OPTIMIZATION OF INDUSTRIAL MANAGEMENT SYSTEMS

BY

THE CONJUGATE GRADIENT METHOD

by

ASHOK KUMAR ARORA

B. Tech. (Hons), Indian Institute of Technology,
Kharagpur, India, 1965

A MASTER'S THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1970

APPROVED BY:

[Signature]
Major Professor
TABLE OF CONTENTS

CHAPTER 1.	INTRODUCTION	1
CHAPTER 2.	LITERATURE REVIEW	3
2.1 Conjugate Gradient Methods for Unconstrained Problems	4	
2.2 Methods for Constrained Problems	7	
CHAPTER 3.	THE CONJUGATE GRADIENT METHOD	9
3.1 Formulation of the Problem	10	
3.2 Constrained Maximum	11	
3.3 Algorithm	15	
CHAPTER 4.	PROGRAM FLOW	18
4.1 Limits and Tolerances	20	
4.2 Main Program	22	
4.3 Subroutines		
CHAPTER 5.	APPLICATION OF THE CONJUGATE GRADIENT METHOD TO MANAGEMENT PROBLEMS	23
5.1 An Inventory Model	23	
5.2 An Inventory and Advertisement Model	36	
5.3 A Production and Advertisement Model	52	
CHAPTER 6.	DISCUSSION	70
ACKNOWLEDGEMENT	72	
REFERENCES	73	
APPENDIX A:	NOMENCLATURE	76
APPENDIX B:	CUBIC INTERPOLATION SCHEME	79
THIS BOOK CONTAINS NUMEROUS PAGES WITH THE ORIGINAL PRINTING BEING SKewed DIFFERENTLY FROM THE TOP OF THE PAGE TO THE BOTTOM.

THIS IS AS RECEIVED FROM THE CUSTOMER.
THIS BOOK CONTAINS NUMEROUS PAGES WITH DIAGRAMS THAT ARE CROOKED COMPARED TO THE REST OF THE INFORMATION ON THE PAGE. THIS IS AS RECEIVED FROM CUSTOMER.
APPENDIX C: RECURSION RELATIONS

APPENDIX D: GRADIENT CALCULATIONS

APPENDIX E: FLOWCHARTS

APPENDIX F: COMPUTER PROGRAM
CHAPTER 1

INTRODUCTION

In recent years there has been a remarkable growth of interest in the problems of management systems optimization. It, perhaps, has been motivated by the economic benefits associated with the optimal decisions regarding the allocation of resources. Moreover, it seems natural that in treating decision problems an approach should be to make the best of the given situation. The fundamental approach to solve decision problems is to optimize a performance criterion by the proper selection of decision parameters.

Numerous mathematical techniques have been proposed to solve linear and non-linear systems. Linear programming has been used successfully to solve linear problems. Unfortunately, nonlinear problems have always presented greater difficulties than linear ones. Several methods like the calculus of variation, maximum principle and dynamic programming have been developed for solving non-linear systems. Of all the analytical approaches, only dynamic programming has been used fairly successfully. This technique, however, has a drawback in that it cannot be used for problems involving large number of state variables.

In this decade some new techniques have been proposed to solve a class of non-linear problems characterized by non-linear objective function and linear constraints. Among these techniques, Rosen's gradient projection method [20] and Goldfarb's conjugate gradient method [7] are noticeable. The two techniques are analogous to each other in many ways. The gradient projection method, however,
has the drawback of slow convergence rate near the optimum. For the purpose of this study, the conjugate gradient method developed by Goldfarb is considered.

A brief review of a class of gradient methods proposed by different authors for solving unconstrained and constrained nonlinear programming problems is given in chapter 2. The conjugate gradient method, along with its algorithm, is described in chapter 3. Formulation of the mathematical model is also given in this chapter. Chapter 4 deals with the program flow together with the limits and tolerances required for the successful running of the program. Three problems have been solved using the technique. The problems are discussed along with their results in chapter 5.
CHAPTER 2

LITERATURE REVIEW

In general non-linear programming problems are concerned with minimization or maximization of a non-linear objective function, \(f(x_1, x_2, \ldots, x_m) \), subject to certain constraints. The constraints may appear as linear or non-linear constraints. The functions may also be grouped into two main classes, according to whether the gradient vector \(g^i = \frac{\partial f}{\partial x^i} \) can be obtained analytically at each point or must be estimated from the differences of values of the function, \(f \).

In the neighborhood of the optimum of a general non-linear function, the function can be approximated by the Taylor series expansion of the form

\[
f(x) = f(x_0) + \frac{1}{2} (x - x_0)^T A(x - x_0) + \text{higher terms}
\]

(2-1)

where \(x_0 \) is the optimum value of \(x \) and \(A \) is the matrix of second partial derivatives. Since near the optimum, the second order terms dominate, it is generally argued that the methods which can optimize a quadratic function efficiently will probably be good on more general functions. Furthermore, even in the regions remote from the optimum, such methods, by taking account of the curvature of the function, are best able to deal with complex situations, such as the presence of a long curving valley, thereby avoiding the deficiency of oscillatory behaviour, that is present in methods like steepest ascent. This provides a motivation for the development of second order convergence methods, and as such a number of methods have been proposed in recent
years for solving unconstrained as well as constrained problems. Such methods have the property that they develop quadratic convergence, without requiring the calculation of second partial derivatives, once a neighborhood of the optimum is reached. A brief review of some of such methods along with recently developed gradient projection methods follows.

2.1 Conjugate Gradient Methods for Unconstrained Problems.

The methods considered here are called variously conjugate gradient, quasi-Newton and variable metric methods. Before describing them, it would be worthwhile to define a conjugate gradient process. Consider the case of a quadratic function f having a Hessian matrix A, which is positive definite. Vectors $s^0, s^1, s^2, ..., s^{n-1} \neq 0$ with the property

$$ (s^i)^T As^j = 0 \quad i \neq j \quad (2-2) $$

are said to be conjugate with respect to A. Any method, that generates conjugate directions $s^0, s^1, s^2, ..., s^{n-1}$ satisfying (2-2), is said to be a conjugate direction process. Since the Hessian matrix A is positive definite, the vectors $s^0, s^1, s^2, ..., s^{n-1}$ are linearly independent and form a basis in an n-dimensional Euclidean space E^n. For a quadratic f, successive minimizations in the conjugate directions minimize the function in, at most, n steps with no round off errors. Kelley [11] has a summarized some of the algorithms that generate conjugate directions.

Algorithm 1:

$$ i = - \gamma i s^i \quad i \geq 0 \quad (2-3) $$

where
\[s^0 = g^0 \]
\[s^{i+1} = g^{i+1} + \frac{(g^i)^2}{(g_{i-1})^2} s^i \quad i \geq 0 \]
\[\] (2-4)

(2-5)

and

Here and elsewhere, \(x^0 \) is chosen arbitrarily. \(y^i \geq 0 \) is selected by a one-dimensional search for a minimum of the function, \(f(x^i + y^i s^i) \), along \(s^i \), so as to obtain a new point \(x^{i+1} = x^i + \sigma^i \). Thus, \(\sigma^i \) gives the change in the variable vector \(x \) during the \(i^{th} \) iteration.

Algorithm 2:

\[\sigma^i = -\gamma i s^i \quad i \geq 0 \]
\[\] (2-6)

where \(s^0 = g^0 \)
\[\] (2-7)

\[s^{i+1} = g^{i+1} - \left[\sum_{j=0}^{i} \frac{\sigma^j (y^j)^T}{(\sigma^j)^T y^j} \right] g^{i+1} \quad 0 \leq i \leq n-1 \]
\[\] (2-8)

\[= g^{i+1} - \left(\sum_{j=i-n+1}^{i} \frac{\sigma^j (y^j)^T}{(\sigma^j)^T y^j} \right) g^{i+1} \quad i \geq n \]
\[\] (2-9)

and

\[y^i = g^{i+1} - g^i \]
\[\] (2-10)

Algorithm 3:

\[\sigma^i = -\gamma i s^i \quad i \geq 0 \]
\[\] (2-11)

where \(s^0 = g^0 \)
\[\] (2-12)

\[s^{i+1} = g^{i+1} - \frac{\sigma^i (y^i)^T}{(\sigma^i)^T y^i} g^{i+1} \quad i \geq 0 \]
\[\] (2-13)

and

\[y^i = g^{i+1} - g^i \]
\[\] (2-14)
The above three algorithms are the three different versions of the conjugate gradient method. They become identical for a quadratic f.

There are several variable metric methods proposed for generating conjugate directions. They consist of choosing an nxn matrix \(H^i \) (that approximates \(A^{-1} \)) and generating A-conjugate directions \(s^i \) given by

\[
s^i = -H^i g^i
\]

(2-15)

where \(H^0, H^1, \ldots \) is a sequence of symmetric positive definite matrices. \(H^0 \) is arbitrary, but is usually taken as an identity matrix. A new point is defined by \(x^{i+1} = x^i + \gamma^i s^i \), where \(\gamma^i \) is calculated to minimize \(f(x^{i+1}) \). The matrix \(H^i \) is updated at each iteration. Several methods have been proposed which essentially differ in the manner in which the matrix \(H^i \) is updated. Probably the most powerful of the variable metric methods is Flectcher and Powell's modification [5] of Davidon's variable metric method [4]. The method employed by Fletcher and Powell in updating the matrix \(H^i \) may be stated as

\[
H^{i+1} = H^i + \frac{\gamma^i (y^i)^T}{(y^i)^T c^i - \frac{H^i y^i (y^i)^T H^i}{(y^i)^T H^i y^i}} \quad i \geq 0
\]

(2-16)

where

\[
y^i = g^{i+1} - g^i
\]

(2-17)

Another algorithm that bears a relationship to the above algorithm similar to that which batch processing of observations bears to sequential processing in orbit determination is given in [11]. This has been referred to as modified Davidon algorithm. According to this

\[
H^{i+1} = H^i - \frac{H^i y^i (y^i)^T H^i}{(y^i)^T H^i y^i} \quad i \geq 0 \neq mn-1
\]

(2-18)
and

$$H_{mn} = \sum_{j=m-n}^{mn-1} \sigma_{j}^{T} (a_{j}^{T}) T y_{j}$$ \hspace{1cm} (2-19)

where

$$y_{i} = g_{i+1} - g_{i}$$ \hspace{1cm} (2-20)

The basic idea behind this algorithm to reduce the rank of the matrix H by one at each update and after rank annihilation, replace it by the estimate of A^{-1} given by equation (2-19). A similar approach has been suggested in the gradient projection method [19]. There, however, after rank annihilation, the matrix H is replaced by the identity matrix I.

A more detailed comparative study of the various conjugate direction methods or variable metric methods can be found in [11,19,23].

2.2 Methods for Constrained Problems

Based on the knowledge gained from the work done in the field of unconstrained optimization, some new methods have been proposed to handle linear as well as non-linear constraints on the control variables. Rosen [20] developed a gradient projection method for solving a subclass of non-linear problems characterized by linear constraints. The constraints may consist of inequalities, equalities or both. The important features of the method are i) movement along the boundary of the polyhedron describing the feasible region, and ii) the generation of a sequence of improved objective function values. Since the method is based on the well known steepest ascent method, it has the same deficiencies as its precursor, namely, slow rate of convergence near
the optimum and oscillation along steep ridges. Analogous to the gradient projection method, Goldfarb [7] developed the conjugate gradient method which is the subject of this study.

Rosen has also extended his gradient projection method to handle non-linear constraints [21]. The basic approach of this method is similar to that with linear constraints. An advantage of the gradient projection method is that if a feasible starting point is known, all points obtained in the optimization procedure are feasible, so that the procedure may be stopped at anytime with an improved feasible point. This method is also advantageous over the cutting plane method developed by Kelley [13] in that there is no increase in the total number of constraints as the solution proceeds. Kelley and his coworkers [10] have proposed an accelerated gradient method for solving problems with non-linear constraints. Their approach is to augment the performance function by penalty terms which measure the constraint violations. The augmented function is minimized using Davidon's method. This results in an approximate solution with small violations of the constraints. Newton's method is then used to refine the solution exploiting the second order information accumulated in the converged metric. Very recently, an accelerated gradient projection method for use with non-linear constraints has been reported by Kelley and Speyer [12]. The method uses a one-dimensional search to a minimum of a performance index augmented by a correction for the constraint violation. A metric update, based on the changes in the projection gradient vector, provides quadratic terminal convergence.
CHAPTER 3

THE CONJUGATE GRADIENT METHOD

The conjugate gradient method developed by Goldfarb is a new method of solving a class of non-linear problems characterized by linear constraints. This technique is the modification and the extension of Davidon's variable metric method for unconstrained minimization, to take into account linear constraints which may consist of equalities, inequalities or both. It maximizes the value of a given objective function of the system of variables while satisfying the equations and constraints. The objective function may also be minimized by maximizing the negative of the actual objective function.

Briefly, the conjugate gradient method is designed to start from an initial specified point and to locate a feasible point using Rosen's technique, if the initial point is not feasible. The method, then, follows an iterative procedure locating new feasible points with increased value of the objective function. This is accomplished by moving in a direction conjugate to the previous directions of search. As the method proceeds, information gained about the local curvature of the objective function is incorporated into a matrix which determines the direction in which to move.

At each iteration, the initial step length is selected as the maximum length without violating the constraints, or a predetermined maximum step length. In the case of non-linear objective function, the cubic interpolation scheme proposed by Davidon is used so that the value of the objective function increases at each step. The
maximum is found when any step size that would increase the value of
the objective function would violate the constraints, or when the
gradient is within the specified tolerance.

3.1 Formulation of the Problem

Consider a problem with m variables, \(x_i, i = 1, 2, \ldots, m \),
representing a point in an m-dimensional Euclidean space. It is
required to find a local maximum (or minimum) of a function

\[
f(x) = f(x_1, x_2, \ldots, x_m)
\]

subject to k linear equality and inequality constraints of the form

\[
\sum_{j=1}^{m} n_{ij} x_j - b_i = 0 \quad i = 1, 2, \ldots, e \quad (3-2)
\]

\[
\sum_{j=1}^{m} n_{ij} x_j - b_i \geq 0 \quad i = e+1, e+2, \ldots, k \quad (3-3)
\]

where \(n_{ij} \) have been normalized so that

\[
\sum_{j=1}^{m} (n_{ij})^2 = 1 \quad i = 1, 2, \ldots, k \quad (3-4)
\]

These constraints form a convex region \(R \) in \(\mathbb{R}^m \), which is assumed
to be bounded. It follows, therefore, that there must be at least
m+1 constraints, that is, \(k \geq m+1 \). Corresponding to each of the k
constraints, the unit vector \(n_i \) is defined as

\[
n_i = \{n_{i1}, n_{i2}, \ldots, n_{im}\} \quad i = 1, 2, \ldots, k \quad (3-5)
\]

Equations (3-2) and (3-3) may now be written as

\[
n_i^T x - b_i = 0 \quad i = 1, 2, \ldots, e \quad (3-6)
\]
\[n_i^T x - b_i \geq 0 \quad i = e+1, e+2, \ldots, k \]

where

\[n_i^T n_i = 1 \quad i = 1, 2, \ldots, k \]

In geometric terms, these equality and inequality constraints represent \(e \) hyperplanes \(H_i \) and \((k-e) \) closed half spaces, whose intersection in \(E_m \) is a convex polyhedron region \(R \). The unit vector \(n_i \) is orthogonal to \(H_i \) and is directed so that if it originates at a point \(x \) in \(H_i \), it points into the region \(R \). A set of hyperplanes is linearly independent if the corresponding vectors \(n_i \) are linearly independent. If there are \(q \) linearly independent hyperplanes, then their intersection forms an \((m-q) \) dimensional subspace \(M_q \) in \(E_m \). Clearly, there can at the most \(m \) linearly independent hyperplanes in \(E_m \).

3.2 Constrained Maximum

Consider an objective function

\[f(x) = f(x_1, x_2, \ldots, x_m) \tag{3-8} \]

If \(f(x) \) is differentiable at all points \(x \) in \(E_m \), each point \(x \) has associated with it an \(m \)-dimensional gradient vector

\[g(x) = [\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_m}] \tag{3-9} \]

The components of \(g(x) \) can be considered as co-ordinates of another \(m \)-dimensional Euclidean space. If, however, \(f(x) \) is twice differentiable, then in the neighborhood of \(x \) in \(E_m \), the Hessian matrix of the second partial derivatives
\[G(x) = \left(\frac{\partial^2 f(x)}{\partial x_i \partial x_j} \right) \]

(3-10)

defines a linear mapping of changes in position, \(dx\), on to the change in the gradient, \(dg\), as given by

\[dg = G(x) dx \]

(3-11)

The directions of the vectors \(dg\) and \(dx\) depend upon the ratios of the eigenvalues of \(G(x)\). If, however, \(dx\) is an eigenvector of the Hessian matrix, both the vectors will point in the same direction.

Considering that \(f(x)\) is a strictly concave function, it is desired to find a point \(x\) at which \(f(x)\) has a global maximum. For this purpose, the important property of concavity requirement on \(f(x)\) is that the symmetric matrix of second partial derivatives is negative semidefinite over the entire space \(E_m\). Then \(f(x)\) is given by the three-term Taylor expansion

\[f(x) = f_0 + a^T x + \frac{1}{2} x^T G x \]

(3-12)

We can write

\[g^{i+1} - g^i = G(x^{i+1} - x^i) \]

(3-13)

where

\[g^i = g(x^i) \]

For an unconstrained concave function, the region \(R\) is all of \(E_m\). The necessary and sufficient condition that \(x\) be the maximum point is that \(g(x) = 0\). The maximum for such a case can be found by Newton's method for solving \(m\) equations in \(m\) unknowns, namely, \(g_j(x) = 0\), \(j = 1, 2, \ldots, m\), that result from the necessary and sufficient
conditions for a global maximum for a strictly concave function. If
the region \(R \) is bounded and if there exists a point \(x \) in \(R \) such that
\(g(x) = 0 \), the global maximum is called the interior global maximum
of \(f(x) \). If, however, \(g(x) \) does not vanish in the interior of \(R \),
then the global maximum lies outside the boundary of \(R \) and is called
a constrained global maximum.

In most of the actual problems \(f(x) \) is not quadratic. In such
cases the function can be approximated to be quadratic only in a
small neighborhood of a point. Therefore, evaluation of the Hessian
matrix and inversion of it at each step can be time consuming, since
if the partial derivatives of \(f(x) \) are approximated by finite
differences, large number of functional evaluations are necessary
to compute the Hessian matrix. Moreover, for non-concave functions,
convergence cannot be guaranteed unless the starting point is close
enough to the maximum. Davidon's variable metric method and Fletcher
and Powell's method are, however, more attractive in that they require
explicit calculation of only first partial derivatives, and yet develop
quadratic convergence once a neighborhood of optimum is reached in
which the second partial derivatives of the function remain sensibly
constant.

