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Abstract 

Activity recognition can be an important part of human health awareness. Many benefits 

can be generated from the recognition results, including knowledge of activity intensity as it 

relates to wellness over time. Various activity-recognition techniques have been presented in the 

literature, though most address simple activity-data collection and off-line analysis. More 

sophisticated real-time identification is less often addressed. Therefore, it is promising to 

consider the combination of current off-line, activity-detection methods with wearable, 

embedded tools in order to create a real-time wireless human activity recognition system with 

improved accuracy. 

Different from previous work on activity recognition, the goal of this effort is to focus on 

specific activities that an astronaut may encounter during a mission. Planetary navigation field 

test (PNFT) tasks are designed to meet this need. The approach used by the KSU team is to pre-

record data on the ground in normal earth gravity and seek signal features that can be used to 

identify, and even predict, fatigue associated with these activities. The eventual goal is to then 

assess/predict the condition of an astronaut in a reduced-gravity environment using these 

predetermined rules.  

Several classic machine learning algorithms, including the k-Nearest Neighbor, Naïve 

Bayes, C4.5 Decision Tree, and Support Vector Machine approaches, were applied to these data 

to identify recognition algorithms suitable for real-time application. Graphical user interfaces 

(GUIs) were designed for both MATLAB and LabVIEW environments to facilitate recording 

and data analysis. Training data for the machine learning algorithms were recorded while 

subjects performed each activity, and then these identification approaches were applied to new 

data sets with an identification accuracy of around 86%. Early results indicate that a single three-

axis accelerometer is sufficient to identify the occurrence of a given PNFT activity. 

A custom, embedded acceleration monitoring system employing ZigBee transmission is 

under development for future real-time activity recognition studies. A different GUI has been 

implemented for this system, which uses an on-line algorithm that will seek to identify activity at 

a refresh rate of 1 Hz. 
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Chapter 1 - Introduction  

 Activity Monitoring 

Activity monitoring has been an area of interest for many years [1-3]. It is widely applied 

in different applications such as medical care, where patients are monitored by medical staff as 

they perform a series of rehabilitation activities. Patients with special needs, such as the elderly 

or people with autism or Parkinsonôs syndrome, are good candidates for such monitoring 

approaches because they can be physically unstable [4]. In addition, activity monitoring can give 

medical staff a better idea of what the patients are experiencing and help them formulate better 

treatments. Treatment effectiveness and functional improvement can also be measured from 

follow-on patient activities.  

Many people care about their health and their daily activities, and it would be helpful for 

them to keep track of what they do every day and how long they spend on each activity [5]. 

Tools that calculate calorie expenditure based on activity intensity are useful for this purpose and 

can be used to address health problems such as obesity and diabetes that result from a lack of 

activity. Lifestyle feedback presents a means to prod people to get off the couch and start to 

move. 

Astronauts, in the context of this thesis, are potentially other major users for activity 

monitoring technologies. Numerous intra-vehicular activities (IVAs) and extravehicular 

activities (EVAs) can be physically taxing, often requiring astronauts to perform while wearing 

cumbersome space suits [6, 7]. Information about their health status, their physical strength, and 

how they feel is limited and often comes from self reporting. Effects of reduced gravity 

environments on the human body are still largely unknown and must be quantified. 

In many application scenarios that employ activity monitoring, traditional monitoring 

methods require staff to stay with the person to be monitored. A staff member observes and 

records behaviors and activities as they occur. Although this method has a certain level of 

accuracy, it is not widely applicable or scalable due to several drawbacks.  First, it involves 

substantial human labor. Constant attention is required from those who monitor these subjects, 

especially when the activity is irregular and changes quickly. Most of the time, the staff to 

subject ratio is one to one unless the group of people to be monitored is gathered in a certain area 
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and performs similarly. Cost is a leading factor that prevents this approach from being 

widespread.  Second, the accuracy and consistency of the monitoring is not guaranteed. Absence 

of staff is a common cause for incorrect recordings of activity timing and duration. Staff may 

also be unprepared when events need to be recorded.  Third, the data often come in large 

quantities, making them difficult to record and to transfer from paper to paper. Transcribing 

manual recordings to electronic form requires tedious additional work and can add errors.  

One more recent approach uses video cameras and their support computers to do the 

activity detection and monitoring [8, 9]. This method is helpful because it is unobtrusive and 

requires minimal contact between the subject and the staff. Some research efforts have attempted 

to use machine learning to analyze subject motion and automatically determine the behavior of 

the people on these videos. However, these methods do not yet provide sufficient accuracy, and 

monitoring is restricted to small areas [10]. 

The limitations noted above call for new methods to record and assess activities. Context 

awareness computing is a rapidly developing field, and the development of micro-

electromechanical systems (MEMS) accelerometers and wireless embedded systems can help 

expand the popularity and feasibility of wireless human condition monitoring systems [11]. 

Consistent with that theme, acceleration monitoring and analysis systems can be designed to 

address the problems experienced with traditional activity monitoring methods. A layout for such 

a system is depicted in Fig. 1.1. 

 

 

Figure 1.1 System layout for a wireless activity monitoring system. 

 

In this system layout, a sensor board is attached to the body and gathers health data. The 

sensor board then preprocesses the data to get useful information, which is then transmitted 

wirelessly to a coordinator connected to a computer that stores these data automatically. Such a 

Sensor 

Board 

Coordinator 
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system replaces the cost of human labor and can be used 24 hours a day in various situations, 

including medical monitoring for senior citizens. For personal training, for example, this 

approach can be more sensible when compared to some current commercial products, since it 

can provide more detailed information to track the training process and would not require the 

user to enter the activity he or she is doing.  

In terms of the work presented in this thesis, we apply activity recognition to tasks similar 

to those that astronauts would perform when working in space. By monitoring an astronautôs 

behavior, researchers could have a better idea of the work intensity experienced by the astronaut, 

the type of work the astronaut is performing, and possibly their readiness to complete upcoming 

tasks, in order to avoid or respond to problematic situations. This might involve adjusting the 

work load according to the astronautôs performance history so that the tasks assigned to each 

astronaut match their physical condition and have the best chance to be successfully executed. 

 Focus Areas for an Activity Recognition System 

A good activity recognition system should address the following issues, which relate to 

the physical boundaries of the system and the related problem areas.  

 Activity Types 

Numerous human activities take place every day, like sleeping, sitting, walking and 

eating. These activities are divided into two main categories: static activities and dynamic 

activities [12]. During a static activity, the whole body tends to stay in one position without 

moving vigorously. Some examples are standing, sitting, lying down face-up (supine) and lying 

down face-down.  A dynamic activity requires body movement, whether from a part of the body 

(e.g., arm or leg) or the entire body. Some examples are typing on a keyboard, drinking water, 

walking, running and climbing stairs. 

Many activity recognition efforts have investigated different types of activity, including 

daily work activities [13-15] and activities associated with medical conditions [4]. Most of these 

recognition processes address specific daily tasks. For the work presented here, the activities of 

interest are more oriented to special movement patterns that mimic the potential behaviors in and 

around a space station. Details of these activities are addressed in Chapter 2. 
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 Monitoring Methods 

Activity identification can involve three kinds of monitoring approaches:  video 

monitoring, body-attached sensors, and object-attached sensors, all of which have advantages 

and disadvantages.  A video monitor provides a good assessment and record in the presence of 

people, where humans do the recognition by watching the video and manually categorizing who 

is in the video and what he/she is doing. Ambient light, camera placement, lens angle, resolution, 

and what a person wears affect the ability to correctly classify their activities. Sophisticated 

algorithms have been developed to detect if a person exists in the video. Related research focuses 

on detecting falls to the ground. The appearance of certain behaviors varies between people, 

often preventing accurate detection. In addition, it is unrealistic to place a video camera on the 

body or to set cameras in many places to capture a large area, so a video-based approach to 

activity monitoring is best suited for restricted indoor activities. 

Body-attached sensors attract wide research attention [16][17], as they offer portability 

and potential ease of use. Sensors can be placed on different body parts, where popular places 

include the waist, thigh and hip [18]. Movement patterns measured at these locations are similar 

between different people, and small sensor sizes ensure the ability to carry these sensors for long 

periods of time.  

Object-attached sensors are novel in terms of sensor placement [19],  where sensors are 

intended to be attached to many nearby objects so that users are not troubled by the need to wear 

the sensors on their bodies. For example, the authors of [19] present the idea of putting sensors 

on telephones to monitor when people are using these telephones. This idea correlates with the 

idea of an ñInternet of things,ò which would require huge wireless network coverage. However, 

some basic activities such as walking and running are not easily associated with physical, static 

items that can serve as sensor hosts. Besides, when motion is detected by such an object, it would 

be almost impossible to identify which person is performing the activity unless the person also 

has some kind of identification tag attached to him or her.  

