Experience with the United States Department Of Agriculture (USDA) Center for Grain & Animal Health Research (CGAHR) Arthropod-Borne Animal Diseases Research Unit (ABADRU):

Looking at Rift Valley fever virus and Occupational Biosafety and Hazard Practices

Masters of Public Health Field Experience
Kansas State University

C.J. Roof MS July 24th 2012
Outline

• Introduction
• Overview of Rift Valley fever virus (RVFV)
• Overview of Occupational Biosafety
• Field Experience
 o Biosafety Training Module
 o Rift Valley fever virus and Bluetongue virus Module
• Assessment of Biosafety for Needle-free Delivery
 o Objectives
 o Materials and Methods
 o Results
 o Summary
 o Conclusion
• Acknowledgements
Introduction

• Zoonotic threat of Rift Valley fever virus (RVFV)
 o An Arthropod-Borne - Arbovirus
 o Medically and Agriculturally important in Africa (Hughes-Fraire, et al, 2011)
 o Causes outbreaks impact both human and animal health (Ikegami & Makino, 2011)
 • Bans on movement of animals and products

• Organizations and researchers
 o Concern of occupational biosafety (NICD, 2011)
 o Constitutes an important public health issue (Archer, et al, 2011)
 o Potential to be globally significant (Strauss & Strauss, 2008)
Overview

Rift Valley fever virus

- Isolated from lamb in Kenya, Africa’s Rift Valley (Daubney, et al, 1931)
- Responsible for severe disease in sub-Saharan Africa for over 70 years (Hartley, et al, 2011)
 - In 2010 (NICD, 2011)
 - 238 human infections, 26 deaths
 - 14,342 animal infections, 8,877 confirmed deaths
 - Subclinical cases difficult to quantify
- Rift Valley fever virus (Sindato, et al, 2011)
 - Family: Bunyaviridae Genus: Phlebovirus
 - Single stranded, negative RNA virus
 - Genome
 - Made up of S- M- and L- segments each containing a separate nucleocapsid within the virion

Adapted from Geisbert, et al, 2001
Overview
Rift Valley fever virus

- Epidemiology
 - As mentioned RVFV is a mosquito transmitted disease
 - Virus can be transmitted (vertically) from mother to eggs (Hartley, et al, 2011)
 - Humans and Ruminants amplify virus (Sindato, et al, 2011)
 - Humans also infect via (Hartley, et al, 2011)
 - Contact of infected blood or tissue
 - Inhalation of aerosol during slaughter of infected livestock
Overview

Rift Valley fever virus

• Human Health (Sindato, et al, 2011)
 o Incubation period 2-6 days

• Clinical Signs
 o Flu-like syndrome, hemorrhagic fever (37.8-40°C), strong headaches, body pain, dizziness, nausea, epigastric discomfort, photophobia-retinitis, anorexia, and hemorrhage from body cavities
 o <2% can progress from illness to death

• Recovery within 4-7 days
Overview
Rift Valley fever virus

• Animal Health (Spickler & Roth, 2006)
 o Incubation
 • 12-36 hours in newborn lambs
 • Up to 72 hours in sheep, cattle, and dogs

• Clinical Signs
 o Fever (40-42°C), anorexia, lymphadenopathy, weakness, nasal discharge, and usually death within 36 hrs

• Recovery
 o Lambs: 90-100% mortality
 o Cattle: 10-70% mortality
 o Abortion is typical in 90-100% of affected ewes and cattle
Overview of Rift Valley fever virus

- Diagnosis
 - RVFV treated as emergency (Archer, et al. 2011)
 - Dependent on virus or nucleic acid isolation (Clements, et al. 2007)
 - Via RT-PCR or isolation in mice or cell culture (NICD, 2011)
 - Vero E6 (African green monkey) cells
 - BHK-21 (baby hamster kidney) cells
 - Immunoassay
 - Antigen detection
 - Antibody detection
Overview
Rift Valley fever virus

- Prevention and control
 - Attenuated and Killed Vaccines
 - Vector control
 - Insecticides
 - Repellants
 - Clothing

