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Mark Sorrells, and Jean-Luc Jannink

Abstract
Genomic selection (GS) uses genomewide molecular markers 
to predict breeding values and make selections of individuals 
or breeding lines prior to phenotyping. Here we show that 
genotyping-by-sequencing (GBS) can be used for de novo 
genotyping of breeding panels and to develop accurate GS 
models, even for the large, complex, and polyploid wheat 
(Triticum aestivum L.) genome. With GBS we discovered 
41,371 single nucleotide polymorphisms (SNPs) in a set of 
254 advanced breeding lines from CIMMYT’s semiarid wheat 
breeding program. Four different methods were evaluated for 
imputing missing marker scores in this set of unmapped markers, 
including random forest regression and a newly developed 
multivariate-normal expectation-maximization algorithm, which 
gave more accurate imputation than heterozygous or mean 
imputation at the marker level, although no signifi cant differences 
were observed in the accuracy of genomic-estimated breeding 
values (GEBVs) among imputation methods. Genomic-estimated 
breeding value prediction accuracies with GBS were 0.28 
to 0.45 for grain yield, an improvement of 0.1 to 0.2 over 
an established marker platform for wheat. Genotyping-by-
sequencing combines marker discovery and genotyping of large 
populations, making it an excellent marker platform for breeding 
applications even in the absence of a reference genome 
sequence or previous polymorphism discovery. In addition, the 
fl exibility and low cost of GBS make this an ideal approach for 
genomics-assisted breeding.

GENOMIC SELECTION (GS) uses genomewide molecular 
markers to predict complex, quantitative traits in 

animal and plant breeding (Meuwissen et al., 2001). Th e 
underlying concept of GS is to model the entire comple-
ment of quantitative trait loci eff ects across the genome 
to produce a genomic estimated breeding value (GEBV), 
from which candidates can be selected by genotyping 
before phenotypic evaluation. Th e GS modeling approach 
was revolutionary in the sense that individual genetic 
eff ects were not identifi ed but all markers were incorpo-
rated into the model to generate a prediction that was the 
sum total of all genetic eff ects, regardless of how minor. 
Genomic selection models have proven to be advanta-
geous for complex traits such as grain yield where many 
loci of small eff ects control the trait (Burgueño et al., 
2012; Crossa et al., 2010; de los Campos et al., 2009; 
González-Camacho et al., 2012; Jannink et al., 2010). 
Selection on single or limited numbers of markers for 
quantitative traits oft en misses a substantial portion of 
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the genetic variance contributed by loci of small eff ects. 
Genomic selection modeling therefore takes advantage of 
the increasing abundance of molecular markers through 
modeling of many genetic loci with small eff ects.

One premise of using GS in applied breeding programs 
is the availability of high-density genomewide molecular 
markers at a cost that is comparable to (or lower than) 
the cost of phenotyping (Goddard and Hayes, 2007; 
Heff ner et al., 2009; Jannink et al., 2010; Meuwissen et 
al., 2001). High costs of phenotyping and the availability 
of inexpensive genotyping make GS a more feasible and 
attractive alternative selection method. Th is balance 
can be seen in the fi rst large-scale implementation of 
GS: dairy cattle (Bos primigenius taurus) breeding using 
single nucleotide polymorphism (SNP) arrays. Th is was 
clearly a situation where breeders were working with 
very expensive phenotypes and increasingly inexpensive 
molecular markers. Dairy bulls are selected based on 
daughter progeny testing, a phenotype that takes years to 
evaluate and typically cost tens of thousands of dollars per 
bull (Schaeff er, 2006). In contrast, GS using SNP arrays is 
considerably less expensive with a typical array priced at a 
few hundred dollars or less. In plant breeding, inbred line 
testing has typically been relatively inexpensive in the range 
of tens to hundreds of dollars depending on the plot size, 
level of replications, and number of locations evaluated 
(Heff ner et al., 2010). As marker technologies also lagged 
behind in many crop species due to large and complex 
genomes and the lack of a reference sequence, the tipping 
point for large-scale application of GS is just now being met.

Wheat, a staple crop of global economic importance, 
has a very large polyploid genome. Th e wheat genome is 
hexaploid and roughly 16 Gbp in size (Arumuganathan and 
Earle, 1991), both of which have hindered molecular marker 
development for this crop. Recently, new approaches to 
genotyping using next-generation sequencing (NGS) have 
been demonstrated in a range of species as an eff ective tool 
to generate high-density genomewide markers at a low per-
sample cost (Elshire et al., 2011). Genotyping-by-sequencing 
(GBS) takes advantage of restriction enzymes to capture 
a reduced representation of the target genome and DNA 
barcoded adapters to sequence multiple samples (96 to 384) 
in parallel on a single run of NGS platforms (multiplexing). 
Genotyping-by-sequencing has recently been applied in the 
large barley (Hordeum vulgare L.) and wheat genomes and 
shown to be an eff ective tool to rapidly generate molecular 
markers for these species (Poland et al., 2012).

Here we show that GBS can be applied directly to 
breeding programs and produce de novo molecular 
markers suitable for whole-genome predictions and GS. 
We applied GBS to a set of 254 elite breeding lines from 
the International Wheat and Maize Improvement Center 
(CIMMYT) and developed GS models for yield, days to 
heading (DTH), and thousand-kernel weight (TKW). 
Cross-validation was used to determine the accuracy of 
GEBVs. We investigated the marker imputation accuracy 
of missing data in the GBS datasets using random forest 
(RF) regression and a newly developed kinship-based 

imputation algorithm. Using the same cross validation 
approach, prediction accuracy using GBS markers was 
compared with a currently used array-based platform.