 Sensor Types 

Many sensors are appropriate for human monitoring, including accelerometers, 

gyrometers, electrocardiographs, electomyographs, etc. [20, 21]. Previous research shows that 

biological signals such as heart rate are not good classification signals for two reasons [18].  First, 
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the parameter range differs significantly between people. Take heart rate as an example. Some 

individuals may have a very fast heart rate even if they are not doing anything but sitting on a 

chair, whereas some well-trained athletes can maintain a slow heart rate when doing mild 

activities like jogging. Second, these signals can have a large temporal delay, meaning a signal 

does not change instantly as different activities take place. For example, a person who starts 

running has a heart rate increase for a while, but after he stops, the heart rate could stay high 

even though he has finished running and sits down. Even though health parameters are of great 

importance when monitoring, e.g., heart and muscle condition, they are not particularly usefor 

for activity recognition [22]. 

 Sensor Placement 

Sensor placement must effectively support the identification of different body movements 

[13, 14]. Previous studies have investigated many places for these sensors, such as the chest, 

wrist, waist, hip, thigh, and ankle. Both individual sensors and multiple-sensor configurations 

have been analyzed. In general, an increase in the number of sensors helps to raise the accuracy 

of these techniques. For the astronaut context presented here, the limited space in the space suit 

prevents us from placing sensors at will, so the minimum number of sensors that can provide 

data to accurately recognize each activity is desired. Here, we start with a single sensor. 

 Feature Selection 

Well-chosen features provide distinct characteristics of a certain activity [2, 17]. Ideally, 

with only a single feature, an activity can be identified from all others exclusively [14]. However, 

this optimal feature does not exist. Instead, in many cases, the definition of good quality means 

that when a certain feature is applied to different activities, it can help to put these different 

activities into clusters, where within each cluster, the instances of other activities are as minimal 

as possible. 

Time-domain, frequency-domain and wavelet features have been studied previously for 

this purpose [4, 23, 24]. Different feature selection methods are utilized to determine which 

features contribute the most and which are redundant. Features are activity dependent, which 

suggests that for different activities, different combinations of features are needed. In this work, 

we therefore consider a wide range of features and rank them according to their usefulness. 
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 Algorithms 

In an activity-classification context, an algorithm is a tool to distinguish activities from 

one another [25]. Two types of algorithms are generally used to determine activity: threshold-

based classification and machine-learning-based classification. 

Threshold-based classification utilizes a hierarchical structure to form a decision tree. At 

each node, the threshold is based on a value that is manually picked. This kind of classification 

has been useful with real time activity recognition scenarios, and the method is straightforward 

and easy to understand. Its implementation does not require significant programming experience, 

and it can be readily applied to various fields. Usually, the decision tree is designed by the 

researcher to reflect the fundamental features of the different activities. However, it suffers from 

accuracy, and given the multi-dimensional decision space that arises with this method, intuition 

and observations from experience are difficult to apply given the typical three-dimensional space 

within which humans normally function.  Results from such a decision tree can seem random. 

The other type is machine-learning-based classification. The concept is to use 

programming algorithms to find the optimal approach to distinguish different activities. This 

method has been well studied in recent years [15]. Many parametric and non-parametric methods 

are proposed to tackle different situations [26-28].  

We considered both types of algorithms in order to understand which one is more 

effective for PNFT activity identification. 
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Chapter 2 - Planetary Activity Definition  and Data Collection 

 Motivation  

A team consisting of three KSU departments (Kinesiology; Electrical & Computer 

Engineering; and Mechanical & Nuclear Engineering) is engaged in a three-year effort funded by 

NASA entitled ñStandardized óPre-Flightô Exercise Tests to Predict Performance During 

Extravehicular Activities in a Lunar Environment.ò
1
 One primary purpose of this effort is to 

better understand fatigue as it relates to the types of extravehicular activities (EVAs) that an 

astronaut would be expected to complete as a team member on a space station.  Further, the 

investigators seek to identify physiologic mechanisms that could act as precursors for task failure, 

or means to predict the inability of an astronaut to complete a task.  Recent efforts in support of 

these goals involve the design of a set of exercises, or field tests, that mimic the types of EVAs 

that astronauts would be expected to perform [29-31]. Electromyographic (EMG) data analyses 

traditionally play an important role in the determination of fatigue in such applications.  Such 

EMG data, coupled with heart rate, acceleration, and metabolic data (oxygen consumption 

extracted via inspiration/expiration masks) have formed the centerpiece of the teamôs data 

analysis strategy when assessing movement and fatigue.  Late in the first year of this effort, team 

members began a more careful assessment of accelerometer data as an activity parameter, not 

only with the thought of using accelerometer data to indicate activity type and duration, but also 

as a potential means to supplement (or serve as a surrogate to) EMG data in the context of 

fatigue analysis.  This chapter summarizes these field test activities and the efforts to collect 

accelerometer data from subjects that engaged in these field tests.  

 Activity  Definition 

Six Planetary Navigation Field Test (PNFT) activities were designed to simulate EVAs 

that might be performed by astronauts housed in a space station [32, 33],.These six tasks, 

                                                 

1
 ñStandardized óPre-Flightô Exercise Tests to Predict Performance During Extravehicular Activities in a Lunar 

Environment,ò Research and Technology Development to Support Crew Health and Performance in Space 

Exploration Missions, NASA Human Research Program, Exploration Systems Mission Directorate, Johnson Space 

Center, Houston, TX, 7/1/2010ï6/30/2013. 
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described in Table 2.1, serve as the standard activities, or classes, that need to be recognized by 

the classification algorithms investigated during this study. These tasks differ from regular daily 

activities and involve different movement patterns and intensity. The activities are depicted in 

Figure 2.1 through Figure 2.6.  Each activity is designed to mimic a task an astronaut would 

perform during an EVA and also quantify a necessary area of functional ability. For example, the 

Step-Entry Maneuver simulates the actions an astronaut would take when they enter or exit the 

space station through a small opening. Bending of the body and jumping is required when 

moving. The Agility Cones test an astronautôs ability to rapidly change direction. 

 

Table 2.1 Planetary Navigation Field Test Activities 

1 Ladder Climb 
Subjects ascend a 12-foot ladder, walk across the top of the platform, 

and descend on the other side 

2 Agility Cones 
Subjects move forward and backward through six cones, always 

facing forward 

3 Stair Climb Subjects climb a set of stairs and then descend the stairs backwards 

4 Horizontal Climb Subjects climb horizontally along a wall using hand and foot grips 

5 Equipment Lift 

Subjects lift two 10 lb and two 20 lb equipment boxes from waist- to 

eye-level and from ground- to waist-level, respectively, then lower 

them in reverse order to the starting position 

6 
Step-Entry 

Maneuver 

Subjects move laterally and periodically step over ropes and duck 

under poles to simulate stepping over and under a hatch entry 

 

Some of these activities share similarities. The ladder climb and stair climb both involve 

climbing movements and rely on leg muscles, but the stair climb requires a slight forward 

movement. Such similarities create complexity when trying to distinguish one activity from 

another. Since these tests are intended to evaluate astronautsô abilities and fatigue, they are 

intentionally designed to be intense. Energy expenditures may be larger than with most daily 

activities but similar between the PNFT activities themselves.  
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Figure 2.1 Ladder climb field test. 

 

Figure 2.2 Agility cones field test. 
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Figure 2.3 Stair climb field test. 

 

 

Figure 2.4 Horizontal climb field test. 
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Figure 2.5 Equipment lift field test. 

 

 

Figure 2.6 Step-entry maneuver field test.. 

 

In addition to the above tasks, three regular activities are also included in the tests. They 

are standing, walking and running [34] ï see Table 2.2.  These tasks serve three purposes.  First, 

since they are daily-life activities, the classification accuracy for these three activities can be 

compared to the classification accuracy for the PNFT activities. Second, these activities are less 

intensive, yet they differ greatly in character from each other, so they also serve as a stepping 

stone when dealing with real-time activity recognition. In addition, theyôre helpful since during 
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the PNFT, subject need to move from one station to next station by running or walking, so 

theyôre the transition and if the process is continuous, they need to be identified too. 

 

Table 2.2 Other standard activities included in the tests. 

