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Abstract 

With the worldly consumption of energy continually increasing and the main source of 

this energy, fossil fuels, slowly being depleted, the need for alternate sources of energy is 

becoming more and more pertinent.  One promising approach for an alternate method of 

producing energy is using solar cells to convert sunlight into electrical energy through 

photovoltaic processes.  Currently, the most widely commercialized solar cell is based on a 

single p-n junction with silicon.  Silicon solar cells are able to obtain high efficiencies but the 

downfall is, in order to achieve this performance, expensive fabrication techniques and high 

purity materials must be employed.  An encouraging cheaper alternative to silicon solar cells is 

the dye-sensitized solar cell (DSSC) which is based on a wide band gap semiconductor sensitized 

with a visible light absorbing species.  While DSSCs are less expensive, their efficiencies are 

still quite low compared to silicon. In this thesis, Grätzel cells (DSSCs based on TiO2 NPs) were 

fabricated and optimized to establish a reliable standard for further improvement.  Optimized 

single layer GSCs and double layer GSCs showing efficiencies >4% and efficiencies of ~6%, 

respectively, were obtained. Recently, the incorporation of metallic nanoparticles into silicon 

solar cells has shown improved efficiency and lowered material cost. By utilizing their 

plasmonic properties, incident light can be scattered, concentrated, or trapped thereby increasing 

the effective path length of the cell and allowing the physical thickness of the cell to be reduced.
 

This concept can also be applied to DSSCs, which are cheaper and easier to fabricate than Si 

based solar cells but are limited by lower efficiency.  By incorporating 20 nm diameter Au 

nanoparticles (Au NPs) into DSSCs at the FTO/TiO2 interface as sub wavelength antennae, 

average photocurrent enhancements of 14% (maximum up to ~32%) and average efficiency 

enhancements of  13% (maximum up to ~23% ) were achieved with well dispersed, low surface 

coverages of nanoparticles.  However the Au nanoparticle solar cell (AuNPSC) performance is 

very sensitive to the surface coverage, the extent of nanoparticle aggregation, and the electrolyte 

employed, all of which can lead to detrimental effects (decreased performances) on the devices.   
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Chapter 1 - I Saw the Light! 

Energy crisis; Global warming;  these are two phrases that more often than not get tossed 

as if no stock should be taken into the graveness of their meanings.  Both issues, which are 

actually interconnected, are very real and require immediate attention. Ever since the 1970ôs oil 

embargo, the interests in alternate sources of energy especially research into solar and wind 

energies have steadily increased.
1
 During the past decade, especially the latter half, with the 

economic crises and rise of oil prices, the dire need for an alternate energy source has become 

more and more apparent.  This necessity has initiated floods of research towards harnessing a 

source worthy enough to replace the current king of energy; fossil fuels.  The most commendable 

and promising source for fossil fuel replacement is the inward solar flux of radiation from the 

sun onto the earthôs surface.  All these matters will be addressed in detail below. 

 Energy Crisis & Global Warming  

For about the past century fossil fuels have been the main staple to satisfy the worldôs 

energy consumption.  It wasnôt until recent that the severe negative side effects of combusting 

fossil fuels became evident.  Two critical issues have arisen; the effects of the by-products of 

fossil fuel synthesis and combustion and the short supply remaining of the non-renewable fuels.  

The synthesis and combustion of fossil fuels generates massive amounts of CO2 which can have 

detrimental effects on the atmospheric conditions of the earth.  The atmosphere itself is already 

composed of the greenhouse gases (O3, H2O, O2, and CO2) which help regulate the incident solar 

energy and the escaping thermal energy through absorption, reflection, and re-radiation.  The 

excess generation of CO2 could have profound effects on the surface climate of the earth 

including global warming, severe weather pattern shifts, and more intense seasonal conditions.  

On top of this, the amount of fossil fuels left for garnering is dwindling, which means an 

alternate source needs to be found as quickly as possible to avoid further atmospheric effects 

and/or the depletion of the current primary energy source. 

