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Abstract 

The Neolithic ceramic assemblage from the multi-period coastal settlement at Pool on the 

island of Sanday, Orkney is unique because it stratigraphically spans both the earlier round-

based (including possible Unstan bowls) and later flat-based (‘Grooved Ware’) traditions. 

High-temperature thermoluminescence (HTTL) analysis objectively demonstrates that 

ceramics from the earliest Neolithic layers have been consistently better fired compared to 

examples from later layers. We suggest two interpretations of these data: either firing 

technology declined with changing social structures and/or adoption of a different ceramic 

tradition or that there was greater pressure on fuel resource and management in the later 

Neolithic. Paleoenvironmental and chronological evidence indicate climatic deterioration in 

the later Neolithic, which adds further support to an interpretation of a poorer fuel resource 

at that time. In addition to studies of the HTTL signal, analysis of the ambient temperature 

modification of the TL signal has potential to support or evaluate dating evidence, and is 

readily applicable to optically stimulated luminescence (OSL) age data. 
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Highlights 

 

>We have studied high-temperature thermoluminescence of Neolithic ceramics from Pool 

>Ceramics from earliest Neolithic are consistently better fired than later examples 

>Reduced thermal exposure correlates with poorer fuel resources and palaeoclimate 

>Ambient temperature TL identifies stratigraphic relationships in luminescence ages 

 

Keywords: Orkney Neolithic; Ceramics; High-Temperature Thermoluminescence; Thermal 

Exposure; Firing Technology; Fuel Resources; Palaeoclimate 

 

 

 

1. Introduction 

 

The multi-period coastal settlement at Pool on the island of Sanday in Orkney (Fig. 1) was 

investigated seasonally between 1983 and 1988 (Hunter and MacSween, 1991; Hunter, 

2000; Hunter et al., 2007). The Neolithic deposits formed a large mound covering an area 

~75 m in diameter with a maximum depth of ~1.5 m. The mound was created by gradual 

deposition of hearth debris and associated midden, pottery and faunal/floral material, 

producing a number of tipping layers reddish-brown or darker in colour. Tipping, akin to 

dumping settlement debris, was a deliberate activity that may have had a functional purpose 

(e.g. structural or thermal) aside from convenience; the tipping layers have a greater 
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concentration in association with the mound core, and possess a variety of depositional 

angles (Hunter et al., 2007). Fourteen Neolithic buildings were identified in the excavation 

area positioned throughout the depositional sequence; above, surrounded by and below the 

tip-like deposits. Of main interest for this study is the ceramic sequence, which at Pool is 

unique because it stratigraphically spans both the round-based (including possible Unstan 

bowls) and flat-based (Grooved Ware type) traditions. The site phasing, which generally 

refers to a sequence of temporally and spatially restricted archaeological units defined by 

specific artefacts or other cultural traits, was developed for the Neolithic layers on 

alterations in the dynamics of deposition (Hunter et al., 2007). The ceramics have been 

assigned to three main phases (Table 1), and with further formation and chronological 

divisions comprise 8 sub-phases (1.1, 1.2, 2.1, 2.2, 2.3a, 2.3b, 3.1 and 3.2). 

 

 

Figure 1. Location of the Neolithic settlement at Pool on Sanday, one of the seventy or so Orkney islands. 
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By exploiting the thermal exposure dependence of thermoluminescence (TL) characteristics 

of feldspar minerals (e.g., Spencer and Sanderson, 1994; Spencer, 1996), we sought to 

ascertain if we could identify different thermometric properties from ceramics from early 

phases compared with those from later phases. We were interested to determine whether 

change in Neolithic ceramic tradition was accompanied by change in firing technology, and 

also if we could identify ambient temperature changes that correlated with TL chronology. 

