the E. coli dataset).  For large 

values of ὲ, using the approach described by Gadbury et al. (2004) may be rather cumbersome, 

and an alternative definition of individual effect may facilitate a more intuitive investigation of 

treatment heterogeneity. 

 Rather than defining an individual effect on the data scale (i.e.-the difference between 

two potential responses belonging to the same EU), define an individual effect on the model or 

link scale.  For a binomial response assuming a logistic regression GLMM model, the resulting 

individual effect is an individual log-odds ratio of  Ὕ compared with ὅ.  In the E. coli data 
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example, the 2x2 factorial treatment structure facilitates the following two individual effects for 

the Ὦ  pen in the Ὥ  block:   

 

ὰὲέὶȿ ὰέὫὭὸ“ ὰέὫὭὸ“  

and                                                                                                                                            (6.14) 

ὰὲέὶȿ ὰέὫὭὸ“ ὰέὫὭὸ“  

 

where  ὰὲέὶȿ  represents the individual effect of VAC conditioned on a given level of DFM 

and ὰὲέὶȿ  represents the individual effect of DFM conditioned on a given level of VAC.  

Using this modified definition of individual effect, the variance of the individual log-odds ratio, 

„ , quantifies the degree of treatment heterogeneity in an experiment in that a positive value of 

„  indicates the presence of treatment heterogeneity.  If no treatment heterogeneity exists, then 

the variability of the individual log-odds is zero. 

 Based on the model assumptions given in (6.11), „ ȿ „ ȿ  and „ ȿ

„ ȿ .  Denote these variances „ ȿ  and „ ȿ  , respectively.  Writing the individual 

effects given in (6.14) in terms of the potential GLMM linear predictor components and 

considering the variance of the individual log-odds ration based on the model assumptions given 

in (6.11) yields 

 

„ ȿ ς„ „ „ „  

and                                                                                                                                            (6.15) 

„ ȿ ς„ „ „ „  

 

where „  and „  are estimable from observable data since an observable data set contains 

multiple observations per EU on a particular level of VAC (but differing levels of DFM) and 

multiple observations per EU on a particular level of DFM (but differing levels of VAC).  Thus 

estimable lower bounds can be established by noting 

 

ς„ „ ȿ  

and                                                                                                                                            (6.16) 

ς„ „ ȿ  
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 The factorial nature of this design permits two observable naïve estimates of the 

individual effects given in (6.14).  The two naïve estimates are, again, defined on the model 

scale: 

 

ὰὲὕὙȿ ὰέὫὭὸ“ ὰέὫὭὸ“  

and                                                                                                                                            (6.17) 

ὰὲὕὙȿ ὰέὫὭὸ“ ὰέὫὭὸ“  

 

where the differences in log-odds are across pens within the same block. 

 To compare the variances of the naïve effects in in (6.17) to the variances of the 

individual effects defined in (6.14), notice that based on the distributional assumptions given in 

(6.11) and the relationship between the potential linear predictor and the observable linear 

predictor in (6.13), „ ȿ „ ȿ  and „ ȿ „ ȿ , where „  represents the 

variance of a naïve effect.  Denote these variances „ ȿ  and „ ȿ  , respectively.  The 

variances of the naïve effects written in terms of model variance components are: 

 

„ ȿ ς„ „ ς„ „ „ „ „ „  

„ ȿ ς„ „  

and                                                                                                                                            (6.18) 

„ ȿ ς„ „ ς„ „ „ „ „ „  

„ ȿ ς„ „  

 

Combining the results of (6.16) and (6.18), notice 

 

ς„ „ ȿ „ ȿ  

and                                                                                                                                            (6.19) 

ς„ „ ȿ „ ȿ Ȣ 

 

where „ ȿ ς„ „  and „ ȿ ς„ „ .  Equation (6.19) 

demonstrates that non-trivial, estimable upper and lower bounds for the variances of an 

individual log-odds ratio can be established for this experimental design.  The difference 

between the upper and lower bounds is ς„ . 
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 6.2.5. Results of Data Analysis 

Using PROC GLIMMIX, we analyzed the E.coli data from the first of four periods, 

according to the model given in (6.12) where   represents a fixed VAC effect and  † represents 

a fixed DFM effect.  Table 6.5(i) gives the results for tests of fixed effects in the model. Table 

6.5 (ii) presents the odd-ratio estimates of interest for fixed effects with standard errors and 

estimates of the random effects with standard errors. 