7 Stand Subjects stand still 

8 Walk Subjects casually walk around a big circle at normal pace 

9 Jog Subjects jog around a big circle at normal pace 

 Accelerometer-Based Sensing and the Zephyr BioHarness 

This study focuses on motion and position sensors. Sensors belonging to this category 

include accelerometers, gyrometers, magnetic sensors and GPS sensors. A magnetic sensor 

utilizes the natural magnetic field of the earth, and a GPS sensor reports latitude and longitude of 

a location. Both of these will be useless when an activity is performed in space. This work 

therefore migrated toward accelerometer- and gyrometer-based devices.  To keep the system 

simple, a three-axis accelerometer was chosen to be the sensor for activity recognition. It 

measures acceleration in three directions:  vertical, sagittal, and lateral. An accelerometer is 

regarded as the best motion indicator in previous papers and has been well-studied [35-37]. 

Accelerometers are excellent activity indicators for these reasons:  

1. Different activities exhibit different motion directions, intensities, and patterns; these 

are reflected in the acceleration data.  

2. Acceleration reflects instant motion.  

3. An accelerometer does not require the sensor to be firmly fixed to the skin. This 

makes an accelerometer an ideal sensor when skin contact is prohibited or difficult 

(e.g., when an astronaut wears a space suit). In fact, some efforts require a loosely 

placed sensor, as in a pocket, where the orientation of the sensor may change and a 

calibration routine is periodically required [38].  

4. The sampling rate is not high. In the case of human motion, acceleration data are not 

required to be sampled at even hundreds of hertz, since body motion cannot achieve 

these frequencies naturally. In the literature, sampling frequencies of 25, 50, and 128 

Hz are adopted, and these systems are capable of classification. In contrast, an EMG 

signal which reflects muscle electrical activity requires the sampling frequency to be 
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as high as 1000 Hz to fully capture this behavior. This low-frequency trait is 

favorable, since fewer transmission data mean lower power consumption.  

The first activity recognition experiment used the Zephyr BioHarness [39], shown in 

Figure 2.7. The BioHarness is a wireless health monitoring device that can record various signals, 

such as three-axis acceleration, heat rate, posture, skin temperature, and ECG. The accelerometer 

samples at 50 Hz, and the maximum measurable acceleration is 8 g. The device is attached to the 

chest using an elastic strap, and the sensor is on the left side of body. Bluetooth is the wireless 

data transmission protocol. It ensures a 100 m transmission range. 

 

 

Figure 2.7 Zephyr BioHarness  

 Data Collection 

Data were collected over two time intervals using volunteers recruited on campus.  This 

work was performed with the oversight of the KSU Human Studies Board under protocol 5466. 

 First Data Collection Effort  

The first data collection effort focused on four subjects. Two subjects finished all six 

activities, while the other two subjects finished five activities, leaving the horizontal climb out. 

For each task, the duration was less than one minute. The Zephyr BioHarness was attached to the 

left side of each subjectôs chest, and the tasks were performed in a supervised environment inside 

Ahearn field house on the KSU campus [31, 40]. During a normal field test of this type, each 

task is performed once per cycle, and the duration of that task is short ï often a couple of seconds. 

In addition, after finishing an activity, a subject is required to run for a short distance to the next 

task station; this ambiguous task separation adds an additional burden to the classification 

process. Therefore, new training sets of data for each activity were acquired separately, with one 
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person performing each task repeatedly for about 1 minute. Each piece of the data is clearly 

labeled by activity and used for classification and identification. 

 Second Data Collection Effort  

The second data collection effort was conducted to gather more data from different 

people and to record the data in a free-form manner. Ermes et al. [41] noticed that, when 

applying a supervised-data-trained classifier to unsupervised data, the accuracy decreased by 

17%, while the mix of two sets of data helped to maintain a higher classification accuracy. Data 

from five people (four male and one female) were collected. Each person repeated each task for 

two minutes. Instructions were given to each subject before each task due to the uncommon 

nature of these tasks. However, no specific instructions were given regarding speed, posture, etc. 

For example, subjects were asked to jog at a ñcomfortableò speed. When stair climbing, they had 

the freedom to put their hand on the side rail.  Subjects were given time to rest in-between tasks 

so that they could return to a rested state, since short-time fatigue may cause these behavioral 

motions to differ. Throughout the process, subjects were informed to keep a relative moderate 

heart rate and to stay comfortable during the session.  

A Zephyr BioHarness was used and placed at the same location as in the first data 

collection session. Along with Zephyr BioHarness, six wireless sensors from a Delsys Trigno 

system [42] were placed on different muscle groups. The Delsys Trigno is a surface EMG system 

that records EMG signals and acceleration. EMG sensors are attached to the body using an 

adhesive film and a medical wrapper. The sampling rate of the sensor was 1 kHz for both the 

EMG and three-axis acceleration signals. Due to symmetry, all sensors were placed on the left 

side of body. The sensor locations and target muscle groups are listed in Table 2.3. 

 

Table 2.3 Delsys Trigno sensor locations and target muscle groups. 

1 Chest ï Pectoralis Major 

2 Antebrachium ï Flexor Digitorum Superficialis 

3 Brachium ï Biceps Brachii 

4 Shoulder ï Deltoid 

5 Thigh ï Vastus Lateralis 

6 Leg ï Gastrocnemius 
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Chapter 3 - Feature Extraction 

A single sample of acceleration data does not reflect an activity, as an instant acceleration 

may exist in any type of activity. Instead, a continuous series of data gathered in a time window 

presents more facets of an activity. Within the window, some information elements, called 

features in a machine learning context, can be generated, such as the average value or the rate at 

which a signal changes. The set of features is used to determine which activity the current 

activity is likely to be. For this work, time windows are selected to be two seconds long, with a 

sliding-window overlap of 50%.  

As mentioned in Chapter 1, there are two types of features that can be extracted from the raw 

data:  time-domain and frequency-domain features. Wavelets have also been introduced as a new 

type of feature [43]. However, recent studies indicate that wavelets may not perform as well as 

frequency-domain features [23], so wavelet features are not included in this feature space.  This 

work presents 25 time-domain and frequency-domain features as an initial effort. The utility of 

each feature is not studied here, but rather will be examined later. 

 Time Domain Features 

Time domain features include mean, variance, correlation, covariance, signal magnitude 

area (SMA) and signal magnitude vector (SMV).  The mean value represents the average 

acceleration on each axis over the window slice. In a rough sense, it is used to describe the DC 

component of the signal and is calculated as 

 

 
i

t
i

a

E
T

=
ä

 (3.1) 

 

where ia is an acceleration sample and T is the length of the time window. Results for the three 

axes are depicted as box plots in Figure 3.1. In the plot, the box is centered at the mean of the 

data, and its edges represent the 25
th
 and 75

th
 percentiles. The whisker is extended to 1.5 times 

the interquartile range (IQR). Instances outside of the whisker are indicated using a red plus sign. 

The values are grouped by activity type from 1 to 9.  
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Figure 3.1 Mean acceleration values for the three accelerometer axes. 

 

The variance feature is the second moment of the signal. It measures how widely the 

signal deviates from its mean value. In terms of acceleration, it indicates how rapidly the signal 

changes and how far it deviates from the mean value. A dynamic activity has larger variance 

than a more static activity. It is calculated as 
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 (3.2) 

 

Figure 3.2 delineates the variance on the three axes. Some higher-order moments like skewness 

and kurtosis can describe the shape of the data in more detail. 
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Figure 3.2 Variance on the three acceleroimeter axes. 

 

The correlat ion coefficient denotes the linear relationship between two signals and spans 

the range [0,1].  The correlation coefficient is large when one signal is linearly related to another 

signal. Otherwise, it is a small number. When an activity contains concurrent movement in two 

directions, the correlation between the accelerations on these two axes may be a large value. This 

can help to separate activities with motion in multiple directions from those with only single-axis 

movement. The correlation coefficient for discrete signals from two axes is 
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Correlation coefficients for three axis combinations are illustrated in Figure 3.3. 
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Figure 3.3 Correlation  coefficients for three axis combinations. 

 

Similarly, the covariance of signals from two axes is 
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. (3.4) 

 

Covariance values for three axis combinations are shown in Figure 3.4.  
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Figure 3.4 Covariance values for three axis combinations. 

 

Aside from single-axis features, some time-domain features consider the combination of 

accelerations from three axes. Based on the calculation method, they can be categorized as first-

order and second-order calculations. 

A first-order calculation is basically the sum of the absolute value of the data obtained on 

each axis. The average of the summed acceleration in a time window is called the Signal 

Magnitude Area (SMA) in the literature [44] and is defined as  
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The SMA has mostly been used during real-time classification to replace computationally 

costly calculation of frequency-domain features, due to the similarities found between SMA and 

power [38]. The results for these field tests are depicted in Figure 3.5. 
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Figure 3.5 SMA values for the different activities. 

