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Abstract.  While there is substantial evidence that nonpoint sources have lower nutrient reduction 
costs than point sources, experience with water quality trading (WQT) reveals a common 
theme: little or no trading activity.  The success of WQT seems, in part, to depend on the struc-
ture of the market created to bring buyers and sellers together to transact exchanges.  To  
examine the ways that various market imperfections may affect the performance of a WQT 
market, a model is constructed which simulates a hypothetical point-nonpoint market.  This 
paper focuses on answering the following question: How can WQT programs be designed in 
ways that take into account factors that result in non-optimal contracting and what are the 
implications (if there are any) for determining trading ratios?  Here, we find that apart from 
any implications for environmental risk or political-economic factors, there is an economic 
welfare justification for high trading ratios in certain situations with limited trading infor-
mation and/or other barriers to trade.  Limited information and other barriers to trade which 
inhibit the optimal contracting of trades introduces a random element to market participation, 
creating a risk that high-cost sellers (low-value buyers) will transact to displace low-cost 
sellers (high-value buyers) who could have traded for greater gain. 

 
 

 

1. Introduction 
 

With numerous water quality goals remaining 
unmet and many millions of dollars being spent on 
water quality improvement each year in the United 
States, there is an impetus to increase the economic 
efficiencies of pollution reduction (Peterson and 
Smith, 2012).  Environmental economists have ar-
gued that pollution trading programs are an efficient 
means of improving environmental quality, as they 
give firms with the lowest pollution control costs the 
largest incentive to reduce pollution.  Such low-cost 
firms are able to sell pollution credits to firms with 
higher control costs.  Allowing firms with heteroge-
neous control costs the opportunity to cooperate 
displays the potential of reduced costs of pollution 
abatement.  Such freedoms and flexibilities typically 
do not arise from traditional, uniform regulations. 

Following on the highly successful trading pro-
grams for air emissions such as sulfur dioxide 

(NCEE, 2001), many states have recently adopted 
trading programs to improve water quality.  There 
are at least 47 water quality trading (WQT) pro-
grams currently active or under development 
worldwide, with the overwhelming majority in the 
United States (Selman et al., 2009).  In principle, such 
programs could be applied to any water-borne pol-
lutant and allow trading among point sources, 
among nonpoint sources, or between point and 
nonpoint sources (the latter is known as ‘point-
nonpoint trading’).  Most of the existing programs 
are designed with point-nonpoint trading to limit 
nutrient loading: point sources are allowed to meet 
their (reduced) nutrient emission limits by purchas-
ing water quality credits from agricultural produc-
ers in the surrounding watershed.  These producers 
are then obligated to implement a best management 
practice (BMP) that reduces expected nutrient load-
ing by an amount commensurate with the number of 
credits sold.  A regulatory agency lowering the  
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acceptable limit of nutrient loading by point sources 
is the common “driver” necessary for the market to 
function.   

From a conceptual standpoint, in a well-
functioning market with perfect information and 
zero transaction costs, and where traders’ decisions 
are motivated purely by the economic gain from 
trading, agents’ propensity to trade is perfectly cor-
related with their relative positions along the de-
mand and supply curves.  Heterogeneity in point 
sources’ willingness to pay (WTP) for credits brings 
about a downward sloping demand curve, where 
the sources with the highest WTP have the greatest 
likelihood of trading.  Similarly, heterogeneity in 
nonpoint sources’ costs or willingness to accept 
(WTA) payment for credits generates an upward 
sloping supply curve, where the sellers with the 
lowest WTA trade with the highest likelihood.  In 
the case of a competitive, frictionless market, the 
equilibrium price is at the intersection of demand 
and supply and all buyers (sellers) with a WTP 
greater than (less than) or equal to this price will 
trade and all other potential traders will not.  This 
outcome maximizes the social gain from trading, the 
aggregate cost savings from allowing point sources 
to buy credits instead of upgrading technology to 
meet their discharge limits. 

Evidence exists that nonpoint sources can reduce 
nutrient loading at a much lower cost than point 
source polluters in many watersheds, suggesting 
substantial scope and gains (or cost savings) from 
point-nonpoint trading (e.g., Faeth, 2000; Fang et al., 
2005; Selman et al., 2009).  Despite the potential 
gains, perhaps the most commonly noted feature of 
existing programs is low trading volume; none of 
the programs have had extensive trading activity 
and many have had no trading at all (Hoag and 
Kughes-Popp, 1997; Selman et al., 2009).  A widely 
cited and vivid example is the Fox River program in 
Wisconsin (Hahn, 1989), which had only one trade 
after its inception in 1981 even though an early 
study (O’Neil, 1983) found substantial potential 
gains from trading among all participating firms. 

These outcomes suggest the presence of obstacles 
to trading that were not recognized in the design of 
existing programs.  While these obstacles have not 
been studied in a systematic fashion, individual re-
searchers have identified various trading barriers in 
different contexts.  Some of the barriers discussed in 
the literature are limited trading information, trans-
action costs, search costs, risk preferences, and  
distortionary trading ratios.  Barriers such as these 
(excluding trading ratios) in the marketplace can 

reduce the correlation between the relative 
WTP/WTA and the propensity to trade (Atkinson 
and Teitenberg, 1991; Netusil and Braden, 2001).  In 
other words, non-optimal contracting (the participa-
tion of buyers and sellers) can take place.   

The trading ratio in point-nonpoint programs is 
typically defined as the quantity of expected non-
point loading reduction needed to offset one unit of 
point source loadings.  Many existing programs set 
trading ratios substantially greater than one, osten-
sibly to adjust for the greater risk and uncertainty in 
nonpoint loading reduction (EPA, 1996).  Other pro-
grams include a trading ratio greater than one to 
ensure that there are net water quality benefits be-
yond what can be achieved through regulation alone 
(Selman et al., 2009).  These are sometimes referred 
to as “retirement ratios”.  As discussed in detail lat-
er, Horan (2001) and Horan and Shortle (2005) have 
shown that higher trading ratios don’t necessarily 
reduce risk because they discourage nonpoint 
sources from trading and adopting (risk reducing) 
BMPs.  Thus, social risk preferences must be elimi-
nated as a general justification for high trading  
ratios.  The only remaining justification is loading 
retirement.  Regardless of the motives behind trad-
ing ratios greater than one, such ratios operate like a 
tax to dampen the benefits from trading, hence  
reducing trading volume and overall gains from 
trading (Malik et al., 1993; Horan, 2001; Horan and 
Shortle, 2005; Hennessy and Feng, 2008). 

