A problem in analysis

A. G. Ramm

How to cite this manuscript

If you make reference to this version of the manuscript, use the following information:

Published Version Information

Copyright: © Oldenbourg Wissenschaftsverlag, München 2012

Publisher’s Link: http://www.oldenbourg-link.com/loi/anly
A problem in analysis

A. G. Ramm

Received: Nov. 17, 2011

Summary: Assume that $D \subset \mathbb{R}^2$ is a bounded domain, diffeomorphic to a disc, star-shaped, with a $C^{1,\lambda}$ boundary C, $\lambda > 0$, which can be represented in polar coordinates as $r = f(\phi)$, where $f > 0$ is a smooth $2\pi-$periodic function. Let $\psi_{\pm n} := \psi_{\pm n}(\phi) := e^{\pm in\phi}f^n(\phi)$.

Theorem. Assume that
$$\int_0^{2\pi} \psi_{\pm n} f^2(\phi) d\phi = 0 \quad n = 1, 2, \ldots$$
Then $f = \text{const}$.

1 Formulation of the result

Assume that $D \subset \mathbb{R}^2$ is a bounded domain, diffeomorphic to a disc, star-shaped, with a $C^{1,\lambda}$ boundary C, $\lambda > 0$, which can be represented in polar coordinates as $r = f(\phi)$, where $f > 0$ is a smooth $2\pi-$periodic function. Let $\psi_{\pm n} := \psi_{\pm n}(\phi) := e^{\pm in\phi}f^n(\phi)$.

Theorem 1.1 Assume that
$$\int_0^{2\pi} \psi_{\pm n} f^2(\phi) d\phi = 0 \quad n = 1, 2, \ldots \quad (1.1)$$
Then $f = \text{const}$.

Remark 1.2 A similar result is true for $D \subset \mathbb{R}^m$, $m > 2$. Its proof is essentially the same.

Remark 1.3 The author raised the question, answered in Theorem 1.1, while thinking about the Pompeiu problem, see Chapter 11 in [1]. This question is of interest regardless of its relation to the Pompeiu problem since it gives an unusual result concerning completeness of a set of functions.

In Section 2 a proof is given.

AMS 2010 subject classification: 42C30
Key words and phrases: Completeness of a set of functions
2 Proof

Assumption (1.1) implies that

\[\int_D h_n dx = 0 \quad n = 1, 2, \ldots, \]

(2.1)

where \(h_n := r^{|n|} e^{\pm in\phi} \) are harmonic functions regular at the origin, \(x \in \mathbb{R}^2 \), \(x = (r, \phi), \)

where \((r, \phi)\) are polar coordinates. To see that (1.1) is equivalent to (2.1), write the left-hand side of (2.1) in polar coordinates, integrate over \(r \) from 0 to \(f(\phi) \), and get (1.1).

Let \(y \in \mathbb{R}^2 \), \(B_R \) be a ball (disc), centered at the origin and containing \(D \) inside, \(B_R' \) be its complement in \(\mathbb{R}^2 \), and \(G(x, y) = \frac{1}{2\pi} \ln \frac{1}{|x-y|} \) be the fundamental solution of the Laplace equation in \(\mathbb{R}^2 \). Let

\[r := |x|, \quad r' := |y|, \quad x \cdot y = rr' \cos \theta. \]

Then, for \(r > r' \), one has

\[2\pi G(x, y) = -\left[\ln r + \frac{1}{2} \left(\ln \left(1 - \frac{r'}{r} e^{i\theta} \right) + \ln \left(1 - \frac{r'}{r} e^{-i\theta} \right) \right) \right], \quad r > r'. \]

(2.2)

Expanding \(\ln(1 - \frac{r'}{r} e^{\pm i\theta}) \) in Taylor series, which is possible since \(\frac{r'}{r} < 1 \), one gets

\[\ln \left(1 - \frac{r'}{r} e^{i\theta} \right) = -\sum_{n=1}^{\infty} \frac{h_n}{n r^{n+1}}, \quad r > r', \quad h_n = (r')^n e^{\pm in\theta}. \]

(2.3)

We conclude from the assumption (2.1) and from (2.2)–(2.3) that

\[\int_D G(x, y) dy = -\frac{1}{2\pi} |D| \ln r, \quad r > R, \]

(2.4)

where \(|D| \) denotes area of \(D \).

