THE ANTIGENIC RELATIONSHIPS AMONG BOVINE VIRAL DIARRHEA VIRUS ISOLATES

by

BASHIR HAMID TEIRAB
B.V.Sc., University of Khartoum, Sudan, 1966

A MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Infectious Diseases

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1977

Approved by:

[Signature]
Major Professor
THIS BOOK CONTAINS NUMEROUS PAGES WITH THE ORIGINAL PRINTING BEING SKEWED DIFFERENTLY FROM THE TOP OF THE PAGE TO THE BOTTOM.

THIS IS AS RECEIVED FROM THE CUSTOMER.
DEDICATION

To my parents for their love and to the people and Government of Sudan for their support.
TABLE OF CONTENTS

Acknowledgements .. iv
Abbreviations ... v
I. Introduction .. 1
II. Literature Review .. 4
III. Materials and Methods 17
 BVD Viruses Used ... 18
 Cell Cultures and Media 20
 BVD Virus Assay ... 21
 BVD Virus Concentration and Purification 22
 Neutralization Tests 25
IV. Results ... 27
 BVD Virus Plaque Characteristics 28
 BVD Virus Concentration and Purification 28
 Serum Neutralization (SN) Tests 30
V. Tables and Figures .. 35
VI. Discussion .. 52
 BVD Virus Plaque Characteristics 54
 BVD Virus Concentration and Purification 55
 Serum Neutralization Tests 61
VII. Appendix ... 65
 Materials and Methods 66
 Results ... 67
 Discussion .. 68
 Tables and Figures 71
VIII. Reagents and Suppliers' Addresses 79
IX. References ... 84
ACKNOWLEDGEMENTS

The author would like to express his sincere appreciation to Dr. H. C. Minocha, major professor, for his constant encouragement and guidance during the course of this investigation and for his advice in the preparation of this manuscript. The author would also like to thank the committee members, Dr. R. A. Consigli and Dr. A. L. Burroughs for their suggestions and friendship during the research. Thanks are due to Dr. E. H. Coles for providing laboratory facilities in the Department of Infectious Diseases. The statistical analyses contributed by Dr. C. Loschcke were invaluable and gratefully acknowledged. I would like to express my great appreciation to Mrs. Eva Graybeal for her technical assistance in the laboratory.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BVD</td>
<td>Bovine Viral Diarrhea</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Centigrade</td>
</tr>
<tr>
<td>CC</td>
<td>Cubic Centimeter</td>
</tr>
<tr>
<td>CPE</td>
<td>Cytopathic Effect</td>
</tr>
<tr>
<td>DNase</td>
<td>Deoxyribonuclease</td>
</tr>
<tr>
<td>Dil</td>
<td>Dilution</td>
</tr>
<tr>
<td>EMB</td>
<td>Embryonic bovine kidney</td>
</tr>
<tr>
<td>g</td>
<td>Gravity</td>
</tr>
<tr>
<td>IBR</td>
<td>Infectious bovine Rhinotracheitis</td>
</tr>
<tr>
<td>MDBK</td>
<td>Madin Darby Bovine Kidney</td>
</tr>
<tr>
<td>MEM</td>
<td>Minimal Essential Media (Eagle)</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>ml.</td>
<td>Milliliter</td>
</tr>
<tr>
<td>M₁-M₄</td>
<td>BVD Minnesota field isolates</td>
</tr>
<tr>
<td>NADL</td>
<td>National Animal Disease Laboratory</td>
</tr>
<tr>
<td>NaPTA</td>
<td>Sodium Phosphotungstate</td>
</tr>
<tr>
<td>NCP</td>
<td>Non Cytopathogenic</td>
</tr>
<tr>
<td>NDV</td>
<td>Newcastle disease Virus</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PFU</td>
<td>Plaque forming units</td>
</tr>
<tr>
<td>PI₃</td>
<td>Parainfluenza 3</td>
</tr>
<tr>
<td>PSK</td>
<td>Penicillin-Streptomycin-Kanamycin</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>SN</td>
<td>Serum Neutralization</td>
</tr>
<tr>
<td>TEN buffer</td>
<td>Tris-EDTA-NaCl</td>
</tr>
<tr>
<td>ug</td>
<td>Microgram</td>
</tr>
<tr>
<td>VD</td>
<td>Virus Diarrhea</td>
</tr>
<tr>
<td>V/V</td>
<td>Volume per Volume</td>
</tr>
<tr>
<td>W/V</td>
<td>Weight per Volume</td>
</tr>
</tbody>
</table>
SECTION I

INTRODUCTION
INTRODUCTION

Bovine viral diarrhea (BVD) virus has been implicated in bovine respiratory disease complex. The economic losses due to the disease are extensive among cattle populations. Many etiological agents have been shown to be responsible for respiratory disease in cattle, e.g. bovine viral diarrhea (BVD) virus, infectious bovine rhinotracheitis (IBR) virus, parainfluenza 3 (PI₃), bovine rhinovirus, adenovirus, reoviruses, mycoplasma, and pasteurella (Bruner and Gillespie, 1973; Thomson, 1974; Phillip, 1968). The principle viral agents responsible for the syndrome are BVD, IBR and PI₃. Circulating antibody and/or hemagglutination titers to all three viruses have been detected concurrently in the same animal (Jensen and Mackey, 1971).

Commercial vaccines against BVD consisting of attenuated viruses grown in tissue culture (Bittle, 1968; and Coggins et al., 1961) are somewhat accompanied by hazards of post vaccinal reactions in cattle (Clark, 1968; McKercher et al., 1968; Peacock, 1968; Peter et al., 1967; and Rosner, 1968) and have been suspected not to protect all vaccinated animals. This may possibly be due to different types of virus strains used for vaccine production.

The antigenic relationships among different isolates of BVD viruses have been studied by many investigators (Fernelius et al., 1971a; Castrucci et al., 1968a, b; and Castrucci
et al., 1975). Significant serological differences among BVD virus isolates as revealed by neutralization indices are not adequate for their classification into distinct serological groups (Corthier and Aynaud, 1973). This classification would require a detailed comparative study of the BVD virus isolates by cross serological reactions in order to explore the extent of antigenic relationships among various strains.

Animals inoculated with BVD virus isolates serologically unrelated on the basis of cross neutralization reactions, demonstrated cross protection in animals challenged 38 days after vaccination (Castrucci et al., 1975). However, cross protection experiments were not carried out for longer periods to test the duration of immunity.

The objective of this study was to: (1) Propagate, concentrate and purify three prototype strains and four field strains of bovine viral diarrhea (BVD) virus and (2) Establish the antigenic relationships among these viruses by reciprocal cross serum neutralization tests.
SECTION II

LITERATURE REVIEW
LITERATURE REVIEW

History of Bovine Viral Diarrhea (BVD) Virus: Bovine virus diarrhea was first reported as a transmissible disease of cattle by Olafson et al., 1946 in New York; as an X disease of cattle in Canada by Childs in the same year, and as an epizootic enteritis occurring in Sweden by Hedstrom et al., 1951. In 1953 it was reported as a mucosal disease by Ramsey and Chivers in the Midwest. Baker et al., 1954, recovered two strains of virus diarrhea (VD) virus from cattle and reproduced the disease in calves. Wheat et al., 1954, isolated a VD strain from cattle in California that was found to be immunologically identical with a New York strain. Since then the disease has been reported in most parts of the U.S. and several other countries in the world.

Epidemiology and Symptomatology: Bovine viral diarrhea virus has been incriminated in a variety of cattle diseases causing respiratory illness, diarrhea, abortion and lesions of mucosa of the alimentary canal (Kahrs, 1971, Kahrs et al., 1970a, Gillespie et al., 1967, Kahrs, 1968 and Kahrs et al., 1970b). Bovine viral diarrhea is not related to rinderpest, IBR and parainfluenza-3 (Howarth, 1972, Walker et al., 1947), but there is a minor antigenic relationship between BVD virus and hog cholera virus (Darbyshire, 1962, Shippy et al., 1962, Mengeling et al., 1963). The subclinical infection of BVD virus has become so widespread in the United States that
50-60% of all cattle tested have antibodies (Pritchard, 1963, and Howarth, 1972). The respiratory spread is the most important mode of transmission of BVD virus but it may be transmitted via urine (Pritchard, 1963, Howarth, 1972).

Isolation of Bovine Viral Diarrhea Virus: Underdahl et al., 1957, reported the isolation of two cytopathic agents but they failed to identify the virus isolates as the causative agents of the disease. Gillespie et al., 1960, identified a cytopathic virus in Oregon. This strain C24V has become one of the viral prototypes in laboratories throughout the world. Burki in 1965 investigated the quantitative distribution of the virus in calves with naturally occurring infections and concluded that the greatest amount of the virus was in the mucous membrane of the alimentary canal. In subclinical infection the virus was isolated from washed leukocytes even when serum antibody was present (Gutekunst et al., 1964). Gratzek in 1962 compared two strains of virus, C24V and a non-cytopathic New York (N.Y.) strain of bovine virus diarrhea on the basis of the plaque production, growth curve, sensitivity to ether, cytopathic effects in cell cultures, interference test, and adsorption. He concluded that virus-infected cells were able to undergo mitosis and form clones. Using primary cell cultures of embryonic bovine kidney, Gillespie et al., 1963, reported the greatest yield of infective virus 72 to 96 hours after inoculation; the concentration of infective free virus
was greater than the cell associated virus. Mills et al., 1965, found that cell cultures of the kidneys of young calves were more practicable for C24V propagation than embryonic cell cultures. BVD virus strain NADL was adapted to swine kidney cell culture by Malquist et al., 1965; early infection by hog cholera (HC) virus abolished the effects and yield of the adapted BVD virus. Fernelius et al., 1966, recommended the use of specific pathogen-free animals for viral passages, antiserum production and cell culture systems. NADL strain of BVD virus was adapted to Madin-Darby bovine kidney (MDBK) cells after first carrying it through six passages in bovine testicle cell cultures (Marcus et al., 1968). Fernelius et al., 1969a, using fluorescent antibody (FA) technique, were able to demonstrate abortive infection in hamster kidney and in human cells. The cytopathic changes in cells, particularly bovine embryo kidney and bovine embryo testicle as reported by Singh, 1969, include elongation and shrinking of cells and varying degrees of vacuolation of the cytoplasm. Fernelius et al., 1969b, demonstrated that the expression of cytopathogenicity of NADL and cell-line adapted NADL viruses in embryonic bovine kidney changed during rabbit passages to resemble cytopathogenicity of Oregon-C24V strain of BVD virus (biotypic conversion). Cancellotti et al., 1972, were able to isolate a cytopathogenic BVD agent on spleen and bovine fetal kidney cells and they found that fetal spleen cells
were more sensitive to the cytopathogenic action of the virus than did bovine fetal kidney cells. BVD virus concentration increased 150,000 fold by day 4 with as much as 96% of the inoculum adsorbed by macrophages grown in suspension (Truitt et al., 1973). It was later found that bovine fetal spleen cells adsorbed BVD virus faster than bovine fetal kidney cells (Schiff et al., 1973).