Results from the analysis demonstrate that the probability of detecting a positive fecal 

sample in pens that were vaccinated were significantly lower (P=0.0038) than pens that were not 

vaccinated.  There was no significant effect on the odds-ratio for the effect of DFM, neither was 

there a significant interaction effect.  These results are consistent with those published by Cull et 

al (2012) even though we are only considering one period instead of four in this analysis.  As 

such, estimates and P-values given here will differ from those reported by Cull et al (2012).  

The estimates of the variance components in Table 6.5 (ii) give rise to estimable bounds 

of the variance of individual effects established in (6.19).  Table 6.6 gives the estimated upper 

and lower bounds of the variance of the individual causal effects. In addition to the estimable 

bounds we used ὄ υπ bootstrap (Efron and Tibshirani, 1994) samples to compute the 

bootstrap standard error of both the upper and lower bounds. These bootstrap standard errors are 

also given in Table 6.6.  The difference between the estimable upper and lower bounds for both 

variances of interest is 1.6036. This is twice the estimate of  „  given in Table 6.5 (ii). For both 

variances of interest, the estimates of the lower bounds are within one bootstrap standard error of 

zero. Additionally, the estimate of the upper bound for the individual effect of VAC given DFM 

is within two bootstrap errors of zero.   These estimates, together with a non-significant VAC-

by-DFM interaction, suggest that it would be reasonable to conclude no treatment heterogeneity 

for VAC.  For DFM at a given level of VAC, a conclusion of treatment heterogeneity is possible 

since the estimate of the upper bound is more than two bootstrap standard errors above zero, 

however, based on equation (6.18), one must be willing to assume „ „ π in order for the 

variability of the individual log-odds to equal the variability of the observed log-odds.  In other 

words, if one is willing to assume no variability in individual log-odds due to the pens a block 

and no variability in individual log-odds due to different pens receiving the same level of VAC, 

then one could reasonably treatment heterogeneity of DFM.  Even though the potential GLMM 

helps clarify what assumptions are needed to equate estimated bounds with estimated treatment 
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heterogeneity, these assumptions cannot be directly tested using observable data from this 

design. 

 6.2.6. Discussion and Conclusion 

 In cases where treatment heterogeneity is suspected, quantifying the degree of treatment 

heterogeneity in addition to estimating a mean effect should be undertaken before a claim of the 

superiority of one treatment over another is established (Longford, 1999). Treatment 

heterogeneity has frequently been assessed using finite population, randomization-based 

approaches.  These techniques have been utilized for both continuous (Gadbury et al, 2001, 

Poulson et al, 2012) and non-continuous (Gadbury et al, 2004; Albert et al, 2004; Zhang et al, 

2013) responses.  However, as the complexity of an experimental design increases, assessing 

treatment heterogeneity becomes increasingly intractable (Ndum, 2012). 

 Since linear mixed models (LMMôs) and GLMMôs are particularly useful for modeling 

data from complex designs, their role in modeling treatment heterogeneity is investigated.  In 

order to accommodate a potential outcomes analysis for a GLMM setting, we slightly altered the 

definition of an individual effect so that the individual effect is defined on the link or model 

scale.  Once this has been done, the variance of an individual effect is the parameter of interest 

when assessing treatment heterogeneity, with a non-zero value indicating the presence of 

treatment heterogeneity. If the estimate of the lower bound is substantially greater than zero, one 

might conclude that treatment heterogeneity is present.  Likewise, if an estimable upper bound is 

very close to zero then one might conclude that the treatment is having a similar effect on 

individuals across a population. 

