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Direct infusion electrospray ionization triple quadrupole precursor scanning for three oxidized fatty acyl anions revealed 86
mass spectral peaks representing polar membrane lipids in extracts from Arabidopsis (Arabidopsis thaliana) infected with
Pseudomonas syringae pv tomato DC3000 expressing AvrRpt2 (PstAvr). Quadrupole time-of-flight and Fourier transform ion
cyclotron resonance mass spectrometry provided evidence for the presence of membrane lipids containing one or more
oxidized acyl chains. The membrane lipids included molecular species of phosphatidylcholine, phosphatidylethanolamine,
phosphatidylglycerol, digalactosyldiacylglycerol, monogalactosyldiacylglycerol, and acylated monogalactosyldiacylglycerol.
The oxidized chains were identified at the level of chemical formula and included C,sH,,O; (abbreviated 18:4-O, to indicate
four double bond equivalents and one oxygen beyond the carbonyl group), C,;H,,0; (18:3-O), C,sH;,0; (18:2-O), C,;H,40,
(18:3-20), C,4H;,0, (18:2-20), and C,;H,;0; (16:4-O). Mass spectral signals from the polar oxidized lipid (ox-lipid) species were
quantified in extracts of Arabidopsis leaves subjected to wounding, infection by PstAvr, infection by a virulent strain of P.
syringae, and low temperature. Ox-lipids produced low amounts of mass spectral signal, 0.1% to 3.2% as much as obtained in
typical direct infusion profiling of normal-chain membrane lipids of the same classes. Analysis of the oxidized membrane lipid
species and normal-chain phosphatidic acids indicated that stress-induced ox-lipid composition differs from the basal ox-lipid
composition. Additionally, different stresses result in the production of varied amounts, different timing, and different
compositional patterns of stress-induced membrane lipids. These data form the basis for a working hypothesis that the stress-
specific signatures of ox-lipids, like those of oxylipins, are indicative of their functions.

Vollenweider et al., 2000; Stintzi et al., 2001; Howe and
Schilmiller, 2002; Stenzel et al., 2003; Thoma et al.,
2003; Taki et al., 2005; Sattler et al., 2006; Thines et al.,
2007; Chehab et al., 2008; Katsir et al., 2008; Mueller
et al., 2008). Recent studies indicate that oxidized fatty
acyl chains also occur in complex polar lipids and
that plants produce complex oxidized lipids (ox-

Biotic and abiotic stresses result in lipid oxidation,
and there is strong evidence for the importance of
oxidized free fatty acids, also known as oxylipins, in
plant stress responses (Imbusch and Mueller, 2000;
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lipids) under stress conditions, including wounding
(Buseman et al., 2006), bacterial infection (Andersson
et al., 2006; Grun et al., 2007; Kourtchenko et al., 2007),
fungal infection (Thoma et al.,, 2003), extended dark
(Seltmann et al., 2010), aging (Xiao et al., 2010), and
osmotic stress (Seltmann et al., 2010).

A number of plastid-derived, complex lipid molecu-
lar species that contain oxophytodienoic acid (OPDA)
and dinor-oxophytodienoic acid (dnOPDA) have been
characterized (Stelmach et al., 2001; Hisamatsu et al.,
2003, 2005; Andersson et al., 2006; Buseman et al., 2006;
Kourtchenko et al., 2007; Glauser et al., 2008; Maeda
et al., 2008). Some of the characterized ox-lipid species
have been shown to occur in thylakoid membranes
(Bottcher and Weiler, 2007). In Arabidopsis (Arabidopsis
thaliana), some of the OPDA- and dnOPDA-containing
monogalactosyldiacylglycerols (MGDGs) contain two
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esterified oxidized fatty acid chains or, when the
6-position of the MGDG Gal ring is acylated, three
oxidized chains. These lipid species with multiple
isopentenone (OPDA or dnOPDA)-containing chains
are sometimes called arabidopsides (Hisamatsu et al.,
2003, 2005; Andersson et al., 2006). Characterized Gal-
acylated MGDG (acMGDG) molecular species include
OPDA/dnOPDA MGDG with OPDA on the Gal
(arabidopside E) and a tri-OPDA MGDG species
(arabidopside G; Andersson et al., 2006; Kourtchenko
et al.,, 2007). OPDA also has been identified in phos-
phatidylglycerol (PG; Buseman et al., 2006). MGDG
and digalactosyldiacylglycerol (DGDG) contain, in
addition to OPDA and dnOPDA, 16- and 18-carbon
ketols, both in combination with normal chains and
with OPDA (Buseman et al., 2006). Membrane lipids
also contain other oxidized acyl species, including
phytoprostanes and hydroxy fatty acids (Imbusch
and Mueller, 2000; Thoma et al., 2003; Grun et al.,
2007).

In some studies of oxidized membrane lipids, the
oxidized fatty acyl chains have been analyzed after
releasing the chains from the membrane lipids (Thoma
et al., 2003; Grun et al., 2007), while in other studies,
the intact membrane lipid species have been measured
directly (Stelmach et al., 2001; Andersson et al., 2006;
Buseman et al.,, 2006; Bottcher and Weiler, 2007;
Kourtchenko et al., 2007; Thiocone et al., 2008; Seltmann
et al., 2010). Several mass spectrometry strategies have
been utilized for intact lipid oxylipin-containing plant
lipid profiling. Buseman et al. (2006) used precursor ion
scanning by direct infusion electrospray ionization
(ESI) triple quadrupole mass spectrometry (MS) to
quantify multiple oxylipin-containing complex lipids.
Liquid chromatography or liquid chromatography-mass
spectrometry approaches have also been used (Stelmach
et al., 2001; Andersson et al., 2006; Bottcher and Weiler,
007; Kourtchenko et al., 2007; Glauser et al., 2008;
Thiocone et al., 2008; Seltmann et al., 2010). However,
most analyses have been limited to fewer than 20
oxidized membrane lipid species.

In this work, we utilized a direct-infusion ESI triple
quadrupole MS strategy to quantify a larger group of
oxidized membrane lipids. By precursor scanning in
negative mode, 86 peaks representing combinations of
intact ion mass-to-charge ratio (/z) and oxidized acyl
fragment m/z were identified. The chemical formulas
of the fatty acyl substituents of each peak were deter-
mined by accurate mass analysis. In so doing, oxidized
Arabidopsis phosphatidylcholine (PC) and phospha-
tidylethanolamine (PE) molecular species, as well as
PG, DGDG, MGDG, and acMGDG species, were char-
acterized. We tested the hypothesis that different en-
vironmental cues trigger different changes in ox-lipid
profiles of Arabidopsis by challenging wild-type Arabi-
dopsis with mechanical wounding, infection with avir-
ulent and virulent bacteria, and low temperature and
by monitoring the oxidized membrane lipid changes.
Changes in stress-associated phospholipase products
were also monitored.
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RESULTS

Triple Quadrupole MS Precursor Scanning for Lipids
with 18-Carbon Oxidized Acyl Chains

With the goal of investigating the formation of ox-
lipids in Arabidopsis leaves on a broad scale and in an
expeditious manner, ionizable membrane lipids with
at least one oxidized fatty acid of known chemical
formula were identified using a semitargeted, direct
infusion MS approach. In the polar lipid fraction of
Arabidopsis, five 18-carbon oxidized fatty acids (first
five entries in Table I) can be detected with three ESI
triple quadrupole MS scans in negative mode. The five
18-carbon oxidized fatty acids include C;gH,,O, (des-
ignated as 18:4-O; nomenclature indicates “acyl car-
bons:double bond equivalents beyond the acid
carbonyl-number of oxygens in addition to the carbonyl
group”), C;gH,40; (18:3-0), C;5H;, 05 (18:2-0), CyHp O,
(18:3-20), and C,gH;,0, (18:2-20). 18:3-20 and 18:2-20
each undergo a water loss during collision-induced
dissociation to produce 18:4-O and 18:3-O, respectively.
The dehydration allows 18:3-20 and 18:2-20 to be
detected by scans for 18:4-O and 18:3-O, respectively
(Buseman et al., 2006; Maeda et al., 2008). Thus, scan-
ning for precursors of 291.2 (Pre 291.2) detects precur-
sors of 18:4-O and 18:3-20, scanning for Pre 293.2
detects precursors of 18:3-O and 18:2-20, and scanning
for Pre 295.2 detects precursors of 18:2-O. Using a single
scan to detect membrane lipids with two different acyl
species reduces scan time. Also, importantly, using Pre
291.2 and Pre 293.2 to detect lipids containing oxidized
acyl chains with m/z 309.2 (e.g. 18:3-20) and 311.2 (e.g.
18:2-20) provides increased specificity compared with
scanning for Pre 309.2 and Pre 311.2, because anions of
18:3-20 and 18:2-20 share the same nominal m/z as
normal-chain fatty acyl chains 20:1 and 20:0, respec-
tively. 20:1 and 20:0 are not detected by scans for Pre
291.2 and Pre 293.2, because 20:1 and 20:0 do not
undergo water losses.

Scanning for negatively charged precursors of m/z
291.2, 293.2, and 295.2 while infusing an extract of
Arabidopsis leaves infected with Pseudomonas syringae
pv tomato DC3000 expressing the AvrRpt2 avirulence
gene (PstAvr) reveals the spectral peaks shown in
Figure 1. Scans were repeated on a series of similar
samples, and peaks detected in any PstAvr-infected
sample were numbered 1 through 86. With the samples
dissolved in solvent containing ammonium acetate, for
various lipids, peaks represent [M — H] (indicated by
peak numbers in parentheses in Fig. 1), [M + C,H;0,],
where C,H;0, is acetate (indicated by peak numbers
without parentheses), or both adducts.