Let us now consider a quadratic function \(f(x) \) given by equation
(3-12). It is required to locate the point at which the function is
maximized in the linear manifold, \(M_q \), formed by the intersection of
\(q \) linearly independent hyperplanes \(H_i, \) \(i = 1, 2, \ldots, q \). Let
\(n_1, n_2, \ldots, n_q \) be the unit normals to these hyperplanes. Define an
\((m \times q)\) matrix
\[
N_q = \{n_1, n_2, \ldots, n_q\} \quad \text{(3-14)}
\]
Now, the necessary and sufficient condition for \(f(x^*) \) to be global maximum of \(f(x) \) over \(M_q \) is that the gradient vector \(g(x^*) \) be orthogonal to \(M_q \). In other words
\[
g^* = N_q \alpha \tag{3-15}
\]
where \(\alpha \) is a \(q \) dimensional vector. Substituting \(g^{i+1} = N_q \alpha \) in equation (3-13) and premultiplying both sides by \(G^{-1} \), we get
\[
x^{i+1} - x^i = \Delta x^i = G^{-1}(N_q \alpha - g^i) \tag{3-16}
\]
The vector \(\Delta x^i \) lies in the linear manifold \(M_q \), and therefore
\[
N_q^T \Delta x^i = 0 \tag{3-17}
\]
or
\[
N_q^T G^{-1} N_q \alpha - N_q^T G^{-1} g^i = 0 \tag{3-18}
\]
The matrices \(N_q^T \) and \(G^{-1} \) are of the ranks \(q \) and \(m \) (\(\geq q \)), respectively. The inverse of \(N_q^T G^{-1} N_q \), therefore, exists [18]. Thus, from equation (3-18)
\[
\alpha = (N_q^T G^{-1} N_q)^{-1} N_q^T G^{-1} g^i \tag{3-19}
\]
Substituting the value of \(\alpha \) in (3-16), we have
\[
x^{i+1} = x^i + [G^{-1} N_q (N_q^T G^{-1} N_q)^{-1} N_q^T G^{-1} - G^{-1}] g^i \tag{3-20}
\]
or
\[
x^{i+1} = x^i - P_q G^{-1} g^i \tag{3-21}
\]
where
\[
P_q = I - G^{-1} N_q (N_q^T G^{-1} N_q)^{-1} N_q^T G^{-1}
\]
\(P_q \) is the projection matrix and projects any point in \(E_m \) on to \(M_q \).
In the conjugate gradient method the matrix $H_q = -\hat{P}_q G^{-1}$ acts as a variable metric. It is a positive semidefinite matrix. This matrix is updated at each step according to the approach followed by Fletcher and Powell, to incorporate the information about the local curvature of the function.

3.3 Algorithm

The basic algorithm used in the conjugate gradient method follows very closely the one used in Rosen's gradient projection (GP). But unlike that in GP, here the directions of search are determined by premultiplying the gradient vector by the matrix H_q, rather than by the orthogonal projection matrix P_q. The heart of the algorithm lies in the manner in which the matrix H_q is updated. The method requires the calculation of the matrix $(N^T_N q q)^{-1}$ at each step. The cubic interpolation scheme used to locate the approximate maximum value of the function along the direction of search is given in Appendix B. The recursion relations used to compute the matrix $(N^T_N q q)^{-1}$ are given in Appendix C.

The algorithm is given for an arbitrary point x^i in the region R, having a function value $f(x^i)$ and a gradient $g^i = g(x^i)$. It is assumed that x^i lies in the subspace M_q formed by the intersection of q linearly independent hyperplanes. H^i_q is, therefore, the matrix operator. For simplicity it is also assumed that there are no equality constraints. The algorithm for the conjugate gradient method can be stated as follows:

Step 1

Given x^i, g^i and H^i_q, compute $H^i_q g^i$ and $\alpha = (N^T_N q q)^{-1} N^T q g^i$
If $H_q^i g_q^i = 0$ and $\alpha_j \leq 0$, $j = 1, 2, \ldots, q$, then x^i is the global maximum.

Step 2

If this is not the case test for the constraint drop. Either $||H_q^i g_q^i|| > \max \{0, \frac{1}{2} \alpha_q d_{qq}^{-1/2}\}$ or $||H_q^i g_q^i|| \leq \frac{1}{2} \alpha_q d_{qq}^{-1/2}$, where $d_{qq}^{-1/2} \geq d_{ii}^{-1/2}$, $i = 1, 2, \ldots, q-1$ and where d_{ii} is the ith diagonal element of the matrix $(N_q^T N_q)^{-1}$. If the former holds, go to step 3. If the latter holds, it means movement is restricted in the qth hyperplane. Therefore, drop H_q^i from the constraint basis and obtain H_{q-1}^i using the following equation

$$H_{q-1}^i = H_q^i + \frac{P_{q-1}}{n_p q q} (N_q^T N_q)^{-1} N_q^T$$

where

$$P_{q-1} = I - N_{q-1}(N_{q-1}^T N_{q-1})^{-1} N_{q-1}^T.$$

Let $q = q-1$ and go to step 1.

Step 3

Let $s^i = H_q^i g_q^i$ and compute

$$\lambda_j = \frac{-n_j^T x^i - b_j}{n_j^T s^i}, \quad j = q+1, q+2, \ldots, k$$

and $\lambda^i = \min \{\lambda_j > 0\}$

Now, using the cubic interpolation method obtain γ^i, $0 < \gamma^i \leq \lambda^i$, such that $f(x^i + \gamma^i s^i)$ is maximized.

Let $\sigma^i = \gamma^i s^i$ and $x^{i+1} = x^i + \sigma^i$ and compute $g^{i+1} = g(x^{i+1})$

Step 4

If $\gamma^i = \lambda^i$ and $(s^i)^T g^{i+1} \geq 0$, add to the constraint basis in step 3
the hyperplane corresponding to the min{λ_j}. Compute

\[H^{i+1}_{q+1} = H^i_q - \frac{\frac{H^i_n}{n^T} n^T}{n^T H^i q^T} \]

(3-24)

Let \(i = i+1 \) and \(q = q+1 \) and return to step 1.

Step 5

Otherwise set \(y^i = g^{i+1} - g^i \) and update the matrix operator \(H^i_q \) using the following relation

\[H^{i+1}_{q+1} = H^i_q - \frac{\sigma^i(y^i) T}{\sigma^i(y^i) T} - \frac{H^i_q y^i (y^i)^T H^i_q}{(y^i)^T H^i_q y^i} \]

(3-25)

Let \(i = i+1 \) and return to step 1.

In actual practice an initial feasible point \(x^0 \) is obtained by Rosen's technique. If \(x^0 \) lies in the interior of the convex region \(R \) and also if there are no equality constraints, \(H^0_q \) is chosen as an identity matrix \(I \). If, however, \(x^0 \) lies on exactly \(q \) linearly independent hyperplanes, these hyperplanes (constraints) are added to the basis, the hyperplanes corresponding to the equality constraints, if any, being added first. \(H^0_q \) is then computed from \(H^0_q \) by using equation (3-24) \(q \) times.
CHAPTER 4

PROGRAM FLOW

The computer program for the conjugate gradient method is based on program known as GP 90 [16] developed for the gradient projection method of solving non-linear problems with linear constraints. The flow chart of the program is given in Appendix E. This includes logics for the matrix computations, matrix re-inversion and other subroutines used. A brief description of the limits and tolerances necessary for the successful running of the program, the main program itself and the subroutines, is given below.

4.1 Limits and Tolerances

There are three limits which need be set. Their setting depends upon the size and the type of the problem being solved.

LIMIT, refers to the maximum number of steps. It prevents the program from grinding away without accomplishing anything because of incorrect setting of tolerances or limits or because of wrong input data. It is difficult to predetermine the number of steps required to reach the maximum as it depends upon such factors as size of the problem, type of the function and number of constraints in basis. It keeps the run to a reasonable length without having to rely on a time limit.

MXRN, maximum number of re-inversions. The main purpose of this limit is to prevent the problem from re-inverting too often thus consuming extra time. The program is designed not to re-invert twice in a row to the same basis, but it may re-invert after only one basis
change or possibly repeat a series of re-inversions.

β_{max} is used to limit the number of interpolations required to find an x for which $f(x)$ has increased. It depends upon the non-linearity of the function. For a quadratic function it should be one.

The three tolerances required to be specified are gradient tolerance, ε_1, constraint tolerance, ε_2, and linear dependence tolerance, ε_3.

ε_1 is used to determine when the norm of the gradient is zero and the problem has reached the maximum value. Its value may vary from problem to problem as it depends on the relationship between the norm of the gradient and the corresponding change in the value of the objective function. A smaller value of ε_1 leads to better 'maximum' but at the cost of increased computational time. Value of ε_1 between .001 and .005 seems to be reasonable.

The constraint tolerance, ε_2, is the acceptable error in satisfying a constraint. It determines when a constraint is active. ε_2 may be about $10^{-3} b_1^\prime$, where b_1^\prime is the largest value of the right hand side of constraints, b_1, divided by the corresponding scaling factor or 10^{-3} times the largest value of x.

The general value used for the linear dependence tolerance, ε_3, is .005. This tolerance determines when a constraint is linearly dependent and, therefore, cannot be added to the basis.

Besides the limits and tolerances described above, it is necessary to specify the maximum step length τ_{max}. It is usually taken as one. The program has been designed to take an initial step of not less than
\(\tau_{\text{min}} \). If the initial step size is less than \(\tau_{\text{min}} \), it is taken to be \(\tau_{\text{max}} \) and then interpolation is done if necessary.

4.2 Main Program

For the purpose of description, the main program can be divided into three sections: input, starting procedure and step procedure. In the first section, the input data is read and the initial conditions are set for the problem. After the constraints have been read, they are normalized and stored. If equalities are indicated, these form the initial basis and the corresponding inverse is computed.

The second section of the program tests whether the initial guess of the vector \(x \) is feasible or not. If it is not, a feasible point is found by computing one \(x \)-correction so that all constraints in the current basis are satisfied. If, however, any constraint is still violated, it is considered as \(x \)-correction failure. A constraint in the basis is said to be violated if \(|\lambda_i| > \varepsilon_2 \). If an \(x \)-correction has failed, a re-inversion is required. In case there is violation of constraints not in the basis (\(\lambda_i < -\varepsilon_2 \)) the program tries to add to the basis the constraint corresponding to the most negative \(\lambda_i \), if that constraint is not linearly dependent and the procedure is repeated from \(x \)-correction. If the constraint is linearly dependent, the program tests against \(\varepsilon_3 \) for a constraint to drop. Failure of a constraint drop means that there is no feasible \(x \). However, on steps other than the first step it only means an \(x \)-correction failure.

After finding a feasible \(x \), subroutine FUNCT is called to compute \(f(x) \) and \(g(x) \). The program then enters the third phase, namely, the
A step includes the projection of the gradient, testing for the maximum, changes in the basis, calculation of z and the updating of the matrix H_q. At the beginning of each step the program has a feasible x, $f(x)$ and $g(x)$. The non-basis constraints are classified for $v(\lambda_1 \leq \epsilon_2)$ and $w(\lambda_1 > \epsilon_2)$. The norm of the gradient is calculated and if $||g|| \leq \epsilon_1$, it means 'maximum' has been reached.

If $||g|| > \epsilon_1$ and there are no constraints in the basis, that is, $q = 0$, the program skips to compute z. If $q > 0$ and $||Pg|| \leq \epsilon_1$ the program tests for a constraint to drop. If there is no constraint to drop, the maximum test is said to be satisfied and the current point is the maximum. If there is at least one constraint that can be dropped, the best one is dropped from the basis and the matrix H_{q-1} is computed using equation (3-22). The program returns to where the gradient is projected and tested. If $||Pg||$ is still zero, a re-inversion is required to continue.

If $||Pg|| \geq \epsilon_1$ and $q < m$, the vector z is computed. If the current point is on constraints which are not in basis, that is, $v \neq 0$, the program computes and tests $z^T n_i$ for all i in v. If $\min(z^T n_i) < 0$, the corresponding constraint is added to the basis if it is linearly independent and H_{q+1} is computed. If the constraint is linearly dependent, test for negative $z^T n_i$, i in v, is repeated. When $v = 0$, test for the basis change is made. If q or $n = 0$ the program tests against $2||H_qg||$ for a constraint to drop. The program returns to the location where the gradient is projected and tested.

If the program finds no more changes to be made in the basis, the program uses the cubic interpolation scheme. First initial step length is determined and if $w = 0$, this is checked against constraints in w.
For all \(i \) in \(w \) for which \(z_{Tn_1}^i \) is negative, \(\tau_i = -\lambda_i / z_{Tn_1}^i \) is computed. If the minimum \(\tau_i \) is less than the initial \(\tau \), the step is limited by the constraint \(H_1 \) and \(\tau \) is set equal to \(\tau_i \).

After interpolating, if \(\gamma^i = \lambda^i \) and \((s^i)^{T}g_{i+1} \geq 0 \) the constraint corresponding to the \(\min \{ \lambda_j \} \) (see step 3 of the algorithm) is added to the constrained basis and \(H_{q+1} \) is computed according to step 4. The step counter is tested against maximum step limit and if the limit is not reached, the program returns to the beginning of the step procedure. If, however, step 4 of the algorithm fails, \(H_q \) is updated according to the relation (3-25) and the program returns to the start of the step procedure.

4.3 Subroutines

Subroutine REINV is designed to compute the inverse matrix \((N_{Tn_1}^T)^{-1} \) whereas subroutines COMP1 and COMP2 do the matrix computations required by the conjugate gradient algorithm. Subroutine AMDA calculates \(\lambda \)'s while CLASS classifies the constraints into various categories, such as

\[
\begin{align*}
 u & = \text{linearly dependent constraint} \\
 v & = \text{constraints not in basis with } \lambda = 0 \\
 w & = \text{constraints not in basis with } \lambda > 0
\end{align*}
\]

All the above subroutines form a permanent part of the program. Another subroutine FUNCT is added to the program. It varies from problem to problem and is used to compute \(f(x) \) and \(g(x) \).
CHAPTER 5

APPLICATION OF THE CONJUGATE GRADIENT METHOD TO MANAGEMENT PROBLEMS

In this section three models relating to the optimization of management systems are considered. These models represent production, inventory and advertisement situations.

The first model is relatively a simpler production planning problem involving one state and one control variable. The second one is the well known diffusion model for advertisement involving two state variables and one control variable. At the end a highly non-linear production and advertisement scheduling problem, that involves six state variables and three control variable, is considered.

5.1 An Inventory Model

This model has been taken from [15]. Consider the case of a manufacturing concern where the sales rate Q(t), at any time t, is known with certainty and that the rate of change of inventory level I(t) is given by

$$\frac{dI(t)}{dt} = P(t) - Q(t) \quad \text{(5-1)}$$

where P(t) is the production rate at time t. The problem, then, is to minimize the total cost, C_T, of inventory and production given by

$$C_T = \int_0^T [C_I(I_m - I(t))^2 + C_p \exp(P_m - P(t))^2] dt \quad \text{(5-2)}$$

Here C_p is the minimum production cost that occurs when the rate of production is equal to the production capacity, P_m, of the plant. An increase in production rate over the capacity may call for additional equipment and labor and can, therefore, be expensive.
decrease in production rate below the plant capacity can be equally expensive owing to the need for the maintenance of unused equipment and also because it would result in idle labor which cannot be reduced because of contract agreements. The quantity I_m may be considered as the storage capacity of the inventory and C_I, the cost of carrying inventory. Generally, the minimum storage cost occurs when the storage capacity is fully utilized.

The cost function given by (5-2) has a smoothing capability which is very much desirable for many manufacturing processes. In this case, I_m and P_m can be considered as desirable inventory and production levels. Now, let the sales rate, which is assumed to be known with certainty, be given by the linear equation

$$Q(t) = a + bt$$ \hspace{1cm} (5-3)

and the initial inventory is

$$I(0) = c$$ \hspace{1cm} (5-4)

where a, b and c are known constants. Substituting the value of $Q(t)$ in (5-1), we get

$$\frac{dI(t)}{dt} = P(t) - a - bt$$ \hspace{1cm} (5-5)

To solve the problem by the conjugate gradient method, the above equations must be reduced to difference equations for digital computations. Thus, for small Δt, we obtain

$$I(t+\Delta t) = I(t) + [P(t) - a - bt] \Delta t$$ \hspace{1cm} (5-6)

The integral in the cost equation (5-2) over the limits $k\Delta t$ and $(k+1)\Delta t$ can be approximated as follows
\[(k+1)\Delta t \int \left[C_I (I_m - I(t))^2 + C_p \exp (P_m - P(t))^2 \right] dt \]

\[= [C_I (I_m - I(t))^2 + C_p \exp (P_m - P(t))^2] \Delta t \] \hspace{1cm} (5-7)

The values of the various numerical quantities are assumed to be as follows:

\[a = 2 \quad b = 1 \quad c = 5 \]
\[C_I = 0.1 \quad C_p = 0.001 \quad I_m = 10 \]
\[P_m = 5 \quad T = 1 \]

In addition, the production must not be more than 7 units.

5.1.1. Formulation of the Problem

Since the continuous process has to approximated by a multistage process, the number of stages into which the process should be divided is influenced by the desired accuracy and computational cost. Obviously, the larger is the number of stages, the greater are the accuracy and computational cost. Let us assume that the process is divided into \(n\) stages. Since the conjugate gradient method maximizes the objective function, total cost \(C_T\) is minimized by maximizing \(-C_T\). The problem may then be written as

maximize

\[F = -C_T = -\sum_{k=1}^{n} [C_I (I_m - \bar{I}(k\Delta t))^2 + C_p \exp (P_m - P(k\Delta t))^2] \Delta t \] \hspace{1cm} (5-8)

here \(\bar{I}(k\Delta t)\) has been taken as the mean of the inventories at the \(k\)th stage. That is

\[\bar{I}(k\Delta t) = \frac{1}{2}[I(\bar{I}(k-1\Delta t) + I(k\Delta t))] \]

subject to
\[I(k\Delta t) = I(k-1\Delta t) + [P(k\Delta t - a - bk\Delta t)\Delta t \quad (5-9) \]

\[P(k\Delta t) \geq 0 \quad (5-10) \]

\[-P(k\Delta t) \geq -7 \quad (5-10a) \]

where \(k = 1, 2, \ldots, n \) and \(\Delta t = T/n \)

It is given that \(I(0) = c \)

Equation (5-9) represents \(n \) equality constraints on the state variable \(I \), whereas (5-10) and (5-10a) represent \(2 \) inequality constraints on each of the control variables \(P \), the number of which equals the number of stages into which the process is divided, that is, \(n \). These inequalities act as bounds on the control variables. Thus, in all there are \(2n \) bounds on the control variables.

Since the conjugate gradient method does not recognize any state variables as such, the constraints given by equation (5-9) were eliminated, while calculating gradients, by evaluating the partial derivatives of the state variable with respect to the control variables at each stage, as given in Appendix D.

5.1.2. Numerical Results

For the purpose of this study, the problem was solved for 5-stage and 10-stage processes on an IBM 360/50 computer. Various limits and tolerances selected for the problem are as follows:

\[\varepsilon_1 = 0.0002 \quad \text{LIMIT} = 100 \]
\[\varepsilon_2 = 0.001 \quad \text{MXRN} = 3 \]
\[\varepsilon_3 = 0.005 \quad \beta_{\text{max}} = 4 \]
\[\tau_{\text{max}} = 1.5 \]

The subroutine FUNCT was so designed as to be independent of the number of stages into which the process is divided.
For the 5-stage process we have the number of variables, \(m = 5 \); the number of constraints, \(k = 10 \). Since all the constraints on the control variables are in the form of bounds, the number of bounds, \(s = 10 \) and the number of equality constraints, \(e = 0 \). Since, to start with, the program requires the initial guess of the control variables, three sets of initial approximations were used. They were: all \(P_i = 1.00 \), all \(P_i = 4.00 \) and all \(P_i = 7.00 \). Also, the estimated value of the minimum cost is required to be specified. It was taken as 1.0.

Using the three sets of initial approximations the problem was solved for both 5- and 10-stages. It was observed that for each process the optimal solution remained the same irrespective of the initial approximation used. In both the cases the initial guess of all \(P_i = 7.00 \) was found to be the best of the guesses used, and it required sufficiently smaller number of iterations as well as functional evaluations to reach the optimum, as compared to the other two approximations. A functional evaluation consists of an evaluation of the objective function and the corresponding gradients.

The optimal results for the two processes are summarized in Tables 1 and 2. The optimal values of production, inventory and cost are also shown in Figs. 1 and 2. The convergence rates of production and cost for the 5-stage and 10-stage processes are given in Tables 3 and 4, respectively. Table 5 gives the execution times for the different initial approximations. For the 5-stage process the minimum cost was found to be 0.940 and for the 10-stage process it was 0.932, showing a decrease of only 0.87%. The decrease is rather insignificant. This is due to the fact that the inventory and cost
functions are quite smooth, as can be seen from Figs. 1 and 2. The execution time for the 10-stage process, however, increased over the 5-stage process by about 278%. From Figs. 1 and 2 it can be observed that the cost function is more sensitive to the production rate in the initial stages than that in the later stages of the process.

