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Abstract

Studies commonly focus agstimating a mean treatment effect in a population. However,
in some applications the variability of treatment effects across individual units may help to
characterize the overall effect of a treatment across the population. Consider a set of treatments,
{T,C}, where T denotes some treatment that might be applied to an experimental unit and C
denotes a control. For eachi(bfexperimental units, the dupléet {,i }, 'Q pkh8 ),
represents the potential response ofthexperimental uniif treatment were applied and the
response of the experimental uihitontrol were applied, respectively. The causal effect of T
compared to C is the difference between the two potential responses, . Much work has
been done to elucidate the statistical properties of a causal effect, given a set of particular
assumptions. Gadbury and others have reported on this for some simple designs and primarily
focused on finite population randomization basedrérfee. When designs become more
complicated, the randomization based approach becomes increasingly difficult.

Since linear mixed effects models are particularly useful for modeling data from complex
designs, their role in modeling treatment heterogeneitywestigated. It is shown that an
individual treatment effect can be conceptualized as a linear combination of fixed treatment
effects and random effects. The random effects are assumed to have variance components
specified i n a ami xoeudt ceofnieescot smofidpeolt ewnhtieih, b ot h
are variables in the moddlhe variance of the individual causal effect is used to quantify
treatment heterogeneityost treatment assignment, however, only one of the two potential
outcomes i®bservable for a unit. It is then shown that the variance component for treatment
heterogeneity becomes restimable in an analysis of observed data. Furthermore, estimable
variance components in the observed data model are demonstrated to ariseefiom li
combinations of the neastimable variance components in the potential outcomes model.

Mixed effects modelareconsidered irtontext of a particulagesign in an effort to illuminate
the loss of information incurred when moving from a potential@muts framework to an

observed data analysis.
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Abstract

Studies commonly focus on estimating a mean treatment effect in a population. However,
in some applications the variability of treatment effects across indiuvichigl may help to
characterize the overall effect of a treatment across the population. Consider a set of treatments,
{T,C}, where T denotes some treatment that might be applied to an experimental unit and C
denotes a control. For eachibfexperimentalnits, the dupleti{ ,i }, 'Q pktf8 h),
represents the potential response ofthexperimental uniif treatment were applied and the
response of the experimental uihitontrol were applied, respectively. The causal effect of T

compared tc is the difference between the two potential responses, i . Much work has

been done to elucidate the statistical properties of a causal effect, given a set of particular
assumptions. Gadbury and others have reported on this for some d@sigies and primarily
focused on finite population randomization based inference. When designs become more
complicated, the randomization based approach becomes increasingly difficult.

Since linear mixed effects models are particularly useful for modeéiteyfrom complex
designs, their role in modeling treatment heterogeneity is investigated. It is shown that an
individual treatment effect can be conceptualized as a linear combination of fixed treatment
effects and random effects. The random effe@siasumed to have variance components
specified in a mixed effects fApotentiiial outco
are variables in the moddlhe variance of the individual causal effect is used to quantify
treatment heterogeneityost treatment assignment, however, only one of the two potential
outcomes is observable for a unit. It is then shown that the variance component for treatment
heterogeneity becomes restimable in an analysis of observed data. Furthermore, estimable
variance components in the observed data model are demonstrated to arise from linear
combinations of the neastimable variance components in the potential outcomes model.
Mixed effects modelareconsidered irtontext of a particulagesign in an effort toliiminate
the loss of information incurred when moving from a potential outcomes framework to an

observed data analysis.
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Chapterl-l nt roducti on

Treatment heterogeneitgfers to the variality of a treatment effeccross individuals in
a populationThe termtreatment effedmplies a comparison of one level of treatment against
another. To state that a treatment effect varies across individuals implies that this comparison of
treatment levelss madewithin an individual Althoughsuch variabilityhas often been
acknowledged as an importaignsiderationn the application of experimental findings to
prospective individual experimental units (Ebjany experimental design settings fueethe
comparison ofreatment within an individual EU. Consequently, a measure of treatment
heterogeneity is not directly estimabl&herefore, in order to facilitate some sort of decision
about the use of treatmentimdividual E U § generabktatisticalinformationis gatlered about
the average or mean effestd therthat same informatiois appliedto theindividual (cf.

Marshall, 1997) It should be noted, however, that the mean effect may be misleading when the
effect of a treatment varies widely ass individuals. If individual treatment variation is large

with respect to the mean, then the mean treatment effect may appear to be favorable for one
treatment over another while the other treatment may be more favorable fenagtigible
proportonof t he EUOGs in the popul ation.

Cros®verdesigns are one type of experimental designatats observation of an
Ai nditreatden@afl f ect 0 because an individual Crosses:¢
after a washout period, thereby providing observable responses to each of the two treatments.
Therefore, they have been recommended as a design that provides more capabilitygtngvalu
treatment heterogeneiiy a study (cf., Senn, 2001However, stimatingtreatment
heterogeneityeven in crossver designscan involve assumptions that are not always explicitly
stated or apparent in random effects modMsere about these assptions will be discussed in
the next chapter.

Another approach to assessing treatment heterogeneity is the use of a potential outcomes
framework. Potential outcomegRubin, 1974) can help elucidate the role of treatment
heterogeneity in a statistical analysia this framework, an unobservable, individual treatment
effect is defined. It is the variance of this individual difference that is of primary interest.

Thisresearctexplores issues that arise when estimating a variance of individual

treatment effects. This variance serves to quantify the degree of treatment heterogeneity in a



population.Concepts presentdebre should be useful for applications whereresting this

variance, in addition to estimating a mean effect, may be of interest.
1.1 Potential Outcomes

1.1.1Causal Effectand the Fundamental Problem of th€ausal Inference

Considera set of treatments;¥) say, wheréYdenotes some treatment thaight be
applied to arEU and 0 denotes a control that also might be applied t&ldnFor eactEU,
consider the dupleti{,i }, which represents the potential response of the experimental unit
treatment were applied and the response of the experimentdlaomntrol were applied,
respectively. Thetrue causal effecof “Ycompared t@, denoted? is the difference between the

two potential responsedhat is,

Q 1 i PP

Notice that it is iIimportant to use termino
Aconceptuali zed when discussing potential out
observe all potentialldcomes for a given experimental uaita particular timeOnly one of the
potential responses is actually observafileis constraint of a potential outcomes framework
has been called the fundamental probleroaafsal inferencéHolland, 1986)

Although direct observation of theue causaéffectis unachievablethe potential
outcomes framework is still a very viable pedagogical tool for conceptualizing varying responses
to the application of different treatment&s discussed in the next chap much work has been
done to elucidate the statistical propertiea chusal effect, givengarticular set of

assumptions

1.1.2 The Randomization Mechanisand Naive Difference

As noted above, only one potential response may be obden@diven EU at a given
time. The question then becomes which of the potential outcomes should be selected for the
observable outcome and how shouldttthoice be made. From a statistical perspective, the
inherent answer is to permit random chance to selecttbervable responses from the potential

responses.



Define a random indicataariable, , such that

phQQ Qo Qi Q'@ SABLLXQ YO Qi
QY Qo Qi QoM@ SAXXEVQ O Qi

Define the observable outcome of the experimental unity , as follows:

Y I i Jp w

wherei andi are the potential responses of fdeexperimental unit. In potential outcomes

literature,the probability distribution ofo is referred to as thendomization mechanism

Once the samples have been selected, define the usual mean difference using the

observable outcomes

where'Y 5is the arithmetic average of the responses for those units whose potential response
under”Ywas selected to be observed andis the arithmetic average of the responses of

those units whose potenti@sponse under was selected to be observed. We disting@sh

from the true individual causal effect given inl{lby referring toO as thenaive differencer

thenaive effect In a usual twesample completely randomized design (CRD), the meah2) (

would be an estimator for a population mean. Here, however, it is interpretedenerally as a

naive effectn a CRDbecausét is the only effect that could be attributed to individuals and

would be a naive version of the true quantity in (1ri)ater designs, such as the matched pairs

design, the naive effect would be a paired difference and would serve as a naive version for the
true effect for two individuals in a pair. Mo

versus their true coderparts will be discussed in later sections.



Employing the randomization mechanism effectively removeshaifeof the potential
outcomes to yield the observable data. Removinghaifeof the data alters the dataset in such a
way that certain quantities become inestimable. Consequently, infonnadbait pertinent
effects is |l ost. A reasonabl e question to as
i mpl ementing the randomization mechani sm?o A
relating a potential outcomes model to an obseevdbta model. Throughout this paper, it is
assumed that estimable effects in a potential outcomes model that are no longer estimable after
implementing the randomization mechanism are nobweth from the model buére
confounded together to producefhe esi dual 6 term in the correspo
Thus an observableath modeproduced from a potential data modehtains the estimable
effects in the potential outcomes model that remain estimable after implementing the
randomization meché&@m and théi r e s i d wenkisiingdf thereffects from the potential

data modethat are confounded

1.13 Inference Space and Statistical Properties of Potential Outcomes

In the potential outcomes framework, we conceptualize the experimental paedhss
selection of a finite set af duplets F) from an infinite population of duplets). Each duplet
contains the set of potential responses for an EU. A randomization mechanism is then employed
tothe dupletsirt 0 s el ect wh i otentidrdspanse urader geattndéneselectedas
the observable response and which EU&ds have 't
the observable response. As in the fAusual 0 e
¢ EUOSs vinge'taerde EUO s ingdcwhered €& & . From a broad inference
space perspective, the duplets are independent of one another, and the potential responses within

a duplet follow the joint distribution:

P&

where” s the correlation of the potential outcomdisshould be expected that the two
potential responses are correlated as they are potential responses of the samalindolédu
different treatment conditions. The correlation, however, isastimable due to the

fundamental problem of causal inference.



Much work has been done to elucidate the statistical propertiedefined in (11),

under certain sets of assumptioWgith ‘O given in (1.2), 1 can be shown that

00 OO0 0o od p&

whered —-B 'Q, where* ‘ * , andwhere the unconditional expectation is with

respect to the distribution id.8) from which the finite sef is selected.
Similarly, based on the properties of conditional variance and assuming uniform

randomization,

0 OIO VOO 00 O LWI0S0 VKD O L®iogo 8 pd

Notice that

0 WIo U OIG PH
with equality ifand onlyf 0 @i ‘OsO T In other words,he equality holds iéll of the
variability in the estimato© for * is in the selection of the finite sétfrom the broader

population. The inequality incorporates random variability resulting from the treatment

assignment mechanism

1.2 Overview ofResearch
Identifying the presence of treatment heterogeneity is thesfap in determining
whether one treatmenbmpared to anothés uniformly more efficaciosf or al | EU6s wi t
given population or whether the efficacy of one treatment compared with another depends on the
EU under considerationf treatment heteragneity exists, then it would be reasonable to try and
identify the most effective treatment for a particular EU, based on the individual characteristics
of that EU.
Treatment heterogeneity has been clearly definéerms of the variance of a true causal
effectby Gadbury et. al (2001), among others, using a potential outcomes framework. The

statistical propertiesf this variance compared with the variancaohive effect have also been



considered from a finite population perspectivbere the naiveffect depends on the design
More detailson thisand other pertinent results from published literatuiEbe presentedh
Chapter 2.From an infinite population perspective, S€R2001) discusses an estimable subject
by-treatment variare in a repead measures crasger model. Bsed on results presented in
Chapter 3, relating this subjday-treatment variance to the variance of the true causal effect
requires additional assumptions.

To my knowledge, no one has tidetquantitieslefined in gpotential outcomes
frameworkthat describe treatment heterogens&ityhe components ohanfinite-population
linear model.Linear models and, in particuldinear mixedmodels are quite flexible for
modeling data from complex experimental designs. Invatstig treatment heterogeneity in data
from complex designs using a randomization based approach on a finite population becomes
nearly intractable for complex designs (cf. Ndum et2f11,2). In particular, some designs
analyzed by linear mixed models pun# an estimate of a subjgrtatment interaction variance
component, but it is not clear how this component relates to the variance of true effects and/or
what assumptions are required to equate the ttis.the goal of this research to, first relate
potential outcomes to a linear model in a4s@nple completely randomized design (CRD) and
detail the loss of information that occurs when moving from a potential outcomes framework to
an observable model setting. In addition, | will describe new infiomgained about treatment
heterogeneity by considering increasingly complex experimental designs. In particular, | will
show that, while the variance of the true ewedgfect remains ineshable, it can be bounded
above and in some designs, boundedwaband belowby linear combinationsf estimable
variancecomponerg associated with random effects from dlhservabldinear model. The
purpose of this research is to clearly delineate the assumptions necessary to equate treatment
heterogeneity in agtential outcomes framework to estimable components of an observable data
model.

Chapter 3 presents the results of this process carried out under the assumptions of
independentandomeffects and Gaussian data. In Chaptesgles raiseth Chapter 3
concerning correlation and the relationship of model sums of squares to finite population
variance estimates are resolvéghaptes 5 and 6contain papers prepared for submission in
peerreviewed journals. Both chapters include extensidtiseoresearch in Chapter 3 to more

complex treatment structures. Chapter 6 also includes a discussion of the extension of this work



to generalized linear mixed modelSAS codes used in Chapters 3 through 6 are standard SAS
codes, and are available upmguest.l conclude with a discussion of ideas for future work in
Chapter 7.



Chapter2-Revi ew of Literature

This chapter reviews the statistical literature on potential outcomes, treatment
heterogeneity and linear models. This is not intended to be an exhaustive review of the pertinent
literature on these topickutit is intended to serve as a summary ofkég contributions
addressing the question at hand, namely how to model data when individual treatment

heterogeneity is suspected.

2.1 Potential Outcomes

In 1990, Terrance P. Speed and Dorota M. Dabrowska edited and translated from Polish

into English a 123 publication by Jerzy Neyman in which he states,

il et us consider a fi el dYRYFEVY loeehd true yildsofan e qu a |
particular variety on each of these pétlf we could repeat the measurement of the yield on the

same iiked plot under the same conditions, we could use the abtuéide of the true yield.

However, since we can only repeat the measurement of a partohgarvableyield, and this

measurement can be made with high accuracy, we have to suppose thseitvableyield is

essentially equal toYé 0

Thus we likely haveone of the first references to what has come to be known as potential
outcomes.In his discussion following the Dabrowska and Speed tranglatio f Ney manés 1
work, Rubin (1990, p.479)oftenhimselfcreditedwith first formalizing the potential outcomes
framework (1974), states, AWithout a doubt, N
unposted milestone, in statistics. éthe t h r es
underlying implicit definition was relatively common prior to 1923, Neyman certainly appears to
be the first to formalize it. o

Rubin(1974)utilized this potential outconsdramework to first formally define the
causal effect of a treatment versustecol as the difference in potential outcomes for a particular
EU. Rubin highlightghreeimportant points related @causal effect. First, a causal effect

requires a comparison of two treatments. This point is reiterated by Holland (1986) in his



dsussion of Rubinds Model for Causal I nf erence
sincepotential outcomes cannot be measured simultaneously. Holland referred to this property
as the Fundamental Problem of Causal InfereRmesenbaum and Rub{h983) later wrote that
this Fundamental Problem of Causal Inference can be construed as a missing data problem since
either the potential outcome under treatment or the potential outcome under control is missing.
Finally, Rubin mantained that an assumetihe termed stable unit treatment value
assumption$UTVA-Rubin, 1980, 1986) must hold in order for a question to be well formulated
enough to have causal answeris was a generalization of ideas described by Cox (1958).
SUTVA is the a priori assumiph that the value of the response for a particular EU exposed to a
particular level of treatment will be the same regardless of how the assignment of treatment to
theEU i s made, and regardless of what | evels of
consideratonThi s assumption should hol d f oForthel | EUO
purposes of this research, it is assumed that SUTVA holds for all experimental designs under
consideration.
Potential outcomes are contrasted to observable outcomes, which can be thought of as the
realization of one of the potential outcomes via some selection protesmted previously, the
inherent selection process for choosiiych of the potential outcoesis selected as the
observable outcome is a random process. Rubin (J038) states that a treatment assignment
should be made according to a defined randomi
hocdecisionsof the experimenters or the subjest§ e x per i ments. 0 aHe proc
processunder which an experimenter could mdxan a conceptual collection of dataan
observed dataset. The conceptual datasetincbules covari at essamdalasur ed c
possible values of variéds affected by level of treatment assigned to EU under every possible
level of treatment The observable datasmtntainsonly pieces of infamation foundn the
conceptual datasefAs part of this process, Rubin (1978&efines a random vector, whichnca
take on one 0b p valuesriplt 8 6, whered is the number of treatent levels under
considerationThe probability distribution of this randowectoris referred to as the
randomization mechanisnkurthermore, Rubin(1978, p.48) describes circuneces under
which the randomization mechanisnigaorable
Rosenbaum and Rubin (1983) refined Rubinds

assignment when they defined a strongly ignorable treatment assignmentarJiney thatte



conditionalindependenceor lack thereof, of the potential responses and randomization
mechanism given a vector of possible covariates that affect both treatment assignment and
potential responses is a characteristic difference between randomized aaddumzed trals

If this conditional independence exists, then the treatment assignment mechanism is said to be
strongly ignorable. A strongly ignorable treatment assignment mechanism is a hallmark
properly designedandomized experiment. Unless otherwiseedpa strongly ignorable

treatment assignment is assumed for the purposes of this research.

2.2 Treatment Heterogeneity

In a 1997 feature article concerning the foundations of personalized medicine, Andrew
Marshall(p. 954)wrote,

Aé Medi ci ne redaroduadytakingsstatigtiead information about the general

popul ation and then applying it to the indiuvi

If either unit homogeneity or a constant effect (Holland, 1986) are valid assumptions in the

experimental process, then this method of prescribing a level of treatment for a particular EU is

valid. Holland defined unit homogeneity as the assumptionlibatame level of treatment

applied t o diasitenticatrespdade foseach Eldne deéfsition of constant

effect permits distinct EUO6Ss receiving the sa

however, from a potential outcomearfrework perspective, it is assumed that the difference in

potential outcomewithin an individual EU is consta@gicrossE U6 s i n a popul ati on
The decision of selecting a particular level of treatment for an individual EU becomes

increasingly complex if theeue, causal effect of treatment compared with control varies across

units of a population. While valid estimates of the mean response are still obtainable, the utility

of applying average results t wangena(li9v8) du al EUbG

discuss a phenomenon they observed in bioequivalemtiestvhich they termed subjdry-

formulation interaction.Theypointed out that two treatments that appear similar on the average

could perform very differently in individual subject®thers have investigated the same

phenomenon, although they may have used different terminology. Cox (1992) used the term

treatmerdby-patient interaction and Gadbury et al. (2001) defined what they termed subject
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treatment (ST) interaction. All of tlese ideas attempt to capture the idea that heterogeneity of
treatmenteffectsexist at the individual level.

A consequence of this heterogeneity is that different individuals or groups of individuals
may respond to treatment in opposite directions, wihtinent Yhaving higher efficacy for
some and treatmenthaving higher efficacy for others. At timehis form of treatment
heterogeneity may be accounted for by group or subset identification. The term qualitative
interaction (QIl) has been used tsdebe this condition at the subset level (Peto, 1982). Gail
and Simon (1985) developed a test to detect a Ql, and when such tests are significant, optimal
treatments may differ across subsets (Byar and Corle, 1977).

Currently, the study of subset intetian alone may be too restrictive in light of existing
research objectives in areas such as personalized nutrition, health care, and behavioral therapy
(Lewis and BurtorFreeman, 2010; Marshall, 1997). For example, Kent and Hayward (2007, p.
1209)report fiThere remain i mportant differences be
that can dramatically affect the I|ikelihood o
The possibility of quantifying individual treatment heterogeneity brings the bbidentifying
patients who may respond more favorably to one treatment over another based on personal
attributes of the patientHowever, there are thosdno view evaluating treatment heterogeneity
from an individual perspectives a formidable chaltge For exampleSenn (2001, p.1479)
stated thapersonalized carfié May be rather more difficult to realize tharsHzeen
supposedéo

Many methods that estimate a variance associated with treatment heterogeneity are
actually evaluating observable congeqces of treatment heterogeneity (e.g., variability across
subsets of a populatiorgther than assessing treatment heterogeneity at the individual level
Hence there ighe necessity faa framework thaican accommodate a singiedividual EU.

The pdential outcomes framework @esuch a frameworkOther approaches may make
assumptions that are not verifiable in observed data. For examg@ver designs have been
utilized to try and quantify individual treatment heterogeneity. In such a@asassumption
would be that an observed individualamment effect in a croeser design is equal to the true
individual effect of treatment. The issues involved with making this type of assumption were
recently disassed in Poulson et al. (2012). S€éa001) notes that a subjday-treatment effect

is estimable in an obsable, repeatetheasurescroesv er desi gn i n which EUq
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more than once on each treatment. Even so, in order to completely characterize the variability of
response as @ier betweetkEU variability orsubjectby-treatment variability, one must assume
no variability in EU effect over time and no variability in subjbgttreatment effect over time.

Using potential outcomeand adapting their notation to match that defineGhapter 1
Gadbury et al. (2001) uséle definition of adruedindividual effectfrom (1.1)to delineate
assumptiongboutd w Q. They show, igenthat(i ,i ) originatefrom an infinite bivariate

normaldistribution defined in (B), then

” L‘) ('I) D ” ” C ” ” ” 8 c @

Notice that (2.1xan be bouned by taking” p, and estimating all other parametgrs

p& from the observed datadurthermorethey showthatthe proportion of the population
receiving a harmful effect, or a negative effect, ffofiis givenbyd Q@ m B — , and

may also béounded These bounds are giveg

B 0Q m B 8 c]
” n” c” ” ” ” CH ”
Note that as in (2.1)the upper bound is achieved when p and the lower bound is
achieved wher? p . Without loss of generality, assurne 1. Then, vhen” p and

" . ,a condition which indicates constant individual effect (Holland, 198€)en0 Q
1 Gadbury and lyer (2000) provide maximum likelihood estimates for the parameters
“ h, PAT A so thatarge sampleonfidence intervals can be placed on lower and upper
bounds for) 'Q Tt using estimates from the observed dathey also consider the role of a
covariate in tightening the bounds.

For certain designs, treatment heterogertaisbeenaccommodated in a general linear
model (LM) or a linear mixed model (LMM) by includingsabjectby-treatment e#ct. Wilk
and Kempthorne (1955) modeled a subj@etreatment effect as a fixed effect. First, they
assumed a value of zero for the fixed subietreatment effect in all subjects and all treatment

combinations. Subsequent &s@s assumed that the sum of fixed subpgetreatment effects
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over all units in a population receiving a particular treatment combination was zero. Ghosh and
Crosby (2005) utilizedlastering techniques in a cras®r design to generate subgroups which

they then considered replicates of o#he Asubje
treatment effects. Kramer et al. (2011) presented a method in which they subtracted the

estimated fixed effectgdm the observations in a croser design ashapplied principle

component analysis to residuaisorderto isolate a subjediy-treatment effect.

2.2.1 Statistical Properties of d: Broad vs. Narrow Scope of Inference

McLean et al. (1991define two possible scopes of inferenéet he narrow i nfer
spaceo and @At he .0br oTahde innafrerroewn cien fibgramonecfiaite s p a c e
set of EUOGs is selected from an .AbrdadscopedE set ,
inference extends inference tethopulation from which the finite set is selected. Extending the
narrow scope ofniferenceo the broad scope of inferenisevalid only ifthe finite seis
representativefdhe broader population

Historically, statistical inference on parameters in a potential outcomes framework has
often been carried out under the assumption of a finite population from which a sample was
taken. Neyman (1923), Rubin (1974) and Gadbury (2001) showed that the Baperiti
respect to the randomization distribution of the naive effect is the causalretiggicsample
CRD. That is,

0 oso d

Based on the properties of conditional expectation, it is rather stfaigfdard to see that both

the naive effecand the true causal effect are unbiased estimators of the truepsppéation

difference, , as shown in equation @). When considering the variance of the naive effect

with respect to the randomization distribution in a-semnple CRD, Neyman 9B5) observed

and Gadbury (2001) showed thatthe@ at ur al 6 est i mat eariamdeofthen e f i ni

naive effectaken with respect to the randomization distribution and computed from observable

data is biasedThatisj f we de n o testimathad i ‘OOt basedchoh abservable
data a®) i ‘OsO, which Gadbury (2001) considered to be the common pooled estimator of

0 Wi OO, and take its expectation, then
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Furthermore, Gadbury(2001) showdt the bias was a function thiefinite population
variance of the causal effect taken with respect to the randomization distributiph Q5O .

