
A DEVICE FOR SYNCHRONOUS ETHERNET PACKET

DELAY

by

ROSS VONFANGE

B.S., Kansas State University, 2007

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2009

Approved by:

Major Professor
Don Gruenbacher

Copyright

Ross VonFange

2009

Abstract

This thesis presents a novel device for delaying Ethernet traffic in a lab setting. Ethernet

is the leading standard for communications between computing devices. With the advent

of streaming media such as voice over IP phone service and real-time control systems over

Ethernet, applications are being rapidly developed that must meet strict communication

reliability and timing constraints. Increasingly, these systems must be examined in real world

scenarios before actual hardware deployment or protocol release. This increases the demand

for both testing equipment and well trained network engineers. Commercial Ethernet delay

testing devices are expensive, hardware specific, and not flexible enough for educational

purposes. These short-comings make it necessary to design a robust Field Programmable

Gate Array (FPGA) based Ethernet delay device that is up to the rigor of educational and

research settings.

Our approach is based on the inexpensive, high performance Altera Stratix II GX PCI

Express development board which can easily be adapted for different delay scenarios. The

system’s FPGA hardware was developed in Verilog, an industry standard hardware descrip-

tion language, so users will be able to quickly learn, adapt and operate the system. Software

for the system’s soft processor was developed in C.

The device provides a wide range of packet delay from nearly zero up to over fifty

milliseconds, as well as providing an easy to use interface with on-the-fly variable delay

adjustment. Theoretical throughput was up to 1Gb/s; skew and jitter measurements were

comparable with common network switches. These properties allow the device to provide

an easy-to-use, inexpensive method to delay Ethernet traffic in lab settings and the device

also creates a starting point for future students and researchers to develop high speed traffic

delay testbeds. Future work will include 10Gb/s throughput, additional memory capacity

and additional software implemented delay profiles.

Table of Contents

Table of Contents v

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Ethernet Delay . 2

1.1.1 Delay Effects . 2
1.1.2 Delay Device Description . 2

1.2 Motivation . 4
1.3 Key Contributions . 4

2 Applicable Standards 6
2.1 OSI Model . 6
2.2 802.3 Ethernet Standard . 7

2.2.1 CSMA/CD and background . 7
2.2.2 Physical Layer, Attachment and Auto Negotiation 8
2.2.3 Media Access and Logical Link Control 9

2.3 Avalon Interface . 11
2.3.1 Avalon Memory Mapped Master Interface 11
2.3.2 Avalon Memory Mapped Slave Interface 11
2.3.3 Avalon Streaming Sink Interface . 13
2.3.4 Avalon Streaming Source Interface 15

2.4 Summary . 15

3 Delay Mechanics 16
3.1 Delay . 16
3.2 Throughput . 17

3.2.1 Link Level . 17
3.2.2 Protocol Level . 18

3.3 Summary . 19

4 Delay Device 20
4.1 System Overview . 20

4.1.1 Hardware . 20
4.1.2 FPGA Core . 21
4.1.3 Software . 24

v

4.2 FPGA Resource Use . 26
4.3 Packet Handler . 28

5 Results 34
5.1 Theoretical Throughput . 34
5.2 Device Connectivity and Use . 34

5.2.1 Hardware . 34
5.2.2 Software . 35

5.3 Delay Performance . 36

6 Conclusion and Future Work 44

Bibliography 45

A Packet Hander Verilog Code 46

B Nios II Soft Processor C Code 51

vi

List of Figures

1.1 Development Hardware-Stratix II GX PCIe Developemnt Board 3

2.1 OSI Reference Model . 6
2.2 MAC Overview . 8
2.3 MAC Frame Format . 10
2.4 Avalon MM Master-Timing Diagram . 12
2.5 Avalon MM Slave-Timing Diagram . 13
2.6 Avalon Streaming Source/Sink Timing For Packet Transfer 14
2.7 Avalon Streaming Source/Sink Transfer with Back pressure 14

4.1 D-Link DGS-712 . 21
4.2 System High Level Connection . 22
4.3 System Block Diagram . 24
4.4 Packet Handler Block Diagram . 28
4.5 Packet Handler Simulation . 32
4.6 Packet Handler Transmit FSM State Diagram 32

5.1 Connection Scenario 1 . 35
5.2 Connection Scenario 2 . 35
5.3 Delay Device Console Application . 35
5.4 Connection Scenario 2 . 37
5.5 Connection Scenario 2: Iperf TCP Throughput 0ms Delay 37
5.6 Connection Scenario 2: Iperf TCP Throughput 25ms Delay 38
5.7 Connection Benchmark: Iperf UDP Throughput with Only Switch 39
5.8 Connection Scenario 2: Iperf UDP Throughput 20ms RTT 40
5.9 50ms Delay RTT vs. Sequence Wireshark Capture 41
5.10 50ms Delay Throughput vs. Time Wireshark Capture 41
5.11 Delay Profile RTT vs. Sequence Wireshark Capture 42
5.12 Delay Profile Throughput vs. Time Wireshark Capture 42
5.13 Delay Profile Throughput vs. Time Wireshark Capture 43

vii

List of Tables

2.1 Avalon Master Interface [1] . 11
2.2 Avalon Slave Interface [1] . 12
2.3 Avalon Streaming Sink Interface [1] . 13
2.4 Avalon Streaming Source Interface [1] . 15

4.1 System Core Memory Map . 25
4.2 Core Resource Use By Component . 27
4.3 Packet Handler Control and Status Registers 31
4.4 Packet Handler Resource Use . 31
4.5 Packet Handler RAM Use . 31
4.6 Transmit FSM Transition Table . 33

5.1 API Functions . 36

viii

Chapter 1

Introduction

In this thesis, we present a device to delay frames in an Ethernet network to simulate
routing and wire time delay, which provides an accurate test bed for new Ethernet protocol
development.

Networks developed to connect computers started to become mainstream in the early
1960’s [2]. Out of need to connect mainframe computers, the Advanced research Projects
Agency (ARPA), part of the Department of Defense (DOD), developed ARPANET to handle
the task. The development of ARPANET spurred the development of a host of ideas and
protocols, including the still widely used Transmission Control Protocol (TCP) [2]. Since
those early networks, major advancements have been made in all aspects of networking,
including improvements to speed, reliability, capacity and broadened use.

As networks became less expensive and more broad in scope of use, new types of infor-
mation began to need different and more sophisticated protocols for transport. These new
protocols would accommodate increased demand for reliability and speed, greatly increas-
ing the bandwidth of networks. Different network connection types were also created to
interconnect smaller networks with high-capacity backbones. This setup allowed developers
to stream live communications across a large array of networks. Ethernet and its standard
has emerged as one of the most widely used and cost effective wired solutions for networks,
and remains dominate in the field of computer networking.

Several standards committees, including the International Organization for Standardiza-
tion (ISO), Institute of American National Standards Institute (ANSI), and Electrical and
Electronics Engineers (IEEE), currently exist to further develop Ethernet standards which
help to increase interoperability of these systems. In this chapter, we will present a brief
overview of current networks, background of the project, and develop the motivation for
creating an Ethernet frame delay device for academic and professional use. We will provide
an overview of the delay device, its composition and its perfomance and also provide details
and concepts that can be researched and tested with the delay device.

1

1.1 Ethernet Delay

Ethernet currently dominates all other wired communications standards in the end consumer
and business markets. Because Ethernet is so widespread, it is being adapted to fit a variety
of roles for data transmission, such as hard, real time industrial controls. Multimedia
exchange formats such as video, Voice Over Internet Protocol (VOIP), and audio streaming
technologies for services such as Internet radio are increasing in popularity. These services
produce massive quantities of data transmission on a daily basis, much of which travels
over an Ethernet network at some point on its way from the server to the user. Delays are
inherent in these systems, because of the time it takes an electrical signal to propagate down
a copper wire and through any machines on its path to the end user.

1.1.1 Delay Effects

Real-time Ethernet systems and real-time controls have been developed to work on Ethernet
and other packet switched networks. Ethernet is an enticing target to engineers because
of its availability, reliability and most importantly, cost. Lee et. al. states,”Recently, the
real-time industrial network has become an important element for intelligent manufacturing
systems. Especially, as the systems are required to be more intelligent and flexible, the
systems should have more field devices such as sensors, actuators, and controllers. [3]” Real-
time devices require strict timing for signal transmission to function correctly.

Voice phone service is now almost entirely operated over packet switched networks that
include Ethernet. VOIP service is quickly becoming cost effective and attractive to con-
sumers due to its portability and cost. Phone conversations are a good example of a service
where the user could directly observe delays in the communication. To keep the delay low,
so that it is not noticeable to the user, priority queuing has been implemented in some
networks to speed up latency affected protocols. However, certain delays, like routing and
line delays, will always exist. These unavoidable delays in Ethernet systems are important
to account for and test, which is why they are the focus of this project.

While some devices currently exist to simulate delays in systems for testing, most of these
devices are prohibitivly expensive, do not offer high throughput due to software processing,
and are not based on flexible field programmable gate array (FPGA) technology. Current
devices that can be used to generate delays with throughput of 1Gb/s and higher cost
hundreds of thousands of dollars [4]. Higher costs prohibit large-scale production and limit
availability for research and educational use in labs and classrooms.

Because network technology has continued to swell in popularity, there are more students
and developers, creating an obvious demand for an inexpensive, flexible platform for these
users to test new protocols on.

1.1.2 Delay Device Description

The FPGA platform, which was chosen to develop the frame delay device, is produced by
Altera and shown in Figure 1.1. This development board was specifially chosen because

2

of the large number of logical elements on the Stratix II GX, onboard Dual Data Rate
Synchronous Dynamic Random Access Memory (DDR2 SDRAM), Flash, Synchronous Dy-
namic Random Access Memory (SDRAM) and two Small Form Pluggable (SFP) cages for
Ethernet transceivers.

Figure 1.1: Stratix II GX PCIe Developemnt Board [5]

Having the ability to swap SFP modules allows users to quickly change from copper to
optical connectors. The onboard memory provides enough capacity and memory bandwidth
to handle high throughput rates simultaneously with large time delays.

The hardware description for the FPGA was written in Verilog. Several IP cores were
used to construct the system, which were provided by donation from Altera. These cores
include the Nios II soft processor, Triple Speed Ethernet Media Access Control (MAC),
High Performance DDR2 Memory Controller and JTAG UART cores.

The software was written in C language and developed in Altera’s Nios II EDS. The
software provides a simple Command Line Interface (CLI) for the user to manipulate the
frame delay. There is also a small, accompanying Application Programming Interface (API)
that was created to provide users with simple-to-use functions when creating more complex
delay profiles or timed delay periods with the device.

The majority of the cost for the system was in the initial cost of the FPGA development
board. A less expensive hardware development board could be substituted into the design
in the future, which would lower the per-unit cost substantially, even to as low as a few
hundred dollars per board.

3

1.2 Motivation

As shown in the previous sections, delay generation is needed to properly develop new pro-
tocols and ensure they are tested correctly. These problems motivate our need to build such
a device for use in educational and research settings that is flexible, easy to use and inex-
pensive. If classrooms and research labs then could feasibly use several devices concurrently,
faster and more productive protocol development could be done.

This project was originally funded by Sandia National Laboratories. The Discom WAN
group requested a device for testing their networks that could locally simulate the delay that
was normally experienced with communications between other national labs and government
agencies. This group has also motivated many of our device’s fundamental platform spec-
ifications, such as using an FPGA-based device with hardware created in the widely-used
Verilog language.

1.3 Key Contributions

This thesis presents the following key contributions:
In chapter 4 we present our approach to creating an Ethernet delay device for syn-

chronous Ethernet frame delay and its features. We also provide the settings for the IP
cores used in the project so future users can easily reproduce the device if they decide to
create a new hardware variation.

1. Development on an inexpensive platform for a low-cost implementation. Because the
design cost is low there is a low introduction cost and quick implimintation, which is
especially useful in academic settings where FPGA resources are often avilable to the
institution.

2. Development was done in Verilog HDL, which is widely used in industry and education.
This also provides students with a learning tool as well as easy-to-modify code.

3. Software was developed in C because of the available programming environment (Nios
II EDS) and C’s superb ability to control hardware. The project also provides a
small API for users so they can easily change the device’s software parameters. These
parameters include pause frame forwarding and generation, MAC address overwriting
and filtering capabilities, and the ability to implement new delay profiles.

4. This approach provides inexpensive hardware products because it was produced on
an FPGA (not an ASIC) and has reproducible, accurate results because it is not
dependent on operating system resources and traditional fixed computer buffer sizes.

5. Development using the Avalon interface and the creation of custom components along
with Altera’s SOPC builder environment allows for future upgrades and system change
to be quick and automated with wizards so the user will need to know little about the
system in order to make changes in its operation or to reprogram the device.

4

6. The solution uses on-chip memory in the FPGA. This allows the design to migrate
and scale easily across several development board and FPGA platforms.

7. On-the-fly adjustable frame delay time provides the user with the ability to implement
scheduled delays and delay profiles to more closely model network traffic. Constant
delays closely model a set number of routing and line delays with a higher accuracy
and higher throughput then software implementations.

8. Easy device reconfiguration to allow the user to study buffer size effects in store forward
systems. With the ability to monitor the hardware buffer level.

In chapter 5 we present the test results for the device:

1. Throughput of up to 200 MBits/s; when compared to other systems this is a substantial
throughput.

2. Jitter and skew were comparable to most common cut-through switches.

3. Expected results were obtainted when a linear ramped delay profile is used.

4. Tested and attained reproducible delays of well over the targeted 50ms for any traffic
type.

To summarize, the device fills its intended use and offers a wide range of features to
the user. It can also be recreated on different FPGA low-cost devices. This could help
institutions afford enough units to use in classroom settings where a limited number of
units per room would normally bottle neck the students who need access to the device.

5

Chapter 2

Applicable Standards

In the following sections we will discuss the OSI model and its relation to Ethernet, Ethernet
protocols and user applications. Applicable portions of the IEEE 802.3 protocol standard
for Ethernet are explained in this chapter to provide a background on Ethernet, specifically
Ethernet frames. A brief description of the medium and the mechanics of the transmission
are also included. Finally, we will discuss the Avalon bus standard, a standard for com-
munication between on-chip FPGA modules. This explanation will focus on the goal of
informing the reader about the interconnection of the delay device, and to provide insight
to the interoperability of the device’s modules with future hardware implementations.