 

 

 

Forty-eight samples with individual finds codes and context numbers, the majority 

comprising single pottery sherds excavated from layers identified with the Pool Neolithic, 

were submitted for TL dating at the Scottish Universities Environmental Research Centre 

(SUERC) luminescence laboratories. Multiple samples were submitted from each of 6 sub-

phases (1.1, 2.1, 2.2, 2.3a, 2.3b and 3.1, comprising 8, 10, 10, 10, 5 and 5 sherds, 

respectively). By dating two different alkali feldspar mineral separates from selected 

samples the TL dataset comprises 60 dates (10 from each phase) from the Neolithic layers, 

whose mean TL ages have been previously discussed (Hunter, 2000; Hunter et al., 2007). In 

this work, TL thermometric properties of alkali feldspar mineral separates from 30 of the 
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Pool Neolithic samples selected from the SUERC laboratory archive of pre-prepared 

minerals were investigated. Of these samples, 27 had TL dates broadly consistent with, and 

indeed defining the chronology of site phasing, which divides broadly into Early and Late 

Neolithic periods. The remaining 3 come from a transitional layer containing both Early 

and Late Neolithic material (see Section 3 for details). For completeness, in the following 

section we provide details of the TL dating procedures used in this early work from the 

SUERC laboratory, and results for samples from both Neolithic (48 sherd samples; 60 

dates) and Iron Age (10 sherd samples and fragments of 1 hearthstone; 15 dates) layers 

from Pool. 

 

 

2. TL chronology 

 

TL dates were measured on alkali feldspars separated from the sherds using procedures 

adapted from those developed for burned stones (e.g. Mejdahl and Winther-Nielsen, 1982; 

Mejdahl, 1983, 1985; Sanderson et al., 1985, 1988). All procedures were carried out under 

low-intensity safe-lighting. The sherds were dried in a 50°C oven and a small portion of 

each sherd was retained to estimate saturated water content. The outer few mm of the 

remainder of each dried sherd was removed. The sherd was gently disaggregated and 

initially sieved to pass through a 500-μm mesh to minimise grain fracturing. The remainder 

was sieved into different grain size fractions. K-rich (2.51-2.58 gcm-3), Na-rich (2.58-2.62 

gcm-3) and plagioclase (2.62-2.74 gcm-3) feldspars were separated from selected grain size 

fractions using sodium polytungstate liquid of different densities and a centrifuge. All 
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feldspar fractions were treated with 10% HF for 10 min, followed by a 30 min HCl 

treatment, H2O and acetone washing and oven drying. 

 

Palaeodose (P) values were estimated using an equal-predose multiple-aliquot additive dose 

procedure (e.g. Sanderson et al., 1988). For each of 8 sample aliquots an incremental beta 

dose was added to the natural for first glow (n+β) TL, and then the same dose was 

administered in reverse order for second glow (β) TL, each disc having received the same 

total radiation dose (equal predose) before normalisation measurements and fading tests 

were conducted. Sixteen-hour preheating stages at 125-140°C prior to each TL readout 

stage were incorporated to minimise the presence of thermally unstable TL components, 

and prolonged fading tests over 2-3 month storage periods (following suggestions of 

Sanderson, 1988a). The 8 weighed aliquots (typically 5 mg) of each sample were mounted 

on thin (~0.25 mm) 1-cm-diameter stainless-steel discs using silicon grease for these 

determinations. Samples were irradiated with a 4-cm2 active area 90Sr/90Y source, similar to 

that described by Sanderson and Chambers (1985), configured to produce a uniform 

radiation field in the sample plane. TL glow curves were measured from ambient to 500°at 

5°Cs-1 using a SUERC TL reader. Irradiation and readout were performed using laborious 

manual procedures at this stage in the laboratory development (automated readout and 

irradiation facilities were also developed later on). 

 

The beta dose rate was assessed using thick source beta counting (TSBC) (Sanderson, 

1988b) on a portion of dried bulk sample, and a subsample of several 100 mg taken and 

finely powdered for neutron activation analysis (NAA) of U, Th and K, using the former 
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Scottish Universities Research Reactor Centre (SURRC) 300 kW UTR research reactor. 

Total sample dose-rates were calculated by combining estimated internal K dose rate 

contributions (based on typical assumed concentrations for the appropriate density fraction 

following the analyses reported by Sanderson et al., 1988, combined with absorbed dose 

fractions after Mejdahl, 1979) with effective matrix beta dose rates based on combining 

TSBC and NAA results (taking account of estimated water contents and absorbed dose 

fractions), external gamma dose-rates based on site averages from in-situ gamma 

spectrometry measurements and cosmic dose-rates assessed from geomagnetic latitude, 

altitude and burial depth below ground surface. 

