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Abstract

Activity recognitioncan bean important part diumanhealth awareness. Mabgnefits
can be generated from thecognition resultsncludingknowledge ofactivity intensityas it
relates to wellness over timdéariousactivity-recognitiontechniquesiavebeen presented the
literature thoughmostaddressimple activitydata collection and ofine analysisMore
sophisticated redime identification isless ofteraddressedTherefore, it iromisingto
consider the combination otirrent oftline, activity-detection methaglwith wearable,
embeddedoolsin order to create a reime wireless human activity recognition system with
improved acuracy.

Different from previous work on activity recognition, the goal of this effort is to focus on
specific activities that an astronaut may encounter during a migdaetary navigation field
test (PNFT) tasks are designed to meet this need. Theaabpused by the KSU team is topre
record data on the ground in normal earth gravity and seek $giates that can be used to
identify, and even predict, fatigue associated with these activities. The eventual goal is to then
assess/predict the condit of an astronaut in a reduegrhvity environment using these
predetermined rules.

Several classic machine learning algorithms, including tNed&rest Neighbor, Naile
Bayes,C4.5 Decision Treegnd Support Vector Machine approaches, were appliecse tthata
to identify recognition algorithms suitable for reghe application. Graphical user interfaces
(GUIs) were designed for both MATLAB and LabVIEW environments to facilitate recording
and data analysis. Training data for the machine learning tlgsriwere recorded while
subjects performed each activity, and then these identification approaches were applied to new
data sets with an identification accuracy of aro86%b. Early results indicate that a single three
axis accelerometer is sufficientitentify the occurrence of a given PNFT activity.

A custom, embedded acceleration monitoring system employing ZigBee transrassion
under developmerfor future realtime activityrecognition studies. A different GUI has been
implemented for this systerwhich usesan online algorithm thawvill seek tadentify activity at
a refresh rate of 1 Hz
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Chapter 1 - Introduction

Activity Monitoring

Activity monitoringhas been an area of interest for mgesrs[1-3]. It is widely applied
in differentapplicationssuch as medical car@here patients are monitored by medical saaff
theyperform a series okhabilitationactivities. Patientsiith special needs, such te eldety
orpeopl e with auti sm ogoodRandidatesfeuohmorgtorisgy ndr o me ,
approachebecausehey can be physicallynstable[4]. In addition,activity monitoring can give
medicalstaff a better idea of what the patie are experiencing amelp themformulatebetter
treatmers. Treatment effectivenessmdfunctionalimprovement can also be measured from
follow-on patien@ctivities.

Many people care about their heatidtheir daily activities,and it would benelpful for
them to keep track of what thelp everyday and how long they spend on eachivity [5].

Tools thatcalculate caloriexpenditurédbased on activity intensigre useful ér this purpose and
can be used to addrdssalth problemsuch as obesity and diabetkat result froma lack of
activity. Lifestyle feedback presents a means to prod people to get off the couch and start to
move.

Astronaus, in the context of this thesiarepotentiallyother major userfor activity
monitoringtechnologiesNumerous intravehicular activities (IVA) and extravehicular
activities(EVAs) can be physically taxing, ofteaquiing astronawto perform while wearing
cumbersome space sUi6 7]. Information aboutteir healthstatus, their physical strengtémd
how they feels limited and often comes from self reportitfitifects of reduced gravity
environmeng on the humanbodyarestill largely unknowrand must be quantified

In many application scenarios that employ activity monitoriregliional monitoring
method requirestaffto stay with the person to be monitorédstaff member observesnd
recordsbehavios and activities as they occétthough this method hascertainlevel of
accuracy, it is not widely applicabde scalabledue to several drawbackgirst, it involves
substantiahuman labor. Constant attentimrequiredfrom thosewho monitorthese subjects,
especially when the activity is irregular acttenges quicklyMost of the timethe staff to

subjectratio isone to onaunless the group of people to be monitored is gathered in a certain area



and performs siilarly. Cost is a leading factor that prevetiis approach from being
widespread.Secondthe accuracynd consistencgf the monitoring is not guaranteed. Absence
of staff is a common cause fimicorrectrecording of activity timing and durationStdf may

also be unprepared whermentsneed to beecorded Third, the dataoftencome in large
guantities making thendifficult to recordand to transfefrom paper to papenm.ranscribing
manual recordingto electronic fornrequirestediousadditional work and caradd errors.

One nore recent approach wadeo cameraand their support computeis do the
activity detection andhonitoring[8, 9]. This method is helpful because stunobtrusive and
requires minimatontact between the subject and the s&fine researchfforts have attempted
to use machine leaing to analyzesubjectmotion and automaticallgeterminehe behavior of
the peoplen theseridecs. However, thesenethod do notyet provide sufficient accuracynd
monitoring is restricted to small asgd.Q].

The limitationsnotedabove call for new methsdo record and assess activities. Context
awareness computing is a rdgideveloping field and he development ahicro-
electromechanical systerfdEMS) accelerometarand wireless embedded systerashelp
expand the pagarity and feasibilityof wireless human condition monitoring systgil].
Consistent with that themagceleration monitoring and analysis systean bedesigned to
address the problenexperienced witlraditional activitymonitoringmethodsA layoutfor such

a systenis depicted in Fig. 1.1.

~
-
. ’ \

Sensor Coordinator

Board

Figure 1.1 Systemlayout for a wireless activity monitoring system.

In this system layout, sensor board attached tthe bodyand gathers healtfata The
sensor board then preprocessedititato getuseful informationwhich is thertransmitted

wirelesslyto a coordinatoconnecedto a computerthatstores these datautomaticallySuch a



systenreplaceghe cost of human labor and can be used 24shad@yin various situations,
includingmedical monitoring for senior citizenBor personal trainindgor examplethis
approactctan be morasensible when comparedsomecurrentcommercial produst since it
canprovide more detailed informatido track thetraining process angould notrequire the
userto enterthe activity he or she is doing

In terms of the work presented in this thesie apply atvity recognition totasks similar
to those thaastronautsvould perform whemnvorking in space. Bynonitoringana st r onaut 0 s
behavior, researchecsuld havea better ideaf the work intensityexperienced byhe astronayt
thetype of work the astronaut performing, and possibly their readiness to complet@ming
tasks in order to avoid or respdrto problematic situation3his might involveadjusing the
work load accordingtoth®@ st r o n a ut 0 bistopysorthatdhe askassigeedo each
astronaut match thephysicalcondition anchave the best chancelie successfully executed.

FocusAreasfor an Activity Recognition System
A good activity recognition systeshouldaddresshefollowing issueswhich relate to

the physicaboundaies ofthe systenandtherelatedproblemareas

Activity Types

Numerous human activities take place gy, like sleeping, sitting, walking and
eating.These activitiegare divided intdwo maincategories: static actiwgsand dynamic
activities[12]. During a $atic activity, the whole body tends to stay in one position without
moving vigorously. Some examples are standing, sitting, lying daeerup (supine) and lying
downfacedown A dynamic activity requirebodymovement, whether frompart of the body
(e.g.,armor leg) or the entire body. Some examples are typingkeyboard, drinking water,
walking, running and climbing stairs.

Many activity recognitiorefforts havanvestigatedifferent types of activityincluding
daily workactivities[13-15] and activities associatedth medicalconditions[4]. Most of these
recognition processes addresgecificdaily tasks.For the work presented here, tlethaties of
interestare more oriented to specrabvemenpatternghatmimic the potential behaviors in and

aroundaspace station. Details didseactivities are addressed @hapter 2.



Monitoring Methods

Activity identification can involvehreekindsof monitoring approacheszideo
monitoring, bodyattached sensqrand objeciattached sensors, all of which have advantages
and disadvantage#\ video monitor providea goodassessment and record in the presence of
people wherehumars do the recognition by watching the video and manually catéggnzho
is in the video and what he/she is doing. Ambient light, camera placement, lens angle, resolution,
andwhata persorwears affectthe ability tocorrectly classy their activities Sophisticated
algorithns havebeen developed to detect if a person exmsthe video Relatedresearch focuses
on detecting falito the groundThe appearance of certaiaiavios variesbetweerpeople,
often preventingiccurate detection. In additionjstunrealistic to plac&avideo camera on the
body or to set camesan many placeso capture a large area, awidesbased approach to
activity monitoringis best suitedor restricted indooactivities

Body-attached sensgattract wide research attentifit][17], as they offeportability
and potentiakase of useSensos can belacedon differentbodyparts wherepopular places
includethewaist, thigh and hipl8]. Movementpatterrs measuredt these locations asemilar
betweerdifferent peopleand snall sensossizes ensure thability to cary thesesensos for long
periods oftime.