 

The second-order calculation is the Euclidian distance of acceleration on three axes. It is called 

movement intensity (MI)  [24] and signal magnitude vector (SMV)  [44]. For consistency, it is 

called SMV here:   

 

 2 2 2( ) ( ) ( )x y zSMV a t a t a t= + +  (3.6) 

 

The mean and variance of the SMV are calculated in the same manner as in the previous 

definition. Since SMA is the simple summation of the magnitudes of the accelerations, SMA 

weighs them equally. SMV emphasizes the weight of the larger acceleration by the power of two. 

Figure 3.6 displays the result for these field tests. 
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Figure 3.6 Mean and variance of the SMV. 
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 Frequency Domain Features 

Frequency-domain features include energy, spectral entropy, dominant frequency and 

average energy. To extract a frequency-domain feature, the signal needs to be processed with a 

Fourier Transform to calculate its frequency-domain spectra. A Fast Fourier Transform (FFT) is 

applied to each time window to accomplish this transformation. One thing to note is that, since 

the time window is relatively short, the resultant spectrum may be altered due to the finite signal 

duration. To compensate for this drawback, the original data are multiplied by a Hamming 

window function, illustrated in Figure 3.7. The window attenuates the signal on the edges of each 

interval and accentuates the data toward the middle of each interval. 
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Figure 3.7 Hamming window with a width of 50 samples. 

 

Energy is calculated to determine activity intensity. For a highly intense activity, such as 

running or stair climbing, more energy would be consumed by the body when compared to an 

activity such as sitting or lying down. Since the accelerometer was attached to the chest of each 

subject, only torso movement can be assessed with a reasonable level of fidelity, so limb 

movement is not considered unless it transmits energy to the whole body. This is one limitation 

of using a single accelerometer. However, in tight surroundings like a spacesuit, the use of a 

single accelerometer reduces the subject burden and is more realizable. 
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Spectral energy is obtained by calculating the Power Spectral Density (PSD) of the 

spectrum. A one-sided PSD is calculated using the formula 

 

 
2

( , ) ( , )p i j k s i j=  (3.7) 

 

where s is the short-time FFT of the signal and coefficient 
2

s
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ä
, where fs is the 

sampling frequency (50 Hz in this study). At 0 Hz and the Nyquist frequency (25 Hz), the factor 

of 2 in the numerator is replaced by 1 since, on the boundary, only a single FFT coefficient exists. 

The vector w(n) holds the weights for the Hamming window, and L is the (integer) window 

length.   Energy is the sum of the PSD across all the frequencies calculated with the FFT: 

 

 ( , )E p i j=ä . (3.8) 

It is depicted in Figure 3.8. 
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Figure 3.8 Energy for each of the three axes. 
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Spectral entropy is used to describe the distribution of the frequency-domain signal. 

Information entropy as proposed by Claude Shannon in 1948 was originally used to indicate the 

predictability of a series of information [45]. Easily predictable information contains less entropy, 

while an information stream that seems more random carries higher entropy. This concept maps 

to physical entropy, which describes the state of randomness for matter in the universe. 

Information entropy is calculated as 

 

 2( ) ( ) log ( )
x X

H X P x P x
Í

=-ä , (3.9) 

 

where P(x) is the probability of obtaining each element. For a frequency-domain spectrum, the 

spectral entropy can determine whether a type of activity contains similar energy exertion across 

the spectrum or just focuses on particular frequencies. In other words, it can distinguish activities 

with rhythmic pace from those with irregular movement. The same formula is applied when 

calculating spectral entropy, where p(x) is the PSD of each frequency divided by the total energy. 
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=  (3.10) 

 

Spectral entropy on three axes is shown in Fig 3.9. 
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Figure 3.9 Spectral entropy on three axes. 

 

The dominant frequency is the frequency at which the PSD magnitude has the 

maximum value. It is the fundamental frequency for the signal. In periodic activities like running, 

the dominant frequency usually resides in the frequency range of ~[0.5,2.5] Hz and is calculated 

as 

 

 argmax( ( ))
f

F P f=  (3.11) 

 

The box plots in Figure 3.10 indicate that for most activities, the dominant frequency is around 0 

Hz. This is due to the large DC offset in the time-domain data.  
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Figure 3.10 Dominant frequency for the acceleration data on the three axes. 

 

Average energy considers the combination of the energy on the three axes: 

 
3

x y zE E E
E

+ +
= . (3.12) 

Average energy is shown in Figure 3.11. 
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Figure 3.11 Average energy. 
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Chapter 4 -  Feature Selection 

The feature sets from the previous chapter need to be validated for their usefulness.  This chapter 

focuses on the feature selection, or the process of choosing the most helpful features.[17].  

Useless features can exist in two forms. They may be redundant and provide no new information 

given the existing features. Others may be irrelevant and may not help to associate data with a 

certain class according to a decision rule. Redundant features can add unnecessary weight to an 

aspect of the signal while diminishing the ability of other features to be telling, whereas 

irrelevant features can confuse the machine learning algorithm and may reduce the resulting 

accuracy. Both types of features should be eliminated from the classification process. 

Feature selection is a common way to deal with this situation. It not only eliminates the 

useless features, but it also helps to reduce the feature space dimension. The learning algorithm 

may benefit from a smaller feature space dimension in several ways. First, as the feature space 

dimension decreases, the complexity of the machine learning process is reduced. Second, noisy 

feature data often lead to over-fitting, and the purification of features can reduce this tendency 

and control the generalization of the result. Third, a smaller feature space dimension is easier for 

a person to interpret. 

 Feature Selection Methods 

In general, two kinds of feature selection methods exist: wrapper methods and filter 

methods. A wrapper method searches through all of the feature subsets exhaustively and 

compares the effectiveness of each of them, returning the subset with the best classification 

result [46]. This method is targeted at a certain classification approach and is subject to change 

when given a different algorithm. While this exhaustive approach provides the best subsets 

possible, the method is computationally costly. Given 25 features, the number of subsets is 2
25

 = 

33,554,432. Considering the time taken to calculate the result for each subset, it is not realistic to 

work with such a high dimension space.  

An alternative is a filter method. This method uses a proxy measure to determine the 

similarity between feature space subsets. The proxy measures can be various. Common measures 

include forward selection and backward elimination. Both algorithms use a greedy search 

method to select a local optimal feature and add/subtract it to/from the subset before calculating 
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a new error rate. This step is repeated until the error rate stops decreasing or increasing. The 

resulting subset is the selected feature set.  

 The Filter  Method 

The filter method was selected for feature selection in this effort. Several filter criteria 

need to be addressed: starting point, search organization, evaluation strategy, and stop criterion.  

 Starting Point  

The starting point determines the beginning feature subset. In general, two approaches are 

widely applied, namely forward selection and backward elimination. Forward selection, as the 

name suggests, starts with an empty subset. As the search progresses, features are added to the 

subset. On the contrary, backward elimination starts with a full feature set and eliminates 

features one by one, where the feature that contributes the least to the accuracy is removed at 

each iteration.  

 Search Organization  

An exhaustive search will  find the optimum feature subset, since it searches through all 

of the possible subsets. However, it suffers from a large computation time since the number of 

subsets is 2
N
, where N is the number of features. A better strategy, called a heuristic search, can 

be effective. This search method does not exhaustively evaluate all of the subsets but rather 

constructs a subset using a certain criterion, called a heuristic function. This strategy cannot 

guarantee that the subset it finds is the best global solution, but it does find an optimal local 

solution. 

One of the most commonly applied search strategies is a greedy hill climb. A greedy hill 

climb algorithm moves through the feature space while looking for the best feature at each step. 

After examining the error rate of each feature in the remaining pool, the best one is selected, and 

if adding it to the subset reduces the error rate, then it is included in the subset. This process 

repeats until the error rate stops decreasing or decreases by a trivial amount. The process is 

shown in Figure 4.1. This method cannot backtrack, so when the error starts to increase, the 

algorithm terminates the loop and declares the best subset it finds. A pseudo-code description is 

shown below.  
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Figure 4.1 Forward selection and backward elimination feature searches. 