From the manner in which the conjugate gradient method proceeded, it was observed that, to start with, there were no constraints in the basis. This was due to the absence of any equality constraint. Also, since all the initial approximations specified were feasible, no computer time was lost in finding a feasible point. It is, therefore, desirable to select a feasible point as the initial starting point. During the course of optimization, the constraints which became limiting were added to the basis. At the optimum, there were 2 active constraints for the 5-stage process and 4 active constraints for the 10-stage process. As can be seen from the optimum results, these correspond to the maximum allowable production rates at the initial stages of the two processes.

This model has also been solved by Nair [18] using Powell's conjugate gradient method which, incidently, is an unconstrained optimization technique. The minimum cost obtained by him for both 5-stage and 10-stage processes was 0.93. This agrees reasonably well with the present results. However, some difference was observed in the values of the control variables. This was due to the fact that Powell's method cannot handle any constraints.
Table 1. Optimal Results for the 5-Stage Process

\[
\begin{array}{ccccccc}
 t & t+\Delta t & I(t) & P(t+\Delta t) & I(t+\Delta t) & Q(t+\Delta t) & C_T \\
 0.0 & 0.2 & 5.000 & 7.000 & 5.960 & 2.200 & 0.420 \\
 0.2 & 0.4 & 5.960 & 7.000 & 6.880 & 2.400 & 0.687 \\
 0.4 & 0.6 & 6.880 & 6.946 & 7.749 & 2.600 & 0.840 \\
 0.6 & 0.8 & 7.749 & 6.772 & 8.544 & 2.800 & 0.913 \\
 0.8 & 1.0 & 8.544 & 6.431 & 9.230 & 3.000 & 0.940 \\
\end{array}
\]
Table 2. Optimal Results for the 10-Stage Process

\[
\begin{align*}
& \text{Table 2. Optimal Results for the 10-Stage Process} \\
& \text{\begin{tabular}{|c|c|c|c|c|c|c|}
<table>
<thead>
<tr>
<th>t</th>
<th>t+\Delta t</th>
<th>I(t)</th>
<th>P(t+\Delta t)</th>
<th>I(t+\Delta t)</th>
<th>Q(t+\Delta t)</th>
<th>C_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.1</td>
<td>5,000</td>
<td>7,000</td>
<td>5,490</td>
<td>2.100</td>
<td>0.232</td>
</tr>
<tr>
<td>0.1</td>
<td>0.2</td>
<td>5,490</td>
<td>7,000</td>
<td>5,970</td>
<td>2.200</td>
<td>0.419</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>5,970</td>
<td>7,000</td>
<td>6,440</td>
<td>2.300</td>
<td>0.569</td>
</tr>
<tr>
<td>0.3</td>
<td>0.4</td>
<td>6,440</td>
<td>7,000</td>
<td>6,900</td>
<td>2.400</td>
<td>0.685</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5</td>
<td>6,900</td>
<td>6,972</td>
<td>7,347</td>
<td>2.500</td>
<td>0.773</td>
</tr>
<tr>
<td>0.5</td>
<td>0.6</td>
<td>7,347</td>
<td>6,899</td>
<td>7,777</td>
<td>2.600</td>
<td>0.836</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7</td>
<td>7,777</td>
<td>6,809</td>
<td>8,188</td>
<td>2.700</td>
<td>0.879</td>
</tr>
<tr>
<td>0.7</td>
<td>0.8</td>
<td>8,188</td>
<td>6,691</td>
<td>8,577</td>
<td>2.800</td>
<td>0.907</td>
</tr>
<tr>
<td>0.8</td>
<td>0.9</td>
<td>8,577</td>
<td>6,517</td>
<td>8,939</td>
<td>2.900</td>
<td>0.924</td>
</tr>
<tr>
<td>0.9</td>
<td>1.0</td>
<td>8,939</td>
<td>6,165</td>
<td>9,255</td>
<td>3.000</td>
<td>0.932</td>
</tr>
</tbody>
</table>
\end{tabular} \\
\end{align*}
\]

Table 3 Convergence Rates of Production and Cost for the 5-Stage Process

<table>
<thead>
<tr>
<th>Iteration No.</th>
<th>No. of Functional Evaluations</th>
<th>No. of Constraints in Basis</th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(P_3)</th>
<th>(P_4)</th>
<th>(P_5)</th>
<th>(C_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>8889.387</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>6.983</td>
<td>6.983</td>
<td>6.983</td>
<td>6.983</td>
<td>6.983</td>
<td>0.949</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>7.000</td>
<td>6.989</td>
<td>6.981</td>
<td>6.975</td>
<td>6.971</td>
<td>0.948</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>0</td>
<td>7.000</td>
<td>7.000</td>
<td>6.983</td>
<td>6.971</td>
<td>6.963</td>
<td>0.947</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>3</td>
<td>7.000</td>
<td>7.000</td>
<td>7.000</td>
<td>6.974</td>
<td>6.942</td>
<td>0.947</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>2</td>
<td>7.000</td>
<td>7.000</td>
<td>6.941</td>
<td>6.994</td>
<td>6.923</td>
<td>0.946</td>
</tr>
<tr>
<td>20</td>
<td>26</td>
<td>2</td>
<td>7.000</td>
<td>7.000</td>
<td>6.912</td>
<td>6.992</td>
<td>6.919</td>
<td>0.946</td>
</tr>
<tr>
<td>30</td>
<td>42</td>
<td>2</td>
<td>7.000</td>
<td>7.000</td>
<td>6.917</td>
<td>6.759</td>
<td>6.369</td>
<td>0.940</td>
</tr>
<tr>
<td>49</td>
<td>72</td>
<td>2</td>
<td>7.000</td>
<td>7.000</td>
<td>6.946</td>
<td>6.771</td>
<td>6.432</td>
<td>0.940</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>1.799</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4.226</td>
<td>4.170</td>
<td>4.118</td>
<td>4.070</td>
<td>4.024</td>
<td>1.734</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>4.776</td>
<td>4.584</td>
<td>4.405</td>
<td>4.238</td>
<td>4.082</td>
<td>1.582</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>6.066</td>
<td>5.912</td>
<td>5.075</td>
<td>4.632</td>
<td>4.216</td>
<td>1.625</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1</td>
<td>7.000</td>
<td>6.449</td>
<td>5.693</td>
<td>4.922</td>
<td>4.339</td>
<td>1.055</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>2</td>
<td>7.000</td>
<td>7.000</td>
<td>6.948</td>
<td>5.701</td>
<td>4.575</td>
<td>0.963</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>3</td>
<td>7.000</td>
<td>7.000</td>
<td>7.000</td>
<td>6.799</td>
<td>5.131</td>
<td>0.944</td>
</tr>
<tr>
<td>27</td>
<td>32</td>
<td>2</td>
<td>7.000</td>
<td>7.000</td>
<td>6.947</td>
<td>6.771</td>
<td>6.432</td>
<td>0.940</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7.000</td>
<td>7.000</td>
<td>7.000</td>
<td>7.000</td>
<td>7.000</td>
<td>0.949</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>7.000</td>
<td>7.000</td>
<td>6.984</td>
<td>6.957</td>
<td>6.940</td>
<td>0.946</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>7.000</td>
<td>7.000</td>
<td>6.956</td>
<td>6.879</td>
<td>6.831</td>
<td>0.942</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>7.000</td>
<td>7.000</td>
<td>6.922</td>
<td>6.778</td>
<td>6.684</td>
<td>0.940</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>2</td>
<td>7.000</td>
<td>7.000</td>
<td>6.913</td>
<td>6.716</td>
<td>6.574</td>
<td>0.940</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>2</td>
<td>7.000</td>
<td>7.000</td>
<td>6.965</td>
<td>6.743</td>
<td>6.465</td>
<td>0.940</td>
</tr>
<tr>
<td>13</td>
<td>17</td>
<td>2</td>
<td>7.000</td>
<td>7.000</td>
<td>6.947</td>
<td>6.771</td>
<td>6.429</td>
<td>0.940</td>
</tr>
</tbody>
</table>
Table 4 Convergence Rates of Production and Cost for the 10-Stage Process

<table>
<thead>
<tr>
<th>Iteration No.</th>
<th>No. of Functional Evaluations</th>
<th>No. of Constraints in Basis</th>
<th>P₁</th>
<th>P₄</th>
<th>P₇</th>
<th>P₁₀</th>
<th>Cₜ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>8889.348</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>6.977</td>
<td>6.977</td>
<td>6.977</td>
<td>6.977</td>
<td>0.943</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>7.000</td>
<td>6.981</td>
<td>6.977</td>
<td>6.962</td>
<td>0.941</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>1</td>
<td>7.000</td>
<td>6.984</td>
<td>6.967</td>
<td>6.958</td>
<td>0.941</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>3</td>
<td>7.000</td>
<td>7.000</td>
<td>6.963</td>
<td>6.944</td>
<td>0.940</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>6</td>
<td>7.000</td>
<td>7.000</td>
<td>6.977</td>
<td>6.915</td>
<td>0.939</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>5</td>
<td>7.000</td>
<td>7.000</td>
<td>6.799</td>
<td>6.894</td>
<td>0.938</td>
</tr>
<tr>
<td>30</td>
<td>39</td>
<td>4</td>
<td>7.000</td>
<td>7.000</td>
<td>6.801</td>
<td>6.889</td>
<td>0.938</td>
</tr>
<tr>
<td>50</td>
<td>64</td>
<td>4</td>
<td>7.000</td>
<td>7.000</td>
<td>6.808</td>
<td>6.549</td>
<td>0.933</td>
</tr>
<tr>
<td>76</td>
<td>95</td>
<td>4</td>
<td>7.000</td>
<td>7.000</td>
<td>6.810</td>
<td>6.144</td>
<td>0.932</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>1.778</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4.119</td>
<td>4.078</td>
<td>4.040</td>
<td>4.006</td>
<td>1.745</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>4.113</td>
<td>4.268</td>
<td>4.139</td>
<td>4.022</td>
<td>1.667</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>5.125</td>
<td>4.730</td>
<td>4.377</td>
<td>4.058</td>
<td>1.488</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>7.000</td>
<td>5.944</td>
<td>5.003</td>
<td>4.156</td>
<td>1.092</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>3</td>
<td>7.000</td>
<td>6.653</td>
<td>5.357</td>
<td>4.210</td>
<td>1.001</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>6</td>
<td>7.000</td>
<td>7.000</td>
<td>6.329</td>
<td>4.355</td>
<td>0.947</td>
</tr>
<tr>
<td>30</td>
<td>34</td>
<td>6</td>
<td>7.000</td>
<td>7.000</td>
<td>6.820</td>
<td>4.601</td>
<td>0.936</td>
</tr>
<tr>
<td>56</td>
<td>67</td>
<td>4</td>
<td>7.000</td>
<td>7.000</td>
<td>6.809</td>
<td>6.166</td>
<td>0.932</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7.000</td>
<td>7.000</td>
<td>7.000</td>
<td>7.000</td>
<td>0.943</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7.000</td>
<td>7.000</td>
<td>6.981</td>
<td>6.968</td>
<td>0.941</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7.000</td>
<td>7.000</td>
<td>6.939</td>
<td>6.900</td>
<td>0.938</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>7.000</td>
<td>7.000</td>
<td>6.866</td>
<td>6.779</td>
<td>0.935</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>4</td>
<td>7.000</td>
<td>7.000</td>
<td>6.735</td>
<td>6.550</td>
<td>0.933</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>4</td>
<td>7.000</td>
<td>7.000</td>
<td>6.776</td>
<td>6.416</td>
<td>0.932</td>
</tr>
<tr>
<td>20</td>
<td>24</td>
<td>4</td>
<td>7.000</td>
<td>7.000</td>
<td>6.622</td>
<td>6.261</td>
<td>0.932</td>
</tr>
<tr>
<td>32</td>
<td>38</td>
<td>4</td>
<td>7.000</td>
<td>7.000</td>
<td>6.809</td>
<td>6.171</td>
<td>0.932</td>
</tr>
</tbody>
</table>
Table 5 - Execution Times for the 5-stage and 10-stage Processes

<table>
<thead>
<tr>
<th>Initial Approximation</th>
<th>5-Stage Process</th>
<th>10-Stage Process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Iterations</td>
<td>Execution Time in Secs</td>
</tr>
<tr>
<td>All Pi = 1.00</td>
<td>49</td>
<td>77.31</td>
</tr>
<tr>
<td>All Pi = 4.00</td>
<td>27</td>
<td>42.60</td>
</tr>
<tr>
<td>All Pi = 7.00</td>
<td>13</td>
<td>20.50</td>
</tr>
</tbody>
</table>
Fig. 1 Optimal Cost, Production and Inventory for the 5-Stage Process
Fig. 2 Optimal Cost, Production and Inventory for the 10-Stage Process
5.2 An Inventory and Advertisement Model

Let us now use the conjugate gradient method to solve an advertising problem. The model has been taken from [18]. This model is more complex as compared to the one discussed earlier in that it involves two state variables. The block diagram of the model is shown in Fig. 3. Consider a group of potential customers of a company's product. Assume that the total number of persons in the group remains constant and that only a certain members of the group possess some information about the product. Assume further that diffusion of information within the group occurs through personal contact.

Let

\[K(0) = \text{number of informed persons at time } t_0 \]
\[K(t) = \text{number of informed persons at time } t \]
\[N = \text{total number of persons in the group} \]
\[c = \text{contact coefficient, the number of contacts made by one informed person per unit of time} \]

Then \(K(t)/N = \text{proportion of informed persons at time } t, \) and

\[1-K(t)/N = \text{proportion of uninformed persons at time } t. \]

Since the number of informed persons can be increased only by making contacts with uninformed persons, the rate of increase in the number of informed persons at any time \(t \) is given by

\[
\frac{dK(t)}{dt} = cK(t)[1-K(t)/N] \tag{5-11}
\]

Suppose that the firm can increase the number of contacts made by advertising by an additional number \(A \) per unit of time. Then equation (5-11) becomes

\[
\frac{dK(t)}{dt} = (c+A(t)) K(t)[1-K(t)/N] \tag{5-12}
\]

If each successful contact increases the sale by one unit of the firm's product per unit time, then
\[\frac{dQ(t)}{dt} = (c + A(t)) Q(t) [1 - Q(t)/N] \]

(5-13)

where \(Q(t)\) represents the sales at time \(t\).

The rate of change of company's inventory is given by

\[\frac{dI(t)}{dt} = P(t) - Q(t) \]

(5-14)

where \(I(t)\) = inventory at time \(t\), and

\(P(t)\) = production rate at time \(t\).

The production rate for the product under consideration is assumed to be given by the linear equation

\[P(t) = a + bt \]

(5-15)

where \(a\) and \(b\) are known constants. The company's management wishes to maximize the net profit, \(P_T\), which can be obtained from the equation:

\[
\text{Net Profit} = \text{Revenue} - \text{Cost of holding inventory} - \text{Cost of advertising}.
\]

In mathematical terms

\[P_T = \int_0^T \left[F Q(t) - C_I (I_m - I(t))^2 - C_A A(t) Q(t) \right] dt \]

(5-16)

where \(F\) is the revenue from the sale of one unit of the product, \(I_m\) is the optimal inventory level, \(C_I\) is the inventory carrying cost, and \(C_A\) is the cost of advertising.

In this model, \(I(t)\) and \(Q(t)\) are the two state variables and \(A(t)\) is the control variable.

In order to solve this problem by the conjugate gradient method, equations (5-13), (5-14) and (5-16) must be approximated by difference equations. Equation (5-13), then, can be written as

\[Q(t+\Delta t) = Q(t) + Q'(t)(c + A(t))[1 - \frac{Q(t)}{N}] \Delta t \]

(5-17)

Since it has been assumed that the number of persons in the group remains constant and that each successful contact increases the sale by one unit, \(Q(t+\Delta t)\) should not exceed \(N\) for any value of \(t\). In order to
avoid the possibility of \(Q(t+\Delta t) \) exceeding \(N \), the term \([1-Q(t)/N] \) should be replaced by \([1-Q(t+\Delta t)/N] \). Incorporating the change in equation (5-14) and rearranging the terms, we have

\[
Q(t+\Delta t) = \frac{Q(t)[1+(c+A(t))\Delta t]}{1+(c+A(t))Q(t)\Delta t}
\]

(5-18)

Equation (5-14) becomes

\[
I(t+\Delta t) = I(t) + (F(t) - Q(t))\Delta t
\]

(5-19)

The integral in the profit equation (5-16) over the limits \(k\Delta t \) and \((k+1)\Delta t\) may be given by

\[
\int_{k\Delta t}^{(k+1)\Delta t} [FQ(t) - C_I(I_m - I(t))^2 - C_A(t)Q(t)] dt = [FQ(t) - C_I(I_m - I(t))^2 - C_A(t)Q(t)] \Delta t
\]

(5-20)

The values of the various constants are assumed to be as follows

\[
a = 70 \quad b = 100 \quad c = 2
\]

\[
F = 10 \quad C_I = 0.15 \quad I_m = 50
\]

\[
C_A = 1.5 \quad N = 150 \quad T = 1
\]

\[
I(0) = 20 \quad Q(0) = 20
\]

Because of the limitations of the funds, restriction has been imposed on the advertisement, which at any time should not be more than 6.

5.2.1 Formulation of the Problem

Let \(n \) be the number of stages into which the process is divided.

The problem may, then, be written as

maximize

\[
P_T = \sum_{k=1}^{n} [FQ(k\Delta t) - C_I(I_m - I(k\Delta t))^2 - C_A(k\Delta t)Q(k\Delta t)] \Delta t
\]

subject to
\[Q(k\Delta t) = \frac{Q(k-1\Delta t)[1+(c+A(k\Delta t))\Delta t]}{1+(c+A(k\Delta t))Q(k-1\Delta t)\Delta t} \quad (5-22) \]

\[I(k\Delta t) = I(k-1\Delta t) + [P(k-1\Delta t) - Q(k-1\Delta t)]\Delta t \quad (5-23) \]

\[A(k\Delta t) > 0 \quad (5-24) \]

and \[-A(k\Delta t) \geq -6 \quad (5-24a)\]

where \(k = 1, 2, \ldots, n \) and \(\Delta t = T/n \).

It is given that \(I(0) = 20 \) and \(Q(0) = 20 \).

On each of the two state variables \(Q \) and \(I \), there are \(n \) equality constraints given by equations (5-22) and (5-23), respectively. Also, there are \(n \) control variables \(A \), each being subject to two inequality constraints given by equation (5-24) and (5-24a), which act as bounds on the control variables. As in the first problem, here too, we have to eliminate the state variable constraints during gradient calculations by obtaining the partial derivatives of \(Q \) and \(I \) with respect to \(A \) at each stage, as given in Appendix D.

5.2.2 Numerical Results

The problem was solved for 5-stage and 10-stage processes. As in the inventory model, the subroutine FUNCT was designed to be independent of the number of stages involved.

Limits and tolerances used in the main program for this problem are given below

\[\varepsilon_1 = 0.005 \quad \text{LIMIT} = 100 \]

\[\varepsilon_2 = 0.001 \quad \text{MXRN} = 3 \]

\[\varepsilon_3 = 0.005 \quad \beta_{\text{max}} = 3 \]

\[\tau_{\text{max}} = 1.0 \]
Again, considering the 5-stage process, we have the number of variables, \(m = 5 \); the number of constraints, \(k = 10 \). Since the constraints are in the form of bounds, the number of bounds \(s = 10 \) and there are no equality constraints, \(e = 0 \). The estimated value of the maximum profit was taken as 500.

Using the limits and tolerances given above, the original conjugate gradient program was tried for the 5-stage process. The program gave an execution error, after some iterations, while updating the matrix operator \(H_q \). This was due to the fact that movement in the conjugate direction failed to improve further the values of the control variables, as a result of which \((\sigma^T)y^1\) in equation (3-25) became zero. A modification was therefore made in the computer program so as to change the direction of search to steepest ascent and then to switch over to the newly generated conjugate directions. It was also observed that during some of the iterations the initial steps were negative. Since it is always possible to take initially a positive step during each iteration [5], and, moreover, since the program checks the initial step against the constraints, another modification was made in selecting the initial step size. The manner in which the initial step size is selected is given in Appendix B.