The description of statistical properties of the true causal effect has also been extended to
includemore complex experimental designs than simply thesaraple CRD. In Gadbury et al.
(2004), a matchegpairs design was considered where outcomes were binary and in Albert et al.
(2006) a blocked design was considered with, again, binary outcomes. Enekgter produced
nonparametric estimates in a randomization based framework. For continuous outcomes, results
for estimating individual treatment heterogeneity in designs beyond-sample CRD were
derived in the context of finite population, randontimabased inference. This was done for a
matcheepairs design and a balandeeb-periodtwo treatment crosser design (Gadbury 2001;
see Gadbury, 2010, for a summary of some results). It should be noted that randomization
techniques for deriving estimasmof an ST variance become increasingly intractable as designs
become more complex.

Dawid (2000) elegantly considered the potential outcome framework from a broad scope
of inference perspective. He clearly defined the joint distributional assumptions commonly
imposed on the bivariate potential outcomes, and delineated the Fundamental Bf @deisal
Inference as a problem of identifying the correlation between potential outcomes within an
experimental unit. Furthermore, he also discussed the assumptionwéatmient additivity
and how the failure of this assumption to hold leads tanaundform causal treatment effect
a c r o s sHeEvdronsted the relationship of the variance of the naive effect and the variance
of the true effect given in equation§Lfrom a broad scope of inference perspective.

Unfortunately, it seems that the higuity produced by the Fundamental Problem of Causal
Inference soured Dawid on the potential outcomes approach as a pedagogical tool to investigate
the nature of causation. He favored a decigioalytic approach in which he used the

identifiable marginadistributions of responses under both treatment and control in addition to a
specified loss function to predict the response of a future EU. It should be noted that Dawid
(2000)considered only the twsample CRD and did not explditee potential outcome model

in more complex experimental designs.
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2.2.2 Treatment Heterogeneity andnit-Treatment Additivity

In 1947, Cochran described the consequences of carrying out the usual analysis of
variance (ANOVA) when basic assumptions were not satisfied. Feir &ssumptions were
considered, the first being that treatmef¢es andenvironmental effectdike block effects in a
randomized block design or row and column effects in a Latin square desogiig be additive,
not multiplicative. Cox (1958, pp. 4-17) extended this idea of additivity from treatment effects
and environmental effects to treatment effects and subject effectswrote that many
fundamental experiments assume that the observation obtained when applying a particular
treatment to a pacular unit is assumed to be an additive relationship of a quantity depending
only on the particular unit and a quantity depending on the treatment assigned. He noted that
assuming fixed treatment effectg)e consequence to this additive assumptiamas and
treatments was that the true, causal effect was corstargs subjectsLater, Cox (1992)
termed this assumption of additivity between unit and level of treatnmérireatment
additivity. The statistical model based on this assumptioretpuently referred to as the additive
treatment modelAdaptingCox6 €1992; p.295notation to fitthe notatiorpresented in Chapter
1, thisadditive treatment modekn be written

i i Q €]
whereQis assumed to be constamd’Q pkth8 ).

Due to the Fundamental Problem of Causal Inference, the assumptiontoéatmtent
additivity cannot be directly checketlvVhile no specific measuresistto show that unit
treatment additivity holds, there are several indicators thatneaitment additivity fails to hold.
One such indicator is considered below

One of the fundamentabnsequencesf the unittreatment additity assumptiorholding
is that the dispersion of potential responses around some measure of center is the same for the
potential responses under treatment as the potential responses under contral.thEhus
variance of the responses untand the variance of the responses uiidare vastly dissimilar,
then this may be an indication that utmgatment additivity does not hold. Cox (1992)
recommends a nelinear transformation of the responses in order forweétment addivity to
beachieved. One example of such a transformation is the n&dgealthm transformation.
Considerthecase where

i =23 ,
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for somg p. This is not an additive model as defined abol¢his assumed model is true, it
is very easily shown that
0 @il 1 D @i OWii 8
But, by applying the natural logarithm transformatidns possible tachievean additive
treatment modebn the logscale as follows:
1 Ti [l 11
Theabovescenario is just one possible waywhich dissimilar variances between
outcomes receiving treatment and outcomes receiving control indifztera of theadditive
treatment model assumption to be satisfi€dnsider essecom situation which amounts to a
variation on the additive treatment modeien in (2.3)in which'Qis permitted to vary
according to the experimental unit, rather than remaining constant across all experimental units.

In essence, each EU is permittedowen causal effectAgain utilizing notationdefinedin
Chapter 1 with Chlhsmbdel might®eOwRittenasot at i on, t

i i 'QRhQ pit8 A8 c8

A model of this form may arise as a result of
covariate. These are the circumstances under which Gadbury et. al (2001) ddfined S
interaction.
From a finite population perspectiweghereQ is consdered a fixed quantitygne
difficulty in working with a modelike that in (2.4)s that the number of parameters under
consideration can quickly escalate. In a situation where a typical null hypothesis might be of the
form,"0dQ Q@ E 'Q, the resukb of the test or estimates of a set of confidence intervals
may be incomprehensible. Typically, methods are sought that reduce the dimension of the vector
of parameters under consideration. One such approactaleetannfinite population

perspectiveandconsiderthe’Qde as arandom sample from some distribution such that

>t h,
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thus reducing the complexity of the problemdmysidering only two parametets:h, . It

should be straightforward to see that if madetquation(2.4) is true, then

O Qi O Qi , CaED Q8

The variances of the potential outcomes are equal if and only if

” C :11’) é l"b FD n n C” n ” C” ” ? CH

Otherwise, heteroscedastictfvariancesxists.

To clearly understand the relationship between treatment heterogeneity and
heteroscedasticity of variances, consider eqndfal) as a function 6f , the correlation
between potential outcomes given in (1.3). Notice that (2.1) achieves a maximum when
” p and a minimum wheh p. Also note that wheh P, » " ” and
when” P, » ” . . Soeventhough is notidentifiable in an observable

model setting, it can be bounded as follows:

L1 . woom C®

It should be clear from (@) that, mwhen,, , and” p. Thus, Ttimplies
homoscedasticity of variances and (2.5) holdshould also be clear from (2.6) thfat
heteroscedasticity of variance exjsten,, TL

It should be noted thétis possible for, » and yet the unitreatment additivity
assumption tatill be violated.Note that (2.5) implies homoscedasticity of variances regardless
of the value of . Thus if, , but” p, then (2.5) still holdgven though T,
indicating the pesence of treatment heterogeneityit were possible to estimasemequantity
that indicated thexistenceof treatment heterogenejtthen thisestimatemight provideevidence
thatthe unittreatment additivity assumption is violateven when theariances of the potential

outcomes are equal.
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2.2.3 The Role of Covariates in Identifying Treatment Heterogeneity

As it has already been notelletnature of treatment heterogeneity and its impact on
choice of treatment for andividual EU hasnterestedesearchers from a variety of fielfis
decades.n particular there is a wide assortment of subset treatment heterogeneity literature in
clinical trials research. Subset treatment heterogeneity differs from individual treatment
heterogeneity in that bset interaction (Sl) occurs when the effectsYahd/ord change based
on the subset identifiable by an observable covariate (Milliken and Johnson, 1984, ;Ad13).
Poulson et al. (2012) point ountdividual treatment heterogeneity can be construed as subset
treatment heterogeneity with the size of the subset equal to TE&teforejndividual
treatment heterogeneity might be considered one form of subset treatment heterogeiteity and
would seen beneficial to consider methods developed to identify and interpret subset interaction
based on observable covariaitesn attempt to elucidate the nature of individual treatment
heterogeneity.

Byar and Corle (1977) began to develop the use of multtearggression methods to
define subsets for whichvor & may be superiotijowever they cautioned thdiThe proof of any
conclusiongentatively drawn must depend on futesgeriments designed specifically to test
the resultsuggested by the n a | (Bgar amdCorle , 1977; g58. Later, Peto (1982)
distinguished between quantitative subset interaction and qualitative subset interaction, the
former meaning a change in magnitude of effect only across subsets, and the latter taken to mean
a change imagnitude and direction of effects across subsets. Gail and Simon (1985), Silvapulle
(2001), and Li and Chan (2006) all developed formal tests for qualitative interaction based on
subsets formed using values of observable covariates.

While no such formal test fahe existence ahdividual treatment heterogeneity has
been developedovariate information has been used to gain additional information about model
parameters that would indicate the presence of individual treatment legteityg Gadbury et
al. (2001) showed that using a continuous covarsatgZ, that isnot affected by the treatment
andthat augmentthe potential outcomeghe overall variability of individual effecisan be
reduced. The results shown here have lagkapted to accommodate the notation presented in

Chapter 1.Assumethat the distribution 0Qgiven & is normal with conditional mean

‘s A A C&
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and conditional variance

n S n S n S Cu S» S” §8 caJ

I and in ¢& are the slope coefficients betwe2andi andZandi , respectively, and

s in c& is the partial correlation of andi givenZ The conditional variances, ; and

» s »are allowed to be different across the two treatrgeoups but are assumed noté&pend

on the value oZ. Coupled with ¢& and ¢& , Gadbury et al. (2001) showed that

» ns g Cogns P $ ! I » 8

Therefore, if evidence showed that | may be less than making it possible to

" s
reduce the bounds @an'Q 1 over® & . Thussimilarto ¢& theproportion of the

population receiving a harmful effect und&for a particular valuef & & may be bounded

by

by letting thepartial correlatio? ¢ be 1 and1, respectively. Confidence intervals for the
bounds o) 'Q Tt given in ¢® can be derived using bootstrap samples from the
observed datar using asymptotic properties of maximum likelihood estimgtdr&Sadbury et
al., 2001).

Zhang et al. (2013) used covariate information to tighten the bounds given in Gadbury et
al. (2004) for the proportion of a population experiencing a detrimental treatment effect when
potential responses were binary instead of oowitils (i.e.a potential response under
indicating success and a potential response uivdeticating failure). Methods were presented
under three sets of assumptigastaining to the conditional independence of potential responses

given a set ofavariates.
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2.3 Linear Models

As stated in section 1.2 of Chapter 1, one of the purposes of this research is to tie the
potential outcomes framework to a linear model. The following section briefly reviews the
pertinent literature pertaining to the devetagnt of statistical linear models.

Statistical models are concerned with relating the observations from a set of data to a set
of components that is believed to give rise to the dataset. Based on statistical models, an attempt
is made to make inferencealt these componentén earliest forms, a statistical model required
three parts: the observation, the deterministic component, and the random components
Deterministic components (also referred to as systematic components) are considered to be
determnedby the level of treatment assigned to a partickldr These deterministic
components are assumed to be fixed constants. The random components describe how each
individual response varies about the systematic component. As Stro@p ip@ds, theandom
component is a characterization of the uniqueness of the individuaB#Oarefully stating
relevant assumptions, the most common form of a statistical model takes the following generic
form (Gbur et. al,2012):

£l Qi L OAME @ Qi ©LQN € ¢ VEHHE QOGN EEQE O

While, technically, statistical models are approximations and it is unlikely thaddsganerated
according to such a pedestrian procéss development of more complex approximatiorsetia

upon this simple linear relationship has providedmregful methods (i.elogistic regression,
Generalized Linear Mixed Models, etc.) of analyzing data that are vastly different than those data

typically presented in an introductory statistical settin

23. 1 Gener al Linear Models (LM6s) and Line.
A complete history of the origins of the statistical linear model is well beyonddipe s

of this dissertation. \Een if it were to be attempted, it would be impruderthtok that thg

author would be able to offer much in the way of additional information to what has already been

summarized by those who are far more qualified to gitention tahe subject. The interested

reader is referred to the following three works in particular for a rather detailed history of the
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general linear model: Eisenhart (1947), Scheffe (1956), aarteSe. al (1992, chapt@). The
following section is simpla brief overview of what is contained therein.
It is interesting to note that statistical modeling seems to have originateslfield of
astronomy. In particulaGcheffe (1956, p.255) notésé Ver y expl i ci-t use of

components model for the omey layout is made by Airy (1861, Part IV), with all the subscript

notati on necessary for clarit y®Abservatioa@s ume s
the"Q night

w ‘0 Q
wherei s the gener al me ad} and fQ } 6 tarr ee & awmadloure ed rf de ctt h

Searle et al. (1992) detail additional contributions to statistical modeling and variance component
estimation throughout the latter part of thd t@ntury and the early part of the™2€entury
including the likes of Tippett (1931), Fisher (1918, 1925; although he did not exiogly
linear modeling) and Neymdfh935).

Eisenhart (1947) distinguished between two types of linear statisticalsnatiéch he
termed Model | and Model Il. The former has combd&nown as the fixeeffect or general
linear model (LM) while the latter has come to be known as the naedi@ctsmodel Under
the assumptions of the LM, responsesiadependentlylistributed, Gaussian random variables
with acommon variance andmaean that is taken to be fixed constadieans of the responses
may possibly differ depending on which level or combination of treatment factors are applied to
the EU, however any differenbetween two means of interest is also taken to be a fixed
guantity. Under the assumptions of the randeffects model, alireatmentactors that are
thought to affect the value afresponse are considered random variables with a common mean
of zero, lut possibly different variancdsr each factor. Thus all observations, regardless of
level or combination of treatment factor applied to the EU, are thought to vary around one
common mearStatistical models containing both fixed and random effects lhese termed
linear mixed models (LMM).

Over the past 480 years, statistical modeling has become a foundation in most
introductions to statistical analysis. As suttgere is avastbody of literature detailing methods

for estimation ofmean treatment effegtvariance component estimationference procedures
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and confidence interval estimationn L rah@lomseffect models n d L MAvhong the most
notable are Searle (1971), Rao (1973), Graybill (1976), and Hocking (1985).

232GCGerer al i zed Linear Model s( GLMO6s)

In the previous section, it was noted that the LM and the LMM had the following two
defining characteristics: first, the random components of the model were assumed to follow a
normal distribution; second, tlmesponsesveremodeled as a linear combination of fixed and
random effects. The natural sequela of such investigations is to consider a scenario in which the
responses do not follow a normal distribution. The following sections summarize the pertinent
literature pertaiing to such an investigation.

Although analyses pertaining ¢ertain instances of nemormal data existed dating back
to the mid 1930060s, wusually incorporating some
Wedderburn (1972) that clearly describeti@ory for modeling nomormally distributed data
which they terme@eneralized.inear Models (GLM), so as not to be confused with the general
linear model (LM) of the previous section. They described a method in which they used iterative
weighted linearegression to arrive at maximum likelihood estimates of distribution parameters
for distributions that were members of the exponential family. Furthermore, they modeled the
mean of the responses as a monotonic transformation of a linear model. It shootddbthat
the linear models in this context contained fixed effects only.

Wedderburn (1974) extended these results so that in order to obtain parameter estimates,
one need not know the actual distribution of the data, but must specify dikgidsbod
function which is a function the defines the relationship between the mean and variance of the
distribution. Wedderburn (1974) showed that a glilsiihood function possessed properties
similar to properties of logikelihood functions and thus maximuguastlikelihood estimates of
the distribution parameters could be obtained using iterative estimation procedures. Finally, he
demonstrated that estimates obtained using maximum likelihood estimation as in Nelder and

Wedderburn (1972) were a particulase of the quadikelihood approach.

2.3.3 Generalized Linear Mixed Models (GLMM)
After Nelder and Wedderburn (1972) publ i sh
progression was to try and extend the GLM to include both fixed effects and randots ieffe

the monotonically transformed linear model. Models that included both fixed and random
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effects for nomormal data have become known as Generalized Linear Mixed Models (GLMM).
Many researchers sought to do stTwbomapefsinom t he m
particular are noted here. Bresl ow and Cl ayt
both demonstrated that estimates for fixed effects and random effects could be found by solving

what have been termed the general mixed model emsacf. Littell et. al, 2006Ch. 14) which

are a type of extension of mixed model equations to anoamal setup. In both papers, iterated
techniques were used to arrive at solutions rather than more cumbersome numerical methods that
had beenusedprewusl y to estimate effects in GLMMOGs.
Clayton (1993) and Wol finger and O6Connel |l (1
assumptions about the values that certain model parameters could take. By constraining the

disper si on or scale par amet er toceudl theg demonstratdio | f i n ¢
an equivalent analysis to that produced by Breslow and Clayton (1993). Thus Wolfinger and
O6Connell 6s (1993) method may beantdhdcd @alytt omfé sa
(1993) method. 't should also be noted that
basis of the theory underlyingROC GLIMMIX in SAS
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Chapter3-Compl et ed Research: Gaus

3.1 Model Assumptions and Simulation Methods

This chaptepresentsesults forpotential outcome models and observatd&e models in
each of five common experimental desigassumingsaussian random effect3he five
experimental designs included the F8ample CRD, the Matched Pair Design (RCBD); the
Generalized Complete Block Design (GRCBD) contairtig observations per level of
treatment; YandoO within each block theTwo-Period Two-Treatment Cross@r Design; and
theRepeated Measur€yossover Desigwith Two Treatments where each level of treatment is
randomly assigned to two of four total time periods for each &ime of the material presented
in this chapter on the CRD and RCBD designs has maewed and published in Richardson
and Gadbury (2@®).

Stroup (2038) developed a method termed What Would Fisher Do (WWFD) to correctly
identify the components of the LMM. This method was based on the contribution Fisher made
to a discussion paper authored by Yates (1935). We adapted this method and applied it to the
poenti al outcomes framework to identify the po
presented in the subsequent sectiohsin Wilk and Kempthorne (1955), we assume no
technical error.

For each of the five experimental desigmedels wereonsideredor each of two
variance/covariance structure$he firststructure assumes that random effects anmutually
independent of one another and that each random effect has its own variance component that is
common to both levels of treatmefifand6. This variance structure will be referred to as the
common variancstructure.The secondtructure still assumes mutual independencamdom
effects howeverutcomes under treatment are permitted a distinct variance component from
outcomes oder control. This variance structure will be referred to asdiginct variance
structure. Only pertinent results for the distinct variance structure will be given in this chapter.
See Appendix A for a set of complete results, including the comnraanea structurelUnder
both sets of assumptiofar all experimental designghe expetation of all random effects is
assumed to be zerdVith this structure, the treatment heterogeneity variance for the particular
design is derived using potential comes and is shown to be linear combinations of variance

components. Then the model is defined in terms of obblrgata and, where appropriate, the
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variance of a naive version of a treatment heterogeneity is derived. The connections between the
naive vesion and the true variance of individual effects are then established. The assumptions
required to equate the two, or to bound the latter by estimable quantities are stated.

Derived results are illustrated using simulated datsing SAS statistical softare,
potential outcomedata were simulatefr each experimental design, under relevant
assumptionsA total of Y p 1 stimulations were performed. Within each simulataeta
were simulated for three distinct sample sizésless otherwise specifiei,is assumed that
there ara) total E Usdin anobservableexperimentConsequently, there aéelresponses a
potential outcomes framewortne response for each@fevels of treatment imagined to have
been simultaneously applied to eaclb dEUG .sFor all experimental designs in the following
sectionsp ¢. The resulting number of responsegachpotential outcome frameworkill be
highlighted for each experimental design in the results sections .bé#hereapplicable ¢
and¢ refer to the number of subjects per treatment IeW&ndo, respectively.For the
purposes of these simulations, we assumed designs were balanced. That is, we assumed
€ g £.

PROC GLIMMIX was then utilized on the simulated data to obtain REML estimates of:
(1) the difference in fixetreatmeneffects béwveen the two potential outcomeg?) the
variances ofherandom effectincludedin thepotentialmodel, and (3) the vamae of the
difference in the two potential outcomes, denated Q .

Next, onehalf of the data were removed to simulate observed data undemly
random treatment assignment. Of the observations that were remowd|fonere treatment
potental responses, and oialf were control potential responses. PROC GLIMMIX was again
utilized on the observed data to obtain REML estimates of: (1) the difference itréagdent
effects between the twioeatment groupg?2) the variances of identifiée random effects in the
observablanodel, (3) the variance of the linear combination of-iEmtifiable random effects
that constitute the residual teonerror variancén the obserabledata model, and (4) the
variance of theaivedifference in obswabledata, denoted ® O .

Boxplots of estimates resulting from thé p 1 Bimulations were plottefibr eachof
the threesample sizeto examine the shape and spread of the distribution of parameter estimates.

The mean, median, minimum, maximundastandard deviation of th@@ parameter estimates
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werecomputed.Then the mean of they p 1t simulations was compared to the simulated

value for each of the respective estimates.

3.2 Two-Sample CRD

Table 3.1 gives the effects and assumptions for potiantial and observable modek.

direct relationship between the two models is established by defining

Q i if

sincemul ti ple observati

Thus the residual term in the observatle-sample CRD consists of tlhkenfounded subject and

ons

per

o

subject are

subjectby-treatment effects from the potential modilsuch confainding occurs, then

, NQ "Yo8

o8,

by the independence assumptions given in Table Grider the assumption of usieatment

additivity,i t mAIAQGAT Tand

Thus

irrespective of the level of treatment assigned to®h&U.

Model Model Parameters Assumptions
Potential Model i t i i th i x "QWQrh,
QYN T T
0 plgfB A 07 i tXvwb hi
i andi T are independent.
Observable Model Y ¢ t Qh Q o o.m - T
0 Lfbr]’ Q L WU n - .
Q plts ke

OYin Qa QUMM o

Table 3.1 Model effects and assumptions in-a&nple CRD.
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Define the true causal effect to be the difference in potential outcomes 0r &id.
That is

Given the potential model and assumptions in Table 3.1, the variance of the true causal effect is
readily seen to be
vw ovet T & it <t i if
voitt T it it voi T it . ” o8

Since only one observation per EU is recorded, an individual naive effect is undefined in
the 2sample CRD. However, it is possible to compute the variginge average naive effect,
0O, defined in (1.2). Under the model assumptions given above, the variance of the average naive

effect is given by

s < w. P . Y .
VWD LVwWwi— Y — Y
3 £
P . .., . P . .. , ,
—0 Wi i i T —0U0 QI { i T
£ 3
” ” ” ” ”‘ ” ” ” h) m é E 88 08)
£ £ £ £ £

ED OO ¢ . N S N 6] o otp
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Observed Data: Upper Bound var(d_j)
tau1=>5, tau0=2, mu=3.5
Variance: Subject=2, Subject*Trt=5, Subject*Ctrl=2

Overall Statistics: Ctrl Variance=11
Min 1.472901 5.42146 7.388777
Mean 11.25184 11.61277 10.92221
Q2 10.09225 11.51037 11.15894
Max 30.28123 18.89916 16.61605
Std Dev 5.634205 3.236864 1.559685
40
30 T
&
L
€ 2
P
[

<5 n*var(D)=11
10
var(d)=7

Figure 3.1 Bounding the Individual Causal EffectSample CRD.
¢ OO0, LGOI 8Boxplots of theY p mestimates of 2 10, at N=10, 30, and 10Dotted lines
represent values used in the simulation design

when the design is balanced® 10, is estimable in obseabledata buthe individual
components are noAs denonstrated in Figure 3,bne can sethaté ) @ 0, is an estimable
upper bound fob @ Q , the variance of individual effect&guation (3.6) also demonstrates
that equality oh & IQ and0 & O, is achieved when 1. Recall that, is the variance
attri but s dualityof0EID andd & IOy would requirehatall ' Q plkfB 60 EUS s
in the experimenbe identical to one another in every respect gixadich level of treatment
they were assigned to receive

A comparisorof 0 @ IQ with b @ IOy might seem a bit unususinced & 0O, is
computed based on aggregate information from a sample an® is computed based on

information available from a single EU. Therefdris possible talefine

C:|o

and note
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Vo Lodi i i1 Podi it it
0 0
” ” L‘)(bD
0 0 o8y
Combining the results of @. and (38), note that
L OIQ ED DO, LD
U WK m m
0 0 C
t
U WKy TOD oo

when atwo-sampleCRD is balanced

Figure 32 illustrates the results of @. For each sample size, boxplots of thie p T 1t

o]

values for and0 & K, are shown. Estimates e&—2 are shown in blue and estimates

for 0 O, inred. For each sample size, the mean value gf thesstimates of——2 is

greater than the mean value of thet estimates ob @ .

Variance Comparison:
Avg Naive Effect vs Avg Causal Effect

[e]
1 {
10 30 100

N
Model ® Observed B Potential

@ @ O ©

Variance

——

Figure 3.2 Bounding the Average Causal Effe@Sample CRD
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Tables 3.2 (i), 3.2 (ii), and 3.2 (iii) give morpeific results of all effects of interest
based oY p 1t simulated data sets. Values represent the mean and standard error of
estimates across thé p Tt data sets. Table 3.2 (i) gives results for the fixed treatment effect
for the model fit to both potential and observable data, Table 3.2 (ii) shows the results for the
random effects in the potential model and Table 3.2 (iii) the results for the random effects in the
observable modelln all cases, as treamplesize incrased from 10 to 30 to 10the variability
of the effect estimates around the true simulatddedecreased, and in all cases, the estimated
value of the simulation parameter based orithep 1t stimulations is within 2 standard errors
of thetrue value. ®@mparing the standard errors of the estimates between potential data and
observable data in Tables 3.2 (ii) and 3.2 (iii) reveals a larger standard error for the observable
estimates. This is to be expected as the observable estimates are computeld finenclduz,
compared with the potential data.