2.1 OSI Model

The Open Systems Interconnection Reference Model was developed to describe communi-
cation between devices. The model takes the process of transmitting application-level data
and breaks it into its fundamental pieces [2]. The OSI model is shown in 2.1. When data
is sent from an application, the data is encapsulated by the lower layers as the data travels
down the model until, finally, the data is transmitted at the physical layer (layer 1).

Figure 2.1: OSI Reference Model [2]

6

This project primarily deals with only the first two layers. The device only needs to
accept and send the information on a frame by frame basis because the device is simply
reproducing its incoming data after adding the desired delay time. No higher layers or
higher level protocols need to be involved in the device’s functionality, and they will be
omitted from further discussion. The majority of this project’s focus will be in layer two,
the data link layer.

At the data link layer, the information that is sent and received is called a frame. An
Ethernet frame consists of the fields described in Figure 2.3. The data is encapsulated into
the frame at this stage by a Media Access Control header which includes, source address,
destination address (MAC not IP), an optional virtual LAN tag called a Q-tag (to virtually
divide shared networks), an Ether type, a Logical Link Control header. To complete the
encapsulation a Cyclical Redundancy Check (CRC) is appended. The frame is passed down
from the MAC layer to be transmitted by the Ethernet controller where the preamble and
start of frame delimiter are generated on transmission and an interframe gap is inserted.

Generally, new protocols are developed at the layers above layer two. Developing hard-
ware to delay information at the second layer, as opposed to a higher layer, is the best
option because it reduces complexity and increases interoperability.

2.2 802.3 Ethernet Standard

This section summarizes some of the necessary portions of the IEEE 802.3 standard to
bring the reader up-to-speed on the various parts and requirements made by the standard.
Standard 802.3 contains nearly all the necessary specifications for a general use delay de-
vice because most networks use Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) at the physical layer when in half duplex mode, and adhere to the 802.3 spec-
ification for full duplex as well. It is worth noting that other specifications in the 802.X
family are used but 802.3 is by far the most common type for wired networks. Our approach
to summarizing the standard will be bottom-up and will focus on the type that was used
to create the delay device (mostly 802.3 section 3 clauses 32 through 34 and Annex 36A
through Annex 43C).

2.2.1 CSMA/CD and background

Carrier sense multiple access with collision detection is a method for two or more devices
to share transmission medium in half duplex communication. Half duplex is when two or
more devices share a medium and they can only send or receive during a given period,
not both. To paraphrase the 802.3 standard, when communication is done in full duplex
(simultaneous transmit and receive) between two devices on a medium that supports full
duplex communication without interference, there is no need for CSMA/CD. The majority
of modern-day neworking scenarios are generally full duplex, however support for half du-
plex communications does exist in the delay device to meet the requirements of the 802.3
standard. This gives the device a broader range of support that can include legacy devices.

7

2.2.2 Physical Layer, Attachment and Auto Negotiation

The Physical layer is essentially the collection of hardware that handle the interpretation
of data from the data link layer into real signals transmitted and received on the medium.
Figure 2.2 shows the relation of the 802.3 standard to the OSI model. Clause 36 through
39 discuss many physical layer implementations. To maintain interoperability, the Medium
Dependent Interface (MDI) working through a physical layer implementation has a Medium
Independent Interface (MII) that can connect to the reconciliation layer. The delay device
will only use the Gigabit Medium Independent Interface (GMII), specified in Clause 22, so
only the GMII will be included in further discussion.

Figure 2.2: GMII Relation to OSI/IEC reference model and IEE 802.3 CASMA/CD LAN
model [6]

The physical layer can be broken down into three basic parts: Medium Dependent
Interface(MDI), Physical Medium Attachment (PMA) and Physical Coding Sublayer (PCS),
these are defined by clauses 36-40. There are four versions of the physical layer for Gigabit
communication, two cover copper media (1000BASE-CX clause 39 and 10000BASE-T clause
39) and the other two cover fiber optic media. Only copper will be discussed to limit the
scope to relevant topics.

The functionality of the physical layer can be extended by adding support for auto-
negotiation. Once media is attached to both devices in a network, auto-negotiation allows
the devices to advertise their type of communications support and decide on which type
of communications should be used, such as half/full duplex, master/slave relation. Clause
40.5.1.1 defines a set of registers that all 1000BASE-T auto-negotiation physical layers use.
This allows the two link partners a mechanism through which to communicate and correctly
negotiate link parameters without a dependence on a higher level layer. There are additional
standards for the communication mechanism to setup the auto-negotiation registers on a
physical layer. These registers also allow a user to enable and disable specific features,

8

such a master/slave, as well as store data for the link partners’ abilities so that appropriate
features can be exploited in user level applications. The auto-negotiation feature works
with the physical layer’s PMA sublayer by sending it a specific set of messages, such as
enable/disable and scan for carrier. The PMA handles transmission, reception, link status,
physical layer control, and clock recovery for the physical layer. The PMA can work with
the auto-negotiation logic to bridge the physical layer logic to the MDI.

The final sublayer of the physical layer to discuss is the PCS. The PCS simply bridges the
PMA service interface to the GMII/MII. It also provides the logic for enabling/disabling
data transmission/reception and is responsible for carrier sensing and collision detection
logic.

The GMII is an eight-bit wide interface to connect the PMA to the reconciliation sublayer
of the MAC layer.

2.2.3 Media Access and Logical Link Control

The data link layer of the OSI reference model is generally comprised of two pieces the
Logical Link Control (LLC) and Media Access Control (MAC) sub layers. In a general
sense, this layer handles the point-to-point addressing and provides the ability to check the
information at every point for accuracy. IEEE 802.2 Clause 3 stats the required format
of the MAC frame. First, on transmission, there are seven octets of preamble that allow
the devices to synchronize. Next, a start frame delimiter sequence of ”10101011” is sent.
Then the destination and source addresses are sent which are 48 bits long each. Then the
length/type field is sent. This field can very depending on the frame type. Next, the payload
of the frame is transmitted, which can contain a zero pad if the amount of data is less then
46 bytes. Finally the frame check sequence is appended. The frame check sequence is cyclic
redundancy check that is 32 bits in length. Figure 2.3 illustrates the frame format.

9

Figure 2.3: MAC Frame Format [6]

10

Signal Type Required I/O Description
address Yes O byte address to slave
waitrequest Yes I forces master to wait for transfer
read No O read request signal to slave dependency-readdata
write No O write request signal to slave dependency-writedata
writedata No O data to write to slave dependency-write
readdata No I data to be read from slave dependency-read

Table 2.1: Avalon Master Interface [1]

2.3 Avalon Interface

The Avalon interface was developed to provide a easy-to-use communications standard be-
tween components in a FPGA project. [1] The Avalon bus standard is used in the delay
device as the primary interface between components. There are six different types of Avalon
interfaces (Memory-Mapped, Streaming, Interrupt, Memory-Mapped Tristate, Clock and
Conduit), but the delay device only uses two of the six. Only the two types that are used
in the project will be reviewed and they will be broken into four sections: Memory-Mapped
Master, Memory-Mapped Slave, Streaming Sink and Streaming Source.

2.3.1 Avalon Memory Mapped Master Interface

The Avalon memory-mapped master interface was used by the Nios II processor in the
system. Future work to the packet handler component will also include this interface type
to communicate with different types of memory and memory controllers. The signals that a
common component would use to master the memory controller or other memory-mapped
slave device are shown in Table 2.1. This table also summarizes the required signals of the
specification from section 3.8 of the Avalon manual [1].

The master interface timing specification is described in Figure 2.4. System on a Pro-
grammable Chip Builder (SOPC) automatically inserts timing latency logic between compo-
nents with different latency specifications. However, it is the master component that must
adhere to the wait signal. This allows for the implimentation of variable read and write
latency as well as the creation of slave side arbitration.

2.3.2 Avalon Memory Mapped Slave Interface

Because the slave Avalon interface used for the packet hander custom peripheral was a
memory mapped read/write interface, that set of signals are described in Table 2.2. In
an Avalon memory mapped slave interface the user can choose if they want read, write
or both read and write abilities. Only the set of signals for the intended interface version
must be present, i.e. only write signals and no read signals for a read-only interface. These
data signals can vary in width. Adapter logic between components of varing width can be

11

Figure 2.4: Avalon MM Master Timing Diagram [1]

Signal Type Required Y/N Description
address Yes byte address to slave
read Yes read request signal to slave dependency-readdata
write Yes write request signal to slave dependency-writedata
writedata Yes data to write to slave dependency-write
readdata Yes data to be read from slave dependency-read

Table 2.2: Avalon Slave Interface [1]

inserted in SOPC builder if a connection between to different data width components is
desired. Each component of the delay device’s system was implemented with 32-bit wide
interfaces so data adapters would not have to be used. Memory mapped slave interfaces
also can automatically generate slave-side arbitration if more then one master is connected
to the device.

Other useful signals can also be implemented, however this was not necessary for the
scope of this project and only added to design complexity. Useful signals to add to this
interface in the future to make the interface more robust would be readdatavalid and write-
datavalid. These signals are used for pipelined transfers that can have variable latency, which
could be vary useful in systems where clock-domain crossing must occur due to timing is-
sues or if burst transfers are desired. The packet handler custom component implements a
read/write slave with fixed wait states as described in figure 2.5.

Because input and output data can be updated in the custom component each clock
cycle and the address can be decoded with combinational logic, the master will have a read
and write latency to the component of zero. This means that the data on the write data bus
is latched on the same cycle that the write strobe is asserted. In a similar manner the data
on the readdata bus becomes valid on the same cycle that the readdata strobe is asserted.

12

Figure 2.5: Avalon MM Slave with Fixed Wait States-Timing Diagram [1]

Signal Type I/O Description
data I data from source
empty I bytes in last transfer that were empty
endofpacket I last word of a packet
startofpacket I first word of a packet
error I if an error occurs it is encoded on this signal
ready O ready to recieve data signal
valid I data is valid signal

Table 2.3: Avalon Streaming Sink Interface [1]

In the packet handler’s interface, data that is written to a read/write memory location will
be updated on the following clock cycle. For example, if a user writes to a memory address
at clock time 0 and simulatenously reads the data from that location it will not be valid.
However, if the user writes data to a memory address at clock time 0 and then reads from
the same address at clock time 1 the data will be valid.

2.3.3 Avalon Streaming Sink Interface

This section identifies the signals required at the sink for an Avalon sink-to-source transfer.
Although none of the signals are strictly required by the standard, the signals described in
2.3 had to be implimented in order to correctly connect the Packet Handler to the Ethernet
MAC.

The interface for both the source and sink implement a back pressure signal to/from the
Rx and Tx FIFO of the Ethernet MAC. These interfaces were created with a read wait time
of zero clock cycles, which means the data is valid on the interface once the source asserts

13

the valid bit and that data will remain valid until the clock cycle after ready bit is asserted.
If the ready and valid bits both remain asserted, another transfer will take place on the next
clock cycle. Implementing the interface in this manner is the best method because it offers
the lowest complexity and the lowest latency. If an Avalon sink and source are connected
together, and they have different read and write latency, SOPC builder automatically inserts
timing adapter logic between the modules.

Figure 2.6: Avalon Streaming Source/Sink Timing For Packet Transfer [1]

Figure 2.7: Avalon Streaming Source/Sink Transfer with Back pressure [1]

14

Signal Type I/O Description
data O data to sink
empty O fifo from source is empty
endofpacket O last word of a packet
startofpacket O first word of a packet
error O if an error occurs it is encoded on this signal
ready I input to allow a wait if sink is not ready
valid I data is valid signal

Table 2.4: Avalon Streaming Source Interface [1]

2.3.4 Avalon Streaming Source Interface

The Avalon streaming source interface is used to provide Altera Ethernet MAC sink interface
with outgoing data. The timing diagrams shown in Figure 2.6 and Figure 2.7 also describe
the streaming source’s signal timing for a typical Avalon source interface.

2.4 Summary

In this chapter, we gave a summarized description of the OSI reference model and its
ability to categorize network communications into different layers. Generally, a computer
user only interacts with the application layer. However, the dependence of the application
layer on other lower layers, specifically the data link layer, shows that simulated delay
can and does occur in lower network layers. Next, we summarized the applicable parts
of the 802.3 standard to bring the reader up-to-speed on the requirements for hardware
and logic implimentation in Ethernet communications, and their relation to the OSI model.
The 802.3 standard describes the necessary fields for transmitt and receive frames to to
be exchanged. It also demonstrated the physical layer’s auto-negotiation mechanism is not
controlled directly by the data link layer, so additional setup is needed as the physical
layer is not necessarily autonomous. Finally, we summarized the important portions of the
Avalon bus communication standard, which is used in our device to communicate between
on-chip components. The Avalon standard allows for easy connection between components
in current and future systems.

15

Chapter 3

Delay Mechanics

In this chapter we discuss the cause and effects delay in a network. We also discuss the effect
of delay on reliable vs. unreliable protocols to establish what types of results we should see
when we test our system.

3.1 Delay

Generally there are four types of delay to worry about in a network:

1. Transmission Delay

2. Propagation Delay

3. Queuing Delay

4. Processing Delay

Transmission delay is dependent upon the amount of data and the rate at which the data
was sent. This can be seen as the time that each device along the path takes to absorb the
frame coming in off the medium. Although the frame size can be changed in some networks,
it is generally a fixed maximum length.

The second, propagation delay, is a function of the length of the line and the speed of the
medium on which the transmission is taking place. In networks that have nodes spaced ex-
tremely far apart this type of delay can be devastating to some protocols. Simulation of this
type of delay is the simplest and would be the most beneficial for educational environments
because many universities have networks that are connected for research.

The third type, queuing delay, is caused by the time it takes for a device to queue,
service and transmitt a packet. It can be modified depending on what type of equipment
is being used. Much work has been done in the computing community to speed up this
stage of communications. One method is to use a cut-through mechanic which only reads
the first and most necessary part of an incoming packet before forwarding it to the correct
port where it is transmitted. Other methods include the ability to check traffic as it comes

16

through a switch or router and give certain protocols higher priority so they are transmitted
before others. Due to wide variations in equipment types, this type of delay can be difficult
or even impossible to simulate due to the unknown nature of multiple chains of equipment.
Other difficulties of simulating at this level include the need to decrement TTL fields in
certain protocols. Since the number of hops might be unknown in a multi path routing
environment, it is not practical to try to simulate router delay specifically.

The fourth type of delay, processing delay, is assocated with the computation time of
devices that use software to process packets. This type of delay can be a function of many
variables including processing load, hardware speed and hardware service scheduling. It is
worth mentioning though, because this type of delay can effect round trip times in protocols
that use acknolodgement mechanisms such as TCP. This can also contribute to variations
in the jitter and skew measurements during testing.

