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ABSTRACT  

History has shown that epidemics can occur at random and without warning — devastating 

the populations which they impact.  As a preventative measure, modern medicine has helped 

to reduce the number of diseases that can instigate such an event, nevertheless natural and 

man-made disease mutations place us continuously at risk of such an outbreak.   

As a second line of defense, extensive research has been conducted to better understand 

spread patterns and the efficacy of various containment and mitigation strategies.  However, 

these simulation models have primarily focused on minimizing the impact to groups of people 

either from an economic or societal perspective and little study has been focused on 

determining the utility maximizing strategy for an individual. 

Therefore, this work explores the decisions of individuals to determine emergent behaviors 

and characteristics which lead to increased probability of survival during an epidemic.  This is 

done by leveraging linear program optimization techniques and the concept of Agent Based 

Simulation, to more accurately capture the complexity inherent in most real-world systems via 

the interactions of individual entities.   

This research builds on 5 years of study focused on rural epidemic simulation, resulting in 

the development of a 4,000-line computer code simulation package.  This adaptable simulation 

can accurately model the interactions of individuals to discern the impact of any general 

disease type, and can be implemented on the population of any contiguous counties within 

Kansas.  Furthermore, a computational study performed on the 17 counties of northwestern 

Kansas provides game theoretical based insights as to what decisions increase the likelihood of 

survival.  For example, statistically significant findings suggest that an individual is four times 

more likely to become infected if they rush stores for supplies after a government issued 

warning instead of remaining at home.   

This work serves as a meaningful step in understanding emergent phenomena during an 

epidemic which, subsequently, provides novel insight to an individual’s utility maximizing 

strategy.  Understanding the main findings of this research could save your life.
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1 – INTRODUCTION  

As a popular genre of the American entertainment industry, apocalyptic based movies and 

books depicting outbreaks of disease leading to the extinction of almost all human life are 

common.  To support the storyline there is always an individual or small group which manages 

to not only survive the infection but also to evade those of whom the chaos and death has 

dissolved away all morality.  In the movie I AM LEGEND, as the only survivor in the New York City 

metro area actor Will Smith had faced survival odds of roughly 1:20,000,000; although 

fictitious, a real-world analogy is that of the bubonic plague in Europe, where in some cities and 

villages survivors represented as little 20 percent of the original populations (Alchon, 2003).   

The ability of few to survive while the vast majority perishes begs the questions:  How?  

Why?  Are the survivors genetically immune?  Are they simply stronger and healthier?  Maybe 

they received better treatment after becoming sick and managed to recover?  Or did the 

decisions that they make allow them to live?  This work explores the decisions of individuals to 

determine emergent behaviors and characteristics which lead to an increased probability of 

survival during a pandemic.   

1.1 – EPIDEMICS  

Disease is believed to have plagued all forms of life for almost as long as life has existed; 

evidence in support of this is provided in the fossil record of a bird dated at over 90 million 

years old (Zimmerman & Zimmerman, 2003).  An unknown number of infectious diseases exist 

and have been studied in various capacities for centuries.  Variations exist in the disease 

pathogen — virus, bacterium, fungus, prion, or parasite — as well as in the available 

treatments, morbidity and mortality rates, and transmissibility — airborne, direct contact, 

indirect contact, or via a carrier agent.  The immeasurable combinations of these and other 

factors has made understanding and developing protection against disease a tedious and 

ongoing process, with most progress having been made in the last century of human history. 

While disease is a constant aspect of life, massive outbreaks of particular strands occur 

intermittently, impacting huge numbers of individuals and loom as a realistic basis to a true 

apocalypse.  These pervasions of disease throughout a species become an epidemic and the 
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diffusion of an epidemic over a large geographic area, typically a continent, becomes a 

pandemic.  This work focuses on disease transmission and the individual preventative measures 

that can be taken during an epidemic, and formally defines such as an outbreak of a disease 

that spreads more quickly, extensively, and devastatingly among a group of people than would 

normally be expected.   

Much effort in understanding the spread of epidemics has been undertaken and largely 

focuses on the mitigation strategies available to government agencies (Carlyle, 2009), (Bisset, 

Feng, Marathe, & Yardi, 2009), (Ferguson, et al., 2006), & (Scoglia, et al., 2010).  Balancing the 

financial impact and moral qualms of preventative strategies ranging from school closings to 

quarantines against the likelihood of contagion and death is a common focus.  These studies 

began with aggregate mathematical models ignoring spatial distributions (Hyman & Stanley, 

1988) & (Lloyd, 2001) and have evolved to computer simulations (Tsai, et al., 2010) & 

(Premashthira, Salman, Hill, Reich, & Wagner, 2011) that accurately model such an event.  

However, consideration of disease transmission from an alternate perspective — that of the 

individual and how their decisions both bring about exposure and facilitate disease spread — is 

a novel concept that this work helps to further.  Understanding the basic unit of an epidemic, 

the individual, is a key step to prevention. 

While not a preventative measure, consider this treatment based analogy of the then 

state-of-the-art medical treatment applied to George Washington when he was suffering from 

a sore throat and respiratory illness. This analogy exemplifies the importance of correct 

decisions to the individual.  Unknowingly doctors administered what was a toxic mercury based 

tonic via mouth and direct injection.  This was followed by the ingestion of a poisonous white 

salt, application of caustic poultices, the inhalation of vinegar vapors, and the draining of almost 

half of his blood.  This combination of treatments resulted in perspiration, vomiting, skin and 

throat blistering, burned lungs, and eventually death.  What was likely brought on by 

pneumonia or a similar infection was exacerbated by decisions based on an incorrect 

understanding of the disease (Zimmerman & Zimmerman, 2003).  This parallels current lack of 

understanding in regards to epidemics; for example, after an outbreak, should the decision of 
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an individual be to isolate themselves or flee?  How will this decision compiled with those of 

others impact society? 

Consider this example of the best reaction for an individual which resulted in the worst 

case scenario for society:  the siege of Kaffa by Tartars in 1347.  After disease decimated the 

besieging army of Tartars, in a final act of rage before withdrawing, they catapulted infected 

bodies into the city.  Fearing infection, the residents fled to Italy unknowingly bringing the 

sickness along.  Although Italian officials recognized the onset of plague and attempted to 

isolate the refugee carrying ships, infection spread.  Within a year the pandemic, now 

understood to be a combination of bubonic and pneumonic plague, had spread to as far north 

as England and as far east as Germany.  When it finally ended the European population of some 

40 million had been reduced to less than 15 million (Bugl, 2001).   

Now consider this example from the alternate perspective:  society’s best reaction at the 

expense of the individual.  After the plague became widespread on the mainland, Italian 

officials would isolate entire households having even a single inhabitant with symptoms of 

illness.  In these situations the healthy were left to become infected, and even in cases where 

these individuals never succumbed to sickness the fear of contagion was such that the healthy 

were left trapped within their homes to die from lack of food and water (Bugl, 2001). 

It is apparent that not always does the best case scenario for society translate into the best 

outcome for an individual, nor does the cumulative best reaction of individuals necessarily lead 

to the best case scenario for society.  Indeed both anticipating the collective decisions of 

individuals and understanding the implications of a government-led response are fundamental 

for an appropriate mitigation strategy.  For example, if the government quarantines an area 

with the expectation that local medical staff will administer the requisite treatments, will the 

manpower to provide such care remain available or will the medical staff prioritize personal 

health and family over that of society?   

From the perspective of an individual, understanding how certain traits influence decisions 

and alters the likelihood of infection and survival is fundamental to optimizing personal utility 

during an epidemic.  For example, consider how the forethought — or paranoia — of an 
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individual to stockpile supplies against a perceived apocalypse could enable isolation of the 

individual decreasing the likelihood of encounters and subsequently, infection.  This work 

explores these and other questions regarding epidemics through the use of simulation. 

1.2 – SIMULATION  

Frequently, problems arise which are too complex to define mathematically, unethical to 

examine via experimentation, or cost prohibitive to study by either technique.  To better 

understand the elements of such a scenario, simulation is frequently utilized.  As the lead time 

for creating an accurate and specific simulation is significant, it is necessary to create a general, 

hypothetical situation beforehand and apply the knowledge gained if an epidemic or similar 

outbreak were to occur.  As such, these generalized scenarios are built upon numerous, 

research-backed assumptions. 

Computer simulations follow a prescribed sequence of equations bundled into various 

subroutines.  Generally, these subroutines serve as a hypothetical representation of a subset of 

the issue in question; the output of each is collated to represent a single iteration of the 

simulation. The development of the equations is partially stochastic, to depict the inherent 

randomness of the actual system, and partially based on various assumptions and parameters.  

Through research, the assumptions and parameters applied can be more formally defined 

adding to the robustness of the simulation.  After multiple iterations of the simulation, 

statistical significance is achieved and the simulation output is applicable in real-world 

situations.   

1.2.1 – SIMULATION APPLICATIONS 

Computer simulation is applicable to the vast number and variety of domains in which 

insight of complex systems is desired.  Such use occurs in the study of natural systems including 

the domains of physics, chemistry, and biology; and human systems:  economics, social science, 

engineering, and psychology.  This breadth of applicability implies common, everyday use as is 

indeed the case; specifically, practical applications include flight simulators, weather 

forecasting, logistics systems, traffic engineering, computer games, and industrial process 

design, among many others (Drake, 2003).  
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1.2.2 – AGENT BASED SIMULATION 

Many recent advances in simulation research have incorporated a technique known as 

Agent Based Simulation (ABS).  ABS is an increasingly utilized technique which enables 

researchers to more accurately capture the complexity inherent in most real-world systems by 

studying the interactions of individual entities.  These interactions result in patterns or 

emergent phenomena:  the ability to discern such is the main benefit of ABS.   

For example, consider that a traffic jam which results from the interactions between 

individuals vehicles may grow in the opposite direction of the movement of the vehicles causing 

it.  The counterintuitive nature of emergent phenomenon makes such occurrences difficult to 

predict and understand.  Since ABS takes the bottom-up approach it enables researchers to 

avoid forming assumptions based on what they expect the outcome to be and instead leverage 

known rules on which the individual entities base decisions.  The concept of emergence is 

discussed further in the following chapter, and additional detail is available in Holland (1998). 

Epidemic simulation is not the only field in which ABS is applied.  Applications vary from 

small and straightforward, typically seeking to determine the most relevant features of a 

system based on idealized and easily interchangeable assumptions, to the large and specific, 

typically intended for the support of broad, real-world policy questions constructed from actual 

data.  Example applications range from air traffic control optimization (Folcik, et al., 2011) to 

urban crime analysis (Malleson, 2009) and even modeling molecular self-assembly within the 

chemistry domain (Troisi, Wong, & Ratner, 2005).   

1.3 – RESEARCH MOTIVATION 

The National Bio- and Agro-Defense Facility (NBAF) is a state-of-the-art biocontainment 

facility currently under construction on the Kansas State University campus in Manhattan, 

Kansas — the location where this research was conducted.  This facility is to replace the Plum 

Island Animal Disease Center (PIADC) as the national research center for the study of foreign 

animal, emerging, and zoonotic diseases that threaten animal agriculture and public health 

(Department of Homeland Security, 2012).   
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This facility will study a variety of agents including the most dangerous and exotic diseases 

which each pose a high risk of aerosol transmitted laboratory infections, are severe to fatal in 

humans for which vaccines or other treatments are not available, and other hemorrhagic 

diseases necessitating the highest containment level:  biosafety level 4.  Specifically, diseases 

which this facility will study include the Hendra Virus, African Swine Fever, Foot and Mouth 

Disease, and Contagious Bovine Pleuropneumonia, among others (Department of Homeland 

Security, 2012). 

There are concerns about NBAF’s ability to never allow a containment leak largely due to 

multiple such occurrences at the isolated PIADC during its existence (Department of Homeland 

Security, 2012).  As NBAF will study dangerous and highly-infectious zoonotic agents — diseases 

which can be transmitted from animals to humans — this research explores the decisions which 

will assist local residents in surviving a containment breach if one were to occur.   

Furthermore, this research takes an alternative approach to typical epidemic modeling.  

Traditional approaches must make assumptions as to what behaviors will be successful, from 

which the patterns exhibited by society can be studied and society’s best response to an 

outbreak identified.  Whereas this work leverages ABS to first look to the individual and from 

their interactions identify the emergent patterns.  This approach allows for the various 

behaviors and traits that individuals can exhibit to be analyzed and linked with successful 

outcomes.  Additionally, through game theoretic methodologies, the equilibria resulting from 

the cumulative decisions of society can be determined, which allows for alternate, superior 

individual actions to be identified.   

As the researcher, his friends, and family live in close proximity to NBAF, the motivation for 

this work is of a personal nature.  For this reason, optimizing the decisions of the individual in 

an epidemic scenario by leveraging the most advanced form of all applicable technologies is the 

focus of this work. 

1.4 – RESEARCH CONTRIBUTIONS  

This work is the result of five years of associated research concerning the optimization of 

epidemic mitigation strategies in rural areas.  As such, the simulation package developed for 
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this paper addresses deficiencies noted in earlier models and includes a number of novel 

implementations.   

One such improvement is the application of ABS which executes a linear program for each 

agent at certain decision points to optimize their choice under individualized constraints.  Not 

only does this technique leverage complex strategies to find the best available decisions, but it 

looks from the individual’s perspective as opposed to that of society.  This serves as an 

alternative to the popular approach of optimizing a government’s mitigation strategy; with the 

findings helping to fill the resultant knowledge void. 

Another improvement is the incorporation of decisions points throughout the model to 

closely approximate the available decision set in the real-world.  The decision structure is 

constructed such that the primary decision influences secondary decisions which in turn 

constrain the available tertiary decisions.  An additional set of global decisions are also available 

and dependent on the specific characteristics of the individual.  This work also incorporates 

census based population and geographic data, to approximate the actual densities and spatial 

separation of the counties in Kansas included in this study.  These elements, coupled with the 

use of adjustable disease characteristics and programmable disease transmission methods, 

allow for the accurate replication of a disease in a real-world setting.  

In terms of modeling techniques, there are various additional contributions provided by 

this work, with more detail included within the subsequent discussion.  The advanced 

simulation package created from the combined utilization of these novel techniques allows for 

the accurate determination of general equilibria strategies that are applicable to real-world 

scenarios; with this knowledge an individual can optimize their decision during an epidemic.  

For example, key findings suggest that an individual is four times more likely to become 

infected if they rush stores for supplies after a government issued warning instead of remaining 

at home.  Furthermore, during a looting scenario, regardless of whether an individual loots 

expensive items or supplies necessary for survival, their likelihood of infection increases over 

ten-fold as compared to the decision to remain at home. 
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1.5 – DISCUSSION OUTLINE  

The following chapters provide additional detail regarding the topics introduced, the 

simulation on which this work is based, and the insights garnered from analysis of the output 

data. 