 

Details of excavated sherds analysed and a summary of TL dating results are given in an 

appendix (Table A.1). Typical level of precision in equivalent dose (ED) estimates was 

about 6%. Average fading quotient was 0.96±0.02, representing the mean ratio of 

sensitization-independent stored-to-prompt signals (after Sanderson, 1988) for the whole 

decay period. The log cycles of time over which fading data were registered were between 

5 to 7 orders of magnitude (in seconds). This equates to mean fading rates of 1-2% per 

decade registered over the 5th to 7th decade of time following irradiation and evaluated over 

plateau temperatures. Alexander (2007) found similar levels of fading from a range of 

geological feldspars subsequent to comparable prolonged preheating regimes to those 

reported here. 
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3. High-temperature thermoluminescence (HTTL): background, samples and 

measurement 

 

The existence of deep traps which might give rise to high-temperature TL (HTTL) signals 

above the typical 500°C range associated with ceramic TL can be inferred from prior 

HTTL studies of deep traps in dosimetry materials such as CaF2 (e.g., El-Kolaly et al., 

1980; Ganguly and Kaul, 1984; Sunta, 1979) and studies of charge phototransferred from 

deep TL traps (commonly known as phototransferred TL or PTTL) of feldspars, zircon, 

fluorapatite, quartz and CaF2 using prior UV light exposure (e.g., Bailiff, 1976; Bowman, 

1979; Sunta, 1979). Part of the motivation behind PTTL studies was the attempt to isolate a 

stable signal to overcome anomalous fading (Wintle, 1973, 1977). Valladas and co-workers 

studied the same problem by investigating deep traps of the HTTL signal in feldspars (Brou 

and Valladas, 1975; Guérin and Valladas, 1980; Valladas et al., 1979) and successfully 

dated HTTL of labradorite from lava samples, similar to material that Wintle (1973) first 

observed anomalous fading. Evidence that deep traps giving rise to HTTL in feldspars were 

potentially more widespread than had hitherto been demonstrated was also recognised in 

earlier TL dating programs of vitrified forts (Sanderson et al., 1985, 1988) and in the 

ceramic dating work described in Section 2. This has now been confirmed for a wide range 

of samples (Spencer, 1996) once a specially adapted TL reader (described below) was 

constructed. 
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Of the 30 sherds we investigated in this study, 18 were assigned to ‘Early Neolithic’ Phases 

(1.1, 2.1 and 2.2) and 12 from ‘Late Neolithic’ Phases (2.3a, 2.3b and 3.1) (Table 2). TL 

dates for samples from Phases 1.1 and 2.1 range from 2930 to 4260 BC and 3370 to 4080 

BC, respectively. In Phase 2.2, TL results appear to be bimodal with 4 samples ranging 

from 3310 to 3950 BC and the remaining 3 considerably younger from 1700 to 2100 BC. In 

Phases 2.3a, 2.3b and 3.1, results are broadly consistent and range from 1840 to 2370 BC, 

2020 to 2110 BC and 1870 to 2170 BC, respectively. Of these 30 samples, 27 were Na-rich 

feldspar, 2 were K-rich feldspar (lab. numbers SUTL78a and SUTL126) and the final 

sample was plagioclase feldspar (SUTL50). Grain sizes were all 90-125 µm. The feldspar 

minerals selected partly depended on the available pre-prepared material remaining in the 

laboratory archive after TL dating procedures had been completed. 

 

In a similar fashion to disc preparation described in Section 2 above, ~5 mg of each sample 

was mounted on stainless-steel sample discs using silicon grease. High-temperature TL 

(HTTL) glow-curves were measured in a linear fashion from ambient to 700°C at 5°Cs-1 

using a specially constructed SUERC TL reader with light emission detected using a Thorn 

EMI 9883QB photomultiplier tube with a UV detection window (3 mm Corning 7-51 and 3 

mm Schott BG39) to reduce black-body emission while maintaining adequate signal 

intensity (Spencer and Sanderson, 1994; Spencer, 1996). Firstly, natural HTTL was 

measured (Fig. 2a). Remaining on their stainless-steel disc mounts, the feldspar samples 

were then given a gamma radiation dose of ~200 Gy from a 60Co source (dose-rate ~1 

kGyh-1), annealed for 30 minutes at 200°C in a muffle furnace on a temperature-sensed 
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copper plate, and allowed to cool in the laboratory. The laboratory induced HTTL was then 

measured (Fig. 2b). 

