A DEVICE FOR SYNCHRONOUS ETHERNET PACKET
DELAY

by
ROSS VONFANGE

B.S., Kansas State University, 2007

A THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
2009

Approved by:

Major Professor
Don Gruenbacher

Copyright

Ross VonFange

2009

Abstract

This thesis presents a novel device for delaying Ethernet traffic in a lab setting. Ethernet
is the leading standard for communications between computing devices. With the advent
of streaming media such as voice over IP phone service and real-time control systems over
Ethernet, applications are being rapidly developed that must meet strict communication
reliability and timing constraints. Increasingly, these systems must be examined in real world
scenarios before actual hardware deployment or protocol release. This increases the demand
for both testing equipment and well trained network engineers. Commercial Ethernet delay
testing devices are expensive, hardware specific, and not flexible enough for educational
purposes. These short-comings make it necessary to design a robust Field Programmable
Gate Array (FPGA) based Ethernet delay device that is up to the rigor of educational and
research settings.

Our approach is based on the inexpensive, high performance Altera Stratix II GX PCI
Express development board which can easily be adapted for different delay scenarios. The
system’s FPGA hardware was developed in Verilog, an industry standard hardware descrip-
tion language, so users will be able to quickly learn, adapt and operate the system. Software
for the system’s soft processor was developed in C.

The device provides a wide range of packet delay from nearly zero up to over fifty
milliseconds, as well as providing an easy to use interface with on-the-fly variable delay
adjustment. Theoretical throughput was up to 1Gb/s; skew and jitter measurements were
comparable with common network switches. These properties allow the device to provide
an easy-to-use, inexpensive method to delay Ethernet traffic in lab settings and the device

also creates a starting point for future students and researchers to develop high speed traffic

delay testbeds. Future work will include 10Gb/s throughput, additional memory capacity

and additional software implemented delay profiles.

Table of Contents

Table of Contents v
List of Figures vii
List of Tables viii
1 Introduction 1
1.1 Ethernet Delay 2
1.1.1 Delay Effects 2

1.1.2 Delay Device Description 2

1.2 Motivation 4
1.3 Key Contributions 4

2 Applicable Standards 6
2.1 OSI Model e 6
2.2 802.3 Ethernet Standard oo 7
2.2.1 CSMA/CD and background 7

2.2.2 Physical Layer, Attachment and Auto Negotiation 8

2.2.3 Media Access and Logical Link Control 9

2.3 Avalon Interface 11
2.3.1 Avalon Memory Mapped Master Interface 11

2.3.2 Avalon Memory Mapped Slave Interface 11

2.3.3 Avalon Streaming Sink Interface 13

2.3.4 Avalon Streaming Source Interface 15

2.4 Summary 15

3 Delay Mechanics 16
3.1 Delay 16
3.2 Throughput 17
3.2.1 Link Level 17

3.2.2 Protocol Level 18

3.3 Summary ... 19

4 Delay Device 20
4.1 System Overview 20
4.1.1 Hardware 20

4.1.2 FPGA Core e 21

4.1.3 Software 24

4.2 FPGA Resource Use
4.3 Packet Handler

5 Results
5.1 Theoretical Throughput . .
5.2 Device Connectivity and Use
5.2.1 Hardware
5.2.2 Software
5.3 Delay Performance

6 Conclusion and Future Work
Bibliography
A Packet Hander Verilog Code

B Nios IT Soft Processor C Code

vi

34
34
34
34
35
36

44

45

46

51

List of Figures

1.1 Development Hardware-Stratix II GX PCle Developemnt Board 3
2.1 OSI Reference Model 6
2.2 MAC Overview 8
2.3 MAC Frame Format 10
2.4 Avalon MM Master-Timing Diagram 12
2.5 Avalon MM Slave-Timing Diagram 13
2.6 Avalon Streaming Source/Sink Timing For Packet Transfer 14
2.7 Avalon Streaming Source/Sink Transfer with Back pressure 14
4.1 D-Link DGS-712 21
4.2 System High Level Connection 22
4.3 System Block Diagramo 24
4.4 Packet Handler Block Diagram 28
4.5 Packet Handler Simulation 32
4.6 Packet Handler Transmit FSM State Diagram 32
5.1 Connection Scenario 1 35
5.2 Connection Scenario 2o 35
5.3 Delay Device Console Application 35
5.4 Connection Scenario 2 37
5.5 Connection Scenario 2: Iperf TCP Throughput Oms Delay 37
5.6 Connection Scenario 2: Iperf TCP Throughput 25ms Delay 38
5.7 Connection Benchmark: Iperf UDP Throughput with Only Switch 39
5.8 Connection Scenario 2: Iperf UDP Throughput 20ms RTT 40
5.9 50ms Delay RTT vs. Sequence Wireshark Capture 41
5.10 50ms Delay Throughput vs. Time Wireshark Capture 41
5.11 Delay Profile RTT vs. Sequence Wireshark Capture 42
5.12 Delay Profile Throughput vs. Time Wireshark Capture 42
5.13 Delay Profile Throughput vs. Time Wireshark Capture 43

vil

2.1
2.2
2.3
2.4

4.1
4.2
4.3
4.4
4.5
4.6

5.1

List of Tables

Avalon Master Interface [1]o Lo 11
Avalon Slave Interface [1]. Lo 12
Avalon Streaming Sink Interface [1] o0 13
Avalon Streaming Source Interface [1] Lo, 15
System Core Memory Map 25
Core Resource Use By Component 27
Packet Handler Control and Status Registers 31
Packet Handler Resource Use 31
Packet Handler RAM Use 31
Transmit FSM Transition Table 33
APTI Functions 36

viil

Chapter 1

Introduction

In this thesis, we present a device to delay frames in an Ethernet network to simulate
routing and wire time delay, which provides an accurate test bed for new Ethernet protocol
development.

Networks developed to connect computers started to become mainstream in the early
1960’s [2]. Out of need to connect mainframe computers, the Advanced research Projects
Agency (ARPA), part of the Department of Defense (DOD), developed ARPANET to handle
the task. The development of ARPANET spurred the development of a host of ideas and
protocols, including the still widely used Transmission Control Protocol (TCP) [2]. Since
those early networks, major advancements have been made in all aspects of networking,
including improvements to speed, reliability, capacity and broadened use.

As networks became less expensive and more broad in scope of use, new types of infor-
mation began to need different and more sophisticated protocols for transport. These new
protocols would accommodate increased demand for reliability and speed, greatly increas-
ing the bandwidth of networks. Different network connection types were also created to
interconnect smaller networks with high-capacity backbones. This setup allowed developers
to stream live communications across a large array of networks. Ethernet and its standard
has emerged as one of the most widely used and cost effective wired solutions for networks,
and remains dominate in the field of computer networking.

Several standards committees, including the International Organization for Standardiza-
tion (ISO), Institute of American National Standards Institute (ANSI), and Electrical and
Electronics Engineers (IEEE), currently exist to further develop Ethernet standards which
help to increase interoperability of these systems. In this chapter, we will present a brief
overview of current networks, background of the project, and develop the motivation for
creating an Ethernet frame delay device for academic and professional use. We will provide
an overview of the delay device, its composition and its perfomance and also provide details
and concepts that can be researched and tested with the delay device.

1.1 Ethernet Delay

Ethernet currently dominates all other wired communications standards in the end consumer
and business markets. Because Ethernet is so widespread, it is being adapted to fit a variety
of roles for data transmission, such as hard, real time industrial controls. Multimedia
exchange formats such as video, Voice Over Internet Protocol (VOIP), and audio streaming
technologies for services such as Internet radio are increasing in popularity. These services
produce massive quantities of data transmission on a daily basis, much of which travels
over an Ethernet network at some point on its way from the server to the user. Delays are
inherent in these systems, because of the time it takes an electrical signal to propagate down
a copper wire and through any machines on its path to the end user.

1.1.1 Delay Effects

Real-time Ethernet systems and real-time controls have been developed to work on Ethernet
and other packet switched networks. Ethernet is an enticing target to engineers because
of its availability, reliability and most importantly, cost. Lee et. al. states,” Recently, the
real-time industrial network has become an important element for intelligent manufacturing
systems. Especially, as the systems are required to be more intelligent and flexible, the
systems should have more field devices such as sensors, actuators, and controllers. [3]” Real-
time devices require strict timing for signal transmission to function correctly.

Voice phone service is now almost entirely operated over packet switched networks that
include Ethernet. VOIP service is quickly becoming cost effective and attractive to con-
sumers due to its portability and cost. Phone conversations are a good example of a service
where the user could directly observe delays in the communication. To keep the delay low,
so that it is not noticeable to the user, priority queuing has been implemented in some
networks to speed up latency affected protocols. However, certain delays, like routing and
line delays, will always exist. These unavoidable delays in Ethernet systems are important
to account for and test, which is why they are the focus of this project.

While some devices currently exist to simulate delays in systems for testing, most of these
devices are prohibitivly expensive, do not offer high throughput due to software processing,
and are not based on flexible field programmable gate array (FPGA) technology. Current
devices that can be used to generate delays with throughput of 1Gb/s and higher cost
hundreds of thousands of dollars [4]. Higher costs prohibit large-scale production and limit
availability for research and educational use in labs and classrooms.

Because network technology has continued to swell in popularity, there are more students
and developers, creating an obvious demand for an inexpensive, flexible platform for these
users to test new protocols on.

1.1.2 Delay Device Description

The FPGA platform, which was chosen to develop the frame delay device, is produced by
Altera and shown in Figure 1.1. This development board was specifially chosen because

of the large number of logical elements on the Stratix II GX, onboard Dual Data Rate
Synchronous Dynamic Random Access Memory (DDR2 SDRAM), Flash, Synchronous Dy-
namic Random Access Memory (SDRAM) and two Small Form Pluggable (SFP) cages for
Ethernet transceivers.

High-Speed Mezzanine
Card Interfaces A & B

External Clock Input (J1 and J2)
User LEDs
FIA Caentar (] (D9 through D16) .‘"'\ User Pt fuwon Transmit/Receive
Cinfaiioe Do e N ‘\ /| Switches (S1 - 54) o LE
onfiguration Done "= | !
EED{DS] e " HSMC Interiace A (J1) | | \HSMC Interface B (J2) (D5 and Dg)

User DIP Switch
Bank (S5) —_ Power Supply

<— Input (J3)

Ethernet RJ-45 ==
Single Port ¢
(R) —=

I MAX Il Device
(U4)

s | Power Switch
" (SW1)

JTAG

Header <:

(J5) ‘ — Temperature

Sensor With

r Alarm (U7)
I

SFP Ports | o [=F
AandB (
8,J7) | =

DDR2 64 x 8 Mbytes
SDRAM (Uz2)

155.25-MHz
Crystal (X4)

Flash Davice (U3) gdCI Eépress X8
ige Connector

Stratix Il GX Davice (U10) i Wi

SDRAM (Us, Us, U11, U13)

Figure 1.1: Stratiz I GX PCle Developemnt Board [5]

Having the ability to swap SFP modules allows users to quickly change from copper to
optical connectors. The onboard memory provides enough capacity and memory bandwidth
to handle high throughput rates simultaneously with large time delays.

The hardware description for the FPGA was written in Verilog. Several IP cores were
used to construct the system, which were provided by donation from Altera. These cores
include the Nios II soft processor, Triple Speed Ethernet Media Access Control (MAC),
High Performance DDR2 Memory Controller and JTAG UART cores.

The software was written in C language and developed in Altera’s Nios II EDS. The
software provides a simple Command Line Interface (CLI) for the user to manipulate the
frame delay. There is also a small, accompanying Application Programming Interface (API)
that was created to provide users with simple-to-use functions when creating more complex
delay profiles or timed delay periods with the device.

The majority of the cost for the system was in the initial cost of the FPGA development
board. A less expensive hardware development board could be substituted into the design
in the future, which would lower the per-unit cost substantially, even to as low as a few
hundred dollars per board.

1.2 Motivation

As shown in the previous sections, delay generation is needed to properly develop new pro-
tocols and ensure they are tested correctly. These problems motivate our need to build such
a device for use in educational and research settings that is flexible, easy to use and inex-
pensive. If classrooms and research labs then could feasibly use several devices concurrently,
faster and more productive protocol development could be done.