Chapter 2 supplements the reader’s knowledge on relevant topics and highlights particular 

items of note.  Discussion is provided on the mathematical modeling of epidemics, the 

simulating of epidemics, considerations regarding ABS, and relevant topics concerning decision 

and game theory. 

Chapter 3 describes the simulation structure, including considerations regarding the 

contact network and decision optimization methodology, and details all major computations 

and applications of theory.  Within this section the analysis of the simulation results is 

presented and summary output provided.   

Chapter 4 introduces the computational results of this research in detail.  Specifically, the 

data that indicates the specific characteristics and decisions which increase the propensity of 

survival are appraised.  The implications of various equilibria situations based on game 

theoretical inferences of emergent societal trends is also supplied. 

Chapter 5 reviews the qualitative and quantifiable results of this research while providing 

closing thoughts concerning this work.  Recommendations for the application of techniques 

utilized herein to related studies are offered, with closing comments summarizing proposed 

extensions to this research.  
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2 – BACKGROUND INFORMATION  

This research builds upon the foundation provided by decades of work in the areas of 

epidemic modeling and simulation, ABS, decision theory, and game theory.  This chapter 

provides an overview of these topics to insure the requisite understanding and highlight 

particular ideas that were leveraged in this research.  

The first section of this chapter introduces the topic of mathematically modeling the 

spread of infectious diseases, with background information on graph theory provided.  The 

second section describes the particulars of epidemic simulation and discusses considerations 

typically made when doing such.  The third section discusses the concept of ABS, highlighting 

the benefits of utilizing such a technique as well as providing example applications.  This 

chapter concludes with brief discussions on both decision and game theory.  

2.1 – MATHEMATICALLY MODELING EPIDEMICS 

The theoretical and technical foundation to simulating is the incorporation of various 

mathematical models.  This section provides the necessary background on such topics as 

applied in this work, beginning with an overview of graph theory as applied to epidemic 

modeling and including discussion on contact networks.    Additional detail on this topic can be 

found in the work of (Bisset, Feng, Marathe, & Yardi, 2009).   

2.1.1 – EPIDEMIC MODELING WITH GRAPH THEORY  

Graph theory is a computational technique applied to a variety of problems ranging from 

determining the pronunciation of a language based on rhyming corpus (Sonderegger, 2010), to 

optimizing the effectiveness of a health care system (Da Gama Torres, Poley Martins Ferreira, & 

Pacca Loureiro Luna, 2006).  Simulating the spread of an epidemic through a population is 

another common application of graph theory.  When doing such, a contact network         

is developed, where the population of   individuals is represented by the vertex set    

             and the edge set                 represents the   interactions between 

individuals.  An edge is defined as a set of two vertices           , with the likelihood of the 
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disease spreading between individuals   and   is represented by weighting the edge       with 

the probability     (Carlyle, 2009). 

When considering indirect infection from one individual to another, such as if a 

contagious person was to contaminate an area that a susceptible person subsequently visits, 

directed graphs are commonly utilized.  A directed graph follows the definition of a contact 

network provided above, replacing the edges with arcs.  Formally, the directed contact network 

        consists of a set of   vertices where                and a set of   arcs,   

             , where an arc is the ordered set of two vertices        .  This formulation 

enables the existence of an arc from the first visitor to an area, individual  , to the second, 

individual  , where the probability of passing the infection is represented by the arc weight     

and can be different than the weight    . 

A special form of a graph which frequently arises in the application of graph theory to 

epidemic modeling is a clique or complete graph.  This is a graph in which every vertex is 

adjacent to each other vertex.  A clique,     is a graph of   vertices with edges    {     }  

                .  Cliques consist of ( 
 
)  

      

 
 edges.  An example application of a 

clique in epidemic modeling is provided in the subsequent discussion. 

2.1.2 – CONSIDERATIONS FOR AN ACCURATE CONTACT NETWORK 

Modeling the spread of a disease throughout a population requires the consideration of a 

multitude of factors.  These include spatial and temporal separation as well as differences in 

how the disease impacts individuals and at what stage each individual is in the disease 

progression.  Developing an accurate simulation therefore is based on including these factors in 

the creation of appropriate contact networks.   

2.1.2.1 – SPATIAL AND TEMPORAL SEPARATION 

To address how the dimensions of space and time can separate individuals and impact 

disease spread, models are first constrained within an (x,y) coordinate system.  This coordinate 

system is populated with the individuals in question where each is assigned a location.  

Parameters constrain the movements of individuals, and for a given time segment the initial 
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and final coordinates of each individual are stored as points           and          , 

respectively.  Time is represented by iterating this coordinate system and the movement of 

individual   is stored as the line segment   ̅̅ ̅̅
  connecting the individual’s starting and ending 

locations.  Encounters between individuals can then be determined by the intersection, or 

approximation, of these line segments during each time period, where the set of 

encounters,     is such that           (     )     ̅̅ ̅̅
    ̅̅ ̅̅

 .   

Since the encounters an individual experiences can change every time segment, the 

contact network must be a continuously updated, directed clique with the disease’s 

transmission calculated at the end of each iteration.  This is modeled by updating the original 

contact network with edge weights               .  Disease transmission can then be 

simulated as is discussed in the following section.  

2.1.2.2 – SIMULTANEOUS, SEQUENTIAL DISEASE STATE MODELS 

SSDSM is a technique which enables researchers to account for where an individual falls 

within the different stages of a disease’s progression, the different classes of individuals, and to 

what extent an individual exhibits symptoms.  Examples of the stages of a disease include 

HEALTHY, EXPOSED, CARRIER, DORMANT, RECOVERED/DEAD and follow a prescribed, sequential pattern 

according to the particular disease and individual.  Simultaneously, the exhibition of symptoms 

by individuals is tracked allowing for variation in the degree to which symptoms can be seen.  

Throughout this process the classifications of susceptibility as well as infectious or non-

infectious are stored (Newman, 2002). 

A HEALTHY, EXPOSED, RECOVERED (HER) Model is a basic example of sequential disease state 

modeling.  Individuals are initialized in the healthy stage and can only progress to the next by 

becoming infected.  This occurs if an individual   is classified as SUSCEPTIBLE and encounters an 

individual   classified as INFECTIOUS, after which a random number is generated that is greater 

than the edge weight     .  The individual   then remains in the EXPOSED stage of the model for a 

prescribed period of time before progressing to the next.  Simultaneously, the symptomatic 

classification of the individual can progress from asymptomatic to a particular degree of 

symptomatic, according to the disease and individual.  The final state of the model, RECOVERED, 
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typically represents an individual that can no longer become infected and is either RECOVERED 

AND IMMUNE or DEAD.   

2.2 – SIMULATING EPIDEMICS  

To understand the implications of a scenario in which the problem is too complex to 

define mathematically or unethical to conduct via experimentation, simulation is frequently 

utilized.  Understanding and optimizing the survival decisions of an individual during an 

epidemic is a situation meeting both these criterions. 

Coburn, Wagner, & Blower (2009) examine simulation studies conducted on H1N1 and 

other influenza strains to gain insights as to the impact and effectiveness of mitigation 

measures if such an epidemic were to occur.  Researchers compare the R0 of past epidemics to 

that of H1N1 and, based on simulated findings, determine the feasibility of various containment 

strategies.  Researchers conclude by identifying the need for new simulation models which 

incorporate additional biological complexity.  For example, understanding the disease 

transmission dynamics in bird, pig, and human populations as they occur simultaneously is 

necessary to effectively identify appropriate interventions and pandemic preparedness 

planning. 

Longini, et al. (2007) model the effects of a bioterrorist release of smallpox in a structured 

urban population through the use of a stochastic simulation.  Modeling their 50,000 node 

connectivity graph after survey data collected on Portland, Oregon, the researchers were able 

to closely approximate the average clustering coefficient — the degree to which the 

populations are clustered into close mixing groups — and the mean shortest path between 

these clusters.  Researchers also collected disease parameter estimates and other information 

from a panel of smallpox experts.  This utilization of real-world and expert-backed data has 

resulted in general findings that can be applied if such an event were to occur. 

Easton, Carlyle, Anderson, & James (2011) use simulation to explore the impact of an 

epidemic to a small, rural Kansas town.  Citing much prior work in understanding how an 

infectious disease may spread in an urban center, the researchers perceived a lack of 

knowledge in how the different behaviors of rural individuals may impact disease spread:  such 
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as the tendency to more frequently travel longer distances by car.  A generic simulation 

package was created in which the impacts of various possible government-led mitigation 

strategies were explored.  

While the application of simulation to epidemic modeling is popular, it is only one of 

many application domains.  For example, Wong-Ekkabut, et al. (2008), apply simulation to 

explore the translocation of fullerene clusters through a lipid membrane and to understand the 

impact of high fullerene concentrations on membrane properties.  Due to the difficulty of 

isolating the impacts of nano-sized fullerene molecules, simulation was selected as the most 

appropriate investigative tool.  Lee & Lam (2008) employ computer simulation to a physical 

system to determine the effectiveness of alternate methodologies in heat transfer while drilling 

a geothermal heat pump.  As the physical properties of the system components were known or 

easily and accurately approximated, computer simulation was a more cost effective method as 

compared to performing a statistically significant set of physical experiments. 

2.3 – AGENT BASED SIMULATION  

A refinement to traditional simulation techniques, ABS is an emergent methodology that 

enables researchers to more accurately capture the complexity inherent in most real-world 

systems.  The application of ABS to epidemic simulation is one such area.  This section provides 

an overview of this technique, with additional information available in Bonabeau (2001) and 

additional examples of applications available in the research of Macal & North (2006).   

2.3.1 – FUNDAMENTALS OF AGENT BASED SIMULATION 

ABS divides the system under study into a collection of agents, which fundamentally, are 

entities capable of making independent decisions.  While more precise definitions of agents 

vary, the following are characteristics which are typically employed and that have been 

assumed for this work: 

 Agents are discrete units; each with a set of individual characteristics that can vary 

between entities.  Agents belonging to the same classification can have a set of shared 

characteristics. 
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 Agents are autonomous, decision-making entities that are capable of functioning 

independently from their environment and others. 

 Agents are located within a structured environment in which they interact with other 

agents and their surroundings.  They are capable of perceiving information specific to that 

which they interact and responding accordingly.   

 Along with their characteristics, agents are governed by a simple set of rules which 

constrain their decisions and actions.  

 Agents are flexible:  able to adapt their behavior based on feedback from their 

environment as they seek to achieve an objective.  In some cases, agents are able to 

modify their governing rules based on their actions and associated feedback (Macal & 

North, 2006). 

2.3.2 – BACKGROUND OF AGENT BASED SIMULATION 

ABS is a computationally intensive procedure; as such the concept which was formed in 

the late 1940’s did not reach popularity until the 1990’s.  This interdisciplinary tool has 

theoretical basis rooted in the same fields it serves, borrowing elements from complex systems, 

systems science, computer science, management science, game theory, emergence, 

computational sociology, evolutionary programming, and traditional modeling and simulation.  

As its conceptual foundation is the idea that systems are built from bottom-up, ABS is most 

closely related to the field of Complex Adaptive Systems (Macal & North, 2006). 

2.3.2.1 – COMPLEX ADAPTIVE SYSTEMS 

Complex Adaptive Systems (CAS) are a special case of complex systems, which explores 

the biological systems properties of adaptation and emergence.  Study in CAS is focused on 

determining the appearance of complex behaviors in nature which are brought about by the 

coalescence of actions from the simple, autonomous agents that make up the system.   

The idea of adaption consists of an agent’s ability to learn based on its interactions and 

alter subsequent behavior accordingly.  This is evident in the biological sense when you 

consider how an organism fits itself to the environment over the short-term, and how a species 

evolves to best exploit its environment over the long-term.   
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Emergence is the concept of much coming from little.  Consider a board game, such as 

chess, which is governed by a set of simple rules.  The fewer than two-dozen basic rules give 

rise to a vast level of complexity.  This complexity should not be confused with randomness; 

rather it reflects the available patterns that can arise as constrained by the governing rules.  

Based on this and specific to the system in question, emergence can take the form of a single 

preeminent pattern, multiple discernible patterns, or so many patterns as to appear random 

(Holland, 1998). 

As pioneer in the field of CAS, John Holland has worked extensively in defining the various 

properties of such a system, and as CAS is the foundation to ABS, these properties and 

mechanisms are the basic structural principles of such simulations (Holland, 1995): 

 Aggregation:  The generalization of related entities into a single classification; for 

example, each vehicle in a parking lot is an independent unit, yet collectively all vehicles 

can be grouped into the identifying set, vehicles, and share the same basic properties. 

 Nonlinearity:  The concept that the whole is not equivalent to the sum of the parts, as is 

the case in linear equations; this invalidates the option of simple extrapolation.  

Conversely, these nonlinear systems account for the interactions of dissimilar variables 

whereby the sum of the parts is greater than the whole. 

 Flows:  The transfer and transformation of resources, including information, between the 

agents of the system.  Considerations of this principle include the multiplier effect, what 

impact introducing an additional agent has on the system, and the recycling effect, what 

impact enabling the reuse of resources has on the system. 

 Diversity:  As agents interact and alter their governing rules based on their individual 

learnings, the evolution of these agents can lead to increasing distinction within a single 

classification of entities. 

 Tagging:  The mechanism associated with distinguishing the various elements from their 

aggregate groupings. 

 Internal Models:  A consistent environment from which the interacting agents can 

rationally perceive how their actions led to the corresponding outcome. 
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 Building Blocks:  The idea that the decomposition of a complex system results in simple 

parts that can be combined and utilized in various ways; an example is that of facial 

features — eyes, nose, mouth, etc. — which could be separated, mixed up, and 

recombined in the manner of building blocks (Ferraioli, 2006). 

2.3.3 – BOIDS  

A simple yet effective example of ABS is the Boids simulation, where a Boid is an ABS 

entity representing a single member of a flock of birds.  Created by Craig Reynolds, this early 

application of ABS simulates the flocking patterns of birds, and nicely demonstrates how the 

interactions of autonomous agents governed by a simple set of rules exhibits emergence.  Each 

simulated bird navigates according to its perception of the local, dynamic environment as 

constrained by the following movement rules: 

1. Cohesion:  attempt to stay close to nearby boids; 

2. Alignment:  attempt to match the velocity of nearby boids; and 

3. Separation:  attempt to avoid collisions with nearby boids (Reynolds, 1987). 

After several iterations, the movements of this leaderless flock become reflective of a 

coordinated migration system.  These simple, decisions rules inferred from the local 

environment and individualized decision making leads to two observations on ABS:  (1) 

sustainable patterns can emerge from systems regulated by basic, deterministic rules inferred 

from local information, and (2) emergent patterns can be highly sensitive to the initial 

environment (Macal & North, 2006). 

