PROLONGATION OF PSEUDOPREGNANCY BY GONADOTROPINS
IMPLANTED IN THE OVARIAN BURSAE OF RATS

by

TEH-FANG JAMES LIAO
D. V. M., National Taiwan University, 1970

A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Physiological Sciences
KANSAS STATE UNIVERSITY
Manhattan, Kansas
1974

Approved by:

[Signature]
Major Professor
TABLE OF CONTENTS

Introduction .. 1

Materials and Methods 2

Animals .. 2

Hormones, cholesterol and stainless-steel tubing 2

Implantation of hormone in the ovarian bursae 2

Statistical analysis 4

Results .. 5

Hormones implanted without cholesterol 5

Hormone-cholesterol implantation 5

Simultaneous implantation of gonadotropic hormones 6

Ovulatory response after LH or FSH implantation 7

Discussion .. 8

References .. 14

Acknowledgments 16
LIST OF TABLES

Table 1 Effects of prolactin, LH, or FSH implanted in the ovarian bursae on the duration of pseudopregnancy 11

Table 2 Effects of prolactin, LH, or FSH implanted in the ovarian bursae on the duration of pseudopregnancy 12

Table 3 Effect on the duration of pseudopregnancy of equal amounts of gonadotropins implanted simultaneously in the ovarian bursae 13
INTRODUCTION

The functional life of the corpus luteum of ovulation can be extended in rats by pregnancy, pseudopregnancy, or lactation (1). Hypophysectomy of pseudopregnant rats causes rapid regression of the corpora lutea (2) and abolishes the secretion of progestational steroids (3, 4), suggesting that pituitary hormone(s) stimulate luteal growth and function. Because of its ability to induce pseudopregnancy (5) and maintain both the decidual reaction and pregnancy in hypophysectomized rats (3, 6, 7), several groups consider prolactin the sole luteotropin of the rat. However, prolactin, unlike LH, does not exert a direct stimulatory action on progesterone secretion (8, 9). In addition, prolactin does not support a maximal decidual response in hypophysectomized, pseudopregnant rats unless hormones with LH or estrogenic activity are supplied (2, 10), and both LH and FSH are needed along with highly purified prolactin to maintain pregnancy in rats hypophysectomized during early pregnancy (11). Therefore, probably a luteotropic complex, instead of a single pituitary hormone, maintains luteal function during pregnancy and pseudopregnancy.

The present study attempts to determine the effect of pituitary gonadotropins, either singly or combined, on the life span of the corpus luteum by measuring the duration of pseudopregnancy in rats. Hormones were implanted in the ovarian bursae to avoid the effects of acute systemic administration on endogenous gonadotropin secretion (12).
Animals. Four experiments were conducted with 541 female Sprague-Dawley rats weighing 200-300 g. Rats were housed in a light-controlled (light on from 5 A.M. to 7 P.M. daily), air-conditioned room. Food and water were available ad libitum. Vaginal smears were taken by lavage technique every morning for at least 2 consecutive estrous cycles, and only rats undergoing regular 4- or 5-day cycles were used. Pseudopregnancy was induced by stimulating the cervix with a glass rod on the day(s) of vaginal cornification. The appearance of leukocytes in the vaginal smears marked day 1 of PSE; the first proestrus smear thereafter marked the terminal day (13).

Hormones, cholesterol and stainless-steel tubing. Ovine prolactin (NIH-P-S9), LH (NIH-LH-S8), and FSH (NIH-FSH-S9) were gifts of the Endocrine Study Section, National Institutes of Health, Bethesda, Md. Cholesterol was purchased from Sigma Chemical Co., St. Louis, Mo. Stainless-steel tubing (hypodermic-type 304) was purchased from Small Parts Inc., Miami, Fl.

Implantation of hormone in the ovarian bursae. Prolactin, LH, or FSH was ground in a jade grinder with or without cholesterol. In most hormone-cholesterol implants, the ratio of hormone to cholesterol was 1:1 (w/w), except the 3 μg dose, where the ratio was 1:9. Twenty- (ID, 0.023") or 22-gauge (ID, 0.016") stainless-
steel tubes were tamped a known number of times into hormone or hormone-cholesterol mixture. A plunger was used to eject the hormone pellet for weighing. This procedure was done 5 times; weights were averaged to arrive at the dosage of each hormone. Rats were anesthetized lightly with ether, and dorsolateral incisions were made to expose the ovaries. A small hole was made in the ovarian bursae with ophthalmic scissors, and the hormone pellet was ejected into place with the plunger. Gonadotropins were implanted to determine whether they could: (a) reinforce the growing corpus luteum (day 4); (b) prevent regression of the corpus luteum (day 7); and (c) reactivate the regressing corpus luteum (day 9) (14, 15). Gonadotropins were also implanted on 3 consecutive days (days 4-6) to determine whether the effect of a single implant (day 4) could be enhanced.