This project was originally funded by Sandia National Laboratories. The Discom WAN
group requested a device for testing their networks that could locally simulate the delay that
was normally experienced with communications between other national labs and government
agencies. This group has also motivated many of our device’s fundamental platform spec-
ifications, such as using an FPGA-based device with hardware created in the widely-used
Verilog language.

1.3 Key Contributions

This thesis presents the following key contributions:

In chapter 4 we present our approach to creating an Ethernet delay device for syn-
chronous Ethernet frame delay and its features. We also provide the settings for the IP
cores used in the project so future users can easily reproduce the device if they decide to
create a new hardware variation.

1. Development on an inexpensive platform for a low-cost implementation. Because the
design cost is low there is a low introduction cost and quick implimintation, which is
especially useful in academic settings where FPGA resources are often avilable to the
institution.

2. Development was done in Verilog HDL, which is widely used in industry and education.
This also provides students with a learning tool as well as easy-to-modify code.

3. Software was developed in C because of the available programming environment (Nios
IT EDS) and C’s superb ability to control hardware. The project also provides a
small API for users so they can easily change the device’s software parameters. These
parameters include pause frame forwarding and generation, MAC address overwriting
and filtering capabilities, and the ability to implement new delay profiles.

4. This approach provides inexpensive hardware products because it was produced on
an FPGA (not an ASIC) and has reproducible, accurate results because it is not
dependent on operating system resources and traditional fixed computer buffer sizes.

5. Development using the Avalon interface and the creation of custom components along
with Altera’s SOPC builder environment allows for future upgrades and system change
to be quick and automated with wizards so the user will need to know little about the
system in order to make changes in its operation or to reprogram the device.

6. The solution uses on-chip memory in the FPGA. This allows the design to migrate
and scale easily across several development board and FPGA platforms.

7. On-the-fly adjustable frame delay time provides the user with the ability to implement
scheduled delays and delay profiles to more closely model network traffic. Constant
delays closely model a set number of routing and line delays with a higher accuracy
and higher throughput then software implementations.

8. Easy device reconfiguration to allow the user to study buffer size effects in store forward
systems. With the ability to monitor the hardware buffer level.

In chapter 5 we present the test results for the device:

1. Throughput of up to 200 MBits/s; when compared to other systems this is a substantial
throughput.

2. Jitter and skew were comparable to most common cut-through switches.
3. Expected results were obtainted when a linear ramped delay profile is used.

4. Tested and attained reproducible delays of well over the targeted 50ms for any traffic
type.

To summarize, the device fills its intended use and offers a wide range of features to
the user. It can also be recreated on different FPGA low-cost devices. This could help
institutions afford enough units to use in classroom settings where a limited number of
units per room would normally bottle neck the students who need access to the device.

Chapter 2

Applicable Standards

In the following sections we will discuss the OSI model and its relation to Ethernet, Ethernet
protocols and user applications. Applicable portions of the IEEE 802.3 protocol standard
for Ethernet are explained in this chapter to provide a background on Ethernet, specifically
Ethernet frames. A brief description of the medium and the mechanics of the transmission
are also included. Finally, we will discuss the Avalon bus standard, a standard for com-
munication between on-chip FPGA modules. This explanation will focus on the goal of
informing the reader about the interconnection of the delay device, and to provide insight
to the interoperability of the device’s modules with future hardware implementations.

2.1 OSI Model

The Open Systems Interconnection Reference Model was developed to describe communi-
cation between devices. The model takes the process of transmitting application-level data
and breaks it into its fundamental pieces [2]. The OSI model is shown in 2.1. When data
is sent from an application, the data is encapsulated by the lower layers as the data travels
down the model until, finally, the data is transmitted at the physical layer (layer 1).

Application

Presentation

Session

Network

Data Link

Physical

| |
| |
| |
| Transport |
| |
| |
| |

Figure 2.1: OSI Reference Model [2]

This project primarily deals with only the first two layers. The device only needs to
accept and send the information on a frame by frame basis because the device is simply
reproducing its incoming data after adding the desired delay time. No higher layers or
higher level protocols need to be involved in the device’s functionality, and they will be
omitted from further discussion. The majority of this project’s focus will be in layer two,
the data link layer.

At the data link layer, the information that is sent and received is called a frame. An
Ethernet frame consists of the fields described in Figure 2.3. The data is encapsulated into
the frame at this stage by a Media Access Control header which includes, source address,
destination address (MAC not IP), an optional virtual LAN tag called a Q-tag (to virtually
divide shared networks), an Ether type, a Logical Link Control header. To complete the
encapsulation a Cyclical Redundancy Check (CRC) is appended. The frame is passed down
from the MAC layer to be transmitted by the Ethernet controller where the preamble and
start of frame delimiter are generated on transmission and an interframe gap is inserted.

Generally, new protocols are developed at the layers above layer two. Developing hard-
ware to delay information at the second layer, as opposed to a higher layer, is the best
option because it reduces complexity and increases interoperability.

2.2 802.3 Ethernet Standard

This section summarizes some of the necessary portions of the IEEE 802.3 standard to
bring the reader up-to-speed on the various parts and requirements made by the standard.
Standard 802.3 contains nearly all the necessary specifications for a general use delay de-
vice because most networks use Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) at the physical layer when in half duplex mode, and adhere to the 802.3 spec-
ification for full duplex as well. It is worth noting that other specifications in the 802.X
family are used but 802.3 is by far the most common type for wired networks. Our approach
to summarizing the standard will be bottom-up and will focus on the type that was used
to create the delay device (mostly 802.3 section 3 clauses 32 through 34 and Annex 36A
through Annex 43C).

2.2.1 CSMA/CD and background

Carrier sense multiple access with collision detection is a method for two or more devices
to share transmission medium in half duplex communication. Half duplex is when two or
more devices share a medium and they can only send or receive during a given period,
not both. To paraphrase the 802.3 standard, when communication is done in full duplex
(simultaneous transmit and receive) between two devices on a medium that supports full
duplex communication without interference, there is no need for CSMA /CD. The majority
of modern-day neworking scenarios are generally full duplex, however support for half du-
plex communications does exist in the delay device to meet the requirements of the 802.3
standard. This gives the device a broader range of support that can include legacy devices.

2.2.2 Physical Layer, Attachment and Auto Negotiation

The Physical layer is essentially the collection of hardware that handle the interpretation
of data from the data link layer into real signals transmitted and received on the medium.
Figure 2.2 shows the relation of the 802.3 standard to the OSI model. Clause 36 through
39 discuss many physical layer implementations. To maintain interoperability, the Medium
Dependent Interface (MDI) working through a physical layer implementation has a Medium
Independent Interface (MII) that can connect to the reconciliation layer. The delay device
will only use the Gigabit Medium Independent Interface (GMII), specified in Clause 22, so
only the GMII will be included in further discussion.

LAN

osl CSMAICD
REFERENCE LAYERS
MODEL
LAYERS ! HIGHER LAYERS i
4T LLC-LOGICAL LINK CONTROL
/ OR OTHER MAC CLIENT
/
APPLICATION / MAC CONTROL (OPTIONAL)
'

PRESENTATION E MAC - MEDIAACCESS CONTROL

SESSION RECONCILIATION
/ B

’
TRANSPORT / Fs * GMIl —p I
‘

NETWORK |,/ ,/ 3

> PHY

DATALINK | ,*

/

PHYSICAL DI —p [/
"""""""""""" ; MEDIM ™ To 1000BASE-T PHY (point to point link)

1000 Mb/s

MDI = MEDIUM DEPENDENT INTERFACE PCS = PHYSICAL CODING SUBLAYER
GMIl = GIGABIT MEDIA INDEPENDENT INTERFACE ~ PMA = PHYSICAL MEDIUM ATTACHMENT
PHY = PHYSICAL LAYER DEVICE

*GMIl is optional

Figure 2.2: GMII Relation to OSI/IEC reference model and IEE 802.3 CASMA/CD LAN
model [6]

The physical layer can be broken down into three basic parts: Medium Dependent
Interface(MDI), Physical Medium Attachment (PMA) and Physical Coding Sublayer (PCS),
these are defined by clauses 36-40. There are four versions of the physical layer for Gigabit
communication, two cover copper media (1000BASE-CX clause 39 and 10000BASE-T clause
39) and the other two cover fiber optic media. Only copper will be discussed to limit the
scope to relevant topics.

The functionality of the physical layer can be extended by adding support for auto-
negotiation. Once media is attached to both devices in a network, auto-negotiation allows
the devices to advertise their type of communications support and decide on which type
of communications should be used, such as half/full duplex, master/slave relation. Clause
40.5.1.1 defines a set of registers that all 1000BASE-T auto-negotiation physical layers use.
This allows the two link partners a mechanism through which to communicate and correctly
negotiate link parameters without a dependence on a higher level layer. There are additional
standards for the communication mechanism to setup the auto-negotiation registers on a
physical layer. These registers also allow a user to enable and disable specific features,

such a master/slave, as well as store data for the link partners’ abilities so that appropriate
features can be exploited in user level applications. The auto-negotiation feature works
with the physical layer’s PMA sublayer by sending it a specific set of messages, such as
enable/disable and scan for carrier. The PMA handles transmission, reception, link status,
physical layer control, and clock recovery for the physical layer. The PMA can work with
the auto-negotiation logic to bridge the physical layer logic to the MDI.

The final sublayer of the physical layer to discuss is the PCS. The PCS simply bridges the
PMA service interface to the GMII/MII. It also provides the logic for enabling/disabling
data transmission/reception and is responsible for carrier sensing and collision detection
logic.

The GMII is an eight-bit wide interface to connect the PMA to the reconciliation sublayer
of the MAC layer.

2.2.3 Media Access and Logical Link Control

The data link layer of the OSI reference model is generally comprised of two pieces the
Logical Link Control (LLC) and Media Access Control (MAC) sub layers. In a general
sense, this layer handles the point-to-point addressing and provides the ability to check the
information at every point for accuracy. IEEE 802.2 Clause 3 stats the required format
of the MAC frame. First, on transmission, there are seven octets of preamble that allow
the devices to synchronize. Next, a start frame delimiter sequence of 710101011” is sent.
Then the destination and source addresses are sent which are 48 bits long each. Then the
length /type field is sent. This field can very depending on the frame type. Next, the payload
of the frame is transmitted, which can contain a zero pad if the amount of data is less then
46 bytes. Finally the frame check sequence is appended. The frame check sequence is cyclic
redundancy check that is 32 bits in length. Figure 2.3 illustrates the frame format.

7 OCTETS PREAMBLE
1 OCTET SFD
6 OCTETS DESTINATION ADDRESS
6 OCTETS SOURCE ADDRESS OCTETS WITHIN
FRAME TRANSMITTED
2 OCTETS LENGTH/TYPE TOP TO BOTTOM

: MAG CLIENT DATA :
461500 QCTETS A » /7 & il 2 = S8t & Shinis 2 Saies & 0 :

i PAD :
4 OCTETS ‘ FRAME CHECK SEQUENCE |
; EXTENSION : '
tse T [T T T T T] wmss
b? b’

| BITS WITHIN
FRAME TRANSMITTED ——=
LEFT TO RIGHT

Figure 2.3: MAC Frame Format [6]

10

Signal Type | Required | I/O | Description

address Yes O byte address to slave

waitrequest Yes I forces master to wait for transfer

read No O read request signal to slave dependency-readdata
write No O write request signal to slave dependency-writedata
writedata No O data to write to slave dependency-write

readdata No I data to be read from slave dependency-read

Table 2.1: Avalon Master Interface [1]

2.3 Avalon Interface

The Avalon interface was developed to provide a easy-to-use communications standard be-
tween components in a FPGA project. [1] The Avalon bus standard is used in the delay
device as the primary interface between components. There are six different types of Avalon
interfaces (Memory-Mapped, Streaming, Interrupt, Memory-Mapped Tristate, Clock and
Conduit), but the delay device only uses two of the six. Only the two types that are used
in the project will be reviewed and they will be broken into four sections: Memory-Mapped
Master, Memory-Mapped Slave, Streaming Sink and Streaming Source.

2.3.1 Avalon Memory Mapped Master Interface

The Avalon memory-mapped master interface was used by the Nios II processor in the
system. Future work to the packet handler component will also include this interface type
to communicate with different types of memory and memory controllers. The signals that a
common component would use to master the memory controller or other memory-mapped
slave device are shown in Table 2.1. This table also summarizes the required signals of the
specification from section 3.8 of the Avalon manual [1].