2.3.4 – APPLICATIONS OF AGENT BASED SIMULATION 

As understanding of ABS has improved, the application of this modeling technique has 

grown in terms of both number of works and application domains. Furthermore, many 

researchers have argued that it is the only technology available that can accurately account for 

the complexity that arises from the individual interactions and behaviors that are inherent 

aspects of these systems.  Recent research in the areas of human social systems, physical 

systems, and biological systems has utilized ABS.  When ABS is applied to the study of 

epidemics, concepts are borrowed from applications in each of these domains.  
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The following are cases which argue that ABS is the superior modeling technique for the 

corresponding domain and specific question addressed.  This discussion provides insight to the 

spectrum of ABS applications and prefaces an overview of ABS as applied to epidemic modeling. 

2.3.4.1 – HUMAN SOCIAL SYSTEMS 

Charania, Olds, & DePasquale (2006) utilize ABS as a tool to examine the viability and 

predict various possible scenarios for a future market in sub-orbital space tourism.  Agents are 

defined as the stakeholder entities of the industry, consisting of consumers, producers, and the 

government.  Each agent provides or demands a specific set of products and services according 

to their preferences, interacts with other agents and their environment based on a constraining 

set of behaviors, and seek to maximize their profit or utility accordingly.   

2.3.4.2 – PHYSICAL SYSTEMS 

Van Dam, Lukszo, Ferreira, & Sirikijpanichkul (2007) apply ABS to the negotiation process 

involved in determining the location of intermodal freight hubs, specifically road-rail 

interchanges.  It was determined that ABS is superior to the alternative, multi-objective 

decision analysis, since it more accurately captures the preferences of individual actors.  In this 

work agents are comprised of hub operators, terminal operators, infrastructure providers, hub 

users, and communities, each with a decision factor that guides their actions. 

2.3.4.3 – BIOLOGICAL SYSTEMS 

Folcik, et al. (2011) address the biological system application of ABS in their work to 

analyze the dynamic communication network of the immune response.  In this model, agents 

represent leukocytes and tissue cells structured within an environment of organ tissues, 

lymphoid tissues, and blood.  The infection of these virtual tissues by cytokines, chemokines, 

and pathogens occurs according to the program specifications, setting off a signal which the 

agents respond to according to logic rules.  With the intent of designing effective therapeutic 

interventions, network topologies and the histories of successful and failed agent interactions 

are analyzed. 
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2.3.4.4 – EPIDEMIC MODELING 

Ferguson, et al. (2006) combine concepts from human, physical, and biological systems 

modeling in their application of ABS to pandemic influenza mitigation.  Researchers use high-

resolution population density and travel pattern data of and between the United States and 

Great Britain to construct their simulation environment structure.  Accurately modeling this 

physical system allows them to explicitly model disease transmission.  Researchers then 

consider the interactions of individuals within the household, the general community, and in 

schools/workplaces; household quarantines, border restrictions, and school closings are 

available decisions that impact transmission within each of these settings.  The understanding 

of this human system aspect allows researchers to identify the effectiveness of each mitigation 

policy.  R0 — the number of individuals a single, infected agent is likely to contaminate — is also 

considered and sensitivity analysis conducted over the likely range of values.  This incorporation 

addresses the biological systems aspect and further bolsters the efficacy of this simulation.  

2.4 – DECISION & GAME THEORY  

In ABS, entities repeatedly choose between multiple alternatives as they seek to optimize 

an objective.  These decisions are based upon the agent’s stored knowledge and governing 

rules.  Since decision and game theory are concerned with selecting the best action from a set 

of alternatives, these topics are frequently applied within an ABS.   

2.4.1 – DECISION THEORY 

When the outcome and subsequent payoff is dependent on the inherent randomness of 

nature, decision theory should be applied. The basis of decision theory is the assumption that 

nature does not care whether the individual is happy or not.  A basic decision theory model is a 

payoff matrix with rows representing the various alternatives that can be chosen and columns 

as the possible resultant states of nature.  Each state of nature has a corresponding probability 

that represents the likelihood of its occurrence, where the probabilities sum to one.  Payoffs 

are typically denoted in terms of utility as defined by a utility function.  A more detailed 

introduction to decision theory can be found in Peterson (2009). 
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There are multiple strategies on which an individual can base its decision; common 

techniques include Expected Value, Maximin, Maximum Likelihood, and Regret Analysis.  

Expected Value is the most common tactic by which individuals select the alternative where the 

sum of each payoff multiplied by its probability of occurring is maximized.   

Maximin is pessimistic approach where the individual expects nature to position them in 

the worst possible state after their alternative is selected.  This decision examines each 

alternative and selects the strategy that guarantees the highest minimum payoff.  Maximum 

Likelihood focuses on the probabilities associated with each state of nature.  For the most likely 

resultant state, individuals select the alternative that provides the highest payoff.   

Regret Analysis takes an alternative approach by first transforming the payoff matrix to a 

regret matrix.  Each value in a regret matrix represents the amount of forgone payoff for that 

state of nature if instead the optimal alternative would have been chosen.  The strategies of 

Expected Value, Maximin, and Maximum Likelihood, among others that are applicable to a 

payoff matrix can also be applied to a regret matrix. 

2.4.2 – GAME THEORY 

As an expansion to decision theory, where the focus is concerned with understanding 

decisions against nature, game theory is the study of optimizing decisions versus an intelligent 

opponent.  Formally, game theory is the study of mathematical models of conflict and 

cooperation between intelligent, rational decision makers.  Key assumptions are that players 

have perfect information, are rational, and are able to compute with perfect accuracy.  The goal 

of game theory is to understand the general principles explaining how and why individuals or 

organizations interact as they make decisions seeking to maximize personal utility.  McCain 

(2010) provides additional insight to the field of game theory. 

2.4.3 – NASH EQUILIBRIUM 

The primary theoretical tool to analyze a game is Nash equilibrium (Madani, 2010).  Nash 

equilibrium is a state in which, given a set of decisions representing the decision of every 

player, any single player cannot change their decision and improve their payoff.  Thus, Nash 
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equilibrium occurs when each player is playing the best response given every other players 

decisions are fixed.   

Nash equilibrium is to be applied to finite, non-cooperative games by two or more players 

and can be a mixed strategy whereby individuals choose an alternative based upon a 

probability distribution.  For example, if the equilibrium state for society is to isolate 

themselves at home during the initial stages of an epidemic, an individual can use this 

knowledge to understand that the risk of an encounter if they were to leave in search of 

supplies is lower before other households begin to exhaust their stockpiles. 

2.4.4 – PARETO OPTIMALITY 

A second general principle commonly explored in game theory is Pareto optimality.  Along 

with Pareto optimality, consideration is given to Pareto improvements and Pareto dominated 

decision sets.  A Pareto improvement occurs when, given a set of decisions for a group of 

players, there exists another set of decisions where all players are at least as well off and at 

least one player has improved their payoff; in this case the initial decision set is considered 

Pareto dominated.  When no additional Pareto improvements can be made to a decision set, 

that decision set is considered a Pareto optimal solution.  This solution, in contrast to Nash 

equilibrium, does not necessarily reflect equality between players but is simply a point of 

efficiency.   

For example, in a hostile encounter between two parties during an epidemic scenario, 

with both parties having guns, hand to hand fighting would be a Pareto dominated decision set.  

As hand to hand combat greatly increases the probability of obtaining the disease, a Pareto 

improvement could be made transitioning the groups to the decision set of using their guns and 

staying at a distance.  This solution would then be considered Pareto optimal, as no superior 

strategies exist. 

2.4.5 – APPLICATIONS OF DECISION & GAME THEORY  

From their original application in understanding the behaviors of firms, markets, and 

consumers in economics, decision and game theory have since been applied to the study of 

human and animal behaviors in a multitude of scenarios.  Some domains of application include 
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political science (Landa & Meirowitz, 2009), computational economics (Tesfatsion, 2008), 

resource economics, and biology, as briefly overviewed to provide a frame of reference in the 

following section. 

2.4.5.1 – TRADITIONAL APPLICATIONS 

In the field of economics, research typically models a game as an abstraction of a 

particular economic situation; phenomena of study include auctions, duopolies, oligopolies, 

voting systems, agent based computational economics, behavioral economics, and information 

economics.  Madani (2010) applies game theoretical techniques to the study of water resource 

conflicts.  Alternative techniques such as optimization methods are founded on assumptions 

that are not always accurate; in contrast, the game theory approach allows for the prioritization 

of an individual’s objectives over that of society which allows for the identification of such 

instigating behaviors  

Evolution is a common study of game theory in the biology domain, to the point where 

the study of evolutionary game theory has developed into its own field.  Models of such games 

typically use a standardized level of evolutionary fitness as the payoff, resulting in such a level 

of explanatory success that Maynard Smith, an early researcher in this field, stated 

“[p]aradoxically, it has turned out that game theory is more readily applied to biology than to 

the field of economic behavior for which it was originally designed.” (McKenzie, 2009) 

Melbinger, Cremer, & Frey (2010) apply evolutionary game theory to study growing 

populations by analyzing the growth dynamics and internal evolution of the population in 

contrast to the common approach of focusing on the relative fitness benefits from different 

mutations.  This combination of traditional evolutionary game theory with common models of 

population dynamics allows the researchers to consider the dilemma of cooperation within 

these populations and provide an alternative process to explain population growth than 

previous models.    

2.4.5.2 – EPIDEMIC MODELING 

As the application of game theoretical techniques continues to expand into new domains, 

it has become apparent that epidemic modeling is one such application area.   
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Reluga (2010) explores the impact of social distancing practiced in response to an 

epidemic, in terms of game theoretical methodologies.  Social distancing practices can reduce 

the severity of an epidemic and are a result of the collective decisions of individuals.  Since the 

effectiveness of social distancing depends on the extent to which individuals practice the 

strategy and since individuals must weigh the drawbacks of isolating themselves against the 

less tangible benefits of avoiding infection, its usefulness as a control measure can be limited.  

Through game theory, researchers identify equilibria strategies from which they determine how 

individuals can best use social distancing.   

Schimit & Monteiro (2011) study the implications, from a game theoretic angle, of 

personal vaccination decisions on public health.  Researchers create a contact network 

structured as a probabilistic cellular automaton on which they analyze the propagation of a 

contagious infection when combated by various vaccination strategies.  The model is designed 

as a game in which the players consist of the cost and perceived-risk minimizing government 

and the susceptible newborns whose decision to vaccinate is prohibited until neighboring 

individuals become infected or when the government promotes an immunization program.   

2.5 – CHAPTER SUMMARY 

New and innovative techniques are continually applied to progress research in epidemic 

planning preparedness and mitigation strategies.  Combining the foundations provided from 

the mathematical modeling of infectious diseases and epidemic simulation with the strategies 

of ABS and game theory is a natural next step in this frontier.  The combination of these 

elements allows for the variety of factors inherent in disease spread; the subtleties presented 

from the intertwined environmental structure of human, physical, and biological systems; and 

the interactions of individuals resulting in the emergence of equilibria states, to be more 

accurately addressed.  This concatenation allows for the best available representation of a real-

world scenario.  The following chapter presents the simulation design considerations 

undertaken to integrate these features and serves as the basis to this work. 
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3 – AGENT BASED EPIDEMIC SIMULATION  

This work builds upon the knowledge gained from five years of research concerned with 

the optimization of government-led, epidemic mitigation strategies in rural areas.  Prior 

research has highlighted two key areas in need of more comprehensive examination, which this 

work addresses:  (1) to more accurately emulate a real-world scenario; and (2) to understand 

how an individual can exploit knowledge of the equilibria resulting from the cumulative 

decisions of others.  As such, the objectives maintained throughout the development of this 

simulation package consist of the following: 

 to expand on the functionality of earlier models by incorporating the most advanced 

epidemic modeling techniques; 

 to explore alternate approaches that decrease the number and magnitude of modeling 

assumptions necessary; and 

 to understand how the decisions and interactions of individuals can influence global 

equilibria. 

The remainder of this chapter contains discussion pertinent to each of these three 

objectives.  Specifically, the first section describes the incorporation of ABS to epidemic 

modeling and linear programming for decision optimization.  Discussion on simulation core 

considerations is provided, background on decision attributes is supplied, and applications in 

the areas of goal setting, movements, and encounters serve as illustrative cases to relate the 

discussion and conclude the section.  The second section details the considerations and 

strategies governing disease propagation.  This consists of an overview of the disease 

properties assumed for this work and discussion on the disease transmission methodology of 

the simulation package. 

3.1 – AGENT BASED SIMULATION:  INTELLIGENT DECISION MAKING 

When modeling a scenario, to accurately understand emergent patterns from the 

collective interactions of a group of individuals it is necessary to employ ABS.  This allows for 

the relaxation of various assumptions necessary in traditional models.   
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For example, instead of creating a probability that two individuals come into contact with 

each other based on some distance parameter as compared to a random number, ABS allows 

for the daily decisions of each individual to be made based upon their current circumstances 

and memory of past events.  From this, a step by step travel path for each individual is 

constructed and the determination of an encounter is based on the intersection of those travel 

segments at a particular time.  The next section provides additional examples of ABS while 

overviewing the core structure specific to this simulation package.  

3.1.1 – SIMULATION CORE STRUCTURE 

The structure of this simulation is based on the concepts of ABS discussed in Chapter 2.  

This section provides detail on prominent ABS considerations incorporated into this simulation 

package, beginning with an overview of the consistent environment which facilitates the flow of 

resources between agents.  This is followed by discussion on the basic unit to which the system 

was decomposed into:  the agent.  In this simulation, agents are discrete, autonomous units 

that are located within an environment and characterized by individual traits, some of which 

are updatable according to the agent’s past experiences.  An agent is defined as the family or 

sub-family unit in question, according to prior decisions of the family, and is composed of the 

individuals making up the group.  An example of a sub-family unit would be the group that left 

the home location in search of supplies.  This section ends with discussion on fundamental 

considerations involved in creating a simulation.  Specifically, discussion on the management of 

both running time and memory is provided as is related to advancing simulated time. 

3.1.1.1 – ENVIRONMENT  

This work incorporates census based population and geographic data, to approximate the 

actual densities and spatial separation of the counties and cities included in the scope.  From 

this data, a realistic environmental structure following an (x,y) coordinate system is created to 

govern the agent’s interactions.  When considering directional travel from a point, 0 to 360 

degrees is defined clockwise corresponding to a particular heading where 0 degrees represents 

north, 90 degrees east, and so forth.    
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The environmental structure is created by randomly distributing the home locations for 

each family making up the city’s population within a grid of equivalent size to that city’s true 

land area.  If the individual lives in a rural area, then their home location is assigned randomly 

within the boundaries of the county.  Each city is then assign individualized characteristics 

which can fluctuate over time, disease progression, and the decisions of its residents; these 

attributes are factored into the decisions of residents.   