We demonstrated that both an upper and lower bound of the variance of an individual 

effect can be achieved for 2x2 factorial treatment structure applied to a RCBD. Given the 

estimated bounds of the individual effects and the bootstrap standard errors, there is not enough 

evidence from the current data to conclude treatment heterogeneity in the effect of VAC on fecal 

shedding.  It should also be stated that this is not the same as concluding treatment homogeneity.  

But given that the main effect of VAC was significant (P=0.0038), it seems reasonable to 

conclude that the effect of VAC is favorable and that the effect does not vary significantly across 

units in a population.  



120 

 

The conclusion regarding the heterogeneity of a treatment effect for DFM is not as clear.  

While the estimated lower bound is reasonably close to zero, one can argue that treatment 

heterogeneity could exist since the estimable upper bound is more than two boot-strapped 

standard errors above zero.  In this case, it seems prudent to consider what assumptions are 

required in order to equate „ ȿ  with its estimable upper bound.  Based on the relationship of 

„ ȿ  and „ ȿ  given in (6.18), „ ȿ  „ ȿ  when „ „ π.  This means 

that in order for „ ȿ  to achieve its estimable upper bound, we need to be willing to assume 

that there is no variability due to pen-within-block and no variability due to the application of 

VAC to a particular pen.  It should be noted that there is no way to test the validity of the 

assumption that „ „ π from the current data. 

Given that ὲ σπ in this experiment and with so many possible values of the usual 

computation of Ὠ ὶ ὶ (i.e-61 possible values), a normal approximation seems like a 

reasonable approach.  In other words, one might consider the following distribution on the 

potential responses: 

 

ὶ ȿ▲ͯ ὔ‘
ὭὮὯὰ
ȟ„  

 

where ▲ is a vector of random effects,  the estimate of ‘  would typically serve as the estimate 

of ὲ“  and the distributional assumptions of the random effects remain unchanged from those 

given in (6.11).  However, if estimates of ‘  can be interpreted as the corresponding estimate 

of ὲ“ , then the variance of these estimates should also be related the estimates of “ .  

Using the normal approximation, the variance of the estimates of ‘  would be related to „ , 

the meaning of which is ambiguous.  Furthermore, using the normal approximation convolutes 

the interpretation of treatment heterogeneity.  Recall,  „ ὠὥὶὨ quantifies the degree of 

treatment heterogeneity using the usual definition of individual effect.  Using a normal 

approximation introduces ς„  into the computation of „  and its upper and lower bounds, since 

Ὠ is defined as the difference between to potential responses for the same EU.  Permitting ς„  

into the computation of „  introduces an ambiguous source of variability that is related neither to 

the variability of the true conditional distribution of the potential responses nor the random 

effects specified in the linear predictor.  This is not trivial, especially if the marginal distribution 
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of the data is not approximately normal.  Let Ὢ▲ denote the joint distribution of random effects 

in the linear predictor.  The marginal distribution of the data can be determined as follows: 

 

Ὢ► Ễ Ὢ►ȿ▲Ὢ▲Ὠ▲ 

 

where ► is a vector containing potential responses.  When Ὢὶȿ▲ is a binomial distribution, the 

integral of the resulting joint distribution, Ὢ►ȿ▲Ὢ▲, cannot be directly evaluated to obtain a 

marginal distribution.  Simulation studies have shown this marginal distribution can be heavily 

skewed either to the right depending on the value of the binomial probability and the amount of 

variability introduced into the process by the random effects specified in ▲. (Stroup, 2013)  

Imposing a normal distribution on the conditional distribution of the data given the random 

effects, and including the resulting ñapproximateò variance in the computation of „  may lead to 

misleading conclusions about the existence of treatment heterogeneity. 

As in the case of the heterogeneity of the DFM effect, a comparison of the observable 

GLMM and potential GLMM for a given experimental design delineates the information about 

causal effects that is lost in moving from potential to observable data, and what assumptions 

about non-estimable quantities (or design modifications) are needed to evaluate treatment 

heterogeneity in observable data.  Furthermore, for experimental designs in which an estimable 

lower and/or upper bound can be established, the investigation of treatment heterogeneity is 

essentially ñwithout costò in the sense that no new data are needed to confirm the presence of 

treatment heterogeneity. 