Due to the exponential increase of the earthôs population and economic rise of many un-

developed countries, the world energy consumption is on roughly a linear rise (Figure 1.2).  In 

2004 the total world energy consumption was up to 4.7 x 10
20

 J (15 TW) and in 2008 it had risen 

to ~5.0 x 10
20

 J (16 TW).  It is projected that by 2050 the worldly power consumption will rise 
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up over 26 TW.
2
  Figure 1.2 shows two plots; a timeline (1965 to 2005) of world energy 

consumption broken down into the top sources (left) and a linear bar graph of all sources 

showing their % make up of the total consumption (right).  Both plots show that non-renewable 

sources (nuclear & fossil fuels ï oil, coal, and natural gas) constitute well over 90% of the total 

energy consumed with less than 10% coming from the renewable sources.  Among the renewable 

sources, solar and wind show the most potential.  Solar energy converted into electrical energy 

through photovoltaic processes, which is one of the very promising renewable energy 

technologies (discussed later), does not even comprise a thousandth.  

 

Figure 1.1 World Energy Consumption Timeline
3
 & 2006 Energy Source Usage (%)

4
 

The left image shows a timeline from 1965 to 2005 of the continually increasing power 

consumption of fuels with fossil fuels being the major contributors .  (Used with permission 

from ref. 3. Copyright © 2007 Frank V. Mierlo) The right image shows a linear bar graph 

of the percentage of fuels consumed in 2006 again showing that fossil fuels (non-renewable 

sources) comprise over 90% while renewable sources (solar, wind) constitute <1%.  (Used 

with permission from ref. 4. Copyright © 2008 Omegatron) 

 Necessity for Sustainability 

With renewable sources only composing such a small percentage and the depletion of 

fossil fuels approaching quickly, a push towards an efficient, sustainable energy source is vital.  

It is estimated that there is only 57 ZJ (10
21

) of energy left on earth from various oil sources, with 

a low estimate of 8 ZJ and a high estimate of 110 ZJ.  The energy amount and percentage 

breakdown of the various oil sources for the median estimate are shown in Figure 1.2.  
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Figure 1.2 Remaining Oil Energy
5
 

The estimated energy amounts and percentages of the various oil sources are shown above.  

A median estimate of 57 ZJ of oil energy is believed to remain on earth with 8 ZJ as a low 

end estimate and 110 ZJ as a high end estimate.  For the median estimate with an 

increasing consumption rate of 2 EJ/year the oil supplies would run out in ~150 years.  

(Used with permission from ref. 5.  Copyright © 2008 Frank van Mierlo) 

If the current energy consumption rate (0.18 ZJ/year) would level out (no longer increase 

linearly), then the oil sources would run out in 44 years (low), 316 (median), or 611 years (high).  

Since it is highly unlikely that constant consumption would occur anytime soon, it can be 

assumed that the yearly consumption rate will still increase by 2 EJ/year, meaning the oil supply 

would run out in ~20 years (low), ~150 years (median), or ~240 years (high).  With the depletion 

of the fossil fuels potentially occurring within the next century, the discovery and 

implementation of an efficient, sustainable energy source needs to take place.  As mentioned 

earlier solar energy is one of the most promising candidates of the possible renewable sources. 

(Figure 1.3) 

 Alternatives to Present Energy Economy 

The sun deposits 4.3 x 10
20

 J of energy onto the earth in one hour which is more energy 

than mankind consumes in one year.  Of the 174 PW that reaches the earthôs outer atmosphere, 

86 PW (equivalent to 2.71 x 10
24

 J/year Ą 5,000x the energy used) still reaches the earthôs 

surface; the other 88 PW being absorbed or reflected by the atmosphere (Figure 2.1).  Figure 1.3 

displays some of the renewable sources with their amount of potentially harvestable power and 

compares them to the power consumed.  Using a combination of the renewable sources would 

provide more than enough energy for sustainability but solar alone could also accomplish this.  If 
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only 0.16% of the earthôs surface was covered with solar energy conversion systems that were at 

least 10% efficient, the energy requirements would be satisfied.  

  

Figure 1.3 Total Possible Available Power of Renewable Sources
6
 

Of all the renewable sources, solar is one of the more promising to replace fossil fuels due 

to the 86 PW of power that is supplied to the Earthôs surface. This 86 PW is more than 

5000x the current global consumption of 15 TW.  (Used with permission from ref. 6. 