 

Figure 2. HTTL glow-curves from a 90-125 µm plagioclase feldspar extracted from ceramic sample 
SUTL50. (a) Net-natural glow-curve (background subtracted) with temperature parameters Tmax and T1/2 
shown on the first peak of the archaeological HTTL and on the remnant ‘geological’ HTTL peak; (b) Net-
laboratory glow-curve measured subsequent to ~200 Gy gamma dose and 200°C anneal for 30 min. Tmax and 
T1/2 shown on the annealed laboratory HTTL peak; (c) Natural HTTL divided by laboratory HTTL. Rapid rise 
in ratio after ~435°C confirms presence of remnant ‘geological’ HTTL; (d) First derivative of natural HTTL 
glow-curve. T1/2 and Tmax parameters identified from (a) are shown to approximate to maxima and minima 
positions, respectively. 
 

 

4. HTTL thermometry analysis 

 

The large peak above ~450°C in Figure 2a we interpret as the remnant ‘geological’ HTTL 

that was not removed during firing of the ceramic in the Neolithic. This interpretation is 

confirmed with a plateau plot (cf. Aitken, 1985) of the ratio of natural HTTL (Fig. 2a) to 

laboratory HTTL (Fig. 2b). This result is shown in Figure 2c; the rapid increase in values 
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after ~435°C (note log scale) confirms presence of a comparatively large quantity of stored 

charge in the feldspar. For a TL temperature of >500°C the ratio rises above unity, 

representing radiation doses in excess of the ~200 Gy gamma laboratory dose. Since the 

palaeodose (P) we measure from TL from Neolithic samples ranges from ~8 to 25 Gy 

(Table A.1), it follows that the signal above ~435°C represents accumulation due to 

radiation exposure over a time-scale far exceeding the archaeological age. An investigation 

of dose saturation level and daylight bleaching characteristics of the HTTL peaks was not 

part of the aims of this study, and it remains likely that the HTTL stored dose is connected 

to the depositional age of sediments at some earlier time in the Quaternary period. For the 

purposes of this work, and following terminology of Aitken (1985) and his preceding work 

on TL dating we refer to this HTTL signal as remnant ‘geological’ TL. Below ~435ºC, in 

this example, is the archaeological TL, which has developed since removal of the previous 

signal by ancient firing. 

 

In previous studies (Spencer and Sanderson, 1994; Spencer, 1996) TL glow-curves from 

feldspar have been shown to be a composite of many thermodynamic components from 

continuously distributed trapping sites. The initial rise of the lowest glow-temperature peak 

following irradiation and thermal treatment can supply a quantitative indicator of thermal 

exposure, which relates to a combination of temperature and duration variables (Spencer 

and Sanderson, 1994; Spencer, 1996). Similarly for naturally accumulated signals where 

onset of a TL ‘plateau’ relates to onset of stability for charge retention over the 

accumulation period in question. Thus the lowest glow-temperature peak from 

archaeological TL responds to ambient thermal exposure (also combining duration and 



Spencer and Sanderson: HTTL archaeothermometry of Neolithic ceramics from Pool 

 - 12 -

mean thermal history) of the environment in which the archaeological signal built up, 

whereas the lowest temperature peak from remnant ‘geological’ TL records thermal 

exposure due to the ceramic firing process. Both of these features are of archaeological and 

environmental interest. To analyse archaeological and remnant ‘geological’ peaks from 

natural TL glow-curves from all the Pool feldspars, we recorded glow-temperatures at the 

peak maximum (Tmax) and at half the peak maximum on the initial rise (T1/2). These glow-

temperature parameters are shown on Figure 2a for the first archaeological peak and for the 

first remnant ‘geological’ peak. The same glow-temperature parameters were also 

measured from the annealed peak of the laboratory TL curves (Fig. 2b). Although a detailed 

anomalous fading study was outside the scope of this work, this is not believed to have a 

significant influence on the preserved thermal history information in the glow curve shape. 