Classification of BVD Virus: The morphology of BVD virus has not been clearly elucidated (Andrews Pereira, 1972). Hermodsson and Dinter 1962 described particles with a diameter of 40 nm., but were unable to confirm that the particles were BVD virus. Pritchard, 1963, using chromium shadowing revealed particles of 35 to 55 nm. in diameter. Ditchfield and Doane, 1964, have described BVD virion as 150 to 250 nm., in size with a structure similar to that of a myxovirus. Dutta et al., 1964, have described an intermediate size of 80 nm. Hafez et al., 1968, believed that the size of BVD virion varies between 22 and 90 nm. Ritchie and Fernalius, 1969, suggested a size of 80 to 100 nm. particles. Maess and Reczko, 1970; Horzinek, et al., 1971, have suggested particle size of 57 nm. and an inner core of 24 nm. in diameter. Castrucci, 1968a, b, described two BVD virus isolates which were shown to be RNA containing lipovirus, sensitive to pH3, 57-58 nm. in diameter and lacking hemagglutination and hemadsorption properties. Scott et al., 1974, have found pleomorphic but roughly spherical
particles of 50 to 80 nm. in diameter. These particles resemble rubella virus but they display a mottled appearance inside the outline of the outer membrane. These workers supported the suggestion of Horzinek, Maess and Lauf, 1971, that BVD virus should be classified as a togavirus (lipid containing RNA virus with cubic symmetry of the nucleocapsid) although BVD and hog cholera viruses differ from the other togaviruses in their lower sedimentation and density values, their nucleocapsid diameters and the unusual "rosary" envelope structure (Horzinek et al., 1971). Gillette, 1966, Tanaka et al., 1968, and Hafez et al., 1972b, using DNA inhibitors have reported that BVD viral core contains RNA. Further evidence of RNA contents in BVD viruses was obtained by nucleic acid extraction (Diderholm and Dinter, 1966, Moennig, 1971).

Experimental Reproduction of BVD Virus in Cattle and Other Animals: Bovine viral diarrhea can be reproduced experimentally (Olafson et al., 1946, Baker et al., 1954, Pritchard et al., 1955, Carlson et al., 1957). Experimentally induced BVD in cattle is often mild but may be severe and fatal. Bovine viral diarrhea virus was propagated in cattle, sheep, and goats, but not in pigs, cats, mice, suckling mice, hamster, ferrets, pigeons, day-old chicks and guinea pigs (Pritchard 1963). The highest viral titer of the blood and spleen of calves occur four or five days postinoculation. Attempts to cultivate BVD virus in embryonated chicken eggs had not been successful
(Olafson and Richard, 1947; Baker et al., 1954; Pritchard et al., 1956; and Huck, 1957). Bovine viral diarrhea virus can be propagated in cell cultures and some isolates, e.g. New York I is noncytopathogenic while others produce cytopathic effects in numerous cell culture systems. Lee and Gillespie (1957) cultivated BVD New York I virus in cultures of bovine skin and muscle tissue and bovine embryonic kidney cells.

Naturally occurring antibodies to BVD virus were first found in Australian pigs (Snowdon, 1968). Naturally occurring infection of sheep with BVD virus has not been reported but experimental inoculation of ewes caused the birth of lambs with congenital malformation such as cerebellar hypoplasia (Siebold, 1967, George, 1971, and Ward, 1961). Lambert et al., 1969, observed the survival of calves following an in utero infection with BVD virus and suspected those calves might have developed an immune tolerance with persistent viremia. Such animals are slow gainers and do poorly. Ward et al., 1969 had shown that calves which had their dams injected with BVD virus had antibody titers at birth and the antibodies were maintained for six months. When bovine fetuses were injected with BVD virus at different gestation stages they gained immunologic competence to the virus and were shown to be capable of producing serum neutralizing antibodies by 200 day of gestation (Braun et al., 1973). Bovine viral diarrhea virus was recovered from the placentomes and fetuses of ewes 14 days after
inoculation and was also recovered from the fetal cotyledons and uterine caruncles at Lambing (Hore et al., 1973). Different strains of BVD virus when tested in ewes at various stages of gestation showed different degrees of pathogenicity causing abortion, fetal death, mumification and resorption or expulsion of the fetus (Snowdon, et al., 1975).

Purification of Bovine Viral Diarrhea Virus: The separation of BVD virus structural proteins by polyacrylamide gel after disruption by various techniques has been reported by Frost and Leiss (1973) and Pritchett and Zee (1975). Disruption of BVD virus preparation with 1% sodium dodecyl sulphate (SDS) resulted in the production of three electrophoretic components (Frost and Leiss, 1973). Purification of BVD virus by differential and isopycnic-zonal centrifugation proved ineffective, as residual host proteins contaminated the viral preparations (Pritchett and Zee, 1975). Coelectrophoresis of 3H-labeled virus and 14C-labeled host material did provide a way to distinguish between viral proteins and host proteins and four electrophoretic components of viral origin were identified and their molecular weights estimated. Although the structural proteins of BVD virus have not been unequivocally characterized, it is apparent that the number and the molecular weights of the proteins more closely resemble those of group A rather than group B togaviruses (Pritchett and Zee, 1975). BVD virus was purified partially by agar gel filtration (Fernelius and
Velicer, 1968) and by the use of sucrose, CsCl₂ and potassium tartrate density gradients (Maess et al., 1970), Horzinek et al., 1971, Fernelius 1968; Ritchie and Fernelius 1969, Hafez et al., 1972b, Parks et al., 1972). The buoyant density of four strains of BVD virus: NADL, C24V, CG-1220, and New York I grown in primary embryonic bovine cells was 1.15 g/cm³ (Fernelius 1968) and the buoyant density of BVD virus strain C24V, propagated in calf testicle was 1.115 g/cm³ (Maess et al., 1970). Parks et al., 1972, purified BVD virus strain NADL and recovered the infectious virus with density of 1.092 g/cm³. Scott et al., 1974, had reported a 90% virus recovery in 15-30% sucrose gradient with buoyant density of 1.11 g/cm³.

Serology of Bovine Viral Diarrhea Virus: Cross protection tests in cattle and tissue culture indicate that virus diarrhea and mucosal disease are caused by the same virus (Howarth, 1972). The existence of serologic relationship among the strains of BVD virus has been reported by many investigators (Darbyshire, 1963, Dinter, 1964, Gillespie et al., 1960, Gillespie et al., 1961, Gillette, 1966, Kniazeff and Pritchard, 1960, Kniazeff et al., 1961, Mills et al., 1965, Noice and Schipper, 1959, Taylor et al., 1963, Thomson et al., 1963, Castrucci et al., 1968a, b). Pritchard et al., 1956, failed to cross neutralize New York and Indiana strains of BVD virus. Antigenic relationships between BVD virus strains have been observed (Gillespie and Baker, 1959, Gillespie et al.,
Kniazeff et al., 1960, by plaque reduction test had neutralized C24V by antisera prepared against strains from New York, Nebraska, Indiana, Iowa, North Dakota, and England. The same antigenic relationship was also reported by Kniazeff et al., 1961, between BVD virus strains from West Germany, England, Scotland, and the United States, however the extent of the relationship was not determined.

In 1964 Gutekunst and Malquist compared the complement-fixing and serum-neutralizing antibodies against the cytopathogenic NADL and noncytopathogenic CG-1220 strains of BVD virus by reciprocal cross neutralization tests and observed no differences in complement fixing (CF) antibody whereas serum neutralizing antibody appeared to be strain specific. Fernelius in 1964 compared cytopathogenic and noncytopathogenic BVD viruses and showed the occurrence of common as well as strain specific antigens. Tyler et al., 1965, have shown a close relationship between the isolates of mucosal disease which included the Sanders, Merrel, NADL, North Dakota (BMD) and Nebraska (C-I). The comparison was done on the basis of the clinical, hematologic, immunologic and pathologic responses in calves. No conclusive evidence regarding the antigenic relationship was observed. In 1967 Chennekatu and coworkers have speculated about the possibility of an immune failure or an immune delay due to the destruction of lymphoid tissue and
an inhibition of the proliferation of surviving immunologically
competent cells of the germinating center. These workers did
not speculate about the antigenic diversity of the BVD virus
disease complex. Castrucci et al., 1968a, have shown that the
TVM₁ and TVM₂ BVD virus isolates are antigenically identical
whereas three strains from the United States (C60F, NADL, and
65/150) differ from TVM strains.

Fernelius in 1968 has grouped BVD viruses in order of
decreasing cytopathogenicity for susceptible host cells as
NADL >C24V >CG-1220 >Indiana >Merrel >New York I >Sanders.
Taylor et al., 1963, demonstrated a reciprocal immunologic
relationship between several BVD-virus strains including C24V
which was shown not to adapt to eggs, suckling mice, or rat
fetuses but did adapt to lamb fetus in utero. Fernelius
et al., 1971a, have proposed three serotypes for classifying
BVD virus strains on the basis of cross neutralization test
and concluded that these BVD virus strains are serologically
identifiable. Cytopathogenic strains of BVD virus differ with
regard to type and degree of the CPE (Fernelius and Ritchie,
1966, Hafez et al., 1972a) as well as to plaque size (Gratzek
et al., 1967 and Hafez et al., 1972a). The presence of dif-
ferent plaque morphology was not controlled by the viral genome
and might be due to differences in adsorption, penetration and
cell response (Hafez et al., 1972a). Several investigators
(Borgen, 1963, Taylor et al., 1963, Castrucci et al., 1968a,
and Hafez et al., 1972a) reported failure to demonstrate hemagglutination or hemadsorption by BVD virus strains. Corthier and Aynaud, 1973, observed some significant serological differences between C24V and NADL strains of BVD virus and were not able to classify them into distinct serological groups on the basis of neutralization indices. Castrucci et al., 1975, have indicated that wide serological differences among BVD viruses are not related to their immunizing properties and that vaccines prepared from different BVD viruses provide protection against other virus strains.

Vaccination of BVD Virus: The development of BVD virus vaccines was based on the attenuation of viral agents by serial passage in rabbits (Baker et al., 1958) or in bovine kidney cell culture (Coggins et al., 1961). Commercial vaccines consisting of cell cultures attenuated C24V strain (Bittle, 1968, Coggins et al., 1961) or NADL strain adapted to swine kidney cell line (PK-15) (Gutkunst, 1968) are usually multivalent (Baker et al., 1958, Bittle et al., 1968, and Tamoglia, 1968). It was observed that the use of live-virus vaccines was accompanied by post-vaccinal reactions (Clark, 1968, McKercher, 1968, Peacock, 1968, Peter et al., 1967, and Rosner, 1968) or contaminating viral agents (McKercher, 1968, Peacock, 1968, Tamoglia, 1968). Evaluation of BVD vaccines presented some difficulties because experimentally produced disease is mild whether challenged via the respiratory route (Mills et al.,
1968, Tyler et al., 1968) or through the intravenous route (Malquist, 1968, Tyler et al., 1968). A soluble antigen vaccine was investigated by Fernelius et al., 1971b, and vaccinated calves developed high titer of neutralizing antibodies against BVD virus and compared favorably with that produced by an attenuated live-virus vaccine and they recommended the use of these inactivated vaccines to reduce the number of BVD virus carriers. Complications after vaccination with BVD were attributed to either a deficiency of the immune system or the cattle were in the incubative stage at the time of vaccination, (Mckercher et al., 1968, Peter et al., 1967). Phillips et al., 1975, have attenuated BVD in continuous porcine cell line with good immunization results and without post-vaccinal reactions.

From the literature review it is evident that there exist many strains of BVD virus, and investigative work on the antigenic relationship among these strains is lacking. Antigenic differences of significant nature may possibly change the immunological properties which may require serious considerations for the production of a vaccine using a particular strain or a combination of viruses.

Therefore, an attempt was made to study the antigenic similarities and differences among three prototype viruses and four field isolates (Minnesota) in this report.
SECTION III

MATERIALS AND METHODS
MATERIALS AND METHODS

Viruses Used

NADL (ATCC): The cytopathogenic strain was isolated in January, 1962 by Gutekunst and Malquist from a clinical case of BVD virus occurring in the National Animal Disease Laboratory (NADL) Holstein-Friesian herd. This strain was characterized by Gutekunst and has been maintained at -75° C since its isolation as original infected tissues and as various passages in embryonic bovine kidney (EBK) cells. In this laboratory it has been passaged into Madin-Darby bovine kidney (MDBK) cell cultures and kept at -70° C.

Oregon (C24V) Strain: The cytopathogenic strain, Oregon (C24V) produces a distinctive type of vacuolization in susceptible EBK cells, and which was isolated by Gillespie et al., 1960 from Oregon cattle. It is propagated in MDBK cell cultures and kept at -70° C.