Copyright © 2008 Delphi234, based on work by Frank v. Mierlo)  

 Solar Energy Harvesting 

The primary solar energy conversion systems employed to harvest the incident solar 

energy are photovoltaic devices.  These photovoltaic devices, also known as solar cells, capture 

and convert the incident solar radiation into electrical energy through the generation and 

collection of electron-hole pairs.  In the past this has been accomplished by semiconductor 

materials sandwiched together into a p-n junction (discussed later), but due to high materials and 

fabrication costs, alternative means are being explored.  Recently, emerging dye-

sensitized/quantum dot sensitized and polymer/organic based devices with their low materials 

costs and relatively high efficiencies are showing much promise.
7-12

  

 Photovoltaic Generations (1
st
, 2

nd
, & 3

rd
) 

With these emerging photovoltaic technologies, the various devices have been 

categorized into solar cell generations; 1
st
, 2

nd
, & 3

rd
 (Figure 1.4).   
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Figure 1.4 Solar Cell Generations - Cost vs. Efficiency
13-15

 

Photovoltaic devices are segregated into three generations; 1
st
) Solid-state devices (mainly 

Si), 2
nd

) thin film devices, 3
rd

) Devices not in 1
st
 & 2

nd
 (3D hierarchical, organic/polymer 

devices, tandem cells, etc.).  The 2
nd

 generation was developed to circumvent the expensive 

1
st
 generation but both are limited by the Shockley-Queisser theoretical limit.  The 3

rd
 

generation tackles both these issues with low cost, high efficiency devices that have the 

potential of being pushed above the thermodynamic limit by strategic device design.  (Used 

with permission from ref. 13. Copyright © 2007 IOP Publishing)
 

 The first generation mainly consists of the silicon-based family of solar cells 

(monocrystalline/polycrystalline) which constitute most of the photovoltaic market but also has 

had single p-n semiconductor junction based solar cells grouped within as well.  The major 

downfall to the first generation is the high-costs associated with the production of high efficiency 

devices.  Figure 1.4 shows that for about 5% increase in efficiency (~10% to ~15%), the cost per 

m
2
 would double ($200/m

2
 to $400/m

2
).  By employing thin film technology, the cell thickness 

can be reduced from hundreds of microns thick down to just a few microns, which reduces the 

high costs of the first generation cells.  These thin film cells make up the 2
nd

 generation cells.  

The biggest problem with the 2nd generation is due to the reduced materials costs (thinner cells), 

there is less light-absorbing material to generate photocurrent leading to lowered efficiencies.  

The downfall to the 1
st
 and 2

nd
 generations is that since their operation is based on a single p-n 

junction, they are limited by their Shockley-Queisser theoretical limits.  The 3rd generation solar 

cells, which currently consist of any cells that arenôt grouped into the 1
st
 and 2

nd
 generations, try 

to circumvent the high costs/low efficiencies and some are not limited by the Shockley-Queisser 

limit.  Since the 3
rd
 generation encompasses all those cells that donôt fit into the 1

st
 and 2

nd
 it 



6 

 

involves many different technologies such as tandem cells
14-17

, 3D hierarchical structured cells
9, 

18-20
, dye/quantum dot sensitized cells

7, 8, 20-24
, polymer/organic cells

12, 25-30
, plasmon enhanced 

cells
31-35

, etc.  Figure 1.5 gives the best research efficiencies of the 1
st
, 2

nd
 and some 3

rd
 

generation devices. 

  

Figure 1.5 Best Efficiencies Obtained for Research Photovoltaic Cells
36

 

Since 1975, as the generations of photovoltaics have evolved, the best obtained efficiencies 

for research cells have steadily been climbing with 1
st
 generation Si solar cells approaching 

the Shockley-Queisser limit and 3
rd

 generation mutijunction (tandem) devices reaching 

upwards of 43%. (Used with permission from ref. 36, Updated image came directly from 

author. Copyright © 2011 NREL)
 

It clearly shows that the 2
nd

 generation thin film cells (Si and other semiconductors) are 

plagued by lower efficiencies than the 1
st
 generation Si cells, while the 3

rd
 generation 

multijunction devices have already been able to surpass the Shockley-Queisser limit for Si based 

devices (32%).  While the efficiencies of these multijunction devices are high, their materials and 

fabrication are too expensive.  The emerging photovoltaic devices (organic & dye sensitized) 
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show much promise due to their low costs, ease of fabrication, and relatively high efficiencies ï 

up to 11% (despite being in their infancy).  A brief overview of Si/thin film Si devices and dye-

sensitized solar cells, as well as plasmon enhanced devices, is given below. 