How can WQT programs be designed in ways 
that take into account factors that result in non-
optimal contracting, and what are the implications 
(if there are any) for the determination of trading 
ratios?  To examine the ways that these market im-
perfections may interact to affect the performance of 
a WQT market, a model is constructed which simu-
lates a hypothetical point-nonpoint market.  In par-
ticular, the market is modeled using a variant of the 
sequential, bilateral trading algorithm proposed by 
Atkinson and Tietenberg (1991).   

 
2. Relevant literature 

 

While WQT has been promoted by economists as 
a cost-effective means to achieve water quality goals, 
experience with actual WQT programs has yet to 
produce these results.  Several theoretical studies 
have investigated the factors impeding trading (e.g., 
Malik et al., 1993; Horan, 2001; Hennessy and Feng, 
2008; Stavins, 1995), but very few articles have simu-
lated an environmental trading market in action and 
only a small number of these have focused on water 
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quality trading.  Two notable exceptions have uti-
lized trading simulations and relate to this research.  
An often cited article in the environmental markets 
literature is Atkinson and Tietenberg (1991), who 
simulated a sulfur dioxide trading market.  Netusil 
and Braden (2001) followed with a simulation of a 
water quality market with varying transaction costs.  
There also are several relevant articles that ad-
dressed the effects of a trading ratio, including 
Horan (2001) and Horan and Shortle (2005).   

Atkinson and Tietenberg examined the bubble 
policy of the Emissions Trading Program.  They at-
tempted to explain the divergence in costs between 
the least cost solution and incentive-based emissions 
trading approaches in air quality.  More specifically, 
the article examined the hypothesis that a sequen-
tial, bilateral process cannot achieve a cost-effective 
equilibrium in markets dealing with non-uniformly 
mixed pollutants (those which tend to pool around 
sources within the regulated area). 

The authors concluded that the amount of infor-
mation available and the sequencing of trades 
played a large role in the amount of cost savings 
realized.  They thought that the most realistic sce-
nario should be found somewhere between the 
complete information, sequential trading scenario 
and the random partial information scenario (thus 
achieving anywhere between 7% and 88% of the 
least-cost benchmark).  They did admit, however, 
that their cost savings results may be too optimistic 
because they did not account for transaction costs.  
They also suggested that a market for uniformly 
mixed pollutants (those which become dispersed 
uniformly in the regulated area) may come closer to 
achieving the least-cost benchmark. 

Netusil and Braden (2001) built upon Atkinson 
and Tietenberg (1991) and extended their previous 
work in the area of transferable discharge permits.  
This is one of only a few studies that simulated mar-
kets for water quality.  The authors examined the 
effects of sequential bilateral trading under imper-
fect information in a hypothetical sediment loading 
market.  Their model allowed market participants to 
make multiple trades, as opposed to a single trade.  
Their research also incorporated different levels of 
transaction costs into each trade.   

The data used in this analysis came from a 1,064 
acre watershed area in Macon County, Illinois.  
Modeling was performed using a gains-ranked (high 
information) and a random (zero information) con-
tracting scenario.  The results showed that under the 
gains-ranked scenario, the sediment load under all 
transaction cost levels were lower than the  

regulatory policy’s requirement.  Another important 
finding in this scenario was that the distribution of 
internal and external contracts changed as the trans-
action costs levels changed.  High transaction costs 
resulted in a decrease in overall trading and caused 
a shift towards internal contracting.  An interesting 
finding was that as transaction costs increased, the 
overall spending on abatement activities (inclusive 
of transaction costs) can sometimes decrease.  The 
reasoning is that high transaction costs block low 
value contracts from occurring and allow the higher 
value trades to happen.  Under random contracting 
(zero information), however, an increase in transac-
tion costs always resulted in an increase in abate-
ment and total costs. 

Horan (2001) and Horan and Shortle (2005) ana-
lyzed different levels of trading ratios in the context 
of water quality trading.  Horan (2001) presented 
trading ratios utilized in several existing, pilot, and 
planned point- and nonpoint-source trading mar-
kets.  These ranged from 1.3:1 to 3:1.  Horan and 
Shortle (2005) performed a numerical example of 
trading in Susquehanna River Basin and arrived at 
“optimal” trading ratios in the range of 0.89:1 to 
3.3:1  

Horan (2001) argued that from a welfare efficien-
cy standpoint, the optimal trading ratio would  
necessarily be less than one when a WQT model is 
specified to have uniformly mixed pollutant loads, 
stochastic nonpoint loads, convex damages, and no 
transaction costs.  This is because the variability in 
nonpoint loadings creates stochastic ambient pollu-
tion concentrations and stochastic damages from 
pollution.  This leads to more social risk if damages 
are convex in ambient pollution and if increases in 
nonpoint loadings increase the variability of ambient 
pollution.1  Social risk is costly, so there are more 
benefits to reducing the variable nonpoint source 
pollution.  Higher trading ratios work against this 
objective because they reduce the trading revenue 
per unit of loading reduction for nonpoint sources, 
thereby attracting fewer nonpoint traders and a 
higher overall level of nonpoint pollution.  Thus, 
smaller trading ratios are more economically  
efficient.   