Singer (Maryland): The strain was isolated in Maryland and propagated in MDBK cell cultures and kept at -70° C.

L1P 10 x 175 (M₁): Isolated from a hereford calf in 1962, one of seven which died out of a herd of 13 calves. It was passed 10 times on bovine fetal endocardial cells and once on bovine turbinate cells. It is propagated three times on MDBK cells and kept at -70° C.

Minnesota virus isolates kindly provided by Dr. D. W. Johnson.
MJ P725 IV 75 (M₂)*: Isolated from one Holstein in June, 1961, which was ill with BVD, from a herd of 66. This virus has been passed seven times on bovine fetal endocardial cells and one passage on turbinate cells. It has been passed three times on MDBK cell cultures and kept at -70° C.

74-1865 (M₃)*: This virus was isolated in December, 1974 from the spleen and lung from a feeder calf that died with clinical signs of diarrhea and respiratory disease. The calves had been vaccinated with tri-valent (PI₃, IBR, BVD) 1-1/2 months prior to becoming ill. The isolation was made on bovine turbinate cells. It was propagated three times on MDBK cell cultures and kept at -70° C.

75-1842 (M₄)*: This virus was isolated in December, 1975 from the nasal swab taken from a calf ill with a disease clinically diagnosed as BVD. It was isolated after four blind passages on bovine turbinate cells and three times on MDBK cell cultures and kept at -70° C.

The virus isolates were passaged 3-4 times in MDBK monolayer cell cultures grown either in half-gallon roller bottles (Bellco Glass, Inc., Vineland NJ 08360) or in 32-oz. glass prescription bottles. The cultures were inoculated at a multiplicity of approximately 1 PFU/cell and incubated at 36° C. Cells were harvested after 48-96 hours post virus inoculation when 90% or more of cells showed cytopathic effect (CPE) with the exception of M₂ which was harvested after 120-192 hours.
Infectious tissue culture fluids were subjected to three cycles of freezing at -70°C in an ultra-freezer (Revco, Inc., Model ULT 1285-B-5) and clarified by low speed centrifugation in an International refrigerator centrifuge model PK-2, 20 minutes at 2000 g at 5°C. Cell free infectious fluids were dispensed in 100 ml. plastic bottles and kept frozen at -70°C as stock viruses.

Cell Cultures and Media: The Madin-Darby bovine kidney (MDBK) cell line, originally established by Madin and Darby (1958) was used in the present studies. Cells were produced in roller or prescription bottles seeded with cell suspension at the rate of 6 x 10^4 - 2 x 10^5 cells/ml. Roller bottles were incubated in a walk-in incubator (Forma Scientific) on a roller apparatus (Bellco Glass, Inc., Vineland, NJ 08360) at a speed of 1/2-1.0 rpm. Complete monolayers were formed two to three days post-seeding. Cells were washed twice with phosphate buffered saline (PBS), and dispersed with Trypsin-EDTA mixture 0.05% (w/v) trypsin (1:250, Difco) and 0.02% w/v) EDTA, pH 7.2. The trypsin mixture was spread over the monolayer, drained and minimal essential medium Eagle's (Grand Island Biological Co., Grand Island, NY) containing 10% inactivated horse serum was added. Cells were counted in a hemocytometer and then seeded in bottles. Cells were frozen in dimethylsulfoxide (CH_3)_2 SO_4 (Mallinckrodt Chemical Works, St. Louis, Mo. 63160) (10%) for storage.
Petri dishes (60 x 15 mm., Falcon, 1950 William Drive, Oxford, CA 93030) were seeded with 1.1-1.2 million cells each to obtain monolayer cultures in 18-24 hours, post-seeding.

BVD Virus Assay: Virus assay procedure was essentially similar as described for animal viruses by Dulbecco (1952) with some modifications. The procedure was later described for BVD virus by Kniazeff et al., (1963) and Singh (1969), Fernelius (1967), Gratzet et al., (1967), Hafez et al., (1972a).

MDBK cell cultures were propagated in 60 x 15 mm. petri dishes. Serial 10-fold virus dilutions were made in MEM containing 5% inactivated horse serum. Growth medium was removed from the petri dishes containing MDBK cell monolayers and 0.2 ml. each of the serial virus dilution was inoculated into duplicate cultures. Two uninoculated petri dishes were used as control. Virus adsorption was allowed to take place for 1-1/2-2 hours at 37°C in 5% CO₂ in a humidified incubator (Hotpack, Philadelphia, PA). An overlay containing a mixture of 2% purified agar and 2X MEM with 5% horse serum was added to each dish (8 ml.). After the agar overlays solidified, dishes were reincubated as before.

Five to six days later 3 ml. of media agar mixture containing 0.015% neutral red was added to each dish to stain the monolayers. Plaques were observed the following day and virus titers were determined as plaque-forming units per ml. (PFU/ml).
BVD Virus Concentration and Purification: Monolayers of MDBK cell cultures were inoculated with virus and harvested when maximum cytopathic effect was observed. After three cycles of freezing and thawing, the released virus present in the supernatant culture fluids (stock virus) was concentrated by centrifuging at 80,000 g for five hours in SW 27 swinging-bucket rotor, Beckman L2-65B. The resulting pellet was suspended in tris-saline (0.01 M tris, 0.1 M NaCl and pH 7.2). The suspended viruses were sonicated three times for 15 seconds at 0°C in an ultrasonic disintegrator (Model W185, Heat System-Ultrasonics, Inc., Plainview, L.I., NY). The sonicated viruses were treated with trypsin (10-20 ug/ml.) for 30 minutes, trypsin inhibitor for 20 minutes and then RNase and DNase (20 ug/ml.) for 30 minutes at 37°C, according to the methods of Burki, 1965; Gutekunst and Malquist, 1965; Fernelius, 1968; and Minocha and Consigli, 1967, 1968, with modifications. The enzymes were removed by ultracentrifugation at 100,000 g for 1/2 hour in 50.1 rotor (Beckman) and the virus pellet was washed in tris-saline and briefly sonicated as mentioned above. The sonicated viruses were layered on top of 10% sucrose (w/v) in TEN buffer: (0.01 M tris, 0.001 M EDTA 0.1 M NaCl, adjusted to pH 7.4 with HCl) in 5 ml. cellulose nitrate tubes and according to the procedures used by Fernelius, 1968; Maess et al., 1970; Horzinek et al., 1971; Parks et al., 1972 and Scott et al., 1974, with some modifications. The tubes were
spun at 100,000 g for 2 hours in SW 50.1 rotor in Beckman L2-65B ultracentrifuge. The sedimented viruses were resuspended in tris-saline or TEN buffer.

The resuspended viruses were briefly sonicated as described previously and carefully layered on top of a pre-formed potassium tartrate (Fisher Scientific) gradient. The gradients 10-30% (w/v) had been formed in TEN buffer using a gradient maker (Buchler Instruments, Fort Lee, NY); a 1.0 ml. cushion of 38% (w/v) potassium tartrate solution was used at the bottom of the tube (17 ml. cellulose nitrate tubes, Beckman centrifuge tubes) according to Maess et al., 1970. The tubes were spun at 80,000 g for three hours in Beckman ultracentrifuge in SW27 rotor. Likewise, 50% potassium tartrate (w/v) and 30% glycerol (v/v) were used except that the centrifugation time was 20 hours. Similarly, CsCl₂ was used according to the method described by Fernelius (1968) and Ritchie et al. (1969). Discontinuous CsCl₂ density gradients were prepared by the addition of 0.5 ml. of 1.4, 1.35, 1.30, 1.25, 1.20 and 1.15 solutions prepared from a stock solution of 1.6 density. Virus preparation (0.5 ml.) was layered on top of the gradient and centrifuged at 80,000 g for 12-24 hours using SW27 rotor.

Fractions were collected through a hole in the bottom of the tube using a fraction collector (Model 327, Instrumentation Specialties Co.), and Buchler piercing units. Each
fraction was transferred to number 1/4 inch diameter dialyzer tubing (Fisher Scientific Co.) and dialyzed in tris-saline for 24 hours using a multiple dialyzer (Pope Scientific, Inc.). The dialyzing fluid was changed 3-4 times at 4°C.

Fractions were plaque assayed and those showing the highest infectivity titers were pooled and used for rabbit inoculation.

BVD Virus Density and Infectivity: The refractive indices of fractions from CsCl₂ were read in a Bausch and Lomb Abbe' 3L refractometer and buoyant densities were determined by the method of Ifft et al., 1961. Fractions were plaque assayed for infectivity determination.

Protein Determination: Protein was measured by the method of Lowry et al. (1951) using crystalline bovine serum albumin as a standard.

Electron Microscopy: Samples of virus-containing fractions from potassium tartrate gradients were negatively stained with 1% (w/v) sodium phosphotungstate, pH 7.0 (according to Miller, 1974 and Watson et al., 1963). Examination was carried out using Phillips EM 102 electron microscope at magnifications of 13,800 to 70,000 in the Division of Biology at Kansas State University. One drop of virus preparation was layered onto carboned formvar grids and the excess virus was removed with filter paper by touching the side of the grid, and one drop of 1% Na-phosphotungstate was added to the grid and after a few
seconds air dried and studied in the electron microscope.

Neutralization Tests

Production of Rabbit Hyperimmune Sera: Two albino rabbits (6-8 weeks) were used for each BVD virus isolate for the production of hyperimmune serum. Rabbits were inoculated intravenously with purified virus preparations containing 10^5-10^7 PFU/ml. Animals were given 0.2, 0.3, 0.5, 0.75 and 1.0 ml. of virus over a month period at weekly intervals. Preimmunization serum was collected to be used as control serum for neutralization tests.

Rabbits were bled by ear vein under negative pressure (about 1 lb.) and blood was kept for one hour at room temperature. After the clot had formed, the blood was transferred to a refrigerator overnight. Serum was collected and centrifuged at 1000 g for 10 minutes. The sera of each of the two rabbits inoculated with the virus were pooled (inactivated at 56°C for 30 minutes) and the antibody titer was determined by the plaque reduction procedure.

Titration of Antiserum with Homologous Virus: All BVD virus antiserum and normal rabbit sera (pre-inoculation) were diluted in MEM plus 5% horse serum. Dilutions were 1/50-1/400. Each virus was diluted to contain 10^5 PFU/ml. Dilutions of antiserum (0.4 ml.) were mixed with equal volume of the homologous virus, well mixed and incubated overnight at 4°C. Each serum-virus mixture was diluted from
10^{-1} to 10^{-3}\) whereas virus alone and virus plus normal rabbit sera (control) were diluted from 10^{-1} to 10^{-4} and plaque titered.

Cross-Neutralization Tests: The antigenic relationship of BVD virus strains was investigated by the serological cross-neutralization reactions. Each BVD virus antiserum was cross-reacted with the seven BVD virus isolates. The corresponding normal rabbit serum was used as control.

Each BVD virus antiserum was diluted either from 1/50 to 1/400 or 1/200 to 1/1600 depending upon the serum neutralization titers obtained in homologous serological reaction. The highest dilution of the antiserum which completely neutralized the homologous virus was taken as the lowest dilution in the cross neutralization tests. Each antiserum dilution (0.4 ml.) was mixed with equal volume of each of BVD virus containing 4 x 10^4 PFU's. In each test the BVD viruses with normal rabbit sera were used to serve as controls. Serum-virus mixture and viruses with media were incubated at 40 C overnight. Serum-virus mixtures were diluted from 10^{-1} to 10^{-3}. BVD viruses alone or BVD viruses plus normal rabbit sera were diluted from 10^{-1} to 10^{-4}. All samples were plaque assayed as described.