In the dating work described in Section 2 and studies elsewhere (e.g. Aitken, 1985; 

Sanderson, 1988a) fading tests do not show strong dependence on glow peak position, other 

than due to thermal fading losses, which are the dominant effect. 

 

The presence of remnant ‘geological’ peaks were confirmed using a plateau plot in a 

similar manner to Figure 2c. For a few samples the position of Tmax or T1/2 on the remnant 

‘geological’ peak was obscured by other peaks in the continuum or was uncertain due to 

signal noise. Although the position of T1/2 is not a true mathematical inflection, if the HTTL 

data is differentiated sufficiently accurate T1/2 and Tmax data may be obtained from resultant 

maxima and minima, respectively (e.g. Fig. 2d). Alternatively, a stripping procedure was 

utilised; the laboratory TL was scaled and subtracted from natural TL and temperature 

parameters were determined on resultant stripped glow curve data. 
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5. Results 

 

The Tmax and T1/2 data are summarised in Table 2 and Figure 3. The data overall show very 

clear evidence that ceramics from the lowest phase have been consistently better fired than 

those tested from latter phases. Clearly there is a greater variation in temperature values 

from remnant ‘geological’ TL (Figs. 3c and 3d) compared to archaeological (Figs. 3a. and 

3b) and laboratory (Figs. 3e and 3f) TL. For 5 of the 6 samples from Phase 1.1 (earliest 

Neolithic) evidence of natural HTTL peaks >500°C is absent, whereas induced laboratory 

HTTL is observed up to ~600-700°C. This implies these samples have natural HTTL above 

detection limits (i.e. Tmax>700°C and T1/2>~650°C; Figs. 3c and 3d; Table 2). The 

remaining samples have significantly lower values and, apart from sample SUTL82 from 

Phase 2.1 (Tmax = 659°C; T1/2 = 616°C), are clustered between Tmax of 517-584°C and T1/2 
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of 477-544°C. Within these clusters, ceramics from Phase 2.3a have the lowest set of 

values. For 4 out of the 30 samples (SUTL11, 29, 32 and 52) temperature parameters could 

not be determined from remnant ‘geological’ peaks, although plateau plots confirmed 

presence of remnant ‘geological’ TL in these samples. 

 

 
Figure 3. Histograms of Tmax and T1/2 parameters from each HTTL glow-curve measured (a) Archaeological 
Tmax; (b) Archaeological T1/2; (c) Remnant ‘geological’ Tmax; (d) Remnant ‘geological’ T1/2; (e) Tmax from 
annealed laboratory HTTL; (f) T1/2 from annealed laboratory HTTL. All histogram bins have 10ºC intervals.  
 

The tighter distribution in T1/2 compared with Tmax for both archaeological and laboratory 

TL data in Figure 3 clearly demonstrates that the T1/2 parameter is a more precise 

measurement than Tmax, which is expected since the rate of change of the glow curve is 

highest at this part of the rising signal (e.g. Fig. 2d), whereas peak maxima can be rather 

broad and indistinct. The data shown in Figures 3b and 3f is gratifying consistent, since 

although instrumental heating ramp reproducibility is very good (~±0.5°C at 700°C), the 

extent to which sample temperature follows the instrument depends on the consistency of 
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thermal contact between sample, disc and heater, which is harder to assess. These 

observations confirm the validity of comparing temperature parameters. 

 
Figure 4. Graphical representation of mean T1/2 data using probability density function plots. (a) 
Archaeological; (b) Remnant ‘geological’; (c) Laboratory. Uncertainties in mean are single standard errors 
(σn-1/n). 
 

Examining mean T1/2 data, the results for the remnant ‘geological’ TL (Fig. 4b) show a 

decreasing trend from Phase 1.1 to 2.3a, increasing again in Phase 2.3b and 3.1. Whereas 
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remnant geological T1/2 is dependent on thermal exposure of ceramic firing, archaeological 

T1/2 is a function of temperature of burial environment and burial time or age (Section 6.2). 