Identification of the Detected Oxidized Complex Lipids
Using Quadrupole Time-of-Flight and Fourier Transform
Ion Cyclotron Resonance MS

Identifying information for the observed peaks is
presented in Table II and Supplemental Tables S1 and
S2. Quadrupole time-of-flight (QTOF) MS aided in
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Table I. Oxidized fatty acyl chains detected in extracts from leaves of Arabidopsis infected with PstAvr for 24 h

Examples of possible structures and fragmentation of ox-lipids from each class are shown in Supplemental Figure ST.

Chemical Formula of

Triple Quadrupole MS Oxidized Fatty

m/z of Anion
Precursor Scan

Examples of Compounds Consistent

Abbreviation :
with Detected Formula

Acyl Anion
Acyl formulas directly scanned
Pre 291.20 CigH,,0; 291.1966 18:4-O OPDA, keto 18:3
Pre 293.21 Cy5H,00; 293.2122 18:3-O Hydroxy 18:3, keto fatty acid
Pre 295.23 Ci6H3,04 295.2279 18:2-O Hydroxy 18:2
Pre 291.20 CigH,004 309.2071 18:3-20 Ketol fatty acid, hydroperoxy 18:3, dihydroxy 18:3
Pre 293.21 CigH;30, 311.2228 18:2-20 Hydroperoxy 18:2, dihydroxy 18:2
Acyl formulas identified by scanning of the above anions or as a result of QTOF MS analysis
- CyoH,50, 263.1653 16:4-0 dnOPDA
- CyeHy50, 265.1809 16:3-0 Hydroxy 16:3
- C,¢H,50, 281.1758 16:3-20 Ketol fatty acid, hydroperoxy 16:3, dihydroxy 16:3
- C,5H,50 305.1758 18:5-20 -

@
N
a
N

definition of the compounds. The extracts were batch
fractionated by normal-phase chromatography. A frac-
tion or the whole extract (as indicated in Supplemental
Table S1) was directly infused into the ESI source,
operating in negative mode, of a QTOF mass spec-
trometer. Each ox-lipid precursor ion, previously de-
tected by precursor scanning by triple quadrupole MS
(Fig. 1), was selected with the first quadrupole and
subjected to collision-induced dissociation. The frag-
ments were scanned with the time-of-flight analyzer to
obtain accurate m/z ratios of the acyl anions; the m/z
values were used to determine the chemical formulas
of the acyl chains. Together, the precursor and frag-
ment m/z values allowed the identification of lipid
species indicated by nearly all of the peaks detected by
precursor spectral scanning (Fig. 1; Table II; Supple-
mental Table S1). The identities of 24 of the 86 ob-
served peaks were additionally confirmed at the level
of intact ion chemical formula by the determination of
accurate m/z values of precursor ions in positive mode
by Fourier transform ion cyclotron resonance (FTICR)
MS. The compounds are indicated in Table II, which
summarizes the evidence for each identification, and
the FTICR MS data are shown in Supplemental Table
S2. To help the reader in visualizing the observed
compounds, Supplemental Figure S1 shows examples
of structures consistent with the data for some com-
pounds. As described in the legend, the depicted
structures are possibilities only.

Twelve oxidized PC (ox-PC; 1-12) and 12 oxidized
PE (ox-PE; 13-24) species were identified by precursor
scanning and confirmed by QTOF MS analysis (Table
II). Each detected ox-PC and ox-PE molecular species
has a normal-chain fatty acid, 16:0, 18:3, or 18:2, in
combination with an oxidized chain, 18:3-O, 18:3-20,
18:2-O, or 18:2-20. The detected combinations are
analogous to the most common Arabidopsis PC and
PE species, which are 16:0/18:3, 16:0/18:2, 18:3/18:3,
18:3/18:2, and 18:2/18:2 (Devaiah et al., 2006), if 18:3
were substituted with 18:4-O (OPDA), 18:3-O, and
18:3-20, and 18:2 were substituted with 18:2-O and
18:2-20. Eight oxidized PG (ox-PG) species (25-32)
were identified by triple quadrupole and QTOF MS
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(Table II). These species included a normal chain, 16:0
or 16:1, in combination with 18:4-O, 18:3-O, 18:2-O, or
18:2-20. The 18:4-O ox-PG species were identified
previously (Buseman et al., 2006). The acyl combina-
tions found in ox-PG are again analogous to the most
common PG species, 18:3/16:1, 18:2/16:1, 18:3/16:0,
and 18:2/16:0 (Devaiah et al., 2006). No ox-PC, ox-PE,
or ox-PG species with multiple oxidized fatty acid
chains were detected.

Fifteen oxidized DGDG (ox-DGDG) species (Table
II; 33-47) were identified by triple quadrupole MS
precursor scanning. These include normal chains 16:3,
16:0, or 18:3, or oxidized chains 16:4-O or 18:4-O, in
combination with oxidized chains 18:4-O, 18:3-O, or
18:3-20. Five of the detected species were previously
identified (Hisamatsu et al., 2005; Buseman et al.,
2006). Again, the acyl combinations found in the oxi-
dized molecular species were structurally related to
the major molecular species of Arabidopsis DGDGs,
18:3/16:3, 18:3/16:0, and 18:3/18:3 (Devaiah et al.,
2006). Twelve oxidized MGDG (ox-MGDG) species
(48-59) were characterized (Table II). 16:3, 16:4-O, 18:3,
or 18:4-O were found in combination with 18:4-O, 18:3-O,
or 18:3-20. The combinations observed also are analo-
gous to the major molecular species of MGDG, 18:3/
16:3 and 18:3/18:3 (Devaiah et al., 2006). The identities
of the detected diacyl compounds (i.e. compounds 1-59)
are summarized in brief form in Supplemental Table S3.

Twenty-seven oxidized acMGDG (ox-acMGDG) peaks
(60-86) were identified by precursor scanning (Table II).
Previous work has indicated that MGDG can be acyl-
ated at the 6-position on the Gal when plant leaves are
wounded by grinding or stressed by bacterial infection
(Heinz, 1967a; Heinz and Tulloch, 1969; Andersson
et al., 2006). Our analysis did not determine the posi-
tions of the three chains (i.e. on the glycerol backbone
or on the Gal). Besides the two previously identified
acMGDGs, with combinations of 16:4-O and 18:4-O only,
additional acMGDGs included various combinations of
nonoxidized chains, 16:3, 16:1, 16:0, 18:3, 18:2, 18:1, 18:0,
and oxidized chains, 16:4-O, 18:4-O, 16:3-20, and 18:3-20.
The identities of the detected acMGDGs are summarized
in brief form in Supplemental Table S4.

Plant Physiol. Vol. 158, 2012
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Figure 1. ESl triple quadrupole MS precursor ion spectra acquired on extracts of leaves of Arabidopsis plants infected with PstAvr
for 24 h. A and B, Pre 291.2. C, Pre 293.2. D, Pre 295.2. Pre 291.2 scan detects ox-lipids containing 18:4-O and 18:3-20, Pre
293.2 scan detects ox-lipids containing 18:3-O and 18:2-20, and Pre 295.2 scan detects ox-lipids containing 18:2-O. Peaks with
labels in parentheses are [M — H] ™ adducts. Peak labels with no parentheses indicate [M + C,H,0,]™ adducts. Note that the
intensity and m/z scales of the spectra differ. A and B have breaks in the intensity axes. Details of peaks numbered 1 to 86 are

shown in Table II.

In addition to the species detected by precursor
scanning, QTOF MS analysis detected two additional
PCs (Supplemental Table S1; 87 and 88), two PEs (89
and 90), one PG (91), five DGDGs (92-96), two MGDGs
(97 and 98), and 17 acMGDGs (99-115). These entries
represent oxidized and nonoxidized species with the
same nominal m/z values as peaks detected by triple
quadrupole MS precursor scanning. However, 87 to
115 were not targeted by the precursor scans, because
most do not contain the scanned precursor fragment.
Thus, although they were noted as being present in
pathogen infection, lipids 87 to 115 were not deter-
mined, or quantified, in the remaining analyses.

Most of the 86 peaks listed in Table II represented a
single combination of a head group and acyl species,
and their identifications were straightforward (Table
II; Supplemental Table S1), but a few identifications
require some explanation. The identifications of sev-
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eral peaks (45,78, 79, 80a, and 82), indicated by a prime
symbol in Table II, were ambiguous. The precursor
m/z, in combination with the acyl chains observed,
indicated that one fragment was dehydrated. Because
the QTOF mass spectra did not detect the hydrated
fragment, its identity is not clear. Thus, both possible
acyl chain combinations are indicated for peaks with
the prime symbol; the peaks detected by triple quad-
rupole MS scanning may represent one or both of the
indicated species. Additionally, peak 31, representing
an ox-PG species, occurred at the same nominal m/z as
the [M - H] ion of an ox-MGDG species. The same ox-
MGDG species was detected separately in peak 53 as
its [M + C,H,0,] ion. Lastly, 13 spectral peaks (63, 67,
68, 69, 70, 71, 72, 76, 77, 80, 81, 83, and 84) observed by
triple quadrupole MS scanning represented a combi-
nation of at least two members of the acMGDG class.
These species are designated with the same number,
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Table II. Lipids detected by ESI MS/MS negative ion precursor ion scans, Pre 291.2, Pre 293.2, and Pre 295.2

Supplemental Tables S3 and S4 indicate the compounds detected in a simplified form. M, Mass spectrometry abbreviation used for molecule, used

to indicate the uncharged molecule.