3.2 Throughput

Network throughput is a function of the link speed along the path from one node to another
and is also a function of any link throttling and protocol throughput reduction mechanisms.
Other factors, such as traffic load, can effect the throughput of a network. We will limit the
discussion of throughput to the examination of a single Ethernet link.

3.2.1 Link Level

When sending frames on an Ethernet link, they are not transmitted back-to-back but rather,
the 802.3 standard states that there must be 96 bit times worth of separation between frames.
This is referred to as the Inter Packet Gap or IGP. This reduces the effective throughput of
a medium running at a given frequency to less then simply simultaneous frame transmission
at the link rate. The manual for Altera’s Triple Speed Ethernet MAC cores, used in the
delay device, states,The IEEE Standard specifies that frames must be separated by an inter
packet gap (IPG) of at least 96 bit times. The MAC function, however, accepts frames that
are separated by only 48 and 64 bit times in GMII (1000 Mbps operation) and MII (10/100
Mbps operation) respectively. The MAC function removes all preamble and SFD bytes from
accepted frames. [7]”

This provides some flexibility to use hardware which does not strictly adhere to the 802.3
standard with the delay device. Lowering IGP on a link is done in an attempt to lower the
transmission overhead and get more usable data through a link.

The IEEE 802.3 standard also provides a mechanism for flow control called pause frames.
Pause frames allow a receiving node to notify the sender when the revive buffer is full or the
reviver is backlogged. This provides a link-level throttling mechanism. When the system is
generated link level flow control logic can be included as an option in the MAC layers. If
the option is enabled when the hardware is generated the ability will then exist to turn on
pause frame generation and acceptance in software. As stated in the 802.3 standard, pause
frames are control frames and have an opcode of 0x0001. Pause frames also have a fixed

17

MAC address of 01-80-C2-00 which is reserved exclusively for pause frames. Pause frames
carry data to tell the sender how long to wait before transmitting again. This time is called
a quanta that varies from 0x0000 to 0xffff and each 0x1 quanta corresponds to 512 bit times
of the currently connected link. The remainder of the frame’s data section is padded with
42 bytes worth of zeros.

3.2.2 Protocol Level

Protocols can have a large effect on the throughput of the data that that they carry. Gen-
erally, they can be broken in to two categories, reliable and unreliable. Situations exist for
both, which largely depend on the type of data being carried by the protocol. It is obvious
that there are situations where an unreliable protocol is unacceptable, but for applications
like streaming media unreliable protocols work much faster and offer better application-
level quality. We will discuss the effects of delay on both types of protocols to establish an
understanding for the expected results.

Reliable
In a common reliable system, such as TCP, the receiving device will send an acknowledge-
ment back to the transmitting device once it has successfully recieved an incoming packet.
In the simplest reliable protocol for every sent packet the sender (A) would wait for acknowl-
edgement from the receiving device (B) [8]. In this system we will make the assumption
that the line could function at the rate expressed in Equation 3.1. However, because the
the device must wait for acknowledgement to send its next frame we must consider not only
the line rate but the entire Round Trip Time (RTT). The RTT is expressed in Equation
3.3, this equation makes the assumption of zero processing time but displays the general
concept needed to establish the underlying mechanic. Because the sender the must wait on
the acknowledgement, the throughput of the connection will be effectively reduced to a rate
expressed in Equation 3.4.

rateline =
1

Tframe

(3.1)

tAtoB = Tframe + Tprop (3.2)

tAtoBtoA = Tframe + 2× Tprop + Tack (3.3)

ratereduced =
1

Tframe + 2× Tprop + Tack

(3.4)

Reliable protocols usually operate at a reduced rate, which is the trade off for its checking
mechanism. This shows that the throughput of a link is directly correlated with RTT in
reliable wait-for-acknowledgement protocols. The expected result of increasing line delay via
a delay device on this type of protocol is a reduction in throughput directly corresponding
to that increase in line delay.

18

Unreliable
Unreliable protocols such as User Datagram Protocol (UDP), do not receive acknowledge-
ment for sent data. If a packet is dropped during transmission, it is not accounted for and
is not resent. Multimedia such as streaming video and web radio, are excellent uses for this
type of protocol. UDP can offer higher throughput on a link because data can be continu-
ously transmitted. However, the effects of this type of traffic can quickly find the limitations
of systems because the protocol is not aware of congestion. If a new packet arrives once the
recieve buffers are full, the device must drop the incomming packet to avoid buffer overflow.
This mechanic will be useful to test the finite buffer limitations of the delay device by testing
the available throughput without dropping packets at a certain delay.

3.3 Summary

To establish the expected results for use of the delay device, this chapter has identified the
cause of network delays and discussed throughput at both link and protocol levels. We
have established that the throughput of a reliable protocol, such as TCP, will be directly
correlated with RTT. We have also established that we can test the available buffer capacity
for a given delay in the device using UDP. That packet should get dropped in a UDP
streamed transfer when the systems buffers are too full to handle the throughput. We also
discussed the use of pause frames and their ability to control congestion at a link level.

This discussion nleads us to two important conclusions:

1. Wire transmission delays are the easiest and accurate types of delays to simulate. For
this reason it is best to create delays at the link level.

2. Pause frames must be turned off during testing to establish the link’s maximum
throughput and buffer capacity

19

Chapter 4

Delay Device

The delay device was implemented on a flexible FPGA platform so other components could
be added or removed as necessary. SOPC builder was chosen as the assembly method be-
cause of its ease-of-use for future delay system builders and modifiers. The heart of the delay
device is the packet handler custom component. This custom component was created to
delay traffic between any Avalon streaming sink and streaming source. This provides flexi-
bility for future designs, allowing changes in MAC cores, and, even off-FPGA sources such
as microcontrollers with FPGA hardware interfaces or non-Ethernet to Ethernet adaptation
to be easily implemented and delayed.

4.1 System Overview

The system was assembled and generated in Altera’s System On a Programmable Chip
(SOPC) builder IDE. Each component was attached using the Avalon interface specification
and all required hardware signals were exported to the top level so that pin outs could be
assigned to the system via a block diagram file in Quartus II.

4.1.1 Hardware

The system was implemented on an Altera Stratix II GX PCI Express development board.
This platform was chosen, because of its high speed grade and high density EP2SGX90FF1508C3NES
1508-pin FBGA package FPGA, as well as its numerous peripherals.

The board has two Small Form Pluggable (SFP) cages on it to accommodate two SFP
transceiver modules. This allows the board to easily be adapted to either copper SFP
modules operating at up to one 1.0Gb/s or Synchronous Optical NETworking (SONET)
modules operating at typical speeds of 2.488Gb/s. Maximum transceiver speed is capable
of up to 5Gb/s if specialized modules were available [5].

The development board also has several memory interfaces available. The 256 Megabyte
DDR2 memory was used in the design. The DDR2 RAM was used by the processor for bulk
storage. The DDR2 memory offers a large amount of storage and a very high bandwidth.

20

Error correction and detection logic is available, however it was not implemented to allow
future versions of the packet handler custom peripheral greater adaptability to use DDR2
memory. Onchip memory was also included in the design as additional space for the soft
processor’s operating system. A minimal amount of onchip memory was created to keep
resource utilization as low as possible.

Programming and debugging interfaces are implemented via a JTAG.
The design could easily be migrated to other FPGA devices as long as the FPGA and

peripheral had enough performance and space (logical elements and memory blocks ect.)
for target design.

The current hardware also provides room for expansion to a 10Gb/s format through
High Speed Mezzanine Connectors.

Additionaly, useful interfaces exist for future expansion, such as a PCI Express bus for
traffic sniffing and as a general debugging interface.

Two D-Link DGS-712 1000BASE-T Copper SFP transcievers are used to implement
the physical layer of the device. They have the ability to operate in 10/100/1000BASE-T
modes and have a Serial Gigabit Medium Independent Interface (SGMII), which fit the
requirement for the development board. They are advertised as,”...compatible with the
Gigabit Ethernet and 1000BASE-T standards as specified in IEEE 802.3z and 802.3ab. [9]”
The the transceivers also support auto Medium Dependent Interface (MDI/MDIX) so that
cross over and regular cables are handled interchangeably. This allows the system to be
easily used between two computers or a computer and a hub or switch without changing
cabling.

Figure 4.1: D-Link DGS-712 [9]

4.1.2 FPGA Core

The system consists of several components that each do a specialized job. There is a Nios II
process that handles user input/output from the JTAG interface. The OS can change the
packet handler delay time over the Avalon interface, and provides a mechanism to retrieve
MAC statistics and debug utility. The MAC interfaces communicate with Altera ALT2GBX
transceiver cores to send data out to the small form pluggable modules. Figure 4.2 shows
the basic high-level connections between the components in SOPC Builder. They will be
discussed in descending order as they appear in Figure 4.2.

21

Figure 4.2: System High Level Connection

22

• sysid
Tells Nios II EDS what system it is connecting to on the FPGA to avoid attempting
to run code that is intended for a different target system then the one that is currently
programmed to the FPGA. The ID updates each time the system is regenerated so
that there are not any version issues when programming two variations with of the
same system name.

• cpu
The Nios II is a scalable, 32 bit processor. It was added to the system to handle setup
of the SFP modules, to set the necessary registers on the MAC cores and set the delay
time of the packet handers. Because of its software base and JTAG communication
ability, it allows an easy method for command line entry from the user to update the
time delay without restarting the system. This mechanic also creates the ability to
easily implement delay profiles by using one of the included timers and updating the
delay on a periodic interval.

• timer/timer1
The timers allow the proecssor delay an activity for a fixed imt interval and be inter-
rupted when that activity completes. This can be useful for creating delay profiles.

• ddr2mem
This is an instance of the DDR2 SDRAM High Performance Controller. This provides
the logic, pin outs, and timing adjustment logic to communicate with the offchip,
onboard DDR2 memory. This memory is used for bulk storage in the design that
is shown in Figure 4.2 but could be mastered by other on chip components if they
require bulk storage implementations. One such example is an additional variation of
the Packet Handler custom component that uses offchip memory.

• jtag uart
The JTAG UART allows for the onchip system to communicate with the onboard
JTAG control chip.

• pll
Allows the clock rate to be reduced on the system.

• PacketHandlerOnChip inst and PacketHandlerOnChip inst 1
Onchip version of the packet handler custom peripheral connects the Avalon source
and sink ports of the two Ethernet Mac cores together. This component uses on chip
memory to store the information while it is being delayed. This component is discussed
further in the ”‘Packet Handler In Depth” section.

• altera ethernet and altera ethernet 1
Altera tripple speed Ethernet cores provide the registers, fifo, and logic to implement
the media access control layer of the system according to the 802.3 standard.

23

• pio/pio 1/pio 2/pio 3
These are general purpose I/O pins that are exported to the top level block diagram.
They are used to communicate with the SFP modules to set up and communicate with
the their PCS. The communication is implemented as a two-wire serial bus for both
SFP PCSs.

Figure 4.3: System Block Diagram

4.1.3 Software

The application is loaded into memory by the JTAG after the FPGA’s hardware is pro-
grammed. This can be done by using a Nios II command window or by using the Nios II
EDS.

Once the software is loaded and executed, the processor does the following series of
operations:

1. Sets-up necessary registers in the SFP modules. Including auto-negotiation, link part-
ner ablity etc.

2. Determines the link partner ability if link connection is active.

3. Resets MAC cores.

4. Programs the necessary MAC core parameters.

5. Finishes making the Ethernet interfaces active by enabling transmit and receive abil-
ities in the MAC cores.

24

Module CPU Instruction Master Address CPU Data Maste Address
cpu.jtag debug module 0x20080800 - 0x20080fff 0x20080800 - 0x20080fff
onchiip mem.s1 0x20040000 - 0x2005ffff 0x20040000 - 0x2005ffff
jtag uart.avalon jtag slave not connected 0x20081920 - 0x20081827
pll.s1 not connected 0x20081880 - 0x2008189f
pio.s1 not connected 0x200818e0 - 0x200818ef
pio 1.s1 not connected 0x200818f0 - 0x200818ff
pio2 .s1 not connected 0x20081800 - 0x2008190f
pio3 .s1 not connected 0x20081910 - 0x2008191f
altera ethernet.control port not connected 0x20081000 - 0x200813ff
altera ethernet 1.control port not connected 0x20081400 - 0x200817ff
timer.s1 not connected 0x200818a0 - 0x200818bf
ddr2 mem.s1 0x00000000 - 0x0fffffff 0x00000000 - 0x0fffffff
sysid.control slave not connected 0x20081928 - 0x2008192f
PacketHandlerOnChip inst.slave not connected 0x10000000 - 0x1000003f
PacketHandlerOnChip inst .slave not connected 0x10000040- 0x1000007f

Table 4.1: System Core Memory Map

6. Resets packet handler component via soft reset.

7. Programs the necessary packet handler registers, such as initial delay time.

8. Waits for user input on the command line, to change the delay time.

The system has a memory map shown in Table 4.1

25

4.2 FPGA Resource Use

Resource use for logic elements is low for the available resources on the current FPGA.
The resource use can change dramatically depending on the features the user decides to
impliment. Namely, the size of the internal packet FIFO and the internal descriptor FIFO
heavily determine the number of memory blocks that the design uses. This also determines
the system’s capacity and, in turn, its performance. Currently, on the Stratix II GX FPGA
memory block usage is at approximately 94 percent for M4K blocks. Table 4.2 details the
system’s resource use. This system currently utilizes as much on-chip memory as possible
to yield the best system performance.

With DDR2 in the system and not using the ECC bits on the controller the design uses
139 I/O pins. In order to communicate with the SGMII interface on the SFP modules two
GXB receivers and two GXB transmitters were used.