The data on cross neutralization reactions was studied by Archetti-Horsfall formula and subjected to computer analysis for antigenic relationship among the virus isolates tested.
SECTION IV

RESULTS
RESULTS

BVD Virus Plaque Characteristics: The plaque morphologies of NADL, Singer, \(M_3 \) and \(M_4 \) appeared essentially indistinguishable. NADL, \(M_4 \) and Singer had the largest plaques while \(M_1 \) and \(M_2 \) had relatively smaller plaques. C24V plaques showed characteristic sharp, circular clear-cut margin, while the other isolates had plaques with diffusable boundaries (Figure 1).

BVD viruses plaqued on MDBK cell monolayers and stained with neutral red six days after inoculation produced different plaque size (Figure 1 and Table 1). Statistical analysis of the plaque size data at 5% level of significance using t-test (Table 1) demonstrated that there was no significant difference in plaque size between \(M_1 \) and \(M_2 \) (1.8-2.2 mm.); C24V and \(M_3 \) (2.9-3.3 mm.); \(M_3 \), Singer and NADL (3.7-4.1 mm.); and NADL and \(M_4 \) (4.1-4.3 mm.). A significant difference in plaque size was observed between \(M_1 \) and C24V; C24V and Singer and Singer and \(M_4 \).

BVD Virus Concentration and Purification: Table 2 presents the results of BVD virus concentration and purification. Ultracentrifugation of the crude virus showed 92% recovery of the virus with 11 fold purification. Treatment of sedimented virus with enzymes (DNase, RNase and Trypsin) demonstrated 76.9% recovery of viral infectivity with 108 fold purification. The final purification steps of passing the virus through 10% sucrose followed by K-tartrate gradient centrifugation resulted
in 53.8 and 42.3% recovery of virus, respectively. The fold purification in these two steps was 606 and 1,000 respectively. More than 99% of the original protein was removed after potassium tartrate gradient centrifugation. The specific activity (total PFU/total protein) had increased from 1.1×10^3 in the crude virus to 1.1×10^6 in the last step of purification.

Buoyant Density of BVD Virus: A typical density and infectivity distribution of BVD in CsCl$_2$ gradient is represented in Figure 2. From the refractive indices measurements of CsCl$_2$ fractions the buoyant density of BVD virus was determined using the procedure of Ifft *et al.*, 1961 at room temperature. BVD virus (NADL) density ranged from 1.13 to 1.17 g/cm3 with the highest peak of infectivity at a density of 1.15 g/cm3.

Electron Microscopy: Purified preparations of BVD virus showed different forms of viral particles by electron microscopy. This variation may be due to the properties of BVD virus or the result of different treatments during manipulations of virus preparations. At least four virus populations were observed: enveloped full, enveloped empty, naked full and naked empty particles (Figure 3).

Full viral particles displayed three parts: (1) an outer structure, the envelope (2) the capsid and (3) the core, occupying a central position which seems to be penetrated by the stain in most of the preparations. Cores appeared to be hexagonal. The capsids displayed a similar shape as the core
and appeared to be hexagonal. They seem to be composed of a number of elongated capsomers which are regularly arrayed and are not closely packed (Figure 3B). Capsid diameter of viruses (Figure 3 and Table 3) was: NADL 76-163 nm, with mean 120.1 nm; C24V 82-181 nm. with a mean of 105.8 nm; and Singer 66-152 nm. with a mean 107.8 nm.

Viral envelopes with varying size and shape in most of BVD virus preparations were observed to enclose the capsid (Figure 3). BVD NADL had an envelope size of 27-58 nm. across with a mean of 38.5 nm. C24V had a size of 12-35 nm. across with a mean 25.2 nm., and Singer had an envelope size of 26-58 nm. across with a mean of 36.8 nm. NADL envelope seemed more stable than that of C24V and Singer as very few naked viral particles were observed. Viral envelopes showed differences in sizes, but no significant difference between NADL and Singer envelopes was observed (Table 3). However, envelopes of NADL and Singer isolates when compared with that of C24V which is smaller and differed significantly in size (Table 3). This may have relationship with the differences observed in serological cross reactions among these viruses.

Serum Neutralization (SN) Tests:

Titration of Homologous Antisera: Antisera prepared against seven isolates of BVD virus demonstrated different titers when reacted with homologous virus containing approximately 4×10^4 PFU (Table 4). NADL, Singer and M_3 showed
complete neutralization of homologous viruses at 1/200 dilution of antiserum. Antisera against C$_{24}$V, M$_1$ and M$_4$ maximally neutralized the corresponding viruses at 1/50 dilution and M$_2$ at 1/100 dilution. Normal rabbit sera did not neutralize BVD virus isolates.

Cross Neutralization Tests: Table 4 also presents the serological cross reactions between BVD antisera and the virus isolates. Singer, M$_1$ and M$_4$ are strongly related to NADL as indicated by <8% survival of the viruses tested against NADL antiserum (1/1600 dil.). The percentage survival of C$_{24}$V, M$_2$ and M$_3$ virus isolates was 62, 100 and 34%, respectively, with NADL antiserum. The degree of relationship of C$_{24}$V with the other virus isolates was variable as shown by survival rates of 4 to 46% with C$_{24}$V antiserum (1/400 dil.). NADL and M$_4$ showed much greater degree of relationship (1% survival) with anti-Singer (1/1600 dil.) than did M$_1$ and M$_2$ (10% survival) on the basis of their reaction with anti-Singer. However, 100% survival of C$_{24}$V and M$_3$ viruses with anti-Singer indicated lack of antigenic relationship between these viruses. The cross reaction using M$_1$ or M$_2$ antisera and all other BVD viruses showed great heterogeneity in antigenic relationship as indicated by survival of viruses ranging from 11-100%. M$_3$ showed the least relationship, if any, with BVD viruses as shown by virus survival rates of more than 52% when cross reacted with anti-M$_3$ (1/1600 dilution). NADL, Singer, M$_1$ and M$_2$ viruses
strongly cross reacted with M₄ antiserum (survival <8%). A weak cross reaction of M₃ and C24V with M₄ antiserum (16-49% survival) demonstrated a low degree of relationship between these viruses. These data of SN studies were also graphed and presented as Figure 4.

Antigenic Relationships Among Virus Isolates on the Basis of Archetti-Horsfall Formula: This method had been used for the antigenic analysis of influenza viruses by Archetti and Horsfall in 1950; for classification of bovine enteroviruses in 1965 by LaPlaca et al., and by Castrucci et al., 1968a, b for grouping strains of BVD virus. The geometric mean of the ratio \(R_1 \) found on dividing the heterologous titer obtained with virus 2 by the homologous titer obtained with virus 1; and the ratio \(R_2 \) found on dividing the heterologous titer obtained with virus 1 by the homologous titer obtained with virus 2 is given by the equation: \(R = \sqrt{R_1 + R_2} \). (R) is the extent of the antigenic difference between two viruses when both agents and both antisera are used in a cross-serological reaction. Ratio R is 1 for the homologous antigen-antiserum reaction. Ratio of <2 when two virus isolates are cross reacted signifies high degree of antigenic relationship. The data on the basis of R values of BVD virus isolates is presented in Table 5. NADL, Singer, M₁ and M₄ fall into one antigenically related group, since all of them have R values of <2 in cross-neutralization tests, while C24V, M₂ and M₃
each form a group by itself.

Figure 5 summarizes the antigenic relationship between BVD virus isolates. In general, a two-way relationship exists between NADL, Siver and M_4; and between NADL, M_1 and M_4. C24V is related to M_1 and likewise M_2 is to M_4. M_3 had no demonstrable serological relationship with any of the other six BVD viruses.

Statistical Analysis: The data obtained in serum neutralization tests was also subjected to computer analysis* (Tables 6-8) for determination of antigenic relationships among virus isolates. The data has been subjected to computer analysis of variance using the model:

$$y = \mu + \text{si} + \text{vj} + \text{dk} + \text{svij} + \text{sdik} + \text{ijk};$$

where $Y =$ percentage survival, $\mu =$ overall mean, $\text{si} =$ antiserum i main effect, $\text{vj} =$ virus j main effect, $\text{dk} =$ dilution k main effect, $\text{svij} =$ effect of antiserum i as applied to virus j, $\text{sdik} =$ effect of antiserum i as applied at a dilution k. Since the antiserum dilution interaction (sd) turned out not to be significant, the results presented here are based on the model:

$$y = \mu + \text{si} + \text{vj} + \text{dk} + \text{svij} + \text{ijk};$$

where ijk is an error term. The results of this analysis of variance are summarized in Tables 6-8.

Computer analysis was done by Dr. Loschcke, Christian in the Department of Statistics, KSU.
F-values obtained in Tables 5-6 were analyzed as follows:

(1) the F-value of 45.70 shows that the antisera differs significantly from each other at the 0.0001 level of significance. The comparison of the average percentage survival of all BVD viruses per antiserum is shown in column (1) (Table 7). M_1 antiserum is the least effective antiserum followed by M_3 antiserum. NADL and Singer antisera, on the average, are the most effective in their neutralizing ability.

(2) the F-value of 17.11 means that BVD viruses are differently neutralized by all antigens, e.g., C24V virus has the highest survival rate (with 44.84% survival) followed next by M_2 virus (30-90.5% survival) (Table 7). NADL and M_4 viruses are very easily neutralized leaving 15.953% and 11.479% survival, respectively.

(3) the F-value of 16.88% in the analysis of variance table means that different dilutions have different effects on BVD virus isolates (Table 7). The fact that 1/50 and 1/100 and also 1/100 and 1/200 dilutions are equally effective is probably due to the fact that some antisera completely neutralized a given BVD virus at both dilutions.

(4) The F-value of 7.28 in the analysis of variance table means that BVD antisera differ in their neutralizing activity towards the different viruses. The average percentage survival of each BVD virus and antiserum are given in Table 8.
SECTION V

TABLES AND FIGURES
<table>
<thead>
<tr>
<th>Virus</th>
<th>No. of plaque measured</th>
<th>Plaque size diameter mean (mm)</th>
<th>Diameter range (mm)</th>
<th>Standard deviation (mm)</th>
<th>Coefficient of variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>5</td>
<td>1.8 *</td>
<td>1.3 - 2.6</td>
<td>0.5</td>
<td>27.8</td>
</tr>
<tr>
<td>M_1</td>
<td>10</td>
<td>2.2 *</td>
<td>1.3 - 3.0</td>
<td>0.5</td>
<td>22.7</td>
</tr>
<tr>
<td>C_{24V}</td>
<td>19</td>
<td>2.9 *</td>
<td>2.0 - 3.9</td>
<td>0.6</td>
<td>20.7</td>
</tr>
<tr>
<td>M_3</td>
<td>20</td>
<td>3.3 **</td>
<td>2.0 - 5.3</td>
<td>0.8</td>
<td>24.2</td>
</tr>
<tr>
<td>Singer</td>
<td>13</td>
<td>3.7 *</td>
<td>2.0 - 5.3</td>
<td>1.3</td>
<td>35.1</td>
</tr>
<tr>
<td>NADL</td>
<td>19</td>
<td>4.1 **</td>
<td>3.0 - 5.9</td>
<td>0.9</td>
<td>21.9</td>
</tr>
<tr>
<td>M_4</td>
<td>24</td>
<td>4.3 *</td>
<td>2.6 - 6.6</td>
<td>1.3</td>
<td>30.2</td>
</tr>
<tr>
<td>Sample</td>
<td>Total Virus (PFU)</td>
<td>% Virus Recovery</td>
<td>Total Protein UG</td>
<td>% Protein Recovery</td>
<td>Specific Activity Total PFU/Total Protein</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Crude Virus</td>
<td>2.6x10^9</td>
<td>100</td>
<td>2.34x10^6</td>
<td>100</td>
<td>1.1 x 10^3</td>
</tr>
<tr>
<td>Supernatant</td>
<td>1.2x10^6</td>
<td>0.05</td>
<td>2.16x10^6</td>
<td>92.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Ultracentrifuge Sediment</td>
<td>2.4x10^9</td>
<td>92.3</td>
<td>1.82x10^5</td>
<td>7.8</td>
<td>1.3 x 10^4</td>
</tr>
<tr>
<td>Enzyme Treated (DNase, RNase and Trypsin)</td>
<td>2.0x10^9</td>
<td>76.9</td>
<td>1.67x10^4</td>
<td>0.7</td>
<td>1.19 x 10^5</td>
</tr>
<tr>
<td>10% Sucrose</td>
<td>1.4x10^9</td>
<td>53.8</td>
<td>2.1x10^3</td>
<td>0.09</td>
<td>6.6 x 10^5</td>
</tr>
<tr>
<td>K-Tartrate Gradient (10-30%)</td>
<td>1.1x10^9</td>
<td>42.3</td>
<td>1.0x10^3</td>
<td>0.04</td>
<td>1.1 x 10^6</td>
</tr>
<tr>
<td>Object</td>
<td>No. of particles measured</td>
<td>Mean value (nm)</td>
<td>Standard deviation (nm)</td>
<td>Coefficient of variation (%)</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>NADL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capsid</td>
<td>12</td>
<td>120.2</td>
<td>7.7</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>Envelope</td>
<td>10</td>
<td>38.6</td>
<td>3.0</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>C24V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capsid</td>
<td>8</td>
<td>105.9</td>
<td>9.5</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>Envelope</td>
<td>8</td>
<td>25.2</td>
<td>3.7</td>
<td>13.7</td>
<td></td>
</tr>
<tr>
<td>Singer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capsid</td>
<td>18</td>
<td>107.9</td>
<td>6.3</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>Envelope</td>
<td>8</td>
<td>36.9</td>
<td>3.5</td>
<td>9.4</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Cross Neutralization of BVD Virus Isolates in MDBK Cell Cultures