Identification;

No.* M Mass M Formula Identification Detection Method” . c
Evidence

1 771 C42H7809PN  18:3-0O/16:0 PC Pre 293.2, [M + C,H,0,]”  Tentative; Supplemental Table S1

2 793 C44H7609PN 18:3-0/18:3 PC Pre 293.2, [M + C,H;0,]”  Supplemental Table S1

3 795  C44H7809PN 18:3-0/18:2 PC Pre 293.2, [M + C,H,0,]"  Supplemental Table St

4 787  C42H780T10PN  18:3-20/16:0 PC Pre 291.2, [M + C,H,0,]~  Supplemental Table S1

5 809 C44H76010PN  18:3-20/18:3 PC Pre 291.2, [M + C,H;0,]”  Supplemental Table S1

6 811  C44H78010PN  18:3-20/18:2 PC Pre 291.2, [M + C,H,0,]"  Supplemental Table S1

7 773 C42H8009PN 18:2-0/16:0 PC Pre 295.2, [M + C,H,0,]"  Supplemental Table St

8 795  C44H7809PN  18:2-0O/18:3 PC Pre 295.2, [M + C,H;0,]”  Supplemental Table S1

9 797  C44H8009PN 18:2-0/18:2 PC Pre 295.2, [M + C,H,0,]”  Tentative; Supplemental Table S1

10 789  C42HB80O10PN  18:2-20/16:0 PC Pre 293.2, [M + C,H;0,]”  Supplemental Table S1

11 811  C44H780O10PN  18:2-20/18:3 PC Pre 293.2, [M + C,H;0,]"  Supplemental Table St

12 813  C44H800O10PN  18:2-20/18:2 PC Pre 293.2, [M + C,H;0,]”  Tentative; Supplemental Table S1

13 729  C39H7209PN 18:3-0/16:0 PE Pre 293.2, IM — H]~ Supplemental Table S1

14 751 C41H7009PN 18:3-0/18:3 PE Pre 293.2, [M — HI~ Supplemental Table S1

15 753  C41H7209PN 18:3-0/18:2 PE Pre 293.2, M — H]™ Supplemental Table S1

16 745  C39H72010PN  18:3-20/16:0 PE Pre 291.2, [M — H]~ Supplemental Table S1

17 767  C41H70010PN  18:3-20/18:3 PE Pre 291.2, IM — H]™ Supplemental Table S1

18 769  C41H72010PN  18:3-20/18:2 PE Pre 291.2, [M — H]~ Supplemental Table S1

19 731 C39H7409PN 18:2-0/16:0 PE Pre 295.2, M — H]~ Supplemental Tables ST and S2

20 753  C41H7209PN  18:2-O/18:3 PE Pre 295.2, M — HI~ Supplemental Table S1

21 755  C41H7409PN 18:2-0/18:2 PE Pre 295.2, IM — H]™ Supplemental Table S1

22 747 C39H74010PN  18:2-20/16:0 PE Pre 293.2, [M — HI~ Supplemental Tables ST and S2

23 769  C41H72010PN  18:2-20/18:3 PE Pre 293.2, [M — H]~ Tentative; Supplemental Table S1

24 771 C4TH74010PN  18:2-20/18:2 PE Pre 293.2, [M — HI~ Tentative; Supplemental Table S1

25 756 C40H69011P 18:4-0/16:1 PG Pre 291.2, [M — H]~ Buseman et al. (2006)

26 758  C40H71011P 18:4-0/16:0 PG Pre 291.2, [IM — HI~ Buseman et al. (2006)

27 758 C40H71011P 18:3-0/16:1 PG Pre 293.2, (M — H]™ Supplemental Table S1

28 760  C40H73011P 18:3-0/16:0 PG Pre 293.2, M — HI~ Supplemental Table S1

29 760 C40H73011P 18:2-0/16:1 PG Pre 295.2, [M — H]~ Supplemental Table S1

30 762 C40H75011P 18:2-0/16:0 PG Pre 295.2, [M — H]™ Supplemental Table S1

31* 776 C40H73012P 18:2-20/16:1 PG Pre 293.2, [M — H]~ Supplemental Table S1

31* 776  C43H68012 18:3-0/16:4-O MGDG Pre 293.2, [M — H]~ Supplemental Table S1

32 778  C40H75012P 18:2-20/16:0 PG Pre 293.2, [M — H]~ Supplemental Table S1

33 922  C49H78016 18:4-0/16:3 DGDG Pre 291.2, [M — H]~ Supplemental Table S1

34 928 C49H84016 18:4-O/16:0 DGDG Pre 291.2, [M + C,H,0,]"  Supplemental Table S1

35 936  C49H76017 18:4-0/16:4-O DGDG Pre 291.2, [M + C,H;0,]”  Hisamatsu et al. (2005)

36 950 C51H82016 18:4-0/18:3 DGDG Pre 291.2, [M + C,H,0,]” Buseman et al. (2006)

37 964 C51H80017 18:4-0/18:4-O DGDG Pre 291.2, [M + C,H,0,]"  Hisamatsu et al. (2005);
Buseman et al. (2006)

38 924  C49H80016 18:3-0/16:3 DGDG Pre 293.2, [M + C,H;0,]”  Supplemental Table S1

39 930 C49H86016 18:3-0/16:0 DGDG Pre 293.2, [M + C,H;0,]”  Supplemental Table S1

40 938 C49H78017 18:3-0/16:4-O DGDG Pre 293.2, [M + C,H;0,]”  Supplemental Table S1

41 952  C51H84016 18:3-0/18:3 DGDG Pre 293.2, [M + C,H;0,]”  Supplemental Table S1

42 966 C51H82017 18:3-0/18:4-O DGDG Pre 293.2, [M + C,H,0,]"  Supplemental Table St

43 940  C49HB00O17 18:3-20/16:3 DGDG Pre 291.2, [M + C,H;0,]”  Supplemental Table S1

44 946  C49H86017 18:3-20/16:0 DGDG Pre 291.2, [M — H]™ Supplemental Table S1

45’ 954  C49H78018 18:3-20/16:4-O DGDG Pre 291.2, [M + C,H;0,]”  Supplemental Table S1

45’ 954  C49H78018 18:4-0/16:3-20 DGDG Pre 291.2, [M + C,H;0,]"  Supplemental Table St

46 968 C51H84017 18:3-20/18:3 DGDG Pre 291.2, [M + C,H;0,]”  Buseman et al. (2006)

47 982 C51H82018 18:3-20/18:4-O DGDG Pre 291.2, [M + C,H,0,]”  Buseman et al. (2006)

48 760  C43H68011 18:4-0/16:3 MGDG Pre 291.2, IM — HI™ Supplemental Table S2;
Stelmach et al. (2001);
Buseman et al. (2006)

49 774  C43H66012 18:4-0/16:4-O MGDG Pre 291.2, [M + C,H,0,]1"  Supplemental Table S2;
Hisamatsu et al. (2003);
Buseman et al. (2006)

50 788  C45H72011 18:4-0/18:3 MGDG Pre 291.2, [IM — H]~ Buseman et al. (2006)

(Table continues on following page.)
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Table Il. (Continued from previous page.)

Identification;