26

Item LC Combinational LC Registers Block Memory Bits
Slave Arbiter 0 1 0 0
Slave Arbiter 1 3 0 0
Altera Ethernet 0 2745 3148 154896
Altera Ethernet 0 2693 3126 154896
Clock 0 17 93 0
Clock 1 270 1152 0
Clock 2 18 1158 0
CPU 1070 900 46336
CPU Data Maser Arbiter 401 33 0
CPU Instruction Master Arbiter 137 2 0
CPU JTAG Debug Module Arbiter 27 3 0
DDR2 Memory Controller 1793 2227 52636
DDR2 Memory Arbiter 135 114 0
JTAG UART 110 107 1024
JTAG Avalon Slave Arbiter 2 0 0
OnChip Memory 1 0 1048576
OnChip Memory Arbiter 34 3 0
Packet Handler 0 557 298 1072640
Packet Handler 1 471 292 1072640
PIO 0 4 1 0
PIO 1 4 3 0
PIO 2 3 1 0
PIO 3 3 3 0
PLL 11 24 0
PLL Slave Arbiter 0 1 0
Timer 103 120 0
Timer1 109 120 0
Timer 1 Arbiter 5 0 0
Timer Slave 1 Arbiter 3 0 0
SLD Hub 78 82 0

Table 4.2: Core Resource Use By Component

27

4.3 Packet Handler

Figure 4.4: Packet Handler Block Diagram

There are two FIFOs in the system; one holds descriptors and the other holds the frame
information. A descriptor consists of a time stamp, corresponding to the time that frame
initially arrived, and the number of bytes in the frame. The descriptor is forty-eight bits
wide, which allows for a thirty-two bit time stamp and sixteen bits to count the number of
bytes in any given frame. This sixteen bit size allows for frames to be received up to 65,535
bytes. The largest frame received should only be 1,518 bytes for common frames without
Q tags. It is also worth noting that the MAC cores in the current build of the system can
support jumbo frames (9000 bytes), and this portion of the descriptor field would not have
to be expanded to provide error free jumbo frame transport.

The component handles information in the following flow (see 2.7) for additional refer-
ence): The packet handler asserts the asi sink ready bit to tell the MAC core that is ready
to start accepting data. Incoming information shows up on the sink data bus and the MAC
core asserts asi sink startofpacket and asi sink vaild to start the transfer. Because the read
wait latency of the packet handler is zero clock cycles, the data is latched and stored in
the FIFO on the current clock cycle. A time stamp with added delay time is also latched
off of the free running clock inside the packet handler instance and stored until the end
of the packet arrives. The packet handler continues to take information as long as the
asi sink vaild signal is asserted and continues to count the number of incoming bytes, which
is four per clock cycle (32 bit wide interface) until the end of packet condition is reached.
When asi sink valid and asi sink endofpacket are both asserted the final data for the packet
is latched and the correct number of bytes for that cycle are added to the total number of
bytes for the packet. This is calculated as four bytes minus the value on asi sink empty

28

during the end of packet clock cycle. The descriptor includes both the timestamp created
at the start of the packet and the number of bytes that were in the transfer. Please note
that the use of the word packet, in this instance, does not refer to a network packet, but
rather the packet of data transfered over the Avalon bus between the source and sink. For
this particular connection in the system, the information transfered in one Avalon packet
could, and normally does, hold all the frame data, including destination address, source
address and CRC32. The data that gets forwarded to the packet handler instance through
this interface is a result of how the user decides to set the MAC registers.

Because the packet handler instance can delay any Avalon packet information system
variations can be made to delay data between any Avalon sink and source. The system’s
MAC cores are currently set to forward the MAC source and destination addresses to the
packet handler but not the CRC32. The MAC cores also currently remove the zero padding
in the frame. This is done because the MAC cores to transmit frames are always zero
padded and the MAC can not remove the zero pad on the input side and simultaneously
keep the CRC32; there is an inherent dependency in the MAC core. The result of this does
not modify the operation of the packet handler instance it only changes how software must
set the MAC cores transmit registers. This also reduces the total amount of data stored in
the packet handler FIFO’s.

Packets continue to be received, given the condition that the packet data FIFO does not
get within one packet (1,518 bytes) of full. If the packet data FIFO reaches this level the
reception of data stops after any transfers that were in progress end. This ensures that no
data is lost and the FIFO is not overflowed. Once this condition occurs the asi sink ready bit
will stay low until space becomes available. This effectively back-pressures the MAC core’s
receive FIFO. If a frame was in the process of being received and there is enough room
in the receive FIFO then the transmission continues. However, if there was not sufficient
space, the frame is dropped.

Logic continually checks the empty flag of the descriptor FIFO. If the FIFO is not empty
then the current FIFO is checked continuously unill a valid transmitt condition is found.
The event of a clock wrap around is handled by making the transmission condition valid for
all time in the time range, excluding the period from when the packet arrived to when the
packet arrived plus its time delay. This works well because at a system clock rate of 83.3
MHz the 32 bit clock can have a total delay of about 51.7 seconds and delay times for the
system are generally in the milliseconds. This also allows for the time delay for each packet
to overlap in the system if necessary e.g. a packet arrives and has a time delay of 5ms,
the user changes the time delay to 1ms delay and a second packet arrives 1ms later, the
packet will have overlapping valid transmission times. Because the system is implemented
as a FIFO, in the event that the second packet has a shorter required time delay than the
first packet, the first packet will finish its time in the queue and be transmitted, then the
second packet will be transmitted as soon as possible. The system was implemented in the
fashion first, because it most closely mirrors the store forward delay found in most common
switching equipment, which do not implement priority queuing and second, for simplicity.

Once a descriptor is found to be valid, the following series of events occur: First, the
number of bytes to be transmitted is latched in a counter. Second, if the asi source ready

29

bit is asserted then transmission can begin to the MAC core, otherwise the packet handler is
back pressured and must wait until the MAC core becomes ready. Once the asi source ready
bit is asserted asi source startofpacket and asi source valid are asserted the data is latched
by the MAC core and the byte count is decremented. The MAC can pause transfer at any
time by deasserting the asi source ready bit. This process occurs until four bytes or less
are left in the byte count. At that point, the asi source endofpacket bit is asserted and the
asi source empty bits are calculated and set. The empty bits are simply calculated as four
minus the number of bytes left on the last cycle.

The component also has an Avalon slave port so that the processor, or any Avalon
memory mapped read/write master, can read and write information to the component.
Write transactions are zero clocks in write latency and are handled by checking on each cycle
to see if the avs slave address decodes to the register’s address. If it does, the avs slave write
signal is asserted the value shown on avs slave writedata is latched. Read transactions are
decoded in a similar manner. If avs slave read is asserted then then the address of the
correct register is decoded and presented on the avs slave readdata data bus. Table 4.3
describes the register map of of the packet handler component and the individual registers
functions. A soft reset can be issued by writing a one to the zero bit of the control register.
This reset condition is cleared on the next clock cycle. The address shown in table 4.3 is
the decoded address as seen by the packet handler instance. The address that would be
written to, in software, would be multiplied by four due to word-only addressing support
by the packet handler component e.g. to write/read to addresses 0x0 one would write/read
to the packet handlers base address plus zero and to write/read to address 0x1 one would
write/read to the packet handlers base address plus four.

Figure 4.5 demonstrates the Packet Handler components Avalon interface signals and
shows that they adhere to the Avalon specification. First, the simulation shows incoming
packets being received from the Avalon Source. Next, the system waits for a delay of 50
clock cycles. Finally, the two packets are presented correctly to the Avalon Sink interface.
The packets distinguished by the start-of-packet and end-of-packet signals. The simulation
also demonstrates a pause during the first packet’s transfer by driving the asi sink valid bit
low for a period of time.

Figure 4.6 shows the state diagram for checking the output descriptors and sending a
packet. The state machine is a Moore type state machine. The state machine sits in the
idle state checks for a descriptor to become valid. Once the descriptor is found valid the
state transitions to state latch desc, where it is removed from the queue and the number
of bytes to be transmitted is latched into a register. The state machine then transition to
the start-of-packet state where the start of packet sequence is generated. Next, the state
machine transitions to the regular transfer state where the transfer continues in four byte
increments. Finally, when less then four bytes are left the state machine transitions to the
end-of-packet state which generates the correct sequence of signals finish the packet transfer.
Table4.6 describes the state machine’s transition conditions.

30

Register Name Address Read/Write Function
Command 0x0 R/W soft reset by writing to bit zero
NumInPFIFO 0x1 R/W number of entries in the packet FIFO
TimeBase 0x2 Time delay before packet transmitt
Unused 0x3 R/W N/A
Unused 0x4 R/W N/A
Unused 0x5 R/W N/A
Unused 0x6 R/W N/A
Unused 0x7 R/W N/A
Unused 0x8 R/W N/A
Unused 0x9 R/W N/A
Unused 0xA R/W N/A
Unused 0xB R/W N/A
Unused 0xC R/W N/A
Unused 0xD R/W N/A
Unused 0xE R/W N/A
Unused 0xF R/W N/A

Table 4.3: Packet Handler Control and Status Registers

Item LC Combinational LC Registers Block Memory Bits
Packet Data FIFO 204 74 1048576
Descriptor FIFO 34 54 24064
Packet Handler Total 557 298 1072640

Table 4.4: Packet Handler Resource Use

Item Type Port Depth Port Width Total Size
Descriptor FIFO M4K 512 48 24576
Packet Data FIFO Auto 32768 32 1048576

Table 4.5: Packet Handler RAM Use

31

Figure 4.5: Packet Handler Simulation

Figure 4.6: Packet Handler Transmit FSM State Diagram

32

Source State Destination State Transition Logic Summary
state idle state idle No descriptor or invalid descriptor time
state idle state latch desc Valid descriptor is ready to be transmitted
state latch desc state sop Always
state sop state sop Source not ready
state sop state reg Source is ready
state reg state reg Less then four bytes left to transfer
state reg state eop More then four bytes left to transfer
state eop state eop Source not ready
state eop state idle Source is ready

Table 4.6: Transmit FSM Transition Table

33

Chapter 5

Results

5.1 Theoretical Throughput

The theoretical throughput of the packet handler custom component is based on the clock
and memory speed that was used to implement the component FIFOs. Currently, the
system clock runs at 83.3Mhz. The component has a memory interface 32 bits wide, has
a read/write latency of zero clocks and can accept data every clock cycle as long as the
FIFOs are not full. This allows the component to offer a maximum theoretical throughput
of up to approximately 2.65Gb/s at the currently implemented clock rate, ignoring any back
pressure on the Avalon source output side. Throughput this high depends on setting a delay
time low enough to keep the the FIFOs from filling up.

The entire system is limited to a theoretical throughput of 1Gb/s because that is the
maximum rate at which the current SFP modules can send and receive data.

5.2 Device Connectivity and Use

The device can placed in any Ethernet 10/100/1000BASE-T network where there is a MTU
of 1500 bytes or less.

5.2.1 Hardware

Figures 5.1 5.2 illustrate some typical scenarios for the device. If pause frames are required
in the link a user must ensure that that the flow control option is included when compiling
the design hardware and that pause frames are turned on in the command configuration
register of the approperate MAC core/cores. Additionaly the user can also set a fixed pause
frame quanta if desired. The default design does not have flow control enabled.

34

Figure 5.1: Connection Scenario 1

Figure 5.2: Connection Scenario 2

5.2.2 Software

The user can update the time delay of the system by typing in an integer number on the
command line for the intended delay in nanoseconds. The console will then update the delay
in both packet handler components and echo back the value read from both components to
verify that they were correctly set. Since the delay is set symetrically, the total RTT will
simply be twice the delay time entered. Figure 5.3 shows the console in action.

Figure 5.3: Delay Device Console Application

Additional functionality can be added by changing and recompiling the software using
the set of API functions described in Table 5.1.

35

Function Description
resetPacketHandler() Soft Reset of Packet handler
setPacketHandler() Set Packet Hander delay time
getPacketHandler() Get Packet Hander delay time
linearRamp() Linear time ramp

Table 5.1: API Functions

5.3 Delay Performance

The delay device can theoretically delay packets for over 50 seconds at the current clock
rate, however, using delays that high would be very impractical in any setting. Most TCP
traffic would time out at delays that high, despite valid data still being in transmission. Pro-
gramming the device to have asymmetric delays along the transmit and receive paths is also
possible by simply setting the delay time different for the two packet handler components.

A test bed was constructed to test the performace of the device. This test bed consisted
of two Windows XP machines, with 1000BASE-T network cards, and a Netgear GS608-V2
10/100/1000 switch. Iperf was used to generate and recieve test traffic. Both common
scenarios were tested and similar results were recieved during both configurations. Since
both sets of results were similar only the results for scenario two (Figure 5.2 will be shown.

Figure 5.4 shows a screen shot of two separate pings between the computers to verify
connection. The first ping was sent with the delay device set at zero delay and the second
was with the device set a 25ms delay (50ms RTT).

Figure 5.5 and Figure 5.6 show the iperf TCP throughput graphs for 0ms and 50ms delay
respectivly. As expected the throughput during high round trip times falls off significantly.
In very low round trip times the throughput is very similar to the throughput achieved
using only a switch between the computers as a benchmark (260Mb/s). With better testing
equipment higher throughput may be achievable, however the test equipment that was used
is very common to most computer labs and provides an excellent normal use scenario.

36

Figure 5.4: Connection Scenario 2

Figure 5.5: Connection Scenario 2: Iperf TCP Throughput 0ms Delay

37

Figure 5.6: Connection Scenario 2: Iperf TCP Throughput 25ms Delay

38

Figure 5.7 and Figure 5.7 show the UDP bandwidth and jitter for the benchmark setup
and scenario 2. UDP throughput for both cases was found nearly identical over several
runs. Jitter measurements for both cases were also found to be very comparable. Iperf has
an inherent UDP traffic generation limit of 50Mb/s so at moderate delays no buffer effects
were experienced.

Figure 5.7: Connection Benchmark: Iperf UDP Throughput with Only Switch

39

Figure 5.8: Connection Scenario 2: Iperf UDP Throughput 20ms RTT

40

Figure 5.9 shows RTT vs. Sequence number for a TCP flood generated by iperf on a
Windows XP platform. The device was set to delay frames by 25ms, which generates a total
RTT of 50ms plus computer processing time for the ack generation.

Figure 5.9: 50ms Delay RTT vs. Sequence Wireshark Capture

Figure 5.10: 50ms Delay Throughput vs. Time Wireshark Capture

41

Figures 5.11 and figure 5.12 show the results from a simple delay profile that increases
the delay by 300 clock cycles (clocked at 83MHz) every 255 processor clock cycles.

Figure 5.11: Delay Profile RTT vs. Sequence Wireshark Capture

Figure 5.12: 50ms Delay Throughput vs. Time Wireshark Capture

42

Figure 5.13 shows average throughput over ten second intervals using iperf with a TCP
flood. It shows that as the RTT increase the throughput greatly decreases in the device.
This is the expected result of delay on TCP traffic.

Figure 5.13: 50ms Delay Throughput vs. Time Wireshark Capture

43

Chapter 6

Conclusion and Future Work

In conclusion, the delay device can successfully and accurately delay Ethernet frames with
a range from as low as one packet store forward delay to theoretical maximum delay of 51
seconds. Trials showed that when using TCP transfers the performance suffers greatly at
higher delays, which is expected because of TCP’s mechanics. However, at reasonable delay
sizes, similar to most delays users would try to replicate with this device, the throughput
was high enough for most educational and research use and can be easily expanded by the
addition of more memory.