Horan (2001) suggested that it is realistic to as-
sume policies are designed to allocate resources 
within the context of policy makers’ preferences, not 

                                                 
1 Social risk is defined as “real or perceived impacts on a broad 
range of issues related to human welfare – for example, environ-
mental quality, health, or economic opportunity” (Bekefi et al., 
2006). 
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to maximize aggregate economic surplus.  Thus, 
trading ratios are designed to be politically optimal.  
He further argued that trading ratios in excess of 
one may be the rational public sector response to the 
risk associated with stochastic nonpoint pollution 
because political support groups are likely to focus 
on expected loading reductions as opposed to over-
all social risks.  Thus, trading ratios must be greater 
than one for most trading programs to be politically 
palatable. 
 
3. Simulation model 
 

A model is created to simulate hypothetical pol-
lution control trades (credits) between point and 
nonpoint sources.  This trading simulation is one in 
which all point sources (hereafter, we also refer to 
point sources as “plants”) are required to meet a 
lower limit of nutrient concentrations in their dis-
charge stream.  Plants can either upgrade their tech-
nology to meet this limit or keep their old technolo-
gy and buy water quality credits from nonpoint 
sources (hereafter, also called “farms”) to offset their 
excess discharges.  Such a regulatory “driver” is 
necessary for the market to function.  Farms who sell 
credits are then obligated to adopt land manage-
ment practices to reduce expected loadings. 

The model relies on pre-specified values of the 
WTP for purchasing credits by each plant and the 
WTA for selling credits by each farm who is a poten-
tial trader.  A sequential, bilateral trading algorithm 
(Atkinson and Tietenberg, 1991) then simulates 
market outcomes from these base data.  As de-
scribed in the subsections below, the impact of  
contracting and trading ratios is captured either by 
varying the input data or by altering the assump-
tions in the trading algorithm that govern how  
buyers and sellers are paired together. 

 

3.1.  Market participants 
 

The market participants in this model are point 
and nonpoint sources of water contaminants (e.g., 
nutrients).  To “create” market participants for the 
model, costs and quantities are generated for each of 
I = 10 plants and J = 500 farms using random draws 
from independent lognormal distributions.2  The 
lognormal distribution is chosen to allow for the 
well-documented skewness in the distribution of 
costs and environmental impacts across the popula-

                                                 
2 There is no a priori expectation that low WTA sellers should be 
“small farms” with a small incremental quantity to sell, nor that 
high WTP buyers would be “small plants.” Thus, independent 
lognormal distributions are used. 

tion of polluters (Nowak et al., 2006).  The parameter 
values of the lognormal distributions for both buy-
ers and sellers are shown in Table 1.  The distribu-
tional parameters and the population sizes are cho-
sen to approximately reflect the data used by Smith 
(2004) to model phosphorus trading in the Middle 
Kansas River subbasin.  To ensure that the final re-
sults are not sensitive to a particular set of random 
draws, all scenarios are repeated 10,000 times in 
Monte Carlo fashion, with a new set of prices and 
quantities assigned to all agents each time.  The re-
sults reported are the means of the 10,000 iterations.   

 
Table 1. Lognormal distribution parameters for 

buyers and sellers. 
 

 
 

3.2.  Trading mechanism 
 

The ‘trading mechanism’ determines how buyers 
and sellers are paired together in the water quality 
trading market.   
 

The marginal gains matrix and the trading ratio 
 

In each iteration of the model, the WTP and WTA 
data were randomly generated from the distribu-
tions presented in Table 1.  These data are used to 
form the core element of the simulation model, the 
marginal gains matrix.  This matrix contains the po-
tential gains from each possible pairing of the farms 
and plants.  The rows of this matrix correspond to 
plants while its columns correspond to farms.  In 
scenario s, the cell in row i and column j of this  
matrix is  

 

௦,,ݏ݊݅ܽܩݎܽܯ ൌ ܹܶ ௦ܲ, െ ௦,ܣ௦ܹܶݐ   (1) 
 

where ts is the assumed trading ratio in scenario s 
(expressed as the number of credits a farm must sell 
to offset one unit of plant discharge) and MarGains is 
the mutual gain if plant i buys one more credit from 
farm j under the assumptions embedded in scenario 
s. 

A related matrix, Q, has the same dimensions 
and tracks the quantity of credits available for trade 
between each trading partner.  The quantity data are 
also generated from the distributions in Table 1.  At 
the start of trading the (i,j)th element of Q is equal to 

Item Mean Standard deviation 
Buyer quantities 5,000 1,250 
Buyer WTP ($/lbs) 20 15 
Seller quantities 200 50 
Seller WTA ($/lbs) 12 8 
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Qij = min(qi, qj), where qi and qj are the randomly 
generated quantity of credits demanded by plant i 
and quantity of credits to be supplied by farm j, re-
spectively.  As trading proceeds the values in this 
matrix are reduced by the quantity transacted by the 
respective trading partners.  A trader is removed 
from the market when its available quantity reaches 
zero. 
 

The trading algorithm and the contracting (or pairing) of 
traders 
 

The effects of trading barriers like information 
levels, transaction costs, search costs, and risk pref-
erences are captured by varying the assumptions in 
the sequential, bilateral trading algorithm that simu-
lates individual transactions by pairing buyers and 
sellers together in a specific order.  The pairing of 
buyers and sellers by this algorithm ultimately de-
termines which traders participate in the market.  
Each of the barriers identified above can result in the 
non-optimal contracting of traders.3  Four possible 
contracting scenarios are modeled, which are  
described in turn below. 
 

Optimal contracting (‘optimal’ set of scenarios) 
 

This scenario is the case of perfect correlation be-
tween a plant’s WTP and its likelihood of being a 
buyer, as well as between a farmer’s WTA and 
his/her likelihood of being a seller.  In this situation, 
the most advantageous trades are executed first.  
Action begins by the plant with the highest WTP 
trading with the farm having the lowest WTA.  This 
is determined by the element in the marginal gains 
matrix with the greatest positive value. 

The plant purchases as many credits as it needed 
or until it buys out the farm, whichever occurs first.  
The quantity data and the marginal gains matrix are 
both updated accordingly when the trade is  
completed. 