 Solid State Devices 

 Device Basics and Operation 

The 1
st
 and 2

nd
 generation Si based photovoltaic devices will be grouped into one 

category deemed solid state devices.  These solid state devices consist of a p-type semiconductor 

(B-doped Si Ą hole-rich) and an n-type semiconductor (P-doped Si Ą electron-rich) placed in 

contact to form a junction.  Figure 1.6 shows a schematic of a solid state device.   

 

Figure 1.6 Solid State Device Schematic 

A solid state photovoltaic device consists of a n-type semiconductor placed in contact with a 

p-type semiconductor forming a p-n junction.  When brought into contact, the excess 

charges in the materials diffuse across the semiconductor interface and combine with an 

opposing charge.  This diffusion leads to the formation of a depletion layer in which excess 

negative charges are left in the p-type and excess positive charges are left in the n-type 

which gives rise to a built-in electric field. 

 Upon placing these semiconductors in contact and without an external bias applied, an 

equilibrium between the excess holes and electrons is reached.  The holes in the p-type 

semiconductor (in blue) diffuse across the semiconductor interface combining with an electron in 

the n-type (in red) and leaving a trapped electron in the p-type.  The same process occurs in the 

n-type semiconductor; the electrons diffuse across the interface into the p-type, combining with 

holes, and leaving additional trapped holes in the n-type material.  This diffusion leads to a 



8 

 

depletion layer in the device, which then gives rise to a built-in electric field.  The built-in 

electric field at this interface will help separate and keep separated the generated electron-hole 

pairs.  The interface of the semiconductors (p-type & n-type) is known as the p-n junction. 

 P-N Junction of Photovoltaic Device 

Figure 1.7 below highlights the processes that occur at a p-n junction upon 

electromagnetic radiation.  Upon absorption of a photon of appropriate energy, an electron is 

excited up to the conduction band (CB) making it a free carrier and leaving a hole in the valence 

band (VB), which can also freely move throughout the crystal lattice.   If the charges are 

generated in the depletion layer (near the p-n junction) then due to the built-in electric field the 

generated majority carriers (electrons in n-type, holes in p-type) are quickly swept away due to 

opposition to the electric field.  The minority carriers (holes in n-type, electrons in p-type) will 

diffuse across the semiconductor and ideally cross the p-n junction without recombining.  Once 

across the junction the minority carrier becomes a majority carrier and will easily be swept away 

by the electric field.  If the electron-hole pair is generated far from the built-in electric field or 

near a defect in the crystal (trap site), the chances of recombination drastically increase.  The 

time to recombination is based upon the minority carrier lifetime. If the electron-hole pair is 

generated far enough from the depletion layer that the minority carrier canôt diffuse to the built-

in electric field before its lifetime is up, then it will recombine and no current can be produced 

due to this parasitic recombination. 
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Figure 1.7 PN Junction Operation 

When subjected to a photon flux of appropriate energy, the photons are absorbed and an 

electron-hole pair is generated.  With the help of the built-in electric field, the generated 

charges are swept away, separated and begin to diffuse towards the front and rear 

contacts.  The generated electrons will diffuse towards the n-type region (negative 

electrode) and the generated holes towards the p-type region (positive electrode). 

 Downfalls to Solid State Devices 

The downfall to both Si and thin film Si is that in order to minimize these parasitic 

recombinations and achieve high efficiency devices, high quality, expensive materials and 

fabrication techniques are required.  By reducing the thickness of the device i.e. making a thin 

film cell the costs can be dramatically lessened but at expense of the efficiency.  One way to 

circumvent this thin film loss is to incorporate metal nanoparticles to take advantage of their 

plasmonic properties (discussed in a latter section).  Despite the reduction in costs, the thin film 

device fabrication is still an extensive process and the high quality materials can still be 

expensive.  A cheaper, easy to fabricate alternative is the dye-sensitized solar cell.  