Materials And Methods
Germplasm and Phenotypes
Th e germplasm consisted of 254 advanced breeding lines 
from the CIMMYT Cycle 29 Semi-Arid Wheat Screening 
Nursery (SAWSN). Th e lines were F

6
 derived from a set 

of 122 unique crosses, of which 68 were represented by a 
single line in the set of 254. Th e remaining families con-
tributed 2 to 12 lines to the nursery.

Th e breeding lines were evaluated in 2010 in small 
yield plots of two beds measuring 0.8 by 3 m each (total 
plot of 1.6 × 3 m = 4.8 m2) at the CIMMYT research 
station Campo Experimental Norman Ernest Borlaug 
(CENEB) in Ciudad Obregon, Mexico. Due to space 
limitations, the breeding lines were split into seven 
trials, each with three replicates, for both the irrigated 
and managed drought environments. Sister lines from 
the same cross were grouped in the same trial and 
evaluated together. Under full irrigation conditions, 
yield was measured for all three replicates and TKW for 
two replicates. Days to heading was also measured for 
two replicates but only the average was recorded. In the 
drought nursery yield was measured in three replications.

Genotypes
Genomic DNA was extracted from bulked leaves of ten 
2-wk-old seedlings using a cetyltrimethylammonium 
bromide procedure (Saghai-Maroof et al., 1984) modifi ed 
based on CIMMYT protocols (CIMMYT, 2005). As part 
of an earlier study, the lines had been genotyped using 
the Diversity Array Technology (DArT) platform (Diver-
sity Arrays Technology Pty Ltd.) (Wenzl et al., 2004), 
which produced 1726 markers for this population.

Th e GBS libraries were constructed in 95-plex using 
the P384A adaptor set (Poland et al., 2012). For each plate a 
single random blank well was included for quality control to 
ensure that libraries were not switched during construction 
and sequencing. Genomic DNA was codigested with the 
restriction enzymes PstI (CTGCAG) and MspI (CCGG) 
and barcoded adapters were ligated to individual samples. 
Samples were pooled by plate into a single library and 
polymerase chain reaction amplifi ed. Detailed protocols 
can be found in Poland et al. (2012) and the latest updates 
on the GBS approach for wheat can be found on the USDA 
Wheat Genetics and Germplasm Improvement website 
(http://www.wheatgenetics.org/research/). Each library was 
sequenced on a single lane of Illumina HiSeq 2000 (Cornell 
Life Science Core Laboratory Center).

We used a population-based SNP calling approach to 
identify informative SNP markers in the data set. Sequence 
tags (unique sequences within the full set of tags) were 
internally aligned using allowable mismatch of 3 bp in a 
64 bp sequence. For each position in the tag, putative SNPs 
were identifi ed. Single nucleotide polymorphisms were 
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then fi ltered using a Fisher exact test to determine if the 
SNP alleles were independent in a population of inbred 
lines (Fig. 1). For each putative SNP allele the number of 
individuals in the population with that allele was counted 
and a 2 × 2 table constructed of the number of individuals 
with one or the other allele, both, or neither. A Fisher exact 
test was then used to determine if the two alleles were 
independent. If the null hypothesis of independence for 
the putative SNP was rejected (p < 0.001) we assumed that 
the tags were allelic in the population (and therefore that 
the putative SNP was a true SNP). For putative SNPs due to 
sequencing errors, duplications, and homologous sequence 
on diff erent genomes, the two alleles are oft en found in the 
same individual. For inbred lines as examined here, this 
would be evidenced by an excess number of individuals 
called heterozygous and failure to reject the null hypothesis 
of independence. For this study the SNPs were unordered 
and curated to include only one SNP per tag.

Imputation of Genotypic Data
Th e DArT markers had 2% missing data, which were 
imputed with the population mean for each marker. Four 
diff erent imputation methods were evaluated for the GBS 
data, which had up to 80% missing data per marker: (i) 
using the marker mean value (mean), (ii) calling missing 
genotypes as heterozygotes (hets), (iii) using RF regres-
sion (Breiman, 2001), and (iv) using a multivariate nor-
mal (MVN)-expectation maximization (EM) algorithm.

Random Forest Imputation

Random forest is a machine-learning algorithm that uses an 
ensemble of decision trees, taking a quorum vote or average 
of the multiple decision trees to determine a classifi cation or 
a prediction value for new instances. It is a very robust algo-
rithm for classifi cation and regression when there are thou-
sands of input variables. In this study an ensemble average 
for 100 regression trees was used to impute the missing val-
ues for each marker with the RandomForest package (Liaw 
and Wiener, 2002) in R 2.14.1 (R Development Core Team, 
2011) using R package multicore for parallelization. For 
each marker, the set of lines available for training consisted 
of those for which marker scores were available. For each 
regression tree, the algorithm generated a bootstrap sample 
as the training population, and the number of markers ran-
domly sampled at each split was (by default) two-thirds of 
the total available. Th e missing genotypes for that marker 
were then predicted as the ensemble average of the 100 trees 
applied to the other markers (imputing missing values with 
the mean). In principle this process could be repeated using 
the fi rst-round predictions instead of the mean in the train-
ing population. Based on cross-validation exercises (data not 
shown), we determined that additional iterations did not 
improve the imputation accuracy.

Multivariate Normal Expectation 
Maximization Algorithm
We developed a novel kinship-based imputation for GS 
using the EM algorithm. Th e EM algorithm represents 

a general approach to calculating maximum likelihood 
estimates of unknown parameters when data are missing 
(Dempster et al., 1977). To use the algorithm, a model 
must be specifi ed for how the data were generated. Our 
results are based on the assumption that marker geno-
types follow a MVN distribution. While this is obviously 
not exact—only three outcomes are possible for biallelic 
markers in diploid individuals—it is a useful approxima-
tion in the context of breeding value predictions with a 
realized (additive) relationship matrix.