The master interface timing specification is described in Figure 2.4. System on a Pro-
grammable Chip Builder (SOPC) automatically inserts timing latency logic between compo-
nents with different latency specifications. However, it is the master component that must
adhere to the wait signal. This allows for the implimentation of variable read and write
latency as well as the creation of slave side arbitration.

2.3.2 Avalon Memory Mapped Slave Interface

Because the slave Avalon interface used for the packet hander custom peripheral was a
memory mapped read/write interface, that set of signals are described in Table 2.2. In
an Avalon memory mapped slave interface the user can choose if they want read, write
or both read and write abilities. Only the set of signals for the intended interface version
must be present, i.e. only write signals and no read signals for a read-only interface. These
data signals can vary in width. Adapter logic between components of varing width can be

11

1 2 3 4]

ek _J7 L LML LT 1 1

address addri | addr2 addrl addr4
byteenable be1 bel be3 bed
read _J[
readdata

Write
writedata | | 3

_I.:n

I8

waitrequest

IS

Figure 2.4: Avalon MM Master Timing Diagram [1]

Signal Type | Required Y/N | Description

address Yes byte address to slave

read Yes read request signal to slave dependency-readdata
write Yes write request signal to slave dependency-writedata
writedata Yes data to write to slave dependency-write

readdata Yes data to be read from slave dependency-read

Table 2.2: Avalon Slave Interface [1]

inserted in SOPC builder if a connection between to different data width components is
desired. Each component of the delay device’s system was implemented with 32-bit wide
interfaces so data adapters would not have to be used. Memory mapped slave interfaces
also can automatically generate slave-side arbitration if more then one master is connected
to the device.

Other useful signals can also be implemented, however this was not necessary for the
scope of this project and only added to design complexity. Useful signals to add to this
interface in the future to make the interface more robust would be readdatavalid and write-
datavalid. These signals are used for pipelined transfers that can have variable latency, which
could be vary useful in systems where clock-domain crossing must occur due to timing is-
sues or if burst transfers are desired. The packet handler custom component implements a
read /write slave with fixed wait states as described in figure 2.5.

Because input and output data can be updated in the custom component each clock
cycle and the address can be decoded with combinational logic, the master will have a read
and write latency to the component of zero. This means that the data on the write data bus
is latched on the same cycle that the write strobe is asserted. In a similar manner the data
on the readdata bus becomes valid on the same cycle that the readdata strobe is asserted.

12

ek L1 L LIV L1 L1 1

address addtess address
byteenable

read]l

W

Write

readdata readdata

writedata writedata

Figure 2.5: Avalon MM Slave with Fized Wait States-Timing Diagram [1]

Signal Type | I/O | Description

data I data from source

empty I bytes in last transfer that were empty
endofpacket | I last word of a packet

startofpacket | I first word of a packet

error I if an error occurs it is encoded on this signal
ready O ready to recieve data signal

valid I data is valid signal

Table 2.3: Avalon Streaming Sink Interface [1]

In the packet handler’s interface, data that is written to a read/write memory location will
be updated on the following clock cycle. For example, if a user writes to a memory address
at clock time 0 and simulatenously reads the data from that location it will not be valid.
However, if the user writes data to a memory address at clock time 0 and then reads from
the same address at clock time 1 the data will be valid.

2.3.3 Avalon Streaming Sink Interface

This section identifies the signals required at the sink for an Avalon sink-to-source transfer.
Although none of the signals are strictly required by the standard, the signals described in
2.3 had to be implimented in order to correctly connect the Packet Handler to the Ethernet
MAC.

The interface for both the source and sink implement a back pressure signal to/from the
Rx and Tx FIFO of the Ethernet MAC. These interfaces were created with a read wait time
of zero clock cycles, which means the data is valid on the interface once the source asserts

13

the valid bit and that data will remain valid until the clock cycle after ready bit is asserted.
If the ready and valid bits both remain asserted, another transfer will take place on the next
clock cycle. Implementing the interface in this manner is the best method because it offers
the lowest complexity and the lowest latency. If an Avalon sink and source are connected
together, and they have different read and write latency, SOPC builder automatically inserts
timing adapter logic between the modules.

t.2 4% &4 .85 & 7
ready
vaid | L
startofpacket f_\
endofpacket f'_\
channeI-GID-DIO[O-
eror T T o T T o T o T
dataf31:241 IO Do | D4 JI pe [D12 o1e [
data[23:16] D] D1] D5 JIR] Do | D13 [N
dataf15:3] I D2 | 06 _JIRN] 010 D14 (RN
datar7:0] I 03 | 07 JB 011015 [

Figure 2.6: Avalon Streaming Source/Sink Timing For Packet Transfer [1]

0 1 2 3 4 5 6 7 8
ok T LT LT LT LT LT LT
ready I|r u—L
valid | L L
channel - l - I .
error NN | -
data [Do |1 B D2 oz B

Figure 2.7: Avalon Streaming Source/Sink Transfer with Back pressure [1]

14

Signal Type | I/O | Description

data O data to sink

empty O fifo from source is empty

endofpacket | O last word of a packet

startofpacket | O first word of a packet

error O if an error occurs it is encoded on this signal
ready I input to allow a wait if sink is not ready
valid I data is valid signal

Table 2.4: Avalon Streaming Source Interface [1]

2.3.4 Avalon Streaming Source Interface

The Avalon streaming source interface is used to provide Altera Ethernet MAC sink interface
with outgoing data. The timing diagrams shown in Figure 2.6 and Figure 2.7 also describe
the streaming source’s signal timing for a typical Avalon source interface.

2.4 Summary

In this chapter, we gave a summarized description of the OSI reference model and its
ability to categorize network communications into different layers. Generally, a computer
user only interacts with the application layer. However, the dependence of the application
layer on other lower layers, specifically the data link layer, shows that simulated delay
can and does occur in lower network layers. Next, we summarized the applicable parts
of the 802.3 standard to bring the reader up-to-speed on the requirements for hardware
and logic implimentation in Ethernet communications, and their relation to the OSI model.
The 802.3 standard describes the necessary fields for transmitt and receive frames to to
be exchanged. It also demonstrated the physical layer’s auto-negotiation mechanism is not
controlled directly by the data link layer, so additional setup is needed as the physical
layer is not necessarily autonomous. Finally, we summarized the important portions of the
Avalon bus communication standard, which is used in our device to communicate between
on-chip components. The Avalon standard allows for easy connection between components
in current and future systems.

15

Chapter 3

Delay Mechanics

In this chapter we discuss the cause and effects delay in a network. We also discuss the effect
of delay on reliable vs. unreliable protocols to establish what types of results we should see
when we test our system.

3.1 Delay

Generally there are four types of delay to worry about in a network:
1. Transmission Delay
2. Propagation Delay
3. Queuing Delay
4. Processing Delay

Transmission delay is dependent upon the amount of data and the rate at which the data
was sent. This can be seen as the time that each device along the path takes to absorb the
frame coming in off the medium. Although the frame size can be changed in some networks,
it is generally a fixed maximum length.

The second, propagation delay, is a function of the length of the line and the speed of the
medium on which the transmission is taking place. In networks that have nodes spaced ex-
tremely far apart this type of delay can be devastating to some protocols. Simulation of this
type of delay is the simplest and would be the most beneficial for educational environments
because many universities have networks that are connected for research.

The third type, queuing delay, is caused by the time it takes for a device to queue,
service and transmitt a packet. It can be modified depending on what type of equipment
is being used. Much work has been done in the computing community to speed up this
stage of communications. One method is to use a cut-through mechanic which only reads
the first and most necessary part of an incoming packet before forwarding it to the correct
port where it is transmitted. Other methods include the ability to check traffic as it comes

16

through a switch or router and give certain protocols higher priority so they are transmitted
before others. Due to wide variations in equipment types, this type of delay can be difficult
or even impossible to simulate due to the unknown nature of multiple chains of equipment.
Other difficulties of simulating at this level include the need to decrement TTL fields in
certain protocols. Since the number of hops might be unknown in a multi path routing
environment, it is not practical to try to simulate router delay specifically.

The fourth type of delay, processing delay, is assocated with the computation time of
devices that use software to process packets. This type of delay can be a function of many
variables including processing load, hardware speed and hardware service scheduling. It is
worth mentioning though, because this type of delay can effect round trip times in protocols
that use acknolodgement mechanisms such as TCP. This can also contribute to variations
in the jitter and skew measurements during testing.

3.2 Throughput

Network throughput is a function of the link speed along the path from one node to another
and is also a function of any link throttling and protocol throughput reduction mechanisms.
Other factors, such as traffic load, can effect the throughput of a network. We will limit the
discussion of throughput to the examination of a single Ethernet link.

3.2.1 Link Level

When sending frames on an Ethernet link, they are not transmitted back-to-back but rather,
the 802.3 standard states that there must be 96 bit times worth of separation between frames.
This is referred to as the Inter Packet Gap or IGP. This reduces the effective throughput of
a medium running at a given frequency to less then simply simultaneous frame transmission
at the link rate. The manual for Altera’s Triple Speed Ethernet MAC cores, used in the
delay device, states,The IEEE Standard specifies that frames must be separated by an inter
packet gap (IPG) of at least 96 bit times. The MAC function, however, accepts frames that
are separated by only 48 and 64 bit times in GMII (1000 Mbps operation) and MII (10/100
Mbps operation) respectively. The MAC function removes all preamble and SFD bytes from
accepted frames. [7]”

This provides some flexibility to use hardware which does not strictly adhere to the 802.3
standard with the delay device. Lowering IGP on a link is done in an attempt to lower the
transmission overhead and get more usable data through a link.

The TEEE 802.3 standard also provides a mechanism for flow control called pause frames.
Pause frames allow a receiving node to notify the sender when the revive buffer is full or the
reviver is backlogged. This provides a link-level throttling mechanism. When the system is
generated link level flow control logic can be included as an option in the MAC layers. If
the option is enabled when the hardware is generated the ability will then exist to turn on
pause frame generation and acceptance in software. As stated in the 802.3 standard, pause
frames are control frames and have an opcode of 0x0001. Pause frames also have a fixed

17

MAC address of 01-80-C2-00 which is reserved exclusively for pause frames. Pause frames
carry data to tell the sender how long to wait before transmitting again. This time is called
a quanta that varies from 0x0000 to Oxffff and each 0x1 quanta corresponds to 512 bit times
of the currently connected link. The remainder of the frame’s data section is padded with
42 bytes worth of zeros.

3.2.2 Protocol Level

Protocols can have a large effect on the throughput of the data that that they carry. Gen-
erally, they can be broken in to two categories, reliable and unreliable. Situations exist for
both, which largely depend on the type of data being carried by the protocol. It is obvious
that there are situations where an unreliable protocol is unacceptable, but for applications
like streaming media unreliable protocols work much faster and offer better application-
level quality. We will discuss the effects of delay on both types of protocols to establish an
understanding for the expected results.
Reliable

In a common reliable system, such as TCP, the receiving device will send an acknowledge-
ment back to the transmitting device once it has successfully recieved an incoming packet.
In the simplest reliable protocol for every sent packet the sender (A) would wait for acknowl-
edgement from the receiving device (B) [8]. In this system we will make the assumption
that the line could function at the rate expressed in Equation 3.1. However, because the
the device must wait for acknowledgement to send its next frame we must consider not only
the line rate but the entire Round Trip Time (RTT). The RTT is expressed in Equation
3.3, this equation makes the assumption of zero processing time but displays the general
concept needed to establish the underlying mechanic. Because the sender the must wait on
the acknowledgement, the throughput of the connection will be effectively reduced to a rate

expressed in Equation 3.4.
1

t ine — 3.1

rare Tframe ()

tAtoB = Tframe + Tprop (32)

tAtoBtaA = Tframe +2 X Tprop + Tack (33)
1

ratereduced = (34)

Tframe +2 x Tprop + Tack

Reliable protocols usually operate at a reduced rate, which is the trade off for its checking
mechanism. This shows that the throughput of a link is directly correlated with RTT in
reliable wait-for-acknowledgement protocols. The expected result of increasing line delay via
a delay device on this type of protocol is a reduction in throughput directly corresponding
to that increase in line delay.