 

Greedy Hill Clim b Pseudocode  

 

s = start state  

expand s by making each possible local change  

evaluate each child t of s  

let s = feature t with highest evaluation e(t)  

i f e(sô) >= e(s)  

s= sô 

repeat  

else return s  

 

To overcome this drawback, an improved method is proposed ï a best first search 

algorithm. A best first search uses similar means to move through the search space. However, in 

this algorithm, the evaluations are stored in a bin instead of being discarded, and the algorithm 
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{ 1 2,f f }  
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}  

 

{ 1 2,..., ,n nf f f- }  

 

{ 2,..., nf f }  

 



29 

 

has the ability to backtrack to previous nodes when a current node does not provide an improved 

result for reducing the error. A pseudo-code description is listed below 

 

Best First Search Pseudocode  

 

s = start state  

expand s by making each possible local change  

evaluate each child t of s  

let s = feature t with highest evaluatio n e(t)  and save all 

other ts to stack in ascending order  

i f e(sô) >= e(s)  

s= sô 

find the first t in stack and repeat  

else return s  

 

 Evaluation Strategy 

As seen in the above algorithm, the evaluation function e(x) is needed to judge the 

effectiveness of the subset. When a filter method is adopted, heuristics are used as evaluation 

functions. We use two evaluation methods to determine the usefulness of a feature. They are 

correlation-based feature selection and consistency feature selection.  

Correlation-based feature selection uses a correlation evaluation function [47]. It is 

written as 

 

 
( 1)

cf

s

ff

kr
M

k k k r
=

+ -
 (4.1) 

 

where sM is the correlation between the feature subset and the activity, cfr is the average 

correlation between the components and the activity, ffr is the average inter-correlation between 

components, and k is the number of components. This is derived from the Pearson correlation 

coefficient [48], where all variables have been standardized. 
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In the consistency feature selection  method, the usefulness of the features space is 

defined by inconsistency [49]. This measure characterizes the range of the feature values in 

instances of the same label. It is calculated by using the filtered version of Las Vegas Algorithm 

(LVF) algorithm as follows. 

a. Two instances are considered inconsistent if they match except for their class labels. 

b. Consider all instances with a matching feature. The inconsistency is measured by the 

number of non-majority labels. 

c. The inconsistency rate is calculated as inconsistency counts divided by the total 

number of instances. 

A pseudo code for the algorithm given in [49] is shown below. 

 

LVF Pseudocode  

 

for i = 1 to MAX_TRIES  

 S = randomSet(seed);  

 C = numOfFeatures(S);  

 if(C <Cbest )  

  if(InconCheck(S,D)<ɔ) 

   Sbest  = S; C best =C;  

   print_Current_Best(S)  

 else if(C=C best ) and (InconCheck(S,D)<ɔ) 

  print_Current_Best(S)  

end for  

 

 Stop Criterion  

For a heuristic search, a stop criterion is needed to ensure that the algorithm loop 

terminates properly. One stop criterion can be when the heuristic merit does not increase after 

more features are added to the subset. Alternatively, it can continue searching until the merit 

starts to decrease. In our test, we set the consecutive non-improving nodes allowed to be five. 

When no improvement shows up after five nodes, the search terminates. 
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 Feature Selection Result 

Using the correlation-based feature selection approach with the best first search algorithm, 

the following results are obtained: 

For forward selection, the feature subset is: 

[ mean_x, mean_y,mean_z, variance_x, variance_y, variance_z, 

covariance_yz, covariance_zx, correlation_xy, SMA, mean_SMV, 

variance_SMV , energy_x, energy_y, energy_z, entropy_x, 

entropy_y, entropy_z, DF_z, average energy ]  

For backward elimination, the feature subset is 

[ mean_x, mean_y, mean_z, variance_x, variance_y, variance_z, 

covariance_yz, covariance_zx, correlation_xy, SMA, mean_SMV, 

variance_SMV , energy_x, energy_y, energy_z, entropy_x, 

entropy_y, entropy_z, DF_z, a verage energy]  

These features are regarded as relevant and non-redundant features that can help to 

identify different classes. Notice that there are 20 features that are selected, meaning that most of 

the features contribute to the correctness of the classification. Both forward selection and 

backward elimination indicate the same result, which suggests that this method is robust and not 

influenced by the direction of the search. The following features were discarded:  

[ covariance_xy, correlation _yz, correl ation_zx, DF_x, DF_y]  

The dominant frequencies on the x and y axes were not selected in this subset, mainly 

because most of them are located at the minimum frequency. Since the DC offset is not 

eliminated when doing a short-time FFT, the majority of the energy gathers near 0 Hz, no matter 

what activity it is. Covariance and correlation are related, so for each axis only one value is 

chosen from the pair. 

Now we use the consistency feature selection and best first search methods as another 

means to select features. The results from consistency evaluation are given below. 
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For forward selection 

[ mean_x, mean_y, mean_z, variance_x, variance_y, 

covariance_xy, covariance_yz, covariance_zx , 

entropy_x ,entropy_y]  

For backward elimination 

[ correlation_y, correlation _z, MEAN_SMV, variance_SMV , 

energy_y, energy_z, entropy_x, e ntropy_y, entropy_z, DF_y, 

DF_z]  

A big difference exists between the forward selection and backward elimination results.  

The above methods can help to pick out the redundant and irrelevant features, but they do 

not provide information on how each feature is evaluated. Information gain can be used as a 

gauge to rank these features, where information gain is expressed as 

  

 ( , ) ( ) ( | )IG Y X H Y H Y X= - . (4.2) 

 

Here, H(Y) is the information entropy and H(Y |X) is the entropy of Y given the observation X. In 

our context, Y is a certain activity class and X is a given feature from the feature space. H(Y |X) is 

calculated using the following formula: 

  

 2( | ) ( ) ( | ) log ( ( | ))
x X y Y

H Y X p x p y x p y x
Í Í

=-ä ä  (4.3) 

 

A higher information gain means a larger difference relative to entropy when provided with the 

feature versus without the feature. If a feature is randomly distributed, then it will not provide 

any information for determining a class.  In that situation, H(X) and H(Y |X) are the same, and 

the information gain is zero. The following chart gives the information gain for each feature, 

ranking them in descending order.  
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Table 4.1 Information gain evaluation results. 

Rank Feature Score 

1 Average energy 1.61629 

2 variance_SMV 1.61115 

3 variance_x 1.58037 

4 energy_x 1.56769 

5 variance_y 1.2927 

6 energy_z 1.27799 

7 variance_z 1.25817 

8 energy_y 1.12749 

9 mean_SMV 1.1168 

10 covariance_yz 1.05396 

11 covariance_zx 0.95493 

12 entropy_x 0.92993 

13 mean_z 0.91406 

14 mean_x 0.87198 

15 SMA 0.8623 

16 covariance_xy 0.85204 

17 DF_z 0.74763 

18 mean_y 0.65556 

19 correlation_yz 0.55839 

20 entropy_y 0.48753 

21 entropy_z 0.39736 

22 correlation_zx 0.31158 

23 DF_y 0.22772 

24 correlation_xy 0.20589 

25 DF_x 0.00695 

 

According to this listing, energy, variance and physical features like variance_SMV offer 

large information gain, while dominant frequency (DF_*) and correlation offer lower 
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information gain. Features from the time domain and the frequency domain have both high and 

low values, implying that both types of features are needed for accurate activity classification. 

The gain-ratio-attribute ranking method was applied for comparison. The results are 

shown in the following table. The gain-ratio approach evaluates the worth of an attribute by 

measuring the gain ratio with respect to the class. It is calculated as 
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Results from the gain ratio method are shown in Table 4.2. The result is similar to 

the one from information gain attribute evaluation method, where energy and variance are 

ranked on top and correlation and dominant frequency are ranked on the bottom.  
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Table 4.2 Gain ratio evaluation results. 

Rank Feature Score 

1 energy_x 0.4727 

2 Average energy 0.4633 

3 variance_x 0.4374 

4 variance_SMV 0.4244 

5 variance_z 0.3948 

6 mean_SMV 0.3884 

7 energy_z 0.3686 

8 variance_y 0.3455 

9 DF_z 0.34 

10 energy_y 0.3178 

11 entropy_x 0.2899 

12 covariance_zx 0.2781 

13 covariance_yz 0.2777 

14 SMA 0.2703 

15 mean_z 0.2683 

16 mean_x 0.2662 

17 covariance_xy 0.2457 

18 DF_x 0.2189 

19 DF_y 0.2107 

20 mean_y 0.1878 

21 entropy_y 0.1808 

22 correlation_yz 0.1776 

23 entropy_z 0.1667 

24 correlation_zx 0.121 

25 correlation_xy 0.0864 
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Chapter 5 - Activity Classification 

Machine learning plays an important role in activity recognition. Many different 

algorithms exist for different applications, but no one particular algorithm is generally dominant 

for a given application. This chapter addresses the examination of multiple algorithms to find the 

algorithm that works the best for these data sets and can satisfy the real-time algorithm 

requirement. 

 Machine Learning Algorithm s 

Machine learning algorithms can be divided into three primary types: supervised learning, 

unsupervised learning, and reinforced learning [25]. Supervised learning takes instances with 

labeled outputs as the training data. The learning algorithm compares the decision results with 

the labels to adjust the parameters in the decision function. Punishment is given when the 

decision and the actual label are different. Unsupervised learning uses unlabeled data for training. 