 Studies are rarely designed to separate information on an individual effect from other 

sources of variability (Senn, 2001). For many simple designs, only estimable upper bounds of the 

variance of an individual effect can be established.  If treatment heterogeneity is suspected, 

careful thought and planning should be undertaken to design an experiment in such a way that an 

estimable lower bound can be established since an estimable lower bound significantly greater 

than zero confirms the presence of treatment heterogeneity.   

While the statistical methods presented here may be used to quantify the degree of 

treatment heterogeneity in these data, they cannot explain the source of the treatment 

heterogeneity.  If we concluded that that treatment heterogeneity existed, further research would 
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be required to investigate the possible causes of treatment heterogeneity. The data example was 

used for illustration and not to confirm a superiority of one treatment over another. The sample 

size was small and other issues such as treatment compliance were not considered.  
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Figure 6.1 Plot Plans:  2x2 factorial treatment structure in a RCBD. 

Plot plans for (i) the potential outcomes framework and (ii) the observable model framework. 

 
Topographical Trt Combined 

Source d.f. Source d.f. Source d.f. 

Rows of Replicate Sets 2-1=1 VAC 2-1=1 VAC 2-1=1 

Columns of Replicate Sets 2-1=1 DFM 2-1=1 DFM 2-1=1 

Row*Column 1x1=1 VAC*DFM 1x1=1 VAC*DFM 1x1=1 

Block 10-1=9  
 
 
Parallels 

 
 
 
4(40-1)=156 

Block 10-1=9 

Block*Row 9x1=9 Block*VAC 9x1=9 

Block*Column 9x1=9 Block*DFM 9x1=9 

Block*Row*Column 9x1x1=9 Block*VAC*DFM 9x1x1=9 

Pen(Block) 10(4-1)=30 Pen(Block) 10(4-1)=30 

Row*Pen(Block) 1x30=30 VAC* Pen(Block) 1x30=30 

Column*Pen(Block) 1x30=60 DFM* Pen(Block) 1x30=30 

Row*Column*Pen(Block) 1x1x30=30 VAC*DFM* Pen(Block) 1x1x30=30 

Total 160-1=159 Total 160-1=159 Total 160-1=159 

(i) (ii) (iii) 

Table 6.3  Potential WWFD ANOVA Structure:  2x2 Factorial in RCBD 

 (i) Topographical, (ii) Treatment, and (iii) Combined ANOVA structures for a Potential 2x2 factorial treatment 

structure in a RCBD. 

 

 

  

 
T Level of DFM C Level of DFM 
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10 TT TT TT TT 10 TC TC TC TC 
  

10 TT TT TT TT 10 TC TC TC TC 
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3 

Pen 
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9 CT CT CT CT 9 CC CC CC CC 
  

9 CT CT CT CT 9 CC CC CC CC 

10 CT CT CT CT 10 CC CC CC CC 
  

10 CT CT CT CT 10 CC CC CC CC 

 

(i)    (ii) 
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Topographical Trt Combined 

Source d.f. Source d.f. Source d.f. 

Row 2-1=1 VAC 2-1=1 VAC 2-1=1 

Column 2-1=1 DFM 2-1=1 DFM 2-1=1 

Row*Column 1x1=1 VAC*DFM 1x1=1 VAC*DFM 1x1=1 

Block 10-1=9  
 
 
Parallels 

 
 