18

Unreliable

Unreliable protocols such as User Datagram Protocol (UDP), do not receive acknowledge-
ment for sent data. If a packet is dropped during transmission, it is not accounted for and
is not resent. Multimedia such as streaming video and web radio, are excellent uses for this
type of protocol. UDP can offer higher throughput on a link because data can be continu-
ously transmitted. However, the effects of this type of traffic can quickly find the limitations
of systems because the protocol is not aware of congestion. If a new packet arrives once the
recieve buffers are full, the device must drop the incomming packet to avoid buffer overflow.
This mechanic will be useful to test the finite buffer limitations of the delay device by testing
the available throughput without dropping packets at a certain delay.

3.3 Summary

To establish the expected results for use of the delay device, this chapter has identified the
cause of network delays and discussed throughput at both link and protocol levels. We
have established that the throughput of a reliable protocol, such as TCP, will be directly
correlated with RTT. We have also established that we can test the available buffer capacity
for a given delay in the device using UDP. That packet should get dropped in a UDP
streamed transfer when the systems buffers are too full to handle the throughput. We also
discussed the use of pause frames and their ability to control congestion at a link level.
This discussion nleads us to two important conclusions:

1. Wire transmission delays are the easiest and accurate types of delays to simulate. For
this reason it is best to create delays at the link level.

2. Pause frames must be turned off during testing to establish the link’s maximum
throughput and buffer capacity

19

Chapter 4

Delay Device

The delay device was implemented on a flexible FPGA platform so other components could
be added or removed as necessary. SOPC builder was chosen as the assembly method be-
cause of its ease-of-use for future delay system builders and modifiers. The heart of the delay
device is the packet handler custom component. This custom component was created to
delay traffic between any Avalon streaming sink and streaming source. This provides flexi-
bility for future designs, allowing changes in MAC cores, and, even off-FPGA sources such
as microcontrollers with FPGA hardware interfaces or non-Ethernet to Ethernet adaptation
to be easily implemented and delayed.

4.1 System Overview

The system was assembled and generated in Altera’s System On a Programmable Chip
(SOPC) builder IDE. Each component was attached using the Avalon interface specification
and all required hardware signals were exported to the top level so that pin outs could be
assigned to the system via a block diagram file in Quartus II.

4.1.1 Hardware

The system was implemented on an Altera Stratix [T GX PCI Express development board.
This platform was chosen, because of its high speed grade and high density EP2SGX90FF1508C3NES
1508-pin FBGA package FPGA, as well as its numerous peripherals.

The board has two Small Form Pluggable (SFP) cages on it to accommodate two SFP
transceiver modules. This allows the board to easily be adapted to either copper SFP
modules operating at up to one 1.0Gb/s or Synchronous Optical NETworking (SONET)
modules operating at typical speeds of 2.488Gb/s. Maximum transceiver speed is capable
of up to 5Gb/s if specialized modules were available [5].

The development board also has several memory interfaces available. The 256 Megabyte
DDR2 memory was used in the design. The DDR2 RAM was used by the processor for bulk
storage. The DDR2 memory offers a large amount of storage and a very high bandwidth.

20

Error correction and detection logic is available, however it was not implemented to allow
future versions of the packet handler custom peripheral greater adaptability to use DDR2
memory. Onchip memory was also included in the design as additional space for the soft
processor’s operating system. A minimal amount of onchip memory was created to keep
resource utilization as low as possible.

Programming and debugging interfaces are implemented via a JTAG.

The design could easily be migrated to other FPGA devices as long as the FPGA and
peripheral had enough performance and space (logical elements and memory blocks ect.)
for target design.

The current hardware also provides room for expansion to a 10Gb/s format through
High Speed Mezzanine Connectors.

Additionaly, useful interfaces exist for future expansion, such as a PCI Express bus for
traffic sniffing and as a general debugging interface.

Two D-Link DGS-712 1000BASE-T Copper SFP transcievers are used to implement
the physical layer of the device. They have the ability to operate in 10/100/1000BASE-T
modes and have a Serial Gigabit Medium Independent Interface (SGMII), which fit the
requirement for the development board. They are advertised as,”...compatible with the
Gigabit Ethernet and 1000BASE-T standards as specified in IEEE 802.3z and 802.3ab. [9]”
The the transceivers also support auto Medium Dependent Interface (MDI/MDIX) so that
cross over and regular cables are handled interchangeably. This allows the system to be
easily used between two computers or a computer and a hub or switch without changing
cabling.

S e y 3
=
| 55

' [

Figure 4.1: D-Link DGS-712 [9]

4.1.2 FPGA Core

The system consists of several components that each do a specialized job. There is a Nios II
process that handles user input/output from the JTAG interface. The OS can change the
packet handler delay time over the Avalon interface, and provides a mechanism to retrieve
MAUC statistics and debug utility. The MAC interfaces communicate with Altera ALT2GBX
transceiver cores to send data out to the small form pluggable modules. Figure 4.2 shows
the basic high-level connections between the components in SOPC Builder. They will be
discussed in descending order as they appear in Figure 4.2.

21

Connections

hoclule Mame

B sysid
control_slave

B cpu
instruction_master
data_master
Jao_debug_rodule

E onchip_mem
21

= timer
=1

B pag_uart
avalon_ftag_slave

= timer_1
=1

E ddr2_mem
21

= pll
=1

E PacketHandlerOnChip_inst
zink
SOUFCE
slave

[altera_ethernet
transmit
receive
control_port

= altera_ethernet_1
transmit
rECENE
cortrol_port

E PacketHandlerOnChip_inst_1
sink
source
slave

= pio
=1

B pio 1
=1

= pio_2
a1

B pio_3
=1

Description
Systerm ID Peripheral
Avalon Slave
Mios Il Processar
Avalon Master
Avalon Master
Avalon Slave
On-Chip Memory (RAM or ROM)
Avalon Slave
Interval Timer
Avalon Slave
TAG UART
Avalon Slave
Irterval Timer
Avalon Slave

DOR2 SDRAM High Performance Contr...

Avalon Slave

PLL

Avalon Slave
PacketHardlerOnchip
Ayalon Streaming Sink
Ayalon Streatning Source
Avalon Slave
Triple-Zpeed Ethernet
Avalon Strearming Sink
Avyslon Streatning Source
Avalon Slave
Triple-Speed Ethernet
Ayalon Streaming Sink
Avalon Streaming Source
Aalon Slave
PacketHandler OnChip
Avalon Strearming Sink
Avyslon Streatning Source
Avalon Slave

Pl (Parallel 1000

Avalon Slave

PIC (Parallel 0]

Avalon Slave

PID [Paralled 1000

Avalon Slave

PID [Parallel 1000

Avalon Slave

Clock

sys_clk

sys_clk

sys_clk

sys_clk

sys_clk

=ys_clk
clk

clk
sys_clk

sys_clk
sys_clk
=ys_clk
sys_clk
sys clk
=ys_clk
sys_clk
sys clk
sys_clk

sys_clk

sys_clk

sys_clk

sys_clk

Baze

020081928

IRQ O

020080200

020040000

0x200818a0

020081920

0xx200818cD

000000000

0xZ20081880

010000000

0xZ20081000

0200814100

0210000040

020081 8e0

0x200818£0

020081900

020081910

Figure 4.2: System High Level Connection

22

End

OxZ00513Z1%

IRQ 31

OxEQ0S0EEE

OxZ00BL£££E

O0xZ00518bE

0xE00S19Z7

OxE00212df

Ox0f£££££8F

OxZ005183f%

O0xl000002f

OxZ00S513£1F

0xE00817£1F

0x1000007£

OxZ008l8ef

O0xZ00818£E

OxE005130f%

0xE00S131fF

[[{e]

sysid

Tells Nios II EDS what system it is connecting to on the FPGA to avoid attempting
to run code that is intended for a different target system then the one that is currently
programmed to the FPGA. The ID updates each time the system is regenerated so
that there are not any version issues when programming two variations with of the
same system name.

cpu
The Nios II is a scalable, 32 bit processor. It was added to the system to handle setup
of the SFP modules, to set the necessary registers on the MAC cores and set the delay
time of the packet handers. Because of its software base and JTAG communication
ability, it allows an easy method for command line entry from the user to update the
time delay without restarting the system. This mechanic also creates the ability to
easily implement delay profiles by using one of the included timers and updating the
delay on a periodic interval.

timer /timerl
The timers allow the proecssor delay an activity for a fixed imt interval and be inter-
rupted when that activity completes. This can be useful for creating delay profiles.

ddr2mem

This is an instance of the DDR2 SDRAM High Performance Controller. This provides
the logic, pin outs, and timing adjustment logic to communicate with the offchip,
onboard DDR2 memory. This memory is used for bulk storage in the design that
is shown in Figure 4.2 but could be mastered by other on chip components if they
require bulk storage implementations. One such example is an additional variation of
the Packet Handler custom component that uses offchip memory.

jtag_uart
The JTAG UART allows for the onchip system to communicate with the onboard
JTAG control chip.

pll
Allows the clock rate to be reduced on the system.

PacketHandlerOnChip_inst and PacketHandlerOnChip _inst_1

Onchip version of the packet handler custom peripheral connects the Avalon source
and sink ports of the two Ethernet Mac cores together. This component uses on chip
memory to store the information while it is being delayed. This component is discussed
further in the ”‘Packet Handler In Depth” section.

altera_ethernet and altera_ethernet_1
Altera tripple speed Ethernet cores provide the registers, fifo, and logic to implement
the media access control layer of the system according to the 802.3 standard.

23

e pio/pio_1/pio_2/pio_3
These are general purpose I/O pins that are exported to the top level block diagram.
They are used to communicate with the SFP modules to set up and communicate with

the their PCS. The communication is implemented as a two-wire serial bus for both

NG
>
Soft Jtag DDR2
Timer
uart
Pro Controller | off Chip
« DDR2 Mermory
- Y Y 3
~ »
—> P o | Packet Packet S R —
| Handler Handler
| " Custom Custom MAC S ——
< Compoarent Component
T | € Tx

FIFO FIFO

Figure 4.3: System Block Diagram

4.1.3 Software

The application is loaded into memory by the JTAG after the FPGA’s hardware is pro-
grammed. This can be done by using a Nios II command window or by using the Nios II
EDS.

Once the software is loaded and executed, the processor does the following series of
operations:

1. Sets-up necessary registers in the SFP modules. Including auto-negotiation, link part-
ner ablity etc.

2. Determines the link partner ability if link connection is active.
Resets MAC cores.

Programs the necessary MAC core parameters.

SANEE

Finishes making the Ethernet interfaces active by enabling transmit and receive abil-
ities in the MAC cores.

24

Module

CPU Instruction Master Address

CPU Data Maste Address

cpu.jtag_debug module
onchiip_mem.sl
jtag_uart.avalon_jtag_slave

pll.sl

pio.sl

pio_1.s1

pio2_.s1

pio3_.sl
altera_ethernet.control_port
altera_ethernet_1.control_port
timer.s1

ddr2_mem.sl

sysid.control_slave
PacketHandlerOnChip _inst.slave
PacketHandlerOnChip_inst_.slave

0x20080800 - 0x200801tf
0x20040000 - 0x2005fFf
not connected

not connected

not connected

not connected

not connected

not connected

not connected

not connected

not connected
0x00000000 - OxOfftrttf
not connected

not connected

not connected

0x20080800 - 0x200801ftf
0x20040000 - 0x20051tt
0x20081920 - 0x20081827
0x20081880 - 0x2008189f
0x200818e0 - 0x200818ef
0x200818f0 - 0x200818ft
0x20081800 - 0x2008190f
0x20081910 - 0x2008191f
0x20081000 - 0x200813ft
0x20081400 - 0x20081 7t
0x200818a0 - 0x200818bf
0x00000000 - OxOftfttf
0x20081928 - 0x2008192f
0x10000000 - 0x1000003f
0x10000040- 0x1000007f

Table 4.1: System Core Memory Map

6. Resets packet handler component via soft reset.

7. Programs the necessary packet handler registers, such as initial delay time.

8. Waits for user input on the command line, to change the delay time.

The system has a memory map shown in Table 4.1

25

4.2 FPGA Resource Use

Resource use for logic elements is low for the available resources on the current FPGA.
The resource use can change dramatically depending on the features the user decides to
impliment. Namely, the size of the internal packet FIFO and the internal descriptor FIFO
heavily determine the number of memory blocks that the design uses. This also determines
the system’s capacity and, in turn, its performance. Currently, on the Stratix II GX FPGA
memory block usage is at approximately 94 percent for M4K blocks. Table 4.2 details the
system’s resource use. This system currently utilizes as much on-chip memory as possible
to yield the best system performance.