For example, the current level of EMERGENCY SERVICES provided in a city is an aggregation of 

police, fire, paramedic, hospital, as well as other, similar services.  This variable is dependent on 

the number of emergency response workers available, and can influence an individual’s 

decision to stay at their home or flee the city for fear of such events as rioting and lack of 

medical care if they were to become sick.  Other city-level statistics, such as the number of 

individuals in each health state, are tracked and utilized.  More detail on city-level decision 

parameters is provided in the section 3.1.2.1. 

The simulation environment also contains locations within the coordinate system known 

as STOCKPILES.  These are locations that are significant to agents as they may contain stockpiles of 

supplies and have a level of defensibility associated with them, allowing them to serve as a safe 

home location.  A STOCKPILES’ level of defensibility is known as its FORTIFICATION.  Dependent upon 

its type and past raids, a STOCKPILE may contain FOOD, WATER, GENERAL SUPPLIES, MEDICAL SUPPLIES, 

WEAPONS, AMMUNITION, VEHICLES, and/or FUEL.  A specialized type of STOCKPILE is a hospital, and if 

the EMERGENCY SERVICES of its home city are still in operation an agent can receive medical help at 

that location.  As these locations attract agents, multi-agent encounters can occur at stockpiles 

while only one-on-one encounters are possible elsewhere.   

There are three classifications of STOCKPILES:  a vacant person’s home, typically having low 

levels of supplies and relatively high FORTIFICATION; an occupied person’s home, with its supplies 

dependent on the occupying family and its FORTIFICATION added to the family’s strength during 

an encounter with an attacking family; and a store, which depending on its type has varying 

levels of FORTIFICATION and supply levels.  Examples of stores represented by stockpiles include 



26 

 

grocery stores, gun shops, hardware stores, car dealerships, gas stations, pharmacies, and 

hospitals.   

When the simulation is initialized, each agent is assigned a home STOCKPILE.  An agent can 

choose to leave their home location by carrying out the DAY STRATEGY:  FLEE.  Agents choose to do 

this in response to high prevalence of infection or rioting in their city.   It should be noted that 

during the DAY STRATEGY of STAY HOME agents can choose to expend GENERAL SUPPLIES in an effort to 

increase their home STOCKPILE’S FORTIFICATION.  The decision to do this is based on recent 

encounters at their home and their level of GENERAL SUPPLIES. 

3.1.1.2 – AGENT POPULATION 

The main component of this simulation package is the agent population.  Every individual 

making up the population of the counties in the modeling area has specific characteristics.  

Since it can be assumed that in an epidemic scenario the noteworthy actions of an individual 

are shared with that individual’s family, memory spanning two weeks into the past is stored for 

each family unit.  Based on 2010 census figures of average household size, this enables a 

population 2.5-times what would otherwise be constrained by memory limitations to be 

simulated (United States Census Bureau, 2011).   

As such, over 56,000 individuals are simulated as agents, with the decision making 

processes of each facilitated by over 75 individualized variables in addition to the dozens of 

global variables shared by multiple agents.  Besides location, the main differentiating 

characteristics between families when the simulation is initiated are their level of morality; risk 

tolerance; ability to remain calm; propensity to hoard goods in anticipation of some such 

disaster; their level of FOOD, WATER, GENERAL SUPPLIES, MEDICAL SUPPLIES, WEAPONS, AMMUNITION, 

VEHICLES, and FUEL; and differences resulting from the aggregation of family member traits such 

as strength, eating/drinking rate, and overall health.   

After multiple iterations of the simulation, the major differentiating factor between 

families are the memories gained from the decisions that each family has made.  For example, 

some of the histories stored include current supply level, knowledge of the disease severity, 

happiness of a particular day’s strategy, which direction a search party left in, the success of 
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that search party, and the location of any stockpiles encountered during the trip.  More detail 

on the parameters associated with agents is provided in the section 3.1.2.1. 

3.1.1.3 – TIME ADVANCE 

As this discussion has shown, when utilizing ABS a multitude of decisions points are 

incorporated throughout the model:  this allows for the close approximation to the decision 

sets available to individuals in the real-world.  This simulation package is configured as a two-

tier time advance system.  This brings about the evaluation of many more decision points 

during the execution of particular scenarios than would otherwise be possible.   

The first tier parallels the advancement of days, during which agents begin by deciding 

their DAY STRATEGY.  This is essentially a response to the agent’s perception of the situation and 

governs all subsequent actions for the remainder of the period.  At the end of each of these 

periods output data is recorded; family characteristics, such as the consumption of FOOD and 

WATER, are updated; the health status of individuals is updated according to what was 

consumed and, if infected, how the disease has deteriorated their health; and memories are 

updated.  More detail on how memories are updated is provided in the discussion of the 

following section. 

The second tier represents subdivisions that each day is portioned into; these are referred 

to as TIME SEGMENTS.  The number of TIME SEGMENTS per day can be adjusted to decrease run time 

or, conversely, to increase the number of decision points.  This work uses a time period of 30 

minutes.   

The primary use of second tier time advancement is to model the more rapid occurrence 

of decisions involved during certain DAY STRATEGIES.  For example, during each of these TIME 

SEGMENTS agents can decide to begin or end their search, and may experience an encounter or 

find a stockpile.  Depending on what happens during the preceding TIME SEGMENT, an agent can 

alter its course of action.  More discussion on this topic is provided in section 3.1.2.4. 
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3.1.1.4 – DIAL’S IMPLEMENTATION 

As a consideration to running time management, the conceptual basis to Dial’s 

implementation is applied to updating agent histories.  Conventionally, Dial’s implementation is 

utilized in algorithms seeking the shortest path between an origin and destination node.  Dial’s 

decreases solving time in such an algorithm by eliminating the need to find the minimum (Dial, 

Glover, & Karney, 1979).   

In this simulation package, the memories of all agents are updated at the end of each day.  

Each agent has historical knowledge of 27 different items, which are stored in arrays as values 

spanning the two week length of an agent’s memory.  For example, the memory of what DAY 

STRATEGY was performed is stored as a character in the first memory array, 

                             , where each character represents a possible DAY STRATEGY.  

The standard process of updating such an array would be to erase the memory from two weeks 

ago, stored as      ; shift all memories back a day,                     ; and insert the new 

DAY STRATEGY into today’s memory slot,     .  This process must be performed for all agents every 

day, requiring a non-trivial amount of time.   

Dial’s provides an alternate process.  Instead of maintaining today as day 0 and shifting all 

memories down a day, a global variable is stored that tracks the current memory day.  This 

allows for today’s DAY STRATEGY to replace that from two weeks ago directly.  This methodology 

creates additional coding difficulty when calculating averages for a memory array and 

performing similar tasks, however the decrease to running time outweighs these drawbacks.  

Variations of this concept are applied throughout this simulation package, such as when all 

members of a family die.  In this instance the deceased family is switched with the last family of 

the FAMILIES array and no longer included in the program’s execution. 

As has been shown, this simulation package must replicate the decision process of all its 

constituent agents a massive number of times, each occurrence of which dozens of factors may 

have to be evaluated.  This presents issues with running time and sufficient memory, not to 

mention the requisite coding.  However, the largest obstacle is approximating the optimal 

decision as the human brain would.  The following section discusses the application of integer 
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programming to the optimization of decisions, with examples provided to illustrate significant 

instances.   

3.1.2 – DECISION OPTIMIZATION 

There are a large number of decisions available to agents, largely constrained by that 

agent’s past decisions and influenced by a variety of individual and global factors.  Each of these 

different decisions falls into a specific category based on the types of variables and parameters 

being examined.  As such, there is a multitude of different methodologies for determining the 

agent’s choice.  Notable decision categories along with an example implementation are 

provided as follows:   

 The evaluation of a small set of family traits:  for example, when comparing morality and 

risk tolerance against a parameter value in the decision to split the family if a family 

member becomes sick. 

 The assessment of parameters resulting from prior decisions:  for instance, the calculation 

of the benefit associated to an additional unit of food is based upon the previous 

decisions of how many people to include in the search party and how much food is 

already packed. 

 The examination of the agent’s memory:  as in the decision on what minimum strength a 

search party should have to avoid losing an attack if one were to occur based on the 

strength of groups encountered in the past. 

 The execution of algorithms to solve integer programs:  for example, weighing the benefit 

of a particular supply against the lost capacity from carrying it.  

 Various combinations of these techniques:  such as the decision of what good to trade 

and the subsequent haggling and price setting when conducting a neutral trade with 

another group of individuals.   

Decisions of varying magnitude occur throughout an agent’s day, the following discussion 

provides an example of key instances in the order that an agent would execute the decisions 

during a day.  This discussion is prefaced with a detailed discussion of the major decision 

parameters.  Following that the primary decision of an agent – what strategy to follow for the 
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day – is outlined.  The third section discusses an application of integer programming in the 

agent’s selection of gear to take with a search party.  The two succeeding sections then 

introduce necessary information travel decisions and on the novel shape, the recellipse, 

discussing its formulation and use.  This is followed with detail on the evaluation of options 

during an encounter.  Discussion is concluded with an overview of the decision process involved 

in haggling during a neutral, exchange encounter.  

3.1.2.1 – DECISION ATTRIBUTES 

There are a multitude of parameters which influence the decisions of agents.  These can 

be categorized into four main groups:  (1) constant global parameters; (2) cumulative global 

parameters, representing the summation of agents portraying a particular trait; (3) constant 

individual parameters; and (4) updatable individual parameters.  Discussion on each is provided 

in the following. 

3.1.2.1.1 – CONSTANT GLOBAL PARAMETERS 

Constant global parameters are in place to either define the environment and/or 

represent characteristics of the particular simulation run, such as what disease is being 

modeled.  These values can be altered between runs for sensitivity analyses but do not change 

after being initialized.  Parameters defining the environment consist of the locations for and 

number of counties, cities, and stockpiles; the populations of counties and cities; and the 

number of families.  When agents die their individual traits are stored but not evaluated.  As 

such separate variables for the living populations are tracked but the initial populations are 

necessary to access the information of the deceased.    

Parameters defining the disease characteristics include the percent of individuals that 

typically have immunity, methods of disease transmission, the different disease states, and the 

amount of time spent and levels of infectiousness for each state.  The distance over which the 

virus can be transmitted to another is an additional parameter that can be accepted when 

modeling airborne transmission.  Although all of these parameters can influence the best 

strategy for an individual, understanding all of the various combinations and resulting strategies 
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is a massive undertaking.  Therefore, the scope of this work is to understand the best strategies 

under the different disease transmission methodologies, holding all other parameters constant. 

3.1.2.1.2 – CUMULATIVE GLOBAL PARAMETERS 

Cumulative global parameters are either used to trigger an event or represent the current 

status for a city.  Those that trigger a status change essentially represent the summation of 

agents meeting a particular designation.  These are stored at the city level and include the 

number of agents in each disease state, the number of agents that are emergency personnel 

and working, the number of agents that are emergency personnel and no longer working, and 

analogous counts for regular workers.   

The parameters which represent a city’s status consist of the level of GOVERNMENT ACTION, 

whether a city is POWERED, and the level of EMERGENCY SERVICES.  GOVERNMENT ACTION consists of 

government alerts, school closings, work closings, martial law, and quarantines.  These events 

influence the decisions of agents in the impacted city.  MEDIA COVERAGE works similarly by 

increasing a family’s INFORMATION LEVEL but it is the same for all agents regardless of their city.  

When, for example, the number of emergency personnel that are no longer going to work 

drops below a threshold value, then that city is classified as not having any EMERGENCY SERVICES.  

Similarly, the ratio of the regular workforce determines whether the city has POWER or not.  

Equations evaluating the number and percent of individuals that have become sick or are 

showing symptoms of illness increase both GOVERNMENT ACTION and MEDIA COVERAGE. 

3.1.2.1.3 – CONSTANT INDIVIDUAL PARAMETERS 

Constant individual parameters are family traits that influence decisions.  These are 

ubiquitous to this simulation package, influencing the outcome of almost all decisions.  As such 

this work concentrates on understanding how variations in these values impact the likelihood 

of survival.  These values differ between agents but are constant once initialized. 

Some of these parameters track family composition and structure.  Examples of these 

include the initial family size, and those that store the traits of individuals:  AGE CLASSIFICATION, 

GENDER, WORKING STATUS, JOB TYPE, and BASE STRENGTH.  AGE CLASSIFICATION designates whether the 

individual is a child, adult, or elderly.  This classification changes the mean value for the normal 
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distribution used to determine BASE STRENGTH and limits whether the individual can be 

designated as holding a job or not.   JOB TYPE stores whether the working individual is an 

emergency response personnel.  BASE STRENGTH times the updateable individual parameter 

HEALTH STATUS results in a current strength value that is an instrumental factor during 

encounters. 

The most influential of these parameters store values which serve as the basis for the 

family’s thought process.  These are RISK TOLERANCE, MORALITY, SELF-CONTROL, and PROPENSITY TO 

HOARD supplies in anticipation of an apocalypse.  PROPENSITY TO HOARD is a binary variable while 

both RISK TOLERANCE, MORALITY, and SELF-CONTROL are stored as zero to one numbers.  Throughout 

the simulation package numerous decision points occur during which an agent weights a value, 

calculated from its current situation, against one or more of these values.   

3.1.2.1.4 – UPDATABLE INDIVIDUAL PARAMETERS 

Updatable individual parameters are the largest category of decision parameters.  These 

are an imperative aspect of ABS, as they act as storage of past experiences and decisions.  They 

include histories of decisions and outcomes, parameters to guide travel decisions, individual 

traits, and family traits.  These values are updated according to individualized stipulations, with 

updates occurring intermittently as instigated by an event.  

Histories occupy a significant amount of memory as there are 27 for each agent which are 

each stored in the form of an array spanning two weeks.  Every cell of the array corresponds to 

a particular day of the agent’s past.  Examples include the information such as the location of 

stockpiles visited in the past, the DAY STRATEGY chosen, direction of travel, satisfaction of the DAY 

STRATEGY outcome , the strength and number of encounters during excursions and at the home 

location, what time the search party left, and the family’s INFORMATION LEVEL.  Histories are 

commonly recalled during the determination of primary decisions such as selecting DAY STRATEGY, 

as they represent the agent’s knowledge. 