No. M Mass M Formula Identification Detection Method® . s
Evidence
51 802 C45H70012 18:4-0/18:4-O MGDG Pre 291.2, [M + C,H;0,1”  Supplemental Table S2;
Hisamatsu et al. (2003);
Buseman et al. (2006)
52 762 C43H70011 18:3-0/16:3 MGDG Pre 293.2, [M + C,H;0,]”  Supplemental Table S1
53 776  C43H68012 18:3-0/16:4-O MGDG Pre 293.2, [M + C,H,0,]"  Tentative; Supplemental Table S1
54 790  C45H74011 18:3-0/18:3 MGDG Pre 293.2, M — H]~ Supplemental Table S1
55 804 C45H72012 18:3-0/18:4-O MGDG Pre 293.2, [M + C,H;0,]"  Supplemental Table St
56 778  C43H70012 18:3-20/16:3 MGDG Pre 291.2, [M + C,H;0,]”  Buseman et al. (2006)
57 792  C43H68013 18:3-20/16:4-O MGDG Pre 291.2, [M + C,H,0,]” Buseman et al. (2006)
58 806 C45H74012 18:3-20/18:3 MGDG Pre 291.2, [M + C,H;0,]  Buseman et al. (2006)
59 820 C45H72013 18:3-20/18:4-O MGDG Pre 291.2, [M + C,H,0,]” Buseman et al. (2006)
60 992  C59H92012 18:4-0/16:3/16:3 acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Tables ST and S2
61 998  C59H98012 18:4-0/16:3/16:0 acMGDG Pre 291.2, [M + C,H;0,]1"  Supplemental Tables S1 and S2
62 1,026 C61H102012 18:4-0/18:3/16:0 acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Table S1
63a 1,054  C63H106012 18:4-0/18:3/18:0 acMGDG Pre 291.2, [M + C,H;0,]"  Supplemental Table S1
63b 1,054  C63H106012 18:4-0/18:2/18:1 acMGDG Pre 291.2, [M + C,H;0,1”  Supplemental Table S1
64 1,006  C59H90013 18:4-0/16:4-0/16:3 acMGDG Pre 291.2, [M + C,H;0,]"  Supplemental Tables S1 and S2
65 1,010  C59H94013 18:4-0/16:4-O/16:1 acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Tables ST and S2
66 1,012 C59H96013 18:4-0/16:4-0/16:0 acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Tables ST and S2
67a 1,020 C59H88014 18:4-0/16:4-0/16:4-O acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Tables ST and S2
67b 1,020  C61H96012 18:4-0/18:3/16:3 acMGDG Pre 291.2, [M + C,H;0,]"  Supplemental Table S1
68a 1,034  C61H94013 18:4-0/16:4-0/18:3 acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Tables ST and S2
68b 1,034  C61H94013 18:4-0/18:4-0/16:3 acMGDG Pre 291.2, [M + C,H,0,]1"  Supplemental Tables S1 and S2
69a 1,038  C61H98013 18:4-0/16:4-0/18:1 acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Tables ST and S2
69b 1,038  C61H98013 18:4-0/18:4-0/16:1 acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Tables ST and S2
70a 1,040 C61H100013 18:4-0/16:4-O/18:0 acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Tables ST and S2
70b 1,040 C61H100013 18:4-0/18:4-0/16:0 acMGDG Pre 291.2, [M + C,H,0,]"  Supplemental Tables S1 and S2
71a 1,048 C61H92014 18:4-0/18:4-0/16:4-O acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Tables S1 and S2;
Andersson et al. (2006)
71b 1,048  C63H100012 18:4-0/18:3/18:3 acMGDG Pre 291.2, [M + C,H;0,]"  Supplemental Tables S1 and S2
72a 1,062  C63H98013 18:4-0/18:4-0/18:3 acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Tables ST and S2
72b 1,062  C61H90015 18:4-0/18:5-20/16:4-O acMGDG ~ Pre 291.2, [M + C,H;0,]”  Supplemental Tables ST and S2
73 1,068  C63H104013 18:4-0/18:4-0/18:0 acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Table S1
74 1,076  C63H96014 18:4-0/18:4-0/18:4-O acMGDG Pre 291.2, [IM + C,H;0,]1"  Supplemental Tables S1 and S2;
Kourtchenko et al. (2007)
75 1,016 C59H100013 18:3-20/16:0/16:3 acMGDG Pre 291.2, (M + C,H;0,]”  Supplemental Table S1
76a 1,044  C61H104013 18:3-20/18:3/16:0 acMGDG Pre 291.2, [M + C,H,0,]"  Supplemental Table S1
76b 1,044 C61H104013 18:3-20/18:0/16:3 acMGDG Pre 291.2, [M + C,H,0,]”  Tentative; Supplemental Table S1
77a 1,072 C63H108013 18:3-20/18:3/18:0 acMGDG Pre 291.2, (M + C,H;0,]”  Supplemental Table S1
77b 1,072 C61H100015 18:3-20/18:2/16:3-20 acMGDG Pre 291.2, [M + C,H,0,]"  Supplemental Table S1
77c 1,072 C63H108013 18:3-20/18:2/18:1 acMGDG Pre 291.2, [M + C,H,0,]"  Supplemental Table S1
78’ 1,024 C59H92014 18:3-20/16:4-0/16:3 acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Table S1
78’ 1,024 C59H92014 18:4-0/16:3-20/16:3 acMGDG Pre 291.2, [M + C,H;0,]"  Supplemental Table S1
79’ 1,030 C59H98014 18:3-20/16:4-0/16:0 acMGDG Pre 291.2, [M + C,H;0,]1"  Supplemental Tables S1 and S2
79’ 1,030 C59H98014 18:4-0/16:3-20/16:0 acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Tables ST and S2
80a’ 1,052 C61H96014 18:3-20/16:4-0/18:3 acMGDG Pre 291.2, [M + C,H,0,]"  Supplemental Table St
80a’ 1,052 C61H96014 18:4-0/16:3-20/18:3 acMGDG Pre 291.2, [M + C,H,0,]1"  Supplemental Table S1
80b 1,052 C61H96014 18:3-20/18:4-0/16:3 acMGDG Pre 291.2, [M + C,H;0,]"  Supplemental Table St
81a 1,070  C61H98015 18:3-20/16:3-20/18:3 acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Table S1
81b 1,070  C61H98015 18:3-20/18:3-20/16:3 acMGDG Pre 291.2, [M + C,H;0,]”  Tentative; Supplemental Table S1
81c 1,070  C63H106013 18:3-20/18:2/18:2 acMGDG Pre 291.2, [M + C,H,0,]"  Supplemental Table S1
82’ 1,084 C61H96016 18:3-20/16:3-20/18:4-O acMGDG ~ Pre 291.2, [M + C,H;0,]”  Supplemental Tables ST and S2
82’ 1,084  C61H96016 18:3-20/18:3-20/16:4-O acMGDG  Pre 291.2, [M + C,H;0,]”  Supplemental Tables ST and S2
83a 1,058 C61H102014 18:3-20/18:4-0/16:0 acMGDG Pre 291.2, [M + C,H;0,]"  Supplemental Table St
83b 1,068 C61H102014 18:3-20/16:4-0/18:0 acMGDG Pre 291.2, [M + C,H;0,]”  Tentative; Supplemental Table S1
84a 1,066  C61H94015 18:3-20/18:4-0/16:4-O acMGDG Pre 291.2, [M + C,H;0,]"  Supplemental Tables S1 and S2
84b 1,066 C63H102013 18:3-20/18:3/18:3 acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Tables ST and S2

(Table continues on following page.)
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Table Il. (Continued from previous page.)

Identification;

No.* M Mass M Formula Identification Detection Method” . c
Evidence

85 1,080 C63H100014 18:3-20/18:4-0O/18:3 acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Table S1

86 1,086  C63H106014 18:3-20/18:4-0/18:0 acMGDG Pre 291.2, [M + C,H;0,]”  Supplemental Table S1

“Each number (1-86) represents a peak observed in triple quadrupole MS spectra (Fig. 1). An asterisk indicates peaks resulting from two
compounds of different lipid classes with the same ion mass. A prime symbol indicates peaks with at least two possible identifications, where it is
unclear whether the peak represents one or both compounds. Numbers followed by a, b, or c signify that accurate m/z analysis indicates that the
peak represents multiple lipid species detected by the stated precursor scan (Supplemental Tables S1 and S2). PPeaks were identified in triple
quadrupole MS spectra with three negative precursor scans, Pre 291.2, Pre 293.2, and Pre 295.2; each species was observed as the [M — H] ™ and/or
[M + C,H;0,]™ ion. “QTOF MS peak data are provided in Supplemental Table S1. FTICR MS peak data are provided in Supplemental Table S2.
Peak identification is indicated as “tentative” if QTOF MS m/z values for one acyl group (or more) were greater than 10 ppm from the theoretical m/z
and the compound was not previously identified or identified by accurate m/z of the intact compound in FTICR MS spectra. Previously identified

peaks/compounds are marked with corresponding references.

but with a different letter, in Table I and Supplemental
Tables S1 and S2. The multiple identifications arose
from two situations: (1) ox-acMGDG species with the
same chemical formula but multiple acyl combina-
tions (e.g. 68a and 68b; 18:4-O/16:4-O/18:3 acMGDG
and 18:4-0/18:4-0/16:3 acMGDG); and (2) ox-acMGDG
species with different chemical formulas with the same
nominal m/z (e.g. 84a and 84b; 18:3-20/18:4-0/16:4-O
acMGDG and 18:3-20/18:3/18:3 acMGDG).

In this work, acyl components of the membrane
lipids were identified at the level of chemical formula.
Potential identities of the observed oxidized acyl anions
are indicated in Table I, and possible structures for
some detected compounds are shown in Supplemental
Figure S1. Previous data indicated that in Arabidopsis,
18:4-O and 16:4-O in the complex lipids represent
primarily OPDA and dnOPDA (Stelmach et al., 2001;
Hisamatsu et al., 2003, 2005; Buseman et al., 2006). 18:3-O
may be a keto fatty acid (Vollenweider et al., 2000) and /
or a hydroxy fatty acid, as may 16:3-O. 18:2-O also may
be a hydroxy fatty acid. 18:3-20 and 16:3-20 may be
ketols (Hamberg, 1988; Weber et al., 1997), fatty acid
hydroperoxides, and/or dihydroxy fatty acids (Hamberg
et al., 2003). 18:2-20 may also represent a dihydroxy
fatty acid or a fatty acid hydroperoxide. In future work,
as links are established between specific oxidized mem-
brane lipid species and physiological function via
quantitative analyses of intact membrane lipid molec-
ular species, the fatty acyl structures associated with the
identified chemical formulas of the physiologically
relevant membrane molecular species will be deter-
mined. The experiment described next is a start toward
establishing functional links.

Experimental Design and Measurements of Oxidized
Complex Leaf Membrane Lipids during Stress Responses

Figure 2 shows the design of stress treatments for
the quantitative analysis of oxidized polar lipid mo-
lecular species in Arabidopsis accession Columbia
(Col-0). In order to compare the patterns of ox-lipids
produced in various stresses, plants were grown simul-
taneously in a growth chamber at 22°C under 14-h-
light/10-h-dark cycles. The experimental sample collection
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occurred in one 24-h period on 5-week-old plants. The
experimental design included three subexperiments:
wounding with a hemostat (first four conditions); in-
fection with PstAvr and infection with Pseudomonas
syringae pv maculicola (Psm; next eight conditions); and
cold acclimation and freezing (next six conditions).
Each subexperiment included appropriate control con-
ditions, including sampling at 4°C at various time
points and mock-inoculated sampling at 12 and 24 h
(Fig. 2; see “Materials and Methods”). Two additional
controls (last two conditions) at 22°C tested the effect of
light cycle changes (time of day). Three leaves from one
plant made up each sample, and five biological repli-
cate plants were sampled for each condition.

The experimental design was influenced by previ-
ous experiments (data not shown) that demonstrated
the need to minimize variation among controls and to
apply treatments consistently. Variation in plant
growth conditions can affect the basal levels of some
ox-lipid compounds, making comparison across mul-
tiple stress treatments difficult. Thus, an important
aspect of this study was the careful limiting of varia-
tion in the control conditions; plants were grown and
treated together, and care was taken to apply the stress
treatments consistently. It should be noted that all
treatments were sublethal to the plants. Arabidopsis
accession Col-0 is resistant to PstAvr, with PstAvr
causing a hypersensitive response, which occurred
within the first 12 h of inoculation. Bacterial growth in
plants treated with PstAvr between 12 and 24 h of
infection was not significant. In contrast, Arabidopsis
accession Col-0 is susceptible to Psm. Bacterial num-
bers increased 18-fold between 12 and 24 h after Psm
infection (Supplemental Fig. S2). By 72 h post inocu-
lation, the Psm-inoculated leaves were chlorotic and
eventually died.