To illustrate, let X ∈ {0,1,2}n×m be the genotype 
matrix for n lines and m biallelic markers with alleles 
designated α and β and marker scores coded αα = 0, 
αβ = 1, and ββ = 2. Th e symbol W denotes the “centered” 
genotype matrix constructed by subtracting the marker 
mean from each data point: W

ik
 = X

ik
 – 2p

k
, in which 

p
k
 is the frequency of the β allele. Using the current 

population as the “base” (Powell et al., 2010), the realized 
relationship matrix is (VanRaden, 2008)

( )/ 2 1k kk
p p⎡ ⎤′= −⎢ ⎥⎣ ⎦∑A WW .              [1]

From matrix algebra we can rewrite the outer product 
WW′ in terms of the sample covariance matrix S:
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in which w  denotes the row mean of W. For an 
infi nitesimal genetic model, the true relationship 
matrix is achieved in the large m limit. In this limit 
we can replace the sample statistics S and w  by the 
corresponding parameters for the distribution of marker 
genotypes, denoted by Σ (covariance) and μ (mean):

A = [Σ + μμ′]/E[2p(1 – p)],               [3]

in which E[⋅] denotes the expectation operator.
Th us far we have not specifi ed the distribution of 

marker genotypes. If we now assume that the centered 
genotypes are MVN: w ~ N(μ,Σ), the EM algorithm 
can be used to estimate (μ,Σ) and in turn calculate the 
realized relationship matrix. From Eq. [3] the MVN 
assumption means markers are imputed based on realized 
relationships. While the MVN-EM algorithm is a common 
technique in statistics (Little and Rubin, 1987), concise 
matrix formulations of the problem are harder to fi nd. Th e 
following description is taken from Schneider (2001).

In the maximization (M) step the missing data for 
each marker are imputed by multiple regression. Th is 
involves partitioning the current estimates of the mean 
and variance based on the pattern of observed (subscript 
1) and missing (subscript 2) data for each marker:

( )1
2 2 21 11 1 1

ˆ ˆˆ ˆ−= + −k kW Wμ Σ Σ μ .              [4]

In the expectation (E) step, the estimates of the mean and 
variance are updated from the imputed marker matrix:
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in which ˆ
kT  is the conditional expectation of 

the cross-products:
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We have written Eq. [6] as a partitioned matrix to show 
the presence of the imputation uncertainty term ˆ

kU  in 
the cross-product between alleles with missing data; in 
reality the row and column order is the same for all k.

Th e EM algorithm was initialized by imputing with 
the mean for each marker and estimating (μ,Σ) by the 
sample statistics. Th e convergence error at iteration t was 
calculated from the root mean-squared error:

( ) ( )
1/2

211 −−
⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤−⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭
∑ t t

ij ij
ij

n A A ,               [7]

which represents the estimation precision for each 
element of the relationship matrix. A convergence 
threshold of 0.02 was used for all results. Th e MVN-EM 
algorithm is available through R package rrBLUP version 
3.8 or higher (Endelman, 2011).

Marker Imputation Accuracy
Marker imputation accuracy was estimated by randomly 
masking 25 (nonmissing) genotypes per marker for 50 
random SNPs with minor allele frequency ≥0.05. Th is 
process was repeated fi ve times, using diff erent SNPs 
each time, so that statistics are based on 250 unique 
markers. Th e accuracy for each marker was calculated 
as the mean absolute error for the masked genotypes: 
( ) −∑ ˆ1/ 25 k k kx x , which ranges from 0 to 2. Because the 
distribution of accuracies was nonnormal, we report the 
median and fi rst and third quartile.

Figure 1. Single nucleotide polymorphism (SNP) calling from genotyping-by-sequencing tags. For reference-independent SNP calling, a 
population-based fi ltering approach was used. (A) Putative SNPs were fi rst identifi ed by internal alignment of sequence tags allowing 
1 to 3 bp mismatch in a 64 bp tag. (B) The number of individuals (samples) in the population with each SNP allele were tallied and 
a Fisher exact test was conducted to test if the two alleles were independent. Within an inbred line, alleles at a biallelic SNP locus 
should be mutually exclusive (i.e., the inbred line should not have both alleles). Putative SNPs that failed the Fisher test (p -value < 0.001) 
were considered biallelic SNPs in the population and converted to SNP calls. (C) Based on presence–absence of the different tags in 
the individuals across the population, genotype scores were assigned. By incrementally increasing the stringency of the alignments, 
paralogous sequence on the alternate genomes could be fi ltered through genome-specifi c SNPs.
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Statistical Analysis of Wheat Phenotypes

Both genotypic and breeding values (GEBV) were calculated 
by mixed model analysis in ASReml 3.0 (VSN International, 
2009). Genotypic values (i.e., line means) were estimated as 
fi xed eff ects (best linear unbiased estimate [BLUE]) with 
a random eff ect for replicates nested within trials. Breed-
ing values were predicted as random eff ects (best linear 
unbiased prediction [BLUP]), with covariance proportional 
to the realized relationship matrix, and including random 
eff ects for trial and replication within trial. Broad-sense 
heritability (H2) was calculated on a plot basis as H2 = V

g
/(V

g
 

+ V
error

), in which V
g
 and V

error
 are the estimated genetic and 

residual variance components, respectively, when modeling 
the line eff ects as independent.