The results for archaeological TL (Fig. 4a) show a subtle, but identifiable, decrease from 

Phase 1.1 to 2.3b, but rising again in Phase 3.1. Furthermore, if T1/2 values for the 3 

samples with ‘young’ ages are removed from the Phase 2.2 mean T1/2 archaeological data, 

Phase 2.2 separates from 2.1 and the decreasing trend is maintained. The mean T1/2 of the 3 

samples with ‘young’ ages is coincident with Phase 3.1. For laboratory TL, the reason for 

departure from consistent mean T1/2 data in Phase 2.2 (Fig. 4c) is unclear. There is no 

discernible relationship between position of the discs on the copper plate and T1/2 values, 

which indicates the temperature across the plate was uniform during the heating cycle. 

 

6. Discussion 

 

6.1 Remnant ‘geological’ T1/2: Decline in firing technology or poorer fuel resources? 

 

In the samples studied here it is not possible to say from style, fabric, decoration, dating 

evidence or glow-temperature parameters whether any of the ceramics from a particular 

phase were fired in the same simple bonfire or kiln. However, mean T1/2 results from 

remnant ‘geological’ HTTL (Fig. 4b) shows distinct variation between phases and low 

scatter within phases, and therefore indicate use of similar firing technologies and fuel 

management within phases, which differ from phase-to-phase. Furthermore, the distinct 

variation and low scatter in T1/2 indicate reasonably uniform thermal exposure over the 

ceramic during firing, rather than a variable thermal exposure across the ceramic surface. A 
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uniform thermal exposure implies that it is valid to compare T1/2 values from different 

phases in terms of a relative analysis. 

 

The absence of remnant ‘geological’ HTTL for 5 out of 6 samples from Phase 1.1 (Fig. 3c 

and 3d) implies that ceramics from the earliest Neolithic were subjected to a far higher 

thermal exposure than ceramics from later phases. From Phase 1.1 there is an observable 

trend to lower thermal exposures until Phase 2.3b and 3.1 (Fig. 4b). Here there is a rise in 

values once again, although sample size for 2.3b and 3.1 is small and scatter relatively 

large. These results suggest that ceramic firing technology at Pool was more advanced for 

the earlier ‘Unstan’ tradition than the later ‘Grooved Ware’ tradition where we see a 

progressive decline, and there is possible indication of a variation in firing technology 

within the ‘Grooved Ware’ assemblages themselves. The possibility of the ‘Grooved Ware’ 

assemblages being brought to Pool from elsewhere (or vice versa for ‘Unstan’ material) 

may be dismissed because, although there is no physical evidence on site in terms of ‘kilns’ 

or wasters etc (Hunter, pers. comm.), MacSween identified that local clay sources were 

used throughout the Pool Neolithic (MacSween, 1990, 2007). Compared to the 

thermometry observations described here, there is no indication of a significant change in 

firing technology reflected in analyses of vessel form, decoration or temper (MacSween, 

2007). 

 

Decline in firing technology may accompany changes in society or cultural changes that 

develop in pace with adoption of a new ceramic tradition. At Pool the structural evidence 

indicates major changes taking place with Grooved Ware culture including buildings with 
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specific work or craft functions (e.g. Structure 4, Phase 2), skillfully constructed 

architectural features such as ‘casing’ walls, and greater complexity in design, construction 

and function (e.g. Structure 8, Phase 3; Structure 14, Phase 3.2) (Hunter et al., 2007). These 

major structural changes were occurring in the context of a change to a widespread ceramic 

tradition with commonality of form and decoration of the broader later Neolithic 

community in Britain and within Ireland (Hunter et al., 2007). Similar contemporary 

structural evidence has been documented at Grooved Ware sites on the Orkney mainland 

e.g. at Skara Brae (Childe, 1931) and most recently at Barnhouse (Richards, 2005). At 

Barnhouse, changes in pottery decoration techniques, construction and use/disuse of 

monumental architecture, shifting consumption practices, and changes in house architecture 

and nature of settlement are all used to argue for a more inclusive form of social 

community by the later phases of the Later Neolithic (Jones 2002; Richards, 2005). The 

decline in firing technology at Pool may be a reflection of a change in emphasis from 

smaller and more basic social structures in the earlier Neolithic, utilising the finer craft of 

the individual potter, to a larger more inclusive settlement community in the later Neolithic 

at the expense of a poorer mass-produced ceramic product. 