We have contributed a design that is flexible, reproducable and inexpensive. The device
also has a very high throughput and large delay time for its cost. Our design providess
future users with an excellent starting point to base new variations from and provides a set
of tools to ease the difficulty in creating new delay device variations. Future work should
expand the portability and functionality of the design. To increase the device’s performance
dramatically, a master interface could be added to the packet handler component and logic
could be adapted to make a FIFO of the DDR2 memory. Additionally the current devel-
opment board has a third Ethernet physical layer that is a GMII interface which, coupled
with the existing Nios II processor, could provide users a web based interface to change
the time delay or activate delay profiles remotely. Migrating the current IP on the board
toward open source cores, such as open source MAC cores would be beneficial in academic
scenario for both cost and transparency. Finally, the addition of the ability to dynamically
size the FIFOs in the packet handler component on-the-fly would allow users to easily test
and assess the effects of buffer size in a store forward system.

44

Bibliography

[1] A. Corperation, Avalon Interface Specifications, 2008, Document Version: 1.1.

[2] B. A. Forouzan, Data Communications and Networking 3rd Edition, Elizabeth A. Jones,
2004.

[3] M. H. L. Kyung Chang Lee, Suk Lee, Worst case communication delay of real-time in-
dustrial switchd ethernet with multiple levels, in Transactions On Industrial Electronics,
3 Park Avenue, New York, NY 10016-5997,USA, 2006, IEEE, Vol. 53, No. 5 October
2006.

[4] S. N. Labs, Statment of work, FPGA Delay Device, 2007.

[5] A. Corperation, Stratix II GX PCI Express Development Board Reference Manual, 2007,
Document Version: 1.0.1.

[6] T. I. of Electrical and I. Electronics Engineers, Ieee standard for information technology -
telecommunications and information exchange between systems - local and metropolitan
area networks - specific requirements: Part 3: Carrier sense multiple access with collision
detection (csma/cd) access method and physical layer specifications, in IEEE Std 802.3,
2005 Edition, pages 1–1552, 3 Park Avenue, New York, NY 10016-5997,USA, 2005,
IEEE, ISBN 0-7-381-2674-8 SS94892.

[7] A. Corperation, Triple Speed Ethernet MegaCore Function User Guide, 2007, MAC
Core Users Guide.

[8] W. Stallings, High-Speed Networks and Internets Performance and Quality of Service
Second Edition, Alan R. Apt, 2002.

[9] I. D-Link Coperation/D-Link Systems, D-Link DGS-712, 2006.

45

Appendix A

Packet Hander Verilog Code

46

m
o
d
u
l
e

P
a
c
k
e
t
H
a
n
d
l
e
r
O
n
C
h
i
p

(

i
n
p
u
t

w
i
r
e

[
3
1
:
0
]

a
s
i
_
s
i
n
k
_
d
a
t
a
,
/
/
A
v
a
l
o
n

S
t
r
e
a
m
i
n
g

S
i
n
c

R
X

I
n
t
e
r
f
a
c
e

i
n
p
u
t

w
i
r
e

[
1
:
0
]

a
s
i
_
s
i
n
k
_
e
m
p
t
y
,

i
n
p
u
t

w
i
r
e

a
s
i
_
s
i
n
k
_
e
n
d
o
f
p
a
c
k
e
t
,

i
n
p
u
t

w
i
r
e

[
5
:
0
]

a
s
i
_
s
i
n
k
_
e
r
r
o
r
,

/
/
i

d
o
n
t

u
s
e

t
h
i
s

o
u
t
p
u
t

r
e
g

a
s
i
_
s
i
n
k
_
r
e
a
d
y
,

i
n
p
u
t

w
i
r
e

a
s
i
_
s
i
n
k
_
s
t
a
r
t
o
f
p
a
c
k
e
t
,

i
n
p
u
t

w
i
r
e

a
s
i
_
s
i
n
k
_
v
a
l
i
d
,

o
u
t
p
u
t

w
i
r
e

[
3
1
:
0
]

a
s
o
_
s
o
u
r
c
e
_
d
a
t
a
,
/
/
A
v
a
l
o
n

S
t
r
e
a
m
i
n
g

S
o
u
r
c
e

T
X

I
n
t
e
r
f
a
c
e

o
u
t
p
u
t

r
e
g

[
1
:
0
]

a
s
o
_
s
o
u
r
c
e
_
e
m
p
t
y
,

o
u
t
p
u
t

r
e
g

a
s
o
_
s
o
u
r
c
e
_
e
n
d
o
f
p
a
c
k
e
t
,

o
u
t
p
u
t

r
e
g

a
s
o
_
s
o
u
r
c
e
_
e
r
r
o
r
,

i
n
p
u
t

w
i
r
e

a
s
o
_
s
o
u
r
c
e
_
r
e
a
d
y
,

o
u
t
p
u
t

r
e
g

a
s
o
_
s
o
u
r
c
e
_
s
t
a
r
t
o
f
p
a
c
k
e
t
,

o
u
t
p
u
t

r
e
g

a
s
o
_
s
o
u
r
c
e
_
v
a
l
i
d
,

i
n
p
u
t

w
i
r
e

[
3
:
0
]

a
v
s
_
s
l
a
v
e
_
a
d
d
r
e
s
s
,
/
/
A
v
a
l
o
n

S
l
a
v
e

i
n
p
u
t

w
i
r
e

a
v
s
_
s
l
a
v
e
_
r
e
a
d
,

o
u
t
p
u
t

r
e
g

[
3
1
:
0
]

a
v
s
_
s
l
a
v
e
_
r
e
a
d
d
a
t
a
,

i
n
p
u
t

w
i
r
e

a
v
s
_
s
l
a
v
e
_
w
r
i
t
e
,

i
n
p
u
t

w
i
r
e

[
3
1
:
0
]

a
v
s
_
s
l
a
v
e
_
w
r
i
t
e
d
a
t
a
,

i
n
p
u
t

w
i
r
e

c
l
k
,

i
n
p
u
t

w
i
r
e

r
e
s
e
t

)
;

p
a
r
a
m
e
t
e
r

s
t
a
t
e
_
i
d
l
e
=
3
’
h
0
;

p
a
r
a
m
e
t
e
r

s
t
a
t
e
_
l
a
t
c
h
_
d
e
s
c
=
3
’
h
1
;

p
a
r
a
m
e
t
e
r

s
t
a
t
e
_
s
o
p
=
3
’
h
2
;

p
a
r
a
m
e
t
e
r

s
t
a
t
e
_
r
e
g
=
3
’
h
3
;

p
a
r
a
m
e
t
e
r

s
t
a
t
e
_
e
o
p
=
3
’
h
4
;

/
/
w
i
r
e

S
_
I
D
L
E
;

w
i
r
e

S
_
L
A
T
C
H
_
D
E
S
C

;

w
i
r
e

S
_
S
O
P
;

w
i
r
e

S
_
R
E
G
;

w
i
r
e

S
_
E
O
P
;

r
e
g

[
2
:
0

]
s
u
b
_
s
t
a
t
e
;

r
e
g

[
2
:
0

]
s
t
a
t
e
;

r
e
g

[
3
1
:
0
]

c
u
r
r
e
n
t
_
t
i
m
e
;

r
e
g

[
3
1
:
0
]

d
e
s
c
r
i
p
t
o
r
_
t
i
m
e
;

w
i
r
e

[
4
7
:
0
]

f
i
f
o
_
p
e
e
k
_
d
a
t
a
;

r
e
g

p
u
s
h
_
d
e
s
c
;

r
e
g

p
o
p
_
d
e
s
c
;

w
i
r
e

p
o
p
a
b
l
e
;

w
i
r
e

d
e
s
c
r
i
p
t
o
r
_
e
m
p
t
y
;

w
i
r
e

[
4
7
:
0
]

d
e
s
c
r
i
p
t
o
r
_
o
u
t
;

w
i
r
e

w
r
_
p
a
c
k
e
t
_
f
i
f
o
;

r
e
g

r
d
_
p
a
c
k
e
t
_
f
i
f
o
;

w
i
r
e

[
1
0
:
0
]

u
s
e
d
_
p
a
c
k
e
t
_
f
i
f
o
;

/
/
o
u
t
p
u
t
s

o
f

f
i
f
o

a
r
e

r
e
g
i
s
t
e
r
e
d

w
i
r
e

[
4
7
:
0
]

d
e
s
c
r
i
p
t
o
r
_
i
n
;

w
i
r
e

d
e
s
c
r
i
p
t
o
r
_
f
u
l
l
;

r
e
g

[
1
4
:
0
]

b
y
t
e
_
c
o
u
n
t
;

r
e
g

[
1
4
:
0
]

b
y
t
e
_
r
x
_
c
o
u
n
t
;

r
e
g

[
3
1
:
0
]

t
i
m
e
s
t
a
m
p
;

r
e
g

[
3
1
:
0
]

t
i
m
e
_
b
a
s
e
;

w
i
r
e

s
h
_
r
e
s
e
t
;

r
e
g

[
3
1
:
0
]

p
h
_
c
o
n
t
r
o
l
;

p
a
r
a
m
e
t
e
r

i
n
_
i
d
l
e
=
1
’
b
0
,
i
n
_
r
u
n
n
i
n
g
=
1
’
b
1
;

r
e
g

x
f
e
r
_
s
t
a
t
e
;

w
i
r
e

i
n
_
p
r
o
g
r
e
s
s
;

w
i
r
e

a
l
m
o
s
t
_
f
u
l
l
_
s
i
g
;

/
/

S
o
f
t

R
e
s
e
t
,

H
a
r
d

R
e
s
e
t

W
i
r
e

a
s
s
i
g
n

s
h
_
r
e
s
e
t

=
(
r
e
s
e
t

|
p
h
_
c
o
n
t
r
o
l
[
0
]
)

?
1
’
b
1

:
1
’
b
0
;

/
/

s
o
f
t

r
e
s
e
t

b
i
t

a
n
d

c
o
n
t
r
o
l

r
e
g
i
s
t
e
r

/
/

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

a
l
w
a
y
s

@
(
p
o
s
e
d
g
e

c
l
k

o
r

p
o
s
e
d
g
e

r
e
s
e
t
)

b
e
g
i
n

i
f

(
r
e
s
e
t
)

p
h
_
c
o
n
t
r
o
l

<
=

3
2
’
h
0
;

e
l
s
e

i
f

(
a
v
s
_
s
l
a
v
e
_
w
r
i
t
e

&
a
v
s
_
s
l
a
v
e
_
a
d
d
r
e
s
s

=
=

4
’
h
0
)

p
h
_
c
o
n
t
r
o
l

<
=

a
v
s
_
s
l
a
v
e
_
w
r
i
t
e
d
a
t
a
;

e
l
s
e

p
h
_
c
o
n
t
r
o
l

<
=

p
h
_
c
o
n
t
r
o
l

&
3
2
’
h
f
f
f
f
f
f
f
e
;

/
/
c
l
e
a
r

o
u
t

o
u
r

r
e
s
e
t

b
i
t

p
h
_
c
o
n
t
r
o
l
[
0
]

e
n
d

/
/

T
i
m
e

B
a
s
e

I
n
p
u
t

/
/

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

a
l
w
a
y
s

@
(
p
o
s
e
d
g
e

c
l
k

o
r

p
o
s
e
d
g
e

s
h
_
r
e
s
e
t
)

b
e
g
i
n

i
f

(
s
h
_
r
e
s
e
t
)

t
i
m
e
_
b
a
s
e

<
=

5
0
0
0
0
;

e
l
s
e

i
f

(
a
v
s
_
s
l
a
v
e
_
w
r
i
t
e

&
a
v
s
_
s
l
a
v
e
_
a
d
d
r
e
s
s

=
=

4
’
h
2
)

t
i
m
e
_
b
a
s
e

<
=

a
v
s
_
s
l
a
v
e
_
w
r
i
t
e
d
a
t
a
;

e
l
s
e

t
i
m
e
_
b
a
s
e

<
=

t
i
m
e
_
b
a
s
e
;

e
n
d

/
/

O
u
t
p
u
t

M
U
X

o
f

r
e
g
i
s
t
e
r
s

i
n
t
o

r
e
a
d
d
a
t
a

b
u
s

/
/

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

a
l
w
a
y
s

@
(
a
v
s
_
s
l
a
v
e
_
r
e
a
d

o
r

a
v
s
_
s
l
a
v
e
_
a
d
d
r
e
s
s

o
r

p
h
_
c
o
n
t
r
o
l

o
r

u
s
e
d
_
p
a
c
k
e
t
_
f
i
f
o

o
r

t
i
m
e
_
b
a
s
e
)

b
e
g
i
n

a
v
s
_
s
l
a
v
e
_
r
e
a
d
d
a
t
a

=
3
2
’
h
0
;

i
f

(
a
v
s
_
s
l
a
v
e
_
r
e
a
d
)

b
e
g
i
n

c
a
s
e

(
a
v
s
_
s
l
a
v
e
_
a
d
d
r
e
s
s
)

4
’
h
0
:

a
v
s
_
s
l
a
v
e
_
r
e
a
d
d
a
t
a

=
p
h
_
c
o
n
t
r
o
l
;

4
’
h
1
:

a
v
s
_
s
l
a
v
e
_
r
e
a
d
d
a
t
a

=
{
2
1
’
h
0
,
u
s
e
d
_
p
a
c
k
e
t
_
f
i
f
o
}
;

/
/
u
s
e
d

p
a
c
k
e
t

f
i
f
o

=
1
1

b
i
t
s

4
’
h
2
:

a
v
s
_
s
l
a
v
e
_
r
e
a
d
d
a
t
a

=
t
i
m
e
_
b
a
s
e
;

4
’
h
3
:

a
v
s
_
s
l
a
v
e
_
r
e
a
d
d
a
t
a

=
3
2
’
h
0
;

4
’
h
4
:

a
v
s
_
s
l
a
v
e
_
r
e
a
d
d
a
t
a

=
3
2
’
h
0
;

4
’
h
5
:

a
v
s
_
s
l
a
v
e
_
r
e
a
d
d
a
t
a

=
3
2
’
h
0
;

4
’
h
6
:

a
v
s
_
s
l
a
v
e
_
r
e
a
d
d
a
t
a

=
3
2
’
h
0
;

4
’
h
7
:

a
v
s
_
s
l
a
v
e
_
r
e
a
d
d
a
t
a

=
3
2
’
h
0
;

4
’
h
8
:

a
v
s
_
s
l
a
v
e
_
r
e
a
d
d
a
t
a

=
3
2
’
h
0
;

4
’
h
9
:

a
v
s
_
s
l
a
v
e
_
r
e
a
d
d
a
t
a

=
3
2
’
h
0
;

d
e
f
a
u
l
t
:

a
v
s
_
s
l
a
v
e
_
r
e
a
d
d
a
t
a

=
3
2
’
h
0
;

e
n
d
c
a
s
e

e
n
d

e
n
d

a
s
s
i
g
n

d
e
s
c
r
i
p
t
o
r
_
i
n

=
{
1
’
b
0
,
b
y
t
e
_
r
x
_
c
o
u
n
t
,

t
i
m
e
s
t
a
m
p
}
;

/
/
a
s
s
i
g
n

S
_
I
D
L
E

=
(

s
u
b
_
s
t
a
t
e

=
=

s
t
a
t
e
_
i
d
l
e

)
?