 Dye-Sensitized Devices 

Dye-sensitized solar cells (DSSCs) were pioneered over 20 years ago by Michael Grätzel 

with the debut of the benchmark ñGrªtzel cellò.  Since then DSSCs have been able to reach 

efficiencies >11%.
7, 8
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 Device Basics and Operation 

DSSCs make up and operation principles differ greatly from their solid state 

predecessors.  Basic DSSCs consist of a semiconductor nanoparticle network sensitized with a 

visible light absorbing species with an interwoven electrolyte, all sandwiched between a 

transparent conducting oxide (TCO) electrode and a Pt thin film counter electrode (Figure 1.8).  

The heart of the device lies in the sensitized photoanode, where charge generation and separation 

occur as two distinct processes, which is what sets the DSSC apart from the solid state devices.  

In the solid state devices, the charge generation and separation occurs within the same material 

whereas in the DSSC, charge generation occurs within the dye and separation occurs at the 

dye/TiO2 nanoparticle interface and the electrons flow through the TiO2 network while the holes 

are carried by redox mediators in the electrolyte solution. 

  

Figure 1.8 DSSC Components & Operation
37

 

A DSSC consists of a semiconductor sensitized with a visible light absorbing species (dye) 

sandwiched in between a transparent conductive electrode and a counter electrode with a 

redox couple filler to shuttle the charges to and from the CE and the dye/semiconductor 

interface.  When the dye absorbs incident light, an electron is excited and can then be 

injected into the semiconductor, where it percolates through and is ideally collected to do 

work.  (Modified from ref. 37. Copyright © 2009 M. R. Jones)
 

Upon light irradiance of appropriate energy, an electron of the dye is excited from the 

highest occupied molecular orbital (HOMO) to one of the higher energy unoccupied orbitals.  
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The electron is then injected into the TiO2 where it percolates its way to the transparent 

electrode.  Once collected, the electron flows through the external circuit, does work, and flows 

to the Pt counter electrode.  At the CE, the electron reduces the electrolyte (I3
-
).  The reduced 

species (3I
-
), acting as charge shuttle, then diffuses through the electrolyte solvent towards the 

photoanode.  Upon arrival at the dye of the photoanode, the 3I
-
 is oxidized back to I3

-
, reducing 

the previously oxidized dye and regenerating it for another cycle. 

 Improving Downfall to DSSCs 

The DSSC can be fabricated with relative ease and its costs are minimal but the device 

efficiency is still extremely low when compared to the commercially available Si cells.  Various 

approaches to improving the efficiency of the DSSC, such as 3D counter electrodes
38-43

, more 

stable redox shuttles
44-48

, and higher absorption photoanodes
49-55

 are underway.  Increasing the 

photon absorption of the photoanode is critical because the more photons absorbed, the more 

potential electrons to be collected, and the higher the possible photocurrent.  One method to 

enhance the photoanode absorption that is heavily explored is improvement of the sensitizer.  

Dyes with wide absorption bands, spanning the whole visible region and even reaching down 

into the UV region and up into the IR region, are currently being developed.
49-55

 Another way to 

increase the photoanode absorption which could potentially lead to enhanced device efficiencies 

is to incorporate metallic nanoparticles that display plasmonic properties. 

 Incorporation of Metallic Nanoparticles 

These metallic nanoparticles that display plasmonic properties (surface plasmon 

resonance) could be incorporated into various parts of the photovoltaic devices to try to increase 

the light harvesting characteristics of the devices.  The surface plasmon resonance of the metallic 

nanoparticle should increase the generated photocurrent through enhanced light guiding, 

trapping, or absorption.   

 Surface Plasmon Resonances 

Surface plasmon resonances are the collective oscillation of electrons within a metal 

nanoparticle (Figure 1.9) When the size of the nanoparticle is much smaller than the wavelength 

of incident light, at any given point the nanoparticle experiences a relatively uniform electric 

field.  This ñuniformò electric field pushes the electrons all together to one side of the particle. 
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The movement of conduction electrons upon light excitation leads to a buildup of polarization 

charges on the particles surface which acts as a restoring force, allowing a resonance to occur at 

a particular frequency, which is known as the surface plasmon resonance frequency.
56, 57

  

 

Figure 1.9 Surface Plasmon Resonance Schematic
58

 

When the size of a particle is reduced to sub wavelength dimensions, the particle will 

experience a uniform electric field as incident light interacts with the particle.  This 

uniform electric field causes the charges in the particle to oscillate with the electric field.  