Of particular note is that the estimateg)od Q given in Table 3.2 (ii) seem to be
reasonable estimates of thedhetical value derived in (8). In these simulations, L and
» ¢. Thusby (34),0 ®WiQ ” U ¢ X. Indeed, Table 3.2 (ii) demonstrates
that the potential model estimatesiotd Q were within two standard errors pffor each of
the three distinct sample sizes. Furthermore, notice that the estimajes #ord,,  given in
Table 3.2(iii) alsoseem to be reasonable estimates of the theoretical value dar{@),
where it was assumehbatthe subject and subjedty-treatment effectiom the potential model
wereconfounded to form the rekial term in the observabhaodel. Assuming, ¢h, v
and,, ¢, then, X and,, T based on (2). The results in Table 3.2 (iii) demonstrate
that the estimates of and,  are within two standard errors pfandt, respectively, for each
of the three sample sizes considered.

For thetwo-sample CRDa comparison was made of two methods for computing
estimates oboth0 W IQ and” , the correlation seen in the distribution specified in equation
(1.3). Recall hat neither quantity is estimable in an observable model. As such, this comparison

was made in the potential model only. Estimates 6f Q were computed using one of two
methods. The first method, termilbdelb ©IQ and denoted @ IQ , wascomputed by

summing the variance component estimates obtained from the PROC GLIMMIX procedure.
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Fixed Fixed Std.
Effect Simulated Average  Std. Error Effect Simulated Average Error
(Potential) Value 2N Y puim Y pmm (Obs.) Value N Y pinm Y prnm
T ot 3 20 3.11 0.10 ot 3 10 3.08 0.14
60 304 0.05 30 3.08 0.09
200 3.03 0.03 100 3.07 0.05

(i)

Potential Simulated Average Std. Error
Variance Value 2N Y pnm Y pnim
Subject 2 20 1.85 0.18
60 2.15 0.11
200 2.03 0.06
Subject*Trt 5 20 5.06 0.27
60 5.25 0.17
200 4.96 0.10
Subject*Ctrl 2 20 211 0.16
60 1.98 0.10
200 1.99 0.06
VNAYe] 7 20 7.18 0.31
60 7.22 0.18
200 6.95 0.11
(i)
]
Observable Simulated Average Std. Error
Variance Value N Y pnm Y pniT
Trt Residual 7 10 7.25 0.50
30 7.33 0.27
100 6.82 0.15
Ctrl Residual 4 10 4.00 0.27
30 4.29 0.16
100 4.10 0.08

(iii)
Table 3.2 2-Sample CRD Simulation Results.
Values represent the average and standard error of treatment effect estimates™¥crpsa simulatiors in both
the potential and observable data models for N=10, 30, and 100 for (i) Fixed Effects. (ii) Potential Random Effects.
(iii) Observable Random Effects.

The second method entailed computing the difference in potential responses for each subject and
thenestimating the variance of these differences using PROC UNIVARIATE in SAS. This

method is termeéstimated) ®Q and denoted O IQ . Table 3.3gives the results of this
comparison for one of tiY p 1T mimulations only. Results of the comparison in tfeathple

CRD demonstrate that the two methods of estimation yield identical estimates for all 3 sample

sizes.

31



Estimation of’ wasalso carried out using one of two methods. The first method,
denotedModel Correlation estimated the intralass correlation coefficient from the variance
component estimates from PROC GLIMMIX. That is

Model correlation estimates are required to be-negative by the assumptions given in Table
3.1. The default procedure of PROC GLIMMIX for handling negative variance component
estimates is to replace the negative estimate equal to zero. Thus, anytime PRO@GLI
encountered a negative estimate of the estimate of Model Correlation was also zero. The
seconcestimate of , denoted , was computed bgasng the simulated potential outcomes

to PROC CORR in SA®herethe Pearson correlation caefentwas computedThat is,

i B i i[5 i il

B i LB i ik

8

This methods terned Estimated Correlatiomndpermitted negative correlation coefficient

estimates. Results given in Table 3.3 indicate that the two methods yielded identical estimates of
correlation. This provides reassurance that the linear mixed effects model is providing estimates
ofthecorrela i on i n potenti al outcomes data that vyie
correlation on the set of N bivariate potential outcomes. Recall thas the only quantity

given in equation (2.1) that is nonestimable from observable data. Tleesefoe is

nonestimable in an observable modelp IQ is nonestimable in anbservable model. As

Model Estimated Model Estimated
2N var(d) var(d) Correlation Correlation
20 3.87 3.87 0.20 0.20
60 11.90 11.90 0.16 0.16
200 6.98 6.98 0.36 0.36

Table 3.3 DifferentMethods of Estimation: 2Sample CRD.
Comparison for var(dj) and
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such, any attempt to describe the loss of information incurred by moving from a potential model
to an observable model ought to appropriately estirhatan the potential data settingd.he
only times theséwo estimate®f”  differed were when PROC GLIMMIX encountered a
negative estimate gf and replaced the estimate with zero. The cpmeding Estimated
Correlation estimate was always negative in such situat®pscifying the potential LMM in
such a way as to accommodateegative correlation between potential outcomes under
treatment and potential outcomes under contrdissussedurther in Chapter 4

The connection between models for potential versus observable outcomes when
evaluating individual treatment heterogeneity lacks some intuition in the CRD because there is
not an actual naive individual effect that can be definderdhan the sample mean difference.
Other designs provide more intuition by having a naive effect that makes more sense when

attributing it to the individual.

3.3 RCBD

Table 3.4 gives the effects and model assumptions for the mgielvecanalysis These
results are easily extended to a conventional randomized complete block design, but for the
purposes of these simulations, only the matgbescs design is considered here direct
relationship between the observable model and the potential model may be established by

defining

Q i wt 17 oP T

sincemultiple observations per subject within a block and multiple observations under a
specified treatment within a block are Al osto
Thus the residual term in the observable matgieedcs design consists of thenfounded
subjectwithin-block, blockby-treatment and subjeetithin-block-by-treatment effects from the

potential model.lf such confounding occurs, then
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Model Model Parameters Assumptions

Potential Model i C t ot it ¢ QGO
Q P8 8 &0 | i xQ@om,
R plt 0%l AR &Q &t Q'@
TQ u%
i T .
(1 xbes TR T
ofi hotandi t are mutually
independent.
Observable Model Y o t Qnh o Q@O
"Q plghB R nw}l’l]l i
Q p O™ WNLHH O QIQ ®'Q Qi & 2 s es TR T
0 S Q *dwb AT

®,Q , andQ are mutually
independent

Table 3.4 Model effects and assumptions in a RCBD.

under the assumptions given in Table 3.4. Furthermaderithe assumption afiditivity, both

unit-treatment additivityand blocktreatment additivityoo t  { T /AETAJOA T "&and
Q i 8

Thus

irrespective of the level of treatment assigned t6®h&U.
Define the true causal effect to be the difference in potential outcomes far &id

within the"Q pair. Thatis

L WIQ vt T w i ot it * t & i wt it



The structure of the matchgairs design lends itself taantuitive definition of naive
effect. This is defineds the difference between the EU receiving treatment and the EU receiving

control within the’Q pair and is given by
O Y Y8 oP T

'O may be thought of asraiveversion of the true, individual causal effect for the two units in
the"Q pair, which here would be given [y andQ . Given the model assumptions in Table

3.4, the variance of the naive effect is given by

VAN O BNVINAY B A N ot it ¢t @ i ot it
0 W1 i ot ot it {

c ” c ” ” ” 0& U

where the final equalijtin (3.15) follows from equation (3.11).

Notice, O is the difference between tbhbservabléreatment value and tludservable
control value within th&Q block/pair. DenotelifferentE Usiwithin the same pais’Cand’@
The differencein (3.14)is acros€ Usdso the difference in random subject teims, |
remains as a component©f. Contrast this t® wQ , wherethe subject effect is removed
because thdifference inpotential outcomess within the samé&U. Also noticethatbased on
(3.11) (3.13)and(3.15) U WO is an estimable upper bound forw IQ  since



0 Wi " . 8 op ¢

The third line of guation (3.16) demonstrates that equalitpabQ and0 @ IO isachieved

when,, T Recallthat, i s the variance attributed to EUSG
reasonable to expect tres the quality of matching improves, decreases, and consequently
0O nearst KIQ . | f a perfect match of EUOG6s withir
observable model setting so that T, then the estimate of O from observed data could
indeed be considered an estimat® abiQ 8Otherwise) @O serves as an estimable upper
bound ofb ®WIQ

Tables 3.5 (i), 3.5 (ii), and 3(&i) give the results of all effects of interest based on
Y p msimulated data setdVithin each simulation, the followingumbers oblocks of size
¢ ¢wereconsideredd p1H o MfHE & p TLTThe resulting number of responses in
the potential outcome framework is givendly ¢ 3 &€ 106 and the resultingumber of
EUG6s in the entire gwdndbwr Wabdbe Vamiespepreseniteent was
mean and standard error of estimates adchesy p Tt data sets. Table 3.5 (i) gives results for
the fixed treatment effect for the model fit to both potential and observable data, Table 3.5 (ii)
shows the results for the random effects in the potential model and Table 3.5 (iii) the results for
the random effects in the observable model. In all cases, as the block size increased from 10 to
30 to 100, the variability of the effect estimates around the true simulated value decreased. For
most effects under consideration with p T1,7he true simwted value is within one or two
standard errors of the mean of tiye p 1t estimates. All were within three standard errors of
the mean across th¥ p 1 @éstimates abd  p Tt.7iThis would indicate thats the block size
increases, the REML estimates of thesfects are reasonable estimates. Comparing the
standard errors of the estimates between potential data and observable data in Tables 3.5 (ii) and
3.5 (iii) reveals a larger standard error for the observable estimates, as expected because they are

compued from half the data versus the potential model.
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Fixed Fixed Std.

Effect Simulated Average Std. Error Effect Simulated Average Error
(Potential) Value 2N Y pumm Y pnT (Obs.) Value N Y pnmn Y pTim

t T 7 40 6.97 0.12 t T 7 20 6.90 0.16

120 7.03 0.06 60 6.98 0.09

400 7.06 0.03 200 7.06 0.05

(i)

Potential Simulated Average Std. Error
Variance Value 2N 'Y pnm Y pnim
Block 10 40 9.67 0.63
120 9.68 0.42
400 9.94 0.22
Block*Trt 3 40 3.06 0.25
120 3.09 0.14
400 3.06 0.07
Subject 4 40 3.94 0.23
120 4.00 0.15
400 3.83 0.08
Subject*Trt 6 40 5.57 0.30
120 6.03 0.19
400 6.00 0.09
Subject*Ctrl 2 40 2.03 0.18
120 1.97 0.13
400 2.07 0.07
UOQ 14 40 13.73 0.51
120 14.19 0.26
400 14.19 0.15
(i)
|
Observable Simulated Average Std. Error
Variance Value N Y pnim Y pnim
Block 10 20 9.32 0.68
60 9.63 0.48
200 9.93 0.24
Trt Residual 13 20 12.39 0.83
60 13.34 0.51
200 13.20 0.28
Ctrl Residual 9 20 9.88 0.73
60 9.33 0.44
200 9.00 0.20
VNAYe) 22 20 22.64 111
60 22.68 0.63
200 22.19 0.31

(iii)
Table 3.5 MatchedPairs/RCBD Simulation Results.
Values represent the average and standard error of treatment effect estimatesMacrpsg simulatiors in both
the potential and observable data models for B=10, 30, and 100 of size 2 for (i) Fixed Effects. (ii) Potential
Random Effects. (iii) ObservabRandom Effects.
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Once again, it noteworthy that the estimate8 06 Q given in Table 3.5 (i)
correspond the theoretical value derived idgB. The relevant values used in these simulations
were,, oh, oPAT A ¢ By(313,0 ®IQ G, ) ) ¢

@ ¢ p T Resultsin Table 3.5 (ii) demonstrate that the model estimatesod®? are

reasonably close o T The estimates fgr and, given in Table 3.5iii) also seem to be
reasonable estimates of the theoretical value derivedlif)(3vhere it was assumdidat
subjectwithin-block, blockby-treatment and subjeetithin-block-by-treatment effects in the
potential model are confounded to form the neaiderm in the observable model.

Figure3.3 illustrates the result in (86). Dotted lines represent the true vaused in
the simulation. The upper line corresponds to the simulated valuexd® and the lower line
corresponds to the value@®d i 'Q . The difference between the upper and lower dotted line
should be equal tg, , as demonstrated above. Indeed, in these particular simulgtionst,
thus the distance between the two dotted lines can be seen,to be¢ X . Noticethat as
the block size increased from 10 to 30 to 100, the variability of the effect estimates around the
true simulated value decreased. When p T,1the true simulated value is within one standard

error of the mean of theY p 1t @stimates. This would indicate that as the block size increases,

Observed Data-Plot of Naive Var (D)

tau0=3, tau1=10, mu=4
Variance: Block=10 Subject(Block)=4, Block"Trt=3, Ctrl Error=2, Trt Error=6

Overall Statstics: True=22

M 5724214 10.70959 1684042
Mean 2264176 2267551 2218354
02 209173 21.88955 2176071
Max 54 69409 4118663 3240214
Std Dev 11.06654 6.333547 3076116

60

80 1

-
=3
1

Naive Var(D)

var{gy=14

var(D)=22
B
.‘ -
] L

Figure 3.3 Bounding the Individual Causal Effect: MatchBdirs Design.
0G0 UL ®OKQ 8Boxplots of theY p T estimates ob IO at B=10, 30, and 100 blocks of size 2. Dotted
lines represent values used in the simulation design.
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the REML estimates are reasonable estimates. In addition, notice the distributions of the effect

estimates became more symmetric as the nuofddocks increased.

Once again, two methods estimatingd ©IQ were compared, the first method
utilizing estimated model components to compute the estimatet) , denoted by
0 WIQ , and the second estimating®d Q  direcly using the sample variané®m the
simulateddatg 0 WIQ . Table 3.6 gives the results of the comparisRacall that in théwo-

sample CRD, these two methods of computation yielded identical results. However here, the
two methods o€omputation yielded slightly differing values. To see wdonsider the

computation ofy @ Q under the assumption that ”

A} oy p 3 3,
L WIQ — Q
3 o o™

6 pLKOR Q o X

As shownin Appendix B1, the sum of squares in (3)Ican be writteras follows:

Q dy Oy Y'Y oP Y

where"Y"Y is the sum of squared the blockby-treatment effect ant¥"Y is the sum of squares
dueof subjectby-treatment effecBoth"Y"Y and"Y"Y are defined in Appendix B.1Thus
p YY YY

RAYe = 2 0YY Y'Y ¢O— 3
6 p 6 p O p

oPp w

However, estimating ®iQ from (313) yields
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Model Estimated

2N var(d) var(d)
20 7.92 7.82
60 13.20 13.25

200 15.24 15.13

Table 3.6 DifferentMethods of Estimation MatchedPairs
Comparisorofvar(d;).

0"Y 0°"Y Yy XY o8 TU
6 p o}

wherel Y is the mean square of the blecitreatment effect and "Y is the mean square of

the subjecby-treatment effect. Thus from ()land (320), one can see that

YUY YUY YY Y'Y
6 p ¢6 p 6 p 0
where the inequality is due to degrees of freedom associated with sums of squares terms in the

c¢O b DR L WIQ o8] p

linear model.

3.4 GRCBD
The potential model for the generalized complete block desigmich each level of

treatment is replicated more than onseglmost exactly the same model as the potential model
in the matched pair analysis, with the caveat that our number of subjects within a block is now
greater than 2Forthe case considered hebdocks of siz& 1 are assumedConsequently,
everything that is estimable in the matched pair potential analysis is also estimable in the
generalized complete block design settihgaddition, the variance of a random bldmk
treatment effect becomegentifiablein the GRCBD since multiple observatiorer preatment
are observable within the same block. Tab¥egBres the effects and assumption for both the
potential and observable models in the GCBD.

Because the random blotiy-treatment effect becomes identifiable in a GRCBDirect
relationship between the observable model and the potential model may be established by
defining
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Assumptions

Model Model Parameters
Potential Model i w0 t ot it o QGO
_Q pkBRBGaé Qi (X Q@O
0 pitfgg i 0 @ QO EWED a N Q @ T Qeonh,
'i‘Q "Yﬁ
it .
(1 *0es TR T
wh hotandi t are mutually
independent.
Observable Model Y o t ot Q o Q@O
_ O Q plB B da ¢ Qi @ T oo,
Q pti o GJTQ@'({I@E()’ a ¢ &R @)
@ xp oo MR T
Q noom
®, 01, Q ,andQ are mutually
independent
Table 3.7 Model effects and assumptions iGRCBD.
sincemul ti pl e observations on subject withi

mechanism is invoked. Thus the residual term in the observable GRCBD consists of the

confounded subjestithin-block and subjeetvithin-block-by-treatment effects from the

potential model.If such confounding occurs, then

~

n’?’Q "Yﬁ

o] O

under the assumptions given in Table Fdrthermore, nder the assumption of ustieatment

additivity, i T T/ETAGAM 1 Band

Thus

irrespective of the level of treatment assigned to®h&U.
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The definitions 0fQ and0 & IQ remain unchanged from those given in (3.12) and

(3.13), respectivelyWhat does change, however, is the definition of the naive effect.
Recall thathe structure of the matchgairs design lent itself to an intuitive definition of

naive effectO given in (314). Howeverinthe GRCBWwi t h 4 EUGhereardr bl oc k

possibleOi that can be defined withinablogki ven t he random treat ment

Selecting which treatment observation and which control observation to use in the computation
of O in order to accuratelgeflectthe true value 0O is not at all intuitive.lt seems more
reasonabléo consider the average difference in outcomeg folsdassigned treatment aBdJsH

assigned control. More formallfgr the two units receiving treatmenf define

Y5 Y

P
C
and, for the two receiving treatmeat

Y

. p
Y —
° ¢

So that
o8 T

O5 Y5 Yo 8

Under the model assumptions given in Table 3.7

P oot ot i f
< . e S qd 9]
0 WO, Uw(fyp i
= S N ot it
& S g o
N R A l i T
o Sy &
L Qdy P e
ot o et P it
o S 4 o
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C —c og,

where the final equality in (3.25) follows from.23). The variance in (3.25) is estimable, bfit
the individualcomponentsn the potential model given in Table 3ohly, is estimable.The
linear combinations,, , and, .,  are estimable, but the individual components are

not. Multiplying both sides of the equality in (3.25) four yields

T Q‘) (‘1’)‘00 l.u, T” q ” ”
(pn ” ” c” qu ” ”

T :I) (I)DO (pn ” ” c” ” ” c” D (I)D O-& (p

and one can see that an estimable upper boundd®k) has been establishesince, ,,
and, are allestimable in a GRCBDRecall the definition 0b ®IQ given in (3.13). Then
based orthe first line given irequation (3.26)equality of0 0 IQ andg¢ ) @ 0, is achieved

when,, ” 1. From Table 3.7, is the variance attributed to applying fke level of
treatmentto th& blockand, i s t he variance at t rAiscorecall¢hdt t
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" Ttis a consequence of the additivity of block and treatment effects. So ivaydifi
block and treatment effects holds, but #ntatment additivity does naind perfect matching
within a block of alé 1t E U Gscursthentwice the estimate od & IO, from observed data
could indeed be considered an estimaté 6§ Q 8However if the assumption of additivty of
block and treatment effects is valid, themdo Q given in (3.13) reduces tq » » Which

is equivalent t@» @ Q , the variance of the causal effect defined fortéi®sample CRD,

given in 3.4)
Furthermore, from (3.13)
LW Gy n ”
t
LW , " G
t
- 0L OO o8 X

andsince, is estimable in a GRCBD, an estimable lower bound has been established for

0 WK . Combining the results of (dRand (3.Z), one can see

Cn U(I)D COU (I)DO ”

c n L‘) (I) D c n n n 0‘& LlJ

In the matchegpairs analysisthe trivial lower bound of zero and a ntivial estimable
upper bound fob ®IQ weredemonstrated in (3.16However, here in the GRCBD, both a

norttrivial lower bound and upper bound have been established. The lower, hpunds non

trivial if the assumption of additivity of block and treatment effects fails to hibid.important

44



to note that the upper bound in (3.16) an@&Bare identicain terms of the potential model

parameters given in Tables 3.4 and 3.7, respectively. This upper baynd isg,

” . . From an observable model perspeetitie difference between the matchears
design and the GRCBD can be described by the respective difference in residual variances given

in (3.11) and (3.23)According to (3.11)¢,, C, " " " . inthe

matchedpairs desyn, however, in the GRCBL,, C, ” " C,

» . ,according tq3.23).

Equations (3.25) and (3.26an be extended to accommodataancedsRCBD with

more than 4 EUG6s per Dbl ock. [r@sttéoranybalancedi ng eq

GRCBD with blocks of size.

) I S T o8
and
ED W0, LOIQ CE p., 1, no o
ED D05 ¢& p, , ” L OWIQ C.
Co ” » G
C, , y oY T

As in the 2sample CRDgomparison of) @iQ with b @ 105 maynot beintuitive
sinceb ® 0, is computed based on aggregate information from a sampie ang is

computed based on information available from a single EU. Theméfire

: P P
s - Q= i o® p
to compare and contrast with, For ‘Qdefined in (331),
vod, veil o+ 6 i et it ot & i bt it
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G I — o® ¢

By the same reasoning usedising (327), it is easily seen tha&t, is also an estimable lower
boundfor 0 & 5.

Comparing and contrasting & J5 to 0 ¢ 105, notice that) ¢ 10, can be written

0 (I) b ” ”
2 G C
Gy ER ¢O I
C C” ” ” ” ”
? T T T
A L4 C” ” ”
id-
U WKLy - -
C, cO- - . o o

where the finatwo equalitiesn (3.33) follows from (3.23) and (3.32riting b & 104 in this

form, notice that

G 0O, VOO0,

c, 0 Oid, ¢, L oD 1
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thus estimable upper and lower boundsoé J, have been established

Equations (3&2), and (3.3) canalsobe extended to accommodate a GRCBD with more
than 4 EUG6s per bl ock. The foll owing equatio
GRCBD with blocks of size.

0O, ¢, - : - o® U
and
\ v oy \ v oy T ” ”
DOO0, VO, -, ‘
> &
I
VOO0, C, coO——— : - o @

It would be reasonable to consider the behaviar 6f J, as¢ increases. From (35), notice

I Eiod, 1 Ek, — C, oD X

which shows that the variance of a block average converges to the variance component
associated with a bloetkkeatment random effect.

Notice that the resultgivenin (3.28)and(3.34) are not the same result. The result in
(3.28) is a statement with respect to indiabitreatment heterogeneity.hd result from (3.34) is
a statement about the average casual effect within a block. As such, there is no comparable
result to (3.3) for0 WK . The variance of the true, individual causal effgeen in (3.28)s
a fixed population paramat, thusextending thenatchedpairs design to a balanc&RCBD
with blocks of siz& only permits an estimable lower bound. Extendimgdesigrdoes not
changeeither the value oh ®WIQ or the estimable upper bound.

As withthe RCBD p 1 o ttoé & p miiocks of size four were considered.

Thus he resulting number of responses in the potential outcome frameworknsbgigé¢ ¢ O
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60¢& ydandtheresultingumber of EUG6s in the egvenbye obser

0 6¢ 10.

Tables 3.8 (i), 3.8 (ii), and 3.8 (iii) give the results interest baséd op 1T simulated
data sets. Values represent the mean and sthadar of estimates across the p 1t data
sets. Table 3.8 (i) gives results for the fixed treatment effect for the model fit to both potential
and observable data, Table 3.8 (ii) shows the results for the random effects in the potential model
and Table3.8 (iii) the results for the random effects in the observable model. As in the RCBD,
as the block size increased from 10 to 30 to 100, the variability of the effect estimates around the
true simulated value decreased. For most effects under considevdahi® p T1,7he true
simulated value is within one or two standard errors of the mean of the 1t estimates. All
were within three standard errors of the mean acros¥thp 1 estimates ab  p m.TiThis
would indicate thaas the block size increases, the REML estimates of these effects are
reasonable estimates. Comparing the standard errors of the estimates between potential data and
observable data in Tables 3.8 (ii) and 3.8 (iii), notice that the standard errorsdbsémeable
estimates are larger. This is to be expected since these estimates are computeehalftobne
the data available for the potential model estimates.