Three different initial points were used for both 5-stage and 10-stage processes. They were: all \(A_i = 1.00 \), all \(A_i = 4.00 \) and all \(A_i = 6.00 \). In each case the problem converged to the same optimal values irrespective of the starting point. Values of inventory, production, advertisement and profit at optimal for the 5-stage and 10-stage processes are given in Tables 6 and 7 and Figs. 4 through 7.
Convergence rates of advertisement and profit for the two processes, along with the number of functional evaluations required, are given in Tables 8 and 9, whereas the execution times for different initial approximations are given in Table 10. The maximum profit for the 5-stage process was found to be 609.088. The profit increased to 679.326 for the 10-stage process, an increase of about 11.5%. This was achieved for an increase of about 110% in the average execution time.

For both 5- and 10-stage processes, the value of A for the first stage is 6.000, the maximum allowable upper limit. The advertisement tapers off to zero as we reach the last stage. The trend of advertisement is as was expected. Maximum advertisement is needed in the initial stages to boost the sales. As the product picks up sales, the need for advertisement decreases.

As in the first problem, here too, since there were no equality constraints, the program started with no constraints in the basis, and the matrix operator H_0^0 was taken as the identity matrix. However, in the final solution, there were 4 active constraints for the 5-stage process and 8 active constraints for the 10-stage process as can be seen from Tables 8 and 9.

This problem has also been solved by Nair [18] using Powell's conjugate gradient method. The maximum profits obtained by him for the 5-stage and 10-stage processes were 607.62 and 683.50, respectively. However, since Powell's method cannot handle any constraints, some difference was observed between the optimal values of the control variables as obtained by the present method and those obtained by Powell's method.
Table 6 Optimal Results for the 5-Stage Process

\[
\begin{align*}
A(t + \Delta t) \\
I(t) \\
Q(t) \\
t & t+\Delta t & I(t) & Q(t) & P(t) & I(t+\Delta t) & Q(t+\Delta t) & A(t+\Delta t) & P_T \\
0.0 & 0.2 & 20.000 & 20.000 & 70.000 & 30.000 & 42.857 & 6.000 & -3.429 \\
0.2 & 0.4 & 30.000 & 42.857 & 90.000 & 39.429 & 71.129 & 4.273 & 44.300 \\
0.4 & 0.6 & 39.429 & 71.129 & 110.000 & 47.203 & 87.700 & 0.805 & 198.293 \\
0.6 & 0.8 & 47.203 & 87.700 & 130.000 & 55.663 & 99.508 & 0.000 & 396.347 \\
0.8 & 1.0 & 55.663 & 99.508 & 150.000 & 65.761 & 110.097 & 0.000 & 609.088
\end{align*}
\]
Table 7. Optimal Results for the 10-Stage Process

![Diagram of process flow]

<table>
<thead>
<tr>
<th>t</th>
<th>t+Δt</th>
<th>I(t)</th>
<th>Q(t)</th>
<th>P(t)</th>
<th>I(t+Δt)</th>
<th>Q(t+Δt)</th>
<th>A(t+Δt)</th>
<th>(P_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.1</td>
<td>20.000</td>
<td>20.000</td>
<td>70.000</td>
<td>25.000</td>
<td>32.530</td>
<td>6.000</td>
<td>-6.122</td>
</tr>
<tr>
<td>0.1</td>
<td>0.2</td>
<td>25.000</td>
<td>32.530</td>
<td>80.000</td>
<td>29.747</td>
<td>49.897</td>
<td>6.000</td>
<td>-7.285</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>29.747</td>
<td>49.897</td>
<td>90.000</td>
<td>33.757</td>
<td>70.937</td>
<td>6.000</td>
<td>-4.149</td>
</tr>
<tr>
<td>0.3</td>
<td>0.4</td>
<td>33.757</td>
<td>70.937</td>
<td>100.000</td>
<td>36.664</td>
<td>86.092</td>
<td>3.014</td>
<td>40.351</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5</td>
<td>36.664</td>
<td>86.092</td>
<td>110.000</td>
<td>39.054</td>
<td>94.023</td>
<td>0.469</td>
<td>125.966</td>
</tr>
<tr>
<td>0.5</td>
<td>0.6</td>
<td>39.054</td>
<td>94.023</td>
<td>120.000</td>
<td>41.652</td>
<td>100.259</td>
<td>0.000</td>
<td>225.180</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7</td>
<td>41.652</td>
<td>100.259</td>
<td>130.000</td>
<td>44.626</td>
<td>106.124</td>
<td>0.000</td>
<td>330.871</td>
</tr>
<tr>
<td>0.7</td>
<td>0.8</td>
<td>44.626</td>
<td>106.124</td>
<td>140.000</td>
<td>48.014</td>
<td>111.563</td>
<td>0.000</td>
<td>442.374</td>
</tr>
<tr>
<td>0.8</td>
<td>0.9</td>
<td>48.014</td>
<td>111.563</td>
<td>150.000</td>
<td>51.851</td>
<td>116.540</td>
<td>0.000</td>
<td>558.862</td>
</tr>
<tr>
<td>0.9</td>
<td>1.0</td>
<td>51.851</td>
<td>116.540</td>
<td>160.000</td>
<td>56.203</td>
<td>121.040</td>
<td>0.000</td>
<td>679.325</td>
</tr>
<tr>
<td>Iteration No.</td>
<td>No. of Functional Evaluations</td>
<td>No. of Constraints in Basis</td>
<td>A_1</td>
<td>A_2</td>
<td>A_3</td>
<td>A_4</td>
<td>A_5</td>
<td>P_T</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
<td>----------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>442.991</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2.683</td>
<td>2.169</td>
<td>1.504</td>
<td>0.755</td>
<td>0.032</td>
<td>540.194</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2.719</td>
<td>2.192</td>
<td>1.511</td>
<td>0.742</td>
<td>0.000</td>
<td>542.179</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4.782</td>
<td>3.511</td>
<td>1.859</td>
<td>0.000</td>
<td>0.000</td>
<td>595.451</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>2</td>
<td>6.000</td>
<td>3.952</td>
<td>1.477</td>
<td>0.000</td>
<td>0.000</td>
<td>607.666</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>3</td>
<td>6.000</td>
<td>3.985</td>
<td>0.871</td>
<td>0.000</td>
<td>0.000</td>
<td>608.911</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>3</td>
<td>6.000</td>
<td>4.273</td>
<td>0.798</td>
<td>0.000</td>
<td>0.000</td>
<td>609.087</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>3</td>
<td>6.000</td>
<td>4.273</td>
<td>0.805</td>
<td>0.000</td>
<td>0.000</td>
<td>609.088</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>334.882</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4.118</td>
<td>3.068</td>
<td>1.811</td>
<td>0.717</td>
<td>0.000</td>
<td>577.126</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4.882</td>
<td>3.426</td>
<td>1.675</td>
<td>0.000</td>
<td>0.000</td>
<td>586.673</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>6.000</td>
<td>3.893</td>
<td>1.442</td>
<td>0.000</td>
<td>0.000</td>
<td>607.777</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>3</td>
<td>6.000</td>
<td>3.986</td>
<td>0.853</td>
<td>0.000</td>
<td>0.000</td>
<td>608.908</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>3</td>
<td>6.000</td>
<td>4.274</td>
<td>0.800</td>
<td>0.000</td>
<td>0.000</td>
<td>609.087</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>3</td>
<td>6.000</td>
<td>4.273</td>
<td>0.802</td>
<td>0.000</td>
<td>0.000</td>
<td>609.087</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>3</td>
<td>6.000</td>
<td>4.273</td>
<td>0.804</td>
<td>0.000</td>
<td>0.000</td>
<td>609.088</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6.000</td>
<td>6.000</td>
<td>6.000</td>
<td>6.000</td>
<td>6.000</td>
<td>84.199</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4.436</td>
<td>2.988</td>
<td>1.508</td>
<td>0.505</td>
<td>0.000</td>
<td>583.768</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5.026</td>
<td>3.312</td>
<td>1.491</td>
<td>0.000</td>
<td>0.000</td>
<td>597.985</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>6.000</td>
<td>3.788</td>
<td>1.387</td>
<td>0.000</td>
<td>0.000</td>
<td>607.869</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>3</td>
<td>6.000</td>
<td>4.013</td>
<td>0.808</td>
<td>0.000</td>
<td>0.000</td>
<td>608.928</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>3</td>
<td>6.000</td>
<td>4.273</td>
<td>0.805</td>
<td>0.000</td>
<td>0.000</td>
<td>609.087</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>3</td>
<td>6.000</td>
<td>4.273</td>
<td>0.805</td>
<td>0.000</td>
<td>0.000</td>
<td>609.087</td>
</tr>
</tbody>
</table>
Table 9 Convergence Rates of Advertisement and Profit for the 10-Stage Process

<table>
<thead>
<tr>
<th>Iteration No.</th>
<th>No. of Functional Evaluations</th>
<th>No. of Constraints in Basis</th>
<th>A_1</th>
<th>A_4</th>
<th>A_7</th>
<th>A_{10}</th>
<th>P_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>466.694</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1.876</td>
<td>1.510</td>
<td>0.987</td>
<td>0.476</td>
<td>529.163</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2.521</td>
<td>1.864</td>
<td>0.919</td>
<td>0.000</td>
<td>571.683</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2.861</td>
<td>2.090</td>
<td>0.840</td>
<td>0.000</td>
<td>594.074</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3</td>
<td>5.375</td>
<td>3.111</td>
<td>0.000</td>
<td>0.000</td>
<td>661.935</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>7</td>
<td>6.000</td>
<td>3.093</td>
<td>0.000</td>
<td>0.000</td>
<td>679.318</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>8</td>
<td>6.000</td>
<td>3.015</td>
<td>0.000</td>
<td>0.000</td>
<td>679.326</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>352.134</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4.198</td>
<td>2.837</td>
<td>1.343</td>
<td>0.624</td>
<td>598.199</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>4.495</td>
<td>2.866</td>
<td>1.024</td>
<td>0.000</td>
<td>629.478</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4.647</td>
<td>2.888</td>
<td>0.881</td>
<td>0.000</td>
<td>638.843</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3</td>
<td>5.629</td>
<td>3.042</td>
<td>0.000</td>
<td>0.000</td>
<td>665.011</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>7</td>
<td>6.000</td>
<td>3.098</td>
<td>0.000</td>
<td>0.000</td>
<td>679.316</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>8</td>
<td>6.000</td>
<td>3.015</td>
<td>0.000</td>
<td>0.000</td>
<td>679.326</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6.000</td>
<td>6.000</td>
<td>6.000</td>
<td>6.000</td>
<td>74.240</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4.392</td>
<td>2.180</td>
<td>0.493</td>
<td>0.000</td>
<td>631.315</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4.480</td>
<td>2.221</td>
<td>0.458</td>
<td>0.000</td>
<td>635.449</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4.727</td>
<td>2.333</td>
<td>0.358</td>
<td>0.000</td>
<td>643.809</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>4</td>
<td>6.000</td>
<td>2.808</td>
<td>0.000</td>
<td>0.000</td>
<td>669.810</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>8</td>
<td>6.000</td>
<td>3.014</td>
<td>0.000</td>
<td>0.000</td>
<td>679.325</td>
</tr>
</tbody>
</table>
Table 10 - Execution Times for the 5-stage and 10-stage Processes

<table>
<thead>
<tr>
<th>Initial Approximation</th>
<th>5-Stage Process</th>
<th>10-Stage Process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Iterations</td>
<td>Execution Time in Secs</td>
</tr>
<tr>
<td>All $A_i = 1.00$</td>
<td>7</td>
<td>26.46</td>
</tr>
<tr>
<td>All $A_i = 4.00$</td>
<td>7</td>
<td>26.46</td>
</tr>
<tr>
<td>All $A_i = 6.00$</td>
<td>6</td>
<td>22.68</td>
</tr>
</tbody>
</table>
Fig. 4 Optimal Inventory and Profit for the 5-Stage Process
Fig. 5 Optimal Advertisement and Sales for the 5-Stage Process
Fig. 6 Optimal Inventory and Profit for the 10-Stage Process
Fig. 7 Optimal Advertisement and Sales for the 10-Stage Process
5.3 A Production and Advertisement Model

We will now solve a more complex problem, namely, a production and advertisement model involving six state variables and three control variables. The model has been taken from [14]. Suppose that there are two chemical reactors processing a raw material containing three components A, B and C. Let the chemical reactions that take place in the reactors be represented as follows:

\[A \rightarrow B \rightarrow C \]

Component B is the most desirable product whereas C is the least valuable. Furthermore, B can be produced from A. However, certain amount of B also decomposes into C which is undesirable. Consider that B is a new product and therefore, needs advertisement to boost its sale. Also, to protect against fluctuations in demand, an inventory is assumed for B. A and C are assumed to have unlimited market at fixed price and they can be sold as soon as manufactured. Thus, no inventory for the raw material and products A and C is considered. The amount of B produced and that decomposed into C can be controlled by controlling the reaction temperatures. The block diagram of the process is shown in Fig. 8.

Let

\[x_i = \text{concentration of A in reactor } i, \ i = 1, 2 \]

\[y_i = \text{concentration of B in reactor } i \]

\[v_i = \text{volume of reactor } i \]
Fig. 8 Block Diagram of a Production and Advertisement Model
\[q = \text{flow rate} \]
\[k_{al} = \text{reaction rate constant of } A \text{ in reactor } i \]
\[k_{bi} = \text{reaction rate constant of } B \text{ in reactor } i \]
\[G_a, G_b = \text{frequency factor constants for } A \text{ and } B, \text{ respectively} \]
\[E_a, E_b = \text{activation energies of reactions} \]
\[R = \text{gas constant, and} \]
\[T_i = \text{temperature in reactor } i \]

Under the steady state conditions, the production rates in the two reactors are given by

\[v_1 \frac{dx_1}{dt} = q(x_0 - x_1) - v_1 k_{al} x_1 \] \hspace{1cm} (5-25)

\[v_1 \frac{dy_1}{dt} = q(y_0 - y_1) - v_1 k_{bl} y_1 + v_1 k_{al} x_1 \] \hspace{1cm} (5-26)

\[v_2 \frac{dx_2}{dt} = q(x_1 - x_2) - v_2 k_{a2} x_2 \] \hspace{1cm} (5-27)

\[v_2 \frac{dy_2}{dt} = q(y_1 - y_2) - v_2 k_{b2} y_2 + v_2 k_{a2} x_2 \] \hspace{1cm} (5-28)

where \(x_0 \) and \(y_0 \) are the raw material concentrations of \(A \) and \(B \), respectively.

The reaction rate constants are defined as
\[k_{a1} = G_a \exp(-E_a/RT_1) \quad (5-29) \]
\[k_{b1} = G_b \exp(-E_b/RT_1) \quad (5-30) \]
\[k_{a2} = G_a \exp(-E_a/RT_2) \quad (5-31) \]
\[k_{b2} = G_b \exp(-E_b/RT_2) \quad (5-32) \]

As indicated earlier, B is the desired product for which inventory and advertisement are assumed. The performance equation for inventory, \(I(t) \), at any time \(t \) is given by
\[
\frac{dI(t)}{dt} = qy_2 - Q(t) \tag{5-33}
\]
where the term \(qy_2 \) represents the production rate of B and \(Q(t) \) represents the sales rate. The performance equation for the sales rate is obtained as discussed in problem 2. It is given by
\[
\frac{dQ(t)}{dt} = Q(t)(c + A(t))(1 - \frac{Q(t)}{N}) \tag{5-34}
\]
where \(c \) is the contact coefficient, \(A(t) \) is the advertisement and \(N \) is the total number of persons in the group.

Equations (5-25) through (5-34) describe the system. We have six state variables, \(x_1, x_2, y_1, y_2, I \) and \(Q \) and three control variables, \(A, T_1 \) and \(T_2 \).

The management of the plant wishes to obtain the values of the control variables so as to maximize the following net profit, \(P_T \):

\[
P_T = \text{Revenue from B} + \text{Revenue from A} + \text{Revenue from C} - \text{Cost of B} - \text{Cost of Advertising} - \text{Manufacturing cost of B}
\]
In mathematical terms

\[
P_T = \int_0^{t_f} \left[c_1 Q + c_2 q x_2 + c_3 q (1 - x_2 - y_2) - C_l (I_m - I)^2 - C_A A^2 Q^2 - C_T (T_m - T_1)^2 - C_T (T_1 - T_2)^2 \right] \, dt
\]

(5-35)

where \(c_1\), \(c_2\) and \(c_3\) are the revenues from the sale per unit of B, A and C, respectively. Last two terms represent the manufacturing cost. \(T_m\) may be considered as the temperature of the raw material before processing. Like the first two models, here too, we need to approximate the various differential equations representing the system, and the profit equation by difference equations. For a small interval \(\Delta t\) equations (5-25) through (5-28), (5-33) and (5-34) become

\[
x_1(t+\Delta t) = x_1(t) + \left[\frac{q}{v_1}(x_0 - x_1(t)) - k_{a_1} x_1(t) \right] \Delta t
\]

(5-36)

\[
y_1(t+\Delta t) = y_1(t) + \left[\frac{q}{v_1}(y_0 - y_1(t)) - k_{b_1} y_1(t) + k_{a_1} x_1(t) \right] \Delta t
\]

(5-37)

\[
x_2(t+\Delta t) = x_2(t) + \left[\frac{q}{v_2}(x_1(t) - x_2(t)) - k_{a_2} x_2(t) \right] \Delta t
\]

(5-38)

\[
y_2(t+\Delta t) = y_2(t) + \left[\frac{q}{v_2}(y_1(t) - y_2(t)) - k_{b_2} y_2(t) + k_{a_2} x_2(t) \right] \Delta t
\]

(5-39)

\[
I(t+\Delta t) = I(t) + [q y_2(t) - Q(t)]
\]

(5-40)

\[
Q(t+\Delta t) = Q(t) + [A(t)(c + A(t))(1 - \frac{Q(t)}{N})] \Delta t
\]

(5-41)

The profit over the small interval \(\Delta t\) is given by

\[
P_T = \left[c_1 Q + c_2 q x_2 + c_3 q (1 - x_2 - y_2) - C_l (I_m - I)^2 \right. \\
\left. = C_A A^2 Q^2 - C_T (T_m - T_1)^2 - (T_1 - T_2)^2 \right] \Delta t
\]

(5-42)
The values of the various numerical constants are assumed as follows:

\[G_a = 0.535 \times 10^{11} \text{ per unit time} \quad \quad N = 100 \]
\[G_b = 0.461 \times 10^{18} \text{ per unit time} \quad \quad c = 1 \]
\[E_a = 18000 \text{ cal/mole} \quad \quad c_1 = 5.0 \]
\[E_b = 30000 \text{ cal/mole} \quad \quad c_2 = c_3 = 0 \]
\[R = 2 \text{ cal/mole} \cdot ^\circ K \quad \quad C_1 = 1.0 \]
\[q = 60 \text{ gal/unit} \quad \quad C_a = 0.01 \]
\[v_1 = v_2 = 12 \text{ gal} \quad \quad C_T = 0.0005 \]
\[I_m = 20 \quad \quad t_f = 1 \]
\[T_m = 340^\circ K \quad \quad y_0 = 0.43 \]
\[x_0 = 0.53 \quad \quad y_1(0) = 0.43 \]
\[x_1(0) = 0.53 \quad \quad y_2(0) = 0.43 \]
\[x_2(0) = 0.53 \quad \quad Q(0) = 1.0 \]
\[I(0) = 8.0 \]

Because of the limitations of funds, the advertisement must not be more than 20 and also the temperatures in the two reactors must not be more than 450^\circ K.