1
’
b
1

:
1
’
b
0
;

a
s
s
i
g
n

S
_
L
A
T
C
H
_
D
E
S
C

=
(

s
u
b
_
s
t
a
t
e

=
=

s
t
a
t
e
_
l
a
t
c
h
_
d
e
s
c

)
?

1
’
b
1

:
1
’
b
0
;

a
s
s
i
g
n

S
_
S
O
P

=
(

s
u
b
_
s
t
a
t
e

=
=

s
t
a
t
e
_
s
o
p

)
?

1
’
b
1

:
1
’
b
0
;

a
s
s
i
g
n

S
_
R
E
G

=
(

s
u
b
_
s
t
a
t
e

=
=

s
t
a
t
e
_
r
e
g

)
?

1
’
b
1

:
1
’
b
0
;

a
s
s
i
g
n

S
_
E
O
P

=
(

s
u
b
_
s
t
a
t
e

=
=

s
t
a
t
e
_
e
o
p

)
?

1
’
b
1

:
1
’
b
0
;

47

/
/

u
n
u
s
e
d

s
t
u
f
f

/
/

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

a
l
w
a
y
s

@
(
p
o
s
e
d
g
e

c
l
k
)

b
e
g
i
n

a
s
o
_
s
o
u
r
c
e
_
e
r
r
o
r

<
=

0
;

e
n
d

/
/

L
o
c
a
l

T
i
m
e

/
/

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

a
l
w
a
y
s

@
(
p
o
s
e
d
g
e

c
l
k

o
r

p
o
s
e
d
g
e

s
h
_
r
e
s
e
t
)

b
e
g
i
n

i
f

(
s
h
_
r
e
s
e
t

)

c
u
r
r
e
n
t
_
t
i
m
e

<
=

1
;

e
l
s
e

c
u
r
r
e
n
t
_
t
i
m
e

<
=

c
u
r
r
e
n
t
_
t
i
m
e

+
1
;

e
n
d

/
/

S
t
a
t
e

M
a
c
h
i
n
e

o
v
e
r

r
i
d
e

f
o
r

l
a
t
e
r

u
s
e

a
l
s
o

h
a
n
d
l
e
s

r
e
s
e
t

/
/

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

a
l
w
a
y
s

@
(
p
o
s
e
d
g
e

c
l
k

o
r

p
o
s
e
d
g
e

s
h
_
r
e
s
e
t

)

b
e
g
i
n

i
f

(
s
h
_
r
e
s
e
t
)

s
t
a
t
e

<
=

s
t
a
t
e
_
i
d
l
e
;

e
l
s
e

s
t
a
t
e

<
=

s
u
b
_
s
t
a
t
e
;

e
n
d

a
s
s
i
g
n

p
o
p
a
b
l
e

=
(
~
d
e
s
c
r
i
p
t
o
r
_
e
m
p
t
y

&
&

(
c
u
r
r
e
n
t
_
t
i
m
e

>
=

d
e
s
c
r
i
p
t
o
r
_
o
u
t
[
3
1
:
0
]

|
|

(
c
u
r
r
e
n
t
_
t
i
m
e

<
(
d
e
s
c
r
i
p
t
o
r
_
o
u
t
[
3
1
:
0
]

-
t
i
m
e
_
b
a
s
e
)
)
)
)

?
1
’
b
1

:
1
’
b
0
;

a
l
w
a
y
s

@
(

s
t
a
t
e

o
r

a
s
o
_
s
o
u
r
c
e
_
r
e
a
d
y

o
r

b
y
t
e
_
c
o
u
n
t

o
r

p
o
p
a
b
l
e
)

b
e
g
i
n

c
a
s
e
(
s
t
a
t
e
)

s
t
a
t
e
_
i
d
l
e
:

b
e
g
i
n

i
f

(
p
o
p
a
b
l
e

)

s
u
b
_
s
t
a
t
e

<
=

s
t
a
t
e
_
l
a
t
c
h
_
d
e
s
c
;

e
l
s
e

s
u
b
_
s
t
a
t
e

<
=

s
t
a
t
e
_
i
d
l
e
;

e
n
d

s
t
a
t
e
_
l
a
t
c
h
_
d
e
s
c
:

s
u
b
_
s
t
a
t
e

<
=

s
t
a
t
e
_
s
o
p
;

s
t
a
t
e
_
s
o
p
:

b
e
g
i
n

i
f

(
a
s
o
_
s
o
u
r
c
e
_
r
e
a
d
y
)

s
u
b
_
s
t
a
t
e

<
=

s
t
a
t
e
_
r
e
g
;

e
l
s
e

s
u
b
_
s
t
a
t
e

<
=

s
t
a
t
e
_
s
o
p
;

e
n
d

s
t
a
t
e
_
r
e
g
:

b
e
g
i
n

i
f

(
a
s
o
_
s
o
u
r
c
e
_
r
e
a
d
y

&
(
b
y
t
e
_
c
o
u
n
t

>
4
)

)

s
u
b
_
s
t
a
t
e

<
=

s
t
a
t
e
_
r
e
g
;

e
l
s
e

s
u
b
_
s
t
a
t
e

<
=

s
t
a
t
e
_
e
o
p
;

e
n
d

s
t
a
t
e
_
e
o
p
:

i
f

(
a
s
o
_
s
o
u
r
c
e
_
r
e
a
d
y
)

s
u
b
_
s
t
a
t
e

<
=

s
t
a
t
e
_
i
d
l
e
;

e
l
s
e

s
u
b
_
s
t
a
t
e

<
=

s
t
a
t
e
_
e
o
p
;

d
e
f
a
u
l
t
:

s
u
b
_
s
t
a
t
e

<
=

s
t
a
t
e
_
i
d
l
e
;

e
n
d
c
a
s
e

e
n
d

/
/

P
O
P

D
e
s
c
r
i
p
t
o
r

/
/

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

a
l
w
a
y
s

@
(
p
o
s
e
d
g
e

c
l
k

o
r

p
o
s
e
d
g
e

s
h
_
r
e
s
e
t
)

b
e
g
i
n

i
f

(
s
h
_
r
e
s
e
t

)

p
o
p
_
d
e
s
c

<
=

1
’
b
0

;

e
l
s
e

i
f

(
S
_
L
A
T
C
H
_
D
E
S
C

)

p
o
p
_
d
e
s
c

<
=

1
’
b
1
;

/
/
w
e

g
r
a
b

t
h
e

b
y
t
e
s

i
n

t
h
e

b
y
t
e
s

c
o
u
n
t
e
r

e
l
s
e

p
o
p
_
d
e
s
c

<
=

1
’
b
0
;

e
n
d

/
/

S
t
a
r
t

o
f

P
a
c
k
e
t

/
/

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

a
l
w
a
y
s

@
(
p
o
s
e
d
g
e

c
l
k

o
r

p
o
s
e
d
g
e

s
h
_
r
e
s
e
t
)

b
e
g
i
n

i
f

(
s
h
_
r
e
s
e
t

)

a
s
o
_
s
o
u
r
c
e
_
s
t
a
r
t
o
f
p
a
c
k
e
t

<
=

1
’
b
0
;

e
l
s
e

i
f

(
S
_
S
O
P

)

a
s
o
_
s
o
u
r
c
e
_
s
t
a
r
t
o
f
p
a
c
k
e
t

<
=

1
’
b
1
;

e
l
s
e

a
s
o
_
s
o
u
r
c
e
_
s
t
a
r
t
o
f
p
a
c
k
e
t

<
=

1
’
b
0
;

e
n
d

/
/

E
n
d

o
f

P
a
c
k
e
t

/
/

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

a
l
w
a
y
s

@
(
p
o
s
e
d
g
e

c
l
k

o
r

p
o
s
e
d
g
e

s
h
_
r
e
s
e
t
)

b
e
g
i
n

i
f

(
s
h
_
r
e
s
e
t

)

a
s
o
_
s
o
u
r
c
e
_
e
n
d
o
f
p
a
c
k
e
t

<
=

1
’
b
0
;

e
l
s
e

i
f

(
S
_
E
O
P

)

a
s
o
_
s
o
u
r
c
e
_
e
n
d
o
f
p
a
c
k
e
t

<
=

1
’
b
1
;

e
l
s
e

a
s
o
_
s
o
u
r
c
e
_
e
n
d
o
f
p
a
c
k
e
t

<
=

1
’
b
0
;

e
n
d

/
/

M
o
d
u
l
u
s

/
/

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

a
l
w
a
y
s

@
(
p
o
s
e
d
g
e

c
l
k

o
r

p
o
s
e
d
g
e

s
h
_
r
e
s
e
t
)

b
e
g
i
n

i
f

(
s
h
_
r
e
s
e
t

)

a
s
o
_
s
o
u
r
c
e
_
e
m
p
t
y

<
=

2
’
b
0
0
;

e
l
s
e

i
f

(
S
_
E
O
P

)

c
a
s
e

(
b
y
t
e
_
c
o
u
n
t
[
1
:
0
]

)

2
’
b
0
0
:

a
s
o
_
s
o
u
r
c
e
_
e
m
p
t
y

<
=

2
’
b
0
0
;

2
’
b
0
1
:

a
s
o
_
s
o
u
r
c
e
_
e
m
p
t
y

<
=

2
’
b
1
1
;

2
’
b
1
0
:

a
s
o
_
s
o
u
r
c
e
_
e
m
p
t
y

<
=

2
’
b
1
0
;

2
’
b
1
1
:

a
s
o
_
s
o
u
r
c
e
_
e
m
p
t
y

<
=

2
’
b
0
1
;

e
n
d
c
a
s
e

e
l
s
e

a
s
o
_
s
o
u
r
c
e
_
e
m
p
t
y

<
=

2
’
b
0
0
;

e
n
d

/
/

B
y
t
e

O
u
t

C
o
u
n
t
e
r

/
/

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

a
l
w
a
y
s

@
(
p
o
s
e
d
g
e

c
l
k

o
r

p
o
s
e
d
g
e

s
h
_
r
e
s
e
t
)

b
e
g
i
n

i
f

(
s
h
_
r
e
s
e
t
)

b
e
g
i
n

b
y
t
e
_
c
o
u
n
t

<
=

0
;

r
d
_
p
a
c
k
e
t
_
f
i
f
o

<
=

1
’
b
0
;

e
n
d

e
l
s
e

i
f

(
S
_
L
A
T
C
H
_
D
E
S
C
)

48

b
e
g
i
n

b
y
t
e
_
c
o
u
n
t

<
=

d
e
s
c
r
i
p
t
o
r
_
o
u
t
[
4
6
:
3
2
]
;

r
d
_
p
a
c
k
e
t
_
f
i
f
o

<
=

1
’
b
0
;

e
n
d

e
l
s
e

i
f

(
(
S
_
R
E
G

|
S
_
S
O
P
)

&
a
s
o
_
s
o
u
r
c
e
_
r
e
a
d
y
)

b
e
g
i
n

b
y
t
e
_
c
o
u
n
t

<
=

b
y
t
e
_
c
o
u
n
t

-
1
5
’
h
4
;

r
d
_
p
a
c
k
e
t
_
f
i
f
o

<
=

1
’
b
1
;

e
n
d

e
l
s
e

i
f

(
S
_
E
O
P

&
a
s
o
_
s
o
u
r
c
e
_
r
e
a
d
y
)

b
e
g
i
n

b
y
t
e
_
c
o
u
n
t

<
=

1
5
’
h
0
;

/
/

w
e
r
e

d
o
n
e

s
o

r
e
m
o
v
e

t
h
e

r
e
s
t

o
f

t
h
e

b
y
t
e
s

r
d
_
p
a
c
k
e
t
_
f
i
f
o

<
=

1
’
b
1
;

/
/

r
e
a
d

l
a
s
t

v
a
l
u
e

i
n

f
i
f
o

d
a
t
a

w
o
n
t

b
e

e
n
d

e
l
s
e

b
e
g
i
n

r
d
_
p
a
c
k
e
t
_
f
i
f
o

<
=

1
’
b
0
;

b
y
t
e
_
c
o
u
n
t

<
=

b
y
t
e
_
c
o
u
n
t
;

e
n
d

e
n
d

/
/

V
a
i
l
d

b
i
t

/
/

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

a
l
w
a
y
s

@
(
p
o
s
e
d
g
e

c
l
k

o
r

p
o
s
e
d
g
e

s
h
_
r
e
s
e
t
)

b
e
g
i
n

i
f

(
s
h
_
r
e
s
e
t

)

a
s
o
_
s
o
u
r
c
e
_
v
a
l
i
d

<
=

1
’
b
0
;

e
l
s
e

i
f

(
(
S
_
S
O
P

|
S
_
R
E
G

|
S
_
E
O
P
)

&
a
s
o
_
s
o
u
r
c
e
_
r
e
a
d
y

)

a
s
o
_
s
o
u
r
c
e
_
v
a
l
i
d

<
=

1
’
b
1
;

e
l
s
e

a
s
o
_
s
o
u
r
c
e
_
v
a
l
i
d

<
=

1
’
b
0
;

e
n
d

D
e
s
c
r
i
p
t
o
r
F
I
F
O

D
e
s
c
r
i
p
t
o
r
F
I
F
O
_
i
n
s
t

(

.
a
c
l
r

(
s
h
_
r
e
s
e
t

)
,

.
d
a
t
a

(
d
e
s
c
r
i
p
t
o
r
_
i
n

)
,

.
r
d
c
l
k

(
c
l
k

)
,

.
r
d
r
e
q

(
p
o
p
_
d
e
s
c

)
,

.
w
r
c
l
k

(
c
l
k

)
,

.
w
r
r
e
q

(
p
u
s
h
_
d
e
s
c

)
,

.
q

(
d
e
s
c
r
i
p
t
o
r
_
o
u
t

)
,

.
r
d
e
m
p
t
y

(
d
e
s
c
r
i
p
t
o
r
_
e
m
p
t
y

)
,

.
w
r
f
u
l
l

(
d
e
s
c
r
i
p
t
o
r
_
f
u
l
l

)
,

.
w
r
u
s
e
d
w

(
d
e
s
c
r
i
p
t
o
r
_
u
s
e
d

)