Objectattached senssparenovelin terms ofsensor placemeifl9], wheresensorsare
intended to be attached to many nearbject so thatusers are not troubled by the needviear
the sens@ on their bodied-or example, the authors [df9] presentheidea of putting sensors
on telephongto monitor when people are usitigesetelephones. This idea correlateshwtihe
idea ofanfinternet of thing® which would requirdiuge wireless network coverage. However,
some basic activities such as walking and running areasiyassociated witiphysical, static
items thattan serve asensomhosts Besides, when motias detected by such aject, itwould
bealmost impossible to identify which persorperforming the activityinless the person also

has some kind atlentificationtag attached to him or her.

SensorTypes
Many sensors ar@ppropriate fohuman monitang, includingaccelerometey
gyrometes, electrocardiographs, electomyograpéts, [20, 21]. Previous research shows that

biological signals such as heart rate are not good classificationsdign@alo reason$18]. First,



the parameterange diferssignificantly betweempeople. Take heart rate as an example. Some
individualsmay have a very fast heaateeven ifthey arenot doing anything but sitting on a
chair, whereas somwell-trained athletes can maintain a slow heart rate when doing mild
activities like joggingSecondthesesignabk canhave a large temporal delay, meaniagignal
does not change instantly as different activities take place. For exapplson who starts
running has a heart ratecreasdor a while butafter he stop, the heart rate could stay high
even though he has finished running and sits down. Even thaadttn parameters ao¢ great
importancevhenmonitoring e.g.,heat and muscle condition, theye not particularly usefor
for activity recognition22].

SensorPlacement

Sensomplacenentmust effectively support the identification different body movemeat
[13, 14]. Previousstudies havénvestigated many places ftiresesensors, such @lsechest,
wrist, waist, hip, thigh, and ankle. Batidividual sensorand multiplesensoiconfigurations
have beemnalyzed. In generahn ncrease in the number ofns®rs helpto raisethe accuracy
of thesetechniquesFor the astronaut context presented hire limited space ithe space suit
prevens us fromplacing sensors at wjlso the minimum number of sensors that peovide

data to accuratelyecognizeeach activity is desiredHerg we start witha single sensor.

Feature Selection

Well-choserfeatures provide distinct characteristics of a certain ac{i2jty7]. Ideally,
with only a single featureanactivity can badentifiedfrom all others exclusivelj{14]. However,
this optimalfeature does not exist. Instead, in many cases, the definition of good mesitg
that when a certain feature is apglto different activities, itan helpto putthesedifferent
activities into clusterswhere vithin each cluster, the instances of other activities amsirgisnal
as possible.

Time-domain, frequencgomain and waveldeatureshave been studigareviousy for
this purposé4, 23, 24]. Different feature setgion methods are utilizet determire which
features contribute the most and which are redundgeatures are activity dependentich
suggest thatfor different activitiesdifferent combinatiosof featuresareneededIn this work

we thereforecorsider a wide range of features and rank them according to their usefulness.



Algorithms

In an activityclassification context, afgorithm isatool to distinguish activitierom
one anothef25]. Two types of algorithmsre generally used to determiagtivity: threshold
basedclassification and machidearningbased classification.

Thresholdbased classification utilizes a hierarchical structar®rm a decision treét
each node, the threshold is basedwoaluethat ismanually picked. This kind of classification
has beemseful withreal time activity recognition scenarj@nd thanethod is straightforward
and easy to understarits implementation does not requsggnificantprogranming experience
andit can be readily applied to various fields. Usugliye decision tree is designed by the
researcher to reflect the fundamental featurébedifferent activities. However, it suffersoim
accuracyandgiven the multidimensional decisioapacehat arises with this methpahtuition
and observatianfrom experience are difficult to apply given the typtbaéedimensioml space
within whichhumars normally function. Bsuls from suchadecision treean seermandom.

The other type is machidearningbased classification. The concept is to use
programming algorithms to find the optimal approach to distinguish different activities. This
method has been well studied in recent ygHsE Many parametric and ngmarametric methods
are proposed to tackle different situatipp6-28].

We considered both types of algorithm®mderto understandavhich one is more
effectivefor PNFTactivity identification.



Chapter 2 - Planetary Activity Definition and Data Collection

Motivation
A team consisting of three KSU departments (Kinesiology; Electrical & Computer
Engineering; and Mechanical & Nuclear Engineering) is engaged in aytsaeeffort funded by
NASA enStiarddcar dd zgtit 6PEger ci se TebBurig t o Predi c
Extravehicular Atvities in a Lunar Environmenif One primary purpose of this effort is to
better understand fatigue as it relates to the types of extravelactilaties (EVASs)that an
astronaut would be expected to complete as a team membepacessgation. Further, the
investigators seek to identify physiologic mechanismsdbald act as precursors for task failure
or means to predithe inability of a astronaut to complete a tasRecent efforts in support of
these goals involve the dgs of aset of exercise®r field tests, that mimic the types of EVAs
that astronauts would be expected to perff28a31]. Electromyographic (EMG) data analyses
traditionally play an important role in the determination of fatigue in such applications. Such
EMG data, coupled with heart rate, acceleration, and metabolic data (oxygen consumption
extracted via inspiration/expiration masks) have formed the centerpiecet he t eamdés da
analysis strategy when assessing movement and fatigae.in the first year of this efforteam
members began a more careful assessmexttogierometer data as an activity parameter, not
only with the thought of using acceleromedata to indicate activity type and duration, but also
as a potential means to supplement (or serve as a surrogate to) EMG data in the context of
fatigue analysisThis chapter summarizes these field test activities and the efforts to collect

accelerometedata from subjects thahgagedn these field tests.

Activity Definition
Six Planetary Navigation Field Test (PNFT) activities were desigmsonulateEVAs

that might beperformed by astronaut®usedn a space statiofi32, 33],.These six tasks,

'"Standar-Bliizgehdt 66 PErxeer ci s e T e Burisg Extravehtula Aivites in aRenarf or man c e
Envi r o ResmanchanddTechnology Development to Support Crew Health and Performance in Space

Exploration Missims, NASA Human Research Prograixploration Systems Mission Direrate, Johnson Space

Center Houston, TX, 7/1/201i06/30/2013.



described inrable2.1, serveas the standaraktivities, orclassesthat needd be recognizetly

the classification algorithms investigated durihig study. These tasks differ from regular daily
activitiesand involvedifferent movement patterns and intensitiie activities aredepicted in

Figure2.1 throughFigure2.6. Each activity is designed to mimic a task an astronaut would
perform during an EVA and also quantify a necessary area of functional ability. For example, the
StepEntry Maneuvesimulates the actions an astronaould take when they enter or exit the

space station through a small opening. Bending of the body and gimp&quired when

moving. TheAgi | ity Cones test an astronautos abilit

Table 2.1 Planetary Navigation Field Test Activities

_ Subjects ascend a-f@ot ladder, walk across the top of the platfor
1 | Ladder Climb
and descend on the other side

N Subjects move forward and backward through six cones, always
2 | Agility Cones _
facingforward

Stair Climb Subjects climb a set of stairs and then descend the stairs backw

Horizontal Climb | Subjects climb horizontally along a wall using hand and foot grip

Subjects lift two 10 Ib and two 20 Ib equipment boxes fraarst to
5 | Equipment Lift eyelevel and from groundo waistlevel, respectively, then lower

them in reverse order to the starting position

StepEntry Subjects move laterally and periodically step over ropes and duc

Maneuver under poles to simulate stepping over ander a hatch entry

Some of thesactivitiesshare similarities. The ladder climb and stair climb both involve
climbing movements and rely on leg muscles, but the stair climb requires a slight forward
movement. Such similarities create complexity whgimg to distinguish one activity from
another. Since these tests are intended to ev
intentionally designed to be intense. Energy expenditures may be larger than with most daily

activities but similar betwen the PNFT activities themselves.



Figure 2.1 Ladder climb field test.
LA

Figure 2.2 Agility cones field test.



Figure 2.4 Horizontal climb field test.

10



Figure 2.6 Step-entry maneuver field test..