5.3.1 Formulation of the Problem

The process was divided into 5 stages. The problem can then be defined as

maximize

\[P_T = \sum_{k=1}^{5} c_1 Q(k\Delta t) + c_2 q x_2(k\Delta t) + c_3 q(1-x_2(k\Delta t)-y_2(k\Delta t)-C_1(I_m-I(k\Delta t))^2 \]

\[-c_a(A(k\Delta t)Q(k\Delta t))^2 - c_T[(T_m-T_1(k\Delta t))^2+(T_1(k\Delta t)-T_2(k\Delta t))^2] \Delta t \quad (5-43) \]
subject to the constraints

\[x_1(k\Delta t) = x_1(k-1\Delta t) + \left[\frac{q}{v_1}(x_0-x_1(k-1\Delta t))-k_{a1}x_1(k-1\Delta t) \right] \Delta t \]
(5-44)

\[y_1(k\Delta t) = y_1(k-1\Delta t) + \left[\frac{q}{v_2}(y_0-y_1(k-1\Delta t))-k_{b1}y_1(k-1\Delta t)-k_{a1}x_1(k-1\Delta t) \right] \Delta t \]
(5-45)

\[x_2(k\Delta t) = x_2(k-1\Delta t) + \left[\frac{q}{v_2}(x_1(k-1\Delta t)-x_2(k-1\Delta t))-k_{a2}x_2(k-1\Delta t) \right] \Delta t \]
(5-46)

\[y_2(k\Delta t) = y_2(k-1\Delta t) + \left[\frac{q}{v_2}(y_1(k-1\Delta t)-y_2(k-1\Delta t))-k_{b2}y_2(k-1\Delta t)-k_{a2}x_2(k-1\Delta t) \right] \Delta t \]
(5-47)

\[I(k\Delta t) = I(k-1\Delta t) + [qy_2(k-1\Delta t)-Q(k-1\Delta t)] \Delta t \]
(5-48)

\[Q(k\Delta t) = Q(k-1\Delta t) + [Q(k-1\Delta t)(c+A(k\Delta t))(1 - \frac{Q(k-1\Delta t)}{N})] \Delta t \]
(5-49)

\[A(k\Delta t) \geq 0 \]
(5-50)

\[-A(k\Delta t) \geq -20 \]
(5-50a)

\[-T_1(k\Delta t) \geq -450 \]
(5-51)

\[-T_2(k\Delta t) \geq -450 \]
(5-52)

where \(k = 1, 2, \ldots, 5 \) and \(\Delta t = t_f/5 \)

It is given that

\[x_0 = 0.53 \quad y_0 = 0.43 \]

\[x_1(0) = 0.53 \quad y_1(0) = 0.43 \]

\[x_2(0) = 0.53 \quad y_2(0) = 0.43 \]

\[I(0) = 8.0 \quad Q(0) = 1.0 \]

In this problem, equations (5-44) through (5-49) represent the constraints on the six state variables, \(x_1, y_1, x_2, y_2, I \) and \(Q \), respectively. On
dividing the process into five stages, the number of control variables becomes 15. They are $A(k\Delta t)$, $T_1(k\Delta t)$ and $T_2(k\Delta t)$ where $k = 1, 2, \ldots, 5$. The constraints on the control variables are given by the inequalities (5-50), (5-50a), (5-51), and (5-52). These serve as bounds. Obviously, we have five equality constraints on each of the state variables, ten inequality constraints on advertisement and five inequality constraints on each of the temperatures, T_1 and T_2. Like the first two problems, the equality constraints on the state variables were eliminated while computing gradients by obtaining partial derivatives of the state variables with respect to the control variables at each stage. The calculations for the partial derivatives are given in Appendix D.

5.3.2 Numerical Results

The problem was first solved for 3 stages using six sets of initial approximations. The results showed the existence of two optimal solutions. It was, however, observed that at higher optimum, the concentration x_2, at the first stage, became negative. This seemed to be unreasonable and was due to the fact that the division of the process into three stages involved a considerable amount of approximation.

The problem was then solved for 5 stages. Since there are six state variables, higher number of stages involves extremely complicated computations for gradients. Therefore, more than 5 stages were not considered. The subroutine FUNCT designed to evaluate the objective function and the gradients for the 5-stage process is shown in Appendix F. Limits and tolerances selected for the 5-stage process are as follows
\[
\begin{align*}
\varepsilon_1 &= 0.002 & \text{LIMIT} &= 150 \\
\varepsilon_2 &= 0.001 & \text{MXRN} &= 5 \\
\varepsilon_3 &= 0.005 & \theta_{\text{max}} &= 2 \\
\tau_{\text{max}} &= 1.5
\end{align*}
\]

For the 5-stage problem, the number of variables, \(m = 15 \); the number of constraints, \(k = 20 \). Again, since all the constraints act as bounds, \(s = 20 \) and \(c = 0 \). The estimated value of the maximum profit was taken as 60.

The problem was run using six sets of initial approximation to the control variables. They were

\[
\begin{align*}
A_j &= 1.00, & T_{ij} &= 345 \\
A_j &= 1.00, & T_{ij} &= 350 \\
A_j &= 1.00, & T_{ij} &= 355 \\
A_j &= 1.00, & T_{ij} &= 365 \\
A_j &= 5.00, & T_{ij} &= 370 \\
A_j &= 10.00, & T_{ij} &= 375
\end{align*}
\]

where \(A_j \) and \(T_{ij} \) represent advertisement and temperatures respectively at stage \(j; i = 1, 2, \) and \(j = 1, 2, \ldots, 5 \). Again two distinct optimal solutions were obtained. This seems quite likely since the model is highly nonlinear and, moreover, the conjugate gradient method finds only the local extremum. It was observed that during the course of optimization, none of the constraints were active. Therefore, the constraint tolerance, \(\varepsilon_2 \) and the linear dependence tolerance \(\varepsilon_3 \) had no effect on the solution of the problem. With the gradient tolerance, \(\varepsilon_2 = 0.002 \) and for the same maximum profit, the results showed some difference in the values of the control variables, as obtained with
different initial approximations. The gradient tolerance was, therefore, reduced to 0.0001 and the limit on the maximum number of iterations was set equal to 60. The problem was run further starting from the solutions obtained with \(\varepsilon_1 = 0.002 \). In each case the problem ran for 60 iterations, since the gradient tolerance of 0.0001 was not achieved. However, the results obtained after 60 iterations did not show any significant difference from those obtained with \(\varepsilon_1 = 0.002 \).

The two values of the maximum profit obtained were 49.704 and 51.436. The higher of the two values, that is, 51.436 is probably the actual maximum profit. The results corresponding to the two optima are summarized in Tables 11 and 12. Values of the profit, advertisement, temperatures, sales and inventory at the actual optimum are also shown in Figs. 9 through 11. The convergence rates of advertisement, temperatures and profit are given in Tables 13 and 14. The execution times for the various sets of initial approximations are given in Table 15. These include the execution times for the additional 60 iterations. Table 15 also gives the total number of iterations as well as the number of iterations required to obtain solutions with \(\varepsilon_1 = 0.002 \).

This problem has also been solved by Shah [24], as problem D, by quasilinearization. The maximum profit obtained by him was 66.26. The difference between the present results and those obtained by Shah is probably due to the approximation involved in treating the continuous process as a 5-stage process.
Table 11 - Results Corresponding to the Relative Optimum

<table>
<thead>
<tr>
<th>t</th>
<th>t+Δt</th>
<th>A(t+Δt)</th>
<th>T_1(t+Δt)</th>
<th>T_2(t+Δt)</th>
<th>x_1(t+Δt)</th>
<th>y_1(t+Δt)</th>
<th>x_2(t+Δt)</th>
<th>y_2(t+Δt)</th>
<th>I(t+Δt)</th>
<th>Q(t+Δt)</th>
<th>P_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.2</td>
<td>15.86</td>
<td>318.47</td>
<td>315.91</td>
<td>0.527</td>
<td>0.433</td>
<td>0.528</td>
<td>0.432</td>
<td>12.960</td>
<td>4.399</td>
<td>-15.096</td>
</tr>
<tr>
<td>0.2</td>
<td>0.4</td>
<td>6.82</td>
<td>316.36</td>
<td>308.07</td>
<td>0.528</td>
<td>0.432</td>
<td>0.526</td>
<td>0.434</td>
<td>17.280</td>
<td>10.833</td>
<td>-16.729</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6</td>
<td>3.46</td>
<td>321.03</td>
<td>311.41</td>
<td>0.526</td>
<td>0.434</td>
<td>0.526</td>
<td>0.434</td>
<td>20.322</td>
<td>19.452</td>
<td>-6.413</td>
</tr>
<tr>
<td>0.6</td>
<td>0.8</td>
<td>1.78</td>
<td>331.89</td>
<td>322.57</td>
<td>0.521</td>
<td>0.438</td>
<td>0.522</td>
<td>0.438</td>
<td>21.638</td>
<td>28.168</td>
<td>16.168</td>
</tr>
<tr>
<td>0.8</td>
<td>1.0</td>
<td>0.75</td>
<td>341.60</td>
<td>342.59</td>
<td>0.510</td>
<td>0.447</td>
<td>0.499</td>
<td>0.456</td>
<td>21.256</td>
<td>35.248</td>
<td>49.704</td>
</tr>
</tbody>
</table>
Table 12 - Results Corresponding to the Actual Optimum

<table>
<thead>
<tr>
<th>t</th>
<th>t+Δt</th>
<th>A(t+Δt)</th>
<th>T₁(t+Δt)</th>
<th>T₂(t+Δt)</th>
<th>x₁(t+Δt)</th>
<th>y₁(t+Δt)</th>
<th>x₂(t+Δt)</th>
<th>y₂(t+Δt)</th>
<th>I(t+Δt)</th>
<th>Q(t+Δt)</th>
<th>Pₚ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.2</td>
<td>15.07</td>
<td>354.93</td>
<td>368.03</td>
<td>0.475</td>
<td>0.468</td>
<td>0.394</td>
<td>0.487</td>
<td>12.960</td>
<td>4.182</td>
<td>-13.717</td>
</tr>
<tr>
<td>0.2</td>
<td>0.4</td>
<td>6.59</td>
<td>362.27</td>
<td>380.99</td>
<td>0.447</td>
<td>0.468</td>
<td>0.243</td>
<td>0.342</td>
<td>17.967</td>
<td>10.265</td>
<td>-13.513</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6</td>
<td>3.40</td>
<td>360.89</td>
<td>384.09</td>
<td>0.459</td>
<td>0.462</td>
<td>0.274</td>
<td>0.295</td>
<td>20.019</td>
<td>18.378</td>
<td>-3.059</td>
</tr>
<tr>
<td>0.6</td>
<td>0.8</td>
<td>1.81</td>
<td>338.59</td>
<td>337.37</td>
<td>0.516</td>
<td>0.442</td>
<td>0.452</td>
<td>0.469</td>
<td>19.887</td>
<td>26.799</td>
<td>19.047</td>
</tr>
<tr>
<td>0.8</td>
<td>1.0</td>
<td>0.79</td>
<td>339.62</td>
<td>339.40</td>
<td>0.513</td>
<td>0.444</td>
<td>0.501</td>
<td>0.454</td>
<td>20.151</td>
<td>33.808</td>
<td>51.436</td>
</tr>
</tbody>
</table>

Table 13 - Convergence Rates of Advertisement, Temperatures and Profit for the Relative Optimum

<table>
<thead>
<tr>
<th>Iteration No.</th>
<th>No. of Functional Evaluations</th>
<th>No. of Constraints in Basis</th>
<th>A_1</th>
<th>A_2</th>
<th>A_5</th>
<th>T_{11}</th>
<th>T_{13}</th>
<th>T_{15}</th>
<th>T_{21}</th>
<th>T_{23}</th>
<th>T_{25}</th>
<th>P_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>345.00</td>
<td>345.00</td>
<td>345.00</td>
<td>345.00</td>
<td>345.00</td>
<td>345.00</td>
<td>-47.611</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>0</td>
<td>13.85</td>
<td>3.22</td>
<td>0.96</td>
<td>344.56</td>
<td>344.76</td>
<td>345.00</td>
<td>344.60</td>
<td>344.67</td>
<td>345.00</td>
<td>45.238</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>0</td>
<td>16.46</td>
<td>3.50</td>
<td>0.72</td>
<td>344.29</td>
<td>344.64</td>
<td>344.99</td>
<td>344.43</td>
<td>344.47</td>
<td>345.00</td>
<td>48.120</td>
</tr>
<tr>
<td>25</td>
<td>35</td>
<td>0</td>
<td>15.90</td>
<td>3.47</td>
<td>0.75</td>
<td>310.93</td>
<td>329.10</td>
<td>343.65</td>
<td>326.18</td>
<td>318.94</td>
<td>344.98</td>
<td>49.608</td>
</tr>
<tr>
<td>47</td>
<td>66</td>
<td>0</td>
<td>15.87</td>
<td>3.46</td>
<td>0.75</td>
<td>318.37</td>
<td>321.44</td>
<td>342.06</td>
<td>315.62</td>
<td>310.76</td>
<td>343.37</td>
<td>49.702</td>
</tr>
<tr>
<td>107</td>
<td>170</td>
<td>0</td>
<td>15.86</td>
<td>3.46</td>
<td>0.75</td>
<td>318.47</td>
<td>321.03</td>
<td>341.60</td>
<td>315.91</td>
<td>311.41</td>
<td>342.59</td>
<td>49.704</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350.00</td>
<td>350.00</td>
<td>350.00</td>
<td>350.00</td>
<td>350.00</td>
<td>350.00</td>
<td>-51.818</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>350.00</td>
<td>350.00</td>
<td>350.00</td>
<td>350.00</td>
<td>350.00</td>
<td>350.00</td>
<td>-51.818</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>0</td>
<td>14.03</td>
<td>3.21</td>
<td>0.96</td>
<td>349.49</td>
<td>349.72</td>
<td>349.99</td>
<td>349.51</td>
<td>349.67</td>
<td>350.00</td>
<td>44.397</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>0</td>
<td>16.34</td>
<td>3.51</td>
<td>0.72</td>
<td>349.14</td>
<td>349.55</td>
<td>349.97</td>
<td>349.28</td>
<td>349.44</td>
<td>350.00</td>
<td>47.264</td>
</tr>
<tr>
<td>25</td>
<td>34</td>
<td>0</td>
<td>15.90</td>
<td>3.47</td>
<td>0.75</td>
<td>309.98</td>
<td>328.49</td>
<td>347.45</td>
<td>322.50</td>
<td>320.89</td>
<td>349.84</td>
<td>49.597</td>
</tr>
<tr>
<td>56</td>
<td>75</td>
<td>0</td>
<td>15.86</td>
<td>3.46</td>
<td>0.75</td>
<td>318.45</td>
<td>320.87</td>
<td>342.95</td>
<td>315.97</td>
<td>311.01</td>
<td>344.65</td>
<td>49.703</td>
</tr>
<tr>
<td>116</td>
<td>188</td>
<td>0</td>
<td>15.86</td>
<td>3.46</td>
<td>0.75</td>
<td>318.53</td>
<td>321.12</td>
<td>342.08</td>
<td>316.03</td>
<td>311.37</td>
<td>343.48</td>
<td>49.704</td>
</tr>
</tbody>
</table>

Note: T_{ij} denotes temperatures T_i at stage j; $i = 1, 2$ and $j = 1, 2, \ldots, 5$.
<table>
<thead>
<tr>
<th>Iteration No.</th>
<th>No. of Functional Evaluations</th>
<th>No. of Constraints in Basis</th>
<th>A_1</th>
<th>A_3</th>
<th>A_5</th>
<th>T_11</th>
<th>T_13</th>
<th>T_15</th>
<th>T_21</th>
<th>T_23</th>
<th>T_25</th>
<th>P_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>365.00</td>
<td>365.00</td>
<td>365.00</td>
<td>365.00</td>
<td>365.00</td>
<td>365.00</td>
<td>-56.275</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>0</td>
<td>14.27</td>
<td>3.18</td>
<td>0.98</td>
<td>365.37</td>
<td>365.07</td>
<td>364.98</td>
<td>365.11</td>
<td>366.14</td>
<td>365.00</td>
<td>43.33</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>0</td>
<td>16.82</td>
<td>3.53</td>
<td>0.73</td>
<td>365.72</td>
<td>365.09</td>
<td>364.93</td>
<td>365.31</td>
<td>367.19</td>
<td>365.00</td>
<td>46.19</td>
</tr>
<tr>
<td>25</td>
<td>39</td>
<td>0</td>
<td>15.09</td>
<td>3.41</td>
<td>0.78</td>
<td>368.89</td>
<td>365.20</td>
<td>363.95</td>
<td>369.92</td>
<td>378.24</td>
<td>364.99</td>
<td>51.24</td>
</tr>
<tr>
<td>70</td>
<td>69</td>
<td>0</td>
<td>15.05</td>
<td>3.40</td>
<td>0.79</td>
<td>353.01</td>
<td>361.47</td>
<td>353.74</td>
<td>367.95</td>
<td>383.03</td>
<td>363.67</td>
<td>51.34</td>
</tr>
<tr>
<td>75</td>
<td>103</td>
<td>0</td>
<td>15.07</td>
<td>3.40</td>
<td>0.79</td>
<td>351.77</td>
<td>359.24</td>
<td>343.12</td>
<td>367.91</td>
<td>384.58</td>
<td>340.48</td>
<td>51.43</td>
</tr>
<tr>
<td>98</td>
<td>135</td>
<td>0</td>
<td>15.07</td>
<td>3.40</td>
<td>0.79</td>
<td>354.94</td>
<td>360.88</td>
<td>339.62</td>
<td>368.03</td>
<td>384.09</td>
<td>339.40</td>
<td>51.43</td>
</tr>
<tr>
<td>158</td>
<td>251</td>
<td>0</td>
<td>15.07</td>
<td>3.40</td>
<td>0.79</td>
<td>354.93</td>
<td>360.89</td>
<td>339.62</td>
<td>368.03</td>
<td>384.09</td>
<td>339.40</td>
<td>51.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration No.</th>
<th>No. of Functional Evaluations</th>
<th>No. of Constraints in Basis</th>
<th>A_1</th>
<th>A_3</th>
<th>A_5</th>
<th>T_11</th>
<th>T_13</th>
<th>T_15</th>
<th>T_21</th>
<th>T_23</th>
<th>T_25</th>
<th>P_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>370.00</td>
<td>370.00</td>
<td>370.00</td>
<td>370.00</td>
<td>370.00</td>
<td>370.00</td>
<td>-65.02</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>0</td>
<td>13.08</td>
<td>3.56</td>
<td>0.16</td>
<td>370.63</td>
<td>370.21</td>
<td>369.98</td>
<td>370.50</td>
<td>371.17</td>
<td>370.00</td>
<td>45.07</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>0</td>
<td>16.20</td>
<td>3.45</td>
<td>0.74</td>
<td>371.55</td>
<td>370.43</td>
<td>369.92</td>
<td>371.19</td>
<td>372.81</td>
<td>370.00</td>
<td>49.57</td>
</tr>
<tr>
<td>25</td>
<td>35</td>
<td>0</td>
<td>15.10</td>
<td>3.41</td>
<td>0.79</td>
<td>371.50</td>
<td>370.45</td>
<td>368.82</td>
<td>371.35</td>
<td>375.37</td>
<td>369.99</td>
<td>51.13</td>
</tr>
<tr>
<td>50</td>
<td>65</td>
<td>0</td>
<td>15.05</td>
<td>3.40</td>
<td>0.79</td>
<td>355.58</td>
<td>365.68</td>
<td>358.58</td>
<td>367.27</td>
<td>381.68</td>
<td>368.81</td>
<td>51.30</td>
</tr>
<tr>
<td>84</td>
<td>107</td>
<td>0</td>
<td>15.07</td>
<td>3.40</td>
<td>0.79</td>
<td>354.93</td>
<td>360.53</td>
<td>340.88</td>
<td>368.01</td>
<td>384.07</td>
<td>341.60</td>
<td>51.43</td>
</tr>
<tr>
<td>144</td>
<td>216</td>
<td>0</td>
<td>15.07</td>
<td>3.40</td>
<td>0.78</td>
<td>354.84</td>
<td>361.12</td>
<td>340.79</td>
<td>368.04</td>
<td>384.08</td>
<td>341.23</td>
<td>51.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration No.</th>
<th>No. of Functional Evaluations</th>
<th>No. of Constraints in Basis</th>
<th>A_1</th>
<th>A_3</th>
<th>A_5</th>
<th>T_11</th>
<th>T_13</th>
<th>T_15</th>
<th>T_21</th>
<th>T_23</th>
<th>T_25</th>
<th>P_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>375.00</td>
<td>375.00</td>
<td>375.00</td>
<td>375.00</td>
<td>375.00</td>
<td>375.00</td>
<td>380.67</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>0</td>
<td>11.15</td>
<td>2.98</td>
<td>0.61</td>
<td>375.24</td>
<td>375.09</td>
<td>374.99</td>
<td>375.24</td>
<td>375.38</td>
<td>375.00</td>
<td>45.33</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>0</td>
<td>15.20</td>
<td>3.41</td>
<td>0.78</td>
<td>375.52</td>
<td>375.20</td>
<td>374.94</td>
<td>375.43</td>
<td>375.87</td>
<td>375.00</td>
<td>50.87</td>
</tr>
<tr>
<td>25</td>
<td>36</td>
<td>0</td>
<td>15.08</td>
<td>3.41</td>
<td>0.79</td>
<td>372.40</td>
<td>374.46</td>
<td>372.86</td>
<td>367.86</td>
<td>374.55</td>
<td>374.98</td>
<td>51.09</td>
</tr>
<tr>
<td>50</td>
<td>64</td>
<td>0</td>
<td>15.09</td>
<td>3.40</td>
<td>0.79</td>
<td>356.45</td>
<td>353.83</td>
<td>355.33</td>
<td>368.07</td>
<td>383.66</td>
<td>371.69</td>
<td>51.32</td>
</tr>
<tr>
<td>89</td>
<td>116</td>
<td>0</td>
<td>15.07</td>
<td>3.40</td>
<td>0.79</td>
<td>354.42</td>
<td>359.08</td>
<td>338.17</td>
<td>367.91</td>
<td>384.14</td>
<td>337.82</td>
<td>51.43</td>
</tr>
<tr>
<td>149</td>
<td>224</td>
<td>0</td>
<td>15.08</td>
<td>3.40</td>
<td>0.79</td>
<td>354.71</td>
<td>360.18</td>
<td>338.61</td>
<td>367.97</td>
<td>384.15</td>
<td>337.95</td>
<td>51.43</td>
</tr>
</tbody>
</table>