This oscillation acts a restoring force leading to resonance at a particular frequency.  This 

resonance can be exploited for enhancing photovoltaics.  (Image adapted from ref. 58.)
 

 Light Trapping Geometries 

Incident light near the surface plasmon resonance frequency is either strongly scattered or 

absorbed depending on the particle size.  This property can be exploited in solar cells as a light 

trapping mechanism.  Various light trapping geometries can be employed depending on the solar 

cell design and the desired effect (Figure 1.10) 

 

Figure 1.10 Light Trapping Geometries
56

 

Depending on the size and geometry of the particle, the particle can be employed in 

different geometrical setups to achieve various light trapping.  Incident light can be 

scattered (far left), concentrated (center), and/or redirected (far right).  (Used with 

permission from ref. 56. Copyright © 2010 Nature Publishing Group)
 

There are three possible light trapping geometries for solar cell applications; light 

scatterers (1.10a), light concentrators (1.10b), and light redirectors (1.10c).  When a metal 
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nanoparticle that exhibits surface plasmons is placed in a homogeneous material, then incident 

light will  be scatted away from the particle (nearly) symmetrically. If metal nanoparticles of 

appropriate size (>100 nm) are placed at the semiconductor/glass interface as in Figure 1.10a the 

incident light will preferentially scatter into the material with a higher permittivity; in this case 

into the semiconductor.
56, 59

 This increases the path length of the light as it travels through the 

device, increasing the chance of complete absorption and also allowing the thickness of the 

photoactive material to be decreased.  If a reflective back contact is employed such as a Pt CE 

and the light is not absorbed on the first pass, then as it reflects toward the surface the path length 

is additionally increased.  With an appropriate surface coverage of nanoparticles, the light will 

essentially be trapped inside the device until it can be absorbed. 

When particles of smaller size (<100nm) are placed at the interface of two 

semiconductors, such as a p-n junction, the particles will no longer scatter the light but will 

concentrate it (Figure 1.10b)  Upon excitation, a large electric field enhancement is present 

around the particle (see Figure 4.3).  The nanoparticle will act as an antenna for the incident 

light, storing energy in the localized surface plasmon which will lead to increased absorption by 

the surrounding semiconductor.
56

  

Another way of trapping the light inside the cell besides using the first geometry and a 

reflective back contact is to incorporate metallic nanostructures on the back contact (Figure 

1.10c).  Using this geometry, incident light is converted into a surface plasmon polariton (photon 

coupled to surface plasmon) which is an electromagnetic wave traveling along the interface 

between the back contact and the absorber.
56

 Surface plasmon polaritons excited at this interface 

can effectively trap and guide light into the semiconductor layer; the incident light is rotated by 

90° and re-directed along the lateral direction of the semiconductor layer.  The potential path 

length that the light could travel can be increased by upwards of 1000x due to device thicknesses 

being on the order of a few microns and device areas being on the order of centimeters. 

 Applications 

As discussed above, the materials costs of Si based devices can be drastically reduced by 

employing thin film technology but the device efficiency is also reduced.  One way to enhance 

the efficiency without increasing the materials cost is to incorporate metallic nanoparticles using 

the geometries discussed above.  The surface plasmon resonance of the nanoparticle should 
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enhance the photocurrent thereby enhancing the overall efficiency.  Ag nanoparticles have 

already been shown to increase photocurrent generation when incorporated into thin film 

devices.
35, 60, 61

 Since DSSCs are a cheaper alternative to the solid state devices but are plagued 

with lower efficiencies, this same concept of metallic nanoparticle incorporation can be applied 

to the DSSCs to enhance the photocurrent and in turn the efficiency; Ag & Au nanoparticles 

have also been shown to enhance the photocurrents and efficiencies for DSSCs but are very 

sensitive to device design.
31, 32, 34, 62-64 

 Recently in our lab, Au nanoparticles (AuNPs) were 

incorporated into DSSCs at the FTO/TiO2 interface showing potential photocurrent 

enhancements upwards of 30% and efficiency enhancements upwards of 20%. 