In addition to the above tasks, three regular activities are also included in sh&hegt
arestanding, walking and runniri@4] 1 seeTable2.2. These tasks serve three purposes. First,
since they are da#iife activities, the classification accurafoy these three activities can be
compared tahe classification accuracy for tHeNFT activities Second, liese activities aress
intensive, yetheydiffer greatly in charactédrom each other, so they also serve as a stepping
stone when dealingwithredli me acti vity recognition. Il n addi

11



the PNFT, subject need to move from one station to next station by rummiradkang, so

theydre the transition and if the process

Table 2.2 Other standard activities included in thetests

Stand Subjects stand still
8 | Walk Subjectscasually walk around a big circle at normal pace
9 | Jog Subjects jog around a big circle at normal pace

AccelerometerBasedSensingand the Zephyr BioHarness
This study focusesn motion and position sensors. Sensors bahgrtg this category
include acelerometes, gyrometes, magnetic senseand GPS sensarA magneticsensor
utilizes thenatural magnét field of theearth anda GPS sensor reports latitude and longitude of
alocation. Both othesewill be useless wheanactivity is performed in sge. Thiswork
therefore migrated towar@tcelerometerand gyrometebased devicesTo keep the system
simple,a threeaxis accelerometavaschosen to be the sensor for activity recognition. It
measuregaccelerationn threedirections vertical sagital, and lateral. A accelerometer is
regarded as the basbtionindicatorin previous papers and has beegll-studied35-37].
Accelerometers arexcellent agvity indicators for these reasons
1. Differentactivitiesexhibitdifferent motion directios intensites,and patters; these
arereflectedin theacceleratiordata
2. Acceleration reflects instant motion.
3. An acelerometer does not require the sensbetbrmly fixed to the skin. This
makesanaccelerometean ideal sensor when skin contact is prohibited or difficult
(e.g., when amstronautvears aspace sujt In fact, somesfforts requirea looséy
placedsensorasin a pocket,wherethe orientatiorof the sensor may change and a
calibration routine iperiodicallyrequired [38].
4. Thesamplingrate is not highln the case ofiuman motion, acceleratialata arenot
required tdbesampled at evehundreds of hertsince body motion cannot achieve
these frequencies naturally theliterature, sampling frequencies of 25, 50, and 128
Hz are adoptedand thee systems amapable of classification. In contrashEMG

signal whid reflects muscle electatactivityrequiresthe sampling frequency to be

12



as high a4000 Hzto fully capturethis behavior This lowfrequency trait is
favorable, since fewer transmission data mean lower power consumption.
The first activity recognitio experiment usktheZephyr BioHarnesg39], shown in
Figure2.7. TheBioHarness is a wireless health monitoring device that can record various,signals
such aghreeaxis acceleration, heat rate, posture, skin temperantetECG The accelerometer
samplesat 50 Hz and the maximum measurable accelerationgs®he device is attached to the
chest using an elastic sttagnd the sensor is on the left side of body. Blo#t is the wireless

datatransmissiorprotocol It ensures 100m transmissiomange.

Figure 2.7 Zephyr BioHarness

Data Collection

Datawerecollectedovertwo timeintervalsusingvolunteers recruitedn campus.This

work was performed with the oversight of the KSU Human Studies Board under pft6éol

First Data Collection Effort

The frst data collectiorffort focused oriour subjectsTwo subjects finished allix
activities while the othetwo subjects finiskdfive activities, leavirg thehorizontal climbout.
For each task, th@urationwasless than one minut&he Zephyr BioHarneswasattached to the
left side ofe a ¢ h s chbs} aadcthdd@skswereperformed in a supervised environrarside
Ahearnfield houseon the KSU campuf81, 40]. During a normal field tesif this type each
task is peiormed once pecycle, and the duration of that task is shiooften a couple ofeconds.
In addition, after finishing an activity subject isrequired to run for a short distance to the next
task station; thismbiguous task separation adds an additibarden to thelassification

process. Therefore, new training sets of dat@é&wh activity were acquired separately, with one
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persorperforming each task repeatedly for about 1 minute. pede of the data is clearly

labeled by activity and used folassification and identification.

SecondData Collection Effort

The secondlatacollectioneffort was conductetb gather more data from different
peopleandto record the data in a frderm mannerErmes et al[41] noticed thatwhen
applyinga superviseeatatrained classifier to unsupervised data, the accutacyeasetdy
17%, while the mix of two sets of data hadiio maintain a higér classificatioraccuracyData
from five people(four male andonefemale werecollected. Each person repeasathtaskfor
two minutes.Instructiors weregivento eachsubjectbefore each tasttue to the uncommon
nature of theetasks. However, no specifimstructions wergiven regarding speegosture etc.
For example, subjectgereasked tjogat a A ¢ o mfdowheénatdirlclenbingstheypael
the freedom to puheirhand on the side railSubjectsveregiven time to rest wbetween tasks
so that they couldeturn to arested statesinceshorttime fatiguemay cause¢hesebehavioal
motionsto differ. Throughat the processsubjecs wereinformed to keep a relative moderate
heart rate antb staycomfortableduring the session.

A Zephyr BioHarneswasused and placed #ie saméocationasin the first data
collection session. Along witBephyr BioHarnesssix wireless sensors fromDelsysTrigno
system[42] wereplaced on different muscle grouf$e Delsys Trigno is a surface EMG system
that records EMG signals and acceleratleMG sensors are attached be tbody usingn
adhesive film and medical wrappefThe sampling rate of the senswais1 kHz for boththe
EMG and threexis acceleration sigralDue to symmetry, all sensongere placedn theleft

side of body. Theensolocationsandtargetmusclegroupsare listedn Table2.3.

Table 2.3 DelsysTrigno sensor locations and target muscle groups.

1 | Chesti Pectoralis Major

Antebrachiuni Flexor Digitorum Superficialis

Brachiumi Biceps Brachii
Shouldeii Deltoid

Thighi Vastus Lateralis

ol O B W N

Legi Gastrocnemius
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Chapter 3 - Feature Extraction

A single sample ofacceleration data does not reflantactivity, as arinstant acceleration
may exist in any type of activity. Instead¢@ntinuousseries of datgatheredn a time window
presents moréaces ofanactivity. Within the window, some information elements, called
features in a machine learning context, can be generated, such as the averagehehagecat
which asignalchanges. The set of features is used to determine which attticyrrent
activity is likely to be.For this work, ime windows are selected to ltevo second$ong, with a
sliding-window overlapof 50%.

As mentioned in Chapter, there are two types &atures that can be extracted from the raw
data time-domainand frequencygomainfeatures. Wavelets have alsdeenintroducedas a new
type of featurg43]. However recentstudiesindicate that wavelets may np¢rform aswvell as
frequencydomainfeatureqd 23], so wavelet features are not includedhis feature spaceThis
work presers 25 timedomain and frequenegomain features am initial effort. The utility of

each feature is not studied here, but rather will be examined later.

Time Domain Features

Time domain features includaean, variangecorrelation, covariance, signal magnitude
area EMA) and signal magnitude vector (SMV)he meanvaluerepresentsheaverage
acceleratioron each axis over the window slice. In a rough sense, it is used to desciilie the

component othesignaland iscalculate as

aa
E =t (3.1)

where g is an acceleration sampdad T is thdength of thetime window.Resuls for thethree

axesaredepictedas box platin Figure3.1. In the plot, the boxs centered at the meahthe
data and itsedgegepresent thes" and75" percentiles. The whisker is extended totinfes
the nterquartile rang@QR). Instances outsid# the whisker are indicat usingared plus sign.

The values are grouped by activity type from 1 to 9.
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Figure 3.1 Mean acceleration values for the liree accelerometer axes.

Thevariance feature is thesecondnoment of the sigal. It measuresow widely the
signaldeviatedrom itsmean valueln terms of acceleratigrt indicates howapidy the signal
changesand how far it deviates from the mean valselynamic activity has larger variance

than amorestatic activity.It is calculated as

aa-E

Vi:
T

(3.2)

Figure3.2 delineateshe variance othethree axesSome higheorder momenttke skewness

and kurtosicandescribe the shape of the data in more detail.
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Figure 3.2 Variance onthe three acceleroimeter aes

Thecorrelation coefficientdenotes the linear relatishipbetween two signalsndspans

the rangd0,1]. The @rrelationcoefficientis largewhen one signal is linearly relatedamother

signal. Otherwise, it is smallnumber.When an activity contains concurtenovement irtwo

directionsthe correlationbetweerthe accelerations on these taxesmay be a large value. This

canhelp toseparate activitiewith motionin multiple directiondrom those with only singlaxis

movementThe @rrelationcoefficientfor discretesignals fromtwo axesis

E.&-E
) )
i 3
=

. ai-
ac,

E, =

Correlation coefficientsdr three axis combinations are illustratedrigure3.3.
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Correlation of X and Y Axis

Correlation of Z and X Axis

Similarly, the covarianceof signals frontwo axes is
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Figure 3.3 Correlation coefficients for three axis combinations.

a@-E)g -E)

Correlation of Y and Z Axis

Coy = t

T

Covariancevalues forthreeaxis combinationare shown irFigure3.4.
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Figure 3.4 Covariancevalues for three axis combinations.