Note: T_{ij} denotes temperatures T_i at stage $j; i = 1, 2$ and $j = 1, 2, \ldots, 5$
Table 15 - Execution Times for Different Initial Approximations

<table>
<thead>
<tr>
<th>Initial Approximation</th>
<th>Total No. of Iterations</th>
<th>No. of Iterations with $\epsilon_1 = 0.002$</th>
<th>Execution Time in Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_j = 1.00$</td>
<td>107</td>
<td>47</td>
<td>6.01</td>
</tr>
<tr>
<td>$T_{ij} = 345$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_j = 1.00$</td>
<td>116</td>
<td>56</td>
<td>6.25</td>
</tr>
<tr>
<td>$T_{ij} = 350$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_j = 1.00$</td>
<td>111</td>
<td>51</td>
<td>6.21</td>
</tr>
<tr>
<td>$T_{ij} = 355$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_j = 1.00$</td>
<td>158</td>
<td>92</td>
<td>7.98</td>
</tr>
<tr>
<td>$T_{ij} = 365$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_j = 5.00$</td>
<td>144</td>
<td>84</td>
<td>7.32</td>
</tr>
<tr>
<td>$T_{ij} = 370$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_j = 10.00$</td>
<td>149</td>
<td>89</td>
<td>7.93</td>
</tr>
<tr>
<td>$T_{ij} = 375$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note - A_j and T_{ij} denote advertisement and temperatures, respectively, at stage j; $i = \cdot 1, 2$ and $j = 1, 2, \ldots, 5$.
Fig. 9 Profit and Advertisement at Actual Optimum
Fig. 10 Temperatures at Actual Optimum
Fig. 11 'Sales and Inventory at Actual Optimum
CHAPTER 6

DISCUSSION

Solutions of the different test problems presented in this study demonstrate the usefulness of mathematical programming approach to industrial management systems. In particular the conjugate gradient method developed by Goldfarb [7] has proved quite efficient in solving a class of non-linear problems. The efficiency of the technique is affected considerably by the manner in which the problem is formulated. For example, presence of bounds and equality constraints definitely make the method more efficient. It is therefore, essential to have the basic knowledge about the system being solved and formulate the model in the proper form.

The conjugate gradient method has an advantage over Rosen's gradient projection method in that it requires less number of functional evaluations [7]. Since in complicated problems, each functional evaluation, together with the gradient calculations, may consume a considerable amount of execution time, the computational cost, in such cases, for the conjugate gradient method would obviously be less. Less number of functional evaluations is probably due to the use of the cubic interpolation scheme. Moreover, since the conjugate gradient method is quadratically convergent, it would normally require less number of iterations to reach the optimum, than does the gradient projection method.

The applications of the method also demonstrate that in many cases a continuous process can easily be solved by approximating it to a multistage process. The number of stages into which the process may
be divided is generally determined by the accuracy requirements and the computational cost. Like other gradient methods, the conjugate gradient method too requires the calculation of first partial derivatives. In complicated problems involving a large number of state variables, the computations for the partial derivatives almost limit the number of stages into which the process can be divided. In such cases, one may have to sacrifice some accuracy in order to avoid laborious or sometimes practically impossible calculations.
ACKNOWLEDGEMENT

The author wishes to express his deep sense of gratitude to his major professor, Dr. E. S. Lee for his continuous guidance, valuable advice and the personal interest he has taken in the preparation of this thesis.
REFERENCES

APPENDIX A
NOMENCLATURE

The nomenclature used in the conjugate gradient method is as follows:

- b_i: right hand side of a constraint
- d_{ij}: element of the inverse matrix
- e: number of equalities
- f: value of the objective function
- g: gradient in the direction of increasing f
- H_i: a constraint (hyperplane)
- H_q^i: matrix operator
- H_g: conjugate gradient
- k: number of constraints
- LIMIT: maximum number of iterations
- m: number of variables
- MXRN: maximum number of re-inversions
- n_i: normalized constraint vector
- N_k: constraint matrix
- N_q: basis
- $(N_q^TN_q)^{-1}$: inverse matrix
- P_g: projected gradient
- P_n: projected constraint vector
- q: constraints in the basis
- q^*: constraints added to the initial basis
- s: number of constraints that are bounds
\(u \) linearly dependent constraints
\(v \) constraints not in the basis with \(\lambda = 0 \)
\(w \) constraints not in the basis with \(\lambda > 0 \)
\(x \) variable vector
\(z \) vector in the direction of step
\(\beta_{\text{max}} \) maximum interpolations
\(\varepsilon_1 \) gradient tolerance
\(\varepsilon_2 \) constraint tolerance
\(\varepsilon_3 \) linear dependence tolerance
\(\lambda_i \) normal distance to a constraint
APPENDIX B
CUBIC INTERPOLATION SCHEME

The interpolation scheme used in the conjugate gradient method, to locate the maximum along a line, is based on the one suggested by Davidon [4]. The choice of the scheme is, however, arbitrary. In fact, any method suitable for finding a value of γ^i, such that $0 \leq \gamma^i \leq \lambda^i$, which maximizes $f(x^i + \gamma^i s^i)$ along s^i, can be used. The linear search technique used is as follows.

For interpolation purposes some point must be selected between x^i and $x^i + \lambda^i s^i$. Since H^i_q is an approximation to $-P^i_q G^\top G^{-1}(x^i)$, a reasonable priori estimate could be a point given by

$$x^{i^*} = x^i + \tau^i s^i$$ \hspace{1cm} (B-1)

where

$$\tau^i = \min \left\{ \tau_{\text{max}}, \frac{2f(x^i) - f^*}{g^i T s^i} \right\}$$ \hspace{1cm} (B-2)

f^* being the estimated value of the maximum. If τ^i is negative, it has been found useful to take $\tau^i = \tau_{\text{max}}$. Further, τ^i may exceed λ^i and in that case, the point given by (B-1) will not lie between x^i and $x^i + \lambda^i s^i$. In order to avoid that, a better choice of the point is given by

$$\hat{x}^i = x^i + \tau s^i$$ \hspace{1cm} (B-3)

where $\tau = \min \{ \tau^i, \lambda^i \}$

The approximate value of γ^i, that maximizes $f(x^i + \gamma^i s^i)$ on the line segment between x^i and \hat{x}^i, given by (B-3), is then computed using the well known
cubic interpolation formulas given below.

\[\gamma^i = \tau(1-D) \]

(E-4)

where

\[D = \frac{W - (s^i)^Tg^i - Z}{(s^i)^Tg^i -(s^i)^Tg^i + 2W} \]

and

\[Z = \frac{3}{\tau} [f(x^i) - f(\hat{x}^i)] - (s^i)^Tg^i - (s^i)^Tg^i \]

Before interpolating, however, it is necessary to ensure that both \(\{f(\hat{x}^i) - f(x^i)\} \) and \((s^i)^Tg^i \) are not positive. Otherwise, \(f(x) \) may not attain a maximum between \(x^i \) and \(\hat{x}^i \). If one of them is positive, the method described by Davidon [4] is used to handle the situation. Many a time it may happen that the interpolation formulas may yield a point \(x^i + \gamma s^i \) such that \(f(x^i + \gamma s^i) \leq \max \{f(x^i), f(\hat{x}^i)\} \). In such cases, interpolation should be repeated over the portion of the divided range having the greatest function value at one of its end points.
RECURSION RELATIONS

As indicated in the algorithm of the conjugate gradient method, the matrix \((N_{q}^{T}N_{q})^{-1}\) need to be computed for each iteration. For a particular set of \(q\) vectors \(n_{i}\), the matrix can be obtained by first forming matrix \(N_{q}^{T}N_{q}\) and then inverting it. This would, however, require prohibitive amount of calculations for a large problem. To overcome this difficulty, two recursion relations suggested by Rosen [20] are used. These relations permit the calculation of \((N_{q-1}^{T}N_{q-1})^{-1}\) from \((N_{q}^{T}N_{q})^{-1}\), when a hyperplane is dropped, with approximately \(q^{2}\) multiplications and divisions. Also, when a hyperplane is added, \((N_{q}^{T}N_{q})^{-1}\) can be calculated from \((N_{q-1}^{T}N_{q-1})^{-1}\) with approximately \(2q^{2}+mq\) multiplications and divisions.

Suppose that the matrix \((N_{q}^{T}N_{q})^{-1}\) is partitioned as

\[
(N_{q}^{T}N_{q})^{-1} = \begin{bmatrix}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{bmatrix}
\]

(C-1)

where \(B_{1}\), \(B_{2}\), \(B_{3}\) and \(B_{4}\) are, respectively \((q-1 \times q-1)\), \((q-1 \times 1)\), \((1 \times q-1)\) and \((1 \times 1)\) matrices. When the \(q\)th hyperplane, \(H_{q}\), is dropped from the constrained basis, \((N_{q-1}^{T}N_{q-1})^{-1}\) can be obtained from \((N_{q}^{T}N_{q})^{-1}\) using the following relation

\[
(N_{q-1}^{T}N_{q-1})^{-1} = B_{1} - B_{2}B_{4}^{-1}B_{3}
\]

(C-2)

Since \((N_{q}^{T}N_{q})^{-1}\) is known, the partitions \(B_{1}\), \(B_{2}\), \(B_{3}\) and \(B_{4}\) are also known.

When a hyperplane is added to the constrained basis, \((N_{q}^{T}N_{q})^{-1}\) is given by equation (C-1) where the partitions \(B_{1}\), \(B_{2}\), \(B_{3}\) and \(B_{4}\) are computed as follows:
\[b_1 = (N_{q-1}^T N_{q-1})^{-1} + s_0^{-1} r_{q-1} r_{q-1}^T \]
\[b_2 = b_3 = - A_0^{-1} r_{q-1} \]
\[b_4 = A_0^{-1} \]

where
\[r_{q-1} = (N_{q-1}^T N_{q-1})^{-1} N_{q-1}^T n_q \]
\[A_0 = \|P_{q-1} n_q\|^2 \]

and
\[P_{q-1} n_q = n_q - N_{q-1}^\top x_{q-1} \]

For certain applications a very useful recursion relation is one which gives \(P_q \) using \(P_{q-1} \) and \(n_q \).
\[P_q = I - N_{q} (N_{q}^T N_{q})^{-1} N_{q}^T \]
\[= I - [N_{q-1}^T n_q] \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix} (N_{q-1}^T) \]

Carrying out the matrix multiplications and substituting the values of \(B_1, B_2, B_3 \) and \(B_4 \), we can write
\[P_q = P_{q-1} - \frac{P_{q-1} n_q n_q^T P_{q-1}}{n_q^T P_{q-1} n_q} \]

The use of the recursion relations given by equations (C-1) through (C-7) facilitate the computation of matrices \((N_{1}^T N_{1})^{-1} \) and \(P_1 \) with minimum computations.
APPENDIX D
GRADIENT CALCULATIONS

D.1 Inventory Model

Since it is a minimization problem, the total cost is minimized by maximizing the negative of the cost C_T. For that let $F = -C_T$.

Rewriting the equations for F and the state variable I, we have

$$F = - \sum_{k=1}^{n} \left[C_I \left(I_m - \frac{1}{2}(I(k-1) + I(k)) \right)^2 + C_P \exp \left(P_m - P(k) \right)^2 \right] \Delta t \tag{D-1}$$

$$I(k) = I(k-1) + (P(k) - a - bk \Delta t) \Delta t \tag{D-2}$$

where $k = 1, 2, ..., n$ and $\Delta t = T/n$.

For simplicity, let us denote $I(k)$ by I_k and $P(k)$ by P_k, $k = 1, 2, ..., n$. Equations (D-1) and (D-2) can then be written as

$$F = - \sum_{k=1}^{n} \left[C_I \left(I_m - \frac{1}{2}(I_{k-1} + I_k) \right)^2 + C_P \exp \left(P_m - P_k \right)^2 \right] \Delta t \tag{D-3}$$

and

$$I_k = I_{k-1} + (P_k - a - bk \Delta t) \Delta t \tag{D-4}$$

Since P's are the control variables, the gradients are given by the first partial derivatives of F with respect to P's as follows

$$\frac{\partial F}{\partial P_i} = \left[\sum_{k=1}^{n} \left(C_I \left(I_m - \frac{1}{2}(I_{k-1} + I_k) \right)^2 \frac{\partial I_{k-1}}{\partial P_i} + \frac{\partial I_k}{\partial P_i} \right) \right] + 2C_P \exp \left(P_m - P_i \right)^2 (P_m - P_i) \Delta t; \quad i = 1, 2, ..., n \tag{D-5}$$

where

$$\frac{\partial I_k}{\partial P_i} = 0 \quad \text{for } i > k$$

From equation (D-4), we have
\[\frac{\partial I_k}{\partial P_i} = \Delta t \quad i = k \]

and

\[\frac{\partial I_k}{\partial P_i} = \frac{\partial I_k}{\partial I_{k-1}} \cdot \frac{\partial I_{k-1}}{\partial I_{k-2}} \cdots \frac{\partial I_1}{\partial P_1} \quad i < k \]

\[= \Delta t \]

Let us consider the 5-stage process. Substituting the values of the derivatives on the right hand side of equation (D-5), we get

\[\frac{\partial F}{\partial P_1} = C_1 (I_m - \frac{1}{2} (I_0 + I_1)) (\Delta t)^2 + 2C_1 (I_m - \frac{1}{2} (I_1 + I_2)) (\Delta t)^2 \]

\[+ 2C_1 (I_m - \frac{1}{2} (I_2 + I_3)) (\Delta t)^2 + 2C_1 (I_m - \frac{1}{2} (I_3 + I_4)) (\Delta t)^2 \]

\[+ 2C_1 (I_m - \frac{1}{2} (I_4 + I_5)) \Delta t^2 + 2C_p \exp (P_m - P_1)^2 (P_m - P_1 \Delta t \]

\[= 2C_1 (\Delta t)^2 \left[\frac{1}{2} (I_m - \frac{1}{2} (I_0 + I_1)) + \sum_{k=2}^{5} (I_m - \frac{1}{2} (I_{k-1} + I_k)) \right] \]

\[+ 2C_p \exp (P_m - P_1)^2 (P_m - P_1) \Delta t \quad (D-6) \]

Similarly

\[\frac{\partial F}{\partial P_2} = 2C_1 (\Delta t)^2 \left[\frac{1}{2} (I_m - \frac{1}{2} (I_1 + I_2)) + \sum_{k=3}^{5} (I_m - \frac{1}{2} (I_{k-1} + I_k)) \right] \]

\[+ 2C_p \exp (P_m - P_2)^2 (P_m - P_2) \Delta t \quad (D-7) \]

\[\frac{\partial F}{\partial P_3} = 2C_1 (\Delta t)^2 \left[\frac{1}{2} (I_m - \frac{1}{2} (I_2 + I_3)) + \sum_{k=4}^{5} (I_m - \frac{1}{2} (I_{k-1} + I_k)) \right] \]

\[+ 2C_p \exp (P_m - P_3)^2 (P_m - P_3) \Delta t \quad (D-8) \]
\[\frac{3F}{\partial P_4} = 2C_1(\Delta t)^2\left[\frac{1}{2}(I_m - \frac{1}{2}(I_3 + I_4)) + \{I_m - \frac{1}{2}(I_4 + I_5)\}\right] \]

\[+ 2C_p \exp(P_m - P_4)^2 (P_m - P_4) \Delta t \quad (D-9) \]

\[\frac{3F}{\partial P_5} = C_1(\Delta t)^2 (I_m - \frac{1}{2}(I_3 + I_4)) + 2C_p \exp(P_m - P_5)^2 (P_m - P_5) \Delta t \quad (D-10) \]

Thus, equations (D-6) through (D-10) represent the gradient equations for the 5-stage process.
D.2 An Inventory and Advertisement Model

Rewriting the profit equation and the state variable equations for the model, we have

\[P_T = \sum_{k=1}^{n} \left[P(k\Delta t) - C_I(I_m - I(k\Delta t))^2 - C_A A(k\Delta t)Q(k\Delta t) \right] \Delta t \] \hspace{1cm} (D-11)

\[Q(k\Delta t) = \frac{Q(k-1\Delta t)[1 + (c + A(k\Delta t))\Delta t]}{1 + (c + A(k\Delta t))Q(k-1\Delta t)\Delta t} \] \hspace{1cm} (D-12)

\[I(k\Delta t) = I(k-1\Delta t) + [P(k-1\Delta t) - Q(k-1\Delta t)]\Delta t \] \hspace{1cm} (D-13)

where \(k = 1, 2, \ldots, n \) and \(\Delta t = T/n \)

In the above equations, let

\[I_k = I(k\Delta t) \]

\[Q_k = Q(k\Delta t) \]

\[A_k = A(k\Delta t) \]

\[P_k = P(k\Delta t) \]

and

Equations (D-11), (D-12) and (D-13) become

\[P_T = \sum_{k=1}^{n} \left[P_{k-1} - C_I(I_m - I_k)^2 - C_A A_k Q_k \right] \Delta t \] \hspace{1cm} (D-14)

\[Q_k = \frac{Q_{k-1}[1 + (c + A_k)\Delta t]}{1 + (c + A_k) Q_{k-1} \Delta t} \] \hspace{1cm} (D-15)

and

\[I_k = I_{k-1} + (P_{k-1} - Q_{k-1})\Delta t \] \hspace{1cm} (D-16)