In experiment 1, pseudopregnant rats received on day 7 of PSP one of several doses of prolactin, LH, or FSH. In experiment 2, pseudopregnant rats received on day 4, 7, or 9 of PSP or consecutively on days 4, 5, and 6 one of several doses of each gonadotropin-cholesterol mixture. Prolactin-, LH-, and/or FSH-cholesterol mixtures were implanted simultaneously on day 7 or 9 of PSP in experiment 3. In this experiment, each rat received equal amounts of either 2 or 3 different hormones (i.e., prolactin and LH or FSH; LH and FSH; or prolactin, LH, and FSH). In experiment 4, each of 15 rats received on day 7 of PSP 17 μg of LH or FSH mixed with cholesterol or 68 μg of LH alone. Twenty-four hr later, rats were sacrificed, and their oviducts were
removed, mounted on a glass slide, and examined microscopically for ova.

Statistical analysis. Factorial design was used for the analysis of variance to determine the effects of hormone, dosage, and time of treatment. Duncan's New Multiple Range Test (16) was used to determine significant differences among treatments, dosages, and times of treatment. Differences were considered significant when p values were less than 0.05.
RESULTS

Hormones implanted without cholesterol (Table 1). Of the 5 doses of prolactin implanted, none affected the duration of PSP. LH at doses of 34 and 67 µg significantly prolonged PSP to 16.3 and 20.7 days, respectively. FSH at a dose of 34 µg had no effect on PSP, but 67 µg significantly prolonged PSP to 18.0 days.

Hormone-cholesterol implantation (Table 2). In this experiment, cholesterol was used as a diluent to permit implantation of small doses of hormone. Implantation of cholesterol had no effect on PSP. Prolactin likewise had no effect on the duration of PSP regardless of dosage or day implanted. These results are similar to those of previous experiment, where no cholesterol was added (Table 1). Three µg of LH implanted on day 7 had no effect on PSP, but when the dose was increased to 17 µg, PSP was significantly prolonged to 18.3 days. Increasing the dose above 17 µg did not further increase the efficacy of LH (Table 2). Results obtained from implanting the cholesterol mixture were not significantly different from those when LH was implanted alone. Various doses of LH implanted on day 4 significantly prolonged PSP as did implantation of LH on days 4, 5, and 6. However, implantations on days 5 and 6 did not augment the effect of implantation on day 4. Fifty-six and 156 µg of LH were more effective in prolonging PSP when implanted on day 7 than on day 4. On the other hand, even 156 µg of LH, the highest dose implanted on day 4 or
7, had no effect on PSP when implanted on day 9.

Effects of FSH implantation were similar to those of LH implantation: 3 μg of FSH implanted on day 7 had no effect on PSP, but at a dose of 17 μg or more, FSH consistently prolonged PSP whether it was implanted on day 4 or day 7, or consecutively on days 4, 5, and 6. Moreover, 156 μg of FSH implanted on day 9 had no effect on PSP. However, lower doses of FSH (17 and 56 μg) implanted on day 7 were less effective than comparable doses of LH. The effect of FSH implanted on day 7 increased progressively with dose: PSP was prolonged from 12.2 to 14.3 days with 17 μg and to 17.6 days with 112 μg.

Simultaneous implantation of gonadotropic hormones (Table 3). This experiment was designed to determine whether simultaneous implantation of equal amounts of prolactin, LH, and/or FSH would enhance the effect of a single LH or FSH implant. No synergism on day 7 of PSP among the gonadotropins was observed. Simultaneous implantation of 3 μg each of prolactin, LH, and/or FSH had no effect on the duration of PSP. That was also true when the hormones were implanted alone (Table 2). However, at doses of 40, 56, or 80 μg, both LH and FSH significantly prolonged PSP whether implanted alone (Table 2) or together (Table 3). The effect of simultaneous implantation of LH with prolactin and/or FSH were not significantly greater than LH implanted alone, and FSH implanted with prolactin was not significantly different from FSH implanted alone. Simultaneous implantation of prolactin, LH,
and/or FSH on day 9 had no effect on PSP (Table 3) as well as those hormones were implanted alone (Table 2).