With DDR2 in the system and not using the ECC bits on the controller the design uses
139 I/O pins. In order to communicate with the SGMII interface on the SFP modules two
GXB receivers and two GXB transmitters were used.

26

Ttem

LC Combinational

LC Registers

Block Memory Bits

Slave Arbiter 0

Slave Arbiter 1

Altera Ethernet 0

Altera Ethernet 0

Clock 0

Clock 1

Clock 2

CPU

CPU Data Maser Arbiter
CPU Instruction Master Arbiter
CPU JTAG Debug Module Arbiter
DDR2 Memory Controller
DDR2 Memory Arbiter
JTAG UART

JTAG Avalon Slave Arbiter
OnChip Memory

OnChip Memory Arbiter
Packet Handler 0

Packet Handler 1

PIO 0

PIO 1

PIO 2

PIO 3

PLL

PLL Slave Arbiter

Timer

Timerl

Timer 1 Arbiter

Timer Slave 1 Arbiter

SLD Hub

1

3
2745
2693
17
270
18
1070
401
137
27
1793
135
110

103
109
)

3
78

0

0
3148
3126
93
1152
1158

120
120
0

0
82

0
0
154896
154896

22636

0

1024

0
1048576
0
1072640
1072640
0

DD DO OO OO o oo

Table 4.2: Core Resource Use By Component

27

4.3 Packet Handler

== asi_sink_data[31..0] asi_sink_ready —
== asi_sink_empty[1..0] aso_source_data[31..0] =
— asi_sink_encdofpacket aso_source_empty[1..0] =
== asi_sink_error[5..0] aso_source_endofpacket —
— asi_sink_startofpacket aso_source_error [
— asi_sink_valid aso_source_startofpacket =
— aso_source_ready aso_source_valid =
= avs_slave_address[3..0] avs_slave_readdata[31..0] =

— avs_slave_read

— avs_slave_write

== avs_slave_writedata[31..0]
— clk

—1 reset

Figure 4.4: Packet Handler Block Diagram

There are two FIFOs in the system; one holds descriptors and the other holds the frame
information. A descriptor consists of a time stamp, corresponding to the time that frame
initially arrived, and the number of bytes in the frame. The descriptor is forty-eight bits
wide, which allows for a thirty-two bit time stamp and sixteen bits to count the number of
bytes in any given frame. This sixteen bit size allows for frames to be received up to 65,535
bytes. The largest frame received should only be 1,518 bytes for common frames without
Q tags. It is also worth noting that the MAC cores in the current build of the system can
support jumbo frames (9000 bytes), and this portion of the descriptor field would not have
to be expanded to provide error free jumbo frame transport.

The component handles information in the following flow (see 2.7) for additional refer-
ence): The packet handler asserts the asi_sink ready bit to tell the MAC core that is ready
to start accepting data. Incoming information shows up on the sink data bus and the MAC
core asserts asi_sink_startofpacket and asi_sink_vaild to start the transfer. Because the read
wait latency of the packet handler is zero clock cycles, the data is latched and stored in
the FIFO on the current clock cycle. A time stamp with added delay time is also latched
off of the free running clock inside the packet handler instance and stored until the end
of the packet arrives. The packet handler continues to take information as long as the
asi_sink_vaild signal is asserted and continues to count the number of incoming bytes, which
is four per clock cycle (32 bit wide interface) until the end of packet condition is reached.
When asi_sink_valid and asi_sink_endofpacket are both asserted the final data for the packet
is latched and the correct number of bytes for that cycle are added to the total number of
bytes for the packet. This is calculated as four bytes minus the value on asi_sink_empty

28

during the end of packet clock cycle. The descriptor includes both the timestamp created
at the start of the packet and the number of bytes that were in the transfer. Please note
that the use of the word packet, in this instance, does not refer to a network packet, but
rather the packet of data transfered over the Avalon bus between the source and sink. For
this particular connection in the system, the information transfered in one Avalon packet
could, and normally does, hold all the frame data, including destination address, source
address and CRC32. The data that gets forwarded to the packet handler instance through
this interface is a result of how the user decides to set the MAC registers.

Because the packet handler instance can delay any Avalon packet information system
variations can be made to delay data between any Avalon sink and source. The system’s
MAC cores are currently set to forward the MAC source and destination addresses to the
packet handler but not the CRC32. The MAC cores also currently remove the zero padding
in the frame. This is done because the MAC cores to transmit frames are always zero
padded and the MAC can not remove the zero pad on the input side and simultaneously
keep the CRC32; there is an inherent dependency in the MAC core. The result of this does
not modify the operation of the packet handler instance it only changes how software must
set the MAC cores transmit registers. This also reduces the total amount of data stored in
the packet handler FIFO'’s.

Packets continue to be received, given the condition that the packet data FIFO does not
get within one packet (1,518 bytes) of full. If the packet data FIFO reaches this level the
reception of data stops after any transfers that were in progress end. This ensures that no
data is lost and the FIFO is not overflowed. Once this condition occurs the asi_sink_ready bit
will stay low until space becomes available. This effectively back-pressures the MAC core’s
receive FIFO. If a frame was in the process of being received and there is enough room
in the receive FIFO then the transmission continues. However, if there was not sufficient
space, the frame is dropped.

Logic continually checks the empty flag of the descriptor FIFO. If the FIFO is not empty
then the current FIFO is checked continuously unill a valid transmitt condition is found.
The event of a clock wrap around is handled by making the transmission condition valid for
all time in the time range, excluding the period from when the packet arrived to when the
packet arrived plus its time delay. This works well because at a system clock rate of 83.3
MHz the 32 bit clock can have a total delay of about 51.7 seconds and delay times for the
system are generally in the milliseconds. This also allows for the time delay for each packet
to overlap in the system if necessary e.g. a packet arrives and has a time delay of 5ms,
the user changes the time delay to 1ms delay and a second packet arrives 1ms later, the
packet will have overlapping valid transmission times. Because the system is implemented
as a FIFO, in the event that the second packet has a shorter required time delay than the
first packet, the first packet will finish its time in the queue and be transmitted, then the
second packet will be transmitted as soon as possible. The system was implemented in the
fashion first, because it most closely mirrors the store forward delay found in most common
switching equipment, which do not implement priority queuing and second, for simplicity.

Once a descriptor is found to be valid, the following series of events occur: First, the
number of bytes to be transmitted is latched in a counter. Second, if the asi_source_ready

29

bit is asserted then transmission can begin to the MAC core, otherwise the packet handler is
back pressured and must wait until the MAC core becomes ready. Once the asi_source_ready
bit is asserted asi_source_startofpacket and asi_source_valid are asserted the data is latched
by the MAC core and the byte count is decremented. The MAC can pause transfer at any
time by deasserting the asi_source_ready bit. This process occurs until four bytes or less
are left in the byte count. At that point, the asi_source_endofpacket bit is asserted and the
asi_source_empty bits are calculated and set. The empty bits are simply calculated as four
minus the number of bytes left on the last cycle.

The component also has an Avalon slave port so that the processor, or any Avalon
memory mapped read/write master, can read and write information to the component.
Write transactions are zero clocks in write latency and are handled by checking on each cycle
to see if the avs_slave_address decodes to the register’s address. If it does, the avs_slave_write
signal is asserted the value shown on avs_slave_writedata is latched. Read transactions are
decoded in a similar manner. If avs_slave_read is asserted then then the address of the
correct register is decoded and presented on the avs_slave_readdata data bus. Table 4.3
describes the register map of of the packet handler component and the individual registers
functions. A soft reset can be issued by writing a one to the zero bit of the control register.
This reset condition is cleared on the next clock cycle. The address shown in table 4.3 is
the decoded address as seen by the packet handler instance. The address that would be
written to, in software, would be multiplied by four due to word-only addressing support
by the packet handler component e.g. to write/read to addresses 0x0 one would write/read
to the packet handlers base address plus zero and to write/read to address 0x1 one would
write/read to the packet handlers base address plus four.

Figure 4.5 demonstrates the Packet Handler components Avalon interface signals and
shows that they adhere to the Avalon specification. First, the simulation shows incoming
packets being received from the Avalon Source. Next, the system waits for a delay of 50
clock cycles. Finally, the two packets are presented correctly to the Avalon Sink interface.
The packets distinguished by the start-of-packet and end-of-packet signals. The simulation
also demonstrates a pause during the first packet’s transfer by driving the asi_sink valid bit
low for a period of time.

Figure 4.6 shows the state diagram for checking the output descriptors and sending a
packet. The state machine is a Moore type state machine. The state machine sits in the
idle state checks for a descriptor to become valid. Once the descriptor is found valid the
state transitions to state_latch_desc, where it is removed from the queue and the number
of bytes to be transmitted is latched into a register. The state machine then transition to
the start-of-packet state where the start of packet sequence is generated. Next, the state
machine transitions to the regular transfer state where the transfer continues in four byte
increments. Finally, when less then four bytes are left the state machine transitions to the
end-of-packet state which generates the correct sequence of signals finish the packet transfer.
Table4.6 describes the state machine’s transition conditions.

30

Register Name | Address | Read/Write Function
Command 0x0 R/W soft reset by writing to bit zero
NumInPFIFO | 0x1 R/W number of entries in the packet FIFO
TimeBase 0x2 Time delay before packet transmitt
Unused 0x3 R/W N/A
Unused 0x4 R/W N/A
Unused 0x5 R/W N/A
Unused 0x6 R/W N/A
Unused 0x7 R/W N/A
Unused 0x8 R/W N/A
Unused 0x9 R/W N/A
Unused OxA R/W N/A
Unused 0xB R/W N/A
Unused 0xC R/W N/A
Unused 0xD R/W N/A
Unused 0xE R/W N/A
Unused OxF R/W N/A
Table 4.3: Packet Handler Control and Status Registers
[tem LC Combinational | LC Registers | Block Memory Bits
Packet Data FIFO 204 74 1048576
Descriptor FIFO 34 54 24064
Packet Handler Total | 557 298 1072640

Table 4.4: Packet Handler Resource Use

[tem Type | Port Depth | Port Width | Total Size
Descriptor FIFO M4K | 512 48 24576
Packet Data FIFO | Auto | 32768 32 1048576

Table 4.5: Packet Handler RAM Use

31

First Packet Second Packet

asi_sink_data ..))OO JO0O0O000- K- OO0 deadeott
asi_sink_empty 00 il

asi_sink_endofpacket |

asi_sink_error 00

asi_sink_startofpacket | ||

asi_sink_valid
aso_source_ready |

avs_slave_read

avs_slave_write |

avs_slave_address 0

avs_slave_writedata "00000000
ok mﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂjmwnﬂﬂﬂﬂmwmmmmgwnﬂ HFWWMHMM

reset]
asi_sink_ready | | \ |
aso_source_data 000... deadbeef OO0 feedda... YOO X Ydea...

aso_source_empty 00 Y)o0 I

aso_source_endofpacket | [[

aso_source_error 4

aso_source_startofpacket | Il 1

aso_source_valid | [[i

avs_slave_readdata (00000000

Figure 4.5: Packet Handler Simulation

state_latch_desc state_req state_eop

Figure 4.6: Packet Handler Transmit FSM State Diagram

32

Source State Destination State | Transition Logic Summary

state_idle state_idle No descriptor or invalid descriptor time
state_idle state_latch_desc Valid descriptor is ready to be transmitted
state_latch_desc | state_sop Always

state_sop state_sop Source not ready

state_sop state_reg Source is ready

state_reg state_reg Less then four bytes left to transfer
state_reg state_eop More then four bytes left to transfer
state_eop state_eop Source not ready

state_eop state_idle Source is ready

Table 4.6: Transmit FSM Transition Table

33

Chapter 5

Results

5.1 Theoretical Throughput

The theoretical throughput of the packet handler custom component is based on the clock
and memory speed that was used to implement the component FIFOs. Currently, the
system clock runs at 83.3Mhz. The component has a memory interface 32 bits wide, has
a read/write latency of zero clocks and can accept data every clock cycle as long as the
FIFOs are not full. This allows the component to offer a maximum theoretical throughput
of up to approximately 2.65Gb/s at the currently implemented clock rate, ignoring any back
pressure on the Avalon source output side. Throughput this high depends on setting a delay
time low enough to keep the the FIFOs from filling up.