For all treatments, harvested leaves were immedi-
ately extracted with solvents. To quantitatively com-
pare the pattern of ox-lipids in various stresses, the
amount of each ox-lipid detected in the precursor
scans was normalized to the signal of an internal
standard, 18:0/16:0 MGDG, and then divided by the
dry mass of the extracted tissue. A normalized mass
spectral signal of 1 indicates the same amount of signal
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Wounded, 15 min | | Figure 2. Treatments of 5-week-old
Wounded, 45 min | = wild-type Arabidopsis plants. Each
Wounded, 6 h | — bar represents five plants under a single
Unwounded | : treatment, except that in the freezing
treatment the plants were cold accli-
PstAvr, 12 h 0 NN mated (horizontally striped bar) at 4°C
before being gradually frozen (diago-
Psm, 12h i nally hatched bar); see “Materials and
MgClz, 12 h [ | RSP ] Methods.” For each treatment, the
Untreated, 12 h [ ] white bar at the left indicates normal
PstAvr, 24 h | ANNANANNNNNNANNNN] growth conditions, while patterned
Psm, 24 h | bars to the right indicate the stress
conditions. The far right end of each
MgClz, 24 h : b : bar indicates the harvegst point. The last
Untreated, 24 h I l two samples were controls intended to
4C 3h = identify any effects due to time of day at
' harvest. Total ox-lipid signals for all
22°C,3h — samples are shown in Figure 3. De-
4°C,27h LE tailed lipid profiles of the samples in-
22°C,27h [ ] dicated in boldface are shown in
Freezing (-8°C, 2 h) [T T Figure 4. Detailed profiles of the other
4°C. 84 h = samples are shown in Supplemental
' Figure S3.
Light, 11 h I ]
Dark, 9.5 h [ ]
Light cycle Jrosesnnannnan — rrrrnnnannn — s nannnnans B TTTTTI I —]
Plant age (days) 35 36 37 38 39
...... light = dark (T —
Oh 14 h 24 h

produced by 1 nmol of internal standard. A single
internal standard was used because of the impracti-
cality of obtaining internal standards similar in struc-
ture to each of the ox-lipid components. Normalizing
to the signal of an internal standard corrected for any
variation in response that might occur due to variable
ion suppression among samples. Because the amount
of mass spectral signal depends on the scan mode
employed and the ability of individual compounds to
undergo ionization and fragmentation, the normalized
signal can be considered only a rough estimate of ox-
lipid level (in nmol normalized to dry mass). Normal-
ized mass spectral signal per dry mass is an appropriate
value for comparison of ox-lipid species levels among
samples and for qualitative comparison of the levels of
various compounds within different samples.

Total Ox-Lipid Accumulation as a Function of Stress

The entire ox-lipid data set is available in Supple-
mental Table S5, as individual sample values, and in
Supplemental Table S6, as averages. Total ox-lipid
levels, represented by total bar heights in Figure 3A,
were similar in all control conditions. In addition, cold
acclimation at 4°C and infection with virulent patho-
gen Psm for 12 h did not produce significant changes in
overall ox-lipid amounts. Wounding produced a high
level of total ox-lipids (6.1 times the average basal
signal level) within 15 min, with decreased levels seen
at45 min and a further decrease at 6 h. PstAvr infection
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produced the highest levels of lipid oxidation (13.8
times the average basal level), but the ox-lipids were
produced much more slowly, with levels increasing
between 12 and 24 h of infection. Thus, as previously
shown by Andersson et al. (2006), an avirulent strain
of P. syringae was able to induce high levels of ox-
lipids. Although Psm damaged the plants severely,
infection with this pathogen for 24 h caused a rela-
tively small increase in total ox-lipid signal (2.0 times
the average basal level). Freezing also produced only a
very modest accumulation of oxidized membrane
lipids (1.2 times the average basal level). Per mg of
dry mass, the treatment producing the highest ox-lipid
mass spectral signal (PstAvr infection for 24 h) pro-
duced the same amount of mass spectral signal as 4.3
nmol of internal standard (18:0/16:0 MGDG), while
control samples, on average, produced approximately
the same amount of mass spectral signal as 0.5 nmol of
internal standard. In comparison, on average, the
normal-chain phospholipids and galactolipids in these
samples produced the same amount of mass spectral
signal as 259 nmol of internal standards. The entire
normal-chain lipid data set is available in Supplemental
Table S7, as individual sample values, and in Supple-
mental Table S8, as averages.

Patterns of Ox-Lipid Accumulation as a Function
of Stress

Figures 3 and 4 display key aspects of the ox-lipid
data. Figure 3 shows the ox-lipid levels during each
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Figure 3. Oxidized membrane lipid
levels following the treatments shown
in Figure 2. A, Total ox-lipids with colors
indicating classes. B, ox-PC. C, ox-PE.
D, ox-PG. E, ox-DGDG. F, ox-MGDG.
G, ox-acMGDG. In B to G, colors indi-
cate individual peaks detected by triple
quadrupole MS precursor scanning in
negative mode (Table II). The size of
each color-coded block represents the
quantity of the ox-lipid classes (A) or of
individual peaks 1 to 86 (B-C). Vertical
axes have different scales.

A Total ox-lipids

Normalized mass spectral signal/dry mass (mg)

Wounded, 15 min [ T[]

Wounded, 45 min

stress condition, emphasizing differences in amount
and compositional pattern. Each color within the bars
in Figure 3A represents the total signal from an ox-lipid
head group class. The components within each ox-lipid
class are shown in Figure 3, B to G. Compositional
patterns vary among stresses, with ox-MGDG and ox-
DGDG predominating in wounding stress, while ox-
acMGDG and ox-PG are more elevated in PstAvr stress.
More details of the ox-lipid changes during each stress
are described in the following sections.

Figure 4 shows the individual signals of each ox-
lipid under each stress condition (black bar height)
along with the average levels of oxidized polar lipids
in the 22°C control samples (i.e. average basal levels;
white bar height). Figure 4 indicates the changes that
are statistically significant at P < 0.05 after correction
for the false discovery rate. Data from control and
other samples with only low levels of ox-lipids are in
Supplemental Figure S3. Among the 22°C and 4°C
control samples, there were no significant differences
in levels of any ox-lipid. The mock-inoculated control
samples had just slightly elevated levels of several ox-
lipid species (Supplemental Fig. S3).

Patterns of Ox-Lipid Accumulation in Wounding

Wounding quickly induced a number of ox-lipids
(Figs. 3 and 4, A-C). Among ox-PC and ox-PE molec-
ular species, significant increases were observed for 4
and 5 (18:3-20-containing PCs), which increased ap-
proximately 4-fold at 15 and 45 min, respectively, after
wounding, while other ox-PC and ox-PE species were
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unchanged. PGs, DGDGs, and MGDGs containing
18:4-O and 18:3-20 fatty acyl chains were rapidly
induced. Ox-PG, ox-DGDG, and ox-MGDG species
that were induced at least 30-fold, and were highest at
15 min and lowest at 6 h, included 25 (for peak
information, see Table II), 18:4-O/16:1 PG; 26, 18:4-O/
16:0 PG; 34,18:4-O/16:0 DGDG; 37, 18:4-O/18:4-O
DGDG,; 42, 18:3-0/18:4-O DGDG; 47, 18:3-20/18:4-O
DGDG; 49, 18:4-0/16:4-O MGDG; 51, 18:4-O/18:4-O
MGDG,; 57, 18:3-20/16:4-O MGDG; and 59, 18:3-20/
18:4-O MGDG. Galactolipid species with two oxidized
acyl chains, 18:4-O/18:4-O DGDG (37), 18:4-O/16:4-O
MGDG (49), and 18:4-O/18:4-O MGDG (51), corre-
spond to the formulas for arabidopsides D, A, and B,
respectively. The other compounds, except 34 and 42,
were previously identified as OPDA- and /or dnOPDA-
containing species (for references, see Table II). Among
the rapidly induced group, 6 h after wounding, the
level of 18:4-O/16:4-O MGDG (49) was reduced to 15%,
while 18:4-O/18:4-O DGDG (37) was at 10% of its peak
level at 15 min after wounding.

Additionally, large quantities of ox-acMGDGs were
rapidly generated during wounding. Ox-acMGDG
levels were more stable than levels of nonacylated
oxidized galactolipid species containing multiple ox-
idized fatty acyl chains. Between 15 min and 6 h after
wounding, the level of the ox-acMGDG with the
highest signal (71) varied less than 20%; the 6-h level
was 1.1 times the 15-min level. Meanwhile, the signal
of the most abundant nonacylated ox-MGDG (49) at 6
h dropped to 15% of its 15-min signal. Thus, acMGDG
formed a larger fraction of the total ox-lipid species at
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Figure 4. Oxidized membrane lipids under stress conditions as quantified by triple quadrupole MS precursor scanning. A,
Wounded, 15 min. B, Wounded, 45 min. C, Wounded, 6 h. D, PstAvr, 12 h. E, PstAvr, 24 h. F, Psm, 24 h. G, Freezing (—8°C, 2 h).
Numbers along the top x axis refer to peaks/compounds in Table II. In each panel, the white bars denote the basal amount as
determined under the corresponding control condition: unwounded, for A, B, and C; MgCl,, 12 h, for D; MgCl,, 24 h, for Eand F;
and 4°C, 84 h, for G. The black bars denote the amount of each ox-lipid measured in each stress treatment. Both white and black
bars start at the x axis. The smaller of the white and black bars is “in front” of the other bar. Increments on the vertical scales of A
and B (below break) and C are the same; so are those on the vertical scales of D and E (below break). P < 0.05 (n = 5).

6 h (41%) than at 15 min (16%) after wounding, because
of its apparent stability in this time frame. The time
course for the formation of ox-MGDGs and oxidized
acMGDGs during wounding is shown in Supplemental
Figure S4A. In wounding, ox-acMGDG species corre-
sponding to arabidopsides E (18:4-O/18:4-0/16:4-O
acMGDG; a major component of 71) and G (18:4-O/
18:4-0/18:4-O acMGDG; 74) predominated among ox-
acMGDGs, but 25% to 30% of the overall signal detected
for ox-acMGDGs in wounding was due to previously
undetected species. Those significantly induced include
species with three oxidized acyl chains (82 and 84), with
two oxidized acyl chains and one normal chain (65, 66,
68, 69, 70, 72, 78, 80, and 85), and with only one oxidized
acyl chain (61). In wounding, the most abundant of the
“minor” acylated species (behind 71 and 74 in abun-
dance) was 18:4-0/16:4-O/16:0 acMGDG (66).
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Patterns of Ox-Lipid Accumulation in Bacterial Infection

Figures 3 and 4, D and E, show ox-lipids formed
upon infection with PstAvr, and Figure 4F shows the
ox-lipids formed upon infection with Psm. PstAvr
infection generated significant increases in 34 species
of ox-lipids at 12 h and in 63 species at 24 h, including
some ox-lipids in every class.