- Treatment
 - None – supportive care
Overview
Rift Valley fever virus

 o West Nile virus (WNV) in 1999-present
 • Exotic arbovirus endemic in North America
 • Due to presence competent mosquito vector
 o Outbreaks confirmed in Yemen and Saudi Arabia in 2000
 • Turell, et al, 2008
 o Demonstrated the vector competence of North American mosquito species
 • Competent vector
 o Culex tarsalis
 o Aedes vexans from Louisiana and Florida
 o Hughes-Fraire, et al, 2011
 • Epidemic/economic model determined a potential loss of $120 million– $2.3 billion
Overview
Occupational Biosafety

- **Introduction** (CDC, 2009; Harding & Byers, 2006)

 - Biosafety
 - Consistent application of safety measures

 - Biohazard
 - Biological agent or condition that causes a hazard

 - Biosecurity
 - Designed to prevent misuse of microorganisms
Overview

Occupational Biosafety

• History
 o Biosafety limited to last 150 years

 • Empirical practices go to ancient times (Block, 2001)
 o The Odyssey – Homer (Rieu, 1952)
 o Susruta – Hindu Physician
 o Black Plague Middle Ages
 o Venice Magistry, 1438
 o Many others...
Overview

Occupational Biosafety

• Laboratory acquired infections (LAI) (CDC, 2009)
 o Due a break down in microbiological practices

• Risk of LAI
 o Transmission hazards
 • Mouth pipettes, syringe and needle, spills and splashes, etc…
 o Reported late 1880’s
 • Brucellosis, glanders, diphtheria, cholera, tetanus, & Typhoid fever
 o Epidemiological review
 • Kisskalt, 1915
Overview

Occupational Biosafety

- Studies of LAIs

 - Pike & Sulkin (1935-1978)
 - 4,079 reported infections
 - 168 fatalities

 - Harding & Byers (1979-2005)
 - 1,141 reported infections
 - 24 fatalities

*Not all LAIs reported
Overview
Occupational Biosafety

- **BSL-1**: Student training/teaching labs
 - Agents are well-defined and characterized
 - Not known to cause disease

- **BSL-2**: Clinical/diagnostic labs
 - Agents are considered moderate-risk agents
 - Associated with human disease (varying severity)
 - Open bench
 - Standard microbiological techniques
 - Probability of splashes and aerosols is low

- **BSL-3**: Research/production facilities
 - Agents may be indigenous or exotic
 - Associated with serious and potentially lethal infections
 - Potential for respiratory transmission
 - High transmissibility by aerosols

- **BSL-4**: Dangerous/exotic laboratories
 - Agents pose high individual risk of life-threatening disease
 - Vaccine or therapy may not be available
Field Experience

• Organization History
 - Arthropod-Borne Animal Disease Research Unit (ABADRU)
 - Moved from Laramie, WY → Manhattan, KS
 • Cooperative with K-State researchers
 • Biosecurity Research Institute (BRI)
 - Study animal diseases transmitted by arthropods
 • Bluetongue virus (BTV)
 • Vesicular Stomatitis virus (VSV)
 • Epizootic Hemorrhagic Disease virus (EHDV)
 • Rift Valley fever virus (RVFV)

• Importance
 - Public health and U.S. livestock

Public Health
Field Experience

- **Role & Objectives**
 - USDA ABADRU
 - Rift Valley fever virus
 - Zoonotic disease research
 - Occupational hazard guidelines
 - Laboratory biosafety
Field Experience

Student Activities

• Mouse work
 - *Culicoides sonorensis*
 - Immunologic response from feeding

• Lab work
 - Methods and procedures
 - Occupational hazards and biosafety
Field Experience

Student Activities

• Frontier Field Trip
 o U.S.-Mexico Border Port of Entry (USPOE) in Santa Teresa, NM
 • Border control interdiction and trade security
 • Immigration Policy Border Communities Conference
 • NM Border Authority
 • U.S. Customs and Border Protection (USCBP)
 • Food and Drug Administration (FDA)
 • New Mexico Department of Agriculture, at the Chihuahua Regional Cattle Union Livestock Facilities
Field Experience