The second trade begins by finding the greatest 
positive number in the updated marginal gains ma-
trix.  This determines the next two trading partners.  
The aforementioned process is then repeated.  This 
marginal gains-ranked process continues until there 
are no more gains to be made by trading.  The ‘Op-
timal’ set of scenarios serves as one polar case to 
bracket the range of possible outcomes. 
 

Random contracting (‘random’ set of scenarios) 
 

The second scenario is zero correlation which 
implies that frictions such as low information,  

                                                 
3 “Non-optimal” to society, which includes plants (which are pre-
sumably taxpayer funded) and farmers. 

transaction costs, search costs, and risk preferences 
makes all traders equally likely to be chosen.  Here, 
trades occur in a completely random order.  The 
single restriction is that only trades resulting in posi-
tive gains are allowable.  A single element from the 
marginal gains matrix is chosen at random and this 
determines the trading partners.  The trade is then 
made and the marginal gains matrix and quantity 
data are updated.  Subsequent trades operate in the 
same random fashion.  Trading continues until no 
positive gains remain.  The ‘Random’ set of scenari-
os serve as the other polar case to bracket the range 
of possible outcomes. 
 

WTP correlated contracting (‘correlated plants’  scenarios) 
 

The final two scenarios are necessary to decom-
pose the effect of correlation on the demand side 
from the correlation on the supply side.  The third 
scenario models the case where the plants’ propensi-
ty to trade is still perfectly correlated with their WTP 
but farms participate randomly.  The first trade is 
between plant with the highest WTP and a random-
ly selected farm.  Plants in remaining trades are se-
lected in descending order of their WTP, paired with 
a randomly chosen farm each time.  Trading data are 
updated using the same process as the other  
scenarios. 
 

WTA correlated contracting (‘correlated farms’ scenarios) 
 

The fourth scenario is similar to the third but re-
verses the roles of the plants and farms.  Here, the 
farms’ propensity to trade is perfectly correlated 
with their WTA but plants participate randomly.   

 

3.3.  The simulation experiments 
 

In total, there are 24 scenarios modeled.  Each of 
the four alternative methods of contracting, or mod-
eled scenarios, described above (hereafter, referred 
to as ‘Optimal’, ‘Random’, ‘Correlated Plants’, and 
‘Correlated Farms’ scenarios) are simulated under 
six different trading ratios.  The trading ratio is var-
ied from 0.5 up to 3.0 in increments of 0.5.   

To evaluate the performance of the trades in the 
WQT market, comparisons are made to a baseline 
situation in which treatment plants would be re-
quired to meet a nutrient reduction limit by upgrad-
ing technology.  Based on the information about the 
plants’ expected costs and quantities (Table 1), the 
limits require the plants to reduce their annual  
nutrient load by a combined (expected value of) 10 
plants × 5,000 lbs/plant = 50,000 lbs. annually.  The 
expected total annual cost of these technology  
upgrades would be $20/pound × 50,000 lbs. = $1.0 
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million.  These two values form a baseline for com-
paring market outcomes.  As trades occur in a WQT 
market, the same loading reduction is achieved (as-
suming a 1.0 trading ratio) but an increasing share of 
loading reduction is obtained from farms instead of 
treatment plants.4  Trading also reduces the overall 
cost of achieving the target.  Therefore, cost savings 
can be expressed both in dollar terms and as a per-
centage of the baseline costs.  Likewise, trading vol-
ume can be expressed as the number of credits trad-
ed (measured in the pounds of loading reduction 
borne by farms) or as a percentage of the loading 
reduction target. 

Second, the gains from trading are equivalent to 
the cost savings to society from trading.  A portion of 
these cost savings are a gain to the plants (which are 
presumably taxpayer funded), to the extent that 
their credit purchases are less costly than the tech-
nology upgrades are.  The remaining portion is a 
benefit to farms, to the extent that credit revenue is 
larger than their costs of adopting land management 
practices.  However, these simulations make no at-
tempt to partition the total cost savings into the ben-
efits to the two groups.  The relative sizes of the 
gains depend on the actual credit prices, which vary 
across transactions and depend on the relative nego-
tiating power of the two groups.  Lacking any relia-
ble means to estimate the relative bargaining power 
and contract prices, estimates of the gains to the two 
groups can only be obtained by making arbitrary 
assumptions.   
 
4. Simulation results 
 

Table 2 summarizes the results of the twenty-
four scenarios resulting from the first 50 trades.  
While all of the scenarios ultimately resulted in 
more than 50 trades (ranging from 120-300 trades 
depending on the scenario), real-world evidence has 
shown that most programs result in very few trans-
actions.  Based on this, it was decided to primarily 
focus on the first 50 trades to provide a more realis-
tic analysis setting.  This offers one base of compari-
son which would apply if trading is limited.   
Appendix A displays the results for each scenario 
when all possible trades are completed. 

The first and second columns of Table 2 list the 
assumptions for each scenario.  The third through 

                                                 
4A trading ratio of greater than 1.0, on average, results in addi-
tional loading reduction whereas a trading ratio of less than 1.0 
results in lesser amounts of loading reduction than would be 
achieved in the absence of WQT and reliance on only technology 
upgrades. 

sixth columns report trading volume and loading 
reductions by type and source. 

The next two columns report the cost savings, in 
total dollars and as a percentage of the baseline total 
costs ($1.0 million from above description).  Simu-
lated cost savings varied widely, ranging from ap-
proximately $24,000 to $413,000 or from 2.4% to 
41.3% of baseline costs.   