Here, since \(A \)'s are the control variables, we need to compute the first derivatives of \(P_T \) with respect to \(A \)'s. Let us consider the 5-stage process. The gradients may be computed as follows
\[
\frac{\partial P_T}{\partial A_1} = \left[(F - C_A A_1) \frac{\partial Q_1}{\partial A_1} + (F - C_A A_2) \frac{\partial Q_2}{\partial A_1} + \ldots + (F - C_A A_5) \frac{\partial Q_5}{\partial A_1} \right] \\
+ 2c_1(I_m - I_1) \frac{\partial I_1}{\partial A_1} + 2c_1(I_m - I_2) \frac{\partial I_2}{\partial A_1} + \ldots + 2c_1(I_m - I_5) \frac{\partial I_5}{\partial A_1} - C_A Q_1 \right] \Delta t \\
= \left[\sum_{k=1}^{5} (F - C_A A_k) \frac{\partial Q_k}{\partial A_k} + \sum_{k=1}^{5} 2c_1(I_m - I_k) \frac{\partial I_k}{\partial A_1} - C_A Q_1 \right] \Delta t
\]

(D-17)

From equation (D-15), we have

\[
\frac{\partial Q_i}{\partial A_1} = \frac{Q_{i-1} [1 + (c + A_1) Q_{i-1} \Delta t] \Delta t - Q_{i-1} [1 + (c + A_1) \Delta t] Q_{i-1} \Delta t}{(1 + (c + A_1) Q_{i-1} \Delta t)^2}
\]

(D-18)

\[
\frac{\partial Q_i}{\partial A_k} = 0 \quad \text{if} \quad i > k
\]

(D-19)

and

\[
\frac{\partial Q_k}{\partial A_1} = \frac{\partial Q_k}{\partial Q_{k-1}} \cdot \frac{\partial Q_{k-1}}{\partial Q_{k-2}} \ldots \frac{\partial Q_1}{\partial A_1} \quad \text{if} \quad i < k
\]

(D-20)

Again, from equation (D-15), we have

\[
\frac{\partial Q_k}{\partial Q_{k-1}} = \frac{(1 + (c + A_k) \Delta t)(1 + (c + A_k) Q_{k-1} \Delta t) - Q_{k-1}(1 + (c + A_k) \Delta t) A_k \Delta t}{(1 + (c + A_k) Q_{k-1} \Delta t)^2}
\]

(k > 2)

(D-21)

From equation (D-15) and (D-16), we get

\[
\frac{\partial I_k}{\partial A_1} = 0 \quad \text{if} \quad i > k
\]

(D-22)

\[
\frac{\partial I_k}{\partial A_1} = \frac{\partial I_k}{\partial Q_{k-1}} \cdot \frac{\partial Q_{k-1}}{\partial A_k} \quad \text{if} \quad i = k - 1
\]

(D-23)
and \[
\frac{\partial I_k}{\partial A_1} = \frac{\partial I_k}{\partial I_{k-1}} \cdot \frac{\partial I_{k-1}}{\partial I_{k-2}} \cdots \frac{\partial I_{i+1}}{\partial I_{i}} \cdot \frac{\partial I_{i}}{\partial Q_1} \cdot \frac{\partial Q_1}{\partial A_1} + \frac{\partial I_k}{\partial Q_{k-1}} \cdot \frac{\partial Q_{k-1}}{\partial Q_{k-2}} \cdots \frac{\partial Q_1}{\partial A_1}
\]
\[i < k - 1 \quad (D-24)\]

where
\[
\frac{\partial I_k}{\partial I_{k-1}} = 1 \quad k > 1 \quad (D-25)
\]

and
\[
\frac{\partial I_k}{\partial Q_{k-1}} = -\Delta t \quad k > 1 \quad (D-26)
\]

Substituting the partial derivatives, obtained from equations (D-25) and (D-26), in equations (D-23) and (D-24), we get
\[
\frac{\partial I_k}{\partial A_k} = -\Delta t \frac{\partial Q_1}{\partial A_1} \quad i = k - 1 \quad (D-27)
\]
\[
\frac{\partial I_k}{\partial A_1} = -\Delta t \frac{\partial Q_1}{\partial A_1} - \Delta t \frac{\partial Q_{k-1}}{\partial Q_{k-2}} \cdot \frac{\partial Q_{k-2}}{\partial Q_{k-3}} \cdots \frac{\partial Q_1}{\partial A_1} \quad i < k - 1 \quad (D-28)
\]

Representing the expressions given by equations (D-18) and (D-21) by \(x_1\) and \(y_k\), and substituting the values of partial derivatives on the right hand side of equation (D-1), we have
\[
\frac{\partial P_T}{\partial A_1} = (F - C_A A_1)\Delta t \cdot x_1 + (F - C_A A_2)\Delta t \cdot x_1 y_2
\]
\[+ (F - C_A A_3)\Delta t \cdot x_1 y_2 y_3 + (F - C_A A_4)\Delta t \cdot x_1 y_2 y_3 y_4
\]
\[+ (F - C_A A_5)\Delta t \cdot x_1 y_2 y_3 y_4 y_5 - 2C_I (I_m - I_2) (\Delta t)^2 \cdot x_1
\]
\[- 2C_I (I_m - I_3) (\Delta t)^2 \cdot (x_1 + x_1 y_2) -
\]
2C_I \left(I_m - I_4 \right) \left(\Delta t \right)^2 \left(x_1 + x_1 y_2 + x_1 y_2 y_3 \right)

- 2C_I \left(I_m - I_5 \right) \left(\Delta t \right)^2 \left(x_1 + x_1 y_2 + x_1 y_2 y_3 + x_1 y_2 y_3 y_4 \right)

- C_A Q_A \Delta t \quad (D-29)

Similarly

\frac{\partial P_T}{\partial A_2} = \left(F - C_A A_2 \right) \Delta t x_2 + \left(F - C_A A_3 \right) \Delta t x_2 y_3

+ \left(F - C_A A_4 \right) \Delta t x_2 y_3 y_4 + \left(F - C_A A_5 \right) \Delta t x_2 y_3 y_4 y_5

- 2C_I \left(I_m - I_3 \right) \left(\Delta t \right)^2 x_2 - 2C_I \left(I_m - I_4 \right) \left(\Delta t \right)^2 \left(x_2 + x_2 y_3 \right)

- 2C_I \left(I_m - I_5 \right) \left(\Delta t \right)^2 \left(x_2 + x_2 y_3 + x_2 y_3 y_4 \right) - C_A Q_2 \Delta t \quad (D-30)

\frac{\partial P_T}{\partial A_3} = \left(F - C_A A_3 \right) x_3 \Delta t + \left(F - C_A A_4 \right) x_3 y_4 + \left(F - C_A A_5 \right) x_3 y_4 y_5

- 2C_I \left(I_m - I_4 \right) \left(\Delta t \right)^2 x_3 - 2C_I \left(I_m - I_5 \right) \left(x_3 + x_3 y_4 \right) \left(\Delta t \right)^2

- C_A Q_3 \Delta t \quad (D-31)

\frac{\partial P_T}{\partial A_4} = \left(F - C_A A_4 \right) x_4 \Delta t + \left(F - C_A A_5 \right) x_4 y_5

- 2C_I \left(I_m - I_5 \right) \left(\Delta t \right)^2 x_4 - C_A Q_4 \Delta t \quad (D-32)

and

\frac{\partial P_T}{\partial A_5} = \left(F - C_A A_5 \right) x_5 \Delta t - C_A Q_5 \Delta t \quad (D-33)

Thus, equations (D-30) through (D-33) give the gradients for the 5-stage process.
D.3 A Production and Advertisement Model.

Here the total profit, \(P_T \), is given by

\[
P_T = \sum_{k=1}^{5} \left[c_1 Q(k\Delta t) + c_2 x_2(k\Delta t) + c_3 q (1 - x_2(k\Delta t) - y_2(k\Delta t)) \right]
- C_I (I_m - I(k\Delta t))^2
- C_A (A(k\Delta t)Q(k\Delta t))^2
- C_T (T_m - T_1(k\Delta t))^2 - C_T (T_1(k\Delta t) - T_2(k\Delta t))^2 \Delta t
\]
(D-34)

The performance equations are

\[
x_1(k\Delta t) = x_1(k-1\Delta t) + \left[\frac{q}{v_1} (x_0 - x_1(k-1\Delta t)) - k_{a1} x_1(k-1\Delta t) \right] \Delta t
\]
(D-35)

\[
y_1(k\Delta t) = y_1(k-1\Delta t) + \left[\frac{q}{v_1} (y_0 - y_1(k-1\Delta t)) - k_{b1} y_1(k-1\Delta t) - k_{a1} x_1(k-1\Delta t) \right] \Delta t
\]
(D-36)

\[
x_2(k\Delta t) = x_2(k-1\Delta t) + \left[\frac{q}{v_2} (x_1(k-1\Delta t) - x_2(k-1\Delta t) - k_{a2} x_2(k-1\Delta t)) - k_{a2} x_2(k-1\Delta t) \right] \Delta t
\]
(D-37)

\[
y_2(k\Delta t) = y_2(k-1\Delta t) + \left[\frac{q}{v_2} (y_1(k-1\Delta t) - y_2(k-1\Delta t)) - k_{b2} y_2(k-1\Delta t) - k_{a2} x_2(k-1\Delta t) \right] \Delta t
\]
(D-38)

\[
I(k\Delta t) = I(k-1\Delta t) + \left[q y_2(k-1\Delta t) - Q(k-1\Delta t) \right] \Delta t
\]
(D-39)

\[
Q(k\Delta t) = Q(k-1\Delta t) + \left[Q(k-1\Delta t)(c + A(k\Delta t))(1 - \frac{Q(k-1\Delta t)}{N}) \right] \Delta t
\]
(D-40)

where \(k = 1, 2, \ldots, 5 \) and \(\Delta t = t_f/5 \).
Also we have

\[k_{a1} = G_a \exp\left(-\frac{E_a}{RT_1}\right) \quad \text{(D-41)} \]
\[k_{b1} = G_b \exp\left(-\frac{E_b}{RT_1}\right) \quad \text{(D-42)} \]
\[k_{a2} = G_a \exp\left(-\frac{E_a}{RT_2}\right) \quad \text{(D-43)} \]
\[k_{b2} = G_b \exp\left(-\frac{E_b}{RT_2}\right) \quad \text{(D-44)} \]

Since \(c_2 = c_3 = 0 \), the second and third terms may be dropped from equation (D-17). Thus

\[
P_T = \sum_{k=1}^{5} \left[c_1 Q(k\Delta t) - C_I (I_m - I(k\Delta t))^2 - C_A (A(k\Delta t) Q(k\Delta t))^2 \right.
\]
\[- C_T (T_m - T_1(k\Delta t))^2 - C_T (T_1(k\Delta t) - T_2(k\Delta t))^2 \] \(\Delta t \) \quad \text{(D-45)}

Now we have \(A, T_1 \) and \(T_2 \) as the control variables and \(x_1, y_1, x_2, y_2, I \) and \(Q \) as the state variables. For sake of simplicity let

\[
A_k = A(k\Delta t) \quad x_{1k} = x_1(k\Delta t)
\]
\[
T_{1k} = T_1(k\Delta t) \quad x_{2k} = x_2(k\Delta t)
\]
\[
T_{2k} = T_2(k\Delta t) \quad y_{1k} = y_1(k\Delta t)
\]
\[
Q_k = Q(k\Delta t) \quad \text{and} \ y_{2k} = y_2(k\Delta t)
\]
\[
I_k = I(k\Delta t)
\]

Then the profit equation and the performance equations can be written as

\[
P_T = \sum_{k=1}^{5} \left[c_1 Q_k - C_I (I_m - I_k)^2 - C_A (A_k Q_k)^2 - C_T (T_m - T_{1k})^2 \right.
\]
\[- C_T (T_{1k} - T_{2k})^2 \] \(\Delta t \) \quad \text{(D-46)}

\[
x_{1k} = x_{1k-1} + \left[\frac{q}{V_1} (x_0 - x_{1k-1}) - k_{a1} x_{1k-1} \right] \Delta t \quad \text{(D-47)}
\]
\[y_{1k} = y_{1k-1} + \left(\frac{a}{v_1} (y_0 - y_{1k-1}) - k_{b1} y_{1k-1} - k_{a1} x_{1k-1} \right) \Delta t \]
\text{(D-48)}

\[x_{2k} = x_{2k-1} + \left(\frac{a}{v_2} (x_{1k-1} - x_{2k-1}) - k_{a2} x_{2k-1} \right) \Delta t \]
\text{(D-49)}

\[y_{2k} = y_{2k-1} + \left(\frac{a}{v_2} (y_{1k-1} - y_{2k-1}) - k_{b2} y_{2k-1} - k_{a2} x_{2k-1} \right) \Delta t \]
\text{(D-50)}

\[I_k = I_{k-1} + [q y_{2k-1} - Q_{k-1}] \Delta t \]
\text{(D-51)}

and
\[Q_k = Q_{k-1} + [Q_{k-1} (c + A_k)(1 - \frac{Q_{k-1}}{N})] \Delta t \]
\text{(D-52)}

Since \(A, T_1 \) and \(T_2 \) are the control variables, we need to evaluate the first derivatives of \(p_T \) with respect to \(A, T_1 \) and \(T_2 \).

Let us first consider the derivatives with respect to advertisement at various stages. We have

\[\frac{\partial p_T}{\partial A_1} = \left(c_1 - 2C_A A_1^2 Q_1 \right) \frac{\partial Q_1}{\partial A_1} + (c_1 - 2C_A A_2^2 Q_2) \frac{\partial Q_2}{\partial A_1} + \ldots \]

\[+ (c_1 - 2C_A A_5^2 Q_5) \frac{\partial Q_5}{\partial A_1} + 2C_I (I_m - I_1) \frac{\partial I_1}{\partial A_1} + \]

\[2C_I (I_m - I_2) \frac{\partial I_2}{\partial A_1} + \ldots + 2C_I (I_m - I_5) \frac{\partial I_5}{\partial A_1} \]

\[- 2C_A A_1 Q_1^2 \Delta t \]
\text{(D-53)}

where, from equation (D-52)

\[\frac{\partial Q_1}{\partial A_1} = Q_0 (1 - Q_0/N) \Delta t \]

and

\[\frac{\partial Q_k}{\partial A_1} = \frac{\partial Q_k}{\partial Q_{k-1}} \cdot \frac{\partial Q_{k-1}}{\partial Q_{k-2}} \ldots \frac{\partial Q_1}{\partial A_1} \quad k \geq 2 \]

Again, from (D-52), we have
\[
\frac{\partial Q_k}{\partial Q_{k-1}} = 1 + (c + A_k)(1 - 2 \frac{Q_{k-1}}{N}) \Delta t
\]

\[= a_k \text{(say)}\]

Equation (D-51) gives

\[
\frac{\partial I_1}{\partial A_1} = 0
\]

\[
\frac{\partial I_2}{\partial A_1} = \frac{\partial I_2}{\partial Q_1} \cdot \frac{\partial Q_1}{\partial A_1}
\]

\[= - \Delta t Q_0 (1 - \frac{Q_0}{N} \Delta t)\]

\[
\frac{\partial I_3}{\partial A_1} = \frac{\partial I_3}{\partial I_2} \cdot \frac{\partial I_2}{\partial A_1} + \frac{\partial I_3}{\partial Q_2} \cdot \frac{\partial Q_2}{\partial A_1}
\]

\[= - Q_0 (1 - \frac{Q_0}{N}) (\Delta t)^2 - \Delta t a_2 Q_0 (1 - \frac{Q_0}{N} \Delta t)
\]

\[= - Q_0 (1 - \frac{Q_0}{N}) (\Delta t)^2 (1 + a_2)\]

\[
\frac{\partial I_4}{\partial A_1} = \frac{\partial I_4}{\partial I_3} \cdot \frac{\partial I_3}{\partial A_1} + \frac{\partial I_4}{\partial Q_3} \cdot \frac{\partial Q_3}{\partial A_1}
\]

\[= - Q_0 (1 - \frac{Q_0}{N}) (\Delta t)^2 [1 + a_2 + a_2 a_3]\]

Similarly

\[
\frac{\partial I_5}{\partial A_1} = - Q_0 (1 - \frac{Q_0}{N}) (\Delta t)^2 [1 + a_2 + a_2 a_3 + a_2 a_3 a_4]
\]

Substituting the values in equation (D-53), we have
\[\frac{\partial P_T}{\partial A_1} = Q_0 \left(1 - \frac{Q_0}{N}\right)^3 \left[(c_1 - 2C_A A_1^2 Q_1) + (c_1 - 2C_A A_1^2 Q_2)a_2 + \ldots \right. \]
\[+ \left. (c_1 - 2C_A A_5^2 Q_5)a_2 a_3 a_4 a_5 - \{2C_I (I_m - I_2) \right. \]
\[+ 2C_I (I_m - I_3)(1 + a_2) + \ldots + 2C_I (I_m - I_5)(1 + a + a_2 a_3 \right. \]
\[\left. + a_2 a_3 a_4) \} - 2C_A A_1^2 Q_1^2 \Delta t \] (D-54)

Similarly we obtain

\[\frac{\partial P_T}{\partial A_2} = Q_1 \left(1 - \frac{Q_1}{N}\right)^3 \left[(c_1 - 2C_A A_2^2 Q_2) + (c_1 - 2C_A A_3^2 Q_3)a_3 \right. \]
\[+ (c_1 - 2C_A A_4^2 Q_4) a_3 a_4 + (c_1 - 2C_A A_5^2 Q_5) a_3 a_4 a_5 \]
\[- \{2C_I (I_m - I_3) + 2C_I (I_m - I_4)(1 + a_3) + \]
\[2C_I (I_m - I_5)(1 + a_3 + a_3 a_4) \} - 2C_A A_2^2 Q_2^2 \Delta t \] (D-55)

\[\frac{\partial P_T}{\partial A_3} = Q_2 \left(1 - \frac{Q_2}{N}\right)^3 \left[(c_1 - 2C_A A_3^2 Q_3) + (c_1 - 2C_A A_4^2 Q_4) a_4 \right. \]
\[+ (c_1 - 2C_A A_5^2 Q_5) a_4 a_5 - \{2C_I (I_m - I_4) + \]
\[2C_I (I_m - I_5)(1 + a_4) \} - 2C_A A_3^2 Q_3^2 \Delta t \] (D-56)

\[\frac{\partial P_T}{\partial A_4} = Q_3 \left(1 - \frac{Q_3}{N}\right)^3 \left[(c_1 - 2C_A Q_4^2 A_4^2) + (c_1 - 2C_A Q_5 - A_5^2) a_5 \right. \]
\[- 2C_I (I_m - I_5) \} - 2C_A A_4^2 Q_4^2 \Delta t \] (D-57)

and
\[\frac{\partial p_T}{\partial A_5} = Q_4 \left(1 - \frac{Q_4}{N}\right) (\Delta t)^3 \left(c_1 - 2C_A A_5^2 \right) - 2C_A A_5 Q_5^2 \Delta t \]

(D-58)

Let us now compute the first derivatives of the profit function with respect to the temperatures in the two reactors at various stages.