As in thetwo-sample CRD and matchegghirs design, the estimatesipfd iQ given in
Table 3.8 (ii) correspontd the theoretical value derived in {3). Furthermore, the estimates of
0 &, also correspond to the theoretical values derived 823 The relevant values used in
simulationto establish (3.13) and (2Bwere,, oh, AT A  ¢. Once againthe
estimates fo, and, given in Table 3.8iii) also seem to be reasonable estimates of the
theoretical value derived in @), where it was assumed ttsatbjectwithin-block and subjdae
within-block-by-treatment effects in the potential model are confounded to form the residual
term in the observable moddRelevant simulation values demonstrating the result 28 &re
. th AT A

Figure 3.4 demonstrates the results of (3.Z®tted lines represent the true vaused

in simulation The upper line corresponds to the simulated value @fiQ ¢, ,themiddle
line corresponds to the valuewf® Q , and the loweline represents the lower bound of
VWK ,¢g, . The difference between the upper aniddle dotted line should be equal to

¢, ,as demonstrated in (3.28)n these particular simulations, T, thus thelistance
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Fixed Fixed Std.

Effect Simulated Average Std. Error Effect Simulated Average Error
(Potential) Value 2N Y pnim Y pmTW (Obs.) Value N Y pninm Y prnm

Tt T 7 80 6.98 0.08 t T 7 40 6.91 0.12

240 6.97 0.05 120 6.92 0.06

800 6.99 0.03 400 6.98 0.04

0

Potential Simulated Average Std. Error
Variance Value 2N 'Y pnm Y pnim
Block 10 80 9.77 0.58
240 9.95 0.34
800 9.96 0.19
Block*Trt 3 80 3.37 0.20
240 2.90 0.10
800 2.95 0.06
Subject 4 80 4.07 0.15
240 3.99 0.09
800 4.00 0.05
Subject*Trt 6 80 6.01 0.19
240 5.94 0.10
800 5.86 0.06
Subject*Ctrl 2 80 2.11 0.14
240 2.02 0.07
800 2.07 0.04
Ay o) 14 80 14.87 0.46
240 13.76 0.23
800 13.81 0.13
0 Oy 8 80 8.78 0.40
240 7.80 0.21
800 7.87 0.12
(it)
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Observable Simulated Average Std. Error

Variance Value N Y pnim Y pnim
Block 10 40 9.88 063
120 10.01 0.38
400 9.95 0.22
Block*Trt 3 40 3.46 0.31
120 2.82 0.18
400 291 0.11
Trt Residual 10 40 10.43 0.47
120 9.92 0.24
400 9.73 0.15
Ctrl Residual 6 40 5.96 0.35
120 6.04 0.17
400 6.21 0.08
0 W0, 14 40 14.78 0.58
120 13.58 0.35
400 13.81 0.21
YARREODGQ 22 40 23.31 0.57
120 21.61 0.40
400 21.75 0.24
YO hRE 60 DB, 10 40 11.01 0.56
120 9.63 0.34
400 9.80 0.21
0éELBREOGEQ 6 40 6.92 0.61
120 5.64 0.35
400 5.81 0.22

(iii)

Table 3.8 GRCBD Simulation Results.

Values represent the average and standard error of treatment effect estimates™crpsa simulatiors in both
the potential and observable data modelsBef0, 30, and 10®f size 4 fo(i) Fixed Effects.(ii) Potential
Random Effectgiii) Observable Random Effects.

between theippertwo dotted liness ¢, ¢ X . Indeed, note from Figure 3.4 that the

same distance seentobe ¢ p 1 Y Also notice that Figure 3.4 is nearly identical to Figure

3.3 from the matchegairs design, except that Figure 3.4 now shows the estimable lower bound

of Q . The upper bawds of0 @ Q in both Figure 3.3 and 3.4 occur at the same value, 22.
Figure3.5illustrates the result in (34). Dotted lines represent the true vaused in

simulation The upper line corresponds to the simulated value @flO 5, themiddle line
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Observed Data-Plot of Naive Var (D)
tau0=3, tau1=10, mu=4
Variance: Block=10 Subject(Block)=4, Block*Trt=3, Ctrl Error=2, Trt Error=6

Overall Statistics: True=20
Min 1032792 1368626 1549397
Mean 2330878 21.60567 21.74997
Q2 21.98517 21.46999 21.92528
Max 38.25515 35456 27.67342
Std Dev 5731308 3977272 240819
40 -
30
s Q var(D)}=22
% 20
var(d=14
10 -
Lower Bound=6
0
40 120 400
N
H:\My D 'hD and A i otential O ion. sas
Figure 3.4 Bounding the Individual Causal Effect: GRCBD.
C, ” R 0 OIQ G, 8Box plots of théY p 1 @stimates of, R ., atB=10, 30,

and 100 blocks of size 4. Dotted lines represent values used in the simulation design.

Observed Data-Plot of Upper Bound of Var (d-bar)
tau0=3, tau1=10, mu=4
Variance: Block=10 Subject(Block)=4, Block*Trt=3, Ctrl Error=2, Trt Error=6

Overall Statistics: True=8
Min 258198 3440263 5119328
Mean 11.01481 9633219 9796647
Q2 9.546541 9.443524 9.463005
Max 25.69756 1878615 15.60557
Std Dev 5641512 3426001 2094574
30
25

=)
=)

Upper Bound var(d-bar)
o

s
[+ ]

Upper Bound=10
. var(d-banj=8
Lower Bound=6
5
0
40 120 400
N
H:\My D 'hD and A i otential O ion. sas
Figure 3.5 Bounding the Average Causal Effe@RCBD
C. ——— 0O, ¢, 8BoxplotsofthdY p T estimates ofc, ————at B=10, 30, and 100

blocks of size 4. Dotted lines represent values used in the simulation design.
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corresponds to the value @fc i, , and the loweline represents the lower tiod ofd & 5,

¢ Q, . The difference between the upper amddledotted line should be equal fo

—— , & demonstrateih (3.33). In these particular simulations, Tt,, @, and

” ¢ thus thedistance between thgpertwo dotted liness ,, — T ¢ O

Indeed note from Figure Bthat the same distancessento b@ ¢ ¢@ . In both Figure 3.4
and Figure 3.5the variability of the effect estimates aroundttive simulated value decreased
as the blocksizeincreased from 10 to 30 to L00vhend p m,1he true simulated value is
within one standard error of timeean of theY p T estimates. This would indicate that as the
block size increases, the REMktimates are reasonable estimatasaddition, notice the
distributions of the effect estimatbecame more symmetric as the number of blocks increased.
Table 3.9 gives the results of the comparisbn @iQ and0 ®KQ . Asin matched
pairs designs, the two estimates do nat@de. To see why, consider the relationship between
the estimates given in @L). Here we alter (21) slightly to reflectchanges in degrees of
freedom that occurduetohe f act that there are now 4 EUOS
matcheepairs design. Even with this slight alteration, the inequality @1§3till holds. That

is,

VY VY, VY, Yy o o
(O — = = — + L WK LW 8 o Y
10 p 10 p 0 p 00
Model Estimated
2N var(d;) var(dj)
80 12.65 12.60
240 12.30 12.15
800 11.66 11.57
Table 3.9 Different Method of Estimation GRCBD.
Comparisorof var(d).
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3.5 Two-Period-Two-Treatment Crossover Design
In an observable twperiodtwo-t r eat ment crossover desi gn, E

to one of two groups in whiabnegroup receives treatmenttate period 1 followed g control
at time period 2. fie other group receives control at time period 1 followetidatment at time
period 2. Regardless of which sequence an EU receives, two responses are measured for each
EU, one response under treatment and one response under control. Random assighenent t
different sequences prevents the confounding of period effect and treatment effectodEhe
for the twoperiodtwo-treatment crossover design can be thought of as an extension of the
matchedpairsdesign in which th&U from the crossover desigow takes on the role of the
block in thematchedpairs desigrand the period from the crossover design takes on the role of
theEU in thematchedpairs design One significandisparity between the twaesigns is that
periods andE Usdare crosseith a cressover desigfi.e. a response is measured in every EU at
every periodwhileEUGs are nested within blocks in a RC
assumption for both the potential and observable models in thperattwo-treatment
crossover degn, assuming no cargver effect.

A direct relationship between the observable model and the potential model may be
established by defining

Model Model Parameters Assumptions
Potential Model i A R T S O L S B i X "QWQrh,
[ “x QEQh,
5 Qph;SL’i'O'H@I’]V iTX.‘,.,T[v,, s
0 pith Q1 CE@IVS i +*0e0 h -
i “ Qo

i “H t andi “ tare
mutually independent.

Observable Model Y o t T Q [ x "QMQmh,
Q LT e i
0 pFa;VSG'OTéﬁ’] 0 quunhn
0 pich Qi Q¢ Qi
Q Yo i ,Q ,andQ are mutually
independent

Table 3.10 Model effects and assumptions in a TRe&riod Two-Treatment Crossover.
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since multiple observations per subjpetriod combination and multiple observations of subject
treatment combinations are Al os tQonseguentlyntvoki ng
is reasonable to conclude that the subBeperiod, the subjedby-treatment, and the subject
by-periodby-treatment effect from the potential model are confounidgether in ordeto form

the residual term in the observable modékuch confounding oegss, then

” ” ” ” r]Q "Yﬁ 08 -r[

under the assumptions given in Table 3.10. Furthermoderihe assumption of ustieatment
it i*t nAEAAEAIT Band

additivity, i

irrespective of the level of treatment assigned t6@h&U at the’Q period This implies that

the only random variability in responses in a{pariodtwo-treatment crossover is due to the
random var i aThe adbdve agsuroption & Utbeatment additivity assumes

additivity at each time period so that the true indlial causal effect is constant across both time
periods.

In every experimental design considered to this point, the observable data model
generated by confounding effects from the potential model has agreed with some form of a
Astandardo model for that geriodtwo-treatmaencrosdoges i g n .
design, the observable model heraynotbereadily recognizableA common,standard

crossovemodelassuming no carrgver effectanightlook something like

Y A N N € o8 p

where'Y is the response of ti@ EU,"Q pltfedl, at the’Q time period,;Q plt, on theQ

level of treatmenfQ YD receiving thex treatment sequence, plt. Withoutloss of
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generality, defing as the sequence effect resulting froni¥d sequence arjd as the
sequence effect of resulting from@'Y sequence. The indic&andaare related since the
indices of treatment sequence, plt, arise from combinations of the indices of treatment,
Q "YH, and time periodQ plt. Therefore the effect ¢f may be thought of as the fixed
effectof receiving treatmenf) “Yattime period’Q p followed by treatmenQ 6 attime
period’Q ¢. The effect of may be thought of as the fixed effect of receiving treatrifentod
at periodQ p followed by treatmenQ) “Yat periodQ ¢. Conversely, if the sequence and
the time period are known, then the level of treatment applied at that time jsekimown. All
other effectsarepreviouslydefinedin Table 3.10

Theobservable data modadiven in Table 3.1@nd (341) differ in the following
respects: thereis no sequence effedh the model given in Table 3.10 and there is no random
subject effect in the model given in43). The following is a brief explanation of the

discrepancies. First, define® in (341) as

'm i "S'z 'Q

whereQ is given in Take 3.10. It has been noted above that unter assumption of unit

treatment additivity

Q e
Therefore,
D i
and
0 ®OiY Y

if unit-treatment additivity holds.

Second, fom a potential outcomes point of view, treatment sequence is an artifact of the
implementation of the randotreatmentssignment mechanispnoducing a certain level of
treatment aa particular time period Assuming uniform randomization, one could a&gas we

do here, that there is no reason to expect a
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fact that different treatment sequences were applied to the grbupgbermore, notice thitte

indices of the periody-treatment effecinform us of which treatment was applied at which time
period. Thereforea significant difference between the two groups to which treatment sequences
were applied should be attributed to perindtreatment effects instead of group effects.

Without loss of geerality, if we defing as the sequence effect resulting froni¥&

sequence arfd as the sequence effect of resulting frondH'Y sequence, the observable data

models given Table 3.10 and43) are equivalent under the following assumptions:

N | rp
oottt T, (342
QABoai  howo

Therefore, the model in @1) may be thought of as a specific case of the model in Table 3.10
Using the potential anobservable modeh Table 3.10the existence of a difference in
sequence effects is something that can be testen if the assumptions in 42) do not hold

Consider the following null hypothesis of neeansequence effect under our particular model:

‘0q ‘ ‘ ‘ o8 o

In other wordsaslong as theeffect of treatmenis definedas the difference in observations
under treatment anabservations under control (céquationg1.1),(1.2),(3.9)), the null
hypothesis given in (83) assumes thahe effect of a™ sequence is the same a$H&'Y
sequence. By substituting tfieed effects from our modeh Table 3.10we can rewrite the

null hypothesis

Rearranging we write
"O * o 1] 113 1] .l- 1] .l- “ T 1] .l- T[

56



) p p
od* “ St <t T4 o«
% C 8 m

LR

It is important to note that all of the parameters of interest in testing for a differemeam
sequence effects are estimabléaththe observabland potentiatiata moded. For the
purposes of the falwing simulations, values 6f i F t A t+ i 1+ PAT “At were chosen

so that “ “ “ty “ T5 1 Consequentlypo meansequence effect was present

Define the true causal effect to be the difference in potential outcomes f@r Eig in

the’Q time period That is

As was the case with the RCBIhe structure of the twperiodtwo-treatment crossover

design lends itself to an intuitive definition of naive effect. This is defined as the difference

between the response under treatment and the respaahesiecontrol for thé&Q EU, irrespective

of which time period treatment and control were applied. Thus

O Y Y 8 o8 ¢
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O may be thought of asraiveversion of the traindividual causal effect for the twime
periodsin the'Q EU, which here would be given iy andQ . Given the model assumptions

in Table 310, the variance of the naive effect is given by

wherethe final equality in (3.47) follows from (3.40%inceO is the difference between the
observable treatment value and the observable control value witlin &, this difference is
across time periods within the same EU so the difference mautitlom subjeeby-period

effects,i i “ ,remains as a component@f. Contrast this t&@ , which is the difference

between potential outcomasthin the’Q periodfor the'Q EU. Sincethe potential outcomes
aredefinedwithin the same period and the same subject, the sthygoeriod effect is removed.
Note thatthe variance in (3.47) is estimable, but none of the individual compdnemtshe
potential model given in Table 3.Bdeestimable.However using equations (3.40(3.45), and

(3.47),0 GO can be written

and an estimable upper bound of forkd Q  has been established.
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The third line of quation (3.8) demonstrates that equality@f® Q and0 OO is
achieved whep . Recall thaf, is the variancén a responsattributed tahat response
being measured at tA@ time period in théQ EU, regardless of which level of treatment was
applied at that time periodf the effect of théQ time period is' with probability 1 for

plt 8 U E U § then the estimate of 01O from observed data could indeed be considered
an estimate o ®iQ 8

Tables 3.11 (i), 3.11 (ii), and 3.1iii) give the results of all effects of interest based on
Y p msimulated data setdVithin each simulationrd p i) ofandd pmMEUGS wer e
considered. In the potential model, a potential response is considered for eatcbaeb time
period, thus he resulting number of responses in the potential outcome framework is given by
¢MA ¢O 10, wherel is the number of periods under consideration. For this
particular designQ  ¢. The resultinghumber of responses in the entire observable experiment
wasgiven by0 ) ¢U. Values represent the mean anddad error of estimates across the
Y p mdata sets. Table 3.11 (i) gives results for the fixed treatment effect for the model fit to
both potential and observable data, Table 3.11 (ii) show#ts for the random effects in the
potential model and Table 3.11 (iii) the results for the random effects in the observable model.
For most effects under consideration, the true simulated value is within one or two standard
errors of the mean of th¥ p 1 estimates. All were within three standard errors of
the mearacross théY p mestimates al  p T.7iThis would indicate thats the number of
EUbs increases, the REML estimates of these e
standarcerrors of the estimates between potential data and observable data in Tables 3.11 (ii)
and 3.11 (iii) reveals a larger standard error foroieervable estimates, as expected because
they are computed from half the data versus the potential model.

As hasbeen consistent in all other designs considered, the estimate® 6 given in
Table 3.11 (ii) correspond the thetical value derived in (85). Relevant simulation values
demonstrating (&5) are, xh, chAT A ¢. The esmates for, and, givenin
Table3.11 (iii) also seem to be reasonable estimates of the theoretical value derivé@)in (3.
where it was assumed thatbjectby-period, the subjedby-treatment, and the subjeay-

periodby-treatment effestin the potential model are confounded to form the residual term in
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Fixed Fixed Std.

Effect Simulated Average  Std. Error Effect Simulated Average Error
(Potential) Value 4N 'Y punm Y pTmT (Obs.) Value 2N Y pnun Y pmm

Tt T 7 40 6.87 0.12 t T 7 20 6.85 0.18

120 6.96 0.06 60 6.95 0.08

400 6.98 0.04 200 6.98 0.05

0]

Potential Simulated Average Std. Error
Variance Value 4N Y pnm Y pnim
Subject 10 40 9.12 0.65
120 9.38 0.40
400 9.81 0.23
Subject*Period 3 40 3.22 0.22
120 3.20 0.10
400 2.96 0.06
Subject*Trt 7 40 5.92 0.40
120 6.77 0.27
400 7.10 0.15
SubjectCtrl 2 40 3.71 0.42
120 2.70 0.25
400 2.09 0.13
Subject*Period*Trt 2 40 1.93 0.08
120 2.00 0.05
400 2.03 0.03
VAY o) 13 40 13.49 0.55
120 13.47 0.32
400 13.25 0.13
(i)
|
Observable Simulated Average Std. Error
Variance Value 2N Y pnim Y pnim
Subject 10 20 9.54 0.71
60 9.59 0.44
200 9.81 0.25
Trt Residual 12 20 11.37 0.83
60 11.83 0.46
200 12.15 0.25
Ctrl Residual 7 20 8.70 0.76
60 7.73 0.38
200 7.15 0.20
0 WO 19 20 20.08 1.14
60 19.55 0.53
200 19.30 0.26

(iii)

Table 3.11 Two-Period Two-Treatment Crossover Simulation Results.
Values represent the average and standard error of effect estimates ‘atrgsst simulatiors in both the

potential and observable data models for N=10, 30, and 100 for (i) Fixed Treatment Effects. (ii) Potential Random

Effects. (iii) Observable Randonffécts.
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Observed Data-Plot of Model Var (D)
tau0=3, tau1=10, mu=4
Variance: Subject=10 Subject'Period=3,Subject'Ctrl=2, Subject*Trt=7, Error=2

Overall Statistics: True=19

Min 3.045695 9933878 1259147
Mean 20.07562 1955273 1930404

Q2 18.32867 18.70143 19.43859
Max 86.25495 37 48081 26.03547
Std Dev 1137159 5268492 2574754

100

o @
S S

&
=1

Modal Observed var(D)

% var(D)=18
var(d)=13

20 60 200
2

Hil

H:\My D\ PhD R h and A Potential O S tion. sas

Figure 3.6 Bounding the Individual Causal Effect: TviReriod Two-Treatment Crossover.

0 WO 0 OIQ 8Boxplots of théY p mestimatesob @O at N=10, 30, and 100 EUO6s.

represent values used in the simulation design.

the observable modeRelevant simulation values for the result iM(®.are,, oh,

xh, chAT A C.

Figure3.6 illustrates the result in (83). Dotted lines represent the true vaused in
simulation The upper line corresponds to the simulated value @filO andthelowerline
corresponds to the value®f® Q . The difference between the uppeddower dotted line
should be equal t9 3, , as demonstrated in @). In these particular simulations, o,
thus thedistance between thgpertwo dotted liness ¢ J, ¢ . Indeednote from
Figure 36 that the same distancesesentob® w p o ¢@. Asthen u mb er imdreased) 6 s
from 10 to 30 to 100, the variability of the effect estimates arounulitbesimulated value
decreased. Whdan p m,1he true simulated value is within one standard error of the
mean of theY p mest mat es . This would indicate that
REML estimates are reasonable estimates. In addition, notice the distributions of the effect
estimates became more symmetric as the number of blocks increased.

Table 3.12 gives theesults of the comparis@f v ©IQ andb WQ . Recall that
0 WK , was computed using the variance component estimates obtained from the PROC

GLIMMIX procedure and) @ iQ represents the estimatewfid IQ based on the computed
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Model Estimated

AN var(d) var(d)
40 5.44 6.88
120 8.48 10.35
400 13.51 14.76

Table 3.12 DifferentMethod of Estimation Two-PeriodTwo-Treatment Crossover.
Comparisorof var(d;).

differencein potential responses for each subparioss both periodsAs in matcheepairs
designsandthe GRCBD, the two estimates do not coincid€o thispoint, no result analogous to
that shown in Appendix B.has been derived for the tvperiodtwo-treatmemn crossover design.
An extension of the result given in Appendix B.1 to a-fveviodtwo-treatment crossover is

discussedn Chapter 4.

3.6 Repeated Measureswo-Treatment Crossover Design
As was the case with the matcheaalrs desigrcompared with th6&RBCD, the potential

model for the repeated measures-twaatment crossover design is nearly identicahe
potential model in the twperiodtwo-treatment crossover design, with the caveat that the
number of periods crossed with each subjatetisfour or more periods. Each EU, therefore,
receives each treatment at least twice. Consequently, everythiigyektimable in the potential
two-periodtwo-treatment crossover model is also estimable in the potespehtedneasures
two-treatment crossoveetting. Inthe observable modehereare nowmultiple observations
on each treatmefior each EU thaare observableso the variance of a random subjegt
treatment effect is estimable.

Table 3.13jives the effects and assumption for both the potential and observable models
in therepeatedneasureswo-treatment crossover.

A direct relationship between the observable model and the potential model may be

established by defining

Q [ A | 08 w
since multiple observations persubjpce r i od combi nati on are @Al osto
randomization mechanism. Consequently, it is reasonable to conclude that thelsupgeicd,
and the subjedby-periodby-treatment effect from the potential model are confounded together

in order to form the residual term in the observable model. If such confounding occurs, then
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Model Model Parameters Assumptions

Potential Model i SR T R S O A S R ¢ i x QW@onh,
i “x Qdanh,
. Q ples Oénv I R T
Q phn QI TE®I’ i ¢+ 0wb o hT
i toQWonh,

i “H t andi “ tare
mutually independent.

Observable Model Y N t “t i T Q [ x Q@®Qh,
it DR | s
Q plt8 O 0N i1 0@0 L hy
0 phrp Qi Q¢ Qi Q X OWn,
N YW

i,i tA t,andQ are
mutually independent

Table 3.13 Model effects and assumptions iRapeated Measurdsvo-Treatment Crossover.

” ” ” 08) -r[

under the assumptions given in Table 3.13. Furthermoderuhe assumption of usireatment
additivity,i “ i t { “t nAAIAAT Band

irrespective of the level of treatment assigned t6@h&U at the’Q period This implies that

the random variability in responses in a repeated measurdse@iment crossover is due to the

random variability of EU6s and the random var

treatment.
The definition ofQ and thusthe resultingy @ IQ remain unchanged from that given

in (3.44) and (3.%), respectively.However, a new definition of the naive effect from that given

in thetwo-periodtwo-treatment crossover design is required.
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Recall thathe structure of thevo-periodtwo-treatment crossover design lent itself to an
intuitive definition of naive effect) given in (346). However in theéepeatedneasures two
treatment crossover desigith each EU exhibiting a response at each of 4 different time
periods there are 4 possibl@ i that can be definefibr a givensubject, depending dhe
random treatment assignmenti@fatment to period$electing which treatmeperiodand
which controlperiodto use in the computation @ in order to accuratelgeflect the true value
of O is not intuitive. It seems more reasonable to consider the average difference in outcomes
for periodsassigned treatment apériodsassigned control. More formalligr the two periods

receiving treatmernity define

. P,
Y, 2 v
0 ¢

and, for the two periods receiving treatmeént

: P
Y - Y
°
so that
,OQ ‘Y:) 'Y:) 8 od P
Given the model assumptions in Table33.1
E ‘ i 113 l ] -l- i -l- 1] -'- l 1] T
oSy G
DwWwO,; L W® & 0 &
- R - L N D S |
& ¢ 4 o
‘ l -l- l T E 113 l 1] 1] -'- l 1] -'-
&y S 4 &y
> oF ) ;
A S N T ¢ T |
(o ¢ d O
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where the final equality in (3.52) follows from (3.50)he variance in (3.52) is estimable, but of
the individual componenfsom the potential model given in Table 3.D8ly,, and, are

estimable.Multiplying both sides of the equality in (3.52) four yields

T Q‘) (I)’OO T ” ” T ” ”

T a‘) d’)‘oo 0- ” ” c" ” ” c” l‘-) (I)D Cn 0-8) 0
andone can see that an estimable upper bound rQ has been established, since, ,

and, are all estimable in a repeated measurestteatment crossover desigRecall the

definition of0 WIKQ from (3.45). From guation (3.53)notice thatquality of0 ®WiQ and
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the upper bound given in (3.518)achieved when T If 11, then the estimate
» » ¢, from observable data can indeed be considered an estimat® €1

Furthermore, from (3.45)

L‘) (I)D ” ” CQ’

0 WIQ ¢Q ” ”

., ., 01 Q o 1

and since and, are estimable in eepeatedneasureswo-treatment crossover design, an
estimable lower bound has been established fariQ . Combining the results of (3.53) and

(3.54), one can see

0 WIQ T W0, o, » C,

” ” l‘) (I)D D (I)D c”

v
s L OO yo G G
v
” ” 0 OIQ ” ” C, o® v

In the twoeperiodtwo-treatment crossover analysis, the trivial lower bound of zero and a
norttrivial estimable upper bound for ® Q  were demonstrated in (3.48). However, here in
the repeated measures tiveatment crossover design, both a-travial lower bound and upper
bound have been established. The lower boynd, , ,is a partial description of treatment
heterogen¢y. More on this later. The upper bound in (3.48) and (3.55) are identical in terms of
the potential model parameters given in Tabl&® 8nd 313, respectively. This upper bound is

" " C, ¢, . From an observable model perdpas; the difference between the
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two-periodtwo-treatment crossovelesign andhe repeated measures ttveatment crossover
can be described by the respective difference in residual variances givetdjra@l (350).
According to (340), ,, " C, C, " , Inthetwo-periodtwo-treatment
crossovedesign, however, in thepeated measures ttr@atment crossover design
» G, G, ” " ¢, ,according to (%0).