Student Activities

- **Product**
 - Biosafety Training PowerPoints

- **Need**
 - No tutorials specific to the BSL-2 Laboratory

- **Use**
 - Provide safety information
 - Knowledge to be proactive during training period
 - Completion of presentation
 - Quiz to provide certificate of completion
Field Experience

Student Activities

• **Product**
 - Virus Overview Training PowerPoint
 - Rift Valley fever virus
 - Bluetongue virus

• **Benefit**
 - Student and temp-works need basic virology
 - Understand why the ABADRU research is important

• **Use**
 - Health impact and risks of viruses
 - Self-vigilance to increase biosafety
 - Completion of presentation
 - Quiz to provide certificate of completion
Field Experience

Student Activities

• Product
 o Preliminary evaluation of P50 Microdose NeedleFree Injection System© in BSL-2 laboratory

• Benefit
 o Increase worker biosafety
 o Improve the immunologic response from vaccines
 o Reduce the need to raise *Culicoides sonorensis* (midge) strains for research

• Use in a controlled research facility
 o Administer modified live vaccines (such as MP-12)
 o Live Rift Valley fever virus
Assessment of Biosafety for Needle-free Intradermal Delivery

- Occupational biosafety
 - Workers in bioresearch laboratories
 - Zoonotic agents
- Simulate transmission method of arthropod vectors
- Risks and safety (Deng, et al., 2012; Mitragotri, 2005)
 - Compared to traditional needle and syringe
- Risks of aerosol generation (Zehrung, & Kristensen, 2009)
Objectives

To characterize potential risks of the P50 Microdose NeedleFree Injection System® for intradermal injection of infectious agents or modified live vaccines in BSL-2 and BSL-3 laboratories

To evaluate differences in surface splatter and wetness for test dose and pressure combinations
Materials & Methods

• Donated Boer goat forelimbs with intact hide
 o Stored in a sealed bag at -20°C

• P50 Microdose NeedleFree Injection System©
 o Compressed CO₂ as a power source
Materials & Methods

• Two Solutions
 o 5% Crystal Violet
 o Germ Juice®

• Doses/pressure
 o 50 µL/100 psi
 o 100 µL/90 psi
 o 250 µL/90 psi
Results

Germ Juice® Solution

<table>
<thead>
<tr>
<th>Limb Location</th>
<th>Right Front</th>
<th>Data Points</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetness (mm) 50 uL/100 psi</td>
<td>22 21 19</td>
<td>23* 27* 27*</td>
<td>23.2</td>
</tr>
<tr>
<td>Pooling (y/n) 50 uL/100 psi</td>
<td>0 0 0</td>
<td>0* 0* 0*</td>
<td>0.0%</td>
</tr>
<tr>
<td>Surface splatter (mm) 50 uL/100 psi</td>
<td>19 0 14</td>
<td>20* 22* 25*</td>
<td>16.7</td>
</tr>
<tr>
<td>Aerosolization (y/n) 50 uL/100 psi</td>
<td>. . .</td>
<td>0* 0* 1*</td>
<td>33.3%</td>
</tr>
<tr>
<td>Wetness (mm) 100 uL/90 psi</td>
<td>27 33 25</td>
<td>22* 28* 28*</td>
<td>27.2</td>
</tr>
<tr>
<td>Pooling (y/n) 100 uL/90 psi</td>
<td>1 0 1</td>
<td>1* 0* 1*</td>
<td>66.7%</td>
</tr>
<tr>
<td>Surface splatter (mm) 100 uL/90 psi</td>
<td>25 20 20</td>
<td>26* 24* 29*</td>
<td>24.0</td>
</tr>
<tr>
<td>Aerosolization (y/n) 100 uL/90 psi</td>
<td>. . .</td>
<td>1* 1* 1*</td>
<td>100.0%</td>
</tr>
<tr>
<td>Wetness (mm) 250 uL/90 psi</td>
<td>35 33 35</td>
<td>36* 40* 52*</td>
<td>38.5</td>
</tr>
<tr>
<td>Pooling (y/n) 250 uL/90 psi</td>
<td>1 0 1</td>
<td>1* 1* 1*</td>
<td>83.3%</td>
</tr>
<tr>
<td>Surface splatter (mm) 250 uL/90 psi</td>
<td>0 0 70</td>
<td>35* 31* 0*</td>
<td>22.7</td>
</tr>
<tr>
<td>Aerosolization (y/n) 250 uL/90 psi</td>
<td>. . .</td>
<td>1* 1* 1*</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Results