When a family decides to send out a search party, 24 values are set storing location 

information, recellipse coordinates, information on which supplies to collect, traits of the 

search group, and other information.  Of these, search group traits are the most influential to 
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the outcome of decisions.  These include the group’s carrying capacity, strength, intensity, 

current objective, and an array storing identifiers to access the traits of the individuals making 

up the party.  The decisions of agents during an encounter are determined from the evaluation 

of these values and the outcome of the encounter resolved from the comparison of these 

values between the involved parties.  Location information and recellipse coordinates are 

utilized in the determination of successive TRAVEL SEGMENTS.  Information on supplies provides 

the data necessary for the execution of the integer programming algorithms for raiding 

stockpiles and exchanging goods.   

Individual and family traits track the current characteristics exhibited by the entity in 

question.  For the individual, these include current health state, time periods remaining in that 

state, and current HEALTH STATUS.  These are updated as time progresses according to the 

individual’s circumstances and whether they are infected.  Family traits consist of the home 

location, supply levels, and usage rates.   Supply levels deplete over time according to the 

current usage rates which are dependent on the decisions of the family.  These parameters are 

frequently involved in decisions.  For example, whether supply levels are such that the risk of 

leaving the home to search for supplies is warranted.   

3.1.2.2 – DAY STRATEGIES 

Decision points occur throughout an agent’s day and are confined by the selection of a 

particular DAY STRATEGY.  The selection of DAY STRATEGY is governed by the occurrence of certain 

events, as such the DAY STRATEGY can be thought of as the agent’s event response.  To better 

illustrate how these types of decisions affect the probability of indirect infection, the initial 

decision following an event is stored and denoted as the cause of infection if the agent is 

exposed before the occurrence of another event.   

Events include a family member becoming infected, a government mandated 24-hour 

curfew, city looting/rioting,  and rumors or reports of unusually high numbers of sick individuals 

in either the agents same region, county, or city.  After the occurrence of an event, the agent 

determines its specific DAY STRATEGY based on the evaluation of family traits; specifically risk 

tolerance, morality, self-control, current supply level, and their perception of the severity of the 
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situation.  These are each weighted according to the relevance in to particular event and 

response.  For example, in considering whether to loot essential items more emphasis is placed 

on having a lower supply level than on the agent’s ability to remain calm, its self-control. 

The responses available to agents are based on the current event type, representing the 

current situation.  Agents are initialized behaving as if everything is NORMAL.  As rumors or 

reports of a possible outbreak reach a threshold value, agents will decide to FLEE the area or 

stay and either RUSH STORES for supplies, STAY HOME, or simply IGNORE the warning signs.  The 

outbreak location — same city, same county, or same region in respect to the agent’s home —

designates different event types. When enough agents RUSH STORES, panic ensues and 

looting/rioting within the particular city begins.  In this situation, agents decide whether to LOOT 

EXPENSIVE items, LOOT SURVIVAL items, or avoid the mob and STAY HOME.    

As the severity of the epidemic situation increases, the government begins to implement 

mitigation strategies.  Enacting a 24-hour curfew is one such event.  Agents can decide to heed 

the warning and STAY HOME, or ignore it and take advantage of looting opportunities where, 

again, the agent selects whether to LOOT EXPENSIVE items or LOOT SURVIVAL items.  

When a family member becomes infected all other events are prioritized lower, and the 

family decides to either SEEK CARE for the infected individual, attempt HOME CARE, or the infected 

individual may become resigned to its fate and ACT WITHOUT WORRY of infecting others.  ACTING 

WITHOUT WORRY reflects an individual with low morality that travels around using its 

infectiousness to gain desired items.   

Secondary decisions, depending upon the particular DAY STRATEGY, are also selected.  These 

are stored as parameters and influence the outcome of certain scenarios, such as the outcome 

to an aggressive encounter.  For example, if LOOT ESSENTIAL ITEMS is selected as the DAY STRATEGY, a 

secondary decision to be made is which individuals should make up the search party.   

Picking the search party considers both past experiences against family traits.  

Specifically, the memory sets HOME ENCOUNTERS and SEARCH ENCOUNTERS are examined and, as 

allowed by the family’s RISK TOLERANCE, a search group is formed of sufficient strength to escape, 

discourage, or win an attack, while maintaining sufficient HOME STRENGTH so that the home group 
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can do the same.  What gear to bring when leaving the house is another secondary decision 

that applies more advanced techniques as is required by the increased complexity of the 

situation. 

3.1.2.3 – TRAVEL GEAR OPTIMIZATION WITH LINEAR PROGRAMMING 

Concepts from the industrial engineering field of linear programming optimization are 

utilized in the selection of travel gear.  This decision is modeled as a form of the knapsack 

problem and the solution is determined by performing an algorithm where the objective 

coefficients are iteratively updated.   

The traditional example of a knapsack problem is a group going on a backpacking trip.  

The group desires to bring a variety of goods such as a box of matches, a kettle, a tent, and a 

deck of cards.  The status of each goods is denoted by a binary variable and all are initialized at 

0.  If a good is selected to be carried along, its designation is changed to a 1.  Each item has a 

capacity and benefit associated with it.  In addition, the group has a maximum carrying capacity 

that constrains what can be brought.   

If, for example, the group has a capacity less than that of the tent, then it would be 

infeasible to decide to bring the tent.  Furthermore, since the matches are of similar size to and 

of more benefit than the deck of cards, the group would decide to bring the matches before the 

cards.  This type of problem is modeled according to the general form: 
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where                        and         

To solve this problem the simulation relaxes the constraint of          to          It 

then performs a subroutine that updates    where   was the last good selected, choosing to add 

single good at a time.  The selection of which good to add next is determined according to the 

ratios of benefit to cost,      , with the good having the highest ratio chosen. This subroutine 



36 

 

takes into account the decreased value of adding an additional good of the same type, 

providing the optimal solution to the linear knapsack problem.   

To initialize this algorithm, an agent considers what food and water is necessary to 

sustain the group for the designated maximum travel time, what number of weapons and 

ammunition may be necessary for protection, what excess carrying capacity is needed to bring 

back the desired items, what medical supplies are necessary to avoid infection, and which 

goods may be useful in a trading situation with another group.  This level of benefit for each 

good type is calculated by evaluating secondary parameters, such as the number of individuals 

making up the group; earlier experiences, such as the strength of groups encountered in the 

past; and tertiary parameters set during prior iterations of the algorithm, such as the amount of 

ammunition necessary to supply the weapons. 

3.1.2.4 – ITERATIVE TRAVEL 

When an agent selects a DAY STRATEGY that involves leaving the house, a secondary 

decision is DEPARTURE TIME.  DEPARTURE TIME specifies during which TIME SEGMENT the agent 

transitions from the base day strategy of STAY HOME to their particular strategy.  This begins the 

process of iterative travel.   

Iterative travel is a procedure that allows for the reevaluation of an agent’s decision to 

continue upon their current course and maintain their current objective.  Objectives include: 

hold the same heading and CONTINUE FORWARD, CHANGE DIRECTION, RAID a stockpile, hide or STAY in 

the same location, and RETURN HOME.  Furthermore, during each TIME SEGMENT agents may 

experience an encounter or find a STOCKPILE.   

If, for example, an agent having the objective CONTINUE FORWARD finds a stockpile, they 

measure the chance of a negative encounter against the expected benefits from raiding the 

STOCKPILE.  From the outcome of this decision the agent either APPROACHES the stockpile or FLEES.  

During the next TIME SEGMENT, if the agent chose APPROACH the agent does not continue upon 

their prior objective and instead seeks to initiate an encounter.  Alternately, if the agent chose 

FLEE the agent decides to give up and set their objective to RETURN HOME, or evaluate its current 

direction and select between CONTINUE and CHANGE DIRECTION.  If changing direction is chosen as 
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the next objective, the feasibility of the predicted ending location must first be evaluated.  This 

is made possible through the use of a search area:  the recellipse.  

3.1.2.5 – RATIONAL SEARCH AREA:  THE RECELLIPSE  

After an agent selects its DAY STRATEGY and before departing, travel parameters are set to 

constrain the group’s search area.  This predetermination of a rational search area allows for 

iterative travel to be performed in a manner analogous to that of a rational individual, as is 

shown in the following discussion. 

Travel parameters are another set of decisions that incorporate multiple decision 

evaluation methodologies, including the appraisal of an agent’s memory and the comparison of 

family traits against predetermined parameters.  Specifically, the travel parameters of MAX 

TRAVEL TIME, MAX TRAVEL DISTANCE, INITIAL TRAVEL DIRECTION, and TRAVEL SPEED are set after 

consideration of factors consisting of whether walking or driving, the location of previously 

raided stockpiles, directions resulting in high number and intensity of encounters, and the 

family’s risk tolerance, among others. 

From these parameters a novel shape is constructed to confine the agent’s movements.  

This shape is a recellipse, the area of which resembles an ellipse with one half inscribed within a 

rectangle as depicted in Figure 1. 

  

Figure 1:  Recellipse 

The recellipse is oriented such that the agent’s home location is on the perimeter of the 

recellipse, centered on the short side of the rectangle portion, as denoted by the black dot.  The 

long axis of the recellipse, represented by the midline, is oriented along the INITIAL TRAVEL 

DIRECTION of the agent.   
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A recellipse centered at the origin of an (x,y) coordinate system is shown in Figure 2.  The 

length of the long axis,    is set to the value of MAX TRAVEL DISTANCE.  The coordinates of a 

recellipse are defined as follows: 

   
 

 
             

 

 
   

 

 
  

            
 

 
        

  

  
 

  

  
    

The parameter MAX TRAVEL TIME constrains the total area via the variable  .  This is done by 

setting    such that the recellipse perimeter is equal to the maximum distance allowed by the 

given MAX TRAVEL TIME and TRAVEL SPEED.   

 

Figure 2:  Dimensioned Recellipse 

The theory leading to construction of this shape is based on the following main concepts.  

First, since agents are intelligent and utilize their memory of past experiences they have an 

intended destination when they set out.  Consequently, the long axis of the recellipse 

represents the vector on which the agent expects to achieve its objective.  Since travel carries a 

higher risk of meeting others and, subsequently, an increased probability of becoming infected 

or experiencing a negative encounter, agents desire to remain close to home.  However, this 

must be balanced by the need to travel a sufficient distance to find the necessary stockpiles.  As 

a result the far end of the rational search area is arched, cutting off the less likely to be 

explored far corner points.   

Conversely, the corner points near the home location are feasible for exploration due to 

their proximity to shelter.  The area in the opposite direction of the originally sought goal is 

𝑙 
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infeasible since it cannot be expected that a rational individual will retrace all of their steps 

based on the experiences of a day without simply returning home.   

If during an agent’s travel, the end point of their next TRAVEL SEGMENT falls outside of the 

recellipse that TRAVEL SEGMENT is deemed infeasible.  In this situation, a new TRAVEL SEGMENT is 

calculated with their desired direction of travel adjusted 10 degrees in the closest direction to 

parallel their INITIAL TRAVEL DIRECTION.  This process is repeated until a TRAVEL SEGMENT becomes 

feasible.    

For example, assume that an agent’s recellipse is oriented at 90 degrees, as in the 

previous figures.  Further assume that for its next TRAVEL SEGMENT the agent desires to travel at 

60 degrees and their destination falls outside of the recellipse.  Since 60 degrees out of 360 is 

closer to 90 than it is to 270, the next TRAVEL SEGMENT calculated is based on intended travel at 

70 degrees.  In other words, the agent is traveling away from their home location more so than 

towards it.  As such, they are still searching and to remain rational they will adjust their path to 

be more in line with the vector along which they had initially expected to achieve their 

objective. 

3.1.2.6 – INTERACTION DECISIONS 

While a particular agent is traveling, there exists the possibility that an encounter occurs 

with another group.  An encounter occurs if either of the two following scenarios transpires 

during a TIME SEGMENT:  (1) the TRAVEL SEGMENTS of each party intersect; or (2) each party decides 

to approach, or is already at, the same stockpile.  The first of these scenarios is constricted to a 

one-on-one encounter and the second can become a multi-agent encounter.  Agents are 

restricted to a single encounter during each TIME SEGMENT for running time conservation.   

If an encounter occurs, specialized decision sets become available for each agent 

depending on the particulars of the encounter.  For example, if two agents have intersecting 

TRAVEL SEGMENTS it is randomly determined that either they see each other simultaneously or 

one agent sees the other first.  If one agent sees the other first, their decision set includes the 

option of HIDING as well as the actions available to both families:  FLEE, RETURN HOME, ATTACK, 

REMAIN NEUTRAL, and seek to ALLY.  The determination of this action is largely based on what the 



40 

 

agent expects the outcome to be.  Therefore, if an agent encounters a group that is perceived 

to be much stronger the agent will likely seek to avoid confrontation, although if the agent is 

desperately in need of aid they may still seek to instigate an encounter. 

Just as there exists several decisions preceding an encounter, a multitude of possible 

outcomes are available.  One example entails a simultaneous sighting where the weaker, slower 

family attempts to FLEE.  If the other family decides that they want to ATTACK, it is likely that they 

will catch the other family and battle ensues.  It is very probable that the stronger family wins 

such a battle and can then raid the supplies of the other party.  The MORALITY of the winning 

family determines what percentage of the other family is killed.  A ratio of each group’s TRAVEL 

STRENGTH decides how many of the winning family are killed, and injuries for all survivors of the 

battle are determined randomly.  These injuries decrease the individual’s HEALTH STATUS and 

subsequently their strength.  HEALTH STATUS can only be regenerated through proper 

nourishment and avoidance of infection over time. 

Another example involves both agents deciding that they would like to perform a NEUTRAL 

EXCHANGE of supplies and information.  Relatively equal MORALS and perceived TRAVEL STRENGTHS 

are necessary for both families to decide upon a NEUTRAL EXCHANGE.  NEUTRAL EXCHANGES involve 

the process of haggling which entails the execution of a complex series of decisions.  This 

procedure is described in the following section. 

3.1.2.7 – HAGGLING  

Haggling is initialized with the computation of the parameter HAGGLING INTENSITY for each 

family.  This parameter is calculated from the family traits TRAVEL INTENSITY, TRAVEL STRENGTH, 

MORALS, and the perceived TRAVEL STRENGTH of the other family.  The family with a HAGGLING 

INTENSITY of greater magnitude is deemed the more aggressive and initiates and leads the 

exchange by asking which good the other family would like to trade to receive.  This allows the 

more aggressive family to then set the initial price in terms of the item that they most desire. 

RELATIVE DESIRE between goods is a family parameter that is set at the beginning of each 

day and influences decisions ranging from DAY STRATEGY to EATING RATE.  RELATIVE DESIRE for a 

particular item is influenced by factors such as the number of days it typically takes to find, the 
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current level of availability, the rate of consumption, and how successful recent SEARCHES have 

been.   