Genomic prediction accuracy was calculated by cross-
validation using each of the seven trials as validation sets 
(folds). Because sister lines were only evaluated in the same 
trial, this partitioning ensured that no line in the training 
population had a full-sib line in the validation set. Th is 
gives a more stringent test of GS prediction by removing 
full-sib lines (most closely related) from the training 
population. Within each training population (consisting 
of six trials), GEBVs were calculated using the same mixed 
model method described above. Accuracy was calculated 
as the correlation between the GEBV and genotypic value 
(BLUE) in the validation set, and the mean reported is the 
average across the seven folds. Th is analysis was repeated 
for each of the four imputation methods as well as for the 
relationship matrix based on a reduced set of GBS markers 
and the relationship matrix from the DArT markers. Th e 
reduced GBS marker set was chosen to have approximately 
the same number of markers as the DArT set. By limiting 
the maximum percentage of missing data to 20%, we were 
left  with 1827 GBS markers (vs. 1726 DArT).

To test for signifi cance diff erences in prediction 
accuracy between the imputation methods, the cross-
validation results were analyzed with SAS PROC GLM 
(SAS Institute, 2010), using fold as a blocking factor. 
Th e REGWQ procedure was used to control the strong 
familywise error rate at the 0.05 level. Th e same means 
comparison procedure was used to test for signifi cant 
diff erences between the full GBS marker set, the reduced 
GBS marker set, and the DArT markers. We recognize 
that the ANOVA assumption of independence of errors is 
violated due to correlations between the testing and training 
sets in each fold and therefore p-values are not exact under 
the null hypothesis. Th e purpose of this ANOVA is not to 
test specifi c null hypotheses but simply to help quantify the 
relative magnitudes of the factors aff ecting accuracy.

Bias and Accuracy of Genomic-Estimated 
Breeding Values
Th e accuracy and bias of breeding value predictions were 
evaluated by simulation for the mean, heterozygote, and 
MVN-EM imputation methods. Random forest impu-
tation was not included due to its large computational 
demand. Our analysis focused on the 100 lines with the 

least missing data, for which there were 5360 SNPs with 
less than 5% missing data. At this low level of missing 
data the imputation method is not important, so we called 
them as heterozygotes. Th e relationship matrix was calcu-
lated using all 5360 markers and then used as the covari-
ance matrix (G = Aσ2) to simulate breeding values from 
the MVN distribution. Phenotypes were simulated by 
adding independent normal deviates (with variance 2

eσ ) to 
each breeding value. Results are shown for 

2
eσ  = 0.8 and σ2 

= 1, for which the expected heritability (regressing breed-
ing values on phenotypes) is σ2(1 + f)/[σ2(1 + f) + 

2
eσ ] ≈ 0.7. 

Th is heritability was confi rmed in the simulation.
In each simulation, four of the seven trials were 

randomly assigned to the training population, and the 
remaining three trials were used as a validation set. Th is 
4:3 split led to training populations with 47 to 67 lines 
and validation sets with 33 to 53 lines, with no sister 
lines shared between them. Genomic-estimated breeding 
values were predicted by BLUP using four diff erent 
relationship matrices. Th e fi rst was the same as that 
used to simulate the breeding values. For the other three 
relationship matrices we fi rst randomly masked 50% 
of the genotypes per marker and then applied each of 
the imputation methods. Th e true (simulated) breeding 
values were then regressed on the GEBVs, for which we 
report the mean regression coeffi  cient and the mean 
accuracy based on 1000 simulations.

Results
Genotypes and Phenotypes
We used GBS to genotype 254 lines from the Cycle 29 
SAWSN. In this breeding panel we identifi ed a set of 
41,371 SNPs that were at an allele frequency greater than 
1% and had more than 20% data present (Supplemen-
tal File S2). Removing multiple SNPs in the same tag 
reduced the marker number to 34,749 SNPs that were 
used for subsequent analysis. As is typical of sequence-
based genotyping at low coverage, many markers had 
a large proportion of missing data. Th ere was limited 
power to confi rm low-frequency alleles in the presence 
of sequencing errors. Th is was evidenced by a decrease 
in the number of identifi ed SNPs with minor allele fre-
quency below 5% (data not shown).

Four quantitative traits from the 2010 season in 
Obregon, Mexico, were analyzed including yield under 
irrigated and drought conditions, TKW, and DTH (Fig. 
2). Th e mean irrigated yield was 7.2 Mg ha−1 (SD = 0.6). 
Due to higher than normal precipitation, stress in the 
managed drought trial was mild, and the mean yield was 
4.2 Mg ha−1 (SD = 0.3). Th ousand kernel weight ranged 
from 37 g to 60 g, with a mean of 49 g (SD = 4). Heading 
was observed over a 3-wk period (73–93 d aft er planting), 
with an average of 85 days (SD = 4) aft er planting.

Table 1 shows the H2 of the yield and TKW traits 
(only a single average measurement was available for 
heading date). For both irrigated and drought yield, H2 = 
0.62. Th e heritability of TKW was higher at H2 = 0.95.
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Marker Imputation Accuracy

For most genomic prediction models, imputation of the 
missing genotypes is a necessary fi rst step. We compared 
the accuracy of four diff erent imputation methods by ran-
domly masking 25 (nonmissing) genotypes per marker, 
imputing, and then calculating the mean absolute error for 
each marker (Fig. 3). Th e highest error was observed when 
the missing genotypes were called as heterozygotes.

Imputing with the population mean had the second-
to-highest error. Th e strong dependence on minor allele 
frequency refl ects the fact that as the minor allele frequency 
decreases, the population mean approaches the genotypic 
value of the majority of the lines and hence the error 
decreases. Th ere was no relationship between error and the 
amount of missing data when imputing with the mean.

As expected, imputations based on RF or the 
realized relationship matrix (MVN-EM) were more 
accurate than the other two methods. We found that 
RF imputation was more accurate than MVN-EM 
imputation across the range of missing data but 
computational time was considerably increased. For both 
of these methods, the median error increased slightly 
with minor allele frequency and with the amount of 
missing data. Th e trend for missing data refl ects the 
fact that markers with more missing data have smaller 
training populations and therefore larger error (Fig. 3).