The last two columns report the final (post-
trading) costs.  Due to the different trading ratios, 
some of the scenarios (those with a 1.0 trading ratio) 
exactly achieved the loading reduction target while 
others were either below (those with <1.0 trading 
ratio) or above the target level (those with >1.0 trad-
ing ratio).  The next-to-last column was computed 
simply as the baseline (pre-trading) costs less the 
cost savings from trading (e.g., in the ‘Optimal, 0.5 
trading ratio’ scenario: $1,000,000 - $412,685 = 
$587,315), while the last column expresses the final 
cost in average terms – i.e., costs per unit of loading 
reduction achieved (in the ‘Optimal, 0.5 trading ra-
tio’ scenario: $587,315/40,867 lbs. = $14.37/lb. of 
loading reduction).  The last column provides a  
useful comparison of the cost-effectiveness across 
scenarios.  With no trading, the cost per unit of load-
ing reduction is $1,000,000/50,000 lbs. = $20.00/lb.  
With trading, this cost ranged from $14.37/lb. to 
$18.92/lb, so, as expected, trading will reduce  
per-unit control costs.   

 

4.1.  Contracting of traders 
 

The effect of random contracting on overall cost 
savings is unambiguously negative.  This can be il-
lustrated by comparing the ‘Optimal, 0.5 trading 
ratio’ scenario, which resulted in net cost savings of 
$412,685, to the ‘Random, 0.5 trading ratio scenario’, 
which resulted in savings of only $226,862.  This re-
lationship between optimal and random contracting 
held for every scenario modeled regardless of trad-
ing ratios.  These results were expected and are simi-
lar to the findings of Atkinson and Tietenberg 
(1991).  Intuitively, random contracting reduces cost 
savings because it creates some risk that “high cost” 
sellers – those with high WTA values – will displace 
some low-cost sellers that could have traded for a 
larger gain.  Similarly, the “low paying” buyers with 
low WTP values may displace some of the higher 
paying buyers.  The market transactions that maxim-
ize cost savings would include the low-cost sellers 
paired with the high-value buyers, but in the limit-
ing case of random contracting all buyers and sellers 
are equally likely to participate.   
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Table 2.   Simulation results for twenty-four trading scenarios. 
 

 
When the gains per trade are depicted graphical-

ly, the effects of the contracting of traders on market 
performance become more pronounced.  Figure 1 
illustrates the gains per trade under alternative con-
tracting methods with a 1.0 trading ratio assuming 
all trades are completed.  The ‘Optimal’ scenario 
ends at $497,161 of total gains.  This level of gains is 
reached after 227 trades have been completed.  The 
‘Random’ scenario, on the other hand, reaches a 
maximum of $392,259, but does so after 255 trades; 
an additional 28 trades.  The ‘Optimal’ scenario 
could have ceased after 118 trades and more gains 
would have been realized ($393,724) than the total 
for the ‘Random’ scenario.  If trading were halted 
after 118 trades in the ‘Random’ scenario, only 

$188,623 (48% of its final value) of gains would have 
been realized.   

Figure 1 also reveals the effects of different types 
of non-optimal contracting.  When traders are in-
formed of buyers’ prices (‘Correlated Plants’ scenar-
io), the cumulative cost savings curve behaves very 
similarly to the ‘Optimal’ contracting case across the 
early trades, while the ‘Correlated Farms’ scenario 
(WTA Known) behaves similarly to the random con-
tracting case.  The ‘Correlated Plants’ scenario re-
sults in more cost savings than the ‘Correlated 
Farms’ scenario across the first 65% of trades.  Ana-
lyzing only the first 50 trades (Figure 2), shows the 
importance of correlation on the demand side (i.e., 
between plant’s WTP and likelihood of being a buy-
er) relative to the sellers’ side (i.e., between farm’s 

Contracting 
Trading 

Ratio 

Volume Traded Cost Savings Final Costs 

Base 
Loading 

Reduction 
by Farms 

(lbs.) 

Loading 
Reduction 
by Plants 

(lbs.) 

Additional 
Loading 

Reduction 
by Farms 

(lbs.) 

Total 
Loading 

Reduction 
(lbs.) 

Total 
($) 

Percent 
(%) 

Total 
($) 

Avg. 
($/lb.) 

Optimal 0.5 9,133 31,735 - 40,867 412,685 41.3 587,315 14.37 
Optimal 1.0 9,476 40,524 - 50,000 228,499 22.8 771,501 15.43 
Optimal 1.5 6,351 43,649 3,175 53,175 147,751 14.8 852,249 16.03 
Optimal 2.0 4,816 45,184 4,816 54,816 106,804 10.7 893,196 16.29 
Optimal 2.5 3,888 46,112 5,832 55,832 76,717 7.7 923,283 16.54 
Optimal 3.0 3,239 46,761 6,479 56,479 56,569 5.7 943,431 16.70 
Random 0.5 9,139 31,722 - 40,861 226,862 22.7 773,138 18.92 
Random 1.0 9,492 40,508 - 50,000 85,333 8.5 914,667 18.29 
Random 1.5 6,368 43,632 3,184 53,184 50,567 5.1 949,433 17.85 
Random 2.0 4,822 45,178 4,822 54,822 37,452 3.7 962,548 17.56 
Random 2.5 3,887 46,113 5,831 55,831 29,546 3.0 970,454 17.38 
Random 3.0 3,240 46,760 6,480 56,480 24,331 2.4 975,669 17.27 
Corr. Plants 0.5 9,134 31,733 - 40,866 363,109 36.3 636,891 15.58 
Corr. Plants 1.0 9,476 40,524 - 50,000 177,677 17.8 822,323 16.45 
Corr. Plants 1.5 6,354 43,646 3,177 53,177 101,392 10.1 898,608 16.90 
Corr. Plants 2.0 4,820 45,180 4,820 54,820 66,671 6.7 933,329 17.03 
Corr. Plants 2.5 3,888 46,112 5,832 55,832 43,917 4.4 956,083 17.12 
Corr. Plants 3.0 3,240 46,760 6,480 56,480 31,088 3.1 968,912 17.16 
Corr. Farms 0.5 9,134 31,733 - 40,866 275,477 27.5 724,523 17.73 
Corr. Farms 1.0 9,476 40,524 - 50,000 117,971 11.8 882,029 17.64 
Corr. Farms 1.5 6,351 43,649 3,175 53,175 68,249 6.8 931,751 17.52 
Corr. Farms 2.0 4,816 45,184 4,816 54,816 49,469 4.9 950,531 17.34 
Corr. Farms 2.5 3,888 46,112 5,832 55,832 42,166 4.2 957,834 17.16 
Corr. Farms 3.0 3,240 46,760 6,479 56,479 38,569 3.9 961,431 17.02 
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WTA and likelihood of being a seller) when only a 
limited number of trades occur.  These results imply 
that frictions on the demand side of the market are 
more detrimental to overall cost saving than fric-
tions on the supply side when a limited number of 
trades are completed.  Thus, WQT program design-

ers should weigh the benefits of reducing frictions to 
the associated costs of providing adequate infor-
mation to market participants and/or reducing  
other trade barriers that contribute to non-optimal 
contracting. 