 

Alternatively, T1/2 results may be a reflection of available fuel resource from the Early to 

Late Neolithic at Pool. Similar firing methods may have been used, with a consistent 

duration of firing, but fuel resource may have changed or varied in abundance due to 

climatic factors, external aggression or a change of fuel due to exhaustion of nearby 

resources from over-foraging. Paleo-environmental evidence suggests colder temperatures 

by c. 3800 BC (Davidson and Jones, 1993), accompanied by a replacement of birch-hazel 
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woodland, willow, ferns and tall herbs with more sparse open vegetation, higher wind 

speeds and wetter weather (Keatinge and Dickson, 1979). Aeolian sand layers covered the 

entire settlement at Pool on two separate occasions in the Neolithic (Hunter and MacSween, 

1991; Hunter, 2000; Hunter et al., 2007). The lower of these, between Phases 2.1 and 2.2, is 

bracketed with TL dates to between 3889±303 BC (Phase 2.1; weighted mean of SUTL 

samples 75a, 78a, 79, 82, 83) and 3606±282 BC (Phase 2.2; weighted mean of SUTL 

samples 26, 27, 30, 35), giving direct evidence of poorer weather conditions at Pool, which 

correlate with paleo-environmental evidence. Strong winds and salt spray inhibit tree 

growth, and evidence from Maes Howe and Stenness (Caseldine and Whittingdon, 1976) 

suggests a treeless landscape by 2600 BC. It seems feasible therefore, that T1/2 values 

reflect a decline in availability of higher temperature fuel derived from driftwood (Hunter 

et al., 2007), woodland or scrub after the earliest Neolithic, and more reliance on resources 

such as peaty turf, dung or ‘loch peat’ (Hunter et al., 2007) in the Mid-Late Neolithic due to 

climatic factors. Although evidence of seaweed as a fuel was not observed in the excavated 

material from Pool, this has also been shown to be a good fuel (e.g. Jones and Brown, 

2000) and probable component of the ‘cramp’ samples analysed from Barnhouse (Stapleton 

and Bowman, 2005). A fuel resource interpretation is further supported by a stark 

stratigraphic contrast between black-to-red tipping deposits at Pool, believed to be due to a 

change in fuel source, which goes hand-in-hand with change from Unstan type to Grooved 

Ware pottery (Hunter et al., 2007). 

 

The maximum TL age for the upper sand layer at Pool is 2162±133 BC (Phase 2.3a; 

weighted mean of SUTL samples 11, 12, 13, 15, 16, 17, 20). This value is highly 



Spencer and Sanderson: HTTL archaeothermometry of Neolithic ceramics from Pool 

 - 20 -

concordant with an optically stimulated luminescence (OSL) date of 2210±135 BC 

(Sommerville et al., 2007) for a sand layer associated with the rich prehistoric landscape of 

Tofts Ness located on the northeast peninsula of Sanday (Fig. 1; Dockrill et al., 2007). The 

Tofts Ness sand blow event is potentially associated with site abandonment, and 

synchronous with Hekla 4 and with increased salinity records in Greenland ice cores 

(Sommerville et al., 2007). The presence of wind blown sands linked to climatic 

deterioration at Tofts Ness, and the relation of the two sites via sand markers and 

chronology, further supports a model of climatically driven fuel resource availability at 

Pool in the Mid-Late Neolithic. 

 

The general expression relating T1/2 to isothermal annealing temperature (Tanneal,°C) and 

annealing time (tanneal, s) on a standard K-feldspar is as follows: T1/2 = 

23.9log10(tanneal)+1.07(Tanneal); this relationship is derived from a constrained linear 

regression parallel line model analysis on data from a sequence of annealing experiments 

(Spencer and Sanderson, 1994; Spencer, 1996). For a 200°C anneal for 30 min (1800 s) the 

expression gives a T1/2 value of ~292°C, which we see from Figures 3f and 4c is very close 

to measured T1/2 values from laboratory TL. Uniform thermal exposure and, therefore, 

small thermal gradients are reasonable assumptions and we can therefore estimate firing 

temperatures. For example, assuming a firing duration of between 30 min and 6 h, the 

Phase 1.1 T1/2 data >650°C equates to firing temperatures between >535°C (30 min) and 

>511°C (6 h). Similarly, for Phase 2.3a (mean T1/2 = 488°C) the expression derives firing 

temperatures between 383°C (30 min) and 359°C (6 h). These values suggest, particularly 

in the later Phases, that the firing temperatures involved were very low, which further 
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supports a theory of poorer fuels and fuel availability for production of later flat-based and 

‘Grooved Ware’ ceramics at Pool. 