Using the method from [2] (see also [3]) we derive from (2.4) that \(D \) is a disc.

It follows from (2.4) that the harmonic in \(D' = \mathbb{R}^2 \setminus D \) function

\[u(x) := \int_D G(x, y) dy = -\frac{1}{2\pi} |D| \ln r, \quad r > R, \]

(2.5)

solves the equation

\[\Delta u(x) = -\eta |D|, \]

(2.6)

where \(\eta \) is the characteristic function of \(D \), that is, \(\eta = 1 \) in \(D \), and \(\eta = 0 \) in \(D' \). Let \(C_R \) be the boundary of \(B_R \). A harmonic in \(B_R \) function \(h \) satisfies the conditions

\[\int_{C_R} h_N ds = 0, \quad \int_{C_R} h ds = 2\pi h(0). \]

(2.7)

It follows from (2.5) that the functions \(u(x) \) and \(u_N(x) \) are constant on \(C_R \), since the normal \(N \) on \(C_R \) is directed along the radius. Multiply (2.6) by an arbitrary regular at the origin harmonic function \(h = h_n \), integrate over a disc \(B_R \), and use (2.7) to get

\[\int_D h dx = \int_{C_R} (u h_N - u_N h) ds = c h(0), \quad c = const. \]

(2.8)
If h is harmonic in B_R, then so is $h(gx)$, where g is a rotation by an arbitrary angle α around z-axis, the axis perpendicular to D. Since $h(g0) = h(0)$, one can replace $h(x)$ by $h(gx)$ in (2.8), differentiate with respect to α and then set $\alpha = 0$. This yields
\[
\int_{D} \nabla h(x) \cdot [e_3, x] dx = 0, \tag{2.9}
\]
where e_3 is a unit vector along z-axis, \cdot stands for the scalar product, $[e_3, x]$ is the vector product in \mathbb{R}^3, and h is an arbitrary harmonic function in B_R, regular at the origin. One has
\[
\nabla h(x) \cdot [e_3, x] = \nabla \cdot (h[e_3, x]), \tag{2.10}
\]
because $\nabla \cdot [e_3, x] = 0$. Thus, integrating by parts in (2.9), one gets
\[
\int_{C} (-N_1s_2 + N_2s_1) h ds = 0, \tag{2.11}
\]
where $N_j, j = 1, 2$, are the components of the outer unit normal N to C. It is proved in [2] that the set of restrictions of all harmonic functions in B_R, regular at the origin, onto a closed curve $C \subset B_R$, diffeomorphic to a circle, is dense in $L^2(C)$. Therefore, (2.11) implies
\[
-N_1s_2 + N_2s_1 = 0 \quad \forall s \in C. \tag{2.12}
\]
Let us derive from equation (2.12) that C is a circle. Geometrically equation (2.12) means that the radius-vector $r := s_1e_1 + s_2e_2$ of the boundary C is parallel to the normal N to C, namely, $[r, N] = 0$. The unit tangential vector to C is $t = dr/ds$, where s is the arclength of C, and the normal N is directed along dt/ds.

Since the normal N is orthogonal to t, and N is parallel to r according to (2.12), it follows that $t \cdot r = 0$. Thus,
\[
dr/ds \cdot r = 0 \quad \forall s \in C. \tag{2.13}
\]
Consequently,
\[
r \cdot r = \text{const} \quad \forall s \in C. \tag{2.14}
\]
Therefore, C is a circle, and D is a disc.

Thus, Theorem 1.1 is proved. \hfill \Box

References

A. G. Ramm
Department of Mathematics
Kansas State University
Manhattan, KS 66506-2602
USA
ramm@math.ksu.edu