 

 
Figure 1. Effects of marketplace contracting on cost savings with a 1:1 trading ratio (vertical line  

indicates results after only 50 trades). 
 
4.2.  Trading ratio 
 

As expected, there is a negative relationship be-
tween the trading ratio and potential gains from 
trading.  Focusing on the ‘Optimal’ scenarios, the 
cost savings decrease from over $412,000 to $56,000 
as the trading ratio increases from 0.5:1 to 3:1.  How-
ever, this can be somewhat misleading because each 
of these scenarios results in a different amount of 
nutrient loading reduction.  In the case of a 0.5:1 
trading ratio, the nutrient reduction target of 50,000 
lbs. is not met.  And in the case of a 3:1 trading ratio, 
there are an additional 6,479 lbs. of nutrient reduc-
tion beyond the target.   

As stated earlier, the purpose of a trading ratio 
greater than one is to account for nutrient reduction 
uncertainty and ensure that there is an overall in-
crease in water quality (beyond that which would 
occur in the absence of WQT and reliance on only 
technology upgrades).  According to the simulation 

results, this is generally the case.  Figure 3 illustrates 
the trading volume and net environmental gains in 
the different scenarios.  The height of the red bars 
represents the amount of loading reduction trans-
ferred from the plants to the farms through trading.  
The green bars represent the amount of loading re-
duction achieved from necessary upgrading of 
wastewater treatment plants.  In cases of a trading 
ratio greater than 1:1, there are additional loading 
reductions achieved beyond the target, represented 
by the height of the blue bars.  With a 2:1 trading 
ratio for example, each unit of increased plant load-
ings is offset by a two pound reduction in expected 
loading by farms, resulting in (on average) net envi-
ronmental gains.  The ‘Optimal, 2.0 trading ratio’ 
scenario results in 4,816 credits traded.  Because of 
the 2:1 trading ratio, farms reduce expected loading 
by a total of 9,632 lbs, (2*4,816), so combining this 
with the 45,184 lbs. of reduction achieved from 
wastewater treatment plant upgrades the total  
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expected loading reduction amounts to 54,816 lbs.  
So, the introduction of a trading ratio greater than 
1:1 results in an environmental improvement – the 

50,000 lbs. loading reduction target is exceeded by 
4,816 lbs. 

 

 
 

Figure 2.  Effects of marketplace contracting on cost savings with a 1:1 trading ratio (first 50 trades). 
 

 
Figure 3.  Trading volume and additional loading reduction by scenario (first 50 trades). 
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4.3.  Co-effects of contracting of traders and 
trading ratios 

 

Because of reasons stated earlier, the most useful 
metric for evaluation and comparison across scenar-
ios may be the average cost of nutrient reductions.  
The effect of the trading ratio on cost-effectiveness is 
not independent of the different methods of con-
tracting.  This is demonstrated graphically by com-
paring Figure 4 and Figure 5.  Under optimal  

contracting, an increase in the trading ratio raises 
average costs throughout the period of trading 
(Figure 4).  Increasing the trading ratio from 1:1 to 
2:1 increases final average costs from $15.43 to 
$16.29, an increase of 5.6%.  Increasing the ratio from 
1:1 to 3:1 increases final average costs by 8.2%.   
Further, with optimal contracting reducing the trad-
ing ratio from 1:1 to 0.5:1 results in an increase in 
final average costs.   

 

 
 

Figure 4.  Effects of a trading ratio under optimal contracting 
 

The results are different for random contracting.  
Here, the 0.5:1 trading ratio is the least cost-effective 
(highest average costs) across the first 50 trades 
(Figure 5).  Under random contracting, we find that 
the trading ratio has an unambiguously positive ef-
fect on cost-effectiveness.  One reason this occurs is 
that high trading ratios help to eliminate the highest-
cost sellers by pricing them out of the market.5  As 
noted above, random contracting creates a risk that 
high-cost sellers make transactions that displace 
their low-cost peers.  However, this occurs only to 
the extent that high-cost sellers can find buyers with 

                                                 
5 It should be noted that in reality, some high cost sellers may be 
the most dependable and least risky when controlling pollution. 
Their costs may be higher because they do a better job.  Our mod-
el assumes that all credit generation is uniform and dependable. 

high enough WTP to generate gainful transactions.  
An increase in the trading ratio can be interpreted as 
a proportional increase in each seller’s effective 
WTA (e.g., a 2:1 trading ratio doubles each sellers’ 
WTA).  As such, the sellers with initial WTAs near 
the maximum WTP will not be able to find a gainful 
trading partner if the trading ratio is increased.   

Table 3 shows the effects of contracting on cost-
effectiveness across different trading ratios.  Specifi-
cally, the ‘Optimal’ scenarios are compared to the 
‘Random’ scenarios.  The results show that as the 
trading ratio increases, the optimal contracting of 
traders become less important.  A high trading ratio 
may actually increase market performance in cases 
where buyers and sellers are not paired optimally, 
because it makes it harder for high-cost sellers to 
find a gainful trading partner.  At extremely high 



172   Smith, Peterson, et al. 

trading ratios, the difference in average cost-
effectiveness between optimal and random contract-
ing approaches zero.  However, this difference will 
never become positive.  In other words, optimal con-

tracting is always preferred to random contracting, 
but it becomes less important as the trading ratio 
increases.   