Three PC species that contain 18:3-O (2) and 18:3-20
(5 and 6) were induced significantly in PstAvr infec-
tion, while PE species containing both 18:3-O and 18:3-20
(13,14, 15, 16, and 18) were also increased. Interestingly,
16:0/18:2-20 PE, 18:3/18:2-20 PE, and 18:2/18:2-20 PE
(22, 23, and 24), which are present at low and similar
concentrations in all other treatments and controls,
decreased significantly at the 24-h time point of PstAvr
treatment as compared with the basal level.
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Every detectable ox-PG also increased in PstAvr
infection at 24 h. ox-DGDG species containing 18:4-O
(33-37) and 18:3-20 (43-47) species were increased,
while none of the ox-DGDG species containing 18:3-O
(38-42) were increased. Major nonacylated ox-MGDGs
containing 18:4-O (OPDA) or 16:4-O (dnOPDA; e.g.
48-51) were significantly increased. Twenty-six of the
27 ox-acMGDG species were significantly increased.
Besides 18:4-O0/18:4-0/16:4-O acMGDG (arabidop-
side E; a major component of 71) and 18:4-0/18:4-O/
18:4-O acMGDG (arabidopside G; 74), the species with
the highest signals included 18:4-O/16:4-O coupled
with 16:3, 16:0, 16:4-0O, 18:3, 18:1, and 18:0 (64 and 66-70,
respectively), 18:4-0/18:4-O/18:3 (72), and 18:3-20/
18:4-0/18:3 (85) acMGDGs. The time course for the
formation of ox-MGDGs and oxidized acMGDGs during
PstAvr infection is shown in Supplemental Figure S4B.

The nonacylated ox-MGDGs (49 and 51) with the
highest levels were slightly over twice as high at 24 h
after PstAvr infection compared with 12 h after infec-
tion. Even so, they were only 50% and 70%, respectively,
as high in PstAvr infection at 24 h as at the highest level
in wounding (15 min). Our observation of the prolonged
presence of nonacylated ox-MGDGs in PstAvr infection
was in contrast to the data of Kourtchenko et al. (2007),
who found that these species dropped to basal levels by
24 h after infection with avirulent bacteria.

In comparison, the levels of 71 (includes 18:4-O/
18:4-0/16:4-O; arabidopside E) and 74 (18:4-O/18:4-O/
18:4-O acMGDG; arabidopside G) increased about 4-
fold between 12 and 24 h after PstAvr infection. 71 was
more than 7-fold higher at 24 h after PstAvr infection
than at the highest level in wounding. The very high
induction of arabidopside E in avirulent bacterial in-
fection is consistent with the data of Andersson et al.
(2006) and Kourtchenko et al. (2007). However, similar
to their observation with 49 and 51, Kourtchenko et al.
(2007) observed that arabidopsides E and G (71 and 74)
peaked early and decreased by 8 h post inoculation. A
potential cause of the different results may be that, in
the work of Kourtchenko et al. (2007), leaf discs were
punched immediately following Pst inoculation and
were incubated in water until harvest, while in our
study, leaves remained on the plants until harvest. It is
possible that the continued production of oxidized
membrane lipids requires the tissues to be attached.

Psm infection showed a tendency to generate oxi-
dized complex polar lipids, but the amounts were much
lower than in wounding or PstAvr infection and no
increases for any molecular species were significant
(Figs. 3 and 4F). This occurred even though the plants
were seriously affected by Psm infection, and eventu-
ally, the infected leaves died. The time course for the
formation of ox-MGDGs and oxidized acMGDGs dur-
ing Psm infection is shown in Supplemental Figure S4C.

Patterns of Ox-Lipid Accumulation in Freezing

Ox-lipid profiles of leaves of plants subjected to
freezing at —8°C after cold acclimation are shown in
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Figures 3 and 4G. Freezing induced the formation of a
relatively low amount of ox-lipids. Only 18:4-O/16:4-O
MGDG (49) was significantly increased compared
with the cold-acclimated control (4°C, 84 h). This oxi-
dized galactolipid species increased 6.1-fold. Levels of
acMGDGs with oxidized acyl chains during freezing
were very low.

Other Stress-Associated Lipids

For comparison with ox-lipids, levels of several lipid
hydrolysis products were also determined. The time
courses of PA production in wounding, PstAvr infec-
tion, and Psm infection are shown in Supplemental
Figure 54, D, E, and F, respectively. Levels of lyso-
phosphatidylcholine (LPC), lysophosphatidylethanol-
amine (LPE), and phosphatidic acid (PA) for the various
control and stress treatments are shown in Supple-
mental Figure S5. Only two treatments, PstAvr (12 h)
and freezing (—8°C, 2 h), induced significant increases
in total LPC and LPE. PA was induced more than LPC
and LPE, with significant accumulation at each time
point in wounding, PstAvr, and freezing stress. In
PstAvr infection, PA accumulation occurred later than
did LPE and LPC. These data clearly indicate that
freezing stress was much more effective in producing
PA than in producing ox-lipids (Fig. 4 compared with
Supplemental Fig. S5).

DISCUSSION

Several trends in the profiles of the lipid metabolites
are apparent. First, there was a clear difference be-
tween the amount of stress induction of lipids origi-
nating in plastids (i.e. ox-PGs, ox-DGDGs, ox-MGDGs,
and ox-acMGDGs) and lipids originating in the endo-
plasmic reticulum (i.e. ox-PCs and ox-PEs). Levels of
extraplastidic ox-lipids (i.e. ox-PCs and ox-PEs)
changed subtly in response to the examined stresses,
while plastidic ox-lipid pools were highly responsive
(Figs. 3 and 4). Second, the acyl species in different
lipid classes differed. 18:4-O (consistent with being
OPDA) and 16:4-O (dnOPDA) were found only in the
plastidic lipid classes (PG, MGDG, DGDG, and
acMGDG), while 18:2-O and 18:2-20 were found
only in PC, PE, and PG (Table II; Supplemental Tables
S3 and S4). Fatty acyl chains with the formulas 18:3-O
and 18:3-20 were found in all the diacyl lipid classes.
acMGDG molecular species were very diverse (Sup-
plemental Table S4), although 18:4-O (OPDA) was
very prominent. In some cases, such as with 18:2-O
and 18:2-20, the limitation on distribution is likely
to be the limited distribution of the corresponding
normal-chain lipids (i.e. 18:2 is rare in galactolipids),
while in other cases, the distribution likely reflects the
localization of key enzymes in the oxidization reac-
tions; for example, OPDA is not found in PC and PE
because enzymes required for its formation, such as
allene oxide synthase, are plastid localized (Ferro et al.,
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2003; Vidi et al., 2006; Ytterberg et al., 2006). Third,
particularly for the plastidic lipids, the induced pools
were different compositionally from the basal lipid
pools (compare Figs. 3 and 4 with Supplemental Fig.
S3). This can also be seen in Figure 5, which summa-
rizes our findings. Basal pools were rich in diacyl
galactolipids with one oxidized acyl chain (Buseman
etal., 2006; Supplemental Fig. S3), while induced pools
were richer in ox-acMGDG and diacyl galactolipids
with two oxidized acyl chains (Buseman et al., 2006;
Fig. 4). Fourth, the induced pool composition varied
with time. For example, plastidic diacyl ox-lipids, as
exemplified by ox-MGDG (Supplemental Fig. S4),
were formed very rapidly in wounding stress, while
ox-acMGDGs were formed more slowly. These data
are consistent with the conversion of ox-MGDG to ox-
acMGDG by a transacylation reaction involving the
transfer of an acyl chain from MGDG to the 6-position
on the Gal of a second MGDG molecule, as demon-
strated in spinach (Spinacia oleracea) for normal-chain
MGDGs by Heinz (1967b). It appears that in Arabi-
dopsis, this reaction occurs preferentially between
oxidized galactolipid species rather than among the
total MGDG pool, although the data suggest that other
fatty acids found in galactolipids (particularly 16:0)
can be transferred. Fifth, the amount and composition
of the stress-induced pool depended on the stress
treatment (Figs. 3-5). Freezing induced relatively few
ox-lipids but strongly induced the production of PA
(Figs. 3-5; Supplemental Fig. S5). The molecular spe-
cies composition of PA induced in wounding was
consistent with its origin largely in PC, but the pres-
ence of small amounts of 18:3/16:3 PA in freezing and
PstAvr infection suggests an origin for this species in
MGDG, since the 18:3/16:3 acyl combination is not
found in phospholipids (Fig. 5; Supplemental Tables

Arabidopsis Leaf Ox-Lipids in Stress Responses

S7 and S8; Welti et al., 2002). This plastidic PA may be
formed by the phosphorylation of diacylglycerol gen-
erated from MGDG (Moellering et al., 2010). Wound-
ing rapidly induced high levels of plastidic ox-lipids,
particularly ox-MGDGs (Figs. 3 and 4), while in bac-
terial infection, acMGDGs were more prominent. The
fact that essentially the full complement of induced
polar lipids was produced in the first 15 min after
wounding may suggest that ox-lipids (and PA) are
produced mainly by the short-lived activation of
existing enzymes in the wounding response. This
situation contrasts with that during pathogen infec-
tion, in which ox-acMGDGs were very prominent and
more were formed in the second 12 h after bacterial
infection than in the first 12 h (Figs. 3-5; Supplemental
Fig. 54), suggesting either increased activation or
induction of the enzyme(s) involved in ox-acMGDG
formation.