Ovulatory response after LH or FSH implantation. No ova were found in the oviducts of 15 pseudopregnant rats 24 hr after implanting on day 7 of PSP 17 μg of LH, 17 μg of FSH, or 68 μg of LH. These results suggest that the stimulatory effect of LH or FSH on PSP is not due to ovulation and formation of new corpora lutea.
DISCUSSION

This study demonstrates that implantation in the ovarian bursae of LH or FSH, but not prolactin, prolongs PSP. Similar findings have been reported by Shaikh and Yoshinaga (17), who showed that iv or ip injection of 25 μg LH on day 4 or on day 6 prolongs PSP to 16.2 and 16.8 days, respectively. From these observations it can be inferred that LH or FSH extends the life span of the corpus luteum in pseudopregnant rats. When implanted on day 4 or on day 7 of PSP, either LH or FSH prolongs PSP, suggesting that both hormones can stimulate the developing corpus luteum or reactivate the early regressing corpus luteum. Toyoda (18) showed that the size of the corpus luteum first exceeds that of the corpus luteum of ovulation on day 4 of PSP. Also on day 4, the ratio of progesterone to 20α-hydroxypregn-4-en-3-one shifts sharply in favor of progesterone (14). On the other hand, changes in the level of progesterone in ovarian venous blood suggest that regression in the corpus luteum of PSP begins on day 7 (15). Implantation of LH or FSH on day 9 did not affect the duration of PSP. Therefore, apparently once the regression of the corpus luteum has progressed 2 days, even high doses of exogenous LH or FSH cannot reverse the process.

Although prolactin has been considered the only luteotropin in rats, recent studies show that LH is also essential for luteal function (10, 19, 20, 21, 22). LH increases progesterone synthesis by luteinized ovarian tissue in vitro. The steroidogenic
effect of LH also has been confirmed in vivo by an elevation in
the level of progesterone in ovarian venous blood after a single
iv injection of LH (8, 9). In addition, anti-LH serum admin-
istered to rats during the first half of pregnancy terminates
pregnancy (23) and reduces progesterone secretion 80% within
24 hr (24). These data, which demonstrate that functional corpora
lutea depend on LH to maintain the high progesterone secretion
needed during gestation, are consistent with the finding that LH
implanted in the ovarian bursae can prolong PSP.

The results also show that 17 μg or more of FSH prolongs PSP.
Greenwald and Johnson (25) reported that 200 μg of FSH admin-
istered by sc injection in conjunction with prolactin maintained
the normal weight of embryonic swellings in rats hypophysectomized
on day 6 of pregnancy. They attributed the efficacy of 200 μg of
FSH to LH contamination. However, in the present study, the
effects of FSH cannot be attributed to LH contamination, for
NIH-FSH-S9 contains less than 1% LH. Therefore, within the
effective dose range (17-156 μg FSH), LH content was less than
3 μg, an amount that did not prolong PSP. Ahmad, Lyons and
Papkoff (11) have shown that the combination of highly purified
prolactin and LH is incapable of maintaining pregnancy in rats
hypophysectomized during the first half of pregnancy unless FSH
is administered, indicating that FSH is also involved in regula-
ting luteal function.

Exogenous prolactin appears unable either to prolong the
life span of the corpus luteum or to enhance the presumed luteo-
tropic effect of LH or FSH (Table 3). However, these results alone do not preclude a possible luteotropic role for prolactin. It is likely that endogenous prolactin secretion is sufficient to permit synergism with implanted gonadotropins, for in the presence of a low level of prolactin and rising serum LH PSP can be induced and maintained (26). After PSP is initiated, the daily nocturnal surge of prolactin is probably sufficient to maintain PSP (27). Freeman and Neill (27) reported that, toward the end of PSP, prolactin still has high daily nocturnal surges, suggesting that regression of the corpus luteum is not due to lack of endogenous prolactin support. In view of these data, exogenous prolactin would not be expected to prolong PSP.