Equations (3.52) an8.53) can be extended to accommodatepaatedneasureswo-
treatment crossover design with more than 4 periods. The following equations give the general

result for any balancepeatedneasureswo-treatment crossover design wiitperiods.

T i
0 MO, ., =9, ) ., 13+ od ¢

U U

and
6 d-’ (I)‘O:) 6 p ” ” c” c” D (I)D
1
6 d-’ (I)‘O:) Y p ” ” Cu D (I)D Cn
” ” c” CH
” ” CH 08) X

As in thetwo-sample CRD and GRCBRpmparison ob &0 IQ with 0 ® 05 may not
seem intuitivesincel ® 0, is computed based on aggregate information from a sample and
0 WK is computed based on information available from a single EU. Therefore define

ygj_:)

Q P oB Y

— 10O

T

to comp@re and contrast wit®, Given the model assumptions in Table 3.13,

P
0O, VI T



voLit it 2 it it
P
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” ” C :j’_ ” ” — 08) w
T C
Usinga similar argumergiven (3.54), it is easily seen that, . IS also an estimable

lower bound fo & 5.

Comparing and contrasting & J5 to 0 ¢ 105, notice that) ¢ 105 can be written

l‘) (I)D:) ” ” ”

0O, L
oo, — = Tt
> ¢ c oD

where the final equality in (3.60) follows from (3.5Q)riting U & O4 in this form and noting

the argument in (3.54) establishing an estimable lower bound éoiJ, , one can see

” ” U (I)Kj—:) l‘.) (I)DO —

v

) ) o Oid, ) 8 o® p
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By (3.61), estimable upper and lower boundsiofy J, have been established.
Equationq3.59) and (360) canalsobe extended to accommodateepeatedneasures

two-treatment crossover desigiith more than $eriods The following equations give the

general result for any balancezgbeatedneasureswo-treatment crossover desigith 0

periods

o0, cj’ﬁ— oD g

\ er oy \ oy T C
0 0
Y
< N S S
VW0, VO, =3 =3
0 0
Y

OO0y , TS’G— o o

It would be reasonable to consider the behaviar df 3, as0 increases. From @&2), ndice
‘IO El‘j (I)Kj_:) ‘IO E i,, ” c :j”“— ” ” 0-@ T

which shows that the variance of an average effect for an EU converges to the sum of the
variance component associated with subgetreatment random effects.

Notice that the results given in (3.55) and (3.61) are not the same result. The result in
(3.55) isa statement with respect to individual treatment heterogeneity. The result from (3.61) is
a statement about the average casual effect within a block. As such, there is no comparable
result to (3.64) fob O IQ . The variance of the true, individuzusal effect given in (3.55) is
a fixed population parameter, thus extending the pem@odtwo-treatment crossover design to a
balancedepeated measures ttr@atment crossover desigiith 0 periodsonly permits an
estimable lower bound. Extendirfietdesign does not change either the valué 6§ iQ or

the estimable upper bound.
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Tables 3.4 (i), 3.14 (ii), and 3.4 (iii) give the results of all effects of interest based on
Y p msimulated data setdn contrast to the other designs consided , t he number of
was altered slightly to accommodate balance with respect to the six different possible treatment
sequences. The number of sequences was a consequence of considering four time periods
instead of two. So for this designonly, p & oc@dé¢® pc¢EUOGS were consid
simulation. In the potential model, a potential response is considered for eatle&th time
period, thus he resulting number of responses in the potential outcome framework is given by
¢DA ¢IX0 YW, whereO is the number of periods under consideration. For this
particular designQ 1. The resultinghrumber of responses in the entire observable experiment
wasgiven by0 Q) 10 . Values represent the mean and standard error of estimates across the
Y p mdata sets. Table 311i) gives results for the fixed treatment effect for the model fit to
both potential and observable data, Tabld 8il shows the results for the random effects in the
potential model and Table 3 {iii) the results for theandom effects in the observable model.
For most effects under consideration, the true simulated value is within one or two standard
errors of the mean of th¥ p T estimates. All were within three standard errors of the mean
across théY p mestimats at0  p m.miThis would indicateth& s t he number of E
increases, the REML estimates of these effects are reasonable estimates. Comparing the
standard errors of the estimates between potential data and observable data in HBafiles 3.1
and 3.4 (iii) reveals a larger standard error for tiieservable estimates, as expected because
they are computed from half the data versus the potential model.

As has been consistent in all other designs considireéstimates af O IQ given in
Table 3.14ii) correspond the theoretical value derived in $3.4Furthermorethe estimates of
0 &, given in Table 3.4 (ii) correspond the theoretical value derived ir5@B. Relevant
simulation values demonstrating tlesults in (3.8) and(3.59) are,, xh, chAT A
¢. The estimates for and, given in Table 3.4 (iii) also seem to be reasonable estimates of
the theoretical value derived in $8), where it was assumed ttsatbjectby-periodand the
subjectby-period-by-treatment effectin the potential model are confounded to form the residual

term in the observable model. Relevant simulation values for the resubOh &82,,

oAl A C.
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Fixed Fixed Std.

Effect Simulated Average Std. Error Effect Simulated Average Error
(Potential) Value 8N Y pnim Y pmTW (Obs.) Value 4N Y pninm Y prnm

Tt T 7 96 6.91 0.10 t T 7 48 6.86 0.12

288 6.99 0.05 144 6.99 0.06

960 7.02 0.03 480 7.04 0.04

0

Potential Simulated Average Std. Error
Variance Value 8N 'Y pnm Y pnim
Subject 10 96 8.99 0.53
288 9.65 0.32
960 10.09 0.17
Subject*Period 3 96 3.05 0.11
288 3.01 0.06
960 3.04 0.03
SubjectTrt 7 96 6.45 0.42
288 6.93 0.24
960 6.83 0.13
SubjectCtrl 2 96 2.69 0.31
288 2.24 0.17
960 212 0.10
SubjectPeriodTrt 2 96 2.01 0.05
288 2.02 0.03
960 1.99 0.01
Ay o) 13 96 13.17 0.45
288 13.20 0.25
960 12.93 0.12
0 Oy 10 96 10.15 0.44
288 10.17 0.24
960 9.95 0.12
(it)
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Observable Simulated Average Std. Error

Variance Value 4N Y pnm Y pnim
Subject 10 48 8.98 0.60
144 9.76 0.32
480 10.06 0.17
SubjectTrt 7 48 6.75 0.53
144 7.13 0.29
480 6.92 0.18
SubjectCtrl 2 48 3.18 0.42
144 2.04 0.21
480 2.08 0.14
Residual 5 48 5.06 0.17
144 4.98 0.09
480 5.00 0.05
0 W0, 14 48 14.99 0.61
144 14.15 0.31
480 13.99 0.18
YAnREODHGQ 19 48 20.05 0.64
144 19.14 0.32
480 18.99 0.19
YA nRE 6 DD, 11.5 48 12.46 0.62
144 11.66 0.31
480 11.49 0.19
0EOREOEQ 9 48 9.93 0.63
144 9.17 0.32
480 9.00 0.19

(iii)
Table 3.14 Repeated Measures Twoeatment Crossover Simulation Results.
Values represent the average and standard error of effect estimates atrgsst simulatiors in both the
potential and observable data models forl2, 36, and 20 for (i) Fixed TreatmengEffects. (i) Potential Random
Effects.(iii) Observable Random Effects.

Figure3.7illustrates the result in (35). Dotted lines represent the trualues used in
simulation The upper line corresponds to the simulated valug of ¢, ,themiddle
line corresponds to the valuewf® Q , and the loweline represents the lower bound of
0O h, . . The differee between the upper amiddle dotted line should be equal
tog, ,as demonstrated in (5). Inthese particular simulations, o thus theanticipated
distance between thgpertwo dotted liness ¢, ¢ o . Indeed note from Figure B.

that the distance between the upper and middle dotted liresnso b@ w p o @. Also
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Observed Data-Plot of Model Var (D)
tau0=3, tau1=10, mu=4
Variance: Subject=10 Subject*Period=3, Subject"Trt=7, Subject*Ctri=2, Subject'Period*Trt Error=2

Overall Statistics: True=19
Min 7.640928 11.50425 1506748
Mean 2005418 1913509 18.99168
Q2 1935211 18.79193 18.7498
Max 4216019 2811167 2480401
Std Dev 6359452 3243934 1.875968

50

40
,3
}s 30
-
2
3
@
& 20 g Upper Bound=19
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var(d=13
10 Lower Bound=9
0
48 144 480
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Figure 3.7 Bounding the Individual Causal Effect: Repeated MeasuresTireatment Crossover Design.

” ” G, L OIQ » . 8Boxplots of thé€Y p T estimates of, » ¢, atN=12,
36, and 120 EU6s measured at 4 time periods.

Observed Data-Plot of Model Upper Bound Var (d-bar)
ta , tau1=10,
Variance: Subject=10 Subject*Period=3, Subjecgfn-T.’gubject'cm. Subject*Period*Trt Error=2

Overall Statistics: True=11.5

Min 2424625 4697381 7689447

Mean 12.46059 11,6605 11.49469

Q2 11.96049 11.64806 11.36607

Max 3479691 19.82545 17.05281

Std Dev 6155632 3125294 1853062
40

Upper Bound var(d-bar)
"
54

Upper Bound=11.5

10 [3iEPaGASs

48 144 480
AN

Figure 3.8 Bounding the Average Causal Effe®epeated Measures Twioeatment Crossover Design

” ” — v, ” . 8Boxplots of th&Y p T estimates of, » —at N=12, 36,
and 120 EU6s measured at 4 time periods. Dotted
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notice that theipper bounds ad & Q in both Figure 3.6 and 3.7 occur at the same value, 19.

This confirms that the upper bounfito ® Q is the same in both the twmeriodtwo-treatment

crossover design and the repeated measures@atnment crossover design.
Figure3.8 illustrates the result in (81). Dotted lines represent the true vaused in

simulation The upperihe corresponds to the simulated value,of —, themiddle

line corresponds to the value fd K, , and the loweline represents the lower bound of

0 Oidsyh, . . Itcan be shown thahé difference between the upper aniddle dotted

line should be equal te-. In these particular simulations, o thus theanticipateddistance

between theippertwo dotted liness— - p&. Indeed note from Figure 8that the

distancebetween the upper and middle dotted limeseentob@ @ p ™ p&®. In both

Figure 3.7 and 3.8sahen u mb e r  imdreadedfidre Ato 36 to 120, the variability of the
effect estimates around thre@e simulated value decreased. When p ¢,the true simulated
value is within one standard error of thean of théY p T estimates. This would indicate
that as the number of EUG6s increases, the
notice the distributions of the effect estinrmbecame more symmetric as the numbé&r tld
increased.

It should not be overlooked that and,  were the inestimable quantities that
identified the presence of treatment heterogeneitlye twesample CRDwvhen either, or,,
werenon-zero. By considering a more complex experimental design, these previously
inestimable gantities have become estimable, and treatment heterogeneity ipartiaky
described from observable datearepeatedneasureswo-treatment crossoveHowever, the
estimates of and, still do notcompletelycharacterizéreatment heterogenejtgt least not
without additional assumptionsThe assumptions required for treatment heterogeneity to be
completely describednd the consequencefstibose assumptioria the current experimental
setting are now considered.

Recall that in (3.8), 0 ©Q wasdefined aghe linear combination of h, , and
. . Estimable quantities from observable data includeand, , but, is not estimable in

the observable data model, therefored Q is not estimableUnder the assumption that

» M, howeverp @ IQ is completely characterized hy and, so thath & Q
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becomes estimable in the observable data md@ecidently if ,, T, thend W IQ
given in (3.4) and0 @ IQ given in (3.4) are equivalent, whare® IQ is the variance of the
true causal effect for th@ EU in a twesample CRD.

But, practically speakingyvhat does it meathat,, ? Recall,i “ T is the effect
produced by applying th® level of treatment at th€ period to théQ EU. It may be helpful
to contrast “ 1 with the fixed effect 1, which is the effect produced by applying e

level of treatment at th® period. Under the assumptions given in Table 3.13, the sum of these

two effects yields the following random effect:

T Qe thon o® U
0 pk&HhQ p&AHQ "YH

Soif no variability is produced by applying tfi@ level of treatment at th€® periodacross
"Q pk&) EUd s ,, t hre imother words, applying tHe level of treatment at th©
period to théQ EU yields the effect T with probability 1 forQ plgadi when, L
Since, is not estimable in an observable model, the validity of this assumption cannot be
tested.

Table 3.5 gives the results of the comparisoiy ©Q andv WIQ . Asin

matcheepairs designdGRCBD, and theiwo-period-two-treatmentrossover desigrihe two
estimates do not coincide. To this point, no result analogous to that shown in Agpédritas
been derived for thRepeated measurtso-treatment crossover design. These results will be

discussed further in Chapter 4.

Model Estimated
8N var(d;) var(d;)
96 9.40 12.29
288 16.43 18.88
960 15.53 17.36

Table 3.15 DifferentMethods of Estimation Repeated Measures Twoeatment Crossover Design.
Comparisorof var(d;).
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3.7 Summary
In the preceding sections, models for potential outcomes were derived for each of five

common experimntal designs. All models assumed Gaussaponses. dftinent model
assumptions have been stated for each design. In theatwple CRD, it was shown that for a
nortnegative correlation between potential outcomes under treatment and potential outcomes
under control, estimates tifis correlatiorusing model components yielded identical resialts
those estimates obtained by computhg a r sasreladia on the set of N bivariate potential
outcomes

Using the potential models, a definitiontcdatment heterogeneity has been clearly
defined in terms of potential model components. Simulations confirmed that using REML
estimates of the potential model components to estimate treatment heterogeneity yielded
reasonable results for all experimentasigns.

Furthermorefi u s wlasérablenodelsfor each experimental desigmdthe
correspondingpotential modelsvere linked by defining the residual term in the observable
model to be the sum of the confounded effects from the potential mdtielse potential model
effects were confounded togethsr removing onéalf of the data to mimic the implementation
of a uniform randomization mechanisf®nce again, simulations demonstrated that this
relationship between observable and potential modadsreasonable, as REML estimates of the
observable residual were fAcloseo to the sum o
produce the simulated potential data.

Naive estimates of treatment heterogeneity were defined for each observablamdodel
the variance of these naive effects were given in terms of the variance of the appropriate
potential model components. In all experimental designs, the variance of the naive estimate of
treatment heterogeneity served as an upper bound for the vasfahedrue, causal effect. In
more complex designs (i-&RCBD, andepeatedneasureswo-treatmentcrossover), lower
bounds for the variance of the true, causal effect were also establ&hagdations confirmed
both the existence and accuracy osthbounds Furthermore, for each design, the assumptions
required to equate the variance of the naive effect and the variance of the true, causal effect were
presented.

Finally, it was demonstrated that some inestimable quantities in relatively simple

experimental designs become estimable by increasing the complexity of the design. In
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particular, the variance associated with a subpgdreatment effect becomes estimable by

moving from atwo-periodtwo-treatment crossover design toepeatedneasureswo-treatment
crossover design. The fact that this variance is estimableepeatedneasureswo-treatment

crossover design has been noted previously §6001);however it was not clear how this
componentvas relatedo the variance of true effects dadwhat assumptionsere required to

eguate the two. The results presented here clearly identify the relationship between the estimable
variance of a subjedty-treatment effeicand treatment heterogeneity and the appropriate

assumptions required eguate the two have been described.
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Chapter4-Pr op os ed Crhoenspd aert cehd

The followingchaptergepresent the worthat was proposetd complete thislissertation
research. Topics in Chaptechrify results presented in Chapter 3. Topics includechapters
5 and 6serve as extensions of the research presented in Chaptanti3er research ideas are
also presented in Chaptér

4.1 Discrepancy of Modeb 3 B and Estimatedo $ B
For each of the five experimental designs presented in Chapter 3, twadsieth

computing the variance of the individual causal effeafd Q and0 @ Q , were compared.
Both methods used estimates from the potential model ontp.Q wastermedModelb @ Q
and was computed using the appropriate variance compaignates obtained from the PROC
GLIMMIX procedure. 0 @ Q was termedEstimated) ®iQ and was computed by estimating
the variance of the difference in potential responses for each EU using PROC UNIVARIATE in
SAS.

Of the five experimental designs, only tind-sample CRD yielded identical estimates
between the two methods. Discrepancies observed mdtehedpairs desigrand GRCBD
were shown in Appendix Bto bedue to degrees of freedom associated with sureguares
terms in the linear modelHowever, the proof presented in Appendig Bssumed
homoscedasticity of variances for potential outcomes. Furthermore, no comparable proof has yet
been established for the crossover designs presented in Chapter 3.

Theresults given in Appendix B.1 can be extended to apgerdtwo treatment

crossover design by considering the computatian afiQ under the homoscedastic

assumption that " »

A oy p 9, 9,
0O - Q
T o o™

0 pLAOKQ Q 180

As shown in Appendix B.2, the sum of squares in (4.1) can be written as follows:
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QO ¢OYY Y'Y Y'Y 8

where Y'Y is the sum of squares due to the sublpetreatment effect)Y"Y is the sum of
squares due to the peribg-treatment effect antdv"Y is the sum of squares due to the subject

by-periodby-treatment effectTheses sums of squares are defined in Appendix BhRs

e p ey ey e YUY YUY YUY
D WIQ = XOYY YY Y'Y CO— = = 8 ®
¢ p ¢L p CU p QU p
However, estimating wiQ from (3.45) yields
s DY 0°7Y . .
U WIQ ” ” ¢ C c VN
- - YY Y'Y
byY ULVY 8

6 p 0 pO pYop
whered Y is the mean square of the subjbgttreatment effect and "Y is the mean square

of the subjecby-periodby-treatment effect. Thus frord.3) and @.4), one can see that

LYY Y Yy vy vy
cb p ¢ pcb p G p O pO pYop
i DR 0 WIQ 1)

where he inequality islue to degrees of freedom associated with sums of squares terms in the
linear modelnd the additional sums of squares due to a péyedeatment effect in the

computation ofy & IQ

4.2 Correlation
In section 3.2, two methods for computing the correlation between potential outcomes

under treatment and potential outcomes under control twtlkeample CRD were also

compared. One method used estimated variance components to canmiptraeclass
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cod ficient. The second method used Pearsonos
of correlation. Recall that the esti mates we
wasnomnegati ve. When Pear son @Gesegaivemgtimateetiie corr el &
corresponding intralass correlation estimate was always zero. Based on the model assumptions
given in Table 3.1, the intrelass correlatioestimate is required to be naegative since the

covariance between the potential @sge under treatment and the potential response under

control within the same EU js , the variance attributed to the EU regardless of the level of

treatment appliedAlso recall that equation (2.6) gave bounds,for, the variance of the

individud causal effect. The upper bound and lower bound were determined by assuming

” p and” p respectively, wheré s the correlation between potential outcomes
given in (1.3). Howeveif the correlation between potential outcomes is resttito being non
negative, as is the case fotra-class correlationnder the assumption of the model given in

(3.1), then differenbounds fronthose given ir{2.6) would beachieved. That is,

Tt i i i i " 8 1<)

Further investigation of the discrepancy betwee8) @nd (2.6) is warrantedResults are given
in section 4.2.1.

A second issue that may be related to the nature of the correlation between potential
responses relatés the assumption of uriteatment additivity. Recall that if urtiteatment
additivity holds, then the variance of the true causal effect,is zero. Gadbury et. al (2001)
demonstrated that based on the definition ofgiven in (2.1),, mtif and only if the

following two conditions hold:

Q. )
and T
JOXV] p
However, given the results of equation (3,4), Ttif and only if,, " . Assuming
theintra-class correlatiodefinition
” RO » T



" " mforces” p. The results given hefer ,, mtdiffer from those given in the
literature Resolving these differences in conditions under which Tt needs tde carefully
considered. Part of resolving these differences will include a description of how the bounds for
» or conditions for estimability of relate to correlation assyntions in the potential data

model. This is discussed further in section 4.2.2.

4.2.1 Pearson Correlation vs. Intralass Correlation: Determining Bounds
According the model and assumptions for the-sample CRD given in Table 3.1, the
joint distribution of the random effects in the potential LMM are

l L " Tt Tt
T xdw0 mh m , m
lT Tt T T

In order to resolve the discrepancy betwee6)(@nd (2.6), assume a more general multivariate

normal distribution of the random effects in thegmiital LMM such as

Tt ” n " n N
l, T X 0 d) 6 Tt F] ” non ” ” noon 8 T &)
l T T ” "

According to the potential model given in Table 3.1

Q0O L ¢, ., NQ "YW
QOE DL R O Oiit ©Oiit Oi tit
” K ” ” " ” ” K ” ” 8

so that

I
X0 wo .

—+ —+
N
047

Now reconsider the intralass correlation given in (4.8) under these revised aggma@bout

the random #ects in the potential LMM
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Notice that the intr&lass correlation is no longer restricted to beingmegative. That is,

p 7 p depending on the values,of,” ,” ,and” . The intraclass correlation in
(4.8) can be derived from (4.1)the assumption ” ” mtholds. Under this
assumptionthe value of  must be nomegative

By permitting a more general multivariate distribution on the random effects as in (4.9), a
result synonymous with the result given in (2.@ynbe obtained. Reasider tha) ®Q , now

under the more general assumptigingn in (4.9):

LW 0 Qi i ” " ¢ . . 8
Upper and lower bounds are achieved by assuining  p and” p, respectively, so
that
noo, ” " . " P p

It should be noted that these bounds are not estimable insatwole CRD.

4.2.2 Pearson Correlation vs. Intralass Correlation: Conditions fioZero Variance

From (4.11),, 1tif and only if” p and, . . Denote this common
varianceas, . If we impose these conditions on the definitiori of given in (4.10), then
” ” ” ” ” 8
” ” C” ”n " O ” ” c” ”n "
Notice that even though p and, » . » Isnotnecessarily 1 and is not

necessarily equal tp . In order to accomplish the necessary requiremenis for ttfrom
(2.6), the additional assumption that " is required.Denote this common correlation as

. If we assumei) ” p, (i) ,, » » and (iii)” ” " then
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and

and the necessary assumptions requiregl for Ttfrom (2.6) are metlt is worth noting that if

pand, " . ,then, mteven if” " so that, "

4.2.3 Summary

Using linear mixed model® delineate the assumptions necessary to equate treatment
heterogeneity in a potential outcomes framework to estimable components of an observable data
model yieldel some surprising results, compared with those results pubfigimed finite
population perspective. For complex designs in particular, the estimatesusfing linear
mixed model components did not always match the fjpageulation estimates gf
Furthermore, intraclass correlation estimates based on LMM variance components matched
Pearson correlation estimates for fm@yative values only. By carefully considering the model
assumptions used in linear mixed models and relating model vacantponent estimates to
the finitepopulation estimate gf through the use of sums of squares, these discrepancies

have been resolved.
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Chapter5-1 denti fying Treat ment Heter
Desi gns: A Linear Mixed Effect

The following clapter isa paper submitted to a paewviewed journal.The concepts discussed
in this dissertation are further developed to accommataiere complex treatment structure

and therapplied to a illustrativedata example.