 Photovoltaic Device Characterizations 

With all the discussion of photocurrents and efficiencies, without a further understanding 

of what these parameters actually mean, then the numbers donôt really have much significance.  

In order to characterize photovoltaic devices (PVDs) and arrive at these parameters, a calibrated 

solar simulator is required that is capable of producing the standardized intensity of 1 sun 

(100mW/cm
2
).  The characterization techniques and how to arrive at the critical parameters that 

characterize PVDs will be described below.  It should be noted that none of the graphs in the 

remainder of this chapter are actual data; all the graphs are schematic figures for the ease of 

discussion. 

 IV Curves (Dark & Illuminated) 

The primary means for characterizing PVDs is the collection of the dark & illuminated 

IV curves.  For these measurements, the voltage is swept from negative to positive (approx. -

0.2V to 0.75V depending on device) and the resultant current response of the device is 

monitored. The dark curve will be further discussed below.  The critical parameters that can be 

extracted from the illuminated curve are the short circuit current density (JSC), open circuit 

voltage (VOC), fill factor (FF), efficiency (ɖ), shunt resistance (RSH), and series resistance (RS).  

Schematic dark & light IV curves are given below in Figure 1.11. 
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Figure 1.11 Schematic Dark & Illuminated IV Curves with Equivalent Circ uit Model 

Displayed on the schematic IV curve are the short circuit current density (JSC), open circuit 

voltage (VOC), theoretical power (PTheoretical), current density at the maximum power output 

(JMP), voltage at the maximum power output (VOC), and the maximum power output (Pmax) 

of the device.  The photovoltaic device can be modeled by the simple equivalent circuit 

shown on the right. 

The short circuit current density occurs when the voltage on the device is zero and it is the 

maximum possible current that the cell can generate.  In contrast, the open circuit voltage occurs 

when the current flow through the device is zero and it is the maximum obtainable voltage of the 

cell. Before discussing the fill factor and efficiencies, the resistances of the device need to be 

mentioned; the shunt resistance arises from the lack of alternate current pathways (power losses) 

in the device and the series resistance arises from the combined interfacial charge transfer 

resistances.  Ideally the shunt resistance is large, meaning very little power losses and the series 

resistance is low, meaning very little resistance to charge transport through the device.  These 

resistances can be approximated from the slopes of the IV curve; the series resistance is the 

inverse of the slope of the IV curve around the VOC and the shunt resistance is the inverse of the 

slope of the IV curve around the JSC.  It should be noted that if the shunt resistance is too low, 

then the photovoltage will decrease and if the series resistance is too high, the photocurrent will 

decrease.  As just mentioned, in the ideal case, the shunt resistance is high (zero slope near JSC) 
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and the series resistance is low (large slope,Ð, near VOC).  This case would lead to the ideal IV 

curve, which is the green box in Figure 1.11.  The IV responses, both light and dark, can be 

modeled to an equivalent circuit which is shown on the right side of Figure 1.11.  Under dark 

conditions, the photovoltaic device behaves just like a diode displaying a current IDark.  Under 

illumination, the device generates current labeled IIll , which is modeled as an additional 

component (current source) in the circuit model.  The total current produced, I, by the device is 

then equal to IDark + IIll  + ISH.  Again in the ideal case, the shunt resistance is near Ð and the 

series resistance is near 0, resulting I º IDark + IIll .  This is also apparent in the circuit model.  If 

RS is large, then there will be a large resistance to the flow of electrons through the circuit 

thereby decreasing the total current, I, and the efficiency of the device.  Likewise if RSH is too 

small, then it provides an alternate current path for the electrons to follow which would result in 

a voltage drop across the circuit (lower photovoltage) and again decreased efficiencies.  