 

6.2 Archaeological T1/2: implications for luminescence dating 

 

The position of the first rise of the TL glow-curve is governed by a dynamic equilibrium 

between charge trapping in shallow traps and ambient temperature escape. Assuming a 

constant environmental dose-rate and burial temperature (or uniform burial temperature 

periodicity), the variable function is burial time or age (assuming time between firing and 

burial is negligible) and the longer the burial time (or older the sample) the higher the 

temperature of the first rise of the glow-curve. Analysis of archaeological T1/2 data phase-

by-phase using the t-test, suggests mean data from Figure 4a are not significantly different. 

This outcome is not improved by normalising to artificial TL, which indicates sample-

specific factors such as post-anneal glow-curve position, mineral purity, sample-disc 

geometry and mineral type, do not interplay. 

 

Minerals tested from Phase 3.1 are out of sequence with an increasing T1/2 with age model. 

The reason for this is uncertain. The different fabric utilised in Phase 3 (Hunter et al. 2007; 

Table 2) may be a contributory factor or perhaps activities that led to midden burning or 

more recent burning of turf for soil improvement (Hunter et al., 2007) may have produced 

the small offset in glow curve data for Phase 3.1 material. 
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Apart from Phase 3.1, mean T1/2 data do indicate a subtle decrease from the earliest to the 

latest phase and the general trend confirms both stratigraphic phasing and TL dating results. 

Furthermore, removing T1/2 data for the 3 ‘young’ dates from Phase 2.2 separates the mean 

T1/2 data for 2.2 from 2.1 and leaves them in the correct stratigraphic sequence. Although 

these observations are based on a small data set, and further detailed TL studies and 

assessment of additional factors such as variation of burial temperature with depth are 

required, this is a promising technique for adding additional support to, reassessing or 

dismissing, TL dates. Clearly, this technique has similar uses in OSL dating studies, since it 

only relies on ambient temperature modification. 

 

7. Conclusions 

 

Using an innovative high-temperature thermoluminescence approach we have objectively 

demonstrated that later Neolithic ceramics from Pool were very poorly fired. Furthermore 

the data overall show very clear evidence that pottery from the earliest Neolithic layers 

(possibly including examples of Unstan ware) has been consistently better fired compared 

to later layers (flat-based and grooved ware traditions). We suggest two interpretations of 

these data: either firing technology declined with changing social structures and/or adoption 

of a different ceramic tradition or that there was greater pressure on fuel resource and 

management in the later Neolithic. Paleoenvironmental and chronological evidence indicate 

climatic deterioration in the later Neolithic, which adds further support to an interpretation 

of a poorer fuel resource at that time. This latter interpretation implies that HTTL 

characteristics may be indirect monitors of changes in palaeoclimate. 
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Analysis of the ambient temperature modification of the TL signal indicates a trend that 

confirms the stratigraphic phasing of the site and TL dating results, and is a useful 

technique for both TL and OSL dating which has potential to support or evaluate dating 

evidence. 

 

This work adds to an increasing body of evidence of the existence of continuous trap 

distributions and deeper traps (above the typical 500°C TL range) in feldspars. These 

deeper traps may well have higher stability with luminescence signals less susceptible to 

anomalous fading. These are important observations at a time when the luminescence 

community is looking more and more at feldspar dating methods and ways to tackle signal 

instability. 

 

Finally, the measurements described here are relatively straightforward to produce with 

reproducible high-temperature heating circuitry and suitable optical filters. The sample size 

required is not particularly large and there is no requirement for in-situ environmental dose 

reconstruction for TL thermometry – so museum collections potentially could be used. 
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Appendix B. Supplementary material 

 Supplementary material associated with this article is a geospatial data file 

(mmc1.kmz) of the study area. This file can be opened using Google Earth. 
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