Genomic Prediction Accuracy and Bias
Although the imputation methods were clearly diff er-
entiated in terms of marker imputation error, this made 
little to no diff erence with respect to genomic prediction 
accuracy. Genomic prediction accuracies, defi ned here 
as the correlation between GEBV and phenotype, were 
in the range of 0.3 to 0.5 for all traits (Table 2). Th e two 
simple imputation methods (heterozygote and mean) 
tended to have slightly higher accuracy, on the order of a 
few points, but for no trait was this diff erence in accuracy 
statistically signifi cant (p-value > 0.05).

Figure 2. Phenotypic distribution of four agronomic traits on Cycle 29 Semi-Arid Wheat Screening Nursery (SAWSN). Each panel 
shows the distribution of best linear unbiased estimates of 254 lines from the Cycle 29 SAWSN used for this study.

Table 1. Broad-sense heritability (H2) of agronomic 
traits evaluated in Cycle 29 Semi-Arid Wheat 
Screening Nursery.

Trait H2

Yield (irrigated) 0.62

Yield (drought) 0.62

Thousand kernel weight 0.95
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Our fi nding that the imputation methods were 
comparable with respect to breeding value prediction 
accuracy was confi rmed in simulation. As shown in 
Table 3, there was one percentage point separating the 
heterozygote method (r = 0.444) from the mean method 
(r = 0.457), which was in turn one point lower than the 
MVN-EM algorithm (r = 0.466), and the MVN-EM 
accuracy was one point lower than with the complete 
marker data (r = 0.477). Although these diff erences 
are very small, they were signifi cant based on 1000 
simulations (p < 10−10 in pairwise t tests). Th e ranking 
of the imputation methods (MVN-EM > mean > het) 
mirrors that observed for the marker imputation error.

Although comparable in accuracy, we observed 
signifi cant bias in the GEBVs when using the mean or 

heterozygous imputation methods (Table 3). For these 
two methods, the mean regression coeffi  cient was greater 
than one, indicating the GEBV tended to underestimate 
the true breeding values (in magnitude). As would be 
expected, this bias was more severe with the heterozygote 
method than with the mean method. Th e regression 
coeffi  cient was not signifi cantly diff erent than one with 
either the complete marker data or when markers were 
imputed with the MVN-EM algorithm.

Comparison with Diversity Array 
Technology Markers
Th is population had previously been genotyped with 
1729 DArT markers, an established platform for wheat 
(Akbari et al., 2006). Principal component analysis with 
the GBS and DArT markers produced similar results 
(Fig. 4). Th e two largest principal components accounted 
for 17 and 11% of the total variation in the realized rela-
tionship matrix with the GBS markers (calculated by 

Figure 3. Marker imputation error on 254 breeding lines in the Cycle 29 Semi-Arid Wheat Screening Nursery. For each of 250 
randomly chosen markers from the full set of 34,749 genotyping-by-sequencing (GBS) markers, 25 genotypes were masked and the 
imputed genotypes were compared to observed. Panel A shows imputation error at different levels missing data. The colors indicate 
what fraction of the 254 genotypes was missing before masking the 25 additional genotypes. The upper and lower limits for the 
range of different of missing data for different tests are shown in the legend. In panel B, results are shown as a function of the minor 
allele frequency. The median (column height) and fi rst and third quartile (error bars) statistics are shown for four imputation methods: (i) 
heterozygote (het), (ii) population mean, (iii) multivariate normal expectation maximization (EM), and (iv) random forest (RF) regression.

Table 2. Prediction accuracy for agronomic traits in 
the Cycle 29 Semi-Arid Wheat Screening Nursery 
using different marker imputation methods. Cross-
validation with seven folds was used and sister lines 
from the same cross were grouped in the same fold. 
No signifi cant differences in prediction accuracy were 
observed among the imputation methods.

Trait MVN-EM† RF Mean Het

Yield (irrigated) 0.32 0.32 0.28 0.33

Yield (drought) 0.42 0.40 0.45 0.44

Thousand kernel weight 0.33 0.34 0.38 0.36

Days to heading 0.35 0.36 0.37 0.37
†Imputation methods are multivariate normal expectation maximization (MVN-EM), random forest 
(RF), mean, and heterozygote (Het).

Table 3. Prediction accuracy and bias for 
simulated phenotypes.

Complete† MVN-EM Mean Het

Accuracy 0.477 a 0.466 b 0.457 c 0.444 d

Regression coeffi cient‡ 1.03 (0.02) 0.99 (0.02) 1.19 (0.02) 1.31 (0.03)
†Imputation methods are complete genotypic data, multivariate normal expectation maximization 
(MVN-EM), mean, and heterozygote (Het). Signifi cant differences between imputation methods are 
shown by letters. 

‡Regression of true breeding value on genomic estimated breeding value with standard error shown 
in parenthesis.
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MVN-EM) compared to 18 and 10% with the DArT mark-
ers. Although we did not quantify it, the general pattern of 
population structure was similar (Fig. 4).

Despite these similarities, the GBS markers led to 
higher genomic prediction accuracies (Fig. 5; Table 4). 
For both yield traits and heading date, the accuracy gain 
was in the range of 0.13 of 0.24. For TKW the increase 
was smaller (0.05) and not signifi cant (p-value > 0.05). 
To investigate whether the higher accuracy with the GBS 
markers was due simply to higher density, we repeated 
the analysis using only the 1827 GBS markers with less 
than 20% missing data, which is comparable in number 
to the 1726 DArT markers. Compared to the full set 
of GBS markers, the mean accuracy with the reduced 
marker set was not signifi cantly diff erent for yield and 
TKW (0.07). Even with a comparable number of markers, 
the GBS platform led to signifi cantly higher accuracy 
(gains of approximately 0.15) for drought yield and 
heading date when compared to the DArT markers.