Aside from singleaxis featurs, some timedomain features consider the combination of
accelerations frorthree axs. Based on the calculation method, they can be categorized as first
order and seconrdrder calculatioa

A first-order calculation is basically the sum of libsolute value ahe data obtained on
each axis. The average of the summed accaleratiatime window is calledhe Signal
Magnitude Area (SMA) in theliterature[44] andis defined as

swa=Z(@[a() +& 30| +&a0). 35)

The SMA hasnostlybeenusedduringreattime classification to replace computatidgal
costly calculatiorof frequencydomain featurg due to the similarigs found between SMA and

power[38]. The resuk for these field tesere depictedh Figure3.5.
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Figure 3.5 SMA values for the different activities.

The seconabrder calculations theEuclidian distance of acceleration on three axes. It is called

movement intensity(MI) [24] andsignal magnitude vector(SMV) [44]. For consstency it is
calledSMV here:

sMv=./a() +g()* 8()? (36)

Themean and variance of theSMV are calculated in the same manasin theprevious
definition. SinceSMA is the simple summation of tineagnitudes of thaccelerationsSMA

weighs them equally. SMV emphasizes the weight of the larger acceleration by the power of two.
Figure3.6 displays the raultfor these field tests
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Figure 3.6 Mean andvariance of the SMV.
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Frequency Domain Features
Frequencydomain features include energy, spectral entropy, dominant frequency and

average energyl.o extrat afrequencydomain feature, the signal needs to be procesghdc
Fourier Transform t@alculate itfrequencydomainspectraA Fast Fourier Transform (FFT9
applied toeach time windowo accomplish thisransformation. One thing twoteis that since

the time window is relatively short, the resuit spectrunmay bealtereddue to the finite signal
duration To compensatir this drawback, the original dagae multiplied by a Hamming
window function, illustrated ifrigure3.7. The window attenuasghe signal on theedges of each

interval and accentuates the data toward the middle of each interval

0.9
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0.5
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0.3

0.2

0.1
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samples

Figure 3.7 Hamming window with a width of 50 samples

Energy is calculate to determine activity intensity. For a highly intense activity, such as
runningor stair climbing,moreenergy would be consumed by the bedyen compared to an
activity such asitting or lying down.Since the accelerometerasattached to the chest each
subject onlytorsomovementan be assessadth a reasonable level of fidelitgo limb
movement is not considered unless it transmits energy to the wholeThuglys one limitation
of usingasingle accelerometeHowever in tight surroundingsike a spacesuitthe use of a

single accelerometeeduces thsubjectburden and is more realizable.
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Spectrakenergy is obtainelly calculating thé>ower Spectral Density (PSD) of the

spectrumA one-sided PSD is calculated usitigeformula

p(i, j) =k|s(i, i)’ 3.7)

wheresis the shorttime FFT of the signakind coefficientk = L# , Wherefs is the

.8 wnf
n=1
sampling frequencgb0 Hz inthis study) At 0 Hz andthe Nyquist frequency (25 Hz), the factor
of 2 in the numerator is replaced by 1 sirmethe boundaryonly asingle FFT coefficient exists.

The vectow(n) holdsthe weighs for the Hammingvindow, andL is the(integer)window

length. Energy is the sum of the PSD across all the frequencies calculiitethe FFT:

E=a n(ij). (3.8)
It is depicted irFigure3.8.
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Spectral entropy is used talescribehe distribution of the frequenegomainsignal.

Information entropyasproposed by Claude Shannon in 194gsoriginally used tandicate the
predictability of aseresof information[45]. Easily predictable information contains less entropy
while an information stream thaeens more random carries higher entroppjais concet maps

to physical entropywhich describeghe state ofrandomnesor matter in the universe.

Information entropy is calculated as
H(X)= 4 P(X¥log, A%, (39
X X

whereP(x) is the probabilityof obtainingeach elementor afrequencydomainspectrumthe
spectral entropy can determine whether a type of activity contains similar energy exentiss
the spectrum or just focason particular frequencies. btherwords, it can distinguish activiés
with rhythmic pacdrom those with irregular movemernithe sme formula is appliedthen
calcuating spectral entropy, whepéx) is the PSD of edcfrequency divided by the total energy.

p(x =P (3.10)

E

Spectral entropy orhtee axes is shown in Fig 3.9.
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Figure 3.9 Spectral entropy on three axes.

Thedominant frequencyis the frequency at which the PSD magnitude has the

maximum value. It is the fundamental frequency Far signal. In periodic activitid&e running,

the dominant frequenaysuallyresidesn the frequency range 610.5,2.5]Hz and iscalculated

as

F =argmaxe ( ),
f

(3.11)

The box plos inFigure3.10 indicatethat for most activities, the dominant frequency is around O

Hz. This is due to the lardgeC offsetin thetime-domain data
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Average energyconsiders the combination of the energytloeithree axes

s EYE a12

Average energy is shown Figure3.11.
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Chapter 4 - Feature Selection

The feature setisom the previous chapter need to be validated for their usefulness. This chapter
focuses on the feature selection, or the process of choosing the most helpful.fgéZures
Useless featuscanexist in two formsThey may beedundantindprovide no new information
given the existing features. Othenay beirrelevantand maynot help toassociatelata witha
certain class according tadacisionrule. Redundant featuseeanadd unnecessary weightda
aspect of the signal while diminishitige ability ofotherfeatures to be telling, whereas
irrelevant featurgcanconfuse he machine learning algorithm and may reduceébalting
accuracy. Both types of features should be eliminfited the classification process

Feature selection is a common way to deal withsituation. It not only eliminates the
useless features, bitlalso helpgo reduce the feature spadimension. The learning algorithm
may benefit froma smalkrfeature space dimensiamseveral ways. First, as the feature space
dimension decreasethe complexityof the machine learningrocesss reduced. S®nd, noisy
feature data often lead to ovfitting, and thepurification of features can reduttés tendency
and control the generalization of the result. Thardmalleifeature spacdimensionis easieffor

a persorio interpret.

Feature Selection Mehods

In generalfwo kinds of feature selection methoebsist: wrappemethodsandfilter
methodsA wrappermmethodsearches through aif thefeaturesubsets exhaustively and
compareshe effectiveness @ach of thenreturring the subset witlthe bestclassification
result[46]. This method is targeteat a certain classificatioapproachtand b subject to change
when giveradifferent algorithmWhile this exhaustve approaclprovides the best subsets
possible themethod is computationglcostly. Given 25 features, the number of subset®is 2
33,554,432. Considering the time taken to daleuthe resultor each subsett is notrealisticto
work with such a high dimension space.

An alternative isafilter method This method uses a proxy measure to determine the
similarity between feature space subsets. The proxy measures can be Goioosn measures
include forward selection and backward elimination. Both algorithma gesedy search

method to selectlocal optimal feature and addubtracit to/from the subsdieforecalculaing
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a newerrorrate This step is repeated until therer rate stops decreasing or increasirige

resultingsubsetis the selected feature set

The Filter Method

Thefilter methodwas selected fdieature selectiom this effort Severafilter criteria

need to be addressesiarting point, search orgaairmon, evaluation sitegy, and stop criterion.

Starting Point

The garting point determines theeginningfeaturesubsetn general, two approaches are
widely applied, namely forward selection and backward eliminaorward selection, as the
name sggess, startswith anempty subset. As the seanqpiogressedeatures are added to the
subset. On the contrary, backward elimination starts aviifi featureset and eliminates
features one by onahere thdeature that contributdbe leasto the acuracyis removedht

eachiteration

Search Organization

An exhaustive searchvill find the optimunfeaturesubsetsince it searches through all
of the possible subsets. However, it suffers feolarge computatiotime since the number of
subsets is"2 whereN is the number of features. better strategycalleda heuristic search, can
be effective This search method does not exhiaesy evaluateall of the subsets but rather
construcs asubset using a certain criteriaralleda heuristic functionThis strategy cannot
guaranteghatthe subset it finds the bestglobalsolution, but it does find an optimal local
solution.

One of the mostommonlyappliedsearctstrategies isgreedy hill climb.A greedyhill
climb algorithm movethrough the fetre spacevhile looking for thebest feature atach step.
After examining the error rate of each feature in the remaining pool, the best one is saidcted
if adding it to the subset reduces the error theit is included in the subset. This prese
repeats until the error rate stops dedrepsr decreasgby a trivial amount. The process is
shown inFigure4.1. This method cannot backtrgdo when the error starto increasethe
algorithm terminates the loop and deekthe best subset it finds pseudecode description is

shownbelow.
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Figure 4.1 Forward selection andbackward elimination feature ssarches.