 
4(40-1)=156 
4(10-1)=36 

Block 10-1=9 

Block*Row 9x1=9 Block*VAC 9x1=9 

Block*Column 9x1=9 Block*DFM 9x1=9 

Block*Row*Column++ 9x1x1=9 Block*VAC*DFM++ 9x1x1=9 

 Pen(Block) 10(4-1)=30 Pen(Block) 10(4-1)=30 

Row*Pen(Block) 1x30=30 VAC* Pen(Block) 1x30=30 

Column*Pen(Block) 1x30=60 DFM* Pen(Block) 1x30=30 

Row*Column*Pen(Block) 1x1x30=30 VAC*DFM* Pen(Block) 1x1x30=30 

Total 160-1=159 
40-1=39 

Total 160-1=159 
40-1=39 

Total 160-1=159 
40-1=39 

(i) (ii) (iii) 

Table 6.4 Observable WWFD ANOVA Structure:  2x2 Factorial in RCBD  

 (i) Topographical, (ii) Treatment, and (iii) Combined ANOVA structures for an Observable 2x2 factorial treatment 

structure in a RCBD. 
++

Assumes no pen-within-block variability and a uniform treatment effect of VAC, DFM and VAC-DFM 

combination on every pen within a block. 

 

 

 

 

 

 
Type III Tests of  Fixed Effects  

Fixed Effect F-Value P-value  

6!# 14.94 0.0038  

$&- 0.04 0.8385  

6!#z$&- 3.02 0.1163  

(i)  

    

Estimates:  

Fixed Effect Odds Ratio Lower Upper 

VAC (T vs. C) 0.26 0.12 0.57 

DFM (T vs. C) 0.92 0.38 2.22 

    

Variance Component Estimate Std. Error   

„ 0.6942 0.5842  

„  0.0468 0.3886  

„  0.1803 0.4552  

„  0.8018 0.6068  

(ii)   

Table 6.5 SAS PROC GLIMMIX Results 

(i)Type III Tests for Fixed Effects.  (ii) Estimates of the odds ratios of observing a sample positive for E. Coli  with 

upper and lower confidence limits and estimates of the variance of random effects with estimated standard errors. 
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Individual Effect  Estimate Bootstrap SE 

„ ȿ    

Lower Bound 0.0936 0.4511 

Upper Bound 1.6972 0.8523 

„ ȿ    

Lower Bound 0.3606 0.5791 

Upper Bound 1.9642 0.8602 

 

Table 6.6 Estimable Bounds for the Variance of Individual Effects.   

Estimates of the upper and lower bounds given in equation (6.19) with bootstrap standard errors. 
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Chapter 7 - Future Work 

The following sections present ideas for future work based on the research presented in 

Chapters 1-6. 

 7.1  The Role of the Randomization Mechanism 
To this point, all results have been predicated on a uniform randomization mechanism. 

That is, assuming a balanced CRD experiment comparing two treatments, the marginal 

probability of assignment is 

 

ὖὡ ρ ὖὡ π
ρ

ς
                                               χȢρ 

 

for any of the Ὦ ρȟςȟȢȢὔ EUôs, where ὡ  is the indicator variable defined in Chapter 1 to 

represent the random assignment of EUôs to level of treatment.  In a randomized experiment, 

(7.1) holds regardless of the values of the EUôs potential outcomes and regardless of the values 

of either observed or unobserved covariates.  Furthermore, in a randomized experiment, the 

treatment and control groups are usually comparable in every respect except for the level of 

treatment applied to the group.  The reason for this is that the law of large numbers ensures that 

for a randomized experiment that is ñlarge enoughò, values of both observed and unobserved 

covariates tend toward the mean value of the population from which the treatment groups were 

drawn. 

 It has been well established (Fisher, 1935; Rosenbaum and Ruben, 1983; Rosenbaum, 