<table>
<thead>
<tr>
<th>Virus</th>
<th>% Survival (PFU)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anti-NADL</td>
</tr>
<tr>
<td></td>
<td>1/200 1/400 1/800 1/1600</td>
</tr>
<tr>
<td>NADL</td>
<td>0 0.074 0.147 1.22*</td>
</tr>
<tr>
<td>C24V</td>
<td>20 62 33 62</td>
</tr>
<tr>
<td>Singer</td>
<td>0 0.06 0.3 0.8</td>
</tr>
<tr>
<td>M1</td>
<td>0 0 0.6 7.7</td>
</tr>
<tr>
<td>M2</td>
<td>0.6 3.5 68.8 100</td>
</tr>
<tr>
<td>M3</td>
<td>1.8 8.6 9.1 34.1</td>
</tr>
<tr>
<td>M4</td>
<td>0 0.2 0.7 4.3</td>
</tr>
</tbody>
</table>

* % Survival = \[
\frac{\text{Titer of Virus with Antiserum}}{\text{Titer of Virus with Normal Rabbit Serum}} \times 100
\]
<table>
<thead>
<tr>
<th>VIRUS</th>
<th>% SURVIVAL (PFU)</th>
<th>ANTI-M1 1/200</th>
<th>1/400</th>
<th>1/800</th>
<th>1/1600</th>
<th>1/100</th>
<th>1/200</th>
<th>1/400</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADL</td>
<td>0</td>
<td>0</td>
<td>0.07</td>
<td>0.2</td>
<td>29</td>
<td>56</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>C214V</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.6</td>
<td>100</td>
<td>93</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0.1</td>
<td>12</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>SINGER</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>8.3</td>
<td>43.6</td>
<td>49.1</td>
<td>49.1</td>
<td>49.1</td>
</tr>
<tr>
<td>M1</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>M2</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0.05</td>
<td>43.6</td>
<td>49.1</td>
<td>49.1</td>
<td>49.1</td>
</tr>
<tr>
<td>M3</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0.05</td>
<td>43.6</td>
<td>49.1</td>
<td>49.1</td>
<td>49.1</td>
</tr>
<tr>
<td>M4</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0.05</td>
<td>43.6</td>
<td>49.1</td>
<td>49.1</td>
<td>49.1</td>
</tr>
</tbody>
</table>
Table 4. (continued)

<table>
<thead>
<tr>
<th></th>
<th>Anti-M₂</th>
<th></th>
<th>Anti-M₃</th>
<th></th>
<th>Anti-M₄</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/100</td>
<td>1/200</td>
<td>1/400</td>
<td>1/800</td>
<td>1/200</td>
<td>1/400</td>
</tr>
<tr>
<td>NADL</td>
<td>0.7</td>
<td>2.3</td>
<td>7.5</td>
<td>11.6</td>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td>C₂₄V</td>
<td>17.8</td>
<td>19.2</td>
<td>31.5</td>
<td>47.9</td>
<td>41.6</td>
<td>41.6</td>
</tr>
<tr>
<td>SINGER</td>
<td>0.9</td>
<td>5</td>
<td>10</td>
<td>25</td>
<td>36</td>
<td>50</td>
</tr>
<tr>
<td>M₁</td>
<td>1.7</td>
<td>12.1</td>
<td>24.3</td>
<td>45.7</td>
<td>23.6</td>
<td>33.6</td>
</tr>
<tr>
<td>M₂</td>
<td>0.3</td>
<td>0.4</td>
<td>1.0</td>
<td>8.1</td>
<td>66.7</td>
<td>73.3</td>
</tr>
<tr>
<td>M₃</td>
<td>16.5</td>
<td>15.6</td>
<td>21.3</td>
<td>73.9</td>
<td>0.1</td>
<td>2.6</td>
</tr>
<tr>
<td>M₄</td>
<td>1.8</td>
<td>3</td>
<td>12.7</td>
<td>12.7</td>
<td>20</td>
<td>30.8</td>
</tr>
<tr>
<td>Antiserum</td>
<td>NADL</td>
<td>C24V</td>
<td>Singer</td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>NADL</td>
<td>1</td>
<td>2.9</td>
<td>0.5</td>
<td>0.95</td>
<td>12.9</td>
<td>14.4</td>
</tr>
<tr>
<td>C24V</td>
<td>2.9</td>
<td>1</td>
<td>6.4</td>
<td>0.8</td>
<td>3.9</td>
<td>3.3</td>
</tr>
<tr>
<td>Singer</td>
<td>0.5</td>
<td>6.4</td>
<td>1</td>
<td>2.5</td>
<td>11.5</td>
<td>11.2</td>
</tr>
<tr>
<td>M1</td>
<td>0.95</td>
<td>0.8</td>
<td>2.5</td>
<td>1</td>
<td>2.3</td>
<td>5.3</td>
</tr>
<tr>
<td>M2</td>
<td>12.9</td>
<td>3.9</td>
<td>11.5</td>
<td>2.3</td>
<td>1</td>
<td>10.5</td>
</tr>
<tr>
<td>M3</td>
<td>14.4</td>
<td>3.3</td>
<td>11.2</td>
<td>5.2</td>
<td>10.5</td>
<td>1</td>
</tr>
<tr>
<td>M4</td>
<td>0.4</td>
<td>6.8</td>
<td>0.9</td>
<td>0.63</td>
<td>1.3</td>
<td>4.5</td>
</tr>
</tbody>
</table>

* R (Extent of the antigenic relationship among two strains) = $\sqrt{R_1 \times R_2}$

$R_1 = \frac{\text{Heterologous antibody titer (virus 2)}}{\text{Homologous antibody titer (virus 1)}}$

$R_2 = \frac{\text{Heterologous antibody titer (virus 1)}}{\text{Homologous antibody titer (virus 2)}}$
<table>
<thead>
<tr>
<th></th>
<th>Degree of Freedom</th>
<th>Sum of Square</th>
<th>Mean Square</th>
<th>F-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiserum(s)</td>
<td>6</td>
<td>52,443</td>
<td>8,740.5</td>
<td>45.70 (1)</td>
</tr>
<tr>
<td>Virus(v)</td>
<td>6</td>
<td>19,636</td>
<td>3,272.67</td>
<td>17.11 (2)</td>
</tr>
<tr>
<td>Dilution</td>
<td>5</td>
<td>16,137</td>
<td>3,227.4</td>
<td>16.88 (3)</td>
</tr>
<tr>
<td>Sv</td>
<td>36</td>
<td>50,097</td>
<td>1,391.58</td>
<td>7.28 (4)</td>
</tr>
<tr>
<td>Error</td>
<td>142</td>
<td>27,158</td>
<td>191.25</td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>195</td>
<td>165,471</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7. Analysis of F-Values at Different Sources

<table>
<thead>
<tr>
<th>Antiserum (% survival all viruses)</th>
<th>Viruses (% survival all antisera)</th>
<th>Dilution (% survival all viruses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁ 58.168</td>
<td>C₂₄V 44.648</td>
<td>1/50 9.427 *</td>
</tr>
<tr>
<td>M₃ 42.819</td>
<td>M₂ 30.905 *</td>
<td>1/100 14.698 * *</td>
</tr>
<tr>
<td>C₂₄V 19.666 *</td>
<td>M₃ 27.676 * *</td>
<td>1/200 17.83 *</td>
</tr>
<tr>
<td>M₄ 17.439 * *</td>
<td>SINGER 23.451 *</td>
<td>1/400 24.014</td>
</tr>
<tr>
<td>M₂ 17.273 * *</td>
<td>M₁ 22.45 * *</td>
<td>1/800 36.842</td>
</tr>
<tr>
<td>SINGER 12.741 * *</td>
<td>NADL 15.953 * *</td>
<td>1/1600 48.527</td>
</tr>
<tr>
<td>NADL 8.455</td>
<td>M₄ 11.479 *</td>
<td></td>
</tr>
</tbody>
</table>
Table 8. Mean Percent Survival of BVD Viruses by Cross-Neutralization Test*

<table>
<thead>
<tr>
<th>Antiserum</th>
<th>NADL</th>
<th>C24V</th>
<th>Singer</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADL</td>
<td>0</td>
<td>38.0</td>
<td>0</td>
<td>0</td>
<td>36.7</td>
<td>6.8</td>
<td>0</td>
</tr>
<tr>
<td>C24V</td>
<td>11.5</td>
<td>21.6</td>
<td>12.7</td>
<td>15.9</td>
<td>21.2</td>
<td>41.1</td>
<td>13.7</td>
</tr>
<tr>
<td>Singer</td>
<td>0</td>
<td>56.5</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>53.9</td>
<td>0</td>
</tr>
<tr>
<td>M1</td>
<td>48.8</td>
<td>57.9</td>
<td>103.7</td>
<td>63.6</td>
<td>67.4</td>
<td>41.5</td>
<td>24.2</td>
</tr>
<tr>
<td>M2</td>
<td>7.4</td>
<td>31.0</td>
<td>12.2</td>
<td>22.8</td>
<td>4.3</td>
<td>33.7</td>
<td>9.4</td>
</tr>
<tr>
<td>M3</td>
<td>47.9</td>
<td>53.8</td>
<td>39.1</td>
<td>52.7</td>
<td>72.2</td>
<td>0</td>
<td>35.0</td>
</tr>
<tr>
<td>M4</td>
<td>8.8</td>
<td>53.6</td>
<td>8.9</td>
<td>9.2</td>
<td>13.9</td>
<td>17.9</td>
<td>9.8</td>
</tr>
</tbody>
</table>

* The averages are the least squares estimates based on the linear model:

\[y = u + s_i + v_j + s_{ij} + d_k + e_{ijk} \]

M1 = Minnesota Virus Isolate

\[u = \text{the overall mean} \]

\[s_i = \text{the effect of the antiserum (i)} \]

\[v_j = \text{the effect of the virus (j)} \]

\[s_{ij} = \text{the effect of antiserum (i) on the virus (j)} \]

\[d_k = \text{the effect of the dilution (k); } e_{ijk} = \text{error.} \]
Figure 1. Plaque Formation by Bovine Viral Diarrhea Viruses on MDBK Cells. Seven BVD virus isolates were plaque assayed on MDBK cell cultures. Virus adsorption was done at 37°C in 5% CO₂ for 1 1/2-2 hours in a humidified incubator. Inoculated monolayers were overlayed with 8 ml. of a mixture containing 2% purified agar and 2x MEM with 5% inactivated horse serum. Dishes were reincubated as before and 5 days later were fed with media and agar mixture containing 0.015% neutral red. Plaques were observed the following day and average plaque size was determined. Original plate diameter (5 cm.) was reduced to 3 cm. in the photograph.
THIS BOOK CONTAINS SEVERAL DOCUMENTS THAT ARE OF POOR QUALITY DUE TO BEING A PHOTOCOPY OF A PHOTO.