The decision of what goods are being traded is solved through an iterative process where 

a family first examines their memory and requests the good with highest RELATIVE DESIRE.  If the 

counterparty has this type of good with them they request a certain number of their most 

desired good to make the exchange.  If the counterparty does not have any of the good they 

counter with an offer of their own.   

Price determination is a second iterative process throughout which price is defined in 

terms of the number of the designated good type in exchange for one of the initially requested 

item.  Each agent determines two prices:  asking price, and their low or high limit depending on 

whether they are trading away or receiving the good by which price is expressed.  Each agent’s 

limit price is calculated according to how their circumstances adjust what would be a commonly 

accepted price.   

For example, say that a gallon of water is generally equivalent to a small box of sanitizing 

wipes, and the agent trading away the water has surplus water and a comfortable amount of 

sanitizing wipes.  Then the base price of 1:1 (water:wipes) would be adjusted slightly since 

water has a lower importance to the agent than sanitizing wipes.  Depending on the exact 

values of RELATIVE DESIRE used in the calculation, a price of 2:1 could be set.  If instead the agent 

had only a slight surplus of water and no sanitizing wipes, a more extreme price of 10:1 may be 

decided upon.   

This process repeats until either the agents execute all desired and feasible trades or until 

the number of transactions exceeds the time limit for that TIME SEGMENT.  A time limit is set 

under the notion that during an epidemic scenario an agent will attempt to minimize its 

exposure to possible infection.   

3.2 – DISEASE PROPAGATION  

This work leverages the flexibility of adjustable disease characteristics, which allows for 

increased simulation versatility and the accurate replication of a disease in a real-world setting.  
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Disease parameters such as the particular states that the disease may exhibit, overviewed in 

section 2.1.2.2, are programmed according to a real disease.  A strain of smallpox was chosen 

as the base model for this study.  This particular disease has been researched extensively and 

its characteristics are such that it could conceivably be the basis to an epidemic.    

3.2.1 – DISEASE OVERVIEW 

There are two know clinical forms of smallpox:  variola major, the more severe and 

common form, and variola minor, which accounts for less than 10 percent of cases.  Within the 

form of variola major, there four types of smallpox each having varying fatality rates, 

symptoms, and impacted populations (Centers for Disease Control and Prevention, 2012).  In 

this work the most severe strain, of the more common type of smallpox is utilized as the 

disease in question:  hemorrhagic smallpox.   

In this simulation package, the states of HEALTHY, INCUBATION, INFECTED, and DEAD are used to 

describe the stages of hemorrhagic smallpox.  As the rates of infectiousness and the tendency 

for individuals to display symptoms are typically defined as separate stages of this disease, the 

stage of INFECTED has been subdivided into SYMPTOMATIC and CONTAGIOUS.  Based on this disease’s 

particular characteristics, fatality rates are set to 100 percent.   

To understand how differences in decisions, as opposed to differences in genetic traits, 

impact the extent of infectiousness and when symptoms arise, this particular application does 

not incorporate the variability between individuals that a disease exhibits.  In other words, each 

individual follows the exact same disease track with the same number of days in each stage 

regardless of prior health or other characteristics.   

Progression through the disease track begins with exposure to the virus.  After this, 13 

days are spent in the INCUBATION period, followed by a short, 3 day period of initial symptoms 

represented as SYMPTOMATIC.  The next state is a 20 day period of advanced symptoms, during 

which the agent is contagious, and therefore is represented as CONTAGIOUS; after which the 

agent becomes deceased.  The only built in variability is the day at which an individual dies, 

which can occur at any time and is based on the characteristics of HEALTH STATUS and STRENGTH.    
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As hemorrhagic smallpox is not an airborne virus and cannot survive any considerable 

amount of time without a host, the base case for this study is transmission via direct contact 

transmission. However, as the likelihood of an epidemic scenario arising from these exact 

parameters is miniscule and this study seeks a comprehensive understanding, additional 

insights are desired.  To this effect, all possible methods of transmission types are studied with 

analysis presented on the resulting differences.  

3.2.1.1 – FORMS OF DISEASE TRANSMISSION 

Direct contact transmission is the traditional scenario studied in epidemic modeling; 

however, diseases may fall in one of four classes in terms of means of transmission:  (1) only 

direct contact, (2) indirect contact, (3) airborne transmission, or (4) both indirect contact and 

airborne transmission.   

As the name implies, direct contact transmission requires actual physical contact between 

contagious and susceptible individuals.  In such a scenario, the likelihood of becoming infected 

is dependent on the type of contact.  For example, shaking hands has a relatively significant 

probability of passing the infection since people continuously use their hands in a manner that 

facilitates disease spread:  covering a cough, rubbing eyes, etc.  However, it is obvious that 

kissing would have an even higher probability of transferring the virus.  The length of exposure 

is another factor that is significant in becoming infected; however this is relevant to all 

transmission classes.  In this simulation package, the use of TIME SEGMENTS accounts for length of 

exposure. 

Similar to direct contact, indirect contact requires interaction between contagious and 

susceptible individuals.  However, indirect contact differs in that the individuals do not have to 

have physical contact, indeed both individuals do not even have to occupy the same space at 

the same time.  This is the situation for diseases that can survive on a surface without a living 

host.  For example, if a surface was touched by an infected individual, then for as long as the 

disease can survive without a host, any susceptible individual coming into contact with that 

area risks infection.  As the time from contamination increases, the likelihood of infection 

decreases.     
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Airborne transmission allows a virus to be transmitted over any open area, within a 

certain contamination radius as defined by the disease’s characteristics.  Thus, a susceptible 

individual can become infected from simply being within range of a contagious individual. 

Additional discussion, in terms of how these considerations were implemented within the 

simulation package, is provided within the following section. 

3.2.2  – TRANSMISSION  

As a preface to the discussion on disease transmission, the distinction between agents 

and individuals, first defined in section 3.1.1, is of importance.  This simulation package 

determines exposure at the agent, or group, level.  The individuals that make up this group are 

then evaluated individually to determine if they transmit or become infected by the disease.  

This allows for running time minimization while maintaining robustness by considering the 

traits of individuals.   

The basis to disease transmission is the set of encounters between individuals, across 

which the virus may spread.  As discussed in section 2.1.2, epidemic simulations typically 

structure the links between all individuals as a contact network with edge weights representing 

the probability of propagation over that particular connection.  This probability is a combination 

of the likelihood that an encounter occurs between the two individuals and the likelihood that 

the disease is then transmitted from one to the other.  In ABS, the decisions of agents and rules 

of the environment allow for actual encounters to be determined.  This relaxes the dependence 

on randomness and instead results in a more robust, deterministic model. 

In this simulation package, after an encounter occurs the likelihood of catching the 

infection is dependent on the agent’s decisions and the particular individual’s traits, within the 

particular setting.  For this study, all disease parameters were held constant except for the 

transmission class, on which sensitivity analyses were conducted over multiple runs.  This 

section discusses the modeling considerations made for each transmission class, by detailing 

the three scenarios during which an agent can become infected. 
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3.2.2.1 – PROXIMITY TRANSMISSION 

Proximity transmission occurs as a result of an encounter, of which there are two types:  

two-agent encounters that occur when TRAVEL SEGMENTS intersect, and multi-agent encounters 

which can only occur at stockpiles.  For running time and memory conservation, stockpiles are 

limited to 20 visitors per TIME PERIOD.  This is a reasonable limitation as it can be assumed that 

newly arrived agents will avoid a stockpile already having 20 other agents.   

In these scenarios, direct contact plays the primary role for disease spread and airborne 

transmission a secondary, although influential, role.  Indirect contact transmission is not 

applicable in this type of situation.  For disease spread to be evaluated, as described in the 

following subsections, at least one individual making up the agent populations in question must 

be in the contagious stage.   

3.2.2.1.1 – MULTI-AGENT ENCOUNTERS 

For complexity reduction and running time management, multi-agent encounters are 

decomposed into a set of two-agent encounters as determined by the decisions of the agents.  

This is a reasonable as in an epidemic situation it can be assumed that individuals will seek to 

avoid contact with others when about general business.  For instance, assume five agents find a 

stockpile and four decide to enter.  The agent that leaves is not considered for proximity 

transmission.  The four that enter raid the stockpile are all exposed to intermediary 

transmission, as is further discussed in section 3.2.2.2.   

After raiding the available supplies, each of the four agents then consider a variety of 

factors to determine whether they want to approach another agent and which agent to 

approach.  These factors mainly consist of how successful their raid was, their RISK TOLERANCE, 

MORALITY, and whether they perceive their TRAVEL STRENGTH to be sufficient to have a successful 

encounter.  After all agents make their decisions, if an agent decides that it would like to leave 

and no others desire to approach it then it is not further considered.  If the agent is approached 

by another, it is assumed that the confined space of a STOCKPILE prohibits escape and a proximity 

transmission scenario occurs.  This situation is executed in the same manner as a two-agent 
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encounter, and upon resolution the agents are exempt for additional encounters during this 

TIME SEGMENT. 

3.2.2.1.2 – TWO-AGENT ENCOUNTERS 

For two-agent encounters, agents first determine and carry out their corresponding 

decisions (in the case of reduced, multi-agent encounters these decisions have already been 

determined).  As previously discussed, these include the avoidance tactics of LEAVE, HIDE or 

RETURN HOME, and the decisions resulting in contact:  ATTACK, ALLY, and NEUTRAL.  If the situation 

ends with the agents coming into contact, the simulation package executes the corresponding 

disease spread logic.  This functionality is based on an infection formula that takes into account 

the agent’s traits, disease characteristics, type of encounter, and the stochastic nature of such a 

situation.   

First, the simulation determines whether the agents actually came into direct, physical 

contact.  This represents a decision point where each agent bases its level of concern about 

physical contact on their INFORMATION LEVEL, RISK TOLERANCE, and MEDICAL SUPPLIES.  For instance, 

assume that an agent has very little knowledge about the disease characteristics and severity.  

Regardless of its RISK TOLERANCE, this agent would have no qualms about touching another.  

Likewise, an agent with very high RISK TOLERANCE would have little concern about physical contact 

unless their INFORMATION LEVEL was such that they understood the disease to be very severe.  The 

presence of MEDICAL SUPPLIES, such as a gas mask, gloves, and sanitizing hand solution, increases 

the probability of contact while also decreasing the agent’s susceptibility.  Randomness also 

factors in to the determination of contact according to an inverse relationship dependent on 

the agents’ relative level of concern or care.  

If no contact occurs between the agents, then direct contact transmission does not occur, 

although airborne transmission, if applicable, will still be considered as is discussed 

subsequently.  If contact occurs, then a second series of parameters are examined to determine 

whether the contagious individual spreads the infection to susceptible individuals making up 

the other agent’s population.  These parameters consist of the disease’s base infection rate, the 

level of MEDICAL SUPPLIES, current HEALTH STATUS, and STRENGTH of the susceptible individual.  
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STRENGTH represents a combined consideration of the fitness and age of the individual, where a 

healthy, young adult would be less likely to contract the disease than an overweight elderly 

person.  HEALTH STATUS accounts for recent events such as food and water consumption; as such 

a well fed individual has a lower likelihood of becoming infected than one recently depraved of 

sustenance.   

Regardless of whether agents come into contact or not, if the disease is transmittable by 

air, then all susceptible individuals involved in the encounter risk infection.  The probability of 

infection, as with direct contact transmission, is based on the level of MEDICAL SUPPLIES, current 

HEALTH STATUS, and STRENGTH.  In terms of proximity transmission, being exposed to airborne 

transmission is of higher likelihood than direct contact.  However, after being exposed, it is also 

less probable to become infected from airborne transmission than physical contact.   

3.2.2.2 – INTERMEDIARY TRANSMISSION  

Intermediary transmission is the method by which indirect contact can spread disease.  As 

only a trivial amount of additional memory is required to store contamination information for a 

particular location and as STOCKPILES attract and are commonly visited by agents, these are 

assumed to be the only transmission intermediaries.   

If the disease can spread via indirect contact, a STOCKPILE is considered contaminated from 

the time that it is visited by an infected individual until the disease life expires.  As such all 

susceptible individuals that visit this STOCKPILE over this time period are exposed.  Therefore, 

indirect exposure incidence is typically higher than that of proximity transmission.  However, 

the likelihood of the susceptible individual becoming infected in this scenario is lower and 

decreases inversely to the time of contamination.  The same parameters are considered in the 

determination of infection after exposure as in the case of airborne and direct contact 

transmission. 

3.2.2.3 – GENERAL AIRBORNE TRANSMISSION  

General airborne transmission is the process by which an individual becomes exposed by 

simply being within the contamination area of an infected individual.  As the home is 
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considered relatively impervious, only agents outside are considered.  This process is executed 

for every contagious agent that is outside during every TIME SEGMENT.   

In this simulation package wind speed and direction are taken into account for airborne 

disease spread.  In a scenario with no wind, the feasible transmission area around a contagious 

agent is defined as a circle centered on the agent’s location with radius set by disease 

parameters.   This is shown in Figure 3, below. 

 

Figure 3:  No Wind Airborne Transmission Area 

Wind is accounted for by comparison to a maximum value for wind speed.  This 

parameter, MAXWIND, is set to 66 mph which represents the average annual wind speed of 

Goodland, Kansas for the past 54 years (National Environmental Satellite, Data, and Information 

Service, 2012).  Goodland was chosen since a robust data set was available and it is located 

towards the center of the study’s focus area.   

In a scenario with slight wind, the feasible transmission area is elongated and the area 

covered is increased.  In addition, the center of the ellipse is shifted from the agent’s location 

towards the direction the wind is blowing in.  The relative value of current wind speed to 

MAXWIND determines the magnitude of the shift and elongation.  A slight wind instance is 

depicted in Figure 4. 

 

Figure 4:  Light Wind Airborne Transmission Area 

In a scenario with high winds, the feasible transmission area is elongated and the center 

of the ellipse is shifted such that the agent’s location moves closer to the ellipse perimeter.  

Assume that the wind speed is equal to MAXWIND.  In this case, the center of the ellipse is shifted 

Wind 
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such that the agent’s location falls directly on the perimeter, and the ellipse is elongated to the 

maximum allowed eccentricity of .98.  This case is shown in Figure 5.   

 

Figure 5:  Strong Wind Airborne Transmission Area 

As this discussion implies, exposure via general airborne transmission is generally of 

highest prevalence.  If exposure occurs, the same parameters as in proximity airborne 

transmission are evaluated to determine whether the agent, if susceptible, becomes infected.  

After exposure, the likelihood of infection via general airborne transmission is the lowest of all 

methods discussed. 

3.3 – CHAPTER SUMMARY 

The incorporation of an ABS simulation core that contains multiple decision points with 

disease propagation elements that allow for the accurate replication of all general disease types 

results in a robust simulation package.  This represents a successfully expansion to the current 

modeling frontier in terms of both reduced assumptions and increased functionality.  