5.1 Abstract

A treatmentébés efficacy or safety is often
treatment with respect to some reference treatméatireatment effect is highly variable across
units in a population, then applying information about the nedf@at to eachindividual unit
cannot be recommended since there may exist-anaglgible portion of the population that
experiences an individual effect in the opposite direction of the mean dtfecvariability of a
treatment effect is referred to asatment heterogeneity.

Using a potential outcomes framework, treatment heterogeneity for several simple
designshas been investigated using a randomization based appk@ebver, as experimental
designs become more complicatadandomizatiorbased apmach becomes increasingly
intractable We present an approach to derive a fApot
From this model, treatment heterogeneity is conceptualized as a linear combination of potential
model variance componentdh&evarance componestarenon-estimable in observable data
butestimable bounds exist that depend on the experimental gexigmeyarise from linear
combinations of the neastimable potential modehariance components. A specific application
of these radlts to a 2x2 factorial treatment structure in-pefiod crossover experimental design
is presentedAssumptions required for equating naive estimates from observable data to those
that could be obtained from potential outcomes data are discussed.
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5.2 Introduction
Treatment heterogeneity refers to the variability of a treatment effect across individuals in
a population. Although such variability he@metimeseen acknowledged as an important
consideration irexperimental studieslecisions about these of treatment generally make use of
statistical information gathered about the mean effect and then apply that same information to the
individual (cf. Marshall, 1997). When there is a high degraseatment heterogeneiiy a
population, there mayeba nornegligible proportion of the population responding differently to
a treatment, and possibly in the opposite direction, from the average subject.
Quantifying the degree of treatment heterogeneity is facilitated by potential outcomes
(Rubin, 1974)Consider a set of treatmentsf) , where Ydenotes somtesttreatment and
denotesa reference or perhapscontroltreatment For eaclsubject there ia duplet{i ,i },
which represents the potent@litcometo the testreatmentnd tothe controltreatment
respectivelyAt any particular time point, eithér ori is observable for an individual so that
the individual causal effectQ i i , cannot be observédwhat Holland (1986) referred to
as the fundamental problem afusal inference. As in Gadbury (2010) or in Poulson et al.
(2012), treatment heterogeneity is quantified, by @ @ IiQ, a nonestimable quantity since
there is no information in observable data on the correlation betwesdi . If we suppose,
as in Gadbury and lyer (2000) or Poulson et al., (2012) that the duplets arise from an infinite

population model given by

thenit is easy to see thag » " " . . Thus, norestimable treatment
heterogeneity can be bounded by estimable quantities, resulting from setting-tretimaible
correlation,” , equal to 1 anell. Bounds can be tightened using covariaformation
(Gadbury et al., 2001; Poulson et al., 2012), and estimates of treatment heterogeneity can be
obtained using assumed conditional independence between potential outcomes given covariates
(Zhang et al. 2013).

As experimental designs become meophisticated, more information about treatment

heterogeneity may become availatitex blocking or subsetting variable is available, then there
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aremethodghat can detect the presence of treatment heterogeneity and potential qualitative
interactionst he | atter meaning that the direction of
(e.g., Byar and Corle 1977; Simon 19&3ail and Simon 1985; Silvapulle 2001; Li and Chan
2006). In repeated measures designs or cmy&s designs, there is a true individual treatment
effect at each timperiod andsomehave demonstrated the use akeu-effects models fit to
data from cros®ver desigathat estimatea subjectreatment (ST) interactionvariance(e.g.,
Hauck et al. 2000; Endrenyi and Tothfalusi 1999). Howeverestimatedariance computed
from observed data may not equal a variance of true individual effects without certain
assumptions and/or depending upon how one defineslasdual effect in multiple period
designsin more complex designs, it is not always clear what these assumptions are and whether
or not they are reasonable for the applicatidre flelationship betweemestimable ST
variance component and ttreevariance of an individual effect defined in a potential outcomes
framework remains unclear.

In this paper data example from a 2x2 treatment structure applied 4oesidd cross
over designs analyzed. These datgere collected to investigatiee effe¢ of diet and plant
sterols on blood lovdensity lipoproteircholesterolevels.Dietary or nutritional
recommendations for health that are reported in the literature and media can be a source of
considerable confusion to the publRiscussions relatingtthis, though with different
perspectives, can be found in a popular book by Campbell and Campbell (2005) and at The
Weston A. Price Foundatiohtfp://www.westonaprice.orj/Thus, it seems pertinent to coreid

an application area where an investigation into treatment heterogeneity may yield additional
insights regarding a treatmentds behavior on
effects.

Thedataconsidered here resulté@wm a doubleblind, randomized crossver design,
and were reported in Chen et al, 2009 Kraimer et § 2011.The purpose of Chen et §2009
was to determine if the main effects of two levels of diet and two levels of supplemented plant
sterols on lowdensity lipoprogin cholesterol (LDLC) blood concentrations were additive. In a
subsequent publication (Kramer et al, 2011), these data were used as an illustrative example
while investigating the use of multiplicative decomposition techniques to estimate a-bybject
diet interaction effect since experience suggested the LDLC responses to diet tend to be subject

specific.
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The method proposed here first conceptualizes the potential outcomes in a design and
guantifies treatment heterogeneity as a linear combinatiorriainca components in a linear
mixed effects model (LMM). Then the randomization mechanism is invoked to produce
observable data and variance components that are no longer estimable in observable data, at least
not without assumptionsA key step i n comparing the potenti
appropriate identification of the potential LMM. This is accomplish&idga technique
proposed by Fisher in a discussion of Yates?o
demongratad that the choice of an experimental design is the choice of how a topographical
layout of the experiment is related to the treatment structure of an experiment. Str@&)p (201
adapted Fisherdés approach as a tern@mpaonentsoffin cor r e
observable LMM, and termed the approach AWhat
WWFDmethod we f ur t h eappr@adia gcecomradatehagatedtal outcomes
framework and then considevh at i nf or mat i orandomiatignimeckaniemisvh e n t
invoked,that is,we use the potential LMM as a template to arrive at the observable LMM. This
process is an important step in the appropriate estimation of effects in the observable model as
misgecification of the model iIRRCC GLIMMIX has been demonstrated to alter both model
effect estimation and inference (Boykin et al., 2010).

For ease of illustration, the WWFD idea is first presented in the context of a
straightforwardwo-samplecompletely randomized desig6@RD). We theruse the technique on
the diet and plant sterdata example from a 2x2 treatment structure applied tpexidd cross
over designpreviously describedConsidering the potential LMM clarifies the assumptions
necessary to equagstimable variances the variances of the individual effectsurthermore,
additional information regarding treatment heterogeneity that is not estimable in a traditional 2x2
factorial design at one time period becomes available due to theomerssature of this design.
This additional information hints at what might be surmised about treatment heterogeneity with
added time periods, if practical, and what assumptions would be required to directly estimate a

treatment heterogeneity variance. We conclude with a discussion.

5.3. WWFD in a Two-Sample CRD

A simple twesample CRDs usedo illustratebasic principles that may be extended to

accommodate more complex experimental desi@wsider a twesample CRD in which a
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random effect arising from the application of #elevel of treatment to th€ experimental

unit (EV) is permitted. Potential outcomes consist of two setd)ofesponses, where each of the
OEUG6s simultaneously contribute one response
with sets. The structure for the potential outcomes framework and corresponding degrees of
freedom given in Tablb.1 (i) are a completely topographical analyisishat the total degrees of
freedom for the experiment are accounted for, independent of the treatment structure. The
treatment structure and its corresponding degrees of freedom are given iB.Téible

APar al | e b.%5(h) wasa termadelly &isher to represent the number of times a level of
treatment must be prepared to accommodate a given sample size. In this case, there are two
levels of treatment and each level of treatment must be prepared N times, once for each EU;
therefore, the dgrees of freedom associated with Paralle® (dl-1). Both the Topographical

and Treatment aspects completely account for the total degrees of freedom in the experiment. Per
Fishers instruction that the choice of an experimental design is the choidaaf @omponents

from the topographical and treatment aspects are permitted to correspond, we combine these two
(ii) by ng the

Table5.1 (ii) to correspond to the degreesoffleem associ at ed 5W(i)tThat i Set o

aspectsinTablB1( i ) and choosi degrees
is, assumehat any difference between sets is attributed to the level of treatment applied to that

set and not to characteristics inherent to the set. Accordingly, we choose the degrees of freedom

t h fAPar abl(igtb lsefartitionedtinto the degrdes of freedom
ated t h A EUOS5.18in dThatfisyve asgumddai differences m e

responses within a set are due to either inherent characteristicd=bf trethe application of a

associad d wi

associ Wi Tabl
level of treatment to a particular EU rather than differences in the preparation of a particular

level of treatment. The resulting combined ANOVA table is given in Tallii) by replacing

ASet 0 with ATr tppeaswméablg(iter e ASet 0 a
Topographical Trt Combined
Source d.f. Source d.f. Source d.f.
Set 21 Trt 2-1 Trt 2-1
EU N1 Apar g 2(Nl) | EU N1
Set*EU (21)*(N1) Tr*EU (2-1)*(N1)
Total 2N1 Total 2N1 Total 2N1

(i)

(ii)

(iif)

Table 5.1 Potential WWFD ANOVA Structure: Tv8ample CRD
(i) Topographical, (ii) Treatment, and (iii) Combined ANOVA structures for a Potentiabample CRD.
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Using the components of the combined ANOVA tablevabas a guide, the resulting potential
LMM is

[ L

wherei represents a random effect of theEU, T represents a fixed effect of tf@ level of
treatment, and 1 represents the random effect of elevel of treatment applied to tH@
EU. In a model assuming no technical error; would be considered the experimental error.

Under the Ausual 0 s et foormndenxefieets modetthet a | cirec

following distributional properties df andi 1 are assumed:

(x Q@O
i Q@ e
[ WERTWI QO 06 AEXXNN QE QQE O

One can allow for different variance components farfor 'Q "Yi, but this is unnecessary for
illustrating the ideas herénvoking the randomization mechanisfiectively removes onbalf
of the data so thaach EU is now represented only once within a set instead of being
represented in both sets. This results in two distinct sets of responseswitfe U6 s i n each
set, assuming a balanced design. Thiseect i vel y removes t h&()iSet *E
and replaces it with an AEU(set)o term. Al so
APar al | e 5.%5(b)is reduced sirted each level of treatment need be prepared only
times instead ab . Table5.2 (i) and (ii) demonstrate how the Topographical and Treatment
structures are altered after the randomization mechanism is invoked.

Based on this new Combined ANOVA table given in T&hliii), the observable LMM

can be witten
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Table 5.2 ObservableVWFDANOVA Structure: Tw&ample CRD
(i) Topographical, (ii) Treatment, and (iii) Combined ANOVA structures fdDhgervable twesample CRD.

whereg i

S

Topographical Trt Combined
Source d.f. Source d.f. Source d.f.
Set 21 Trt 2-1 Trt 2-1
EU(Set) N1 ipar a20ND | EU(TIY) INE]

2(nl) 2(nl) 2(nl)
Total 2N Total 2N1 Total 2N1
2nl 2nl 2nl

(i)

t he

number

balanced twesample CRD (i.e§ €

CRD.

(ii)

of

EUbO s

€), and-

(iil)

pert

|l @ vedina f

Is the usual error term in a tvgample

treat me

A direct relationship between tipptential and observable models can be established by

defining

Based on the distributional assumptionsa), the error variance in the observable model,

denoted, , is given by

There is not enouglxperimental material in the observable model framework to

estimate all effects of interest specified in the potential model. In the observable model, only the

linear combination of the variance components of subject and siblyj¢éatatment effects careb

estimated. If the potential framework were feasible, both the variance of the subject effect and

the variance of the subjeby-treatment effect would be estimable.
With the potential LMM given ing.2), Q is given by,

(O

i1

i T8

Usingthe distribution ofQ given in 6.3) andthe model distributional assumptions #3) gives
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If, T, then, Q. 1, and treatment heterogeneity exi@sunds for, using this
structureare different from the trivial ones given following equatiéti). These bounds depend
on the norestimable individual variance componentsh, , that are estimable as a linear

combination. Still, an estimable upper bound is giveg,bybut the lower bound is zero. The
nonestimable correlation irb(1) is now the intraclass correlation——hand the lower bound

for this quantity is zero rather thah Allowing for a negative correlation between potential
outcome varialds requires specifying a bivariate distribution of random effects where the
random effects are not independent. We have not seen this done when applying linear mixed
effects models to data arising from experimental designs.

For this simple design, relatirthe quantities in an observable model to those in the
potential model takes some thoudit it highlights the information that gets lost as one moves
from potential to observable data and, thus, what quantities in a model become inestimable. The
relationship between the potential model and observable model is not as explicit in more
complicated designbut the WWFD technique can still be used to relate quantitiepateatial

LMM to those in arobservable LMM for any particular experimental design
5.4. 2x2 Treatment Structure in aCrossover Design: A Data Example

5.4.1. Data Description

Each of 22 subjects (13 male, 9 female) was assigned to receive each of four treatment
combinations of diet and plant sterols in random order for a period ay2§Chen et al.,
2009) There were no washout periods betwee®gintervals. Two levels of treatment were
considered for each treatment factor. The levels of diet were a typical American diet (TAD)
versus a recommended cholestdoolering Stepl diet (STP). The levels of plant sterol (PSE)
were 0 g/day and 3.3 g/day incorporated into the diéeach period, the study design
resembled a 2 x 2 factorial treatment structure with two levels of each treatment factor assigned
to each subject. At thend of the four periods, each subject had received all combinations of the

two treatments.
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A number of blood compounds were measured, however only LDLC (famol
measurements are discussed here. LDLC responses represent the average LDLC values from two
samples taken at day 22 and day 24 of eaetia®8period. Baseline (pexperiment)
measurements were taken the week prior to the initiation of the first,niyrdssigned
treatment combinatiohe outcome is a change from baseline with negative values meaning a

decrease from baseline.

5.4.2 Applying WWFD to this Design

The previous discussion related to atsemple CRD can be extended to accommodate a
factarial treatment structureith two treatment factors} fi , eachhavingtwo levels, Yo .
The entire set of possible treatment combinatiornikig2x2 factorial experiment is the set
"YWY&S ™ 6, where the level of is given first followed by the level 6f. For the LDLC
data, a treatment levéfdenotes the STP diet forand the 3.3 g/day dose of PSEffofi.e., the
respectived treatment levels are TAD for and 0 g/day of PSE for). A design consistingfo
more than two levels of treatment per treatment famiatd alsdbe accommodated

For each EUpotential outcomes age4tuple{i ,i h H }, which represents the
potential response of tfl@ EU under each of the four polsla treatment combinations arising
from the factorial treatment structusgith only one being observable at a particular tife

observed response of tlf¢ EU at a particular timés given by,

where

- PHQIQ "YQf dMQ O7Y
mQIQ 6 Q¢ gA'Q O7Y

and

phQIQ "YQ¢é §'Q O7Y

mHQIQ 6 Q¢ §'Q 078

We assume uniform randomization and independendgand .
To extend th&x2 factorial potential outcomes framework to-pefiod crossover

designwe assumea unique set of four potential responses at every time period, one response per
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treatment combination per periothere are #otal of 16potential responses per EU are

permitted across the entire experiméle suppose that the randomization mechanism randomly

selects a sequence of responses across the four periods for every EU so that every EU receives

every treatment combination once asohe four periods.
Usi ng Str oup 6 she Mg potestial hMMIfor a 2x2 factorial

treatment structure in aleriod cros®ver designs obtained

I S R T S S R
o R B ) B
Q M8 I TYINQ pitiof n Qi TR QNS & Q0 Q@IOMO ¥ & QU QBIYO

i

wherei represents a random effect of theEU; “ represents the fixed effect of ti

period; i “ represents a random interaction effect of theEU measured at th® period; |
represents a fixed effect of th@ level of diet] represents a fixed effect of tiie level of
PSE; | represents a fixed interaction effect of e level of diet combined with théz

level of PSEj | represents a random interaction effect of thelevel of diet applied tahe

"Q EU;i T represents a random interaction effect oftthdevel of PSE applied to tH® EU;

i | T represents a random interaction effect of thelevel of diet combined with thi level
of PSE applied to th® EU;“| represents a fixed interaction effect of e level of diet
applied at théQ period;* | represents a fixed interaction effect of thelevel of PSE applied
atthe’Q period;“ | | represents a fixed interaction effect of #e level of diet combined
with thed level of PSE applied at th@ period;i “ | represents a random interaction effect
of the'Q level of diet applied to th€® EU at theQ period;i “ | represents a random
interaction effect of thé& level of PSE applied to tH@ EU at theQ period; and “ | T
represents a random interaction effect of thelevel of diet combined with thé level of PSE

applied b the’Q EU at theQ period, and should be considered experimental error.

The distributional assumptions of the random effects are as follows:

[ x "QWMQh,
[ “x "QWUQh,
|| x s,
[ 1x "Q@OQh, L
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i | 1Tx QWUQh,
| Qo
1 oGO,
1 K Qo
iH“A | AThi| TH “|H “1 && Q" | fare mutually independent.

The resulting observable LMM fahis design is

Yoo T v

| 1
"Q pkM M OYiNQ pligloft i Q1 "TRONS & QU Q@IOPO "YH & QL Q@IYO

where- is comprised of the confounded potential model effects for wihiete is not enough
experimental material in the olvgable model framework to estimata the observable model,
- is consideree@xperimental erroAll other effects maintain the same definition as in the
potential LMM.

A direct relationship between the observable model and the potential imestblished

by defining

According to the model given i® @), a true causal effect at each of the four periods can

be defined as

5¢ D¢ O

for the'Q EU at theQ period. For each EU there are 16 causal effects across the four periods.
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Based onfte model assumptions given ingp, 0 WK LW and
D WK UK ¢ .Denote thesavovarianced OIQ ¢  andd KIQ ¢

respectively. Writing these variances in terms of the potential LMM variance components yields

and L&

., and, areestimable in observable ddiacause there are multiple observations per EU on a

particular level of diet (but differing levels of PSE) and multiple observations per EU on a

particular level of PSE (but differing levels of di€Ehis permits an estimable lower bound since

C. L WK
and L&)

c” O(I)Ds

The crossover nature of this degm permitshe definition of an observable, naive version

of individual effects Four naive differencegre

o, Y Y h

o, Y Y Ok

o, Y Y K UEN
0 Y Y 8

an

Two distinct variances for the naive individual effects defind®.8) emerge from this

design They arep @Oy 0 @Oy andb @Oy 0 wiOg  based onthe
assumptions in (5). Denote these variances@s0 O andb @O , respectively
then,
0 WO, 0 QiY Y [ ”
and uP T
0 WO 0 QIY Y C . ”
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wherej andj iddicate two different period&stimable upper bounds of threie variarces of the

individual effects can be established since

c ” ” C ” ” ” ” ” ”
C., C, LW
and v p
C n ” c ” ” ” ” ” ”
Gn G LW 8

and UP ¢

wherethe upper bounds are given k10). The difference between the upper and lower bounds
is equal tog,

Comparing the lower bounds establishedbidZ) with the results of a traditional 2x2
factorial design carried out at a single time period yields an important distinction. In a standard
2x2 factorial design, a single observable response is permitted for each EU at a single time
period under only onkevel of diet combined with only one level of PSE. By construction of the
design, then, none of the variance components givenihdre individually estimable from
observable data in this design. Consequently, the most that can be stated aboet theuond
of the variance of an individual effect is that it is mmyative. Thus, the extension of the 2x2
factorial to a crossver design yields additional information regarding treatment heterogeneity
and provides an estimable lower bound.

If it were possible and practical to extend the design to permit eight time periods instead
of four, and each of the four diby-PSE combinations were randomly assigned to two of the
eight time periods, then the subpbstdietby-PSE variance component would bexd
estimable. So by extending the design to a repeated measuresvaodssign, previously nen
estimable components of the variances givein) pecome estimable. Additional discussion
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regarding repeated measures crogsr designs for evaluating &nent heterogeneity can be
found in Senn (2001).

5.4.3Resultsof Analysis

UsingPROC GLIMMIX, we analyzed the LDLC data according to the model given in
(5.6) wherg represents a fixed diet effect ahd represents a fixed PSE effedtable5.3(i)
gives the results for tests of fixed effects in the model. TaBIgi) presents the estimates of
interest and standard errors for both fixed and random effects. A negative value represents a
reduction in LDLC levels.

Our results demonstrate thaetSTP diet significantly lowerseanLDL C compared
with the TAD diet(P = 0.012) and the introduction of 3.3 g/day of PSE significantly reduces
meanLDLC compared with @/day of PSEP < 0.0001) The interaction between diet and PSE
is not significantPeriod-by-treatment interactions, Periy-Diet, Periodby-PSE, and Pericd
by-Diet-by-PSE, are also not significant. These resafiésconsistent with those published by
Chen et al, although estimates anddRues are slightly different. Chen et atcainted for
individual differences by including a balkee LDLC measurement in the model and a random
subject effect. The remaining residuals were fit with a one patearautoregressive correlation
structure

Furtheranalysesiot shown herdemonstrated that adding a bdise LDLC
measurement to the model affected the estimate of the EU variance component but not the
estimates of the Edy-diet, the EUby-PSE, or the residual varianc@&se estimates of the
variance components in Tal8e (ii) give rise to estimable bounds of the aage ofindividual
effects established i%.12). Gadbury and lyer (2000) describe a process by which the
proportion of EUG6s in a popul acanbeestimatedp er i enc i
assuming a nmonal distributionfor individual effects In this case, an unfavorable response
would beconsidered an elevation in blood LDLC levels even though, on average, a reduction in
LDLC levels was observeddithout loss of generality, assurne 1. Then, heproportion of

EUOs experienci ng iathispartictilar experiraebtél settimgvenby n s e
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where' is the mean effect of one level of treatment compared to the other.54flees the
estimated upper @rower bounds of the variance of the individual causal effects. In addition to

the estimable bounds we used v Tbootstrap (Efron and Tibshirani, 1994) samples to

compute the bootstrap standard error of both the upper and lower bounds. These bootstrap
standard errors, as well as the corresponding estimates @fre given in Tablg.4. The

difference between the estimable upper and lower bounds for both variances of interest is 0.0223.
This is twice the estimate of given in Table5.3 (ii). Also notice thaftor both variances of

interest, the estimate of the lower bound is more than two bootstrap standardlevergero.

Thus,the data suggest thimeatment heterogeneity exists for both Diet and PSE effects.

Type Il Tests of Fixed Effects
Fixed Effect F-Value P-value
0AOET A 2.05 0.1601
$EAO 7.52 0.0122
03 % 70.44 <.0001
$ EAW3 % 0.21 0.6543
0AOCE$ BAOD 1.02 0.4181
0AQEGN 3% 1.50 0.2642
0AOES BAD3 % 1.36 0.3009

@

Estimates: LDLC (mmol/L)

Difference Estimate Std. Error
Diet: STRTAD -0.1637 0.0597
PSE: 3.3 g/day 0 g/day -0.4491 0.0535
Variance Component Estimate Std. Error
0.2095 0.0754
0.0332 0.0125
0.0256 0.0104
0.0112 0.0041
(i)

Table 5.3 SAS PROC GLIMMIX Results.