THIS IS AS RECEIVED FROM CUSTOMER.
THIS BOOK CONTAINS NUMEROUS PICTURES THAT ARE ATTACHED TO DOCUMENTS CROOKED.

THIS IS AS RECEIVED FROM CUSTOMER.
Figure 2. BVD Virus Density and Infectivity.

Density gradient centrifugation of BVD virus (NADL) was done in CsCl₂ discontinuous gradient in ten buffer at 80,000 g for 18 hours using SW27 rotor in Beckman L2-65B ultracentrifuge. Fractions were collected, plaqued assayed for infectivity and the density was determined from the refractive indices using Ifft et al., 1961 formula (10.86 x Reading of the refractometer) - 13,4974. Log virus infectivity (PFU/ml) vs fraction number were plotted. Density (g/ml.) values were plotted for each fraction. Symbols: 0—0, log infectivity (PFU/ml.)(—Δ, density (g/ml.).
THIS BOOK CONTAINS NUMEROUS PAGES WITH DIAGRAMS THAT ARE CROOKED COMPARED TO THE REST OF THE INFORMATION ON THE PAGE. THIS IS AS RECEIVED FROM CUSTOMER.
Figure 3. Electron Micrographs of Three BVD Virus Isolates. Virus preparations were negatively stained with Na-phosphotungstate.

(i) NADL: Two enveloped, empty virus particles with smooth surface (x 170,800).

(iii) Siger: Several naked, empty or partially full virus particles (x 116,666).
Figure 4. **Cross-Neutralization of 7 BVD Virus Isolates.** Antisera prepared in rabbits against 7 BVD virus isolates using purified antigens were cross reacted in a constant-virus variable-serum neutralization tests. The dilution of the antibody which completely neutralized the homologous virus \(4 \times 10^4\) PFU was taken as the lowest antibody dilution in each cross-neutralization reaction. Equal volume of antibody (0.4 ml.) was thoroughly mixed with equal volume of virus containing \(4 \times 10^4\) PFU and incubated at \(4^\circ C\) overnight. Virus serum mixtures were plaque assayed on MDBK cell cultures and the percentage survivals of all viruses with each antiserum were plotted against the dilutions. Symbols:

- \(\triangleright\), antiserum,
- \(\triangle\), NADL virus,
- \(\triangleleft\), C24V virus,
- \(\times\), Singer virus,
- \(\square\), \(M_1\) virus,
- \(\ominus\), \(M_2\) virus,
- \(\triangle\), \(M_3\) virus,
- \(\blacksquare\), \(M_4\) virus.
Figure 5. Major Antigenic Groups Among BVD Virus Isolates. Cross neutralization tests followed by analyses using Archetti-Horsfall equation \(R = \frac{R_1}{R_2} \times \frac{R_1}{R_2} \) revealed antigenic relationships between BVD virus isolates tested.

\(R = \) Extent of antigenic relationship.

\(R_1 = \) Heterologous antibody titer (Virus 2)

\(\frac{\text{Homologous antibody titer (Virus 1)}}{\text{Homologous antibody titer (Virus 1)}} \)

\(R_2 = \) Heterologous antibody titer (Virus 2)

\(\frac{\text{Homologous antibody titer (Virus 1)}}{\text{Homologous antibody titer (Virus 2)}} \)

For homologous antigenic antibody reactions, \(R \) value is 1. \(R \) values 2 or 2 represents strong antigenic relationship between the two virus isolates tested and \(R \) value 2 may represent a weak antigenic relationship.

Arrows indicate antigenic relationship. NADL, Singer, \(M_1 \) and \(M_4 \) show a two-way relationship and form a group by themselves. \(M_2 \) and C24V each are related to only one of the other isolates while \(M_3 \) shows no relationship with any of the isolates tested.
Figure 6. Cross Neutralization of BVD Virus Isolates in MDBK Cell Cultures Using Guinea Pig and Rabbit Hyperimmune Sera Produced by Crude Antigens. Antisera prepared in guinea pigs against 3 BVD virus strains using crude virus after two subcutaneous injections of 0.25 and 0.5 ml. were cross-reacted in a constant-virus variable-serum neutralization test. Equal volume of antibody dilution (1 1/2 ml.) was mixed with equal volume of virus containing $1.0 \times 10^4 - 4.5 \times 10^4$ PFU/ml. and incubated at 37°C. Serum virus mixture was diluted and plaque assayed. Similarly one rabbit which was hyperimmunized with NADL virus was boosted and its serum was cross-neutralized by the three viruses. Percentage survival was plotted against the antibody dilutions. Symbols: O—O, NADL virus, △—△, C24V virus, X—X, Singer virus, A, anti-NADL in guinea pig, B, anti-Singer in guinea pig, C, anti-C24V in guinea pig, D, anti-NADL in rabbit.
A = >NADL; B = >SINGER; C = >C2.V [G. PIG SERA];
D = >NADL [RABBIT SERUM]
SECTION VI
DISCUSSION
DISCUSSION

The antigenic relationships among BVD virus isolates have been studied by many investigators (Fernelius et al., 1971; Castrucci et al., 1968a, b and Castrucci et al., 1975).

Field cases of BVD after inoculation with vaccine have been reported by several investigators (Clark, 1968; Mc Kercher et al., 1968; Peacock, 1968; Peter et al., 1967; and Rosner, 1968). It was suspected that vaccine may not protect all vaccinated animals. This may possibly be due to antigenic differences among virus strains used for vaccine production.

Significant serological differences among BVD virus isolates as demonstrated by their neutralization indices are not adequate for their classification into distinct serological groups (Corthier and Aynaud, 1973). This classification would require a detailed comparative study of BVD virus isolates by cross serological reactions in order to explore the extent of their antigenic relationships.

Animals inoculated with BVD virus isolates serologically unrelated on the basis of cross neutralization tests demonstrated cross protection when challenged 38 days after vaccination (Castrucci et al., 1975). However, cross protection experiments were not carried out for longer periods to test the duration of immunity. It is evident that many strains of BVD virus exist and detailed studies on the antigenic relationship among these strains is lacking. Antigenic differences of significant
nature may possibly change the immunological properties which may require serious considerations for vaccine production. Consequently, an attempt was made to study the antigenic relationships among three prototype viruses and four field isolates (Minnesota) by cross serum neutralization tests after their preparation in MDBK cells.

BVD Virus Plaque Characteristics: BVD virus plaques produced on confluent monolayers of MDBK cell cultures were most distinct 5-6 days post virus inoculation (Figure 1). Gratzek et al., 1967 showed that BVD virus isolates NADL and C24V produced plaques in calf testicle cultures 3-7 days after infection. They demonstrated that BVD C24V as a vaccinal strain produced larger plaques than the low passage strain NADL and this criteria could differentiate vaccinal strains from field strains in suspected cases of postvaccinal epizootics. In this study BVD-NADL always produced larger plaques than C24V (Table 1, Figure 1). Differences in morphology and plaque size of BVD virus may be due to a certain degree of genetic variation. Dulbecco and Vogt (1954a) reported such differences in RNA viruses, especially togaviruses. The variation in the plaque size may be attributed to irregularities in packaging of viral subunits and a heterogeneous density distribution profile may be observed (Figure 2). Durand and Eisenstark (1962) and Minocha and Consigli (1967) reported similar studies in Newcastle Disease Virus (NDV).
BVD Virus Concentration and Purification: Several procedures have been employed for the concentration and purification of BVD viruses (Scott et al., 1976; Maess and Reczko, 1970; Richie and Fernelius, 1969; Horzinek et al., 1971; Parks et al., 1972; Castrucci et al., 1967; Hafez et al., 1972). These procedures have given a variety of results with either greater losses or higher recovery levels of virus infectivity.

Using 15-30% sucrose gradient and centrifugation at 100,000 g for 3.5 hours Scott et al (1974) were able to obtain BVD virus recovery of 90% with a buoyant density of 1.11 g/cm³. They obtained a sharp peak of infectious virus indicating that purification procedure had given a homogenous population of undegraded virus particles. Earlier reports by Maess and Reczko (1970) indicated that purification of BVD virus resulted in a loss of 83% of virus infectivity. A heterogenous population with similar loss of virus infective particles (Richie and Fernelius 1969; Horzinek, Maess and Laufs 1971) was also reported using gel filtration and density gradient techniques. Parks et al (1972) were able to purify the virus (NADL) by passing the clarified tissue culture fluid through 20-50% sucrose with the highest recovery of 37%.

Maess and Reczko (1970) using a preformed potassium tartrate gradient (12.5-29% w/v) at 35,000 rpm in SW39 rotor Spinco L50 for two hours were able to purify BVD virus C24V
with 17% recovery of infectivity at a density of 1.115 g/cm3. The purified virus preparations when examined under an electron microscope displayed an icosahedral shape of virus particles. The method of purification of BVD virus presented in this communication utilized modifications of procedures employed by other investigators.

Enzyme treatment was employed at a low level as compared with the one used by earlier investigators (Castrucci et al., 1967 and Hafez et al., 1972). They used higher trypsin concentration (0.5-1 mg/ml) with one hour incubation as compared to 10-20 μg/ml trypsin concentration with 30 min. incubation in this study and had low recovery of the virus. There was heterogeneous distribution of BVD virus in a CsCl$_2$ density gradient as determined by the infectivity assay of fractions collected and fraction #14 demonstrating the highest infectivity titer (Figure 2). The distribution profile is synonymous with the studies reported by Horzinek et al., 1971) and Maess et al. (1970). The tailing of the curve is more pronounced towards the bottom of the tube with a steeper slope of the upper boundary. Horzinek et al. (1971) reported that the virus in these fractions contains the least distorted and smallest virus particles.

In all previous purification procedures related to BVD virus no data is available on the virus recovery, protein
content, specific activity and fold purification. Scott et al. (1974) added antisera to aggregate their BVD virus preparations for electron microscopy. In this communication the criteria for BVD virus concentration and purification is shown in Table 2. Total virus decreased from 2.6×10^9 PFU (crude virus) to 1.1×10^9 PFU in the last purification step with 42.3% recovery. Similarly, total protein content decreased from 2.34×10^6 μg to 1.0×10^3 μg. The specific activity (total PFU/total protein) increased three logs in the final step with approximately 1,000 fold purification. These results were variable among BVD virus isolates studied. Assay of purified virus was done immediately after purification. Approximately 1-2 log drop in infectivity occurred when purified virus was frozen and thawed 1-2 times, especially with C24V.

Treatment with RNase, DNase, and trypsin purified the virus from host contaminant (host RNA, DNA and proteins) and resulted in 10 fold purification during that step.

Use of these purified virus preparations in these studies may have two distinct advantages: (1) Response of animals for the production of virus antibody to the specific virus antigen may be enhanced due to low degree of competition by extraneous proteins, and (2) In cross serum neutralization test nonspecific reactions may be avoided.