Greedy Hill Clim b Pseudocode

s = start state
expand s by making each possible local change
evaluate each child t of s
let s = feature t with highest evaluation e(t)
if e(sd) >= e(s)
s= s0
repeat

else return s

To overcome this drawback, an improved method is propioadistfirst search
algorithm.A bestfirst searchuses similar mearte movethroughthesearch space. However, in

thisalgorithm, the evaluations are stored in a bin instead of being discandethe algorithm
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has the ability to backtrack to previous nodes whemrent node doesoh provideanimproved

resultfor reducing the error. A pseudmde description is listed below

Best First Search Pseudocode

S = start state

expand s by making each possible local change

evaluate each child t of s

let s = feature t with highest evaluatio n e(t) and save all
other ts to stack in ascending order

if e(sd) >= e(s)
s= s0
find the first t in stack and repeat

else return s

Evaluation Strategy

As seen in the above algorithm, the evaluation funa{gnis needed to judge the
effectiveness athe subsetWhenafilter methodis adoptedheuristicsare used as evaluation
functions. We use two evaluation methods to determine the usefulnadeaifire. They are
correlationbasedeatureselectionandconsistencyeatureselection

Correlation-based feature selectionuses a correlation evaluation functi@t?]. It is

written as

kry
M, = (4.1)

Jk+k(k Dr,

whereM.is the correlation between the feature subset and the acfjyis/the average

correlation betweethecomponents antheactivity, T is theaverage intecorrelation betreen

componentsandk is the number of componenihis is derived from the Pearson correlation
coefficient[48], where all variables have been standardized.
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In the congstencyfeature selection method, the usefulness of theti@as space is
defined byinconsistency49]. This measure characterizbe range of théeaturevaluesin
instance®f the samdéabel. It is calculatetdy usingthefiltered version of Las gas Algorithm
(LVF) algorithmas follows

a. Two instances are considered inconsistent if they match except for their class labels.

b. Consider all instances witmatching feature. The inconsistency is measured by the
number of normajority labes.

c. The inconsistency rate is calculatsinconsistencyounts divided byhetotal
number of instances.

A pseudo code fothealgorithmgiven in[49] is shownbelow.

LVF Pseudocode

fori=1to MAX TRIES
S = randomSet(seed);
C = numOfFeatures(S);
if(C  <Goest )
if(lnconCheck(S, D) <2)
Shest =S; C  pest =C;
print_Current_Best(S)
elseif(C=C  ps) and (Il nconCheck (S, D) <02)
print_Current_Best(S)
end for

StopCiriterion

Foraheuristic search, a stop criterion is needed to enbatthe algorithm loop
terminags properly. One stop criterion can be when the heuristic merit does not inaftsaise
more features are added to the subset. Alternatively, it can continue searching until the merit
starts to decreashn our test, we sdheconsecutive noimproving nales allowedo befive.

When no improvement shows gfier five nodesthe search terminates.
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Feature SelectiorResult
Usingthecorrelationbased feature selectiapproach with thedstfirst searchalgorithm,

thefollowing results ar@btained

For forward selection, the feature subset is:

[ mean_x, mean_y,mean_z, variance_Xx, variance_y, variance_z,

covariance_yz, covariance_zx, correlation_xy, SMA, mean_SMV,
variance_SMV , energy_X, energy_y, energy_z, entropy_X,

entropy_y, entropy_z, DF_z, average energy ]

For backward elimination, the feature subset is

[ mean_x, mean_y, mean_z, variance_Xx, variance_y, variance_z,

covariance_yz, covariance_zx, correlation_xy, SMA, mean_SMVY
variance_SMV , energy_x, energy_y, energy_z, entropy_Xx,

entropy_y, entropy_z, DF_z, a verage energy]

These features aregarded as relevant and a@dundant features that can help
identify different classes. Notice that there are 20 features that are selected, meaning that most of
the features contribato the correctness of the cldgstion. Both forward selection and
backward elimination indicate the same result, which sugtjestthis method is robust and not
influenced by the directioaf the searchThefollowing features weréiscarded:

[ covariance_xy, correlation _yz, correl ation_zx, DF_x, DF_y]

The dominanfrequengesonthex andy axes werenot selected ithis subset, mainly
because most of them are located at the minimum frequ&imce the DCoffsetis not
eliminated when doing shorttime FFT, the majority othe erergy gathersiear 0 Hzno matter
what activity it is. Covariance and correlation are relagedor each axis only onalue is
choserfrom the pair.

Now weusethe consistency feature selectamdbest first searcimethodsasanother

meango select fatures. The resuis from consistency evaluation ageven below
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Forforward selection
[ mean_x, mean_y, mean_z, variance_X, variance_y,
covariance_Xxy, covariance_yz, covariance_zx ,

entropy_x ,entropy_y]

For backward elimination

[ correlation_y, correlation _z, MEAN_SMYV variance_SMV
energy_y, energy_z, entropy_x, e ntropy_y, entropy_z, DF_y,
DF_z]

A big difference exists betweéheforward selection and backward eliminati@sults
Theabovemethod can help tgick out theredundant and irrelevafgatues, butthey do
not provide information on how each feature is evaluatédrrhation gain can be used as a

gauge to rank these featuredere hformation gain is expressed as
IG(Y, X) = H(Y) -HY X. (4.2)

Here H(Y)is the information entropy and(Y |X) is the entropy o¥ given the observatioX. In
our contextY is a certairactivity classandX is a given feature frorthe feature spaced(Y |X) is

calculatedusingthe following formula

HY[X)= & X ady 3log (K (4.3)
X X yiy

A higher information gain mearadarger differenceelative toentropy when provided with the

featureversuswithoutthefeature. If a feature is randomly distributed, then it will not provide

any information for detrminingaclass In that situationH(X) andH(Y |X) are the same, and

theinformation gain is zerdl'he following chart gives the information gain for each feature,

rankingthem indescending order.
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Table 4.1 Information gain evaluation results.

Rank | Feature Score

1 Averageenergy 1.61629
2 variance_SMV 1.61115
3 variance_x 1.58037
4 energy_x 1.56769
5 variance_y 1.2927
6 energy_z 1.27799
7 variance_z 1.25817
8 energy_y 1.12749
9 mean_SMV 1.1168
10 covariance_y 1.05396
11 covariance_x 0.95493
12 entropy_x 0.92993
13 mean_z 0.91406
14 mean_x 0.87198
15 SMA 0.8623
16 covariance_x 0.85204
17 DF_z 0.74763
18 mean_y 0.65556
19 correlation_y 0.55839
20 entropy_y 0.48753
21 entropy_z 0.39736
22 correlation_x 0.31158
23 DF_y 0.22772
24 correlation_y 0.20589
25 DF_x 0.00695

According tothis listing energy, variance and physical features lilgance_SM\bffer

large information gain, while dominant frequer{®F _*) and correlatioroffer lower
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information gain. Features frothetime domain andhefrequency domain havoth high and

low values implying that both types of featus@re needed fagiccurate activity classification.
The aain-ratio-attributeranking methodvasappliedfor comparisonTheresuls are

shown in the followingable The gain-ratio approactevaluates the worth of an attribute by

measuring the gain ratio with respect to the clidass.calculated as

H(Clas9- H Clas$ Attribute

GainR(Class Attribtg= H(Attribute

(4.9

Resuls from the gain ratio methoareshownin Table4.2. The result is similar to
the one fromnformation gain attribute evaluation method, where energy and variance are

ranked on top and correlation and dominant frequency are ranked on the bottom.
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Table 4.2 Gain ratio evaluation results.

Rank | Feature Score
1 energy_x 0.4727
2 Averageenergy | 0.4633
3 variance_x 0.4374
4 variance_SMV | 0.4244
5 variance_z 0.3948
6 mean_SMV 0.3884
7 energy_z 0.3686
8 variance_y 0.3455
9 DF z 0.34
10 energy_y 0.3178
11 entropy_Xx 0.2899
12 covariance_x 0.2781
13 covariance ¥ 0.2777
14 SMA 0.2703
15 mean_z 0.2683
16 mean_x 0.2662
17 covariance_x 0.2457
18 DF_x 0.2189
19 DF vy 0.2107
20 mean_y 0.1878
21 entropy_y 0.1808
22 correlation_y 0.1776
23 entropy_z 0.1667
24 correlation_x 0.121
25 correlation_xy 0.0864
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Chapter 5 - Activity Classification

Machine learning plays an important role in activity recognition. Many different
algorithms exist for different applicatisnbutno one particular algorithm generallydominant
for a given applicationThis chapter addresses the examinatiomoitiple algorithms to find the
algorithm that works the befir these data setsxdcansatisfy the reatime algorithm

requirement.