Furthermore, this simulation package adds additional momentum in the paradigm shift towards 

modeling real-world scenarios as they occur:  emergent patterns as the result of the 

interactions of individual elements.  This approach allows for the direct analysis of resulting 

equilibria and, subsequently, insights as to what decisions increase the likelihood of an 

individual’s survival during an epidemic.   

The following chapter discusses the application of this simulation package to a hypothetical 

epidemic scenario.  Based on real world data and parameters representing a plausible virulent 

outbreak, the findings presented are applicable to a real-world incident and represent 

additional contributions of this work. 

  

Wind 
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4 – EPIDEMIC DECISION OPTIMIZATION  

This study was conducted to gain insight to three main questions:  (1) what general family 

traits increase the likelihood of survival during an epidemic, (2) what responses to common 

epidemic events increase the likelihood of survival, and (3) what impact the decisions of an 

individual have on society.   

Regarding family traits, the starting population and surviving population were compared 

according to their relative level of risk tolerance, morality, and self-control.  These represent 

the three primary family traits based on their use in determining an agent’s reaction to an 

event.  These traits are represented by decimal values between zero and one, where one 

denotes a high level of that characteristic.  Each parameter was examined in isolation as 

extrapolating all various combinations exceeds the scope of this work. 

The epidemic events analyzed consist of looting/rioting, a government mandate to 

remain at home, high-levels of sickness in an agent’s city, county, and neighboring county, and 

a family member becoming infected.  After the occurrence of an event, each family’s decision 

and whether they become infected over the long-term as a result is recorded.  For example, if 

an agent’s city reports high-levels of sickness, infection as a direct result of rushing the stores 

for supplies is compared to infection as a result of remaining at home until all supplies are 

exhausted then venturing out. 

The decisions of fleeing the area to avoid infection and acting without concern of 

spreading infection when contagious are the society impacting decisions analyzed.  These are 

evaluated in terms of the number of others that are infected as a result.  The choice to rush 

stores, which leads to looting after a certain threshold value is reached, is an additional decision 

that impacts society.  However, this study does not analyze this scenario since to do so would 

necessitate an economic evaluation of the damages which exceeds the scope of this work. 

The following section introduces general parameters for this specific simulation analysis.  

The remainder of the chapter provides discussion on the findings for the two disease 

transmission scenarios studied:  the base scenario of direct contact only spread and an extreme 

case of direct contact, indirect contact, and airborne transmission.  Within each section, 
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discussion is provided on family traits and decisions that lead to increased probability of 

survival and the subsequent impact to society as well as on sensitivity analyses concerning what 

differences in disease transmission and severity result in.  High-level data along with statistical 

analysis is included to support the conclusions.  Additional transmission scenarios were not 

included in the scope of this study due to time limitations. 

4.1 – GENERAL PARAMETERS 

Due to memory and running time restrictions, the full state of Kansas was not simulated.  

Instead a 17 county area in northwestern Kansas was selected as the study’s concentration, 

shown as the shaded counties in Figure 6 below.  This area is comprised of Cheyenne, Decatur, 

Gove, Graham, Greeley, Lane, Ness, Norton, Phillips, Rawlins, Scott, Sheridan, Sherman, 

Thomas, Trego, Wallace, and Wichita counties.  56 towns and small cities are included in this 

area as well as the rural population.   

 

Figure 6:  Map of Simulation Area 

These counties approximate a square shape spanning roughly 130 miles east to west, 120 

miles north to south, and covering 15,741 square miles (United States Census Bureau, 2012).  

Through basic adjustments to the constant global parameters, the simulation package was 

altered to model this specific land area and population.  The population represented numbers 
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56,769 individuals separated into 21,325 family groups for an average family size of 2.66.  The 

simulation was limited to 98 iterations representing 14 weeks, during which the disease 

permeated throughout the population until new infections quit occurring or slowed 

significantly.   

4.2 – BASE SCENARIO:  ONLY DIRECT CONTACT SPREAD 

The first scenario analyzed is the base scenario where the disease is assumed to only 

spread via direct physical contact; subsequent scenarios are extensions of this functionality.  

From the initial simulation population of 56,769 individuals, 6,353 became infected.  This 

represents 13 percent of the population.   

The disease epicenter was on the border of Gove and Logan counties from which it 

spread to all other counties.  Gove county was most heavily impacted, with 36 percent of its 

population becoming infected, and Wichita county was least infected, having only .2 percent 

sickened by the disease.  The infection rate slowed significantly by day 98, leading researchers 

to believe the disease was nearing extinction.  This scenario had a run time of 5.5 hours, which 

is equivalent to all other scenarios explored.  The simulation package was run on an Intel Core 

i7 with a 2.67 GHz processor and 6.0 GB of RAM. 

4.2.1 – FAMILY TRAITS 

The family trait of RISK TOLERANCE was found to be the most influential of the three 

analyzed due to the large discrepancy in survival rates between the extreme cases.  As is shown 

in Table 1 below, a low RISK TOLERANCE was found to be most beneficial with a survival rate of 99 

percent.  Contrarily, the high RISK TOLERANCE of 1 led to a survival rate of just 82 percent.  Or as 

translated to real-world phrasing:  a family that has no restraint is 18 times more likely to 

become infected than a family that is loath to near others, even to trade for needed supplies. 

Table 1:  Base Scenario Results – Family Traits, Risk Tolerance 

 Risk Tolerance 

 0.0 .25 .5 .75 1.0 

Initial Population 4,214 4,340 4,266 4,223 4,282 
Surviving Population 4,164 4,227 3,942 3,686 3,509 
Survival Rate 99% 97% 92% 87% 82% 
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The family trait, MORALITY, was found to be the second most relevant based on survival 

rate differences.  From the data in Table 2, it can be inferred that agents with high level of 

MORALITY are more likely to survive in such a scenario.  Interestingly, extreme levels of MORALITY 

show the most impact on survival probability with survival rates ranging from a low of 86 

percent to 98 percent, whereas between a moral level of .25 and .75 survival rates only range 

from 90 percent to 92 percent.  In part, this suggests that extremely immoral decisions such as 

attacking weaker groups to raid their supplies are inferior strategies in epidemic survival.   

Table 2:  Base Scenario Results – Family Traits, Morality 

 Morality 

 0.0 .25 .5 .75 1.0 

Initial Population 4,312 4,351 4,205 4,226 4,231 
Surviving Population 3,708 3,936 3,827 3,909 4,148 
Survival Rate 86% 90% 91% 92% 98% 

 
The third family trait examined is SELF-CONTROL which represents the family’s ability to act 

rationally during a stressful scenario.  Families with high SELF-CONTROL survived at 92 percent 

while families with low SELF-CONTROL survived at a similar rate of 91 percent, as is shown in Table 

3 below.  The small difference in survival rates between the high and low cases reflects a small 

impact of SELF-CONTROL on survival.   

Table 3:  Base Scenario Results – Family Traits, Self-Control 

 Self-Control 

 0.0 .25 .5 .75 1.0 

Initial Population 4,222 4,387 4,331 4,107 4,278 
Surviving Population 3,832 4,003 3,976 3,794 3,923 
Survival Rate 91% 91% 92% 92% 92% 

 

4.2.2 – EVENT RESPONSES 

In consideration of event responses, the first event examined is infection within the 

family.  As discussed in section 3.1.2.2, there are three reactions available to the family.  

However, as one of those options is to ACT WITHOUT WORRY of infecting others and involves only 

the sick individuals leaving the house, no additional family members are infected as a result of 
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their decisions.  Therefore this reaction is not included in this analysis.  Instead the decisions to 

SEEK CARE at the hospital and attempt to provide HOME CARE for the sick individuals are compared. 

Per the data in Table 4, the decision to SEEK CARE results in a likelihood of a second family 

member becoming infected of 35 percent, while the action of HOME CARE has a lower infection 

rate of only 10 percent.  This may be due to the inability to avoid exposures during a trip to the 

hospital whereas continual care is taken to limit such instances during HOME CARE.  However, it 

should be noted that the small data set may result in slightly skewed findings.    

Table 4:  Base Scenario Results – Family Infection 

 Family Infection 

 Seek Care Home Care 

Initial Population 1,667 106 
Number Infected 580 11 
Infection Rate 35% 10% 

 
The second event explored is rumors/reports of high-level of sickness within various 

locations as compared to the family in question.  This provides interesting insights as to how 

proximity to the disease outbreak should influence decisions.  As shown in Table 5, the action 

to remain at home and EXHAUST SUPPLIES is a superior strategy, more so as infection reports are 

closer to home.  In comparison, RUSHING STORES quintuples the likelihood of infection in cases of 

same city reports and doubles it in same county.   

This suggests that when neighbors may already be contagious, avoidance for as long as 

possible is best.  Please note: the number infected values shown in Table 5 have been adjusted 

to account for subsequent, indirect infections as a result of the decision; due to the relatively 

small number reported for the same city IGNORE reaction, additional scaling was applied.  

Table 5:  Base Scenario Results – High-Levels of Sickness 

 Same City Same County Same Region 
Rush 

Stores 
Exhaust 
Supplies 

Ignore 
Rush 

Stores 
Exhaust 
Supplies 

Ignore 
Rush 

Stores 
Exhaust 
Supplies 

Ignore 

Initial Population 2,103 2,433 249 1,004 992 987 13,522 8,372 25,924 
Number Infected 81 26 200 38 16 82 272 261 675 
Infection Rate 4% 1% 10% 4% 2% 8% 2% 3% 3% 
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Looting opportunities arise when there are either a high or very low number of agents 

seeking supplies.  These are represented by RIOTING/LOOTING which is triggered by a high number 

of shoppers, whereas the situation of a government enacting a 24-HOUR CURFEW is 

representative of a very low number of shoppers.  The determination of infection as a result of 

these decisions incorporates infection as a result of having to leave the house later in search of 

necessary supplies.  As such, it is possible that choosing to STAY HOME to avoid the initial chaos 

may result in encountering a higher number of infected individuals during subsequent trips to 

collect necessary supplies. 

The results of Table 6 show that the decision to either LOOT EXPENSIVE or LOOT ESSENTIAL 

items results in only a slight change in the infected rate.   This suggests that the encounters 

experienced during a looting trip are the cause of infection, not the need to make subsequent 

trips in search of necessary supplies.  The substantially higher rate of infection over the strategy 

of STAY HOME further corroborates this analysis. 

Table 6:  Base Scenario Results – Looting Opportunities 

 Rioting / Looting 24 - Hour Curfew 
Loot 

Expensive 
Loot 

Essentials 
Stay 

Home 
Loot 

Expensive 
Loot 

Essentials 
Stay 

Home 

Initial Population 1,216 3,069 11,169 3,964 12,151 44,450 
Number Infected 76 199 14 222 705 213 
Infection Rate 6% 6% 0.1% 6% 6% 0.5% 

4.2.3 – IMPACTS TO SOCIETY  

Leveraging the principle of emergence allows for global patterns to be discerned from the 

interactions of individuals.  While such study is largely outside the focus of this research, it is 

interesting to understand how some individual decisions impact society.   

For example, when an individual becomes infected and chooses ACT WITHOUT CONCERN of 

infecting others, on average that initial person infects 1.3 people.  Similarly, when a family 

decides to FLEE in response to epidemic rumors, on average 26 percent of families that 

successfully escape the area bring along one or more infected individuals:  people that have 

been exposed but due to the incubation period of the disease do not yet exhibit symptoms.  

This will result in over 31 new infections outside the initial contagion region, continuing the 
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spread of the epidemic.  Decisions for self-preservation such as these are therefore shown to be 

a large factor in the spread of a disease.   

4.3 – INDIRECT CONTACT AND AIRBORNE TRANSMISSION  

The combined impact of spread via direct, indirect, and airborne transmission is examined 

within this section.  From the initial simulation population of 56,769 individuals, 13,045 became 

infected.  This represents a fatality rate of 32 percent, significantly higher than the same 

disease modeled with only direct contact spread properties as in the base case.  The increased 

transmissibility also caused an increase to the speed at which the epidemic spread.  In this 

scenario the disease almost completely died out, with only 2 individuals remaining in the 

contagious stage.  Due to this it is possible, although highly unlikely, that a resurgence of the 

epidemic could occur.   

The disease epicenter was on the border of Gove and Logan counties from which it 

spread to all other counties.  Cheyenne county was most heavily impacted, with 43 percent of 

its population becoming infected, and Greeley county was least infected, having only 12 

percent sickened by the disease.  Similar rates of infection were reported in other counties 

which reflects a more even spread pattern across the study region when compared to the base 

case.  This suggests that knowledge of disease transmissibility is instrumental to understand 

disease spread, whereas the locations of towns and common travel patterns are facilitating 

factors.    

4.3.1 – FAMILY TRAITS 

The family trait of RISK TOLERANCE was again found to be the most influential of the three 

analyzed due to the large discrepancy in survival rates between the extreme cases.  As is shown 

in Table 7 below, a relatively low tolerance of .25 is shown to be most favorable, having a 

survival rate of 89 percent.  Contrarily, the high RISK TOLERANCE of 1 led to a survival rate of just 

71 percent.  Interestingly, somewhere between .25 and .5 seems to be the optimal level as the 

lowest RISK TOLERANCE of 0 decreases the probability of survival.  This is in contrast to the base 

scenario where lower RISK TOLERANCE the more positive the survival outlook. 
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Table 7:  Indirect Contact & Airborne Transmission – Family Traits, Risk Tolerance 

 Risk Tolerance 

 0.0 .25 .5 .75 1.0 

Initial Population 4,214 4,340 4,266 4,223 4,282 
Surviving Population 3,295 3,846 3,564 3,229 3,057 
Survival Rate 78% 89% 84% 76% 71% 

 
According to the findings reported in Table 8, higher levels of MORALITY tend to result in 

higher survival rates.  Medium levels of MORALITY appear to be relatively equivalent, as the 

survival rates are somewhat flat between .25 and .75.  Likely due the higher likelihood of 

negative encounters, low MORALITY results in the lowest survival rates.  These results follow a 

similar pattern as found in the base scenario. 

Table 8:  Indirect Contact & Airborne Transmission – Family Traits, Morality 

 Morality 

 0.0 .25 .5 .75 1.0 

Initial Population 4,312 4,351 4,205 4,226 4,231 
Surviving Population 3,190 3,397 3,374 3,352 3,678 
Survival Rate 74% 78% 80% 79% 87% 

 
SELF-CONTROL was found to be the least influential in terms of increasing the probability of 

survival as illustrated by Table 9.  This is suggested by the small interval between the high 

survival rate of 83 percent for SELF-CONTROL of .75 and the 77 percent survival rate for SELF-

CONTROL of .25.  Moreover, the probability of survival not increasing or decreasing linearly is 

suggestive of a lower level of influence from this trait, relative to other factors.  Again, these 

results are closely related to the findings of the base case. 