In mammalian systems, specific oxidized membrane
lipids have been identified as regulators of many cell
types. Oxidized animal membrane lipids mediate both
beneficial and detrimental functions, including inflam-
mation, apoptosis, phenotype switching in smooth mus-
cle cells, and innate immunity (Deigner and Hermetter,
2008; Hazen, 2008). Specific ox-PCs regulate the expres-
sion of over 1,000 genes in endothelial cells (Gargalovic
et al., 2006; Berliner et al., 2009), and data suggest that
oxidized phospholipids act by binding specific receptor
proteins (Deigner and Hermetter, 2008).

In plants, oxidized membrane lipids may represent
alterations that have occurred to prevent oxidative
damage elsewhere in the cell, they may function as
mediators signaling stress responses, or they may be
long-term modifications that might function as stress
“memory” (Wang, 2004; Andersson et al., 2006;
Hisamatsu et al., 2006; Wang et al., 2006; Galis et al.,
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2009; Mene-Saffrané et al., 2009). Recent work by Mene-
Saffrané et al. (2009) suggested that ox-lipids are indeed
involved in preventing damage elsewhere in the cell.
These authors showed that nonenzymatic oxidation of
trienoic fatty acyl species, correlating with malondial-
dehyde production, reduced lesion spread in the oxi-
datively stressed disease-lesion mimic, acd2-2. Trienoic
fatty acids were implicated as reactive oxygen species
(ROS) sinks that reduce ROS levels and protect against
negative ROS effects in fungal infection and chronic
oxidative stress responses. The notion of ox-lipids as
signals is reasonable given the well-documented roles
of the oxidized free fatty acids found in membrane
lipids as signals via transcriptional regulation (Taki
et al., 2005; Sattler et al., 2006) and the stress-specific
induction of particular ox-lipids. The involvement of
intact oxidized membrane lipids in signaling is also
supported by their demonstrated biological activities.
For example, Andersson et al. (2006) showed that
18:4/18:4-0/16:4-O MGDG (arabidopside E; a major
component of 71) had greater bactericidal activity
than the same molar amount of OPDA. Hisamatsu
et al. (2006) showed that 18:4-O/16:4-O MGDG (arab-
idopside A; 49) promoted senescence in barley (Hor-
deum vulgare) leaves. However, recently, Seltmann
et al. (2010) showed that levels of six arabidopsides
(35, 37, 49, 51, 71a, and 74) were increased when
plants were placed in the dark for 3 d or subjected to
osmotic stress with sorbitol treatment, but arabidop-
side levels were not increased strongly by natural
senescence; these authors suggest that oxidized fatty
acids related to jasmonic acid may play only a sec-
ondary role in senescence.

Our data identify “ox-lipid signatures,” extending
the notion of the “oxylipin signature” and the working
hypothesis that these signatures reflect physiological
status and affect stress response (Weber et al., 1997;
Kramell et al., 2000). To better understand the impor-
tance and function of oxidized membrane lipids dur-
ing plant stress responses, the occurrence and timing
of specific ox-lipid species must be documented sys-
tematically. Our work here is a step toward that goal.
This work lays the foundation for further, ongoing
work aimed at associating the formation of specific
oxidized membrane lipids with the action of specific
gene products and with particular stress-response
phenotypes.

CONCLUSION

ESI MS/MS has previously been utilized as a quick
and quantitative strategy for profiling oxidized mem-
brane lipids (Buseman et al., 2006; Maeda et al., 2008,
Xiao et al., 2010). In this study, we demonstrated a
direct-infusion ESI triple quadrupole MS method that
detects oxidized membrane lipid species that include
ox-PC, ox-PE, ox-PG, ox-DGDG, ox-MGDG, and ox-
acMGDG, expanding the number of compounds pre-
viously characterized by Stelmach et al. (2001), Hisamatsu
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et al. (2003, 2005), Andersson et al. (2006), Buseman
et al. (2006), and Kourtchenko et al. (2007). In partic-
ular, the data indicate that the number of acMGDGs
(60-86 in Table II) is much larger than previously
described. The precursor scanning method takes 20 to
25 min to analyze each sample. Together with the ESI
triple quadrupole MS procedure for membrane lipid
profiling (Welti et al., 2002; Devaiah et al., 2006), this
analysis provides a useful foundation to investigate
the effects of abiotic and biotic stresses on plant lipid
profiles and the roles of various enzymes in response
to those stresses.

MATERIALS AND METHODS
Growth Conditions and Sampling for Stress Treatments

Arabidopsis (Arabidopsis thaliana) accession Col-0 seeds were sprinkled on
moist soil. The soil and seeds were placed at 4°C for 48 h before moving to a
growth chamber for germination. Seedlings were covered with a plastic dome
until transplantation. Seven days after germinating, two seedlings were
transplanted to each 3.5-inch-square pot. Plants were kept in a growth
chamber at a temperature of 22°C, humidity of 60%, and a photoperiod of
14/10 h at 100 umol m™~2 s~*. Twenty-eight days after transplanting, which
corresponds to 35 d (5 weeks) postgermination, plants were ready for
treatment (5 weeks old). Each treatment or control set contained three
randomly mixed pots (a total of six plants with five randomly chosen plants
used as biological replicate samples). Three leaves from each plant (leaf numbers
6,7, and 8) were sampled at each time point. For all samples, the leaves were cut
and immediately immersed in 3 mL of isopropanol with 0.01% butylated
hydroxytoluene (BHT) at 75°C for 15 min. Totals of 1.5 mL of chloroform and
0.6 mL of water were added, and samples were then stored at —20°C until
analysis.

Stress Treatments

Except for the low-temperature treatment, all treatments were applied on
leaf numbers 6, 7, and 8, where leaf number 1 is the first true leaf (Weigel and
Glazebrook, 2002). For wounding, a piece of paper tape was wrapped around
the lower side of the hemostat grip so that wounding was reproducible and
uniform. Each leaf was clamped perpendicular to the midvein in two places
about 2 cm apart. Leaves were sampled at 15 min, 45 min, and 6 h after
wounding. One unwounded set of plants was sampled at the same time as the
6-h time point set.

For bacterial treatment, suspensions of Pseudonionas syringae pv maculicola
and Pseudomonas syringae pv tomato DC3000 expressing the AvrRpt2 avirulence
gene at 107 cells mL™ " in magnesium chloride (10 mm) were infiltrated into the
abaxial surface of leaves of plants with a 1-mL syringe. The control (mock)
treatment was infiltration with 10 mm magnesium chloride. Leaves were
sampled 12 and 24 h after injection. Bacterial counting was performed on
additional simultaneously infiltrated plants (six for each condition) treated
identically to the plants used for lipid extraction.

In the low-temperature treatment, plants were cold acclimated at 4°C for 72
h before treatment in a freezing chamber programmed so that the temperature
dropped from 4°C to —2°C in 2 h (3°C h ™), stayed at —2°C for 2 h, dropped to
—8°C in 6 h (1°C h™"), and finally stayed at —8°C for 2 h. Freezing-treated
leaves were harvested after 3, 27, and 84 h of cold acclimation and after 2 h at
—8°C. Plants at 22°C were also harvested at each time point.

Bacterial Counts

For bacterial counting, the pathogen-inoculated leaves (6, 7, and 8) were
homogenized in a total volume of 1 mL of 10 mm magnesium chloride. Ten
microliters each of 10% 10°, and 10* dilutions were streaked on 1.5% King’s
agar plates containing appropriate antibiotics. PstAvr (strain PV288) was
streaked on plates made with rifampicin (50 pg mL™") and kanamycin (50 ug
mL"). Psm was streaked on plates made with streptomycin (100 ug mL ™).
Colonies were counted after incubation for 48 h in the dark at room temper-
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ature. The leaf homogenates were lyophilized, dried in an oven at 110°C, and
their masses were determined.

Lipid Extraction

Lipid extraction was carried out using a combination of procedures
described by Bligh and Dyer (1959) and Markham et al. (2006). Briefly, each
lipid extract in isopropanol with BHT, chloroform, and water (see “Growth
Conditions and Sampling for Stress Treatments” above) was transferred to a
new glass tube using a Pasteur pipette, leaving the leaves in the original tube.
Four milliliters of chloroform:methanol (2:1) was added to the leaves, the
samples were shaken for 30 min, and the solvent was transferred, combining it
with the first extract. The addition, shaking, and transfer steps were per-
formed totally four times. Finally, 4 mL of solvent H (the organic phase of
isopropanol:hexane:water [55:20:25, v/v]; Markham et al., 2006) was added to
the leaf material, the samples were incubated at 60°C for 15 min, and the
solvent was removed and combined with the previous extracts. This step was
performed four times, combining all extracts. Finally, the extracted leaves
were dried in an oven at 110°C, and the extracted dry leaf mass was
determined. The solvent was evaporated from the extract in a CentriVap
centrifugal vacuum concentrator (Labconco), and each sample was dissolved
in 1 mL of chloroform. Extracts were stored at —80°C.

Tissue Mass Determination

Extracted dry leaf mass (for extracted samples) and lyophilized leaf
homogenates (for bacterial counts) were weighed on a Mettler Toledo AX
balance that provided mass data to the nearest 2 ug. To determine precision, a
dried leaf sample was weighed seven times, indicating a mass of 4.095 mg
with a sp of 0.007 mg (0.17%). To determine accuracy, six brass weights with
official masses ranging from 1 to 20 g were weighed. The balance weighed, on
average, 0.17% (sp of 0.08%) too high. Taken together, these data indicate that
weighing dried leaf tissue was not a major source of error in quantifying the
compounds in the leaves.