 

 
 

Figure 5.  Effects of a trading ratio under random contracting. 
 
 

Table 3.  Effects of contracting on cost-effectiveness across different trading ratios. 
 

Scenarios for 
Comparison 

Trading 
Ratio 

Difference in  
Average 

Cost-Effectiveness 
($/lb. ) 

More  
Cost-Effective 

Scenario? Conclusions 
Optimal vs. Random 0.5:1 -4.55 Optimal 

As trading ratio  
increases, optimal  

contracting of traders 
becomes less  

important. 

Optimal vs. Random 1:1 -2.86 Optimal 
Optimal vs. Random 1.5:1 -1.82 Optimal 
Optimal vs. Random 2:1 -1.26 Optimal 
Optimal vs. Random 2.5:1 -0.85 Optimal 
Optimal vs. Random 3:1 -0.57 Optimal 

 
4.4.  Simulation of real-world WQT markets 
 

Although the constructed data was used in the 
model, there is no reason why these same market 
simulation algorithms cannot simulate markets us-
ing observed data from actual specific locations.  
Because WQT programs, by nature, involve complex 
interactions between economics and the biophysical 

world, accurately simulating a WQT market requires 
detailed point and nonpoint source control cost and 
watershed modeling data.   

There are two types of cost data needed.  Up-
grade costs and annual operation maintenance costs 
of meeting more stringent nutrient standards are 
needed for wastewater treatment plants in the study 
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watershed.  These data either can be attained from 
surveys or by using general industry cost functions 
(e.g., Greenhalgh and Sauer, 2003).  In either case, 
the one-time and annual costs along with the appro-
priate time horizon should be used to calculate the 
annualized costs, which consider the time value of 
money by including a discount rate. 

Expected costs for BMPs used on farms also are 
needed.  These costs can be collected from surveys 
or from previous research.  University Extension fact 
sheets provide general estimates for this type of data 
(e.g., Devlin et al., 2003).  One-time and annual costs 
should be converted to an annualized basis in anal-
ogous fashion to the plants’ data. 

Further, traders may perceive “intangible” costs 
that are weighed against any potential gains.  That 
is, the assumption that only monetary trading gains 
enter traders’ utility functions does not consider 
other factors such as perceived risk, public percep-
tions, and the fear of increased regulatory scrutiny.  
A growing literature documents that the behavior of 
participants in an institution is influenced by institu-
tional processes and rules, independent of the par-
ticipants’ fiscal outcomes (Berg et al., 2005; Johnston 
and Duke, 2007).  Obtaining the information neces-
sary to estimate intangible costs that may exist is 
crucial for simulating a real-world WQT market.  
Since these data are subjective by nature, they can be 
obtained accurately through interaction with poten-
tial market participants via experiments, interviews, 
or surveys.   

Along with the economic data, biophysical wa-
tershed data are needed.  Watershed models play a 
central role in the simulation and execution of real-
world WQT markets.  Watershed models represent a 
scientific understanding of how land characteristics, 
BMPs, and other factors relate to pollutant loading 
into surface water bodies (Nejadhashemi et al., 
2009).  There are many types of models ranging from 
very simple to very advanced (see Nejadhashemi et 
al., 2009, for guidance in choosing a model).  Re-
gardless of the type of model used, the minimum 
output from the model should be:  the baseline nu-
trient loading from each subwatershed, reduction in 
loading from each subwatershed after BMPs are im-
plemented, and relevant delivery ratios.  The risk 
and uncertainty around pollutant loading and/or 
modeling error also could be included.  Combining 
all of this information will allow the researcher to 
generate the necessary WTP and WTA curves  
discussed previously in this paper.   

 
 

5. Conclusions 
 

While there is evidence that nonpoint sources 
have lower nutrient reduction costs than point 
sources, experience with WQT reveals a common 
theme: little or no trading activity.  The success of 
WQT seems, in part, to depend on the structure of 
the market created to bring buyers and sellers to-
gether to transact.  These outcomes suggest the pres-
ence of barriers to trading that were not recognized 
in the design of existing programs.   

While the ‘Optimal’ scenario modeled here 
serves as a useful benchmark, most existing WQT 
markets are decentralized in nature, so that limited 
information and other barriers to trade can cause 
traders to be matched in a less efficient sequence.  A 
variety of trading scenarios are possible.  For exam-
ple, one side of the market may have more infor-
mation or higher search costs than the other, or nei-
ther side may have adequate knowledge of the other 
side’s bid or offer prices.  High-cost sellers and low-
value buyers may simply “sneak” into actual trades 
because they happen to find a trading partner such 
that there are mutual bilateral gains.  Each of these 
scenarios leads to a different sequencing of trades, 
and thus different levels of cost savings and cost-
effectiveness.  The model used here shows some of 
the possible consequences of non-optimal contract-
ing.   

Several notable results are found regarding bar-
riers to trade.  The results imply that frictions on the 
demand side of the market are more detrimental to 
overall cost saving than frictions on the supply side 
when a limited number of trades are completed.  
Thus, WQT program designers should weigh the 
benefits of reducing frictions against the associated 
costs of providing adequate information to market 
participants and/or reducing other trade barriers 
that contribute to non-optimal contracting.  Overall, 
optimal contracting of traders is always better, but it 
becomes less important with higher trading ratios.   

Trading ratios are a common component of many 
existing WQT programs.  A typical trading ratio of 
2:1 requires a nonpoint source to reduce two pounds 
of expected nutrient loading in order to receive one 
pound of trading credit.  These ratios are purported 
to serve as a “safety factor” and are incorporated to 
account for the uncertainty in the measurement and 
monitoring of nonpoint source loading.  Because 
nonpoint traders must reduce loading by two 
pounds for every one pound emitted by point 
source traders, there will be a net reduction of one 
pound of expected loading for each trade.  So, while 
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inhibiting some trades from ever occurring, trading 
ratios also have the potential to improve water qual-
ity beyond trading with a 1:1 trading ratio.   