Machine Learning Algorithm's

Machine learning algorithms can tivided into thre primarytypes:supervised learning,
unsupervised learningnd reinforced learnin@®5]. Supervisd learning takes instances with
labeled outpugas the training data. The learning algorithm comgidre decision resigdiwith
the labet to adjust the parameters in the decision function. Punishment is given when the
decision and the actual label are different. Unsupervised learsggyunlabeledatia for training.
The algorithm is not informed whethire output is correct or not. The algorithm is built upon
the concept that data with identical ladieind to conglomerate in some particular space.
Clustering is a common idea for this type of leagpiin whit the number of classesgs/en,
and the algorithm iterates until the centsoid every cluster arlound. Measuremesfor
centroids vary from scenario to scenariBeinforced learningexists somewhere in between
where no labalin the trainng dataaregiven, but the algorithmeceiveghe correctness of each
decision. The correctness is given as a Boolean variabbge correct is 1 and incorrect is O.

Recent research suggests anotyee of training algorithmreferred to asemi
supenised learning50-52] . It is a combination of supervised and unsupervised leathatg
utilizes ahalf-blind learning process. Initiallya small portion ofdbeled data is provided to the
algorithm for training purposeHowever, following the process, a large quantity of data with no
labekis fed to the algorithm to help refine the classification function. This is often used when
labeling data is tedious almdmbersome or labeled data are impossible to get.

For activity recognitiontheability to obtain labeled data allows us to use supervised
learning. This type of learning hasaster convergenaateand provides better ressilFour
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different classifiation algorithms areompared:Nale Bayes, k Nearest Neighbor, Bcision

Tree andSupportVectorMachine.

Narle Bayes
TheNale Bayes algorithmassumes the dakeve aGaussian distributigrandthe

method idrainedbased orthis assumptiori53]. It utilizesthe Bayes formula:

pP(x|w; ) p( W)
P(x)

p(w; | X) = (5.1)
where w, is the class andis a feature value. It states that e@ndeducehe conditional

probabilitythata feature values part of a class giveprior knowledge of the probability
distribution of the feature value, the probability distributiothefclass and the conditional
probability distribution of featurevaluein a certain classP(x| ;) is called likelihood, p(w)
is thea priori probability, p(X) is theevidenceand P(w | x)is thea posterioriprobability. The

formula eyressed in worformis

likelihood® a priori

a posteriori= -
evidence

(5.2)

For a feature space including morertloaefeature, the likelihood is modified into

p(x|w;) (5.3)
where

X=xN%N...N X (54)

An important assumption in Nale Bayedassificationis that featuresra conditionally
independent from each other given the class. It simplifies the probability condition in that joint

probability is zero and likelihood becomes the product of indiviguababilities:

POXN %M. % W)= Pp(x] w) (5.5)
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For discrete or nominal featwehe probability isequal tothe numberof specific
instance®ver the total numberf anstancesFor a numeric featurethe distribution issssumed to
be Gaussiarfwhichis true formostof thesedatg, so he distribution then calpe represented
with amean and standard deviatidrhe probability of a given value ealculatedrom the
probability densityfunctiorn

(x- my?

2

e (5.6)

g(X)=5\/2—p

wheres is the standard deviation and is the mean of the distributiorlere we ignore the
missing feature value scenadsevery feature is assigned to a value in a given instance.

Fora given classification problerthea posterioriprobability indicates the likelihood of
the instance belomgg to a class for a given set of featsiréherefore, the need to determine the
class converts to findg the maximum conditional probability

w= arjig[maxb (w X)) (5.7)

wherej represents thelass and is thetotal number of classs

It is clearthatevidences a constant numbemsie itis the combined probability
distributionfor all of theclasses. Therefore it can be neglected while ditiagalculation.Thea
priori probability is the likelihoodhata class is present. Thisdsscenariespecificnumberand
changes according the real situation. In a daily activity classification problem, classes such as
sitting and walking hava higher probability than climbing stairs or running, because they
happen more often. lime case of the PNFTactivitiesareperformed in a sequea. Therefore
the probabilityfor each activityis roughly the same and can also be neglected.

The classificatiomesults obtained using the Naie Bayes approachrepeesented as
confusion matrixn Table5.1. In this matrix,each row represents the true activity, and each

column represents the classified activity (algorithm result).
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Table 5.1 Confusion matrix obtained from Naive BayesPNFT classifications.

Classified As
Activity a |b o d e f g h [
a-Agility Cones 513| 0 0 12 20 0 0 0 103
b-Ladder Climb 3 |260 |37 36 7 240 |0 66 0
c-Equipment Lift 1 |42 333 |7 11 238 |4 2 0
d-Step Entry 28 150 |1 344 |10 8 0 71 0
e-Stair Climb 36 |51 32 14 501 |1 1 0 2
f-Horizontal Climb | 2 22 7 9 0 601 |5 10 0
g-Stand 118| 0 0 0 0 6 393 |1 0
h-Walk 3 |5 0 9 0 0 633 |0
i-Run 60 |1 0 4 2 0 0 0 602

Accuracy is calculateds the ratio of the tca of the matrix to the sum of the entire

matrix.

Accuracy=

i

r€) =6

g

(5.8)

Based on the recognition res tihe overallaccuracyobtainedfrom the Naie Bayes classifier is

73.51%

K Nearest Neighbor

The kNearest Neighbamethodu s e s a

Al azyo

a pwherethec h
decision making processdglayeduntil the data that need be classified are present. The

program prestoresa group of labeled data in memory. When the new data arriverageam

calculats the distance of the coming datdative tothe existingdata,findsthe closesk

instancesand labed the data with the majority classes in thastanceswherek is aninteger

ranging from 1 td\. This kind ofclassification procgsis also called instance based learning

(IBL) because it makesdecision based on direct feature information from the instanste=ad

of generalizing a set of rid@r a decision tree.
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Distance can be evaluated in various ways. Two conmmeatricsarethe Manhattan
distance anthe Euclidean distanc&.he Manhattan (a.k.a., taxicadistancebetween two points

is the sum of the absolute differences of their coordinates

d(p.d=alr -q (59

TheEuclidean distance is the distance in Euclidean space. It equals the square root of the sum of

d(pd= & (R -q) (5.10

The square root process is often ignored dubg¢oomputatiortime required This ies not

thesquaredifferences:

affect the resutwhen comparing theedistancs.

An issue emergeshenthe distancearenot equal among atif the features-eatures
with large differencewill dominate the distanebased decisiongnd those with small
differences may not shav enough impact on the equatidm equalize the effect of each feature,
normalization is appéd to the feature

x= 2 Zuin_ (5.11)
Xmax - Xmin

This restricts the range of each feature to [0, 1].

Table5.2 illustratesthe effect ok in the kNN classifier. A& increasesthe accuracy
doesnot havea significantchange Staying above 85%, the accuracytlod KNN methodis
higher tharwhen using thé&laie Bayes classifielThe highest accurac$7.51%|s achieve
whenk = 3. Froma hyperplang@erspectivethe KNN approachs more flexiblebecause itan
formulate complexionlinear hyperplanes thdivide thefeature space. In a situation where the
dataarenot necessarily conditionally independent or irredundant, that helps to define a better
evaluation surfaceThe confusion matrix resulting from the KNN process isaegd inTable
5.3.

Although the KNN method seems to be an excellent candidate for activity recognition,
there are two problems associated with this classifier when applied tet@realtuation. Since
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no decision is made untte input data are received, it requires much memory to store all of the
training data, as they are kept in the original faB®cond, thelassificationprocess requires one
instance to be compared with all the instances in order to fintetirest neigbor, 0 the

calculatiors are numerous

Table 5.2 Recognitionaccuracy for thekNN approach as a function ok number.

N Accuracy (%)
87.07
86.51
87.51
87.33
87.13
87.34
87.40
87.12
86.86
86.86

©| 00| N| O O &~ W N =

[N
o

Table 5.3 Confusion matrix obtained from k Nearest Neighbor PNFT classifications

Classified As
Activity a b c d e f g i
a-Agility Cone 503 | O 0 5 4 0 0 0 46
b-Ladder Climb 0 | 515 |29 46 2 24 2 31 0
c-Equipment Lift 0 40 | 538 | 4 2 42 3 9 0
d-Step Entry 3 24 1 [571] 1 1 0 11 0
e-Stair Climb 30 | 10 2 9 | 584 | O 2 1 0
f-Horizontal Climb 0 61 | 54 1 1 | 502 24 | 13 0
g-Stand 0 56 | 69 0 0 3 |39 O 0
h-Walk 4 17 2 1 1 3 0 |630| O
i-Run 10 0 1 4 0 0 0 1 653
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Support Vector Machine

The concept o& SupportVectorMachine(SVM) is similar to that of a linear machine
learning algorithnj54]. The difference is that @an be applied to nelinear datasets and
separateghemout using a hyperplane. The metrsmkkdo raise the feature space to a higher
dimension allowing the nonlinear datasti be linearlyseparatedThis process is calleakernel
trick and the mapping function @alled akernel function. Table5.4 shows the confusion matrix
obtained after applying tHf&VM approachTheoverallaccuracyfor this methods 85.82%

Table 5.4 Confusion matrix obtained from support vector machine classifications.