)
;

w
i
r
e

d
e
s
c
r
i
p
t
o
r
_
u
s
e
d
;

w
i
r
e

d
e
s
c
r
i
p
t
o
r
_
a
l
m
o
s
t
f
u
l
l
;

a
s
s
i
g
n

d
e
s
c
r
i
p
t
o
r
_
a
l
m
o
s
t
f
u
l
l

=
(
5
1
1

-
d
e
s
c
r
i
p
t
o
r
_
u
s
e
d

>
1
)

?
1
’
b
0

:
1
’
b
1
;

P
a
c
k
e
t
F
I
F
O

P
a
c
k
e
t
F
I
F
O
_
i
n
s
t

(

.
c
l
o
c
k

(
c
l
k

)
,

.
d
a
t
a

(
a
s
i
_
s
i
n
k
_
d
a
t
a

)
,

.
r
d
r
e
q

(
r
d
_
p
a
c
k
e
t
_
f
i
f
o

)
,

.
s
c
l
r

(
s
h
_
r
e
s
e
t

)
,

.
w
r
r
e
q

(
w
r
_
p
a
c
k
e
t
_
f
i
f
o

)
,

.
e
m
p
t
y

(
)
,

.
f
u
l
l

(
)
,

.
q

(
a
s
o
_
s
o
u
r
c
e
_
d
a
t
a

)
,

.
u
s
e
d
w

(
u
s
e
d
_
p
a
c
k
e
t
_
f
i
f
o

)
,

.
a
l
m
o
s
t
_
f
u
l
l

(
a
l
m
o
s
t
_
f
u
l
l
_
s
i
g

)

)
;

a
l
w
a
y
s

@
(
p
o
s
e
d
g
e

c
l
k

o
r

p
o
s
e
d
g
e

s
h
_
r
e
s
e
t
)

b
e
g
i
n

i
f

(
s
h
_
r
e
s
e
t
)

t
i
m
e
s
t
a
m
p

<
=

0
;

e
l
s
e

i
f

(
a
s
i
_
s
i
n
k
_
s
t
a
r
t
o
f
p
a
c
k
e
t

)

t
i
m
e
s
t
a
m
p

<
=

c
u
r
r
e
n
t
_
t
i
m
e

+
t
i
m
e
_
b
a
s
e
;

e
l
s
e

t
i
m
e
s
t
a
m
p

<
=

t
i
m
e
s
t
a
m
p
;

e
n
d

/
/

c
o
u
n
t

t
h
e

b
y
t
e
s

a
n
d

w
r
i
t
e

t
h
e
m

t
o

t
h
e

f
i
f
o

a
s

w
e

g
o

i
f

w
e

h
i
t

e
o
p

w
r
i
t
e

t
h
e

d
e
s
c
r
i
p
t
o
r

/
/

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

a
l
w
a
y
s

@
(
p
o
s
e
d
g
e

c
l
k

o
r

p
o
s
e
d
g
e

s
h
_
r
e
s
e
t
)

b
e
g
i
n

i
f

(
s
h
_
r
e
s
e
t
)

b
e
g
i
n

b
y
t
e
_
r
x
_
c
o
u
n
t

=
1
5
’
h
4
;

/
/

h
e
r
e

i
f

t
h
e

f
i
f
o

i
s

t
o
o

f
u
l
l

r
x
_
r
d
y

g
o

l
o
w

a
n
d

d
r
o
p

t
h
e

p
a
c
k
e
t

s
o

d
o
n
t

c
o
u
n
t

i
t

p
u
s
h
_
d
e
s
c

=
0
;

e
n
d

e
l
s
e

i
f

(
a
s
i
_
s
i
n
k
_
s
t
a
r
t
o
f
p
a
c
k
e
t

&
a
s
i
_
s
i
n
k
_
v
a
l
i
d

&
a
s
i
_
s
i
n
k
_
r
e
a
d
y
)
/
/

&
u
s
e
d
_
p
a
c
k
e
t
_
f
i
f
o

<
=

(
6
5
5
3
6

-
3
7
6

)
)

/
/
a
t

h
e

s
t
a
r
t

o
f

e
v
e
r
y

p
a
c
k
e
t

w
e

l
a
t
c
h

t
h
e

f
i
r
s
t

f
o
u
r

b
y
t
e
s

b
e
g
i
n

b
y
t
e
_
r
x
_
c
o
u
n
t

=
1
5
’
h
4
;

p
u
s
h
_
d
e
s
c

=
0
;

e
n
d

e
l
s
e

i
f

(
a
s
i
_
s
i
n
k
_
v
a
l
i
d

&
a
s
i
_
s
i
n
k
_
e
n
d
o
f
p
a
c
k
e
t

&
a
s
i
_
s
i
n
k
_
e
m
p
t
y

=
=

2
’
b
0
1

&
a
s
i
_
s
i
n
k
_
r
e
a
d
y
)

b
e
g
i
n

b
y
t
e
_
r
x
_
c
o
u
n
t

=
b
y
t
e
_
r
x
_
c
o
u
n
t

+
1
5
’
h
3
;

p
u
s
h
_
d
e
s
c

=
1
;

e
n
d

e
l
s
e

i
f

(
a
s
i
_
s
i
n
k
_
v
a
l
i
d

&
a
s
i
_
s
i
n
k
_
e
n
d
o
f
p
a
c
k
e
t

&
a
s
i
_
s
i
n
k
_
e
m
p
t
y

=
=

2
’
b
1
0

&
a
s
i
_
s
i
n
k
_
r
e
a
d
y
)

b
e
g
i
n

b
y
t
e
_
r
x
_
c
o
u
n
t

=
b
y
t
e
_
r
x
_
c
o
u
n
t

+
1
5
’
h
2
;

p
u
s
h
_
d
e
s
c

=
1
;

e
n
d

e
l
s
e

i
f

(
a
s
i
_
s
i
n
k
_
v
a
l
i
d

&
a
s
i
_
s
i
n
k
_
e
n
d
o
f
p
a
c
k
e
t

&
a
s
i
_
s
i
n
k
_
e
m
p
t
y

=
=

2
’
b
1
1

&
a
s
i
_
s
i
n
k
_
r
e
a
d
y
)

b
e
g
i
n

b
y
t
e
_
r
x
_
c
o
u
n
t

=
b
y
t
e
_
r
x
_
c
o
u
n
t

+
1
5
’
h
1
;

p
u
s
h
_
d
e
s
c

=
1
;

e
n
d

e
l
s
e

i
f

(
a
s
i
_
s
i
n
k
_
v
a
l
i
d

&
a
s
i
_
s
i
n
k
_
e
n
d
o
f
p
a
c
k
e
t

&
a
s
i
_
s
i
n
k
_
e
m
p
t
y

=
=

2
’
b
0
0

&
a
s
i
_
s
i
n
k
_
r
e
a
d
y
)

b
e
g
i
n

b
y
t
e
_
r
x
_
c
o
u
n
t

=
b
y
t
e
_
r
x
_
c
o
u
n
t

+
1
5
’
h
4
;

p
u
s
h
_
d
e
s
c

=
1
;

e
n
d

e
l
s
e

i
f

(
a
s
i
_
s
i
n
k
_
v
a
l
i
d

&
a
s
i
_
s
i
n
k
_
r
e
a
d
y

&
i
n
_
p
r
o
g
r
e
s
s
)

b
e
g
i
n

b
y
t
e
_
r
x
_
c
o
u
n
t

=
b
y
t
e
_
r
x
_
c
o
u
n
t

+
1
5
’
h
4
;

p
u
s
h
_
d
e
s
c

=
0
;

e
n
d

e
l
s
e

b
e
g
i
n

b
y
t
e
_
r
x
_
c
o
u
n
t

=
b
y
t
e
_
r
x
_
c
o
u
n
t
;

p
u
s
h
_
d
e
s
c

=
0
;

e
n
d

e
n
d

a
s
s
i
g
n

w
r
_
p
a
c
k
e
t
_
f
i
f
o

=
(
a
s
i
_
s
i
n
k
_
v
a
l
i
d

&
a
s
i
_
s
i
n
k
_
r
e
a
d
y

&
(
a
s
i
_
s
i
n
k
_
s
t
a
r
t
o
f
p
a
c
k
e
t

|

49

a
s
i
_
s
i
n
k
_
e
n
d
o
f
p
a
c
k
e
t

|
i
n
_
p
r
o
g
r
e
s
s
)

)
?

1
’
b
1

:
1
’
b
0
;

a
l
w
a
y
s

@
(
p
o
s
e
d
g
e

c
l
k

o
r

p
o
s
e
d
g
e

s
h
_
r
e
s
e
t
)

b
e
g
i
n

i
f

(
s
h
_
r
e
s
e
t
)

a
s
i
_
s
i
n
k
_
r
e
a
d
y

<
=

1
’
b
0
;

e
l
s
e

i
f

(
~
i
n
_
p
r
o
g
r
e
s
s

&
(
a
l
m
o
s
t
_
f
u
l
l
_
s
i
g

|
d
e
s
c
r
i
p
t
o
r
_
a
l
m
o
s
t
f
u
l
l

)
)

/
/
i
f

w
e
r
e

n
o
t

r
u
n
n
i
n
g

a
n
d

t
h
e

f
i
f
o

i
s

f
u
l
l

t
h
e
n

a
s
i
_
s
i
n
k
_
r
e
a
d
y

<
=

1
’
b
0
;

/
/

w
e

c
a
n
t

h
o
l
d

a
n
o
t
h
e
r

w
h
o
l
e

p
a
c
k
e
t

h
e
r
e

s
o

w
e
r
e

g
o
i
n
g

t
o

h
a
v
e

t
o

s
t
a
r
t

d
r
o
p
p
i
n
g

t
h
e
m

e
l
s
e

a
s
i
_
s
i
n
k
_
r
e
a
d
y

<
=

1
’
b
1
;

e
n
d

a
s
s
i
g
n

i
n
_
p
r
o
g
r
e
s
s

=
(

x
f
e
r
_
s
t
a
t
e
=
=
i
n
_
r
u
n
n
i
n
g

)
?

1
’
b
1

:
1
’
b
0
;

a
l
w
a
y
s

@
(
p
o
s
e
d
g
e

c
l
k

o
r

p
o
s
e
d
g
e

s
h
_
r
e
s
e
t
)

b
e
g
i
n

i
f

(
s
h
_
r
e
s
e
t
)

x
f
e
r
_
s
t
a
t
e

<
=

i
n
_
i
d
l
e
;

e
l
s
e

c
a
s
e

(
x
f
e
r
_
s
t
a
t
e
)

i
n
_
i
d
l
e
:

i
f

(
a
s
i
_
s
i
n
k
_
s
t
a
r
t
o
f
p
a
c
k
e
t

&
a
s
i
_
s
i
n
k
_
r
e
a
d
y
)

x
f
e
r
_
s
t
a
t
e

<
=

i
n
_
r
u
n
n
i
n
g
;

e
l
s
e

x
f
e
r
_
s
t
a
t
e

<
=

i
n
_
i
d
l
e
;

i
n
_
r
u
n
n
i
n
g
:

i
f

(
a
s
i
_
s
i
n
k
_
e
n
d
o
f
p
a
c
k
e
t

&
a
s
i
_
s
i
n
k
_
r
e
a
d
y
)

x
f
e
r
_
s
t
a
t
e

<
=

i
n
_
i
d
l
e
;

e
l
s
e

x
f
e
r
_
s
t
a
t
e

<
=

i
n
_
r
u
n
n
i
n
g
;

d
e
f
a
u
l
t
:

x
f
e
r
_
s
t
a
t
e

<
=

i
n
_
i
d
l
e
;

e
n
d
c
a
s
e

e
n
d

/
/
F
u
n
c
t
i
o
n

f
o
r

c
a
l
c
u
l
a
t
i
n
g

t
h
e

l
o
g
2
(
)

f
o
r

t
h
e

i
n
p
u
t

p
a
r
a
m
e
t
e
r

m
e
m
o
r
y

d
e
p
t
h

f
u
n
c
t
i
o
n

l
o
g
2
;

i
n
p
u
t

[
3
1
:
0
]

v
a
l
u
e
;

b
e
g
i
n

f
o
r

(
l
o
g
2
=
0
;

v
a
l
u
e
>
0
;

l
o
g
2
=
l
o
g
2
+
1
)

b
e
g
i
n

v
a
l
u
e

=
v
a
l
u
e
>
>
1
;

e
n
d

e
n
d

e
n
d
f
u
n
c
t
i
o
n

e
n
d
m
o
d
u
l
e

50

Appendix B

Nios II Soft Processor C Code

51

#
i
n
c
l
u
d
e

"
s
y
s
t
e
m
.
h
"

#
i
n
c
l
u
d
e

"
h
a
r
d
w
a
r
e
_
d
e
f
.
h
"

#
i
n
c
l
u
d
e

"
s
y
s
/
a
l
t
_
s
t
d
i
o
.
h
"

#
i
n
c
l
u
d
e

"
s
t
d
i
o
.
h
"

#
i
n
c
l
u
d
e

"
t
s
e
_
c
o
n
t
r
o
l
.
h
"

#
i
n
c
l
u
d
e

"
i
o
.
h
"

#
i
n
c
l
u
d
e

"
p
h
a
p
i
.
h
"

#
d
e
f
i
n
e

D
E
B
U
G
O
N

1

#
i
f
d
e
f

D
E
B
U
G
O
N

#
d
e
f
i
n
e

D
E
B
U
G
(
a
r
g
s
)
(
p
r
i
n
t
f
(
"
D
e
b
u
g
:

"
)
,

p
r
i
n
t
f

a
r
g
s
)

#
e
n
d
i
f

/
/
v
o
i
d

d
u
m
p
P
a
c
k
e
t
H
a
n
d
l
e
r
R
e
g
i
s
t
e
r
s
(
u
n
s
i
g
n
e
d

i
n
t

b
a
s
e
_
a
d
d
r
e
s
s
)

/
/
{

/
/

u
n
s
i
g
n
e
d

i
n
t

w
a
t
c
h
;

/
/

w
a
t
c
h

=
I
O
R
D
_
3
2
D
I
R
E
C
T
(
b
a
s
e
_
a
d
d
r
e
s
s
,
P
A
C
K
E
T
_
H
A
N
D
L
E
R
_
C
O
N
T
R
O
L
)
;