The present study suggests that LH and FSH are also involved in the regulation of luteal function in pseudopregnant rats. How LH and FSH exert their luteotropic effects remains to be demonstrated, but the effect of these two hormones implanted in the ovarian bursae is not due to ovulation and subsequent formation of corpora lutea. Studies to determine the serum levels of estrogen and progesterone after implantation of LH or FSH in the ovarian bursae are in progress.
TABLE 1. Effects of prolactin, LH, or FSH implanted in the ovarian bursae on the duration of pseudopregnancy

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Duration of pseudopregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\bar{x} days \pm SE (n)</td>
</tr>
<tr>
<td>Sham operation</td>
<td>12.10 \pm 0.29 (10)</td>
</tr>
<tr>
<td>Prolactin</td>
<td></td>
</tr>
<tr>
<td>67 μg</td>
<td>12.33 \pm 0.49 (6)</td>
</tr>
<tr>
<td>105 μg</td>
<td>12.75 \pm 0.25 (4)</td>
</tr>
<tr>
<td>215 μg</td>
<td>13.67 \pm 1.17 (6)</td>
</tr>
<tr>
<td>321 μg</td>
<td>12.80 \pm 0.55 (10)</td>
</tr>
<tr>
<td>642 μg</td>
<td>12.90 \pm 0.38 (10)</td>
</tr>
<tr>
<td>LH</td>
<td></td>
</tr>
<tr>
<td>34 μg</td>
<td>16.33 \pm 1.89 (6)*</td>
</tr>
<tr>
<td>67 μg</td>
<td>20.67 \pm 0.88 (6)*</td>
</tr>
<tr>
<td>FSH</td>
<td></td>
</tr>
<tr>
<td>34 μg</td>
<td>11.67 \pm 0.21 (6)</td>
</tr>
<tr>
<td>67 μg</td>
<td>18.00 \pm 1.44 (6)*</td>
</tr>
</tbody>
</table>

*Hormones were implanted on day 7 of pseudopregnancy.

*Significantly ($p<0.01$) different from sham-operated control.
TABLE 2. Effects of prolactin, LH, or FSH implanted in the ovarian bursae on the duration of pseudopregnancy

<table>
<thead>
<tr>
<th>Day of PSP hormone implanted</th>
<th>Amount of hormone implanted (µg)</th>
<th>Duration of pseudopregnancy X days ± SE (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prolactin</td>
<td>LH</td>
</tr>
<tr>
<td>4</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>56</td>
<td>---</td>
<td>15.40 ± 0.75 (5)a</td>
</tr>
<tr>
<td>112</td>
<td>---</td>
<td>17.75 ± 1.33 (8)a</td>
</tr>
<tr>
<td>156</td>
<td>12.32 ± 0.30 (19)c</td>
<td>15.80 ± 0.46 (20)a</td>
</tr>
<tr>
<td>5</td>
<td>156</td>
<td>12.50 ± 0.34 (6)c</td>
</tr>
<tr>
<td>6</td>
<td>112</td>
<td>12.83 ± 0.48 (6)c</td>
</tr>
<tr>
<td>7</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>12.80 ± 0.37 (5)c</td>
<td>18.33 ± 1.41 (6)a</td>
</tr>
<tr>
<td>17</td>
<td>12.00 ± 0.32 (5)c</td>
<td>16.00 ± 1.29 (6)a</td>
</tr>
<tr>
<td>34</td>
<td>12.60 ± 0.93 (5)c</td>
<td>19.17 ± 0.83 (6)a, +</td>
</tr>
<tr>
<td>56</td>
<td>14.16 ± 0.59 (7)c</td>
<td>17.67 ± 0.61 (6)a</td>
</tr>
<tr>
<td>112</td>
<td>13.75 ± 0.59 (8)c</td>
<td>18.18 ± 0.57 (11)a, +</td>
</tr>
<tr>
<td>156</td>
<td>12.14 ± 0.60 (7)c</td>
<td>18.13 ± 0.74 (8)a, +</td>
</tr>
<tr>
<td>321</td>
<td>12.40 ± 0.51 (5)c</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>80</td>
<td>13.33 ± 0.33 (6)c</td>
<td>---</td>
</tr>
<tr>
<td>156</td>
<td>12.67 ± 0.33 (6)c</td>
<td>13.17 ± 0.40 (6)c</td>
</tr>
</tbody>
</table>

Hormones were mixed with equal amounts of cholesterol except for the 3 µg dose, where the ratio of hormone to cholesterol was 1:9 (w/w). Hormone-cholesterol mixtures were implanted in both ovarian bursae.