Classified As

Activity a b C d e f g h i
a-Agility Cone 501 | O 0 4 6 0 0 1 46
b-Ladder Climb 3 446 (46 |61 |6 41 |3 43 |0
c-Equipment Lift 0 49 443 |20 |8 9% (20 |2 0
d-Step Entry 15 70 |3 510 | 3 0 0 11 |0
e-Stair Climb 32 12 |15 |1 574 | 0 2 0 2
f-Horizontal Climb | 1 34 |27 |3 0 551 |16 |24 |O
g-Stand 0 0 0 0 9 507 | O 0
h-Walk 2 30 3 0 5 0 613 |1
i-Run 15 0 4 3 1 0 1 645

C4.5Decisin Tree

C4.5is aform of decision tree algorithm which forms the decision making process by
takinga treeshape route[47]. Each node of th&ree corresponds to a featua@d the branches
are different values of the nodk leaf of the tree is an activity. i notrequiredthat each
feature be usednly once or each activity be labeledly once, so there can be multiple leafs
with the sameactivity label and different nodekat use theame feature as a judgmenthen
judging an activity, thalgorithmstartsatthe root of the tree andigrates from node tonode

until it reacles aleaf at the bottom of the tree.
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C4.5 uses a greedy apprbdo determine the featuattached tahe node for each step.
Specifically, it startsvith thegain ratio criterion to select the feature for the root and forms the
subtreesrepetitively The process terminatedienthe entire instance sets belaoghesame
activity. Most of the time, this criterion is difficult tneet,and the tree splitting continues for a
long time.Over-fitting is also an issue, whegeslight change ithevalue ofa featurecanlead
to the prediction ofinactivity on thewrongleaf. To addresghisissue analternativeapproachs
to terminae when the purity of each leaf reachethi@shold

For a complex feature space, theeexpansion can be large. Training 45 algorithm
with thePNFT feature dataesults ina tree vith 533 nodes and 277 leaves. Twerallaccuracy
of this approach when applied to these PNFT &a88% percentTherelatedconfusion matrix

is contained inrable5.5.

Table 5.5 Confusion matrix obtained from C4.5 decision tree classifications.

Classified As
Activity a b C d e f g h [

a-Agility Cone 564 |2 0 9 16 0 0 0 57
b-Ladder Climb 2 479 |55 45 7 34 0 25 2
c-Equipment Lift 0 57 499 |7 12 62 1 0 0
d-Step Entry 10 67 2 516 |10 1 0 4 2
e-Stair Climb 27 10 17 6 576 |0 1 0 1
f-Horizontal Climb | 1 35 59 3 2 546 |1 9 0
g-Stand 0 1 0 0 509 |0 0
h-Walk 2 21 4 3 0 4 0 622 |2
i-Run 35 2 1 5 0 0 624

Figureb5.1 depictsa subtree of theoveralldecison treefor the PNFT accelerometer data
Each node is labeled with its corresponding features, and the numbers used for the dividing
points are attached to their respective branchiethe end osomebrancles,a leafnotesthe

activity label and the rat of correct toincorrect instances.
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Figure 5.1 Sub-tree within the overall decisiontree for the PNFT features.
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Chapter 6 - Graphical User Interface Design

Data transmitted frorthe ZephyrBioHarnessare collectedy a computer connectéd a
Bluetooth dongleand then displayed amgraphial user interface (GUI). The motivation to
develop such a GUlas driven by the fact th#te original data collection toblundled with the
BioHarnesrovides limited functiodity that does notvell-supportthe data collection and
visualization needs of the NASA projeEurther,a custom user interface can incorpordita
obtained from additionadensos in the future. Two versions of GUIs were developed (in
MATLAB and in LabVIEW) i one is used for typicalephyrBioHarnesslata collection
sessios, and the other supports more sophisticated data acquisition and analysis.

Transmission Protocol

Zephyrdefineda standardiata frame to facilitate data transmission.dlthe conmands
to andfrom the Zephyunit are encapsulated inkmownmessage forat. Thismessagéncludes
athreebyte header, followed by a data payload waitrariablelength, followed bytwo
terminatingbytes. Thdengthof thedata payloadangedrom 0 to 28 bytes.

The frst byte intheheader ighestart of text (STX)yte and it is always designated as
0x02.The nextbyte is the mesage ID (Msg ID), which uniquely identifies the type of message.
After receivinga dataransmissionwe use this byte teort the message into different data
process subroutiseThe next byte declares the number of bytabétata payload. It is a hex
number ranging from Ox00 to O0x80. The actual
I i nk s p eictheZephlyaaocunmemadionAn 8bit CRCfollows the data payloadith
the polynomialbeingOx8C. Thelastbyte isanend of text (ETX)yte It is a constant hex
number of 0x03The packet form is presentedrigure6.1.

For every cormand request, whether from tiwearabledevice or fronthe computer,
there is aesponse messaffem thereceiver The frame format aheresponse is similar to the
request. However, the message ID is different fronttineespondingequestmessage IDAIso,
the last byten therespomseis acknowledgmot acknowledg€ACK/NAK) instead If a message
is correctly receivechnacknowledgmentof 0x06 is in the last byte. If a message is not
correctly receivedan unacknowledgemewf Ox15 is appended.
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Notice that this data franfermatdoes not contaianaddress, because the
communication is intendetd bepointto-point aZephyrBioHarnessan only communicate
with a single data logger. Howevyenultiple Zephyrdevicescancommunicateoncurrentlywith
that samelata loggerln other wordsthe Zephyrtools supporta star configuration network.

Request:
STX Msg ID DLC CRC ETX
Data Payload
Response:
STX Msg ID DLC CRC | ACK/NAK

/’ Data Payload \

Number of bytes in

the data payload Calculated over the

datapayload area

Figure 6.1 Zephyr BioHarnesstransmitting data packet format.

Data packages are encapsulated in Bluetoothetslokfore being transmittg@eeFigure
6.2). More than one communication packet may exighin one Bluetooth packeThe

transmissiorschedulingof theseBluetooth packetis discontinuous and determined by the

Bluetooth prodcol. The Bluetooth encapsulation and decapsulation is processed by the Bluetooth

IC chip onthe Zephyrunit andthe Bluetoothdongleconnectedhe computer. Therefore, when
sending or receiving frormcustomprogram, Bluetooth packet encapsulation isreqtired.
Instead, data are aligned accordinghteir communication packet format and sent via a serial

port.

BT packet BT packet BT packet

Comms Pkt | Comms Pkt Comms Pkt | Comms Pkt | Comms Pkt

Figure 6.2 Data packet encapsulation pocess
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Data Frame

A list of messages used in the GUbgramis presented ifable6.1. The enable and

disable message for every packet are similar. The data packet consists of 1 byte that represents

transmission state: 1 stands for enabled and 0 stands for disabled. A messagedDas

identify which packet to enable or disable. The response from the device has no data payload,

and consequently the DLC byte is 0.

Table 6.1 Messagesisedin Zephyr BioHarnesscommunication.

MessagdD | Message Description
0x14 Set General Data Packet Transmit State | Enable/Disable packet
0x16 Set ECG Waveform Packet Transmit Sta Enable/Disable packet
Ox1E Set Accelerometer Packet Transmit Stat¢ Enable/Disable packet
0x20 General Data (streamip@acket No ACK required
0x22 ECG Waveform (streaming) Packet No ACK required
0x25 Accelerometer Data (streaming) Packet | No ACK required
OxA4 Set BT Link configuration
Table 6.2 Requestmessagdor Set General Data Packet.

Byte/Bit | 7 6 5 4 3 2 1 0 Field

0 STX STX

1 0x14 Msg ID

2 1 DLC

3 Transmission State Payload

4 CRC CRC

5 ETX ETX
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Table 6.3 Responsemessagdor Set General Dda Packet

Byte/Bit | 7 6 5 4 3 2 1 0 Field

0 STX STX

1 0x14 Msg ID

2 0 DLC

3 CRC CRC

4 ACK ACK/NAK

Data packelengths varyfrom packet to packdiecause treedatacan haveifferent
lengths, sampling ratg, and transmission rage~or the ZephyrBoharnessthe sampling rate and
transmission rate are differestpceone data packetancontain multiple dataamplese.g,
ECGand multipleaxis acceleration data. In additidhe data packetfor ECG and acceleration
signak use acompact formathatwraps data toreducethetransmission burden. The are
explained momentarily. Every data packet also contaiimse stamp, facilitatinglata
synchronization from different streams and devidé following list show the sampling @t

and transmission rate of each data packet.

Table 6.4 Sampling rate and transmission rateof Zephyr data packets.