BVD Virus Density and Infectivity: BVD virus populations studied were highly heterogenous for their density behavior.
(Figure 2). Density heterogeneity reflects the chemical and physical complexity of BVD viruses as exemplified by their appearance in the electron microscope and variation in particle size indicates differences in amount of composition of virus structural components (Durand and Eisenstark, 1962). Components derived from host cell material could vary from one virus particle to another, however irregularities in packaging of viral subunits, i.e., nucleoprotein would contribute to density heterogeneity. If the ratios of the protein: nucleic acid components of one particle were not in the same proportion with those of another particle, their density would likewise be different.

Electron Microscopy: Viruses are usually simple and the range of differences in shape and size among viruses is fairly limited. The most important criteria for establishing the relationship between viruses will probably be found to be the gross anatomy of the particles, the absolute weight of the particles and the composition of their nucleic acids. In view of the differences found in composition of the proteins of the related viruses, it would appear that the serological relationships are probably more nearly related to the anatomy than they are to the actual composition of the proteins, i.e. the serological relationships are influenced very much by the way in which the particle subunits are arranged together and less by their actual amino acid composition.
The morphology and classification of BVD virus is not well elucidated. Many investigators have reported a virion structure similar to rubella virus, suggesting its classification with togaviruses. There is still doubt about the morphology and classification of BVD virus although Melnick (1976) has placed BVD virus in the family, pestivirus, a subgenus of the togaviruses. Hermodsson and Dinter (1962) described particles with a diameter of 40 nm. in thin sections. Pritchard (1963) observed spherical particles 35-55 nm. in diameters using chromium shadowing. In the first detailed morphological description the virion was described as 150-250 nm. in size with the structure of myxovirus (Ditchfield and Doane, 1964). An intermediate size of 80 nm. has been reported by Dutta et al. (1964). Other investigators including Hafez et al. (1968) described virions of 22 and 90 nm., depending on the method of preparation. Richie and Fernelius (1969) described three size classes, the largest being 80-100 nm. Maess and Reczko (1970); Horzinek et al. (1971) described sizes of 57 nm. and Scott et al. (1974) reported a particle size of 50-80 nm.

Dulbecco et al. (1973) stated that different methods of virus staining enhance different structural details. The size of the virion, they stated, will be maximal in shadowed preparations which enhance the contrast at the periphery of the particles, it will be smaller in negatively stained
preparations, since the phosphotungstate penetrates the surface details, and it will be even smaller in sections, where the action of the knife tends to collapse the particles. They further added that the values obtained by all these methods are less than the size of the particles in water, since drying, as required for electron microscopic examinations, causes shrinkage by much as 30% in linear dimensions. If the above statements were true, it would be hard to understand the trend in the close agreement in the values of BVD virus particle diameter obtained by most workers, especially when using different methods of preparation (Maess and Reczko (1970); Horzinek et al. (1971).

Purified preparations of NADL, Singer and C24V by potassium tartrate gradient (Table 2) were stained with PTA and examined under the electron microscope. On the morphological grounds it appeared that the envelope had shown considerable variation, being intact in most of NADL virus particles while disappearing or assuming a "dough-like" appearance in preparations of C24V or Singer (Figure 3). The capsomer arrangement and the core symmetry (Figure 3B) would make it likely to suggest that BVD virus particles have displayed a morphological architecture similar to the Sindbis virus described by Horzinek and Mussgay (1969). Although most of the features as described by Caspar and Klug (1962) for isometrical symmetry are lacking it would seem reasonable to describe BVD virus particle as an
icosahedron. Electron microscopic evidence suggests that the virus preparations were sufficiently purified for inoculation into rabbits for the production of antibodies.

Serum Neutralization (SN) Test: Serum neutralization test is the most sensitive of the virus-antibody reactions and has wide application for comparing the antigenic differences between viruses. Prior to the use of purified BVD virus antigens for the production of rabbit hyperimmune sera, preliminary experiments in which crude viruses were used to produce antisera in rabbits and guinea pigs against NADL, Singer and C24V viruses were undertaken. Cross-serum neutralization tests showed that NADL and Singer viruses are closely related and that both are distantly related to C24V (Figure 6). The results of the cross-serum neutralization tests of all seven BVD virus isolates using antisera produced in rabbits with purified virus preparations are presented in Table 4, Figures 4 and 5. The analyses of data revealed that NADL, M4, Singer and M1 are closely related and can be suggested to form one group while M3, C24V and M2 each forms a separate group. Most of the BVD virus isolates have been found to be related on the basis of serum-neutralization (Gilleoepie et al. (1961) and Kniazeff et al. (1961) and complement fixation (Gutekunst and Malquist 1964) tests. Castrucci et al. (1967) studied the antigenic relationship of seven BVD virus isolates by serum neutralization test, using
homologous and heterologous antisera prepared in rabbits. When these isolates were compared by Archetti-Horsfall formula (Archetti and Horsfall, 1950) they were grouped into five groups (Castrucci et al., 1968). Four similar studies were carried out on the basis of comparing BVD virus strains. Guneri in 1968 compared ten different BVD viruses isolated in different countries and was able to demonstrate their antigenic relationship. Fernelius et al. (1971) had proposed three prototype strains including NADL, C24V and CG-1220. Corthier and Aynaud (1973) had reported the evidence of significant serological differences between 17 BVD virus isolates including NADL and C24V. They further added that the values of the neutralization indices in their study did not allow them to classify the viruses into distinct serological groups.

In view of the diversity and heterogeneity of BVD virus isolates as compared by their serological reactions, it is logical to believe that the breakdown in immunity in certain animals vaccinated with BVD virus may be due to infection with a virus antigenically unrelated or distantly related. It is also possible that post vaccinal complication in some animals may be related to deficiency in immune system as suggested by McRuercher et al. (1968) or Peter et al. (1967).

Dr. D. W. Johnson at Minnesota reported isolation of M₃ from a feeder calf in a herd vaccinated with trivalent vaccine made from IBR, BVD and PI₃ (personal communication).
Similarly, Castrucci et al. (1967, 1968) reported isolation of BVD virus strains antigenically different than the existing virus strains (R values >2). This may possibly indicate mutations occurring in the existing BVD virus strains.

Considering two way antigenic relationships on the basis of R values (Table 5, Figure 5) strong interrelationships exist among the virus isolates that may be categorized as follows:

1. NADL, M4 and Singer
2. NADL, M4 and M1
3. C24V and M1
4. M4 and M2
5. M3 (not related to any other virus isolates)

It is conceivable a polyvalent vaccine produced using NADL, M4 and M1 may be able to protect animals against all the viruses tested except M3. However, the question of the antigenic relationship with immunogenicity may finally be answered only by cross protection tests in animals.

It was observed that NADL, Singer and M3 were strong antigens and elicited high a degree of antibody response in rabbits (antibody titer >1/200) to the corresponding antigens (Table 4) while M1, M2, M4 and C24V demonstrated a relatively low degree of antigenic response (antibody titer 1/50). No references are available on the antigenicity of M1, M2 and M4. Hafez et al. (1972a) demonstrated that anti-C24V produced in
rabbits had a titer of 1:45 when reacted with the homologous antigen. Fernelius et al. (1971) had shown that the degree of antigenic response of C24V was approximately 1/4 of the response produced by NADL in calves.

In view of these data it may be suggested that an antigenically weak strain of BVD virus may elicit low antibody titers in rabbits and in calves. It is therefore probable that M₁, M₂ and M₄ which have been observed to give low antibody titers (1/50) in rabbits (Table 4) may also prove to be antigenically weak in calves. Some of these strains do not seem to cover the full spectrum of antigens as investigated by reciprocal cross neutralization test. Thus they may not have good potential for the production of BVD vaccine.
SECTION VII

APPENDIX
MATERIALS AND METHODS

BVD Virus One-Step Growth Curve: BVD viruses, cell culture and media were described previously. The seven BVD virus isolates were each diluted to contain 1.5×10^5 PFU/mL. All viruses were assayed by the plaque technique on MDBK cell cultures.

BVD virus isolate growth curves were monitored in MDBK cell cultures. MDBK cell culture monolayers were grown on 35 x 10 mm petri dishes (Falcon). Growth medium was aspirated from each dish and virus was inoculated into twenty dishes at a multiplicity of infection of 0.015 PFU per cell. Virus adsorption was allowed to take place for one hour at 37°C in 5% CO$_2$ humidified incubator. The monolayers were washed twice with PBS and each was fed with one ml. of maintenance medium (MEM) containing 5% horse serum. Two dishes were harvested immediately representing zero-hour sample for each virus. Two dishes from virus inoculated sets were removed at the following intervals: 4, 8, 12, 16, 20, 24, 48, 72 and 96 hours post-inoculation and harvested. The cytopathic effects were observed daily for each sample taken. Undetached cell monolayers for each sample were removed by a rubber policeman, pooled and briefly sonicated and centrifuged at 3,000 g for 10 minutes to remove cell debris. All samples were stored at -70°C before they were plaque assayed as mentioned.
RESULTS

Propagation of BVD Virus: NADL, Singer and C24V viruses had been passaged routinely in MDBK cells. Minnesota field virus isolates M_1, M_2, M_3 and M_4 were passaged three times before they were used for stock virus production. Table 9 presents PFU titers of Minnesota field strains at successive passages. Approximately 1-2 log increase in virus titers (PFU/ml) occurred after third passage in MDBK cells. The viruses were used in the study at either third or fourth passage level.

One-Step Growth Curve: The infectivity titers of seven BVD virus isolates are shown in Table 10 and Figure 7. The adsorption of viruses on cell cultures was not identical, but not significantly different, as indicated by the PFU titers one hour after inoculation of the virus (0 time). During 4-8 hours after inoculation no recoverable virus was demonstrated except in M_3 and M_4 which showed 5-10 PFU/ml. Virus synthesis was first detected at the 12th hour and continued to increase to reach maximum at 96 hours post infection except C24V which showed maximum virus production $(8.2 \times 10^6 - 6.4 \times 10^7)$ at 48-72 hours. Virus titers observed were: M_4 (3.0×10^7 PFU/ml), Singer (2.6×10^7 PFU/ml), NADL (1.3×10^7 PFU/ml) and M_3 (2.2×10^6 PFU/ml). M_1 and M_2 viruses had minimum infectivity titers (5.1×10^5 and
5.0 \times 10^5\text{ PFU/ml},\text{ respectively}).\text{ The data in Table 10 was graphed and is presented in Figure 7.}

DISCUSSION

Propagation of BVD Virus: The propagation of BVD virus in susceptible cells had resulted in an increase in the virus titer by approximately two logs (Table 9) at 3rd passage level. This was similar to earlier reports (Lee and Gillespie (1957), Marcus et al. (1968)). Lee and Gillespie (1957) were able to propagate strain 1 virus isolated in New York State in embryonic bovine skin-muscle with titers ranging from 10^5-10^7 PFU/ml. Marcus et al. (1968) were able to adapt NADL strain in MDEK cell after carrying it for six passages in bovine testicle cell cultures, with average titer of $3.3 \times 10^5\text{ PFU/ml}$. The adsorption time used in this study (1 1/2-2 hours) was similar to that used by Marcus et al. (1968) and Gillespie et al. (1963). It would seem possible that BVD virus would require at least 1 1/2-2 hours for adsorption before satisfactory results could be obtained. Considerable changes in BVD viruses could be induced by their passage into cell cultures. Fernelius et al. (1969) were able to change BVD viruses by swine kidney cell passages. They reported that perhaps some of the strains of BVD virus have originated by swine passage in nature. Beckenhauer et al. (1961) theorized that BVD virus could possibly be passed through swine and back
into cattle again.