Discussion
Our fi nding that imputation with RF led to lower error 
compared to imputation with MVN-EM is expected 
from the nature of the two algorithms. Whereas the 
MVN-EM algorithm imputes based on the realized 
relationship (averaged over all markers), the regression 
trees in the RF method can capture specifi c patterns of 
linkage disequilibrium. Th is increased power comes at 
a computational cost. Imputing all 34,749 markers with 
RF required 22 h when fully parallelized on a worksta-
tion with two 2.95 GHz 6-core Intel Xeon processors 
and 32 GB of RAM. By contrast, parallel execution of the 

MVN-EM algorithm converged aft er fi ve iterations and 
took only 3 min. Although the simple imputation meth-
ods performed as well as RF and MVN-EM imputation 
for prediction accuracy of GEBV, the lower imputation 
error on a marker basis makes RF and MVN-EM impu-
tation methods preferable.

We found that a GBS marker set of 34,749 produced 
signifi cantly more accurate GEBVs than a DArT data set of 
1729 markers. However, we also observed that a reduced set 
of only 1827 GBS markers still gave prediction accuracies 
better than the DArT markers and as good as the full GBS 
data set. Th e accuracy from 1829 GBS markers was lower, 
although not signifi cantly diff erent, than the accuracy from 
34,749 GBS markers. Th e comparable performance of a 
limited number of GBS markers relative to the complete 
GBS data set of 34,749 markers indicates that (i) the 
population under study has relatively close relationships 
resulting in only a limited number of markers being 
need for full characterization, (ii) since the true breeding 
values remain unknown, uncertainty in the phenotypic 
observations limits the prediction accuracy, which was 
measured as the correlation between GEBVs and the 
observed phenotypes rather than the true breeding values, 
and/or (iii) the addition of GBS markers with higher levels 
of missing data does little to improve the characterization 
of kinship among the breeding lines. Simulation studies on 
this dataset indicated that increased accuracy due to higher 
heritability was large relative to the eff ect of increasing 
marker numbers (data not shown). Although not exclusive 
of the other conclusions, this supports the fi rst conclusion 
that a limited number of markers are needed for this 
population to produce accurate predictions.

Figure 4. Principal component analysis of breeding lines from the Cycle 29 Semi-Arid Wheat Screening Nursery. Position of 254 
wheat lines in the coordinate system defi ned by the fi rst two principal components using multivariate normal expectation maximization 
imputed genotypes. The points are color coded according to the seven folds used in the genomic prediction cross-validation scheme. 
Panel A is based on genotyping-by-sequencing (GBS) markers and panel B is with Diversity Array Technology (DArT) markers.
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It is unclear why more accurate predictions were 
observed with GBS than with DArT, even when controlling 
for marker number. One possibility is that the GBS 
markers are free of the genotypic ascertainment bias 
that is found with fi xed array genotyping. For this study, 
the GBS markers were discovered concurrently with 
genotyping the set of germplasm of interest. As array-based 
genotyping oft en relies on a reference set of germplasm 
to discover, validate, and design markers, application of 

such platforms to diff erent sets of germplasm could result 
in bias due to the nonrepresentativeness of the reference 
set in assaying polymorphisms in new sets of genotypes. 
Another possibility is that the GBS markers are more 
uniformly distributed across the genome than the DArT 
markers, which tend to cluster and show low density in the 
centromeric regions and the D genome (Akbari et al., 2006; 
Poland et al., 2012). Th is could lead to improved genome 
coverage with the same number of markers.

Figure 5. Cross-validation accuracy of genomic selection models for predicting line performance in the Cycle 29 Semi-Arid Wheat 
Screening Nursery, CIMMYT, using genotyping-by-sequencing (GBS) and Diversity Array Technology (DArT) markers on 254 elite 
breeding lines. Each trait was evaluated using sevenfold cross validation with sister lines from a single cross being grouped in the 
same fold. Signifi cant differences among marker types within traits are denoted by letters above the bars. The approximate number of 
markers for each set are in parentheses. The actual numbers of markers are 1729 for DArT, 1827 for GBS (2K), and 34,749 for GBS 
(35K). Genotyping-by-sequencing (2K) markers have up to 20% missing data per marker and GBS (35K) have up to 80% missing data 
per marker.
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Th e prediction accuracies found in this study are 
suffi  ciently high to merit implementation of GS in 
applied breeding programs. Heff ner et al. (2010) found 
that an accuracy of only 0.3 would be needed for GS 
to increase rates of gain on a per-year basis in a winter 
wheat breeding program relative to a marker-assisted 
breeding program. In the CIMMYT spring wheat 
breeding programs, GS will need to have higher accuracy 
to outperform phenotypic selection due to faster 
selection cycles. In applied breeding programs, iterative 
testing and model updating is expected to produce more 
accurate models as the training population builds each 
year with new entries (Jannink et al., 2010; VanRaden 
et al., 2009). It is also important to note that we are 
only comparing the GEBVs in this study to observed 
phenotypes and the true breeding values remain 
unknown. Given true breeding values, we would expect 
a higher correlation to the GEBVs. We have, however, 
focused only on within-environment predictions. Across 
diff erent environments it is expected that heritability 
along with prediction accuracy would decrease as 
genotype × environment interactions are introduced. 
Phenotypic selection, however, faces this same limitation, 
which has always been a challenge for plant breeders.

Conclusions
Rapid advances in output from NGS platforms with cor-
responding decreases in cost have made sequence-based 
genotyping a very attractive and practical approach to 
rapidly characterize genomes and populations. Previ-
ously it has been shown that GBS can be used to generate 
high-density markers effi  ciently and inexpensively. Here 
we have shown that GBS can be used to generate markers 
to characterize wheat breeding lines and develop accu-
rate GS models. We have concurrently developed a novel 
EM algorithm to impute unordered markers and shown 
that this method produces unbiased GEBVs. Prediction 
accuracies from GBS were consistently higher than those 
using an established marker platform for important 
agronomic traits, including grain yield, and in the range 
needed to apply GS in breeding programs.