Data packet Sampling rate Transmission rate
General data packet - 1000 ms

ECG data packet 4 ms 252 ms
Acceleration data packet | 50 ms 400 ms

General Data Packet

A general data packet is a comprehensive message that combofabaNital sign
signals and device condition information. It is sent once every secondepetaenteth the
packet include timestamp, heart ratspirationrate, skin temperature, postyaad battery
information. Heart rate is generatitdm anECG signal processed layinternal QRSdetection
algorithm and reflecttherangeof [25, 240 bpm. Posture indicasfront-to-backbody tiltin
degres with respect tahevertical axis. Forward ia positive degree and backwardaieegative
degree. Respiration rateroughly characterizeby breatts per minute. Skin temperature
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measures the temperature whigre@Zephyr unit is attachedNote that for every signal, at least
two bytes of dataxist The concatenation of these bytes is required to interpret theltata.

detailed data pack&rmatfor thedata payloadh agereral data packet is listed Trable6.5.

Table 6.5 General data packet format for the Zephyr BioHarness.

Byte/Bit |7 6 5 4 3 2 1 0 Field
0 STX STX
1 0x20 Msg ID
2 53 DLC
3 Sequence Number (0é255)

4 Timestamp Year (LS Byte)

5 Timestampg Year (MS Byte)

6 Timestam@ Month

7 Timestamg Day

8 Timestamp Milliseconds of day (LS Byte)

9

10

11 Timestamp Milliseconds of day (MS Byte)

12 Heart RatieSHy@é?240)

13 Heart RatieMSByeé 240) Paybad
14 RespirationlRBytte (0e70)

15 RespirationMBBytee (0é€70)

16 Skin TemperialiSiBytee (0é60)

17 Skin TemperiaMSByte (0€é60)

18 Posture{1 8 0 é 1188 Byte

19 Postue ((1 8 0 é 118V& Byte

20 VMU ( 0 &éUS8yte

21 V MU ( 0 éi1MS)Byte

22 Peak Accel eils5tByton (0é16)

23 Peak Accel eiMSByten (0é16)
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24 Battery Voltage

26 Breathing Wave Amplitude

28 ECG Amplitude

30 ECG Noise

32 Vertical Axis Acceleration Min
34 Vertical Axis Acceleration Peak
36 Lateral Axis Acceleration Min
38 Lateral Axis Acceleration Peak
40 Sagittal Axis Acceleration Min
42 Sagittal Axis Acceleration Peak
44 Zephyr System Channel

46 GSR

48 unused

50 unused

52 ROG

53 ALARM

54 Battery Status(see 6.2 below)
55 Button/Worn(see 6.2 below)

56 CRC CRC
57 ETX ETX
ECG signal

The data packet format for thew ECGwaveform is laid out iTalde 6.6. The sampling
rate is 250 Hz and th@ecisionis 10 bit. It takes more thaonebyte to contain one sample.
Instead of usingwo bytes of data to express one sample, leaving thefréstbits to be zero
(unused)the Zephyrunit utilizesa compact form to pack the data continuoushe wapping
pattern is describeid Table6.7. Each ECGnippetcontains 63 samples. Every sample needs to

be reconstructed after being received by the remote terminal.
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Table 6.6 ECG data packet format.

Byte/Bit | 7 6 5 4 3 2 1 0 Field

0 STX STX

1 0x22 Msg ID

2 88 DLC

3 Sequence Number (0é255)

4 Timestamp Year (LS Byte)

5 Timestamp Year MS Byte)

6 Timestam@ Month

7 Timestamg@ Day Payload

8 Timestamp Milliseconds of day (LS Byte)

9

10

11 Timestamp Milliseconds of day (MS Byte)

12 ECG Waveform Data (63 Samples)

91 CRC CRC

92 ETX ETX
Table 6.7 Compact payload format used with theECG data packets.

Byte/Bit | 7 6 5 4 3 2 1 0

0 Bit 0

1 BitO | Bit9

2 BitO | Bit9

3 Bit 0 | Bit9

4 Bit 9

5 As Byte 0 (pattern repeats every 5 bytes).
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Acceleration signal

Sincethe acceleration dataecisionis 10 bis, theacceleration datpackes utilize a
similar data wrapping format éise ECG data packetsexcept ththreechannel data are packed
alternatively.Table6.8 notesthe acceleration data packing format diathle6.9 notesthe

wrapping pattern.

Table 6.8 Acceleration data packet format.

Byte/Bit | 7 6 5 4 3 2 1 0 Field
0 STX STX

1 0x25 Msg ID
2 84 DLC

3 Sequence Number (0é255)

4 Timestamp Year (LS Byte)

5 Timestamp Year (MS Byte)

6 Timestam@ Month

7 Timestamp@ Day

8 Timestamp Milliseconds of day (LS Byte) Payload
9

10

11 Timedampi Milliseconds of day (MS Byte)

12 Accelerometer Data (20 Sample Sets)

87 CRC CRC
88 ETX ETX
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Table 6.9 Compactdata format in the acceleration data packets.

Byte/Bit | 7 6 5 4 3 2 1 0

0 X-Bit 0
1 Y-Bit 0 | X-Bit 9

2 Z-BitO | Y-Bit 9

3 X-Bit 0 | Z-Bit 9

4 X-Bit 9

5 Y-Bit 0
6 Z-Bit0 | Y-Bit9

7 X-Bit 0 | Z-Bit 9

8 Y-Bit 0 | X-Bit 9

9 Y-Bit 9

10 Z-Bit 0
11 X-Bit 0 | Z-Bit 9

12 Y-Bit 0 | X-Bit 9

13 Z-Bit0| Y-Bit 9

14 Z-Bit 9

15 As Byte 0 (pattern repeats every 15 bytes).

Life Sign Signal

A reception timeout mechanism is adoptethmZephyr communication link to detect
communicatiorfossand recovery. The timeout is mutual, meaning the desaods the life sign
signal periodically to the remote termipahd the remote terminal serttie life sign signal to
the deviceboth sidesanrecognizenvhether the other ialive. The timeout period is adjustable
througha BT link configuration messag@xA4). In the situationvhereeither terminal failso
receive a message from the other side over-agiiaed timeouperiod it will close the
connectiorand stop sending further messadeshis situation,lte computewill try to
reconstruct the @nnel to theZephyrunit. The Zephyrunit, however, willwait for the
reconnection from the computer. The default timeout perioth&aZephyrunit is threes second

where it is10 second$or the computerin the GUI, theyare bothset to bezero seconds

53



meaningthatno timeouts availablefor eithersides. This simplifies the dati@nsmissiorand

receptionprocess.

MATLAB GUI

The initial GraphicalUser Interfac€GUI) to receive and display BioHarness data was
created iINMATLAB and is displayed ifigure6.3. This GUIreceiveggeneral packet data as
inputthrough the computer serial pard parses #ccordingly Information such as heart rate,
respiration rate, skin temperatuyaed posture are displayed on thierface Theinstantaneous
values are shown imumeric formand aine plot displays thé0-second trendor each signal.
An adjustableéhreshold is given for each sigrthhtacts as a warning line. When a parameter
exceedshat thresholdthe GUI will display ae&d light otherwisethe light staygreen.Theright
panelcontainsa timerthat displayghe current time syncadslith theZephyrunit. Once the
ASTARTO button i s cl i ckedZephyrurattopansang geaenal packenma n d s
datg andthe interfice begins to store thedata into a text file. In the mean time, ®€ART
button wil STOBhdmugettioong fmand another Aol i ck on
A Eentd bar lists a series of typical activitieghich carhelp the researcher ketrpck of the
duration of each activity. By clickinthei Mar ko butt on, t hewlldbedutect ed ¢
ontheAi Event s HiirmslistiormyMeanplle, thé eveld saved in the output text file.

In the program, request messagee prestoral as a constant vector and are called when
the recorthg session starts. The data exdfion algorithm is shown below.

MATLAB GUI Data Extraction Pseudocode

while( not stop)

{

if( available byte size is 58)

{

read from buffer;
extract time( hour: min: second);

extract heart rate;
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extract respiration rate;
extract skin temperature;
extract posture;
determine the threshold;
wr ite to text file;

update plot;

empty buffer;

Figure 6.3 MATLAB GUI for the Zephyr BioHarness

LabVIEW Interface
The fcond version of the GWasimplementedn LabVIEW (seeFigure6.4), where
the goal waso createan interface thatouldintegratedata from multiple sensors on an extended
sensor network and combitfeemon one screen. LabVIEWrtual instruments (VIs) can be
created usin@ graphial programmingapproach, where functional blocks are connected by lines

that indicatedata flow. Thisapproachmakesit easyto gather data and do simple processing on
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