The algorithm is not informed whether the output is correct or not. The algorithm is built upon 

the concept that data with identical labels tend to conglomerate in some particular space. 

Clustering is a common idea for this type of learning, in which the number of classes is given, 

and the algorithm iterates until the centroids of every cluster are found. Measurements for 

centroids vary from scenario to scenario. Reinforced learning exists somewhere in between, 

where no labels in the training data are given, but the algorithm receives the correctness of each 

decision. The correctness is given as a Boolean variable, where correct is 1 and incorrect is 0.  

Recent research suggests another type of training algorithm, referred to as semi-

supervised learning [50-52] . It is a combination of supervised and unsupervised learning that 

utilizes a half-blind learning process. Initially, a small portion of labeled data is provided to the 

algorithm for training purposes. However, following the process, a large quantity of data with no 

labels is fed to the algorithm to help refine the classification function. This is often used when 

labeling data is tedious and cumbersome or labeled data are impossible to get.  

For activity recognition, the ability to obtain labeled data allows us to use supervised 

learning. This type of learning has a faster convergence rate and provides better results. Four 
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different classification algorithms are compared:  Naïve Bayes, k Nearest Neighbor, Decision 

Tree, and Support Vector Machine.  

 Naïve Bayes 

The Naïve Bayes algorithm assumes the data have a Gaussian distribution, and the 

method is trained based on this assumption [53]. It utilizes the Bayes formula: 
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where jw  is the class and x is a feature value. It states that we can deduce the conditional 

probability that a feature value is part of a class given prior knowledge of the probability 

distribution of the feature value, the probability distribution of the class, and the conditional 

probability distribution of a feature value in a certain class. ( | )jP x w  is called likelihood, ( )jpw  

is the a priori probability, ( )p x  is the evidence, and ( | )jP xw is the a posteriori probability. The 

formula expressed in word form is 
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For a feature space including more than one feature, the likelihood is modified into 

  

 ( | )jp wx  (5.3) 

where 

  

 1 2 ... nx x x=x  (5.4) 

 

An important assumption in Naïve Bayes classification is that features are conditionally 

independent from each other given the class. It simplifies the probability condition in that joint 

probability is zero and likelihood becomes the product of individual probabilities: 

  

 1 2( ... | ) ( | )n j i j
i

p x x x p xw w=P  (5.5) 
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For discrete or nominal features, the probability is equal to the number of specific 

instances over the total number of instances. For a numeric feature, the distribution is assumed to 

be Gaussian (which is true for most of these data),  so the distribution then can be represented 

with a mean and standard deviation. The probability of a given value is calculated from the 

probability density function: 
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where sis the standard deviation and m is the mean of the distribution. Here we ignore the 

missing feature value scenario as every feature is assigned to a value in a given instance. 

For a given classification problem, the a posteriori probability indicates the likelihood of 

the instance belonging to a class for a given set of features. Therefore, the need to determine the 

class converts to finding the maximum conditional probability: 
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where j represents the class and J is the total number of classes. 

It is clear that evidence is a constant number since it is the combined probability 

distribution for all of the classes. Therefore it can be neglected while doing the calculation. The a 

priori  probability is the likelihood that a class is present. This is a scenario-specific number and 

changes according to the real situation. In a daily activity classification problem, classes such as 

sitting and walking have a higher probability than climbing stairs or running, because they 

happen more often. In the case of the PNFTs, activities are performed in a sequence. Therefore 

the probability for each activity is roughly the same and can also be neglected.  

The classification results obtained using the Naïve Bayes approach are represented as 

confusion matrix in Table 5.1.  In this matrix, each row represents the true activity, and each 

column represents the classified activity (algorithm result). 
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Table 5.1 Confusion matrix obtained from Naive Bayes PNFT classifications. 

 Classified As 

Activit y a b c d e f g h i 

a-Agility Cones 513 0 0 12 20 0 0 0 103 

b-Ladder Climb  3 260 37 36 7 240 0 66 0 

c-Equipment Lift  1 42 333 7 11 238 4 2 0 

d-Step Entry 28 150 1 344 10 8 0 71 0 

e-Stair Climb  36 51 32 14 501 1 1 0 2 

f-Horizontal Climb  2 22 7 9 0 601 5 10 0 

g-Stand 118 0 0 0 0 6 393 1 0 

h-Walk 3 5 0 9 0 8 0 633 0 

i-Run 60 1 0 4 2 0 0 0 602 

 

Accuracy is calculated as the ratio of the trace of the matrix to the sum of the entire 

matrix. 
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Based on the recognition results, the overall accuracy obtained from the Naïve Bayes classifier is 

73.51%. 

 K Nearest Neighbor 

The k Nearest Neighbor method uses a ñlazyò approach to the problem, where the 

decision making process is delayed until the data that need to be classified are present. The 

program pre-stores a group of labeled data in memory. When the new data arrive, the program 

calculates the distance of the coming data relative to the existing data, finds the closest k 

instances, and labels the data with the majority classes in the k instances, where k is an integer 

ranging from 1 to N. This kind of classification process is also called instance based learning 

(IBL) because it makes a decision based on direct feature information from the instances instead 

of generalizing a set of rules or a decision tree. 
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Distance can be evaluated in various ways. Two common metrics are the Manhattan 

distance and the Euclidean distance. The Manhattan (a.k.a., taxicab) distance between two points 

is the sum of the absolute differences of their coordinates: 

 

 1( , ) i i
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The Euclidean distance is the distance in Euclidean space. It equals the square root of the sum of 

the squared differences: 
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The square root process is often ignored due to the computation time required. This does not 

affect the results when comparing these distances. 

An issue emerges when the distances are not equal among all of the features. Features 

with large differences will dominate the distance-based decisions, and those with small 

differences may not show enough impact on the equation. To equalize the effect of each feature, 

normalization is applied to the feature: 

 

 min

max min

x x
x

x x

-
=

-
 (5.11) 

 

This restricts the range of each feature to [0, 1].  

Table 5.2 illustrates the effect of k in the kNN classifier. As k increases, the accuracy 

does not have a significant change. Staying above 85%, the accuracy of the kNN method is 

higher than when using the Naïve Bayes classifier. The highest accuracy, 87.51%, is achieved 

when k = 3. From a hyperplane perspective, the kNN approach is more flexible because it can 

formulate complex non-linear hyperplanes that divide the feature space. In a situation where the 

data are not necessarily conditionally independent or irredundant, that helps to define a better 

evaluation surface.  The confusion matrix resulting from the kNN process is depicted in Table 

5.3. 

Although the kNN method seems to be an excellent candidate for activity recognition, 

there are two problems associated with this classifier when applied to a real-time situation. Since 
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no decision is made until the input data are received, it requires much memory to store all of the 

training data, as they are kept in the original form. Second, the classification process requires one 

instance to be compared with all the instances in order to find the nearest neighbor, so the 

calculations are numerous.  

 

Table 5.2 Recognition accuracy for the kNN approach as a function of k number. 

N Accuracy (%) 

1 87.07 

2 86.51 

3 87.51 

4 87.33 

5 87.13 

6 87.34 

7 87.40 

8 87.12 

9 86.86 

10 86.86 

 

Table 5.3 Confusion matrix obtained from k Nearest Neighbor PNFT classifications 

 Classified As 

Activity  a b c d e f g h i 

a-Agility Cone 593 0 0 5 4 0 0 0 46 

b-Ladder Climb  0 515 29 46 2 24 2 31 0 

c-Equipment Lift  0 40 538 4 2 42 3 9 0 

d-Step Entry 3 24 1 571 1 1 0 11 0 

e-Stair Climb  30 10 2 9 584 0 2 1 0 

f-Horizontal Climb  0 61 54 1 1 502 24 13 0 

g-Stand 0 56 69 0 0 3 390 0 0 

h-Walk 4 17 2 1 1 3 0 630 0 

i-Run 10 0 1 4 0 0 0 1 653 
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 Support Vector Machine 

The concept of a Support Vector Machine (SVM) is similar to that of a linear machine 

learning algorithm [54]. The difference is that it can be applied to non-linear datasets and 

separate them out using a hyperplane. The method seeks to raise the feature space to a higher 

dimension, allowing the nonlinear dataset to be linearly separated. This process is called a kernel 

trick and the mapping function is called a kernel function.  Table 5.4 shows the confusion matrix 

obtained after applying the SVM approach. The overall accuracy for this method is 85.82%. 

 

Table 5.4 Confusion matrix obtained from support vector machine classifications. 