By applying GBS directly to elite breeding lines we 
have demonstrated that it is both a cost-eff ective and 
robust marker platform for genomics-assisted breeding 
even for a species with a genome as challenging as wheat. 
In this study the cost of producing GBS data was less 
than US$20 per sample. Advances in NGS platforms, 
even in the short time since these data were generated, 
would now permit collection of the same amount of 
data per sample at a cost of $10 (192-plexing). In fact, 
the current cost for GBS is well below that of replicated 
yield testing (Heff ner et al., 2010), showing that it is very 
practical for applied breeding programs to start selecting 
for complex traits before advanced testing.

Genotyping-by-sequencing is a suitable marker 
platform for generating robust, genomewide molecular 
markers for a low per-sample cost for wheat breeding 
programs. De novo marker discovery in the GBS datasets 
also makes this an excellent tool for new species or 
understudied crops with limited genomics research. 
Genotyping-by-sequencing can be applied to diff erent 
populations or even diff erent species without any prior 
genomic knowledge as marker discovery is simultaneous 
with the genotyping of the population. Th e use of GBS for 
GS, therefore, should be applicable to a range of model and 
nonmodel crop species to implement genomics-assisted 
breeding. Continual improvements in NGS capacity will 
make this genotyping approach even more attractive 
by further decreasing sample costs while improving 
genotyping output. Coupled with available reference 
genomic sequence, GBS markers become even more 
powerful when physically mapped, allowing the use of 
more accurate imputation algorithms. Th e combination 
of low per-sample costs and fl exibility make GBS an ideal 
tool for genomics-assisted breeding in crops. 

Supplemental Information Available
Supplemental material is available at http://www.crops.
org/publications/tpg.

Supplemental File S1. Best linear unbiased estimates 
(BLUEs) for yield, heading date, and thousand kernel 
weight and DArT markers for CIMMYT Cycle 29 Semi-
Arid Wheat Screening Nursery.

Supplemental File S2. Genotyping-by-sequencing 
data for Cycle 29 Semi-Arid Wheat Screening Nursery.

Acknowledgments
Th e Cornell University Life Sciences Core Laboratory Center conducted 

Illumina sequencing for all of the materials. Th e Biochemistry core 

facility at KSU provided fl orescence plate reader for quantifying 

DNA plates. Funding for this research was provided by the Bill & 

Melinda Gates Foundation through a grant to Cornell University for 

“Genomic Selection: Th e next frontier for rapid gains in maize and 

wheat improvement” and the United States Department of Agriculture-

Agricultural Research Service (Appropriation #5430-21000-006-00D). J. 

Rutkoski is supported through USDA National Needs Fellowship Grant 

2008-38420-04755. Th is research was supported in part by Triticeae-

CAP USDA-NIFA-AFRI grant 2011-68002-30029, Hatch project 149-

449, Australian Grains Research & Development Corporation, Kansas 

Wheat Alliance, Kansas State University, and Cornell University. Th e 

funders had no role in study design, data collection and analysis, decision 

to publish, or preparation of the manuscript. Mention of trade names 

Table 4. Cross validation prediction accuracy for 
genomic selection models using genotyping-by-
sequencing (GBS) and Diversity Array Technology (DArT) 
markers on 254 elite breeding lines from the Cycle 29 
Semi-Arid Wheat Screening Nursery, CIMMYT. Letters 
denotes signifi cant differences within traits.

Marker type and number

Trait DArT 2000† GBS 2000‡ GBS 35000§

Yield (irrigated) 0.13 b 0.25 ab 0.32 a

Yield (drought) 0.18 b 0.35 a 0.42 a

Thousand kernel weight 0.28 a 0.26 a 0.33 a

Days to heading 0.20 b 0.34 a 0.33 a
†Number of markers: 1729 for DArT, 1827 for GBS (2K), and 34,749 for GBS (35K).
‡Markers with up to 20% missing data.
§Markers with up to 80% missing data.



POLAND ET AL.: GENOMIC SELECTION IN WHEAT BREEDING 113

or commercial products in this publication is solely for the purpose of 

providing specifi c information and does not imply recommendation or 

endorsement by the U.S. Department of Agriculture. USDA is an equal 

opportunity provider and employer. Contribution no. 13-079-J from the 

Kansas Agricultural Experiment Station.

References
Akbari, M., P. Wenzl, V. Caig, J. Carling, L. Xia, S. Yang, G. Uszynski, 

V. Mohler, A. Lehmensiek, H. Kuchel, M. Hayden, N. Howes, 
P. Sharp, P. Vaughan, B. Rathmell, E. Huttner, and A. Kilian. 
2006. Diversity arrays technology (DArT) for high-throughput 
profi ling of the hexaploid wheat genome. Th eor. Appl. Genet. 
113:1409–1420. doi:10.1007/s00122-006-0365-4

Arumuganathan, K., and E. Earle. 1991. Nuclear DNA content of 
some important plant species. Plant Mol. Biol. Rep. 9:208–218. 
doi:10.1007/BF02672069

Breiman, L. 2001. Random forests. Mach. Learn. 45:5–32. 
doi:10.1023/A:1010933404324

 Burgueño, J., J. Crossa, J.M. Cotes, F.S. Vicente, and B. Das. 2012. 
Genomic prediction of breeding values when modeling genotype 
x environment interaction using pedigree and dense molecular 
markers. Crop Sci. 52:707–719.

CIMMYT. 2005. Laboratory protocols: CIMMYT applied molecular 
genetics laboratory. 3rd ed. CIMMYT, Mexico, D.F., Mexico.