One-Step Growth Curve of BVD Virus: The data on the growth curve of BVD virus isolates (Table 10 and Figure 7) were in close agreement with earlier reports of most research workers (Lee and Gillespie (1975); Gillespie (1960); Gillespie et al. (1963) Mills and Luginbuhl (1955); Fernelius et al. (1969); Schiff and Storz (1973); Castrucci et al. (1968a); Gillette (1965) and Singh (1969). The synthesis of infectious BVD virus in MDBK cell cultures began after 8-12 hours post infection. Maximum virus synthesis was observed at 72-96 hours. Small amounts of M₃ and M₄ were detected 4-8 hours after infection which may have been due to the elution of adsorbed virus particles from cell surface. The virus could not be recovered after sonication 4-8 hours after infection in all BVD virus isolates. Cytopathic changes were observed at 24-48 hours and were characterized by granulation and vacuolation of the cytoplasm and as described by Singh (1969). There was no significant difference in the CPE pattern produced by these viruses when grown on MDBK cell cultures except that C24V produced extensive cell damage while M₂ CPE progressed rather slowly. Fernelius et al. (1969) had shown that BVD virus strains have high, intermediate and low cytopathogenicity. Identification of noncytopathogenic (NCP) strains had become possible without the use of natural host when Gillespie and coworkers (1962) employed the plaque
inhibition assay method for detecting NCP strains of BVD virus. The total virus per ml. produced during replication cycle varied from 5.0×10^5 for M_2 to 3.0×10^7 PFU/ml. for M_4 (Table 10, Figure 7). There is a decrease in PFU titer of C24V at 96 hours post infection, possibly due to severe damage to the cells which become detached from the surface with a consequent loss in PFU at 37° C.
<table>
<thead>
<tr>
<th>Virus</th>
<th>Passage Number and Titer (PFU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original Virus</td>
</tr>
<tr>
<td>M_1</td>
<td>6.5×10^4</td>
</tr>
<tr>
<td>M_2</td>
<td>3.5×10^4</td>
</tr>
<tr>
<td>M_3</td>
<td>6.8×10^4</td>
</tr>
<tr>
<td>M_4</td>
<td>1.9×10^5</td>
</tr>
<tr>
<td>Virus</td>
<td>Titer (PFU/ML) and Different Hours After Infection</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>NADL</td>
<td>2.5x10'</td>
</tr>
<tr>
<td>C_{24V}</td>
<td>1.5x10'</td>
</tr>
<tr>
<td>SINGER</td>
<td>5. x10'</td>
</tr>
<tr>
<td>M_1</td>
<td>1.0x10'</td>
</tr>
<tr>
<td>M_2</td>
<td>1.5x10'</td>
</tr>
<tr>
<td>M_3</td>
<td>8.25x10'</td>
</tr>
<tr>
<td>M_4</td>
<td>6.8x10'</td>
</tr>
</tbody>
</table>
Figure 7. Growth Curve of BVD Virus Isolates. BVD viruses were inoculated into MDBK cell monolayers with an input of 0.01-0.035 PFU/cell. Virus adsorption was for one hour at 37°C in 5% CO₂ humidified incubator. Monolayers were washed twice with PBS and each dish was fed with maintenance medium (MEM + 5% horse serum). Two dishes were harvested immediately after washing representing 0-hour sample for each virus. Dishes from inoculated virus sets were harvested at the time shown, pooled, sonicated and stored at -70°C before they were plaque assayed. Logs of virus titers (PFU/ml) were plotted against time. Symbols: O, NADL; △, C24V; X, Singer; □, M₁; •, M₂; ▲, M₃; ■, M₄.
Figure 8. Protocol of Purification of Bovine Viral Diarrhea Virus.
Virus production in MDBK cells

CELL DEBRIS

- Freeze and thaw 3 x.
- Centrifuge 3,000 g for 20 minutes

CRUDE VIRUS

- Ultracentrifugation 80,000 g for 5 hours

SUPERNATANT

PELLETED VIRUS

- Sonication, enzyme treatment
- Centrifugation 100,000 g for 1-1/2 hours

CONCENTRATED, PARTIALLY PURIFIED VIRUS

- Sonication and sedimentation through 10% sucrose

PELLET SONICATED AND CENTRIFUGED THROUGH K-TARTARATE GRADIENT (10-30%)

FRACTIONS DIALYZED, PLAQUE TITRATED AND POOLED

PURIFIED VIRUS
Figure 9. Production of Hyperimmune Sera to BVD Virus.
ALBINO RABBITS
6-8 WEEKS

BLEED. COLLECTION OF SERUM
BEFORE VIRUS INOCULATION

INOCULATION ON DAY
0, 10, 17, 24, AND 31 WITH
0.2 0.3 0.5 0.75 AND 1.0 ML
VIRUS PREPARATION

COLLECTION OF HYPER IMMUNE SERA

INACTIVATION OF ANTISERA AND
TITRATION BY PLAQUE REDUCTION METHOD
SECTION VIII

REAGENTS AND SUPPLIERS' ADDRESSES
REAGENTS

Agar

2% purified agar in deionized water
Steam to dissolve agar. Use 50% agar - 50%
(2X MEM) for plaquing.

Antibiotics

Penicillin = 1,000,000 units
Streptomycin = 1 g
Kanamycin = 50 mg
dissolved in 100 ml. of sterile deionized water. One ml. of PSK stock solution is added to give final concentra-
tions of: 100 units penicillin, 0.1 g streptomycin and
0.5 mg Kanamycin per ml. of media.

Neutral Red

For use in plaquing as a 0.015% solution. Powder is
added to deionized water and dissolved in a 37°C water
bath. Whatman #2 filter paper is used for filtration.
Sterilize in autoclave and store in refrigerator, pro-
tected from light.
1.5 ml. stock per 100 ml. agar and media is used.

Phosphate-Buffered Saline (PBS)

Solution 1

\[\text{Na}_2\text{HPO}_4 \cdot 7\text{H}_2\text{O} \]

134 g/l deionized water

Solution 2

\[\text{NaH}_2\text{PO}_4 \cdot \text{H}_2\text{O} \]

69.1 g/l deionized water
Buffer stock

\[
\begin{align*}
\text{Na}_2\text{HPO}_4 \cdot 7\text{H}_2\text{O} & \quad 386 \text{ ml. Solution 1} \\
\text{NaH}_2\text{PO}_4 \cdot 7\text{H}_2\text{O} & \quad 114 \text{ ml. Solution 2} \\
\text{Deionized water} & \quad 500 \text{ ml.} \\
\text{pH 7.15}
\end{align*}
\]

PBS: 80 ml. buffer stock

17 g NaCl

1920 ml. deionized water

pH 7.2

Autoclave at 15 lbs. for 15 minutes.

Trypsin

1 g/400 ml. trypsin in PBS made and frozen for use.

Working solution 20 ml. 0.25% trypsin

30 ml. PBS

0.5 ml. 10% EDTA

DNase

2 mg/ml. stock

RNase

2 mg/ml. stock

Sucrose - RNase free

For gradient preparation. Made to appropriate concentration, dissolved and autoclaved 10 minutes at 15 lbs.
Potassium tartrate

For gradient preparation. Made to appropriate concentration, dissolved and autoclaved 10 minutes at 15 lbs.

TEN buffer: (0.01 M tris, 0.001 M EDTA, 0.1M NaCl, adjust pH with HCl to 7.4 and autoclave 10 minutes at 15 lbs.

TRIS-saline: (0.01 M tris, 0.1 M NaCl adjust pH to 7.2 with HCl and autoclave 10 minutes at 15 lbs.

Glycerol:

For gradient preparation. Made to appropriate concentration in TEN buffer and autoclaved 10 minutes at 15 lbs.

Dimethyl sulfoxide (CH₃)₂ SO₄:

For freezing cells. Made to appropriate concentration (10%) and autoclaved 10 minutes at 15 lbs.
<table>
<thead>
<tr>
<th>Reagent</th>
<th>Supplier</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agar, Purified</td>
<td>BBL</td>
<td>Cockeysville, Maryland</td>
</tr>
<tr>
<td>Bovine serum albumin</td>
<td>Sigma</td>
<td>St. Louis, Missouri</td>
</tr>
<tr>
<td>DNase (Pancreatic) RNome</td>
<td>Sigma Chemical Co.</td>
<td>St. Louis, Missouri</td>
</tr>
<tr>
<td>EDTA</td>
<td>Mallinckrodt Chemical Co.</td>
<td>St. Louis, Missouri</td>
</tr>
<tr>
<td>Horse Serum</td>
<td>Kansas City Biologicals</td>
<td>Kansas City, Kansas</td>
</tr>
<tr>
<td>Kanamycin (Kantrex)</td>
<td>Bristol Laboratories</td>
<td>Syracuse, New York</td>
</tr>
<tr>
<td>Minimum Essential Medium</td>
<td>Grand Island Biological Co.</td>
<td>New York</td>
</tr>
<tr>
<td>Eagles (MEM)</td>
<td>Squibb & Sons</td>
<td>New York</td>
</tr>
<tr>
<td>Penicillin G</td>
<td>Lilly Corporation</td>
<td></td>
</tr>
<tr>
<td>Streptomycin Sulfate</td>
<td>Nutritional Biochemical Co.</td>
<td>Cleveland, Ohio</td>
</tr>
<tr>
<td>Trypsin (crystalline)</td>
<td>Schwarz Mann</td>
<td>Orangeburg, New York</td>
</tr>
<tr>
<td>Sucrose-RNomease free</td>
<td>Fisher Scientific</td>
<td>Fairlawn, New Jersey</td>
</tr>
<tr>
<td>Potassium tartrate</td>
<td>Mallinckrodt Chemical Works</td>
<td>St. Louis, Missouri</td>
</tr>
<tr>
<td>Glycerol</td>
<td>Mallinckrodt Chemical Works</td>
<td>St. Louis, Missouri</td>
</tr>
<tr>
<td>Dimethyl sulfoxide</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SECTION IX

REFERENCES

THE ANTIGENIC RELATIONSHIPS AMONG BOVINE VIRAL
DIARRHEA VIRUS ISOLATES

by

BASHIR HAMID TEIRAB
B.V.Sc., University of Khartoum, Sudan, 1966

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Infectious Diseases

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1977
ABSTRACT

The antigenic relationship among seven bovine viral diarrhea (BVD) virus strains: NADL, C24V, Singer, and four field isolates from Minnesota (M_1, M_2, M_3, and M_4) were studied by constant-virus variable serum cross-neutralization reactions. The viruses were propagated and plaque assayed in Madin-Darby bovine kidney (MDBK) cells.

The virus synthesis in cell cultures was initiated at 12 hours post infection and reached maximum synthesis at 72-96 hours. Mean plaque size diameter of the virus isolates was different and ranged from 1.8 to 4.3 mm. All BVD virus isolates produced plaques with diffusible boundaries except C24V which had sharp, clear-cut margin.

The viruses were clarified and concentrated by differential centrifugation. BVD virus was purified 109 fold after enzyme treatment (trypsin, RNase and DNase) with 77% recovery. The comparison of sucrose, potassium tartrate and cesium chloride gradients for further purification demonstrated maximum recovery of the virus (37-42%) in potassium tartrate gradients.

Three BVD virus isolates (NADL, C24V and Singer) were studied by electron microscopy. The nucleocapsid displayed an icosahedron symmetry with a smooth envelope which was 25-39 nm. across. The capsid had a mean diameter of 106-120 nm.
Hyperimmune serum was produced in rabbits using purified virus preparations. NADL, Singer and M₃ elicited the highest antibody response in rabbits (1/200) while C24V, M₁, M₂ and M₄ produced antibody titer ranging from 1/50 to 1/100. Reciprocal cross-neutralization tests were carried out to investigate antigenic relationships among the virus isolates. The results of these tests were subjected to Archetti-Horsfall (1950) formula and computer analysis. A strong two-way antigenic relationship was observed among NADL, Singer and M₄; likewise M₁ was related to NADL, M₄ and C24V. M₂ had two-way relationship only with M₄; and M₃ demonstrated a weak relationship with the viruses tested. Computer analysis of the cross-serological tests among the virus isolates was essentially in accord with the antigenic relationships established using Archetti-Horsfall formula.