 Classified As 

Activity  a b c d e f g h i 

a-Agility Cone 591 0 0 4 6 0 0 1 46 

b-Ladder Climb  3 446 46 61 6 41 3 43 0 

c-Equipment Lift  0 49 443 20 8 96 20 2 0 

d-Step Entry 15 70 3 510 3 0 0 11 0 

e-Stair Climb  32 12 15 1 574 0 2 0 2 

f-Horizontal Climb  1 34 27 3 0 551 16 24 0 

g-Stand 0 0 2 0 0 9 507 0 0 

h-Walk 2 30 4 3 0 5 0 613 1 

i-Run 15 0 0 4 3 1 0 1 645 

 

 C4.5 Decision Tree 

C4.5 is a form of decision tree algorithm which forms the decision making process by 

taking a tree-shaped route [47]. Each node of the tree corresponds to a feature, and the branches 

are different values of the node. A leaf of the tree is an activity. It is not required that each 

feature be used only once or each activity be labeled only once, so there can be multiple leafs 

with the same activity label and different nodes that use the same feature as a judgment. When 

judging an activity, the algorithm starts at the root of the tree and migrates from node to node 

until it reaches a leaf at the bottom of the tree. 
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C4.5 uses a greedy approach to determine the feature attached to the node for each step. 

Specifically, it starts with the gain ratio criterion to select the feature for the root and forms the 

sub-trees repetitively. The process terminates when the entire instance sets belong to the same 

activity. Most of the time, this criterion is difficult to meet, and the tree splitting continues for a 

long time. Over-fitting is also an issue, where a slight change in the value of a  feature can lead 

to the prediction of an activity on the wrong leaf. To address this issue, an alternative approach is 

to terminate when the purity of each leaf reaches a threshold.  

For a complex feature space, the tree expansion can be large. Training the C4.5 algorithm 

with the PNFT feature data results in a tree with 533 nodes and 277 leaves. The overall accuracy 

of this approach when applied to these PNFT data is 86% percent.  The related confusion matrix 

is contained in Table 5.5.  

 

Table 5.5 Confusion matrix obtained from C4.5 decision tree classifications. 

 Classified As 

Activity  a b c d e f g h i 

a-Agility Cone 564 2 0 9 16 0 0 0 57 

b-Ladder Climb  2 479 55 45 7 34 0 25 2 

c-Equipment Lift  0 57 499 7 12 62 1 0 0 

d-Step Entry 10 67 2 516 10 1 0 4 2 

e-Stair Climb  27 10 17 6 576 0 1 0 1 

f-Horizontal Climb  1 35 59 3 2 546 1 9 0 

g-Stand 0 1 2 0 0 6 509 0 0 

h-Walk 2 21 4 3 0 4 0 622 2 

i-Run 35 2 0 1 5 2 0 0 624 

 

Figure 5.1 depicts a sub-tree of the overall decision tree for the PNFT accelerometer data. 

Each node is labeled with its corresponding features, and the numbers used for the dividing 

points are attached to their respective branches. At the end of some branches, a leaf notes the 

activity label and the ratio of correct to incorrect instances. 
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Figure 5.1 Sub-tree within the overall decision tree for the PNFT features. 
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Chapter 6 - Graphical User Interface Design  

Data transmitted from the Zephyr BioHarness are collected by a computer connected to a 

Bluetooth dongle and then displayed on a graphical user interface (GUI). The motivation to 

develop such a GUI was driven by the fact that the original data collection tool bundled with the 

BioHarness provides limited functionality that does not well-support the data collection and 

visualization needs of the NASA project. Further, a custom user interface can incorporate data 

obtained from additional sensors in the future.  Two versions of GUIs were developed (in 

MATLAB and in LabVIEW) ï one is used for typical Zephyr BioHarness data collection 

sessions, and the other supports more sophisticated data acquisition and analysis. 

 Transmission Protocol 

Zephyr defined a standard data frame to facilitate data transmission. All of the commands 

to and from the Zephyr unit are encapsulated in a known message format. This message includes 

a three-byte header, followed by a data payload with a variable length, followed by two 

terminating bytes. The length of the data payload ranges from 0 to 128 bytes.  

The first byte in the header is the start of text (STX) byte, and it is always designated as 

0x02. The next byte is the message ID (Msg ID), which uniquely identifies the type of message. 

After receiving a data transmission, we use this byte to sort the message into different data 

process subroutines. The next byte declares the number of bytes in the data payload. It is a hex 

number ranging from 0x00 to 0x80. The actual data payload is specified in the ñcommunications 

link specificationò in the Zephyr documentation.  An 8-bit CRC follows the data payload with 

the polynomial being 0x8C. The last byte is an end of text (ETX) byte. It is a constant hex 

number of 0x03. The packet form is presented in Figure 6.1. 

For every command request, whether from the wearable device or from the computer, 

there is a response message from the receiver. The frame format of the response is similar to the 

request. However, the message ID is different from the corresponding request-message ID. Also, 

the last byte in the response is acknowledge/not acknowledge (ACK/NAK) instead. If a message 

is correctly received, an acknowledgement of 0x06 is in the last byte. If a message is not 

correctly received, an unacknowledgement of 0x15 is appended. 
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Notice that this data frame format does not contain an address, because the 

communication is intended to be point-to-point:  a Zephyr BioHarness can only communicate 

with a single data logger. However, multiple Zephyr devices can communicate concurrently with 

that same data logger. In other words, the Zephyr tools support a star configuration network. 

 

 

Figure 6.1 Zephyr BioHarness transmitting data packet format. 

 

Data packages are encapsulated in Bluetooth packets before being transmitted (see Figure 

6.2).  More than one communication packet may exist within one Bluetooth packet. The 

transmission scheduling of these Bluetooth packets is discontinuous and determined by the 

Bluetooth protocol. The Bluetooth encapsulation and decapsulation is processed by the Bluetooth 

IC chip on the Zephyr unit and the Bluetooth dongle connected the computer. Therefore, when 

sending or receiving from a custom program, Bluetooth packet encapsulation is not required. 

Instead, data are aligned according to their communication packet format and sent via a serial 

port. 

 

 

Figure 6.2 Data packet encapsulation process. 
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 Data Frame 

A list of messages used in the GUI program is presented in Table 6.1.  The enable and 

disable message for every packet are similar. The data packet consists of 1 byte that represents 

transmission state:  1 stands for enabled and 0 stands for disabled. A message ID is used to 

identify which packet to enable or disable. The response from the device has no data payload, 

and consequently the DLC byte is 0.  

 

Table 6.1 Messages used in Zephyr BioHarness communication. 

Message ID Message Description 

0x14  Set General Data Packet Transmit State  Enable/Disable packet 

0x16 Set ECG Waveform Packet Transmit State Enable/Disable packet 

0x1E Set Accelerometer Packet Transmit State Enable/Disable packet 

0x20 General Data (streaming) Packet No ACK required 

0x22 ECG Waveform (streaming) Packet No ACK required 

0x25 Accelerometer Data (streaming) Packet No ACK required 

0xA4 Set BT Link configuration  

 

 

Table 6.2 Request message for  Set General Data Packet. 

Byte/Bit  7  6  5  4  3  2  1  0  Field  

0  STX STX  

1  0x14 Msg ID  

2  1 DLC  

3  Transmission State Payload  

4  CRC CRC  

5  ETX ETX  
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Table 6.3 Response message for Set General Data Packet. 

Byte/Bit  7  6  5  4  3  2  1  0  Field  

0  STX STX  

1  0x14 Msg ID  

2  0 DLC  

3  CRC CRC  

4  ACK ACK/NAK  

 

Data packet lengths vary from packet to packet because these data can have different 

lengths, sampling rates, and transmission rates. For the Zephyr Boharness, the sampling rate and 

transmission rate are different, since one data packet can contain multiple data samples, e.g., 

ECG and multiple-axis acceleration data. In addition, the data packets for ECG and acceleration 

signals use a compact format that wraps data to reduce the transmission burden. These are 

explained momentarily. Every data packet also contains a time stamp, facilitating data 

synchronization from different streams and devices. The following list show the sampling rate 

and transmission rate of each data packet. 

 

Table 6.4 Sampling rate and transmission rate of Zephyr data packets. 

Data packet  Sampling rate  Transmission rate 

General data packet - 1000 ms 

ECG data packet 4 ms 252 ms 

Acceleration data packet 50 ms 400 ms 

  

 General Data Packet 

A general data packet is a comprehensive message that combines all of the vital sign 

signals and device condition information. It is sent once every second. Data represented in the 

packet include timestamp, heart rate, respiration rate, skin temperature, posture, and battery 

information. Heart rate is generated from an ECG signal processed by an internal QRS detection 

algorithm and reflects the range of [25, 240] bpm. Posture indicates front-to-back body tilt in 

degrees with respect to the vertical axis. Forward is a positive degree and backward is a negative 

degree. Respiration rate is roughly characterized by breaths per minute. Skin temperature 
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measures the temperature where the Zephyr unit is attached. Note that for every signal, at least 

two bytes of data exist. The concatenation of these bytes is required to interpret the data. The 

detailed data packet format for the data payload in a general data packet is listed in Table 6.5. 