() Type Il Tests for Fixed Effects. (ii) Estimates of the difference in levels of Diet and PSE with standard errors
and estimates of the variance of random effects with estimated standard errors.
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Individual Effect Estimate Bootstrap SE Estimate of [} Bootstrap SE [}
°© + < Srom <
Lower Bound 0.0511 0.0220 0.0235 0.0288
Upper Bound 0.0734 0.0206 0.0487 0.0339
o+ Pair
Lower Bound 0.0665 0.0288 0.2628 0.0809
Upper Bound 0.0888 0.0271 0.2914 0.0647

Table 5.4 Estimable Bounds for the Variance of Individual Effects. _
Estimates of the upper and lower bounds given in equét®@ywith bootstrap standard errors and estimate® of
with bootstrap standard errors

5.5. Discussion and Conclusion

In cases where treatment heterogeneity is suspected, it would be prudent design
experiments in such a way as to investigate the preset@atrhent heterogeneity in addition to
estimating a mean effect before a claim of the superiority of one treatment over another is
established (Longford, 1999). The variance of an individual effect is the parameter of interest
when assessing treatmentdregeneity, with a nemero value indicating the presence of
treatment heterogeneitf.the estimate of the lower bound is substantially greater thanarezo,
might concludehat treatment heterogeneigypresent Likewise, if an estimable upper bound is
very close to zero then one might conclude that the treatment is having a similar effect on
individuals across a populatioBxperimental designs in which an estimable loart/or upper
bound can be establishedmgrt t he i nvestigation of treatment
costo in the sense that no new data are neede
heterogeneity. Furthermore, a comparison of the observable LMM and potential LMM for a
given experimetal design delineates the information about causal effects that is lost in moving
from potential to observable data, and what assumptions aboestiorable quantities (or
design modifications) are needed to evaluate treatment heterogeneity in obsiatable

We demonstrated that the extension of a traditional 2x2 factorial treatment structure to a
four-period crossover design permits the estimation of both an upper and lower bound of the
variance of an individual effect, defined in a potential outcoina@sework. Given the estimated
bounds of the individual effects and the bootstrap standard errors, it was reasonable to conclude
that treatment heterogeneity exists when considering the effect of diet (TAD vs. STP) and PSE (0

mg/day vs.3.3 mg/day). Furteo r e, we esti mated the proportior
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unfavorable effect. Theointestimates 0b indicate that thereoulde x i st certain EU®
which the TADisamord avor abl e diet than the STP and cer
could bemorefavorable than 3.3 g/day of PSE even though, on average, the SBRdItBES.3
g/day of PSEappeared to be more favorable for lowerii) C levels.Poulson et al. (2012)
called this an individual qualitative interaction (IQI). However, after c@gig standard errors
of estimated bounds fdr , statistically it appears that only diet may have an 1QI.
The difference between the estimable upper and lower bounds of the variance of
individual effects is comparatively small. Thésbecaus¢he varability explained by the
random residuals is less than the variability explained by the other random effects, based on the
estimates given in Tab3 (ii) (,, T8t p . dhe majority of variability in responses is
accounted for by the variability due the random EU effect ( 1@ 1T Qb UIn other words,
while treatment heterogeneity likely exists, the amount of total variability in responses explained
by the variability of individual effect 1is sm
seleced from a given population.
Consideration off.7), (5.8), (5.10), and(5.11) reveat the required assumptions to
equate the variance of individual effects with the corresponding naive estimates available from
observable dataFrom 6.7) and 6.8), ¢, L WK andc,, L WA if we are
willing to assume that " " " 1T, that is , if we are willing to assume
that the dieby-sterol effect, the periely-diet effect, the periothy-steroleffect, and the peried
by-dietby-st er ol ef fect are all constant across EUS®G
these assumptions, then the estimable lower bounasiof) ¢ andb 0 become
estimates of the variance of the respective individual effects. If we agsume,
” ™, that is, if the period effect, the peribg-diet effect, and the peridoly-sterol effect are
all constant acr daherstheedtimable upper boungs dgrame astimatesof
VY O andb W ¢ . Though the potential LMM helps to clarify what assumptions
are needed to equate estimated bounds with estimated treatment heterogeneity, these assumptions
canrot be directly tested using observable data from this design.
Senn (2001) noted that studies are rarely designed to separate information on an
individual effect from other sources of variabilitp. the twesample CRD and traditional 2x2
factorial desigs, only estimable upper bouncn beestablished. While knowledge of this
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upper bound iwthsemsstleaafiwor s ®geag-alargeg t he
variance yields a larger ), it is the estimable lower bound that informs the presefice
treatment heterogeneity. If treatment heterogeneity is suspected and a design permitting an
estimable lower bound of the variance of an individual effect is possible, then estimating the
degree of treatment heterogeneity in addition to a mean treagfifecttshould be of value when
characterizing a treatment effect across an entire population.

While the statistical methods presented here may be used to quantify the degree of
treatment heterogeneity in these data, they cannot explain the source editimet
heterogeneity. Further research is required to investigate the possible causes of treatment
heterogeneity in LDLC response to different diets and amounts ofTP®Klata example was
used for illustration and not to confirm a superiority of aeatiment over another. The sample

size was small and other issues such as treatment compliance were not considered.
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5.6 Supplementary Material
The following supplementary material is included for the benefit of the reader, and
describes how the potentialM was generated. This material was omitted from the body of

the paper due to space concerns.

Topographical Trt Combined
Source d.f. Source d.f. Source d.f.
Replicate 4-1=3 Period 4-1=3 Period 41=3
Row(Rep) 42-1)=4 Diet 2-1=1 Diet 21=1
Period*Diet 3x1=3 Period*Diet 3x1=3
Col(Rep) 4Q-1)=4 PSE 2-1=1 PSE 2-1=1
Period*PSE 3x1=3 Period*PSE 3x1=3
Row(Rep)*Col(Rep) 4104 Diet*PSE 1x1=1 Diet*PSE 1x1=1
Period*Diet*PS| 3x1=3 Period*Diet*PSE 3x1=3
Subject N1 Parallels 16N-1) Subject N1
Subject*Rep 3(N1) Subject*Period 3(N1)
Subject* Row(Rep) 4(N1) Subject* Diet (N1)
Subject*Period*Diet 3(N1)
Subject* Col(Rep) 4(N1) Subject* PSE (N1)
Subject*Period*PSE 3(N1)
Subject* Row(Rep)*Col(Rep) 4(N1) SubjectBiet*PSE (N-1)
Subject*Period*Diet*PSE 3(N1)
Total 16N1 Total 16N1 Total 16N1

@ (i) (iii)

Potential Model WWFE2x2 Factorial in a Repeated Measures Crosgr Design.

Part of 4Tuple Receiving: Part of 4Tuple Receiving:

EU TT TC CT CC EU TT TC CT CC

1 TT TC CT CC 1 TT TC CT CC

2 T TC CT CcC 2 1T TC CT CcC

N1 T TC CT CcC N1 1T TC CT CcC

N T TC CT CcC N T TC CT CcC
Period 1 Period 4

2x2 Treatment Structure in aPeriod Crossover Plot Plans. An abbreviated representation
of the plot plan for the potential outcomes framework.
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Chapter6-1 denti fying Treat ment Het er

6.1 GLMM: Logistic Regression
For all five experimentadlesigns in Chapter 3, a Gaussian distribution of responses was

assumed. Thus, the results given in ChapteeXonfined to the LMM setting. The obvious
guestion remains whether or not the ideas presented in Chapter 3 can be extended to a non
Gaussian itribution. Thed Q¢ ¢ agddistribution will be considered for the purposes of
this research, whekerepresents the number of independent Bernoulli trials' aadhe
probability of success iabinomial processl will pursue modelingpotential outcomes using
logistic regression, althoughamy of the ideas presented here for the binomial process should be
extendable to any of the distributions in the exponential family for which GLMM theory holds.
The first step in extending the resultom Chapter 3 to a logistic regression settirtg is
clearly definewhat is meant by treatment heterogeneiyhile considering binary oabmes in a
matchedpairs designGadbury et. al (209 used the same definition of treatment heterogeneity
ashasalready been presented in Chapter 3. That is, they defined the causal effect as the
difference in the potential outcome under treatment and the potential outcome under control.

Adapting their notation to fit that given in Chapter 1,
Q i 1ih oP

theyshowedhat in the binary data setting, the causal effect may take on one of three possible
values, phrfi ©. Gadbury etal (2004)defined probabilities for each of these thresgilole
outcomes, noting that 'Q p represented the probability of an individual experiegea

detrimental treatment effeé They further definethe average causal effect,
0Q 0Oi Oi 0 i p LI p

and demonstrated th&'Q could be estimated from observable data.
In a binomial setting, the definition §Igiven in 6.1) could take orone ofce p

possible discrete values. Depending on the numbBewfoulli trials, assigning probabilities to
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each of these possiblalues may quickly become cumbersomnigoropose defining the
individual causal effect in a slightly different manner. Instead of defmoapsalkffect as a

difference as inq.1), define it in terms of an odds ratior

aé "FAo0 a € VA0 a € "o

where" is the potential probability of success for an individa@lreceiving treatment ard
is the potential probability of succa$she same EU hackceived control.

Treatment heterogeneity, then, permits each EU its own probability of success under
treatment and its own probability of success under coi@misidera set ofQ plfB 0 EUS s |,

each exhibiting a set of potential resges{i ,i }, such that

X608 ¢ ROATQ Y8 &

Extending our definition of causal effect 6.2, we have

a&Eil a€0Q0 o€ "QQo

so that each EU is permitted its own individual causal effect
Once treatment heterogeneity ardndividual causal effect have been clearly defined, it
should be relatively straighibrward to see that logistic regression is an intuitive approach to
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modeling the' dereferenced in equatio®.Q). Preliminary results for the-83ample CRD are
presentechere Forconvenienceresults are presented under the assumption of homoscedasticity
of variances.

Table 6.1gives thdogistic regressiomodel assumption®r both the potential and
observable data models. A direct relationship between ihenvdels is established by defining

ig i if oD
Logistic RegressiorModel Model Parameters Assumptions
Potential Model I dH &6t ¢aBROa i X "QAQ,
ae'@oo 't 1 1 th i ar:diTXTK;rf%Té endent
'Q plgh8 ) 'O "%
Observable Model i do& 6 Q¢ € atBoa (@ QWQh,
a€ Qo ¢t ish
0 ¥br)
Q plts e

OYin Qa QUM 0

Table 6.1 Logistic RegressioModel effects and assumptions in-aé&nple CRD.

sincemul ti ple observations per subject are Al ost

Thus the residual termg, in the observable-28ample CRD consists of tlkenfounded subject

and subjecby-treatment effects from the potential modilsuch confounding occurs, then

by the independence assumptions givehahle 6.1 As in Chapter 3he assumption of unit
treatment additivityn combination with those specified in Table 6.1 mean
i t mAEAAT Tnd

Thus



irrespective of the level of treatment assigned t6@&U. This means thaf unit-treatment
additivity holds in a Zsample CRD, thethe only variability ind € "Q"Qois due to
characteristics inherenttothe B4 s @ &t h @t "QQ0 a € "QQois constant for all
O pkBGEUBG S .
Defining causal effect as i16.4) and under the potential model assumptions given in
Table 6.1
o & i Tt it i txQdQ IS, [0

where’ is defined as in (1.4). Exponentiatirg§)§) gives

€l Qonr 7 i T it xaé"QEéi ddf .8 (054

This implies that in the logistic regression setting, treatment heterogeneity can be quantified in
terms ofthe scale parameter associated withinstead ofb @ Q , as was done in thao-
sample CRD in section 3.2.

As with Gaussian responses presented in section 3.2, an average naive effect must be
used to estimatineindividual causal effeajiven in 6.4), as an individual naive effect is

undefined in théwo-sample CRD. Define the average naive effect in thistlogegression

setting as
a&y ot éﬂliT éﬁlms of)
According to the assumptions givenTiable 6.1
R VR I
6'\5dé“§2éé‘l‘drﬁb37é'° B0

if (6.8) is exponentiated, and thesample CRD is balanced.
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Define,  as the scale parameter giventn/f and, | as the scale parameter given

in (6.9 and notice that

so¢ Q, is an estimable upper bound for .

Q)
One difficulty inobtainingestimates of and, in logistic regressiors that variance
components in PROC GLIMMIX are not estimated using RE®thniques By default, PROC
GLIMMIX utilizes pseuddikelihood (PL) methods to estimate model parameters. However, PL
methods can pduce estimates that are biagRthheiro and Chao, 20Q6)nitial results in the
logistic regression setting verified the presence of bias in model parameter estimate
Integral approximation techniques exist in PROC GLIMMIX that senadtasmative
methods to Plestimation LaPlace approximation and adaptive Gadssmite quadraturare
bothstill capable of producing biased resuligt thebias is typically smadir using these
estimation techniges compared with Réstimation (Pinheiro and Chao, 2006 Adaptive
GaussHermite quadrature was utilized in producing the preliminary results that follow.
Although a relationship between the lognormal distribution haddgstic regression model
given inTable 6.1likely exists based or6(7) and 6.9), it is uncleathow to properly relate the
adaptive Gausklermite quadrature estimates, and, to the estimated scale parameaita
lognormal distribution, given a set of observahlgomialdata Describing this relationship
remains a topic of further investigatioft is encouraging, however, that reasonable estimates of
modelvariance components can be obtaif@doth thepotential and observable data madel
Tables6.2 (i), 6.2 (ii), and6.2 (iii) give more specific results gbme of theeffects of
interest based oY p 1 mimulated data sets. Values represent the mean and standard error of
estimates across thé p 11 ™ata sets.Table 6.2(i) gives results for the fixed treatment effect
for the model fit to both potential and observable dBab)e 6.2(ii)) shows the results for some
of the random effects in the potential model @aadlle 6.2(iii)) some of the resultor the random
effects in the observable modéh all cases, as theamplesize increased from 10 to 30 to 100,
the variabilityof the effect estimates around the true simulatddedecreased, and in most
cases, the estimated value of the simulatioarpater based on thi¥ p 1 simulations is

within 3 standard errors of the true value.
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Of particular notethe estimates for,

given inTable 6.2(iii) estimatehe theoretical

value derived ing.5), where it was assumed that gwbject and subjedty-treatment effects

from the potential model were confounded to form the residual term in the observable model.

Letting,, ¢ and, p, then, o based onQ.5). The results iMable 6.Xiii)
demonstrate that the estimates ofare reasonably close tof8r0 p .70
Fixed Fixed Std.
Effect Simulated Average Std. Error Effect Simulated Average Error
(Potential) Value 2N 'Y punm Y pTmT (Obs.) Value N Y pmun Y pmm
Tt T 3 20 3.03 0.06 Tt 3 10 3.13 0.12
60 3.00 0.03 30 3.03 0.07
200 2.99 0.01 100 3.04 0.03

(i)

Potential Simulated Average Std. Error
Random Effect Value 2N Y pnm Y pniT
20 1.82 0.12
60 191 0.07
200 1.98 0.04
20 0.94 0.06
60 0.99 0.03
200 1.01 0.02
(i)
Observable Simulated Average Std. Error
Random Effect Value N Y pnm Y pnim
10 2.3 0.13
30 2.82 0.08
100 2.97 0.05

(i)

Table 6.2 2-Sample CR.ogistic RegressioBimulation Results.

Values represent the average and standard error of treatment effect estimatesMcrpsa simulatiors in both
the potential and observable data modelsNed 0, 30, and 100or (i) Fixed Effects.(ii) Potential Random Effects.
(iii) Observable Randomftects.
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6.2 Treatment Heterogeneity in Generalized Linear Mixed Models
The following section is a paper being prepared for submission to-agwewved journal. The

basis of this paper is an extension of the concepts previously discusdeapier6, using a real
data example for illustrationFor completeness, the paper is presented in tact so the reader may

note that some material setting the framework for the problem is repeated here.

6.2.1Abstract
For continuous data, quantifying treatmentehegeneity is facilitated through potential

outcomes by considering the variance of an individual effect, defined as the difference in
potential outcomes. As the complexity of an experimental design increases, using the same
definition of individual effet for discrete data becomes increasingly intractable. In this paper,
the definition of individual effect is altered slightly to accommodate a potential outcomes
analysis for a generalized linear mixed model (GLMM). Treatment heterogeneity is
conceptualied as a linear combination of potential model variance components, modeled on the
link scale. These variance components areextimable in observable data, but estimable

bounds that arise from linear combinations of the-@stimable potential model vance

components exist and depend on the experimental design.

These methods are presented in the context of a 2x2 treatment structure applied to a
randomized complete block design with repeated measures where responses are assumed to
follow a binomial distibution. Only data from a single period are considered for analysis. The
data were collected as part of investigation of the effecaofine (VAC) administration and
directfed microbial (D) on the fecal shedding &. wli O157:H7 in a commerciaksting.

6.2.2 Introduction

Treatment heterogeneity refers to the variability of a treatment effect across individuals in
a population.Studies often focus on estimation of a mean treatment éffedfiarshall, 1997)
butwhen there is a high degreetodatment heterogeneitly a population, there may be a ron
negligible proportion of the population responding differently to a treatment, and possibly in the
opposite direction, from the average subject.

Quantifying the degree of treatment heterogenisifgcilitated by potential outcomes
(Rubin, 1974)Considettwo treatments, Yo , where”Ydenotes somesttreatment andd

denotes reference or perhapscontroltreatment For eactsubject, imagina dupletof
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responseq,i ,i }, which represents the potent@litcometo the testreatmentand tothe
controltreatmentrespectivelyTheindividual causal effect can be defined'@s i i,

which cannot be observed since eitheori , but not both, may be observedaaty particular

time point. When responses are continuous, treatment heterodeasehgemuantified by

» W W IQ, a nonestimable quantity since there is no information in observable data on the
correlation between andi . However, bounds fo, can be defined that are estimable in
observed datécf. Gadbury and lyer 2000, Poulson et al., 20KJiser and Gadbury (2013)

recently made use of this result in evaluating the presence of treatment heterogeneity in
published weight loss clinit&rials. Using a technique called What Would Fisher Do (WWFD,
Stroup 2013) applied to a potential outcomes framework, Richardson and Gadb@r\y2 (B

in progres$ used a linear mixed model (LMM) approach to evaluate treatment heterogeneity in
complexdesigns. They were able to elucidate the necessary assumptions required to equate the
variance of naive estimates of treatment heterogeneity from observable data in complex designs
with the variance of the true individual effects.

In this papera data exaple from a 2 factorialtreatment structure applied to a
randomized complete blodesign( RCBD) wi th four experimental
analyzed. These dateere collected to investigatke effect ofvaccine (VAC) and direefed
microbial ©OFM) on the fecal shedding &. oli O157:H7 in a commercial setting (Cull et al,

2012). The actual data were collected from a RCBD with repeated measures where each of four
treatment combinations of VAC and DFM were applied to one of four pens blogked b

allocation date since seasonal effects associated with degree of fecal sheddijpfer.

shedding in summer) have been well documented. For purposes of simplicity, we consider data
from a single period only, however, these methods may be extendecbtmmodate repeated
measures across four periods. -Raevest interventions that reduce fecal sheddirtg. abli

0157:H7 have important food safety and commercial economic implications. Blanket
administration of treatment based only on average effdots there may exist a noregligible

portion of a population that experiences an unfavorable individual effect is not a trivial matter.
Thus, quantifying the degree of treatment heterogeneity associated with these treatments beyond
an average affect ses appropriate.

Thirty fresh fecal samples were collected from pens each week over a period of four

consecutive weeks. Fecal samples were assessed for the presence (positive) or absence
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(negative) of thé. coli O157:H7 bacteria. Pelevel proportions we fit using a generalized
linear mixed model (GLMM) assuming a binomial distribution on thirty independent trials with a
logit link function. Outcomes were the proportion of positive samples from each collection.
When the potential responses are notiocolous, a different approach to treatment
heterogeneity may be required. Gadbury et al (2004) considered binary response an@defined
as a multinomial response taking on one of three distinct vatypsor p. Theyestablished
bounds for the probdiiy of an EU experiencing an unfavorable effect of the test treatment
compared with the referenagea matched pairs design. Albert et al (2005) extended those results
to a blocked design with binary outcomeghang et al (2013urtherextended these salts
from Gadbury et al (2004) to incorporate information on treatment heterogeneity from known
covariates and repeated measures.
The method proposed here compares a GLMM derived under a potential outcomes
framework to the usual observable GLMM.cAmparison of the potential and observable
GLMM6s reveals components associated with tre
potential GLMM but not in the observable GLMM, at least not withouttnietal assumptions.
A key step incomparingthgot ent i al and observabl e GLMM&s i s
of the potenti al GL MM. This i s a3techmgpdto shed
accommodate a potential outcomes framework.
I n the subsequent sect iochmgsetodevelopiapoteatimle St r o
GLMM linear predictor and corresponding observable GLMM linear predictor:-defme
treatment heterogeneity in terms of GLMM components; iii) establish estimable bounds for
model parameters quantifying treatment hetereggnand iv) apply these resutts theE.oli
data, first at one collection period and then across the four collection periods.

6.2.3 Potential and Observable GLMM Models

In order to accommodate a GLMM analysis, the traditional potential outcomes
framework is slightly altered. Imagine a collection of rawmtinuous potential responses as in
(1), except for each potential response, there exists an underlying parameter (or set of
parameters) giving rise to a neontinuous potential response. Thesdaunlying parameters

may be EUspecific and may possibly differ depending on the level of treatment the EU receives.
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For theE. coli data in particular, imagine that each pen in each block is affordedphedof

potential binomial responses at each aita period. These potential responses are based on a
4-tuple of underlying binomial probabilities, one for each VBEM combination, on thirty
independent Bernoulli trials. When the randomization mechanism is invoked in a potential

GLMM, one potential@sponse is selected as the observable response. This is tantamount to
selecting one of the underlying potential parameters as the observable parameter under which the
observable response is generated. We use the potential GLMM as a template to agive at th
observable GLMM. This process is an important step in the appropriate estimation of effects in
the observable model as npssification of the model iIRROC GLIMMIX has been

demonstrated to alter both model effect estimation and inference (Boykin2€il4l).

The WWFD method is based onadiscuséion Fi sher of Yatesodo pape
experiments (1935) where Fisher demonstrates that the choice of an experimental design is the
choice of how a topographical layout of the experiment is related tcetitentent structure of an
experiment.The potential responses are given for’thepen in theQ block receiving théQ
level of VAC combined with thé& level of DFM;"Q pltr8 Ip mallocation datesQ pltfott
pens;Q "YO levels of VAC; andx "Y¥ levels of DFM.

The potential outcomes framework results in four simultaneous replicate sets of 40
responses, one replicate set receiving each of the fourMAI@ combinations. Figuré.l (i)
gives a plot plan for the potential outcesrayout oftiis experiment.Notice that every pen and
every block is represented in every replicate set. By virtue of the factorial treatment structure,
every block and every pen receive every level of VAC, every level of DFM and every level of
VAC-DFM treatment comination in the poterdl outcomes structur&hus, from a potential
outcomes perspective, block and pen are crossed with each main effect and treatment
combination.

A topographical layout of the experiment at a single time period is givEabie 6.3(i).

Table 6.3(ii) gives the factorial treatment layout of the experiment, accounting for the total

degree®f freedom in the experimeriti.Par al | el sd0 was a term used by
of the number of times a particular VAGFM combination need® be replicated in order to

carry out the entire experiment. In this case, there are 4P combinations and each

combination must be replicated 40 times to accommodate the potential outcomes framework.
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Using the combined ANOVA table ihable 6.3(iii) as a guide, the linear predictor for

the potential outcomes experiment is given by

a € Qo 0N | T @ ot |t @ t nl nt ni (6.10)
"Q pltf8 Ip mallocation datesQ pltfoft pensQ  "Yi levels of VAC; andx  "YD levels of DFM

where* representshe binomial probability of th& pen in théQ block receiving the
combination of thé&Q level of VAC and thea level of DFM; & is the random effect of the

"Q block (i.ed allocation date);] is the random effect of tH®@ pen in theéQ block;|

represents the fixed effect of tlie level of VAC; T represents the fixed effect of thie level
of DFM; ®| represents the random effect arising from the applicatid® devel of VAC to
the'Q block; & T representshe random effect arising from the applicatiordoflevel of DFM
to the’Q block; | 1 represents the fixed interami effect of théQ level of VAC combined
with thed level of DFM; @| 1 represents the random interaction effect arising from the
application of théQ level of VAC combined with ther level of DFMto the 'Q block;

n | represents the random interaction of televel of VAC applied to théQ pen in the
‘Q block ) t represents the random interaction of thelevel of DFM applied to th&
pen in théQ block and | t representsherandom interaction effect arising from the
application of théQ level of VAC combined with thex level of DFMto the’Q pen in theQ
block.

For a distribution in which the estimation of a scale parameter is of interest, the final term
inthe modely) | T , would be considered the residual or error term, and would be utilized in
the estimation of the error variance. However, for a distribution belonging to thgacareeter
exponential family, like the binomial distribution, théseno scale parameter to estimate.
Consequently, this final source of variability must play either a different role than that of the
Gaussian residual term, or no role at all (Stroup3R0l is common practice to assume no
variability can be attribed to the final term and remove it from the model. For now, it will be
left in the model in order for the potential model to account for all degrees of freedom in the
experiment. Further discussion for the interested reader can be found in Str@p2Q12
114). The distributional assumptions in probability distribution form (Stroup3Rék as

follows:

113



Data:
i sk 0 Q¢ ¢ adto a

where Ais a vector of the following random effects:

o QGO

N x QWanh,

Q| X QWQh,

O OO, oD p
w| T QWah,

Nl x Q@om,

nt x QeQm,
AloT @ T,

oM fo| dtho T M T ©& @ t are mutually independent.