Crystal Violet Solution

<table>
<thead>
<tr>
<th>Limb Location</th>
<th>Left Front</th>
<th>Data Points</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetness (mm)</td>
<td>50 uL/100 psi</td>
<td>25 21 22</td>
<td>34* 25* 26* 25.5</td>
</tr>
<tr>
<td>Pooling (y/n)</td>
<td>50 uL/100 psi</td>
<td>0 1 0</td>
<td>1* 1* 0* 50.0%</td>
</tr>
<tr>
<td>Surface splatter (mm)</td>
<td>50 uL/100 psi</td>
<td>0 0 0</td>
<td>0* 0* 0* 0.0</td>
</tr>
<tr>
<td>Aerosolization (y/n)</td>
<td>50 uL/100 psi</td>
<td>. . .</td>
<td>. 0* 0* 0.0%</td>
</tr>
<tr>
<td>Wetness (mm)</td>
<td>100 uL/90 psi</td>
<td>30 22 25</td>
<td>28* 24* 26* 25.8</td>
</tr>
<tr>
<td>Pooling (y/n)</td>
<td>100 uL/90 psi</td>
<td>0 1 1</td>
<td>1* 1* 1* 83.3%</td>
</tr>
<tr>
<td>Surface splatter (mm)</td>
<td>100 uL/90 psi</td>
<td>0 30 20</td>
<td>25* 20* 21* 19.3</td>
</tr>
<tr>
<td>Aerosolization (y/n)</td>
<td>100 uL/90 psi</td>
<td>. . .</td>
<td>. 1* 1* 1* 100.0%</td>
</tr>
<tr>
<td>Wetness (mm)</td>
<td>250 uL/90 psi</td>
<td>43 53 63</td>
<td>35* 28* 51* 45.5</td>
</tr>
<tr>
<td>Pooling (y/n)</td>
<td>250 uL/90 psi</td>
<td>1 0 1</td>
<td>1* 0* 1* 66.7%</td>
</tr>
<tr>
<td>Surface splatter (mm)</td>
<td>250 uL/90 psi</td>
<td>0 0 0</td>
<td>27* 24* 37* 14.7</td>
</tr>
<tr>
<td>Aerosolization (y/n)</td>
<td>250 uL/90 psi</td>
<td>. . .</td>
<td>. 1* 1* 1* 100.0%</td>
</tr>
</tbody>
</table>
Results

Wetness (Germ Juice®)

Surface Splatter (Germ Juice®)
Results
Results
Results
Results
Results
Conclusion

• Advances in technology
 o Evaluate the safety
 o Practical application

• Success of the device
 o Subcutaneous and intramuscular injections
 o Accuracy of intradermal delivery
 o Interest for research purposes

• More data points needed
 o Statistical difference
 o Other devices

• Safety of device
 o Needle-less use
 o Aerosolization
Summary

• **Gains**
 - Knowledge
 - Understanding
 - Risks and hazards

• **Disciplines**
 - Public health
 - Animal health
Acknowledgements

This capstone field experience was possible due to the support of

- USDA, CGAHR, ABADRU
 - Dr. Scott McVey, Dr. Mark Ruder, Dr. Chris Lehiy, Dr. Barb Drolet, Kyle Schweisthal, Lindsey Reister, Kruger Bryant, and Joanne Gresens
 - As well as other staff and student workers

- K-State’s Comparative Medicine Group (CMG)
 - Dr. Tracy Miesner

- K-State College of Veterinary Medicine
 - Dr. Patricia Payne, Dr. Robert Larson, and Dr. Justin Kastner

- K-State University/New Mexico State University Frontier Program
References

References

Questions

Thanks to my brother Levi Roof