Crossa, J., G. de los Campos, P. Perez, D. Gianola, J. Burgueño, J.L. 
Araus, D. Makumbi, R.P. Singh, S. Dreisigacker, J. Yan, V. 
Arief, M. Banziger, and H.-J. Braun. 2010. Prediction of genetic 
values of quantitative traits in plant breeding using pedigree 
and molecular markers. Genetics 186:713–724. doi:10.1534/
genetics.110.118521

de los Campos, G., H. Naya, D. Gianola, J. Crossa, A. Legarra, 
E. Manfredi, K. Weigel, and J.M. Cotes. 2009. Predicting 
quantitative traits with regression models for dense molecular 
markers and pedigree. Genetics 182:375–385. doi:10.1534/
genetics.109.101501

Dempster, A.P., N.M. Laird, and D.B. Rubin. 1977. Maximum 
likelihood from incomplete data via the EM algorithm. J. Royal 
Stat. Society. Series B (Methodological) 39:1–38.

Elshire, R.J., J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. 
Buckler, and S.E. Mitchell. 2011. A robust, simple genotyping-
by-sequencing (GBS) approach for high diversity species. PLoS 
ONE 6:e19379. doi:10.1371/journal.pone.0019379

Endelman, J.B. 2011. Ridge regression and other kernels for genomic 
selection with R package rrBLUP. Plant Gen. 4:250–255. 
doi:10.3835/plantgenome2011.08.0024

Goddard, M.E., and B.J. Hayes. 2007. Genomic selection. J. Anim. 
Breed. Genet. 124:323–330. doi:10.1111/j.1439-0388.2007.00702.x

González-Camacho, J., G. de los Campos, P. Pérez, D. Gianola, J. 
Cairns, G. Mahuku, R. Babu, and J. Crossa. 2012. Genome-
enabled prediction of genetic values using radial basis function 

neural networks. Th eor. Appl. Genet. 125:759–771. doi:10.1007/
s00122-012-1868-9

Heff ner, E.L., A.J. Lorenz, J.-L. Jannink, and M.E. Sorrells. 2010. Plant 
breeding with genomic selection: Gain per unit time and cost. 
Crop Sci. 50:1681–1690. doi:10.2135/cropsci2009.11.0662

Heff ner, E.L., M.E. Sorrells, and J.-L. Jannink. 2009. Genomic 
selection for crop improvement. Crop Sci. 49:1–12. doi:10.2135/
cropsci2008.08.0512

Jannink, J.-L., A.J. Lorenz, and H. Iwata. 2010. Genomic selection in 
plant breeding: From theory to practice. Briefi ngs in Functional 
Genomics 9:166–177. doi:10.1093/bfgp/elq001

Liaw, A., and M. Wie ner. 2002. Classifi cation and regression by 
RandomForest. R News 2:18–22.

Little, R.J.A., and D.B. Rubin. 1987. Statistical analysis with missing 
data. 1st ed. John Wiley & Sons, New York, NY.

Meuwissen, T.H.E., B.J. Hayes, and M.E. Goddard. 2001. Prediction 
of total genetic value using genome-wide dense marker maps. 
Genetics 157:1819–1829.

Poland, J.A., P.J. Brown, M.E. Sorrells, and J.-L. Jannink. 2012. 
Development of high-density genetic maps for barley and wheat 
using a novel two-enzyme genotyping-by-sequencing approach. 
PLoS ONE 7:e32253. doi:10.1371/journal.pone.0032253

Powell, J.E., P.M. Visscher, and M.E. Goddard. 2010. Reconciling 
the analysis of IBD and IBS in complex trait studies. Nat. Rev. 
Genet. 11:800–805. doi:10.1038/nrg2865

R Development Core Team. 2011. R: A language and environment for 
statistical computing. R Foundation for Statistical Computing, 
Vienna, Austria.

Saghai-Maroof, M.A., K.M. Soliman, R.A. Jorgensen, and R.W. 
Allard. 1984. Ribosomal DNA spacer-length polymorphisms 
in barley: Mendelian inheritance, chromosomal location, and 
population dynamics. Proc. Natl. Acad. Sci. USA 81:8014–8018. 
doi:10.1073/pnas.81.24.8014

SAS Institute. 2010. Th e SAS system for Windows. Release 9.3. SAS 
Inst., Cary, NC.

Schaeff er, L.R. 2006. Strategy for applying genome-wide selection in 
dairy cattle. J. Anim. Breed. Genet. 123:218–223 doi:10.1111/
j.1439-0388.2006.00595.x

Schneider, T. 2001. Analysis of incomplete climate data: Estimation of 
mean values and covariance matrices and imputation of missing 
values. J Clim. 14:853–871. doi:10.1175/1520–0442(2001)014

VanRaden, P.M. 2008. Effi  cient methods to compute genomic 
predictions. J. Dairy Sci. 91:4414–4423. doi:10.3168/jds.2007-0980

VanRaden, P.M., C.P. Van Tassell, G.R. Wiggans, T.S. Sonstegard, 
R.D. Schnabel, J.F. Taylor, and F.S. Schenkel. 2009. Invited 
review: Reliability of genomic predictions for North American 
Holstein bulls. J. Dairy Sci. 92:16–24. doi:10.3168/jds.2008-1514

VSN International. 2009. ASReml 3. VSN Intl., Hemel Hempstead, UK.
Wenzl, P., J. Carling, D. Kudrna, D. Jaccoud, E. Huttner, A. Kleinhofs, 

and A. Kilian. 2004. Diversity arrays technology (DArT) for 
whole-genome profi ling of barley. Proc. Natl. Acad. Sci. USA 
101:9915–9920. doi:10.1073/pnas.0401076101