 

Table 6.5 General data packet format for the Zephyr BioHarness. 

Byte/Bit  7  6  5  4  3  2  1  0  Field  

0  STX  STX  

1  0x20  Msg ID  

2  53  DLC  

3  Sequence Number (0é255)  

Payload 

4  Timestamp ï Year (LS Byte)  

5  Timestamp ï Year (MS Byte)  

6  Timestamp ï Month  

7  Timestamp ï Day  

8  Timestamp ï Milliseconds of day (LS Byte)  

9  :  

10  :  

11  Timestamp ï Milliseconds of day (MS Byte)  

12  Heart Rate (0é240) ï LS Byte  

13  Heart Rate (0é240) ï MS Byte  

14  Respiration Rate (0é70) ï LS Byte  

15  Respiration Rate (0é70) ï MS Byte  

16  Skin Temperature (0é60) ï LS Byte  

17  Skin Temperature (0é60) ï MS Byte  

18  Posture (-180é180) ï LS Byte  

19  Posture (-180é180) ï MS Byte  

20  VMU (0é16) ï LS Byte  

21  VMU(0é16) ï MS Byte  

22  Peak Acceleration (0é16) ï LS Byte  

23  Peak Acceleration (0é16) ï MS Byte  
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24  Battery Voltage  

26  Breathing Wave Amplitude  

28  ECG Amplitude 

30  ECG Noise 

32  Vertical Axis Acceleration Min  

34  Vertical Axis Acceleration Peak  

36  Lateral Axis Acceleration Min  

38  Lateral Axis Acceleration Peak  

40  Sagittal Axis Acceleration Min  

42  Sagittal Axis Acceleration Peak  

44  Zephyr System Channel  

46  GSR  

48  unused  

50  unused  

52  ROG  

53  ALARM  

54  Battery Status(see 6.2 below)  

55  Button/Worn(see 6.2 below)  

56  CRC  CRC  

57  ETX  ETX  

 

 ECG signal 

The data packet format for the raw ECG waveform is laid out in Table 6.6. The sampling 

rate is 250 Hz and the precision is 10 bits. It takes more than one byte to contain one sample. 

Instead of using two bytes of data to express one sample, leaving the rest of the bits to be zero 

(unused), the Zephyr unit utilizes a compact form to pack the data continuously. The wrapping 

pattern is described in Table 6.7. Each ECG snippet contains 63 samples. Every sample needs to 

be reconstructed after being received by the remote terminal.  
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Table 6.6 ECG data packet format. 

Byte/Bit  7  6  5  4  3  2  1  0  Field  

0  STX  STX  

1  0x22  Msg ID  

2  88  DLC  

3  Sequence Number (0é255)  

Payload 

4  Timestamp ï Year (LS Byte)  

5  Timestamp ï Year (MS Byte)  

6  Timestamp ï Month  

7  Timestamp ï Day  

8  Timestamp ï Milliseconds of day (LS Byte)  

9  :  

10  :  

11  Timestamp ï Milliseconds of day (MS Byte)  

12  ECG Waveform Data (63 Samples)  

91  CRC  CRC  

92  ETX  ETX  

 

Table 6.7 Compact payload format used with the ECG data packets. 

Byte/Bit  7  6  5  4  3  2  1  0  

0  Bit 0  

1  Bit 0  Bit 9  

2  Bit 0  Bit 9  

3  Bit 0  Bit 9  

4  Bit 9  

5  As Byte 0 (pattern repeats every 5 bytes).  
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 Acceleration signal 

Since the acceleration data precision is 10 bits, the acceleration data packets utilize a 

similar data wrapping format as the ECG data packets, except thethree-channel data are packed 

alternatively. Table 6.8 notes the acceleration data packing format and Table 6.9 notes the 

wrapping pattern. 

 

Table 6.8 Acceleration data packet format. 

Byte/Bit  7  6  5  4  3  2  1  0  Field  

0  STX  STX  

1  0x25  Msg ID  

2  84  DLC  

3  Sequence Number (0é255)  

Payload 

4  Timestamp ï Year (LS Byte)  

5  Timestamp ï Year (MS Byte)  

6  Timestamp ï Month  

7  Timestamp ï Day  

8  Timestamp ï Milliseconds of day (LS Byte)  

9  :  

10  :  

11  Timestamp ï Milliseconds of day (MS Byte)  

12  Accelerometer Data (20 Sample Sets)  

87  CRC  CRC  

88  ETX  ETX  
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Table 6.9 Compact data format in the acceleration data packets. 

Byte/Bit  7  6  5  4  3  2  1  0  

0  X-Bit 0  

1  Y-Bit 0  X-Bit 9  

2  Z-Bit 0  Y-Bit 9  

3  X-Bit 0  Z-Bit 9  

4  X-Bit 9  

5  Y-Bit 0  

6  Z-Bit 0  Y-Bit 9  

7  X-Bit 0  Z-Bit 9  

8  Y-Bit 0  X-Bit 9  

9  Y-Bit 9  

10  Z-Bit 0  

11  X-Bit 0  Z-Bit 9  

12  Y-Bit 0  X-Bit 9  

13  Z-Bit 0  Y-Bit 9  

14  Z-Bit 9  

15  As Byte 0 (pattern repeats every 15 bytes).  

 

 Life Sign Signal  

A reception timeout mechanism is adopted in the Zephyr communication link to detect 

communication loss and recovery. The timeout is mutual, meaning the device sends the life sign 

signal periodically to the remote terminal, and the remote terminal sends the life sign signal to 

the device; both sides can recognize whether the other is alive. The timeout period is adjustable 

through a BT link configuration message (0xA4). In the situation where either terminal fails to 

receive a message from the other side over a pre-defined timeout period, it will close the 

connection and stop sending further messages. In this situation, the computer will try  to 

reconstruct the channel to the Zephyr unit. The Zephyr unit, however, will wait for the 

reconnection from the computer. The default timeout period for the Zephyr unit is threes second, 

where it is 10 seconds for the computer. In the GUI, they are both set to be zero seconds, 
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meaning that no timeout is available for either sides. This simplifies the data transmission and 

reception process.  

 MATLAB  GUI  

The initial Graphical User Interface (GUI) to receive and display BioHarness data was 

created in MATLAB  and is displayed in Figure 6.3. This GUI receives general packet data as 

input through the computer serial port and parses it accordingly. Information such as heart rate, 

respiration rate, skin temperature, and posture are displayed on the interface. The instantaneous 

values are shown in numeric form, and a line plot displays the 60-second trend for each signal. 

An adjustable threshold is given for each signal that acts as a warning line. When a parameter 

exceeds that threshold, the GUI will display a red light; otherwise the light stays green. The right 

panel contains a timer that displays the current time synced with the Zephyr unit. Once the 

ñSTARTò button is clicked, the program commands the Zephyr unit to transmit general packet 

data, and the interface begins to store these data into a text file. In the mean time, the START 

button will change to a ñSTOPò function, and another click on the button closes the link. An 

ñEventsò bar lists a series of typical activities, which can help the researcher keep track of the 

duration of each activity. By clicking the ñMarkò button, the selected event and time will be put 

on the ñEvents Historyò panel in list form. Meanwhile, the event is saved in the output text file. 

In the program, request messages are pre-stored as a constant vector and are called when 

the recording session starts. The data extraction algorithm is shown below. 

 

MATLAB GUI Data Extraction Pseudocode  

 

    while( not stop)  

    {  

        if( available byte size is 58)  

        {  

             

            read from buffer;  

            extract time( hour: min: second);  

            extract heart rate;  
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            extract respiration rate;  

            extract skin temperature;  

            extract posture;  

            determine the threshold;  

            wr ite to text file;  

            update plot;  

empty buffer;  

        }  

}  

 

 

 

Figure 6.3 MATLAB GUI for the Zephyr BioHarness. 

 LabVIEW Interface  

 The second version of the GUI was implemented in LabVIEW (see Figure 6.4), where 

the goal was to create an interface that could integrate data from multiple sensors on an extended 

sensor network and combine them on one screen. LabVIEW virtual instruments (VIs) can be 

created using a graphical programming approach, where functional blocks are connected by lines 

that indicate data flow. This approach makes it easy to gather data and do simple processing on 