Table 9:  Indirect Contact & Airborne Transmission – Family Traits, Self-Control 

 Self-Control 
 0.0 .25 .5 .75 1.0 

Initial Population 4,222 4,387 4,331 4,107 4,278 
Surviving Population 3,288 3,392 3,416 3,392 3,503 
Survival Rate 78% 77% 79% 83% 82% 

 

4.3.2 – EVENT RESPONSES 

Per the data shown in Table 10, the decision to SEEK CARE increases the likelihood of 

infecting a second family member to 75 percent, while the action of HOME CARE has a lower 
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infection rate of 71 percent.  This parallels the base case, although infection rates of this 

scenario are substantially higher due to the increased transmissibility. 

When the infection rates of Table 10 are compared to infection rates during other events 

of this scenario, these are found to be significantly higher; the same can be said of the base 

scenario.  This is due to the close proximity of family members to an infected, contagious 

individual.  These results support the real-world tendency of smallpox to spread to family 

members at a higher incidence than others (Centers for Disease Control and Prevention, 2012). 

Table 10:  Indirect Contact & Airborne Transmission – Family Infection 

 Family Infection 

 Seek Care Home Care 

Initial Population 4,403 225 
Number Infected 3,296 159 
Infection Rate 75% 71% 

 
As shown by the magnitude of the infection rates of Table 11, how an agent responds to 

rumors/reports of high-levels of sickness play an important role in whether infection occurs as a 

result.  Of highest significance, agents that IGNORE same city reports are 4.4 times more likely to 

become infected than those that immediately RUSH STORES.  If the infection is already present in 

the city, however, the best response is to REMAIN HOME as long as possible.  This results in a 

probability of survival 28 percent higher than of the decision to IGNORING warnings.  

Same county results show similar trends although RUSHING STORES results in the highest 

probability of survival.  As the disease has not yet become prevalent within the agent’s home 

location, RUSHING STORES decreases the likelihood of infection by a third whereas EXHAUSTING 

SUPPLIES results in a decrease to half when compared to IGNORING warnings.   

Results for same city are in agreement with the base scenario whereas for same county, 

EXHAUSTING SUPPLIES is the superior base case strategy.  Please note: the number infected values 

shown in Table 11 have been adjusted by assumption to account for subsequent infections as a 

result of the decision.  Same region results are largely influenced by the adjustment and 

therefore, while suggestive that the decisions to RUSH STORES or EXHAUST SUPPLIES are inferior to 

IGNORING the warnings, findings are not considered conclusive.   
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Table 11:  Indirect Contact & Airborne Transmission – High-Levels of Sickness 

 Same City Same County Same Region 
Rush 

Stores 
Exhaust 
Supplies 

Ignore 
Rush 

Stores 
Exhaust 
Supplies 

Ignore 
Rush 

Stores 
Exhaust 
Supplies 

Ignore 

Initial Population 11,033 15,201 2,107 5,667 3,111 2,263 1,960 1,087 2,402 
Number Infected 594 463 496 213 180 278 89 89 89 
Infection Rate 5% 3% 24% 4% 6% 12% 5% 8% 4% 

 
Table 12 provides strong evidence that avoiding instances of looting significantly 

increases the probability of survival.  This is shown by the similar infection avoidance rates from 

the decisions to LOOT EXPENSIVE or LOOT ESSENTIAL items in both scenarios.  These results suggest 

that infection occurs during the looting events and that subsequent excursions for necessary 

supplies do not significantly increase the likelihood of infection, as was found to be the case in 

the base scenario.   

Analyzing the results of rioting/looting events, it can be inferred that avoiding the large 

crowds decreases encounters and thus the risk of infection.  Further benefit from avoiding 

possible attacks is also likely.  In regards to the 24-hour curfew, as these are only enacted 

during severe levels of contagion, it is likely that anybody outside their home risks encounter 

with those that are infected and have no concern of infecting others.  This is particularly likely 

as airborne transmission does not necessitate contact between agents.   

Table 12:  Indirect Contact & Airborne Transmission – Looting Opportunities 

 Rioting / Looting 24 - Hour Curfew 
Loot 

Expensive 
Loot 

Essentials 
Stay 

Home 
Loot 

Expensive 
Loot 

Essentials 
Stay 

Home 

Initial Population 4,989 12,998 42,409 3,837 8,348 32,896 
Number Infected 375 914 116 411 877 217 
Infection Rate 8% 7% 0.3% 11% 11% 1% 

4.3.3 – IMPACTS TO SOCIETY  

When an individual becomes infected and chooses act without concern of infecting 

others, on average 3.9 healthy individuals become infected.  When a family decides to flee in 

response to epidemic rumors, on average 4 percent of families that successfully escape the 

area bring along one or more infected individuals.  This will result in over 250 new infections 

outside the initial epidemic region based on average spread rates within the simulation area.  
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In comparison to the base case, this represents a more negative impact to society from a 

single decision due to the increased transmissibility of the disease.  Specifically, in this scenario 

a single individual acting without concern of infecting others results in 3 times the number of 

people being infected than in the base case.   

In contrast however, the slower more steady disease spread via direct contact results in 

increased prevalence of exposure before there are enough cases to warrant attention.  In other 

words, the epidemic does not attain a scale to warrant a level of concern that would cause 

agents to FLEE until there are a substantial number of individuals within the exposed state.  This 

is shown by the higher percent of fleeing families in the base case bringing along infected 

individuals.  Specifically, the base case has over 6 times the rate of families leaving the initial 

epidemic area with an infected individual.   

4.4 – EPIDEMIC SURVIVAL GUIDE 

Based on the findings discussed above as well as additional understanding developed 

through review of data and scenarios not explicitly defined within this paper, a set of 

conclusions can be formed.  These are applicable to the disease transmission scenarios 

analyzed and expected to be appropriate for most variations in disease severity.  The following 

list of general rules and substantiating discussion serves as an epidemic survival guide: 

 Realize that it is too late to prepare for an epidemic after an epidemic has begun.  After 

warnings of an epidemic are disseminated, people understand that they must remain 

home — before that though they must gather in enclosed spaces with crowds of people.  

This is essentially the decision to rush stores and collect the supplies necessary for an 

extended home stay.  However, findings show that the very high number of encounters 

with others not likely to be infected typically results in increased probability of infection.  

This is in comparison to venturing out later when there are less people more likely to be 

infected.  Ignoring this rule can increase you likelihood of infection four-fold. 

 Exaggerate carefulness.  The most influential trait leading to survival is having a low risk 

tolerance.  As defined in the simulation package, avoiding others, taking care to be 

properly protected during interactions with others, and selecting conservative strategies 
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that limit the possibility of exposure are all decisions which are more likely with a low risk 

tolerance.  Adhering to this principle increases survival likelihood by 12 percent. 

 Avoid the lure of looting, especially superfluous items but also essential supplies.  This is 

the most statistically significant finding.  Staying home when there are crowds of people 

looting or a government mandate to do so increases the likelihood of survival by a factor 

of at least 11.   

 Don’t make friends with anybody that’s infected.  Inter-family/group spread is the most 

common method by which disease is transmitted.  Limiting the number of others that you 

are continuously exposed to will therefore serve as a primary factor in avoiding infection.   

 Understand that your decisions impact others.  A disease spreads by the interaction of a 

contagious and susceptible individual.  As such, an epidemic can be avoided if all 

contagious individuals isolate themselves from society.  This is a radical measure but the 

other extreme of acting without any concern of infecting others is excessive and the 

subsequent infections preventable.  Following this rule will not change your likelihood of 

infection but could decrease your neighbor’s to 0. 

 Continuously analyze your specific situation and evaluate all options and possible 

repercussions before taking action.  As this simulation is based on assumptions and 

cannot fully account for the impact of all decisions, factors, and events during an 

epidemic not all superior strategies have been defined.  Following this rule will increase 

your probability of survival by a lot.   

While many of these rules may seem obvious, keep in mind that an epidemic situation is a 

survival event.  As such, it is expected that individuals will not act in what would commonly be 

deemed a rational manner.  Instead quick action will likely be considered as a necessary step for 

survival whereas deliberate action is the superior strategy:  follow these rules and increase your 

likelihood of survival.   
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4.5 – CHAPTER SUMMARY 

The application of this simulation package to various forms of a hypothetical smallpox 

outbreak accomplishes two purposes:  (1) to provide operational validation of the various 

functions and components of the simulation, and (2) to gain insight as to the how an 

individual’s decisions can influence their probability of survival and what impact these decisions 

can have on society as a whole.  This meets the objectives on which this study was based.  

Furthermore, these findings represent investigation into a common topic from a novel 

perspective; the learnings from which will help to facilitate the development process of 

subsequent studies. 
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5 – CONCLUSION 

This work builds upon the knowledge gained from five years of research concerned with 

the optimization of government-led, epidemic mitigation strategies in rural areas.  Prior 

research and simulation has highlighted two key areas in need of more comprehensive 

examination, which this work successfully addresses:  (1) to more accurately emulate a real-

world scenario; and (2) to understand how an individual can exploit knowledge of the equilibria 

resulting from the cumulative decisions of others.   

As such, the objectives maintained throughout the development of this simulation 

package consist of the following: 

 to expand on the functionality of earlier models by incorporating the most advanced 

epidemic modeling techniques; 

 to explore alternate approaches that decrease the number and magnitude of modeling 

assumptions necessary; and 

 to understand how the decisions and interactions of individuals can influence global 

equilibria. 

These objectives were achieved by leveraging linear program optimization techniques and 

the concept of Agent Based Simulation, to more accurately capture the complexity inherent in 

most real-world systems via the interactions of individual entities.  This has resulted in the 

development of a 4,000-line computer code simulation.  This adaptable simulation can 

accurately model the interactions of individuals to discern the impact of any general disease 

type, and can be implemented on the population of any contiguous counties within Kansas. 

The application of this simulation package to various types of a hypothetical, although 

plausible, smallpox outbreak provides valuable insight as to the impact of aggregated decisions.  

Specifically, the analysis of various responses to particular events achieves this work’s objective 

of determining optimal decisions for an individual during an epidemic.  Furthermore, the 

examination of emergence in regards to the number of others infected because of an 

individual’s decision to FLEE or ACT WITHOUT REGARD to others, provides an understanding of how 

the decisions of one can impact all of society.   
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5.1 – SUMMARY OF FINDINGS 

To provide operational validation of the various functions of the simulation package and 

to gain insight as to the how an individual’s decisions can influence their probability of survival, 

a set of disease scenarios were analyzed based on a 17 county area in northwestern Kansas.  

Specifically, impacts to the probability of survival based on general family traits and responses 

to common epidemic events were explored. 

Risk tolerance, morality, and self-control were family traits examined.  Findings show a 

lower risk tolerance to be most influential in increasing the likelihood of survival while higher 

morality plays a less impactful role.  Self-control was found to be of less relevance.   

Additional analysis shows that avoiding encounters with others is fundamental to 

epidemic survival.  Avoiding looting events and limiting the number of people in your family 

group are examples of such decisions.  Another example:  while attempting to collect supplies 

after initial signs of an epidemic is a typical reaction, this generally results in a large number of 

encounters.  As such, it is found to be an inferior strategy to staying home for as long as 

supplies last.   

Additional findings are summarized in chapter 4, along with high-level data and statistical 

analysis.  Section 4.4 is organized as a guide to epidemic survival, and provides a more detailed 

summary of the main findings. 

5.2 – RECOMMENDATIONS FOR FUTURE RESEARCH  

As the field of epidemic research is large, diverse, and continually expanding, there are 

numerous extensions to the research presented in this paper.  This section provides discussion 

on areas of future research, as recommended by the author, by identifying key elements that 

researchers seeking to undertake similar investigations should be aware of.  This discussion 

includes comments on the major difficulties encountered throughout the development of this 

simulation package.  These recommendations were excluded from the scope of this study due 

to time constraints.   
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Throughout the construction of this simulation three key obstacles arose.  The first of 

which was accurately modeling disease propagation throughout a diverse environment while 

allowing for multiple disease transmission scenarios and infection rates.  These issues were 

assuaged through the use of various assumptions, adjustable disease parameters, and ABS to 

model agent encounters.  However, the severity of diseases is commonly defined in terms of 

their R0, which this simulation does not have the functionality to accept as disease parameter 

input.  Incorporating a set of counters to track the average number of encounters each agent 

experiences depending on their DAY STRATEGY and adjusting the disease’s infectiousness 

accordingly would allow for R0 approximation. 

A second difficulty faced was the magnitude of creating an accurate ABS for an epidemic 

scenario.  Specifically, working within memory and running time limitations and incorporating 

all major functionalities.  The final population modeled was a result of computational 

limitations which was maximized through various efforts for running time and memory 

reduction.  Such techniques include utilizing Dial’s implementation, creating a minimalistic 

environment and parameter sets while still meeting the requisite modeling accuracy, and 

designing subroutines and loops to eliminated repetition.  Efforts to fully incorporate all 

decisions and interactions available to agents during an epidemic is a massive undertaking, 

however the functionalities of this simulation package comprise all major actions available 

allowing for the close representation of such a scenario.  Additional accuracy can be achieved 

by expanding on the capabilities and relaxing the simplifying assumptions of this model. 

The third complication confronted was how to discern which decisions led to the infection 

of an agent.  As this understanding is the basis to the findings of this study, this was a major 

challenge with significant repercussions.  The use of events, response decision tracking, and 

infection occurrence monitoring enabled causation approximation.  However, as multiple 

decisions and factors play a role in the occurrence of infection, a more robust technique that 

accounts for the influence of multiple variables will provide more detailed insights.  As such, it is 

recommended that future simulations be constructed such the regression analysis techniques 

can be applied to discern the relative influence of all factors simultaneously.   
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Sensitivity analyses on the various disease transmission scenarios were conducted.  

However, expanding the scenarios to include various forms of immunity, situations in which an 

agent knows it is immune, various disease severity conditions, and across different 

environments will provide additional insights.  Additionally, further examination of how 

cumulative individual decisions results in emergent trends and what impacts this has on society 

can be utilized to anticipate likely scenarios such as looting or spreading infection from the 

disease epicenter.  This knowledge can be leveraged in government epidemic preparedness 

planning. 

This work has provided interesting and insightful knowledge from a novel perspective.  

However, as this is among the first of such studies there is an immense potential for additional 

information to be gained.  As such, the continuation of work in this field will provide a 

foundation of understanding so that individuals will be able to survive epidemics more 

successfully than ever before.  
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