The entire system is limited to a theoretical throughput of 1Gb/s because that is the
maximum rate at which the current SFP modules can send and receive data.

5.2 Device Connectivity and Use

The device can placed in any Ethernet 10/100/1000BASE-T network where there is a MTU
of 1500 bytes or less.

5.2.1 Hardware

Figures 5.1 5.2 illustrate some typical scenarios for the device. If pause frames are required
in the link a user must ensure that that the flow control option is included when compiling
the design hardware and that pause frames are turned on in the command configuration
register of the approperate MAC core/cores. Additionaly the user can also set a fixed pause
frame quanta if desired. The default design does not have flow control enabled.

34

Figure 5.1: Connection Scenario 1

B-<

Figure 5.2: Connection Scenario 2

5.2.2 Software

The user can update the time delay of the system by typing in an integer number on the
command line for the intended delay in nanoseconds. The console will then update the delay
in both packet handler components and echo back the value read from both components to
verify that they were correctly set. Since the delay is set symetrically, the total RTT will
simply be twice the delay time entered. Figure 5.3 shows the console in action.

Bl consale £7 Tasks Memory. % i ||t B - 5> =0
MarchTesti Mios ITHW configuration [Mios [T Hardware] Mios I Terminal Window (5/2{09 9:17 PM)]
niosZ-terminal: connected to hardware target using JTAG ULRT on cable |
niosz-terminal: "U3E-Blaster [USB-0]", device Z, instance 0

niosZ-terminal: (Use the IDE stop button or Crtrl-C to terminate

1000BASE-T AUTO NEG DONE!

TSE_PC3 Control Register EthO: 1140
T3E_PC3_Control Register Ethi: 1140

Eth0 PC3 IS UP! Remote Partner Ability Oxd301
Ethl PC3 IS5 UP! Remote Partner Ability OxdS01
Cormand Config Currentlwy: 22Zb

Changing Cormand Config to: Sh

Command Config Currently: 22b

Changing Comand Config to: 9k

Packet Hander 1 == 0 F¥3F73337

Packet Hander 0 ==» 1 ####xass

Enter Time Delay in ns: 100

Set Eth0 to: Ox7f27f4 = 100 ns

Set Ethl to: Ox7L2z7f4 = 100 ns

Enter Time Delay in ns: 5000

Set Eth0 to: Ox18dScdas = 5000 ns

Set Ethl to: Ox18d5cda8 = 5000 ns

Enter Time Delay in ns:

Figure 5.3: Delay Device Console Application

Additional functionality can be added by changing and recompiling the software using
the set of API functions described in Table 5.1.

35

Function Description
resetPacketHandler() | Soft Reset of Packet handler
setPacketHandler() | Set Packet Hander delay time
getPacketHandler() | Get Packet Hander delay time
linearRamp() Linear time ramp

Table 5.1: API Functions

5.3 Delay Performance

The delay device can theoretically delay packets for over 50 seconds at the current clock
rate, however, using delays that high would be very impractical in any setting. Most TCP
traffic would time out at delays that high, despite valid data still being in transmission. Pro-
gramming the device to have asymmetric delays along the transmit and receive paths is also
possible by simply setting the delay time different for the two packet handler components.

A test bed was constructed to test the performace of the device. This test bed consisted
of two Windows XP machines, with 1000BASE-T network cards, and a Netgear GS608-V2
10/100/1000 switch. Iperf was used to generate and recieve test traffic. Both common
scenarios were tested and similar results were recieved during both configurations. Since
both sets of results were similar only the results for scenario two (Figure 5.2 will be shown.

Figure 5.4 shows a screen shot of two separate pings between the computers to verify
connection. The first ping was sent with the delay device set at zero delay and the second
was with the device set a 25ms delay (50ms RT'T).

Figure 5.5 and Figure 5.6 show the iperf TCP throughput graphs for Oms and 50ms delay
respectivly. As expected the throughput during high round trip times falls off significantly.
In very low round trip times the throughput is very similar to the throughput achieved
using only a switch between the computers as a benchmark (260Mb/s). With better testing
equipment higher throughput may be achievable, however the test equipment that was used
is very common to most computer labs and provides an excellent normal use scenario.

36

B H:\WINDOWS\system32\cmd.exe M=l

H:“Documents and Settings“RossUonFange-Desktop>ping 192_168.5.6
Pinging 192.168.5.6 with 32 hytes of data:

Reply from 192_168_.5.6: hytes=32 time<{ims TTL=128
Reply £ 192 _168.5.6: hytes=32 time<{lms TTL=128
Reply from 192_168_.5.6: bytes=32 time<{ims TTL=128
Reply from 192_168_.5.6: bytes=32 time<{ims TTL=128

Ping statistics for 192.168.5.6:

Packets: Sent = 4. Received = 4. Lost = B (B2 loss>.
Approximate round trip timesz in milli—seconds:

Minimum = Bms. Maximum = Bms. Average = Bms

H:~Documents and Settings“RossUonFange-Desktoprping 192_168_.5.6

Pinging 192.168.5.6 with 32 bytes of data:

Reply from 192_168.5.6: hytes=32

Reply from 192_168._ bhytes=32

Reply from 192_168.5.6: hytes=32 time s T
Reply from 192 _168_ = bytes=32 time=58ms

Ping statistics for 192.168.5.6:

Packets: Sent = 4, Received = 4, Lost = B {8z loss>.
pproximate round trip times in milli—seconds:

Minimum = 58m=s,. Maximum = 58ms. Average = S5@ms

H :“Documents and Settings“RossUonFange“Desktop>_

Figure 5.4: Connection Scenario 2

Bandwidth

Time]
#1844: [197.00MBits/s]

Figure 5.5: Connection Scenario 2: Iperf TCP Throughput Oms Delay

37

Bandwidth

Tir)
#1844: [1.38MBits/s]

Figure 5.6: Connection Scenario 2: Iperf TCP Throughput 25ms Delay

38

Figure 5.7 and Figure 5.7 show the UDP bandwidth and jitter for the benchmark setup
and scenario 2. UDP throughput for both cases was found nearly identical over several
runs. Jitter measurements for both cases were also found to be very comparable. Iperf has
an inherent UDP traffic generation limit of 50Mb/s so at moderate delays no buffer effects
were experienced.

Bandwidth & Jitter

—
@
=
=
®n
E

50

Time (sec)

Figure 5.7: Connection Benchmark: Iperf UDP Throughput with Only Switch

39

Bandwidth & Jitter

- — -

0.045 1

0.040 +

5.0

Time (sec)

Figure 5.8: Connection Scenario 2: Iperf UDP Throughput 20ms RTT

40

Figure 5.9 shows RTT vs. Sequence number for a TCP flood generated by iperf on a
Windows XP platform. The device was set to delay frames by 25ms, which generates a total
RTT of 50ms plus computer processing time for the ack generation.

RIT[s] Round Trip Time Graph

0,050
0,015
0.00
0035
0.0%0
0.025
0.0
001
o010

0.008

00000 1000000 1500000

Sequence humber(B]

Figure 5.9: 50ms Delay RTT vs. Sequence Wireshark Capture

Throughput
[Bis]

Throughput Graph
550000 —|
500000 —|
450000 —|
400000 —|
350000 —|
soooo0—{

250000 —

0000 —{ e,

150000 —

100000 —

s0000 — 12"

Figure 5.10: 50ms Delay Throughput vs. Time Wireshark Capture

41

Figures 5.11 and figure 5.12 show the results from a simple delay profile that increases
the delay by 300 clock cycles (clocked at 83MHz) every 255 processor clock cycles.

nnnnnnnnnnnnn

Time{s]

Figure 5.12: 50ms Delay Throughput vs. Time Wireshark Capture

42

Figure 5.13 shows average throughput over ten second intervals using iperf with a TCP
flood. It shows that as the RTT increase the throughput greatly decreases in the device.
This is the expected result of delay on TCP traffic.

Throughput vs. RTT Averages Over 10 Seconds

RIT (ms)

Figure 5.13: 50ms Delay Throughput vs. Time Wireshark Capture

43

Chapter 6

Conclusion and Future Work

In conclusion, the delay device can successfully and accurately delay Ethernet frames with
a range from as low as one packet store forward delay to theoretical maximum delay of 51
seconds. Trials showed that when using TCP transfers the performance suffers greatly at
higher delays, which is expected because of TCP’s mechanics. However, at reasonable delay
sizes, similar to most delays users would try to replicate with this device, the throughput
was high enough for most educational and research use and can be easily expanded by the
addition of more memory.

We have contributed a design that is flexible, reproducable and inexpensive. The device
also has a very high throughput and large delay time for its cost. Our design providess
future users with an excellent starting point to base new variations from and provides a set
of tools to ease the difficulty in creating new delay device variations. Future work should
expand the portability and functionality of the design. To increase the device’s performance
dramatically, a master interface could be added to the packet handler component and logic
could be adapted to make a FIFO of the DDR2 memory. Additionally the current devel-
opment board has a third Ethernet physical layer that is a GMII interface which, coupled
with the existing Nios II processor, could provide users a web based interface to change
the time delay or activate delay profiles remotely. Migrating the current IP on the board
toward open source cores, such as open source MAC cores would be beneficial in academic
scenario for both cost and transparency. Finally, the addition of the ability to dynamically
size the FIFOs in the packet handler component on-the-fly would allow users to easily test
and assess the effects of buffer size in a store forward system.

44

1]
2]

3]

[9]

Bibliography

A. Corperation, Avalon Interface Specifications, 2008, Document Version: 1.1.

B. A. Forouzan, Data Communications and Networking 3rd Edition, Elizabeth A. Jones,
2004.

M. H. L. Kyung Chang Lee, Suk Lee, Worst case communication delay of real-time in-
dustrial switchd ethernet with multiple levels, in Transactions On Industrial Electronics,
3 Park Avenue, New York, NY 10016-5997,USA, 2006, IEEE, Vol. 53, No. 5 October
2006.

S. N. Labs, Statment of work, FPGA Delay Device, 2007.

A. Corperation, Stratixz II GX PCI FExpress Development Board Reference Manual, 2007,
Document Version: 1.0.1.

T. I. of Electrical and I. Electronics Engineers, Ieee standard for information technology -
telecommunications and information exchange between systems - local and metropolitan
area networks - specific requirements: Part 3: Carrier sense multiple access with collision
detection (csma/cd) access method and physical layer specifications, in IEEE Std 802.5,
2005 Edition, pages 1-1552, 3 Park Avenue, New York, NY 10016-5997,USA, 2005,
IEEE, ISBN 0-7-381-2674-8 SS94892.

A. Corperation, Triple Speed Ethernet MegaCore Function User Guide, 2007, MAC
Core Users Guide.

W. Stallings, High-Speed Networks and Internets Performance and Quality of Service
Second Edition, Alan R. Apt, 2002.

[. D-Link Coperation/D-Link Systems, D-Link DGS-712, 2006.