Previously published results (Richardson and Gadbury, 2012; Richardson and Gadbury
2013in progres$ have shown that an observable model can be derived from a potential model
by considering the information lost after invoking the randomization mechanism resulting in the
removal of a portion of potential data. Figér (ii) represents a plot plan aftine
randomization mechanism has been invoked and-toreths of the potential data have been
removed. By removing thrdeurths of the data, the following information is lost:

(i) Multiple observations per block on the same DFWC combination

(i) Multiple observations per pen within a block

(i) Multiple observations per pen within a block on the same level of VAC

(iv) Multiple observations per pen within a block on the same level of DFM
The resulting observable linear predictor is given by:

a € Q0o O 1t o ot |t &t (6.12)
"Q pltfB Ip mallocation datesQ "Y levels of VAC; andx "Y¥ levels of DFM
where the pen within block can be identified by the VBEM combinatia if the randomization
scheme is known. All other effects are defined as in the potential outcomes framework.
A direct relationship between the observable model and the potential imestblished

by defining
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Given the distributional assumptions specifiedaril)

" " " " " . 8 (e

Table6.4 gives the WWFD result for this experimetgsign. Since there is no scale
parameter to estimate, a usual observable GLMM approach attributes any remaining variability
in the linear predictor after fitting the VAC and DFM main effects, VIWEDFM interaction,
and blockby-VAC and blockby-DFM interactions to bloclby-VAC-by-DFM interaction. By
first considering the potential GLMM linear predictor, the assumptions required to substantiate
this assertion become clear. In particular, by considering the variance compoii@rit3)in
» . onlywhen, » » » . So, if one is willing to assume no
variability due to pen, no variability in VAC effect across pens, no variability in DFM effect
across pens, and no variability in VAQFM interaction across pens, thee thlockby-treatment
interaction effect completely explains any remaining variability after the main effects (fixed), the
interaction effect (fixed) and the random block and blbgkmain effect interactions have been

included in the model.

6.2.4 GLMM In dividual Effects

Previous work with binary potential outcomes (Gadbury et al., 2004; Zhang et al. 2013)
has utilized the traditional definition of an individual effect. Extending the traditional definition
of individual effect to the binomial distributioresults in¢¢ p possible values d i
1 , wheret is the number of Bernoulli trials (i.e. o tfor theE. coli dataset). For large
values of, using the approach described by Gadbury et al. (2004) may be rather cumbersome,
and an alternativdefinition of individual effect may facilitate a more intuitive investigation of
treatment heterogeneity.

Rather than defining an individual effect on the data scalelfeedifference between
two potential responses belonging to the same EU), defineavidual effect on the model or
link scale. For a binomial response assuming a logistic regression GLMM model, the resulting

individual effect is an individual legdds ratio of"Ycompared witt. In theE. coli data
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example, the 2x2 factorial @ament structure facilitates the following two individual effects for
the’Q pen in theQ block:

a & g a€ dQo o€ adQo
and (6.14)
a g g aé "do  a € "o

where & & i represents the individual effect of VACrtitioned on a given level of DFM

anda & ig represents the individual effect of DFM conditioned on a given level of VAC.

Using this modified definition of individual effect, the variance of the individuabldds ratio,

., quantifies thelegree of treatment heterogeneity in an experiment in that a positive value of

»  indicates the presence of treatment heterogeneity. If no treatment heterogeneity exists, then
the variability of the individual logdds is zero.

Based on the modelsismptions given i(6.11),, ¢ . s and,

. s . Denotethesevariancgs ¢ and, ¢ ,respectively. Writing the individual
effects given irn(6.14)in terms of the potential GLMM linear predictcomponents and
considering the variance of the individualodds ration based on the model assumptions given
in (6.11)yields

and (6.15)

where, and, are estimable from observable data since an observable data set contains
multiple observations pd&tU on a particular level of VAC (but differing levels of DFM) and
multiple observations per EU on a particular level of DFM (but differing levels of VAC). Thus

estimable lower bounds can be established by noting

G s
and (6.16)

G e s
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The factorial nature of this design permits two observable naive estimates of the
individual effeds given in(6.14) The two naive estimates are, again, defined on the model

scale:

a & 'Y a € Qo o€ Ao

and (6.17)
a &0 'Y a€ Ao o€ Qo

where the differences in legdds are across pens within the same block.

To compare the variances of the naive effects (8.ib7)to the variances of the
individual efiects defined ir§6.14) notice thabased on the distributional assumptions given in
(6.11)and the relationship between the potential linear predictor and the observable linear
predictor in(6.13) , ¢ . ¢ and, ¢ . s »Where, represents the
variance of a naive effect. Denote these variapces; and, s ,respectively. The

variances of the naive effects written in terms of model variance components are:

and (6.18)

and (6.19)
CM ” 5 ” 5 8
where, C ., » and, C ., » . Equation(6.19)

demonstrates that ndnvial, estimable upper and lower bounds for the variances of an
individual logodds ratio can be established for this experimental design. The difference

between the upper and lower bounds,is
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6.2.5 Results of Data Anlysis

UsingPROC GLIMMIX, we analyzed thE.ooli datafrom the first of four periods,
accordingo the model given if6.12)wherel  represents a fixedAC effect andt represents
a fixedDFM effect. Table6.5(i) gives the results for tests of fixed effects in the model. Table
6.5 (ii) presents the oddatio estimates ahterestfor fixed effects withstandard errorand
estimates of theandom effectsvith standard errors.

Results from the analysis demonsgrtitat the probability of detecting a positive fecal
sample in pens that were vaccinated were significantly lower (P=0.0038) than pens that were not
vaccinated. There was no significant effect on the -odtis for the effect of DFM, neither was
there a gnificant interaction effect. These results are consistent with those published by Cull et
al (2012) even though we are only considering one period instead of four in this analysis. As
such, estimates andvRlues given here will differ from those repeat by Cull et al (2012).

The estimates of the variance components in T@&bli) give rise to estimable bounds
of the varance ofindividual effects established (6.19) Table6.6 gives the estimated upper
and lower bounds of the variance of thdiwdual causal effects. In addition to the estimable
bounds we used v Tbootstrap (Efron and Tibshirani, 1994) samples to compute the
bootstrap standard error of both the upper and lower bounds. These bootstrap standaire errors
alsogiven in Table5.6. The difference between the estimable upper and lower bounds for both
variances of interest k6036 This is twice the estimate gf  given in Tables.5(ii). For both
variances of interest, the estimsatd the lower bounslarewithin onebootstrap standard error of
zero.Additionally, the estimate of the upper bound for the individual effect of VAC given DFM
is within two bootstrap errors of zerdl'hese estimates, together with a +sagnificant VAG
by-DFM interaction, suggest that it wigl be reasonable to conclude no treatment heterogeneity
for VAC. For DFM at a given level of VAC, a conclusion of treatment heterogeneity is possible
since the estimate of the upper bound is more than two bootstrap standard errors above zero,
however, baed on equatio(6.18) one must be willing to assume Ttin order for the
variability of the individual logodds to equal the variability of the observed-tafgls. In other
words, if one is willing to assume no variability in individualdodgds due to the pens a block
and no variability in individual logpdds due to different pens receiving the same level of VAC,
then one could reasonably treatment heterogeneity of DFM. Bwagt the potential GLMM

helps clarify what assumptions are neettedquate estimated bounds with estimated treatment
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heterogeneity, these assumptions cannot be directly tested using observable data from this

design.

6.2.6 Discussion and Conclusion

In cases where treatment heterogeneity is suspepiadtifying the égree otreatment
heterogeneity in addition to estimating a mean effbould be undertaken befaelaim of the
superiority of one treatment over another is established (Longford, IT988jment
heterogeneity has frequently been assessed usingdoptdation, randomizatichased
approaches. These techniques have been utilized for both cargtifGadbury et al, 2001,
Poulsm et al, 2012) and necontinuous (Gadbury et al, 2004; Albert et al, 2004; Zhang et al,
2013) responses. However, as the plaxity of an experimental design increases, assessing
treatment heterogeneity becomes increasingly intractable (Ndum, 2012).

Since |Iinear mixed model s ( LMMorsmpdelaghd GL MM
data from complex designs, their role in moaiglireatment heterogeneity is investigatéd.
order to accommodate a potential outcomes analysis for a GLMM setting, we slightly altered the
definition of an individual effect so that the individual effect is defined on the link or model
scale. Once tkihas been donthe variance of an individual effect is the parameter of interest
when assessing treatment heterogeneity, with ezeomvalue indicating the presence of
treatment heterogeneityf.the estimate of the lower bound is substantially grehter zeropne
might concludehat treatment heterogeneigypresent Likewise, if an estimable upper bound is
very close to zero then one might conclude that the treatment is having a similar effect on
individuals across a population.

We demonstratedhatboth an upper and lower bound of the variance of an individual
effectcan be achieved f@x2 factorial treatment structuapplied to a RCBDGiven the
estimated bounds of the individual effects and the bootstrap standardtbemss not enough
evidence from the current data to concluagatment heterogeneity the effect oVAC on fecal
shedding. It should also be stated that this is not the same as concluding treatment homogeneity.
But given that the main effect of VAC was significant (P838), it seems reasonable to
conclude that the effect of VAC is favorable and that the effect does not vary significantly across

units in a population.
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The conclusion regarding the heterogeneity of a treatment effect for DFM is not as clear.
While the eimated lower bound is reasonably close to zero, one can argue that treatment
heterogeneity could exist since the estimable upper bound is more than tvatrappéd
standard errors above zero. In this case, it seems prudent to consider what assareptions
required in order to equate ¢  with its estimable upper bound. Based on the relationship of
.~ s and, ¢ givenin(6.18), . s When, " T This means
that in order for, ¢  to achieve its estimable upper bound, we need to be willing to assume
that there is no variability due to p&nthin-block and no variability due to the application of
VAC to a particular penlt should be noted that there is no way to testvlidity of the
assumption that ” mifrom the current data.

Giventhat o 7in this experiment and with so many possible values of the usual
computation oK) i i (i.e-61 possible values), a normal approximation seems like a
reasonabl@pproach. In other words, one might consider the following distribution on the
potential responses:

~

i SkU ' Ay,

where Ais a vector of random effect¢he estimate of  would typically serve as the estimate

o~ bk

of € and the distributional assumptions of the random effects remain unchanged from those
given in(6.11) However, if estimates 6f can be interpreted as the corresponding estimate
of ¢“ , then the variance of these estimates should aselated the estimates ‘of

Using the normal approximation, the variance of the estimates ofvould be related tg ,

the meaning of which is ambiguous. Furthermore, using the normal approximation convolutes
the interpretation of #atment heterogeneityrecall, ,, W W IQ quantifies the degree of
treatment heterogeneity using the usual definition of individual effect. Using a normal
approximation introduces, into the computation of and its upper and lower bounds)cs

Qis defined as the difference between to potential responses for the sarRe&tittingg,,

into the computation gf introduces an ambiguous source of variability that is related neither to
the variability of the true conditional distributiah the potential responses nor the random

effects specified in the linear predictor. This is not trivial, especially if the marginal distribution
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of the data is not approximately normal. [@ta denote the joint distribution of random effects

in the linear predictor. The marginal distribution of the data can be determined as follows:

Q> E "QrsaQaQa

wherewis a vector containing potential responsé#gen™Qi sa is a binomial distribution, the

integral of the resulting joint distributioiQ »sA "Q A , cannot be directly evaluated to obtain a

marginal distribution. Simulation studies have shown this marginal distribution can be heavily
skewed either to the right depending on the value of the binomial probability and the amount of
variability introduced into the process by the random effects specifiad(Btroup, 203)

Imposing a normal distribution on the conditional distribution of the data given the random
effects, and including the resul t, mayledap pr o x i
misleading conclusions about the existence of treatment heterogeneity.

As in the case of the heterogeneity of the DFM effecdomparison of the observable
GLMM and potentialGLMM for a given experimental design delineates the inforomasibout
causal effects that is lost in moving from potential to observable data, and what assumptions
about norestimable quantities (or design modifications) are needed to evaluate treatment
heterogeneity in observable daturthermore, forxperimentadesigns in which an estimable
lower and/or uppebound can be establishele investigation of treatment heterogenesty
essentially Awithout costo in the smceaafe t hat
treatment heterogeneity.

Studies ae rarely designed to separate information on an individual effect from other
sources of variabilitySenn, 2001)For many simple designs, only estimable upper bounds of the
variance of an individual effect can be establishiétteatment heterogeneitysisuspected,
careful thought and planning should be undertaken to design an experiment in such a avay that
estimable lower boundanbe established since astimable lower bounsignificantly greater
than zero confirmghe presence of treatment hetenogjéy.

While the statistical methods presented here may be used to quantify the degree of
treatment heterogeneity in these data, they cannot explain the source of the treatment
heterogeneity.If we concluded that that treatment heterogeneity existether researctvould
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berequired to investigate the possible causes of treatment heterog€heityata example was
used for illustration and not to confirm a superiority of one treatment over another. The sample

size was small and other issues suchiesgtment compliance were not considered.
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T Level of DFM
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Level
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Figure 6.1 Plot Plans: 2x2 factorial treatment structure in a RCBD.

Pen Pen Pen Pen
1 2 3 4

1 TT TT T TT
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(i)

T Level of DFM

Block

Pen Pen Pen Pen
1 2 3 4

T

=

(ii)

Plot plans for (i) thepotential outcomes framework and (lile observable model framework.

Topographical Trt Combined
Source d.f. Source d.f. Source d.f.
Rows of Replicate Sets 2-1=1 VAC 2-1=1 VAC 2-1=1
Columns of Replicate Sets 2-1=1 DFEM 2-1=1 DFM 2-1=1
Row*Column 1x1=1 VAC*DFM 1x1=1 VAC*DFM 1x1=1
Block 101=9 Block 101=9
Block*Row 9x1=9 Block*VAC 9x1=9
Block*Column 9x1=9 Block*DFM 9x1=9
Block*Row*Column 9x1x1=9 Parallels 4(401)=156 Block*VAC*DFM 9x1x1=9
Pen(Block) 10(41)=30 Pen(Block) 10(41)=30
Row*Pen(Block) 1x30=30 VAC* Pen(Block) 1x30=30
Column*Pen(Block) 1x30=60 DFM* Pen(Block) 1x30=30
Row*Column*Pen(Block) 1x1x30=30 VAC*DFM* Pen(Block) 1x1x30=30
Total 1601=159 Total 1601=159 Total 1601=159

0] (if)
Table 6.3 Potential WWFD ANOVA Structure: 2x2 Factorial in RCBD

(i)

(i) Topographical, (ii) Treatment, and (iii) Combined ANOVA structures for a Pot&xafactorial treatment
structure in a RCBD
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Topographical Trt Combined
Source d.f. Source d.f. Source d.f.
Row 2-1=1 VAC 2-1=1 VAC 2-1=1
Column 2-1=1 DFM 2-1=1 DFM 2-1=1
Row*Column 1x1=1 VAC*DFM 1x1=1 VAC*DFM 1x1=1
Block 101=9 Block 101=9
Block*Row 9x1=9 Block*VAC 9x1=9
Block*Column 9x1=9 Block*DFM 9x1=9
Block*Row*Colurnn 9x1x1=9 Parallels 4(401)=156 Block*VAC*DEM
4(101)=36
Total 16061=159 Total 16061=159 Total 1601=159
401=39 401=39 401=39
(i) (iii)

0}
Table 6.4 Observable WWFD ANOVA Structure: Z&ctorial in RCBD
(i) Topographical, (ii) Treatment, and (iii) Combined ANOVA structures for an Obser2aPl&actorial treatment
structure in a RCBD
" Assumesio penwithin-block variability and a uniforntreatment effeasf VAC, DFM and VAFM
combhation on every pen within a block.

(i)

Type Il Tests of Fixed Effects
Fixed Effect F-Value P-value
6! # 14.94 0.0038
$&- 0.04 0.8385
6! #$ & - 3.02 0.1163
0]
Estimates:
Fixed Effect Odds Ratio Lower Upper
VAC (T vs. C) 0.26 0.12 0.57
DFM (T vs. C) 0.92 0.38 2.22
Variance Component Estimate Std. Error
» 0.6942 0.5842
0.0468 0.3886
" 0.1803 0.4552
R 0.8018 0.6068

Table 6.5 SAS PROC GLIMMIResults
() Type Il Tests for Fixed Effects. (ii) Estimateshs odds ratios of observing a sample positive for E. @Gatln
upper and lower confidence limigsd estimates of the variance of random effects with estimated standard errors.
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Individual Effect Estimate Bootstrap SE
” §
Lower Bound 0.0936 0.4511
Upper Bound 1.6972 0.8523
” §
Lower Bound 0.3606 0.5791
Upper Bound 1.9642 0.8602

Table 6.6 EstimableBounds for the Variance of Individual Effects.
Estimates of the upper and lower bounds given in equéid®)with bootstrap standard errors.
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Chapter7-Fut ure Wor k

The following sections present ideas for future work based oredlearctpresented in
Chapters 6.

7.1 The Role of the Randomization Mechanism
To this point, all results have been predicated on a uniform randomization mechanism.

That is, assuming a balanc€&D experimentomparing two treatmentthe marginal

probability ofassignment is
v v p
Ow p DO T c XP

forany of theQ plthe®) EU6 s , wwihtkeerindicator variable defined in Chapter 1 to
represent the random assi glnamadomized éxpelirbkats t o | e
(7.1) holds regardless of tea | ues of the EUOsSs pot etmevaluesl out co
of either observed or unobserved covariatasithermore, in a randomized experiment, the
treatment and control groups are usually caraple in every respect except for the level of
treatment applied to the group. The reason for this is that the law of large numbers ensures that
for a randomi zed experiment that is Al arge en
covariates tend tard the mean value of the population from which the treatment groups were
drawn.

It has been well established (Fisher, 1935; Rosenbaum and Ruben, 1983; Rosenbaum,
2010) that studies in which uniform randomization is either impractical or infeasiblé do no
possess these same characteristics that tend to balance the treatment group and control group in
randomized experimentdt is very common among studies in which randomization is not
uniform to find significant differencdsetween the treatmegtoup conpared with the control
groupin attributes that affect the outcome of the studirerefore, there is no reason to suspect
that the probability of being assigned to either treatment or control is independent of covariate

values or even of potential outates In other words, certain values of a covariate may make an
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EU more likely to be assigned to either treatment or control. If groups receiving treatment and
control differ in ways besides the level of treatment assigned and these differences ntager for
outcomes of the study, then the study is said to be biA%&en all sources diiasin a studyare
overt,(i.e- the pertinent covariatdmve been collected and recordetign the bias can be
controlled by making adjustmergsich as matching orratification, undethe assumption of a
strongly ignorable treatment assignmehthe bias is hidderhoweverthen no adjustment can
be made. A sensitivity analysis which seeks to describe the magnitude of the hidden bias that
must be present in theusly in orderto explainanyassociationseen irthat study should be
included in the results of any study for which randomization is not unifdimere is a wide
body of literature that discusses matching techniques and the intricacies of sensitiysgsaima
studies containing bias. Unless these topics become a part of the current research, that literature
wi || not be considered at this point. The in
on desiging observational studies fomateworthy summary of the topics discussed here.

Up to this point, the discussion regarding randomization and bias has still been predicated
on the assumption of an additive treatment model defined in equation E2\8)torays have
been attempted that consider a model that contains both treatment heterogeneitywamfbmon
randomization. One such attempt, however, was provided by Rosenbaum (1999) in which a
dilated treatment effect modekbs defined and a sensitly analysis was performed under the
assumptions of this dilated treatment effect model. A dilated treatment effect model is a model
that permits a type of treatment heterogeneity in which it is assumed that the potential responses
under treatmerit,, ae systematically larger and more dispersed than potential responses under
control,i . The difference betweén andi is assumed to be& nonrnegative, nordecreasing
function ofi . This assumption has serious implications on the correlagomden andi
namely that the correlation is noregative. It seems reasonable that the current research could
be extended to investigate the nature of treatment heterogeneity in studies for which

randomization is not uniforwithout the imposedtricture of a dilated treatment effect

7.2 Estimating Treatment Heterogeneity in Observable Data
Consider, agairthe potential model for a2ample CRD given in Table 3.For

simplicity purposes, consider a common variance dré so that, . ,» 8Define

o T i1tn
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Q "YOriQ plt8 o X&

so that the potential model in Table 3.1 becomes

i 0 in
N "YOriQ plts o
Ox Q@QH  Nix QTN NO &©& QOI 0 QAN QE QQE B

This is recognizable asrandom model containing two random effeatiserethe expectation of

0 is possibly norzero. Assumptions aboyt and, required to equate the variance of the

individual causal effect and the naive effect have already been discussed. However, it seems
reasonable given the model in3) that there may be other constraints placed on the model that
might permit b¢h,, and, to become estimable from observable data. For example, if the
constraintundeiOdf 1 , were to be imposed, could and, then be estimated? Or what

if T and, were considered hypgrarameters from some spieeil prior distribution oro ?

What kind of estimate gf would the variance of the posterior distribution then be if a

Bayesian approach were adaptedi?swers to gestions like these sedangiblenow that a

potential data model has beendefd and i ts relationship to the

has been clearly established.

7.3 The Role of a Covariate
Gadbury and lyer (2000) demonstrated the use of a single covariate obtained on a

population of units in bounding measures of treatrhetgrogeneity in a tweample CRD with

maxi mum | i kelihood estimates (MLEG6s) obtained
assumptions of the conditional model required for a lack of treatment heterogeneity to exist.
Gadbury et. al (2001) perfoed sensitivity analyses over the range of possible values of

conditional and unconditional correlation. Denoting the single covabjdteey considered the

population of potential responses to be drawn from the following trivariate Gaussian population
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By extending the models in Chapter 3 to develop analysis of covariance (ANCOVA)
models and sing the results of the proposed research in section 4.2 on correlation, | would like
to reframe the work of Gadbury and lyer (2000) and Gadbury et. al (2001) in light of the
potential outcomeknear mixedmodels developed in Chapter 3. More specificdliyould like
to consider how information from a single covariate might alter the estimable bounds of
, defined in terms of model variance components, if at all. Furthermore, | would like to

investigate the assumptions in a potential ANCOVA modelareatequired in order for a lack

of treatment heterogeneity to exist.
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AppendRes Al t s for

A.1 2-Sample CRD

GammenaWabDiaalac e

Model Model Parameters Assumptions
Potential Model it i ifth i X "QAQ,
~ QN i Q@on,
Q pltiB ) O i andi t are independent.
. ‘ © g ) X OGS g
Observable Model Y . Tv Qh Qx Q'@an,
Q Yol]
'Q plths ke
OYinQu QUi o
Table A.1.1 Model effects and assumptions in-aémple CRD.
|
Fixed Fixed Std.
Effect Simulated Average  Std. Error Effect Simulated Average Error
(Potential) Value 2N Y pnimm Y pTmT (Obs.) Value N Y pnint Y pTmm
t 1 3 20 3.03 0.06 t 0t 3 10 3.17 0.16
60 301 0.03 30 3.03 0.09
200 3.00 0.02 100 3.02 0.06

(i)

Potential Simulated Average Std. Error
Variance Value 2N Y pnm Y pniT
Subject 4.71 20 4.76 0.25
60 4.83 0.13
200 4.75 0.08
Subject*Trt 157 20 1.52 0.07
60 1.53 0.04
200 1.56 0.02
VNAYe] 3.14 20 3.04 0.14
60 3.06 0.07
200 3.11 0.05
(i)

Observable Simulated Average Std. Error
Variance Value N Y pnm Y pnim
Residual 6.28 10 6.33 0.32

30 6.31 0.15
100 6.23 0.09

(iii)
Table A.1.22-Sample CRD Simulation Results.

Values represent the average and standard error of treatment effect estimates¥acrpsg simulations in both
the potential and observable data models for N=10, 30, and 100 for (i) Fixed Effects. (ii) Potential Random Effects.

(iii) Observable Randomftects.
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Observed Data: Residual Variance
tau1=5, tau0=2, mu=3.5
Variance: Subject=4.71, Subject*trt=1.57

Overall Statistics: Ctrl Variance=12.56
Min 1.897146 6.726113 8.249945
Mean 1266312 12.61258 1245675
Q2 11.52462 1265256 1257485
Max 32.001 21.35812 17.36989
Std Dev 6.314352 3.057967 1.715525
40
30

n*Var(D-har)
=3
o

10

n*var(D)=12.56

var(d)=3.14

10 30 100
n
H:\My Documents\PhD Research and Admin\Simulation\Potential Outcomes Simulation. sas

Figure A.1.1¢ 2D @10, U ®WIQ 8Box plots of th&Y p T estimates of ) © 10y at N=10, 30, and 100
Dotted lines represent values used in the simulation design

Figure A.1.2 2vs.0 O Q,. Onehalf the variance of thaverage naive effect is an upper bound for the
variance of the average true causal effect.
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