²Includes unoperated, sham-operated, and cholesterol-implanted rats.

⁺⁺⁺P<0.05 vs. corresponding doses of the same hormone implanted on day 4.

As determined by Duncan's New Multiple Range Test, groups sharing common superscripts are not significantly (P>0.05) different.
TABLE 3. Effect on the duration of pseudopregnancy of equal amounts of gonadotropins implanted simultaneously in the ovarian bursae

<table>
<thead>
<tr>
<th>Day of PSP</th>
<th>Amount of hormone implanted (μg)</th>
<th>Prolactin-LH</th>
<th>Prolactin-FSH</th>
<th>LH-FSH</th>
<th>Prolactin-LH-FSH</th>
<th>Control²</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>12.40 ± 0.18 (45)</td>
</tr>
<tr>
<td>3</td>
<td>12.33 ± 0.42 (6)</td>
<td>13.17 ± 0.75 (6)</td>
<td>11.17 ± 0.40 (6)</td>
<td>13.83 ± 0.54 (6)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>40</td>
<td>16.80 ± 0.37 (5)*</td>
<td>14.80 ± 0.73 (5)*</td>
<td>18.17 ± 0.79 (6)*</td>
<td>19.67 ± 1.48 (6)*</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>56</td>
<td>15.60 ± 1.36 (5)*</td>
<td>15.83 ± 0.75 (6)*</td>
<td>19.20 ± 0.49 (5)*</td>
<td>18.83 ± 0.91 (6)*</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>80</td>
<td>18.20 ± 0.80 (10)*</td>
<td>17.70 ± 0.47 (10)*</td>
<td>19.00 ± 0.33 (10)*</td>
<td>19.60 ± 0.62 (10)*</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>80</td>
<td>14.22 ± 1.34 (9)</td>
<td>13.29 ± 1.13 (7)</td>
<td>14.00 ± 1.00 (6)</td>
<td>12.60 ± 0.25 (5)</td>
<td>12.47 ± 0.18 (45)</td>
</tr>
</tbody>
</table>

¹Hormones were mixed with equal amounts of cholesterol except for the 3 μg dose where the ratio of hormone to cholesterol was 1:9 (w/w). Hormone-cholesterol mixtures were implanted in both ovarian bursae.

²Includes unoperated, sham-operated and cholesterol-implanted rats.

*Significantly (P<0.01) greater than control.
REFERENCES

ACKNOWLEDGMENTS

I wish to express my gratitude to Dr. C. L. Chen, major professor, for his prudence and financial support throughout this research; to Dr. F. E. Wilson and Dr. G. H. Kiracofe for their valuable discussion during the preparation of the manuscript; and to the Endocrine Study Section, National Institutes of Health for its generous donation of ovine prolactin, LH, and FSH.
PROLONGATION OF PSEUDOPREGNANCY BY GONADOTROPINS
IMPLANTED IN THE OVARIAN BURSAE OF RATS

by

TEH-FANG JAMES LIAO
D. V. M., National Taiwan University, 1970

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Physiological Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1974
The effect on the duration of pseudopregnancy (PSP) of prolactin, LH, FSH, or various combinations of those hormones was studied in female rats. Hormones were implanted in the ovarian bursae on day 4, 7, or 9 of PSP or consecutively on days 4, 5, and 6. Prolactin, in doses ranging from 3 to 642 µg, and LH or FSH, at a dose of 3 µg, had no effect on PSP. However, 17 µg or more of LH implanted on day 4 or 7 significantly (p<0.01) prolonged PSP to 16 and 18 days, respectively. High doses of FSH (>80 µg) likewise prolonged PSP, but lower doses (17 and 56 µg) implanted on day 7 were less effective. The effect of consecutive (days 4-6) implantation of LH or FSH was similar to that of a single (day 4) LH or FSH implant. There was no synergism among prolactin, LH, and/or FSH when equal amounts of those hormones were implanted simultaneously on day 7 or 9. Neither LH nor FSH, when implanted on day 9, affected PSP. Ova were not found in 15 rats 24 hr after implantation on day 7 of 17 µg or 68 µg of LH or 17 µg of FSH, suggesting that LH- or FSH-induced prolongation of PSP was not due to the formation of corpora lutea. Results of this study show that LH or FSH, but not prolactin, when implanted in the ovarian bursae, prolongs pseudopregnancy.