2010) that studies in which uniform randomization is either impractical or infeasible do not 

possess these same characteristics that tend to balance the treatment group and control group in 

randomized experiments.  It is very common among studies in which randomization is not 

uniform to find significant differences between the treatment group compared with the control 

group in attributes that affect the outcome of the study.  Therefore, there is no reason to suspect 

that the probability of being assigned to either treatment or control is independent of covariate 

values, or even of potential outcomes.  In other words, certain values of a covariate may make an 
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EU more likely to be assigned to either treatment or control.  If groups receiving treatment and 

control differ in ways besides the level of treatment assigned and these differences matter for the 

outcomes of the study, then the study is said to be biased.  When all sources of bias in a study are 

overt, (i.e.- the pertinent covariates have been collected and recorded), then the bias can be 

controlled by making adjustments such as matching or stratification, under the assumption of a 

strongly ignorable treatment assignment. If the bias is hidden, however, then no adjustment can 

be made.  A sensitivity analysis which seeks to describe the magnitude of the hidden bias that 

must be present in the study in order to explain any associations seen in that study should be 

included in the results of any study for which randomization is not uniform.  There is a wide 

body of literature that discusses matching techniques and the intricacies of sensitivity analyses in 

studies containing bias.  Unless these topics become a part of the current research, that literature 

will not be considered at this point.  The interested reader is referred to Rosenbaumôs (2010) text 

on designing observational studies for a noteworthy summary of the topics discussed here. 

 Up to this point, the discussion regarding randomization and bias has still been predicated 

on the assumption of an additive treatment model defined in equation (2.3).  Few forays have 

been attempted that consider a model that contains both treatment heterogeneity and non-uniform 

randomization.  One such attempt, however, was provided by Rosenbaum (1999) in which a 

dilated treatment effect model was defined and a sensitivity analysis was performed under the 

assumptions of this dilated treatment effect model.  A dilated treatment effect model is a model 

that permits a type of treatment heterogeneity in which it is assumed that the potential responses 

under treatment,ὶ, are systematically larger and more dispersed than potential responses under 

control, ὶ.  The difference between ὶ and ὶ is assumed to be a non-negative, non-decreasing 

function of ὶ.  This assumption has serious implications on the correlation between ὶ and ὶ, 

namely that the correlation is non-negative.  It seems reasonable that the current research could 

be extended to investigate the nature of treatment heterogeneity in studies for which 

randomization is not uniform without the imposed structure of a dilated treatment effect. 

 7.2  Estimating Treatment Heterogeneity in Observable Data 
Consider, again, the potential model for a 2-sample CRD given in Table 3.1.  For 

simplicity purposes, consider a common variance on ί†ᴂί  so that „ „ „Ȣ  Define 

 

ὸ † ί†Ƞ 
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Ὥ ὝȟὅȠὮ ρȟςȣὔ                                                            χȢς 

 

so that the potential model in Table 3.1 becomes 

 

ὶ ‘ ὸ ίȠ  

Ὥ ὝȟὅȠὮ ρȟςȣὔ 

ὸ ὭͯὭὨ ὔ†ȟ„  Ƞ ίͯ ὭὭὨ ὔπȟ„ Ƞ ὸ ὥὲὨ ί ὥὶὩ ὭὲὨὩὴὩὲὨὩὲὸ                 χȢσ 

 

This is recognizable as a random model containing two random effects, where the expectation of  

ὸ is possibly non-zero.  Assumptions about „  and „  required to equate the variance of the 

individual causal effect and the naïve effect have already been discussed.  However, it seems 

reasonable given the model in (7.3) that there may be other constraints placed on the model that 

might permit both „  and „  to become estimable from observable data.  For example, if the 

constraint under Ὄȡ† †, were to be imposed, could „  and „  then be estimated?  Or what 

if † and „  were considered hyper-parameters from some specified prior distribution on ὸ?  

What kind of estimate of „  would the variance of the posterior distribution then be if a 

Bayesian approach were adapted?  Answers to questions like these seem tangible now that a 

potential data model has been defined and its relationship to the ñusualò observable data model 

has been clearly established.  

 

 7.3  The Role of a Covariate 
Gadbury and Iyer (2000) demonstrated the use of a single covariate obtained on a 

population of units in bounding measures of treatment heterogeneity in a two-sample CRD with 

maximum likelihood estimates (MLEôs) obtained from observable data.  They further discussed 

assumptions of the conditional model required for a lack of treatment heterogeneity to exist.  