45

Appendix A
Packet Hander Verilog Code

46

f0A.T ¢ TAT & (dos~e3e3s == @3e3STqNS) = doa"s uStsse

‘04T : TA.T & (8o17e3e3s == @3e3sTqns) = HAY"S udTsse

‘04T : 19,1 & (dosTejels == @3e3sTqns) = J4oS~S uSTsse

£09(T : TAcT & (OSep yojeT e3els == ojeis qus) = DSHA HOLYT S udrsse
f0A¢T ¢ TA¢T & (©TPT ©3B3S == @3BIS QNS) = AIAI"S nMHmwm\\

¢ {dureysewry ‘qunod~x1"91£q°0q.T} = ur I03drIosep uSTsse

pus
pus

oseOpUD

f0Y.ZE = eaeppesI oARTS SAR :1TneJep
£0U.ZE = eleppesaIi oARTSTSA®R :GU ¥
£0U.ZE = eleppesai oAeTSTSA®R :QU %
f0U.ZE = eleppesi oARTSTSA®R .U %
f0U.ZE = eleppesi oARTS™SA®R :9U %
f0U.ZE = eleppesai oARTS™SA®R :GU ¥
£0U.ZE = eleppesai eARTS™SA®R :HU P
f0U.ZE = eIeppRaI SARTS™SA®R :gU ¥
foseqTOWT] = BIEPPESI OARTS SAR :ZU P

$1Tq TT = OFTF 3eyoed pesn// ({oFTy 3oyoed pasn‘Qy,[g} = BIEPPESI 9ARTS SA®R :[U .}

‘Toxquoo yd = ejeppesi eAeTSTSA®R QU %
(Sseippe”eARTS SAR) 8sed
ut8eq
(ped1~oARTSTSAR) JT
{0Y.ZE = eIeppeal aAeTS SA®R
ut8eq

(eseq~euwty 10 0FTF 2exdoed pesn Io Toxjuod yd Io Sseippe~eselsTSAe IO peal oaeTs~sae) p skemTe

//
snq ejeppesl 0quT sI93st8ex Fo YW andang //

pus

feseqTeuwT) => 9seqTAUWI]

osTa

{eqQepelTINTOARTS SAR => 9SBqTOWI]

(CU.¥ == ssoIppe eAe[S SA® R 93TIM 9ARTS SA®R) JT OSTd

£0000§ => oseq awmry
(3ese17ys) JT

ut8eq
(19se1"ys o8pesod 1o ¥To o8pesod) p shemre
//
qnduy eseg euwty //
pus
[0]Toxauoo yd 31q 38S8X INO INO IBSTD// (OFFFFIFIU.ZE B Torawoo yd => Torquos yd
osTo
feqepolTINTOARTS SAR => T0I3U00 yd
(OUp == SSoIppe 8ARTS SAR 3 ©1TIM OARTS SAR) JT OST®

£0u.gg => Torzmwoo ud
(3es81) IT
ut8aq
(3esax o8pesod 1o 1> a8pesod) p shemre
//

199sT801 TOIJUOD puUER 1Tq 19SdI 3JOS //

‘04T : TA.T & ([0]Toxauod yd | 38sex) = 39sex ys uSrsse
oITM 18S9y pIeH ‘3esey 3jyog //

¢STSTTINF asouwTe oITA
¢ssex8oxd utr exTm
foqeas~aeyx Sex

o0BIILQUI XY

£1q,7=8uTUUNITUT ‘0q, =9 TPT UT Iojouwered

‘roxquod yd [0:1g] 8ax

f1@sex ys oITM

‘eseqTouwry [0:1€] Seox

‘dureqseuwry [0:1€] Seox

fqunoo~xa1"e3£q [0:y1] Sex

fqunoo~e1£q [0:%7] 8oz

‘TIny-zoadraosep oiTM

‘ur~zo3dTIosep [0:/p] oITA

paxeast8ex axe oFry yo sindino// foFry 3exdoed pesn [0:0F] oITA
‘oyry 3exoed px Sex

foyTy 1esoed an oxTM

fqno~z0adTIosep [0:/p] OITA
‘{fqdwe~109dTIdSOD OITM

torqedod oaatm

¢osep~dod Sex

¢osep~ysnd Sex

feqep yeed 0TI [0:LF] oATA

‘owra~x09dTI0sep [0:T1g] Seox

fewraTquUaIIND [Q:7g] Sox

foqeas [0:g] Sex

foqeasTqns [0:g] Sex

£40a"s °ITA

‘DgY"S oITM

£dosTs extm

¢ DSIATHOLYT™S oItm

f31qITS °aTM//

¢y, g=doa~e3els xezeuwexed

‘gy.g=801"03es Iojomered

‘gu.g=dos~eqels Iojemwered
¢1Y,g=0sep yos3eT o3e3ls Iojouered

f0U.£=9TPT 03e]1s Iorouwered

(

qes01 axtm qndut

‘Y10 oxtm gndut

‘ejepejrTamTeAeTs sAe [0:Tg] oITA andut
‘o1TIM anRTSTSAR axtm qndut
‘eqeppeax-eseTs~sae [0:Tg] Sex andino
‘pear~eaeTs”sAR axtm qndut

oARTS UOTeAY//‘Ssoippeeaels sae [0:€] oItm andut
‘pITeA”edINOS”OS® 8ex gandano
‘qeyoedjyojzIielsTesinos-ose 881 qndano
¢ fpesax~edoanos-ose axtm gndutr

¢ I01I9”90INOSTOS® Sex andano
‘qeyoedyopus~eoanos-ose Sex gndano
‘fadwe~sdanos"ose [0:7] Sex 3ndano
eoegI9quUI YI odInog Surwesil§ UOTeAY//‘eiepesinos~ose [0:fg] oItm andino
‘prreATUTIS ISe sxtm qndut
‘qexoedyorrels HUTS ISE sxtm qndut
¢fpesx~yurs~ISe Sax gndano

STY1 @sn quop T// ‘IoII9~Yuls~Tse [Q:G] oxtm qndur
‘qeyoedyopue UTIS TSR oxtm gndut
‘fadwe~yurs~Tse [0:7] oxtm qndur

outg SurwesIlg UOTeAY//‘elRp HUTIS TSR [0:7g] oIt andut
) drypupIaTpueHIeNORd STNPOW

47

(0SIATHOLYT™S) T oST®
pus
€09, => 0FTI 3exoed px
£0 => junoo~e3£q
ut8eq
(3ese17ys) JT
ut8eq
(19se1"ys o8pasod 1o {To o8pesod) p shemre

//
Ie3uno) 3ang e3afg //

pus
£009.2 => Ladwe~edanos~ose
osTe
aseopus
£7109.2 => Ladwe~eoanos~ose :11q.Z
£07T9.2 => Ladwe~edoanos~ose :01q.Z
£179.2 => Ladwe~edoanos~ose :709.Z
£004.¢ => Kadwe~adanos~ose :00q,Z
([0:7]2unoo~e3Lq) esed
(dod™s) It esTe
£004.2 => Ladwe~edanos~ose
(3esexTys) JT
ut8eq
(19se1"ys o8pasod 1o {To o8pesod) p shemre

//
sn{npoy //

pus
£09.7 => 2eyoedgopus~edsinosose
osTe

£7q.7 => 3exoedgopus~edsinos~ose
(dod"s) FT °sT®

£09.7 => 3exoedjopus~edsinosose
(3@8s817Ys) 3T

ut8aq
(39sa1"ys o8pesod 10 ¥Td o8pssod) p shemre
//

3eyoed Jo puy //

pus
£0q.T => 3oyoedjyojzrels~eoinos~ose
asTa

£1q.T => 3oyoedjyojrrels eoinos~ose
(dos™s) IT °esTe

£0q.T => 29¥oedyolrels~edinosose
(3esex7ys) JT

ut8eq
(3esex"ys o3pesod 1o {To e3pesod) p sfemte
//
1exoed o 3Ie3S //
pus
04,1 => osep~dod
osTa

I9qunod se93hq oy3 utr seihq aya qexld sm// ‘1q.T => dsap-dod
(0SIA"HOLVI™S) FT osT®
¢ 09,7 => osep-dod
(3esex"ys) JT
ut8eq
(19se1"ys o8pesod 1o {To o8pesod) p shemre

//
z03dtI080Q d0d //

~

pus
osedpus
foTpPT e3e1s => 93e3sTqus
1qTneyep
¢doe~@3e)s => @3e3sSTquSs
osT®
foTpI~@3e1sS => 83elsTqns
Amumwhlwuudom|0mm) T
:dos~egeas
pus
¢tdoe~eqe1s => @jelSTqus
osTo
‘8ex"0qels => @jelSTqus
(b < 3unoo~e34q) 3 Apesi~edinosTose) JT
ut8eq
:8e1"eqeaS
pus
¢dos~ege3s => @jeisTqus
osT®
‘Bex79qels => @3e3sTqus
(fpeax~edanosose) IT
ut8eq
:dos~ej3eas
¢dos~ejels => @3e3sTqus
:0sepTyojer @3els
pus
{eTpT~@3e2S => @3e1S QNS
osTe
{osepTyojeTelelsS => 9jelsTqus
orqedod) g7
ut8eq
:eTpT egels
(e3e1s)98Ed
ut8eq

(e1qedod 10 junoo~e3fq 1o Apesi~edoanosTose I0 s3eis) p shemye

19,7 & ((((eseq auwry - [0:Tg]ano 10adTIdssp) > SWT3 3USIIND)

[0:7€]ano"103dTI0S8p =< awra quexind) 33 Ajdwe~roadraosep.) = arqedod ultisse
pus

f9jelsTqns => 9jeas

asTe

{eTpT~@3e1sS => @3elSsS
(3esa17ys) JT

ut8eq
(2esex"ys o8pesod 1o ¥T> o8pesod) p sfemre
//
10501 SOTPURY OSTE oSN I93eT IOJ OpTI IOAO SUTYORY 9303§ //
pus
] + OWI3TJUSIIND => SWTF JUSIIND
esTo

{1 => eWT3 3UeIINd
(38s817yYs) IT
ut8eq

(3esa1"ys o8pasod 1o ¥Td o3pesod) p shemre

//
suty Teo0T //

pus
{0 => IOoxI®~8dINOS~OSE

ut8eq
(1> o8pesod) p shemte

//
FInas pesnun //

48

1e¥oedJ0o1IRIS HUTS TSE) B APesI YUTS TSe B PTTEA YUIS ISe) = oFTy 3exoed im udtsse

pue
pus
‘0 = osep~ysnd
fqunoo~xx"e34q = junoo~xa"e3Lq
ut8eq
osTa
pus
f0 = osep ysnd
‘PUGT + IUNOD~XI"93Lq = 3unodo~xa"e3fq
ut8eq
(ssex8oxdut 3 Apeex Nurs TSe 3 PITRA™YUTS TIS®) JT OSTo
pus
¢{1 = osep ysnd
‘P, GT + 3unod~xIe3£q = junoo-xI1~e3hq
ut8sq

£adwe~surs~Tse 3 1exoedjopue HUTS TSe 3 PITEA™NUTS IS) JT oSTS

pus
‘7 = osep ysnd

1U,GT + 3unod~xx~e3£q = junoo~xa~e3Lq
ut8eq

Lydwe~yurs~tse 3 jeyoedjopus NUTIS TSe 3 PITRA NUIS ISe) ¥T osT®

pus
‘1 = osep~ysnd

fZU.GT + 3unodo~xx"e3fq = junoo~xi~e3hq
ut8eq

fqdwe~surs~Tse B 1exoedjopus~HUTSTISE B PITEA HUTS™ISE) JT oSTo

pus
‘1 = osep ysnd

f€U.GT + 3unodo~xI"93£q = junoo~xi"e3Lq
ut8eq

£adwe~xurs~Tse 3 1ox¥oedjopue HUTS TISe 3 PITEA NUTS IS) JT oSTS

pus
¢{0 = osep~ysnd

{$Y.GT = unod~xi~e3Lq

ut8aq

so1fq Inoy 3sITF oyl ydjel om 3oyoed Lrsas Jo 1Iels oY 3e//

((9.8 - 98999) => oyry 1exoed pesn 3 //(Apesi SUIS IS R PITRA NUIS ISe % j3o3oedjojress™yurs™Ise) JT osTe

pus
‘{0 = osep~ysnd

4T qunod juop os 3eyded oyj doip pue moT o8 Api~x1 TINT 002 ST OJTI 8Y1 JT oI8Y // ‘HU.GT = 2UNOD X1 931Lq

ut8eq
(3esex7ys) JT
ut8eq
(1ese1"ys o8pesod 1o {To o8pesod) p shemre

//

z0qdtaosep aya o1Tam doe 1Ty oM FT 08 oM Se OFTJ oYl 01 WAY]J 91TIM pue so1hq oYl unod //

pus
‘duregsewtq => duregseuwrta
osTa
foseq oW} + SWI3 3USIIND => durejysewrsy
(1eyoedyorrels HUTSTISE) JT oSTe
‘0 => dwejseuwty
(3ese17ys) JT
ut8eq
(19se1"ys o8pasod 1o {To o8pesod) p shemre