/
/

p
r
i
n
t
f
(
"
C
o
n
t
r
o
l
:

0
x
%
x
\
n
"
,
w
a
t
c
h
)
;

/
/

w
a
t
c
h

=
I
O
R
D
_
3
2
D
I
R
E
C
T
(
b
a
s
e
_
a
d
d
r
e
s
s
,
P
A
C
K
E
T
_
H
A
N
D
L
E
R
_
S
T
A
T
U
S
)
;

/
/

p
r
i
n
t
f
(
"
S
t
a
t
u
s
:

0
x
%
x
\
n
"
,
w
a
t
c
h
)
;

/
/

w
a
t
c
h

=
I
O
R
D
_
3
2
D
I
R
E
C
T
(
b
a
s
e
_
a
d
d
r
e
s
s
,
P
A
C
K
E
T
_
H
A
N
D
L
E
R
_
I
N
F
O
)
;

/
/

p
r
i
n
t
f
(
"
I
n
f
o
:

0
x
%
x
\
n
"
,
w
a
t
c
h
)
;

/
/

w
a
t
c
h

=
I
O
R
D
_
3
2
D
I
R
E
C
T
(
b
a
s
e
_
a
d
d
r
e
s
s
,
P
A
C
K
E
T
_
H
A
N
D
L
E
R
_
B
E
E
F
)
;

/
/

p
r
i
n
t
f
(
"
B
E
E
F
:

0
x
%
x
\
n
"
,
w
a
t
c
h
)
;

/
/
}

v
o
i
d

d
u
m
p
E
t
h
e
r
n
e
t
R
e
g
i
s
t
e
r
s
(
u
n
s
i
g
n
e
d

i
n
t

b
a
s
e
_
a
d
d
r
e
s
s
)

{

u
n
s
i
g
n
e
d

i
n
t

w
a
t
c
h
;

i
f
(
I
O
R
D
_
3
2
D
I
R
E
C
T
(
b
a
s
e
_
a
d
d
r
e
s
s
,

T
S
E
_
C
M
D
_
C
O
N
F
I
G
)

&
0
x
8
)

{

p
r
i
n
t
f
(
"
P
r
o
m
i
s
c
i
o
u
s

M
o
d
e
:

O
n
\
n
"
)
;

p
r
i
n
t
f
(
"
C
o
m
m
a
n
d

C
o
n
f
i
g

V
a
l
u
e

%
x
\
n
"
,
I
O
R
D
_
3
2
D
I
R
E
C
T
(
b
a
s
e
_
a
d
d
r
e
s
s
,

T
S
E
_
C
M
D
_
C
O
N
F
I
G
)
)
;

} e
l
s
e

{

p
r
i
n
t
f
(
"
P
r
o
m
i
s
c
i
o
u
s

M
o
d
e
:

O
f
f
\
n
"
)
;

p
r
i
n
t
f
(
"
C
o
m
m
a
n
d

C
o
n
f
i
g

V
a
l
u
e

%
x
\
n
"
,
I
O
R
D
_
3
2
D
I
R
E
C
T
(
b
a
s
e
_
a
d
d
r
e
s
s
,

T
S
E
_
C
M
D
_
C
O
N
F
I
G
)
)
;

}

} v
o
i
d

d
u
m
p
P
a
c
k
e
t
H
a
n
d
l
e
r
R
e
g
i
s
t
e
r
s
(
u
n
s
i
g
n
e
d

i
n
t

b
a
s
e
_
a
d
d
r
e
s
s
)

{

u
n
s
i
g
n
e
d

i
n
t

t
e
m
p
;

t
e
m
p

=
I
O
R
D
_
3
2
D
I
R
E
C
T
(
b
a
s
e
_
a
d
d
r
e
s
s
,

P
A
C
K
E
T
_
H
A
N
D
L
E
R
O
C
_
U
S
E
D
P
A
C
K
E
T
F
I
F
O

)
;

p
r
i
n
t
f
(
"
U
s
e
d

P
a
c
k
e
t
s
:

%
x

\
n
"
,

t
e
m
p
)
;

} v
o
i
d

p
a
c
k
e
t
H
a
n
d
l
e
r
R
e
s
e
t
(
u
n
s
i
g
n
e
d

i
n
t

b
a
s
e
_
a
d
d
r
e
s
s
)

{

u
n
s
i
g
n
e
d

i
n
t

t
e
m
p
;

t
e
m
p

=
I
O
R
D
_
3
2
D
I
R
E
C
T
(
b
a
s
e
_
a
d
d
r
e
s
s
,
P
A
C
K
E
T
_
H
A
N
D
L
E
R
O
C
_
C
O
N
T
R
O
L
)
;

t
e
m
p

=
t
e
m
p

|
0
x
0
0
0
0
0
0
0
1
;

I
O
W
R
_
3
2
D
I
R
E
C
T
(
b
a
s
e
_
a
d
d
r
e
s
s
,

P
A
C
K
E
T
_
H
A
N
D
L
E
R
O
C
_
C
O
N
T
R
O
L
,
t
e
m
p
)
;

} v
o
i
d

s
e
t
T
i
m
e
B
a
s
e
(

u
n
s
i
g
n
e
d

i
n
t

b
a
s
e
_
a
d
d
r
e
s
s
,

u
n
s
i
g
n
e
d

i
n
t

t
i
m
e
b
a
s
e

)

{

u
n
s
i
g
n
e
d

i
n
t

t
e
m
p
;

/
/

p
r
i
n
t
f
(
"
%
x
"
,
b
a
s
e
_
a
d
d
r
e
s
s
)
;

t
e
m
p

=
I
O
R
D
_
3
2
D
I
R
E
C
T
(
b
a
s
e
_
a
d
d
r
e
s
s
,
P
A
C
K
E
T
_
H
A
N
D
L
E
R
0
C
_
T
I
M
E
B
A
S
E

)
;

/
/

p
r
i
n
t
f
(
"
R
e
s
e
t
i
n
g

T
i
m
e

B
a
s
e

-
W
a
s
:

%
x

c
h
a
n
g
i
n
g

t
o

%
x
\
n
"
,
t
e
m
p
,
t
i
m
e
b
a
s
e
)
;

I
O
W
R
_
3
2
D
I
R
E
C
T
(
b
a
s
e
_
a
d
d
r
e
s
s
,

P
A
C
K
E
T
_
H
A
N
D
L
E
R
0
C
_
T
I
M
E
B
A
S
E

,
t
i
m
e
b
a
s
e
)
;

} u
n
s
i
g
n
e
d

i
n
t

g
e
t
T
i
m
e
B
a
s
e
(

u
n
s
i
g
n
e
d

i
n
t

b
a
s
e
_
a
d
d
r
e
s
s
)

{

u
n
s
i
g
n
e
d

i
n
t

t
e
m
p
;

/
/

p
r
i
n
t
f
(
"
%
x
"
,
b
a
s
e
_
a
d
d
r
e
s
s
)
;

t
e
m
p

=
I
O
R
D
_
3
2
D
I
R
E
C
T
(
b
a
s
e
_
a
d
d
r
e
s
s
,
P
A
C
K
E
T
_
H
A
N
D
L
E
R
0
C
_
T
I
M
E
B
A
S
E

)
;

r
e
t
u
r
n

t
e
m
p
;

} v
o
i
d

i
n
i
t
(
v
o
i
d
)

{

u
n
s
i
g
n
e
d

i
n
t

E
T
H
0
_
m
a
c
a
d
d
r
a
_
l
o
w

=
0
x
0
7
5
4
1
3
0
0
;

/
/

c
u
s
t
o
m

u
n
s
i
g
n
e
d

i
n
t

E
T
H
0
_
m
a
c
a
d
d
r
a
_
h
i
g
h

=
0
x
0
0
0
0
A
4
D
5
;

u
n
s
i
g
n
e
d

i
n
t

E
T
H
1
_
m
a
c
a
d
d
r
a
_
l
o
w

=
0
x
2
2
3
3
4
4
5
5
;

/
/
c
u
s
t
o
m

u
n
s
i
g
n
e
d

i
n
t

E
T
H
1
_
m
a
c
a
d
d
r
a
_
h
i
g
h

=
0
x
0
0
0
0
e
e
1
5
;

p
a
c
k
e
t
H
a
n
d
l
e
r
R
e
s
e
t
(

P
A
C
K
E
T
H
A
N
D
L
E
R
O
N
C
H
I
P
_
I
N
S
T
_
1
_
B
A
S
E

)
;

p
a
c
k
e
t
H
a
n
d
l
e
r
R
e
s
e
t
(

P
A
C
K
E
T
H
A
N
D
L
E
R
O
N
C
H
I
P
_
I
N
S
T
_
B
A
S
E

)
;

t
s
e
M
a
c
R
e
s
e
t
(
T
S
E
0
_
B
A
S
E
)
;

t
s
e
M
a
c
R
e
s
e
t
(
T
S
E
1
_
B
A
S
E
)
;

t
s
e
M
a
c
C
o
n
f
i
g
u
r
e
(
T
S
E
0
_
B
A
S
E
,
E
T
H
0
_
m
a
c
a
d
d
r
a
_
h
i
g
h
,

E
T
H
0
_
m
a
c
a
d
d
r
a
_
l
o
w
)
;

t
s
e
M
a
c
C
o
n
f
i
g
u
r
e
(
T
S
E
1
_
B
A
S
E
,
E
T
H
1
_
m
a
c
a
d
d
r
a
_
h
i
g
h
,

E
T
H
1
_
m
a
c
a
d
d
r
a
_
l
o
w
)
;

t
s
e
S
f
p
C
o
n
f
i
g
u
r
e
L
i
n
k
(
(
u
n
s
i
g
n
e
d

i
n
t
)
1
0
0
0
,

1
)
;

t
s
e
M
a
c
P
r
o
m
i
s
E
n
a
b
l
e
(
T
S
E
0
_
B
A
S
E
)
;

t
s
e
M
a
c
P
r
o
m
i
s
E
n
a
b
l
e
(
T
S
E
1
_
B
A
S
E
)
;

#
i
f
d
e
f

D
E
B
U
G
O
N

p
r
i
n
t
f
(
"
P
a
c
k
e
t

H
a
n
d
e
r

1
=
=
>

0
*
*
*
*
*
*
*
*

\
n
"
)
;

p
r
i
n
t
f
(
"
P
a
c
k
e
t

H
a
n
d
e
r

0
=
=
>

1
*
*
*
*
*
*
*
*

\
n
"
)
;

#
e
n
d
i
f

}
/
/
e
n
d

i
n
i
t

i
n
t

m
a
i
n
(
v
o
i
d
)

{

u
n
s
i
g
n
e
d

i
n
t

i
;

u
n
s
i
g
n
e
d

i
n
t

t
b
,
t
e
m
p
t
b
1
,

t
e
m
p
t
b
2
;

i
n
i
t
(
)
;

s
e
t
T
i
m
e
B
a
s
e
(
P
A
C
K
E
T
H
A
N
D
L
E
R
O
N
C
H
I
P
_
I
N
S
T
_
B
A
S
E
,
0
x
1
f
f
f
f
f
)
;

/
/
2
0
m
s

d
e
l
a
y

s
e
t
T
i
m
e
B
a
s
e
(
P
A
C
K
E
T
H
A
N
D
L
E
R
O
N
C
H
I
P
_
I
N
S
T
_
1
_
B
A
S
E
,
0
x
0
0
1
f
f
f
f
f
)
;

t
b

=
0
;

w
h
i
l
e
(
1
)

{

f
o
r
(

i
=
0
;

i
<

0
x
0
0
0
0
F
F
F
F
;

i
+
+

)
{
}

/
/
d
e
l
a
y

a
f
e
w

c
l
o
c
k
s

p
r
i
n
t
f
(
"
E
n
t
e
r

T
i
m
e

D
e
l
a
y

i
n

n
s
:

"
)
;

s
c
a
n
f
(
"
%
d
"
,
&
t
b
)
;

t
b

=
t
b
*
8
3
;

s
e
t
T
i
m
e
B
a
s
e
(
P
A
C
K
E
T
H
A
N
D
L
E
R
O
N
C
H
I
P
_
I
N
S
T
_
B
A
S
E
,
t
b
)
;

s
e
t
T
i
m
e
B
a
s
e
(
P
A
C
K
E
T
H
A
N
D
L
E
R
O
N
C
H
I
P
_
I
N
S
T
_
1
_
B
A
S
E
,
t
b
)
;

t
e
m
p
t
b
1

=
g
e
t
T
i
m
e
B
a
s
e
(
P
A
C
K
E
T
H
A
N
D
L
E
R
O
N
C
H
I
P
_
I
N
S
T
_
B
A
S
E
)
;

t
e
m
p
t
b
2

=
g
e
t
T
i
m
e
B
a
s
e
(
P
A
C
K
E
T
H
A
N
D
L
E
R
O
N
C
H
I
P
_
I
N
S
T
_
1
_
B
A
S
E
)
;

p
r
i
n
t
f
(
"
S
e
t

E
t
h
0

t
o
:

0
x
%
x

=
%
d

n
s

\
n
"
,
t
e
m
p
t
b
1
,
t
e
m
p
t
b
1
/
8
3
)
;

p
r
i
n
t
f
(
"
S
e
t

E
t
h
1

t
o
:

0
x
%
x

=
%
d

n
s

\
n
"
,
t
e
m
p
t
b
2
,
t
e
m
p
t
b
2
/
8
3
)
;

} r
e
t
u
r
n

0
;

}
/
/
e
n
d

m
a
i
n

52

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Ethernet Delay
	Delay Effects
	Delay Device Description

	Motivation
	Key Contributions

	Applicable Standards
	OSI Model
	802.3 Ethernet Standard
	CSMA/CD and background
	Physical Layer, Attachment and Auto Negotiation
	Media Access and Logical Link Control

	Avalon Interface
	Avalon Memory Mapped Master Interface
	Avalon Memory Mapped Slave Interface
	Avalon Streaming Sink Interface
	Avalon Streaming Source Interface

	Summary

	Delay Mechanics
	Delay
	Throughput
	Link Level
	Protocol Level

	Summary

	Delay Device
	System Overview
	Hardware
	FPGA Core
	Software

	FPGA Resource Use
	Packet Handler

	Results
	Theoretical Throughput
	Device Connectivity and Use
	Hardware
	Software

	Delay Performance

	Conclusion and Future Work
	Bibliography
	Packet Hander Verilog Code
	Nios II Soft Processor C Code