Gadbury et. al (2001) performed sensitivity analyses over the range of possible values of 

conditional and unconditional correlation.  Denoting the single covariate ὤ, they considered the 

population of potential responses to be drawn from the following trivariate Gaussian population 
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ὶ
ὶ
ὤ

ὓͯὠὔ

‘
‘
‘
ȟ

„ ” „„ ” „„

” „„ „ ” „„

” „„ ” „„ „

Ȣ                           χȢτ 

 

By extending the models in Chapter 3 to develop analysis of covariance (ANCOVA) 

models and using the results of the proposed research in section 4.2 on correlation, I would like 

to reframe the work of Gadbury and Iyer (2000) and Gadbury et. al (2001) in light of the 

potential outcomes linear mixed models developed in Chapter 3.  More specifically, I would like 

to consider how information from a single covariate might alter the estimable bounds of 

„ defined in terms of model variance components, if at all.  Furthermore, I would like to 

investigate the assumptions in a potential ANCOVA model that are required in order for a lack 

of treatment heterogeneity to exist. 
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Appendix A- Results for Gaussian Data:  Common Variance 

 A.1 2-Sample CRD 

Model Model Parameters Assumptions 

Potential Model ὶ ‘ † ί ί†ȟ    

 Ὥ ὝȟὅȠ   
 Ὦ ρȟςȟȣȟὔ ὉὟᴂί 

 

ίͯ ὭὭὨ ὔπȟ„  

ί†ͯ ὭὭὨ ὔπȟ„  

ί and ί† are independent. 

 

 

Observable Model 

 

Ὑ ‘ † Ὡȟ     
Ὥ ὝȟὅȠ    
Ὦ ρȟςȟȣȟὲ  

ὉὟί ὴὩὶ ὰὩὺὩὰ έὪ ὸὶὸ 

 

Ὡ ὭͯὭὨ ὔπȟ„  

  
 

Table A.1.1 Model effects and assumptions in a 2-sample CRD.  

 

Table A.1.2 2-Sample CRD Simulation Results.  
Values represent the average and standard error of treatment effect estimates across Ὓ ρππ simulations in both 

the potential and observable data models for N=10, 30, and 100 for (i) Fixed Effects.  (ii) Potential Random Effects. 

(iii)  Observable Random Effects. 

Fixed  

Effect 

(Potential) 

 

Simulated 

Value 

 

 

2N Ὓ ρππ 

 

Average 

Ὓ ρππ 

 

Std. Error  

 Fixed 

Effect 

(Obs.) 

 

Simulated 

Value 

 

 

N Ὓ ρππ 

 

Average 

Std.  

Error  

 Ὓ ρππ 

† † 3 20 3.03 0.06  † † 3 10 3.17 0.16 

  60 3.01 0.03    30 3.03 0.09 

  200 3.00 0.02    100 3.02 0.06 

     (i) 

Potential 

Variance 

Simulated 

Value 

 

2N 

Average 

 Ὓ ρππ 
Std. Error  

 Ὓ ρππ 

Subject 4.71 20 4.76 0.25 

  60 4.83 0.13 

  200 4.75 0.08 

     

Subject*Trt 1.57 20 1.52 0.07 

  60 1.53 0.04 

  200 1.56 0.02 

     

ὺὥὶὨ  3.14 20 3.04 0.14 

  60 3.06 0.07 

  200 3.11 0.05 

     (ii)  

Observable 

Variance 

Simulated 

Value 

 

N 

Average 

 Ὓ ρππ 
Std. Error  

 Ὓ ρππ 

Residual 6.28 10 6.33 0.32 

  30 6.31 0.15 

  100 6.23 0.09 

     (iii)  
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Figure A.1.1 ὲϽὺὥὶὈϽ ὺὥὶὨ Ȣ  Box plots of the Ὓ ρππ estimates of ὲϽὺὥὶὈϽ at N=10, 30, and 100 

Dotted lines represent values used in the simulation design. 
 

 

Figure A.1.2 Ͻ vs. ὺὥὶὨϽ.  One-half the variance of the average naïve effect is an upper bound for the 

variance of the average true causal effect. 


