Extracts Used for QTOF and FTICR MS Analysis and
Fractionation for QTOF Analysis

Crude extracts from all replicate samples of PstAvr (24 h) or wounding (15
min) treatment were combined for FTICR MS analysis. For lipid class
fractionation and QTOF MS, Arabidopsis accession Col-0 plants were grown
and infiltrated with PstAvr for 24 h as described above. Total lipid was bulk
extracted by the combined extraction method (Bligh and Dyer, 1959; Markham
et al., 2006). Total unfractionated lipid extract was used for QTOF analysis or
fractionation. Fractionation of lipid classes was carried out as described by
Buseman et al. (2006). Briefly, activated silicic acid (Unisil; Clarkson Chemical)
in chloroform was packed into a 1.5-cm-diameter column (40-mL column
volume). Total lipid extract from 150 mg of leaf dry mass in 15 mL of
chloroform was applied to the column, and the column was batch eluted in
five fractions: fraction 1, 200 mL of chloroform:acetone (1:1, v/v); fraction 2,
400 mL of acetone; fraction 3, 400 mL of chloroform:methanol (19:1, v/v);
fraction 4, 400 mL of chloroform:methanol (4:1, v/v); and fraction 5,800 mL of
chloroform:methanol (1:1, v/v). Each fraction was evaporated and redis-
solved in 15 mL of chloroform.

Triple Quadrupole MS Analysis of Ox-Lipids

Samples were prepared for mass spectral analysis by diluting a volume of
each unfractionated lipid extract (in chloroform) derived from approximately
0.2 mg of leaf dry mass. An internal standard, 2.008 nmol of 18:0/16:0 MGDG
(a component of hydrogenated MGDG; Matreya) was added to each sample,
and the sample was diluted such that the final volume was 1.2 mL and the
solvent composition was chloroform:methanol:300 mm ammonium acetate in
water (300:665:35, v/v/v). Scans for precursors of 291.2,293.2,295.2, and 283.2
(for the 18:0 component of the internal standard) were carried out in negative
mode using a triple quadrupole mass spectrometer (ABI 4000; Applied
Biosystems) equipped with an ESI source. The samples were directly infused
at 30 uL min~". For precursor scans, the parameters were as follows: collision
gas, 2 (arbitrary units); curtain gas, 20 (arbitrary units); ion source gases 1 and
2, 45 (arbitrary units); ion spray voltage, —4,500 V; source temperature, 100°C;
declustering potential, —100 V; entrance potential, —10 V; collision energy,
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—45 V; collision cell exit potential, —20 V; and interface heater “on.” Spectra
for precursors of 291.2, 293.2, and 295.2 were acquired from 700 to 1,150 m/z at 6
s per cycle for 65 cycles. The precursor spectrum for the internal standard (in1/z
283.2) was acquired from 800 to 825 m/z at 0.5 s per cycle for 65 cycles.

A custom Analyst “add-on,” supplied by Applied Biosystems and called
“MultiplePeriodProcessing,” was used to process and export data from
Analyst to Excel. Precursor spectra generated by the triple quadrupole MS
were smoothed by the software, with a smoothing option of 0.4 for previous
and next point weight and 1 for current point weight, and baseline subtracted
with a window width of 20 u. Peaks with intensity values lower than 50 counts
per second were removed before spectra were exported as peak lists. Once
exported, target m/z of peaks 1 to 86 were looked up in the appropriate
precursor spectra with an m1/z tolerance of +0.4 from the theoretical m/z for the
peak/compound listed in Table II. Peak intensity was corrected for isotopic
distribution of precursor ions minus the fragment ion (i.e. for isotopic
distribution within each spectrum).

Mass spectral signals (intensities) were normalized to the signal for 2.008
nmol of internal standard,18:0/16:0 MGDG, as its [M + C,H;0,] " ion. 18:0/16:0
MGDG is an unnaturally occurring lipid species that was added as an internal
standard to the portion of the sample being analyzed. The mass spectral signal
was normalized by the following formula: (mass spectral intensity of each lipid
molecular species X amount of the internal standard in nmol) + (mass spectral
intensity of the internal standard). Thus, a signal of 1 is the same amount of
signal produced by 1 nmol of internal standard, 18:0/16:0 MGDG. Finally, the
data were corrected for isotopic overlap due to the fatty acyl portions (fragment
ions), adjusted to account for the fraction of sample analyzed, and normalized
to the sample dry mass to give the “normalized mass spectral signal per dry
mass.” No corrections for varying mass spectral response to the various
molecular species were applied. The calculated data are appropriate for direct
comparison among samples. Samples were initially analyzed as soon as
extraction was complete; however, extended storage at —80°C of samples
containing BHT (added at the first step of the extraction), followed by
reanalysis, suggests that most ox-lipids are quite stable.

Triple Quadrupole MS Analysis of Normal-Chain Lipids

Samples were prepared for mass spectral analysis by diluting a volume of
each unfractionated lipid extract (in chloroform) derived from approximately
0.2 mg of leaf dry mass. Precise amounts of internal standards, obtained and
quantified as described previously (Welti et al., 2002), were added as de-
scribed by Xiao et al. (2010). The sample and internal standard mixture was
combined with solvents, such that the ratio of chloroform:methanol:300 mm
ammonium acetate in water was 300:665:35, and the final volume was 1.2 mL.
Sample introduction was as for ox-lipids. Sequential precursor and neutral
loss scans of the extracts were carried out as described by Xiao et al. (2010),
except that only limited m/z ranges around the target m/z values of the
analytes and internal standards were scanned. The scan speed was 100 mass
units per second. For each spectrum, 20 to 150 continuum scans were averaged
in multiple channel analyzer mode. The spectral data were smoothed and the
baseline subtracted. Peaks with intensity values lower than 50 counts per
second were removed, peak areas integrated, and data exported as peak lists.

The LipidomeDB Data Calculation Environment (Zhou et al., 2011) was
used to locate target compound peak data, deconvolute isotopes, and
quantify lipids in each class in comparison with the two internal standards
of that class (Briigger et al., 1997; Welti et al., 2002). Correction for chemical
and/or instrumental noise was performed as described previously (Xiao
et al., 2010). Finally, the data were corrected for the fraction of the sample
analyzed and normalized to the sample “dry weights” to produce data in
nmol mg .

QTOF MS Analysis

PstAvr 24-h infection extract and fractions from its silicic acid column
separation (described above) were dissolved in chloroform at a concentration
of 10 mg dry tissue mass mL™". For product ion analysis, aliquots were
combined with solvents (chloroform:methanol:300 mmM ammonium acetate in
water, 300:665:35 [v/v/v]) so that the final concentrations were 0.33 to 2.5 mg
leaf dry mass mL ™.

Spectra were acquired on an MDS SCIEX/Applied Biosystems QStar Elite
hybrid QTOF MS apparatus (Applied Biosystems), with daily calibration of
the instrument using a lipid standard mixture. Samples were introduced by
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continuous infusion into the ESI source at a rate of 30 uL min~! using the
integrated Harvard syringe pump. MS/MS product ion scans were carried out
in negative ionization mode, with individual fragmentation of anions of
oxidized PC, PE, PG, DGDG, MGDG, and acMGDG intact lipid species that
had been detected from triple quadrupole MS precursor scans. PC species
were analyzed by fragmentation of [M + C;H;0,]” ions in the unfractionated
extract. PE and PG species were analyzed by fragmentation of [M - H] ™ ions in
the unfractionated extract and silicic acid-separated fraction 5. MGDG and
DGDG species were analyzed by fragmentation of [M — H]™ and/or [M +
C,;H;0,]” ions in the unfractionated extract and, additionally for MGDG
species, silicic acid-separated fraction 2. acMGDG species were analyzed by
fragmentation of [M + C;H;O,]” ions in the unfractionated extract and silicic
acid-separated fraction 1. The resultant acyl anion fragments allowed the
identification of acyl moieties in intact lipids. The ion spray voltage was set at
—4.5 kV, the source temperature at 150°C, the curtain gas at 25 (arbitrary
units), and the ion source gases at 20 and 30 (arbitrary units). The declustering
potential was —80 V, the declustering potential 2 was —15 V, and the focusing
potential was —300 V. The collision gas, nitrogen, was set at 4 (arbitrary units),
and the collision energy ranged from 40 to 70 V. For each precursor ion,
product ion data were collected over the range of m/z 100 to 1,150, resulting in
300 to 1,800 cumulative scans during an acquisition for 5 to 30 min. Data were
collected and smoothed using Analyst QS 2.0 software. Accurate masses of the
product ions were determined to ten thousandths of a mass unit.

FTICR MS Analysis

Accurate m/z data were collected using small m/z windows, which opti-
mize sensitivity (Southam et al., 2007). Briefly, samples at a concentration of
0.014 mg dry mass mL~! were analyzed using direct-infusion ESI on an LTQ
FTICR hybrid linear quadrupole ion trap FTICR mass spectrometer (Thermo
Finnigan). The ESI source was operated in positive mode with a spray voltage
of 2.8 kV, a tube lens offset of 140 V, and a capillary temperature of 200°C. The
instrument was calibrated using an automatic routine based on a standard
calibration solution containing caffeine, peptide Met-Arg-Phe-Ala, and Ultra-
mark 1621 (all products of Sigma-Aldrich). The 700 to 1,200 m/z range was
divided into multiple 30 m/z selected ion monitoring intervals with 5 m/z
overlaps at both ends. Each interval was scanned for 2 min (approximately 10
scans) using a selected ion monitoring MS target automated gain control value
of 2 X 10° accumulated ions with a resolution of 500,000 at m/z 400. FTICR
mass spectra from individual scans within a mass interval were averaged
using Xcalibur 2.0 software, and peaks with average counts greater than 1,000
were exported to Excel 2010.

Statistical Analysis

Significance was determined at P < 0.05, after correcting for the false
discovery rate, using Excel 2010. Comparisons were between stress samples
and their controls.mass units
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Supplemental Table S4. Simplified designations of acMGDGs (60-86).

Supplemental Table S5. All data: ox-lipids under treatments.

338

Supplemental Table S6. Averages and sps: ox-lipids under treatments.
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