 Some other parameters shown on the IV curve above are the current density at the 

maximum power (JMP), the photovoltage at the maximum power (VMP), the maximum power 

(Pmax), and the theoretical power (Ptheo).  In order to obtain power values, the current and voltage 

are multiplied together, so to determine the maximum power of the device, the current and 

voltage values from the IV curve are multiplied together.  The resultant values are then plotted 

vs. the original voltage values giving a curve such as the one in Figure 1.12 and the maximum 

power is extracted.   
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Figure 1.12 Maximum Power Output Curve 

The maximum power density output of the device can be determined by plotting the 

product of the current values and the voltage values vs. the original voltage values.  A near 

parabolic curve should be obtained with the maximum of the curve being the maximum 

power output. 

 

The theoretical power of the device is calculated by multiplying the short circuit density 

by the open voltage.  Using all these parameters the fill factor can then be calculated with the 

formula given below: 

FF = (JMP x VMP)/ (JSC x VOC) = Pmax  / PTheoretical 

Therefore the fill factor of the device is a ratio of the maximum power output to the 

theoretical maximum power output which is essentially the ratio of the area of the blue square to 

the area of the green square. 

 The last parameter, and probably the most critical in terms of device characteristics, is the 

efficiency.   The efficiency is calculated using the following formula:  

ɖ = (FF x JSC x VOC / Pin) x 100 

= (JMP x VMP / Pin) x 100 

= (Pmax / Pin) x 100 

The efficiency is the ratio of the maximum power output of the device to the power of the 

incident radiation. 

 The dark IV curve can be used to determine the cathodic current (back reaction) of the 

device.  Extracting the current over a given voltage range, such as the one in the red box in 

Figure 1.13, and plotting its absolute value in log scale vs. the voltage will give a straight line as 

seen in insert.  
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Figure 1.13 Schematic Dark Back Reaction 

Critical information regarding charge transport properties can be inferred from the IV 

response under dark conditions by plotting the dark current density in log scale over a 

specified voltage range. 

By comparing the slopes and the positions of the lines, various conclusions can be made 

about the cathodic current and the charge transport properties.
10

 

 Incident Photon to Current Conversion Efficiency (IPCE) 

Another means to characterize the photovoltaic devices and also to probe the origin of the 

photocurrent is to measure the incident photon to current conversion efficiency (IPCE).  The 

IPCE gives the percentage of photons at each wavelength that are actually converted into 

electrons (current).  Therefore an IPCE of 50% indicates that for every one electron produced, 

two photons were required.  Figure 1.14 shows a schematic IPCE graph of a DSSC.  The IPCE is 

calculated with the following formula: 

IPCEɚ = (( 1240 x JSC ) / ( Pin x ɚ )) x 100 

In order to determine the IPCE, the incident power (Pin) at each wavelength is measured as well 

as the short circuit current and these values are plugged into the above equation.  For a DSSC the 

IPCE peaks should correlate well with the UV-Vis peak absorption of the dye.  A peak could 

also be present from the semiconductor such as the peak at ~350 nm in the schematic graph for 

TiO2. 
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Figure 1.14 Schematic IPCE 

The incident photon to current conversion efficiency provides information into how 

efficiently the device converts photons into electrons (current) at each wavelength.  

Characteristic UV-Vis peak absorption wavelengths ideally will correspond to the peak 

IPCE wavelengths. 

 Chronoamperometry/Chronopotentiometry (Illumination  On/Off) 

Two powerful techniques that allow the measurement of device stability and charge 

transport properties are chronoamperometry and chronopotentiometry.  For both techniques light 

is irradiated on the device for a given time period and is then interrupted (usually with a shutter) 

for a given period.  For chronoamperometry, the short circuit current is monitored during these 

illumination on/off periods (Figure 1.15).  The stability of the deviceôs photocurrent is easily 

visualized from the chronoamperogram; if the measured current density during the on period 

remains virtually unchanged then the device is stable.  The critical information that comes from 

chronoamperometry is whether or not the device is diffusion limited by the electrolyte.  If the 

device is not diffusion limited (a flat steady photocurrent during the illumination on period) then 

the redox mediators are able to regenerate the dye at the same rate that it is being excited 

(oxidized).  When the device is diffusion limited, a decay in photocurrent will be visible such as 

the first two illumination on periods in Figure 1.15.  When the light is first turned on, the dye 

molecules are excited and start to inject electrons into the TiO2.  These oxidized dye molecules 

are instantly regenerated by the redox couple surrounding the dye/nanoparticle network allowing 




























































































































































