Previous studies (Malik et al, 1993; Horan, 2001; 
Horan and Shortle, 2005) have shown that under 
plausible conditions a trading ratio greater than 1:1 
is likely to increase the risk of environmental dam-
age because it dampens the incentive for nonpoint 
sources to trade and results in a greater share of 
overall loading attributed to (risky) nonpoint 
sources.  This result is at odds with the trading ratios 
chosen in existing programs, nearly all of which are 
greater than 1:1.  Horan (2001) offers one potential 
explanation for this discrepancy – certain groups of 
political stakeholders lobby for higher trading ratios 
because their goal is to raise overall loading reduc-
tions.  Here, we find that apart from any implica-
tions on environmental risk or political-economic 
factors, there is an economic welfare (overall cost 
savings to society) justification for high trading rati-
os in certain situations with limited trading infor-
mation and/or other barriers to trade.  Limited in-
formation and other barriers to trade which inhibit 
the optimal contracting of trades introduces a ran-
dom element to market participation, creating a risk 
that high-cost sellers (low-value buyers) will trans-
act to displace low-cost sellers (high-value buyers) 
who could have traded for greater gain.  To the ex-
tent that high trading ratios price the highest-cost 
sellers and lowest-value buyers out of the market, it 
reduces this risk and lowers average costs.   

A limitation of this study is that the simulations 
did not explicitly consider the risk and variability 
associated with nonpoint source loading.  Mean 
loading values were used.  In the real world, there 
will most definitely be some years in which the 
BMPs put in place by nonpoint sources will over-
perform and significantly reduce nutrient runoff and 
in other years the BMPs may significantly under-
perform.  Incorporating this stochastic process into 
the model would illuminate the effect of social envi-
ronmental risk – which previous research has shown 
will tend to decrease the welfare-maximizing trad-
ing ratio – against the non-optimal contracting of 
traders considered in the present study.  A stochastic 
model also would be capable of predicting policy-
relevant measures such as the percentage of time 
nutrient reduction targets would be exceeded and 
by how much. 

Based on the findings of this paper and the pre-
vious research that helped formulate this study, 
there appears to be a need for the comprehensive 
simulation of a WQT market in a real-world  

watershed to provide a further examination of po-
tential market impediments.  Along with this, more 
research is warranted to more fully understand 
those factors which result in the non-optimal con-
tracting of market participants.  The data require-
ments for a study such as this would be substantial 
but necessary for describing the “true” story that has 
and continues to be played out in past, current, and 
future WQT markets. 
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Appendix A - Simulation results considering all trades are consummated. 
 

 
 

  Volume Traded Cost Savings Final Costs 

Scenario 
Trading 

Ratio 
# of 

Trades 

Base 
Loading 

Reduction 
by Farms 

(lbs.) 

Loading 
Reduction 
by Plants 

(lbs.) 

Additional 
Loading 

Reduction 
by Farms 

(lbs.) 

Total 
Loading 

Reduction 
(lbs.) 

Total 
($) 

Percent 
(%) 

Total 
($) 

Avg. 
($/lb.) 

Optimal 0.5 134 24,088 1,823 - 25,912 701,703 70.2 298,297 11.51 

Optimal 1.0 227 40,816 9,184 - 50,000 497,161 49.7 502,839 10.06 

Optimal 1.5 224 26,396 23,604 13,198 63,198 319,788 32.0 680,212 10.76 

Optimal 2.0 188 16,210 33,790 16,210 66,210 205,138 20.5 794,862 12.01 

Optimal 2.5 151 9,993 40,007 14,990 64,990 134,540 13.5 865,460 13.32 

Optimal 3.0 121 6,386 43,614 12,772 62,772 90,824 9.1 909,176 14.48 

Random 0.5 134 24,112 1,777 - 25,888 597,226 59.7 402,774 15.56 

Random 1.0 255 47,156 2,844 - 50,000 392,259 39.2 607,741 12.15 

Random 1.5 301 36,035 13,965 18,017 68,017 234,861 23.5 765,139 11.25 

Random 2.0 258 22,515 27,485 22,515 72,515 142,475 14.2 857,525 11.83 

Random 2.5 203 13,613 36,387 20,419 70,419 90,259 9.0 909,741 12.92 

Random 3.0 154 8,356 41,644 16,712 66,712 59,869 6.0 940,131 14.09 

Corr. Plants 0.5 134 24,108 1,785 - 25,892 602,482 60.2 397,518 15.35 

Corr. Plants 1.0 252 46,330 3,670 - 50,000 406,054 40.6 593,946 11.88 

Corr. Plants 1.5 273 32,630 17,370 16,315 66,315 262,055 26.2 737,945 11.13 

Corr. Plants 2.0 228 19,860 30,140 19,860 69,860 161,605 16.2 838,395 12.00 

Corr. Plants 2.5 181 12,261 37,739 18,392 68,392 101,590 10.2 898,410 13.14 

Corr. Plants 3.0 141 7,700 42,300 15,401 65,401 65,051 6.5 934,949 14.30 

Corr. Farms 0.5 134 24,098 1,804 - 25,902 699,950 70.0 300,050 11.58 

Corr. Farms 1.0 243 43,916 6,084 - 50,000 479,847 48.0 520,153 10.40 

Corr. Farms 1.5 266 31,444 18,556 15,722 65,722 293,180 29.3 706,820 10.75 

Corr. Farms 2.0 232 19,951 30,049 19,951 69,951 180,392 18.0 819,608 11.72 

Corr. Farms 2.5 185 12,388 37,612 18,581 68,581 116,491 11.6 883,509 12.88 

Corr. Farms 3.0 147 7,988 42,012 15,976 65,976 81,077 8.1 918,923 13.93 

           