“(
(81sTTIny 3sowre) TNy 3soure’
¢(oyTy 3eyoed pesn) mpesn*

¢(ejep~edinos~ose) b-

‘() TImME”

‘() Laduwe-

“(oyrz 2exoed am) baxam-
‘(3es8ITYS) ITOS"

“(oyrr 2eoed px) baipx-
¢(e3ep UIS ISe) B3RP

“(AT2) ¥HooT2"

) 3sur-pdIdaexoed 04Id3eNded

£79¢T : 04.T & (T < pesn~zoadtiosep - [1G) = TTnFasoure roadriosep uStsse

‘TTngasoute~103dTIosep oITA
‘posn~103dTIoSep oITA
“(
(pesn~103dTIOSSp) Mpesnim*
¢(TInF I0adTIosep) TINFIM*
¢(£adwe~zoadraosep) Aadwepx-
¢ (ano~zo3dtaosep) b-
“(osep ysnd) bexam-
“(AT2) ATPIM”
“(osep~dod) beipx-
‘(AT°) ATIOPI”
“(ut~xo3dtTIosep) ®ejep-
‘(3esex"ys) Iroe’
) 3suT-Q4I14103dTI0s8Qq 0414r03dTIOSBQ

pus
£0q(T => PITeAT®DINOS OSE

osTo

€19, => PITeAT®DINOS OSE

(Apeex~eoinosTose 3 (40E"S | HIWS | dOSTS)) IT °sTe
£04,T => pPTITeRA”®dINOS~OS®E

(1esexTys) 3T

ut8eq

(3esa1"ys o8pasod 1o ¥Td o8pesod) p shemte

//
114 pITRA //

pus
pus
fqunoo~e3£q => 3unoos~o3fq
£0d.T => oFTy 3exded px
ut8eq
osTo
pus
oq juoM ejep OJTF UT onfeA 3sel pesal // ¢1q.] => 0FTy 3exoed px
s93£q oY1 JO 1S8I Y3 SAOWSI OS SUOP dI8M // £0U,GT => 3unoo~e3hq
ut8eq
Amvmwhloohsomlomm % dod"S) T esTe
pus
19,7 => oFry-3exoed px
‘PY.GT - unoo-e3hq => junoo-e3hq
ut8eq
(Apeex~eoInosTose 3 (d0S”S | DAYS)) IT OSTO
pus
£09,T => oFry 3eyoed px
¢ [2g:9¥]ano~10adTIosep => 3unod~e1Lq
ut8eq

49

qadep

fOTPT UT => 83B3S”I8IX

osT®
‘SurtuunITUT => 93elSTISFX
aTnpoupus A%ﬁmwﬂlxnﬂmlﬂmm] uw&ummwouhmumlxnﬂmlﬁmmv It
teTpT UT
UOT1OUNIPUS (1e31S”I9IX) @SEd
pus osTo
pus foTPT UT => 91B1S”I9JX
f{1<<enyea = enyea (3es817Ys) JT
ut8eq ut8eq
(T+z801=¢30T f0<entea {0=g30T) I0F (3esex"ys o8pesod 1o 1o e3pesod)p sfhente
ut8eq
‘ontea [0:1g] andut
¢gSoT uotr3oung 0.7 : 14,1 ¢ (Suruuni ur==93e3s” 193X) = ssoxfoxd ur udrsse
Lzowsw zogeuwered jndut ey3z IoF ()zS0T oy3 Surjeno{ed IoF uorlduUN//
pus

£1q.T => Apesa~yurs”ise

pus osTo

woyq Suaddoppeirels o3 oaey oq Surod oxem oS oxey jo¥oed STOYM ISYIOUE PTOY JUED oM // £0q.T => Apesa~yurs~ise

£oTPT UPYS>[ENYISTIOIXT oY3 pue Jutuunt jou oxem JT// ((TTnFasowre zozdraosep | SrsTIny 3soure) 3 ssexfoxd ur.) JT oSTO
1aTnegep £0d.T => Apesx yurs~tse

(SuTUUNITUT => ©3e3STISIX (3ese17ys) JT
osTe ut8eq

fOTPT UT => ©3BIS”ISFX (1ese1"ys o8pesod 1o N[> o8pesod) p sfemre

(Apesa~qurs~ise p jexdoedjopus~HuUTsTTISE) IT
:SutuunIiTuT £09.T : TA.T & ((ssexSoxad ur | jexoedjopus yuTS TSR

20

Appendix B
Nios II Soft Processor C Code

o1

uteu pus// {
{0 uxnjax
{
¢ (g8/zardwen ‘zqadwes ¢ ,u\ su py = x%x0 :03 TU3IF 30§,)Frurad
£ (g8/1q3dwes yqidwes‘ u\ su py = x%x0 :03 QUIA 3°S,)Fyurad
¢ (dSYE™ T~ ISNI ™ dIHONOYATANVHLIANOVd) osegewt 108 = gqadweq
¢ (ASVE~ISNI~dTHONOYATANVHLIANOV) osegewt 308 = 1qadwes
(43 °3SVET T LSNI ™ dIHONOYITANVHLIENOV]) osegouties
‘(93 °3Syd”LSNI™dIHONOYITANVHLIINOV) osegauries
‘eg¥q3 = q3
£(A3%° WPYu) FuUROS
f(u :su ut Keeq swrl xejud,)Fautad
syooTo mey e Kerep// {} (++T {44440000%¥0 > T f0=T)Iog
} (p)etrTum
‘0 =q3
£ (FFTIFTOOX0 ‘ISYE T~ LSNI~dIHONOYATANYHLAYOYJ) 9SEgoUTL318S
Ketep suwoz// ¢ (FFFFFTX0°‘ASVE LSNI™dIHONOHATANVHLIANOYJ)osegeuries
£()3tutr
fzqadwey ‘1qidwes‘qy jur peulrsun
¢T qur peuStsun

}

(pTOA)UTRW QUT

3TuT pus// {
FTpusH#
£(WU\ wkkkkkkk T <== (0 IOPURH 3°8%0Rd,)FIurid
S(WU\ *kkkkkkx 0 <== [ISPURH 38%o®d,)Fautad
NOONFAd FOPFTH#

¢ (SY4TESL) 9 TqRUAS TWOIJORK OS]
¢ (ASY4~0ISL1) @ TARUAS TWOIJORK OS]
£(1 ‘000T(3ut peudrsun))yureindtyuopdzgess
¢ (o7 eappeoew THIH ‘USTY eIppeoew THIF‘ASVE THSL)eInSTFuo)OR|es]
¢ (MoT eIppeoRW OHIH ‘USTY eIppeoew OHLI ‘dASVE 0HSL)eInSTFuo)ORRes]
¢ (ASVd TISL) 39SeYdRHesT
¢ (ASYE™0dSL) 39SeYdRHesT
f(ISVE~LSNI™dTHONOHITANVHIANOVd)3eseyreTpueHiexoed
£(gSVYE™T LSNI dIHONOYATANVHIIIOVA)I1eseyIeTpueqiexoed
£GT20000%0 = YSTY BIpPPeORW THLY IUT poudrsun
wo3sno// {GGYYEEZTXO = MOT eIppedew THLY 3UT peudrsun
£GQPY0000%0 = YSTY BIPPEORW OHLY IUT peudrsun
wo3snd // f00€TPSL0X0 = MOT eippedew QHIF 2UT pauStsun

}

(PTOA)3TUT PTOA

{
‘{duey uinjex
£ (ASVEAWIL DOYATIANYH LAMOVd ¢ SSeIppe”aseq) [DFYIAZE~q¥0I = dwea
¢ (ssexppe~eseq‘,xy,)Frutad //
¢dweg jutr peuStsun
¥
(sseIppe eseq quT peudTsun)osegewr]1ad JuT paudTsun
{
¢ (eseqewty’ HSYGAWIL DOUATANYH LANOVd ‘SSeIppe”oseq) DHYIAZE ¥MOI
¢ (oseqouwty ‘dweq ¢, u\x% 07 SurSueys xy :sem - oseg our] Surqesey,)yiutad //
¢ (ASVEAWIL DOHATANYH LAMOVd ‘ SSeappe”oseq) [DAUIAZE QYOI = dwes
¢ (Ssexppe~oseq‘,xY,) Fautad //
¢duwey qutr peuStsun

}

(oseqauwry UT poulTSUN ‘sSsoIppe oseq JUT PoUITSUN)OSegeuT]lds PToA

{
¢ (dweq TOULNOD DOMITANVH LANOV SSeIppe~eseq) DANIAZE HMOI
£10000000%0 | dwey = dwey
¢ (‘T0YLNOD OOYITANVH LA¥DVd ‘ SSeIppe~esedq) [DIUIAZE QUOI = duwel
¢duey jur peulrTsun

}

(sseippe~eseq JuT peudrsun)ieseyisTpueHqiexoed proa

{
¢ (dweq ¢,u\ xY :s3exoed pesn,)Frutrad
£ (04I41F¥0YdQISN DOYITANVH LEMOVd ‘SSeIppe eseq) DIUIAZE QYOI = dwes
¢duweg qur peuStsun

} (ssaappe~eseq jurl paudTsun)sisisTZeyrsTpueyiaydoeddump proa

{

£ ((DIANOD QWO ESL ‘SSeIppeeseq)LDAYIATE QUOI‘.U\X) enTep STFuo) pwemmo),)Fautxd
£ (4 U\FJO :OPON Ssnorostmwoid,)Fiutid

}

EER)

{
£ ((DIANOD QWO ESL ‘SSoIppeeseq)lDAYIATE QHOI‘,U\X) onTep STFuo) pweumo),)Frutid
£(,U\uUQ :epoj SnorosTwold,)Fautad

}

(8%0 B (DIANOD GWD ESL ‘Sseippe~eseq)lDHYIAZE Q¥OI)FT

‘yojem 3ur pauStsun

}

(sseappe~eseq jur psudrsun)sisistdeyireureysrgdunp proa

{//

£ (yoyen®,u\xyxo :Jgdad,)Frutad //

¢ (4399 YATANYH LANOYd ‘ SSeIppe”oseq) 1DFYIACE QYOI = Ud3em //

¢ (yogem* ,u\x¥%xQ :ojul,)JFaurad //

¢ (0ANI™¥ATANYH LAYOVd ‘ SSoIppe~oseq) 1DF¥IACE QYOI = Ud3em //

¢ (yorem* ,u\x%xQ :snaeag,)Faurad //

¢ (SNLYLS ¥HTANYH LANOYd ‘ SSeIppe~oseq) IDFYIAZE QYOI = Ud3em //
f(yoyen‘ ,u\xyx0 “Houpzooszunﬂhm //

¢ ('TOYLNOD "HATANVH ™ LANOVd ‘ SseIppe~oseq) IDIYIACE qY0I = Ud3en //
fyojem 3utr peuStsun //

Y/

(ssexppe~eseq jur peultsun)sieistSeyrsTpueyrexdeddunp proa//

FTpueh
, :8nqeq,) Faurad) (s81e)HNGAq SUTFOPH
NODNEAq FOPFTH#

(s8xe zjutad

T NODNGAQ SUTFop#

WU tdeyd, epnyout#

JU°OT, epniouT#

2O TOI3U0D~9sS], OPNTOUTH#
WU OTP3S, opnouT#

WU 0TPIsTaTe/shs, epnrouT#
WU° JopToIeMpIRY, OPNTOUT#
WU ueyshs, epnyouT#

52

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Ethernet Delay
	Delay Effects
	Delay Device Description

	Motivation
	Key Contributions

	Applicable Standards
	OSI Model
	802.3 Ethernet Standard
	CSMA/CD and background
	Physical Layer, Attachment and Auto Negotiation
	Media Access and Logical Link Control

	Avalon Interface
	Avalon Memory Mapped Master Interface
	Avalon Memory Mapped Slave Interface
	Avalon Streaming Sink Interface
	Avalon Streaming Source Interface

	Summary

	Delay Mechanics
	Delay
	Throughput
	Link Level
	Protocol Level

	Summary

	Delay Device
	System Overview
	Hardware
	FPGA Core
	Software

	FPGA Resource Use
	Packet Handler

	Results
	Theoretical Throughput
	Device Connectivity and Use
	Hardware
	Software

	Delay Performance

	Conclusion and Future Work
	Bibliography
	Packet Hander Verilog Code
	Nios II Soft Processor C Code