In order to simplify the presentation of the calculations, the following quantities are used to denote the values mentioned against each.

\[p_j = \frac{\partial x_{i,j+1}}{\partial x_{i,j}} = 1 - \frac{q}{v} \left(1 + C_a \exp \left(- \frac{E_a}{RT_{1j}}\right) \right) \Delta t \]

\[r_j = \frac{\partial y_{i,j+1}}{\partial y_{i,j}} = 1 - \frac{q}{v} \left(1 + C_b \exp \left(- \frac{E_a}{RT_{1j}}\right) \right) \Delta t \]

\[s_j = \frac{\partial y_{i,j+1}}{\partial x_{i,j}} = G_a \exp \left(- \frac{E_a}{RT_{1j}}\right) \Delta t \]

\[u_j = \frac{\partial x_{2,j+1}}{\partial x_{2,j}} = 1 - \frac{q}{v} \left(1 + C_a \exp \left(- \frac{E_a}{RT_{2j}}\right) \right) \Delta t \]

\[w_j = \frac{\partial y_{2,j+1}}{\partial y_{2,j}} = 1 - \frac{q}{v} \left(1 + C_b \exp \left(- \frac{E_b}{RT_{2j}}\right) \right) \Delta t \]

\[z_j = \frac{\partial y_{2,j+1}}{\partial x_{2,j}} = G_a \exp \left(- \frac{E_a}{RT_{2j}}\right) \Delta t \]

\[b_{ij} = \frac{\partial a_{1j}}{\partial T_{1j}} = G_a \exp \left(- \frac{E_a}{RT_{1j}}\right) \left(\frac{E_a}{RT_{1j}} \right) \quad i = 1, 2 \]

\[d_{ij} = \frac{\partial b_{1i}}{\partial T_{1j}} = G_b \exp \left(- \frac{E_b}{RT_{1j}}\right) \left(\frac{E_b}{RT_{1j}} \right) \quad i = 1, 2 \]

\[a_{ij} = \frac{\partial x_{i,j}}{\partial T_{1j}} = - \Delta t \frac{x_{i,j-1}}{b_{ij}} \quad i = 1, 2 \]

\[\beta_{ij} = \frac{\partial y_{i,j}}{\partial T_{1j}} = - \Delta t \left[y_{ij} d_{ij} + x_{ij} b_{ij} \right] \quad i = 1, 2 \]
Now, from equation (D-46), we have

\[
\frac{\partial P}{\partial T_{11}} = [2C_1(I_m - I_1) \frac{\partial I_1}{\partial T_{11}} + 2C_1(I_m - I_2) \frac{\partial I_2}{\partial T_{11}} + \ldots + 2C_1(I_m - I_5) \frac{\partial I_5}{\partial T_{11}}
\]

\[+ 2C_r(T_m - T_{11}) - 2C_r(T_{11} - T_{21})] \Delta t \tag{D-59}
\]

where \(\frac{\partial I_k}{\partial T_{11}} \); \(i = 1, 2, \ldots, 5 \), are given as follows

\[
\frac{\partial I_1}{\partial T_{11}} = 0
\]

\[
\frac{\partial I_2}{\partial T_{11}} = \frac{\partial I_2}{\partial y_{21}} \cdot \frac{\partial y_{21}}{\partial T_{11}}
\]

\[= q \Delta t (0) = 0
\]

\[
\frac{\partial I_3}{\partial T_{11}} = \frac{\partial I_3}{\partial I_2} \cdot \frac{\partial I_2}{\partial T_{11}} + \frac{\partial I_3}{\partial y_{22}} \cdot \frac{\partial y_{22}}{\partial T_{11}}
\]

\[= 0 + q \Delta t \left[\frac{\partial y_{22}}{\partial y_{11}} \cdot \frac{\partial y_{11}}{\partial T_{11}} \right]
\]

\[= q \Delta t \left[\frac{\partial}{\partial y_{11}} \right] \Delta t \beta_{11}
\]

\[= \frac{q}{v} (\Delta t)^2 \beta_{11}
\]

\[
\frac{\partial I_4}{\partial T_{11}} = \frac{\partial I_4}{\partial I_3} \cdot \frac{\partial I_3}{\partial T_{11}} + \frac{\partial I_4}{\partial y_{23}} \cdot \frac{\partial y_{23}}{\partial T_{11}}
\]

\[= \frac{\partial I_3}{\partial T_{11}} + q \Delta t \left[\frac{\partial y_{23}}{\partial y_{22}} \cdot \frac{\partial y_{22}}{\partial T_{11}} + \frac{\partial y_{23}}{\partial y_{12}} \cdot \frac{\partial y_{12}}{\partial T_{11}} + \frac{\partial y_{23}}{\partial x_{22}} \cdot \frac{\partial x_{22}}{\partial T_{11}} \right]
\]

\[= \frac{\partial I_3}{\partial T_{11}} + q \Delta t \left[w_2 \frac{q}{v} \Delta t \beta_{11} + \frac{q}{v} \Delta t \left(\frac{\partial y_{12}}{\partial y_{11}} \cdot \frac{\partial y_{11}}{\partial T_{11}} + \frac{\partial y_{12}}{\partial x_{11}} \cdot \frac{\partial x_{11}}{\partial T_{11}} \right) \right]
\]
\[
I_3 = \frac{\partial I_3}{\partial T_{11}} + q\Delta t \{w_2 v \Delta t \beta_{11} + \frac{q}{v} \Delta t \left(r_1 \beta_{11} + s_1 \alpha_{11} \right) + z_2 (u_1 - 0 + \frac{q}{v} \Delta t \cdot \alpha_{11}) \}
\]

\[
= \frac{\partial I_3}{\partial T_{11}} + \frac{q^2}{v} \left(\Delta t \right)^2 \{w_2 \beta_{11} + r_1 \beta_{11} + s_1 \alpha_{11} + z_2 \alpha_{11} \}
\]

\[
\frac{\partial I_5}{\partial T_{11}} = \frac{\partial I_5}{\partial T_{11}} \cdot \frac{\partial I_4}{\partial T_{11}} + \frac{\partial I_4}{\partial T_{11}} \cdot \frac{\partial I_5}{\partial T_{11}} + \frac{\partial I_2}{\partial T_{11}} \cdot \frac{\partial y_{24}}{\partial T_{11}}
\]

\[
= \frac{\partial I_4}{\partial T_{11}} + q\Delta t \left(\frac{\partial y_{24}}{\partial T_{11}} \cdot \frac{\partial y_{23}}{\partial T_{11}} + \frac{\partial y_{24}}{\partial T_{11}} \cdot \frac{\partial y_{24}}{\partial T_{11}} + \frac{\partial y_{24}}{\partial T_{11}} \cdot \frac{\partial x_{23}}{\partial T_{11}} \right)
\]

\[
= \frac{\partial I_4}{\partial T_{11}} + q\Delta t \left(w_3 \frac{\partial y_{23}}{\partial T_{11}} + \frac{q}{v} t \frac{\partial y_{13}}{\partial T_{11}} + z_3 \frac{\partial x_{23}}{\partial T_{11}} \right)
\]

In the above equation

\[
\frac{\partial y_{23}}{\partial T_{11}} = \frac{q}{v} \Delta t \left(w_2 \beta_{11} + r_1 \beta_{11} + s_1 \alpha_{11} + z_2 \alpha_{11} \right)
\]

\[
\frac{\partial y_{13}}{\partial T_{11}} = \frac{\partial y_{13}}{\partial y_{12}} \left(\frac{\partial y_{12}}{\partial T_{11}} + \frac{\partial y_{12}}{\partial T_{11}} \right)
\]

\[
+ \frac{\partial y_{13}}{\partial x_{12}} \cdot \frac{\partial x_{12}}{\partial T_{11}} + \frac{\partial x_{13}}{\partial T_{11}}
\]

\[
= r_2 \left(r_1 \beta_{11} + s_1 \alpha_{11} \right) + s_2 p_1 \alpha_{11}
\]

and \[
\frac{\partial x_{23}}{\partial T_{11}} = \frac{\partial x_{23}}{\partial x_{22}} \cdot \frac{\partial x_{22}}{\partial T_{11}} + \frac{\partial x_{23}}{\partial x_{12}} \cdot \frac{\partial x_{12}}{\partial T_{11}}
\]
\[
\frac{3x_{23}}{3x_{22}} \cdot \frac{3x_{22}}{3x_{11}} \cdot \frac{3x_{11}}{3T_{11}} + \frac{3x_{23}}{3x_{12}} \cdot \frac{3x_{12}}{3x_{11}} \cdot \frac{3x_{11}}{3T_{11}}
\]

\[
= u_2 \frac{q}{v} \Delta t \Delta t a_{11} + \frac{q}{v} \Delta t u_1 a_{11}
\]

\[
= \frac{q}{v} \Delta t \Delta t a_{11} (u_2 + u_1)
\]

The first derivative of \(P_T\) with respect to the temperature \(T_1\) at the second stage is given by

\[
\frac{3P_T}{3T_{12}} = \left\{ \frac{5}{k=1} \left\{ 2C_I \left(I_m - I_k \right) \frac{3I_k}{3T_{12}} \right\} + 2C_T \left(T_m - T_{12} \right) - 2C_T \left(T_{12} - T_2 \right) \right\} \Delta t
\]

Since \(\frac{3I_1}{3T_{12}} = 0\), \(\frac{3I_2}{3T_{12}} = 0\) and \(\frac{3I_3}{3T_{12}} = 0\), the above equation can be written as

\[
\frac{3P_T}{3T_{12}} = \left\{ 2C_I \left(I_m - I_4 \right) \frac{3I_4}{3T_{12}} + 2C_I \left(I_m - I_5 \right) \frac{3I_5}{3T_{12}} \right\} \Delta t
\]

\[
+ 2 \left(T_m - T_{12} \right) - 2 \left(T_{12} - T_2 \right) \right\} \Delta t
\]

(D-60)

Here, the only unknowns are \(\frac{3I_4}{3T_{12}}\) and \(\frac{3I_5}{3T_{12}}\).

These may be computed as follows

\[
\frac{3I_4}{3T_{12}} = \frac{3I_4}{3I_3} \cdot \frac{3I_3}{3T_{12}} + \frac{3I_4}{3y_{23}} \cdot \frac{3y_{23}}{3T_{12}}
\]

\[
= \frac{3I_4}{3y_{23}} \cdot \frac{3y_{23}}{3T_{12}} \quad \text{since} \quad \frac{3I_3}{3T_{12}} = 0
\]

\[
= q\Delta t \left(\frac{3y_{23}}{3y_{12}} \cdot \frac{3y_{12}}{3T_{12}} \right)
\]
\[\frac{dI_5}{dI_{12}} = \frac{dI_5}{dI_4} \cdot \frac{dI_4}{dI_{12}} + \frac{dI_5}{dy_{12}} \cdot \frac{dy_{24}}{dI_{12}} \]

\[= 1 \cdot \frac{dI_4}{dI_{12}} + q \Delta t \left\{ \frac{dy_{24}}{dy_{12}} \cdot \frac{dy_{23}}{dI_{12}} + \frac{dy_{24}}{dy_{13}} \cdot \frac{dy_{13}}{dI_{12}} + \frac{dy_{24}}{dx_{23}} \cdot \frac{dx_{23}}{dI_{12}} \right\} \]

\[= \frac{dI_4}{dI_{12}} + q \Delta t \left\{ w_3 \cdot \left(\frac{dy_{23}}{dy_{12}} \cdot \frac{dy_{12}}{dI_{12}} \right) + \frac{q}{v} \Delta t \left(\frac{dy_{13}}{dy_{12}} \cdot \frac{dy_{12}}{dI_{12}} + \frac{dy_{23}}{dx_{23}} \cdot \frac{dx_{23}}{dI_{12}} \right) \right\} \]

\[= \frac{q^2}{v} \left(\frac{\Delta t}{\Delta t} \right)^2 \beta_{12} + q \Delta t \left\{ w_3 \cdot \frac{q}{v} \Delta t \beta_{12} + \frac{q}{v} \Delta t \left(r_2 \beta_{12} + s_2 \alpha_{12} \right) + z_3 \cdot \frac{q}{v} \Delta t \alpha_{12} \right\} \]

\[= \frac{q^2}{v} \left(\frac{\Delta t}{\Delta t} \right)^2 \left[\beta_{12} + w_3 \beta_{12} + r_2 \beta_{12} + s_2 \alpha_{12} + z_3 \alpha_{12} \right] \]

The derivative of \(P_T \) with respect to \(T_{13} \) is given by

\[\frac{\partial P_T}{\partial T_{13}} = 2C_T \left(I_m - I_5 \right) \frac{\partial I_5}{\partial T_{13}} + 2C_T \left(T_m - T_{13} \right) - 2C_T \left(T_{13} - T_{23} \right) \quad \text{(D-61)} \]

where

\[\frac{\partial I_5}{\partial T_{13}} = \frac{\partial I_5}{\partial I_4} \cdot \frac{\partial I_4}{\partial T_{13}} + \frac{\partial I_5}{dy_{12}} \cdot \frac{dy_{24}}{dI_{13}} \]

\[= 0 + q \Delta t \left[\frac{dy_{24}}{dy_{13}} \cdot \frac{dy_{13}}{dI_{13}} \right] \]
\[\frac{q \Delta t}{v} \frac{\partial}{\partial t} \cdot \beta_{13} = \frac{q}{v} (\Delta t)^2 \beta_{13} \]

\[\frac{\partial P_T}{\partial T_{14}} = 2C_T (T_m - T_{14}) - 2C_T (T_{14} - T_{24}) \]
(D-62)

and \[\frac{\partial P_T}{\partial T_{15}} = 2C_T (T_m - T_{15}) - 2C_T (T_{15} - T_{25}) \]
(D-63)

The first derivatives of \(P_T \) with respect to \(T_2 \) at various stages are given as follows

\[\frac{\partial P_T}{\partial T_{21}} = \left[\sum_{k=1}^{5} (2C_T (T_m - T_k) \cdot \frac{\partial I_k}{\partial T_{2k}}) + 2C_T (T_{11} - T_{21}) \right] \Delta t \]
(D-64)

where

\[\frac{\partial I_1}{\partial T_{21}} = 0 \]

\[\frac{\partial I_2}{\partial T_{21}} = \frac{\partial I_2}{\partial y_{21}} \cdot \frac{\partial y_{21}}{\partial T_{21}} \]

\[= q \Delta t \beta_{21} \]

\[\frac{\partial I_3}{\partial T_{21}} = \frac{\partial I_3}{\partial I_2} \cdot \frac{\partial I_2}{\partial T_{21}} + \frac{\partial I_3}{\partial y_{22}} \cdot \frac{\partial y_{22}}{\partial T_{21}} \]

\[= q \Delta t \cdot \beta_{21} + q \Delta t \left\{ \frac{\partial y_{22}}{\partial y_{21}} \cdot \frac{\partial y_{21}}{\partial T_{21}} + \frac{\partial y_{22}}{\partial x_{21}} \cdot \frac{\partial x_{21}}{\partial T_{21}} \right\} \]

\[= q \Delta t \beta_{21} + q \Delta t \left\{ w_1 \beta_{21} + z_1 \alpha_{21} \right\} \]
\[\frac{\partial I_4}{\partial T_{21}} = \frac{\partial I_4}{\partial T_{21}} + \frac{\partial I_4}{\partial T_{21}} \cdot \frac{\partial y_{23}}{\partial T_{21}} \]

\[= \frac{\partial I_3}{\partial T_{21}} + q \cdot \Delta t \left[\frac{\partial y_{23}}{\partial y_{22}} \cdot \frac{\partial y_{22}}{\partial x_{22}} + \frac{\partial y_{23}}{\partial x_{22}} \cdot \frac{\partial x_{22}}{\partial T_{21}} \right] \]

\[= \frac{\partial I_3}{\partial T_{21}} + q \cdot \Delta t \left[w_2(w_{1a_{21}} + z_{1a_{21}}) + z_2u_{1a_{21}} \right] \]

\[\frac{\partial I_5}{\partial T_{21}} = \frac{\partial I_5}{\partial T_{21}} + \frac{\partial I_4}{\partial T_{21}} + \frac{\partial I_4}{\partial T_{21}} \cdot \frac{\partial y_{24}}{\partial T_{21}} \]

\[= \frac{\partial I_4}{\partial T_{21}} + q \cdot \Delta t \left[\frac{\partial y_{24}}{\partial y_{23}} \cdot \frac{\partial y_{23}}{\partial x_{23}} + \frac{\partial y_{24}}{\partial x_{23}} \cdot \frac{\partial x_{23}}{\partial T_{21}} \right] \]

\[= \frac{\partial I_4}{\partial T_{21}} + q \cdot \Delta t \left[w_3(w_{1a_{21}} + z_{1a_{21}}) + z_2u_{1a_{21}} + z_3u_{2u_{1a_{21}}} \right] \]

The partial derivative of \(P_T \) with respect to \(T_2 \) at second stage is given by

\[\frac{\partial P_T}{\partial T_{22}} = \left(\prod_{k=3}^{5} \left(2c_i(I_{m-k}) \frac{\partial I_k}{\partial T_{22}} \right) + 2c_i(T_{12} - T_{22}) \right) \Delta t \]

(D-65)

where

\[\frac{\partial I_3}{\partial T_{22}} = \frac{\partial I_3}{\partial y_{22}} \cdot \frac{\partial y_{22}}{\partial T_{22}} \]

\[= q \Delta t \beta_{22} \]
\[
\frac{\partial I_4}{\partial T_{22}} = \frac{\partial I_4}{\partial T_{22}} \cdot \frac{\partial I_4}{\partial y_{23}} \cdot \frac{\partial y_{23}}{\partial T_{22}}
\]

\[
= \frac{\partial I_4}{\partial T_{22}} \cdot \frac{\partial I_4}{\partial y_{23}} \cdot \left(\frac{\partial y_{23}}{\partial y_{22}} \cdot \frac{\partial y_{22}}{\partial T_{22}} + \frac{\partial y_{23}}{\partial x_{22}} \cdot \frac{\partial x_{22}}{\partial T_{22}} \right)
\]

\[
= q \Delta t \beta_{22} + q \cdot \Delta t \left(w_2 \beta_{22} + z_2 a_{22} \right)
\]

and

\[
\frac{\partial I_5}{\partial T_{22}} = \frac{\partial I_5}{\partial T_{22}} \cdot \frac{\partial I_4}{\partial y_{24}} \cdot \frac{\partial y_{24}}{\partial T_{22}}
\]

\[
= \frac{\partial I_4}{\partial T_{22}} + q \cdot \Delta t \left(\frac{\partial y_{24}}{y_{23}} \cdot \frac{\partial y_{23}}{T_{22}} + \frac{\partial y_{24}}{x_{23}} \cdot \frac{\partial x_{23}}{x_{22}} \cdot \frac{\partial x_{22}}{T_{22}} \right)
\]

\[
= \frac{\partial I_4}{\partial T_{22}} + q \Delta t \left[w_3 (w_2 \beta_{22} + z_2 a_{22}) + z_3 u_2 a_{22} \right]
\]

\[
= q \Delta t \beta_{22} + q \Delta t (w_2 \beta_{22} + z_2 a_{22}) + q \Delta t [w_3 (w_2 \beta_{22} + z_2 a_{22}) + z_3 u_2 a_{22}]
\]

The partial derivative of \(P_T \) with respect to \(T_2 \) at third stage is given by

\[
\frac{\partial P_T}{\partial T_{23}} = [2C_I (I_m - I_4) \frac{\partial I_4}{\partial T_{23}} + 2C_I (I_m - I_5) \frac{\partial I_5}{\partial T_{23}}
\]

\[
+ 2C_T (T_{13} - T_{23})] \Delta t
\]
where

$$\frac{\partial I_4}{\partial T_{23}} = \frac{\partial I_4}{\partial y_{23}} \cdot \frac{\partial y_{23}}{\partial T_{23}}$$

$$= q \Delta t \beta_{23}$$

and

$$\frac{\partial I_5}{\partial T_{23}} = \frac{\partial I_5}{\partial T_{23}} + \frac{\partial I_5}{\partial y_{24}} \cdot \frac{\partial y_{24}}{\partial T_{23}}$$

$$= \frac{\partial I_4}{\partial T_{23}} + \frac{\partial I_5}{\partial y_{24}} \left[\frac{\partial y_{24}}{\partial y_{23}} \cdot \frac{\partial y_{23}}{\partial T_{23}} + \frac{\partial y_{24}}{\partial x_{23}} \cdot \frac{\partial x_{23}}{\partial T_{23}} \right]$$

$$= q \Delta t \beta_{23} + q \Delta t \left[w_{3} \beta_{23} + z_{3} \alpha_{23} \right]$$

The derivatives of P_T with respect to T_2 at 4th and 5th stages are given by

$$\frac{\partial P_T}{\partial T_{24}} = [2C_1(I_m - I_5) \frac{\partial I_5}{\partial T_{24}} + 2C_T(T_{14} - T_{24})] \Delta t$$

$$= [2C_1(I_m - I_5) q \Delta t \beta_{24} + 2C_T(T_{14} - T_{24})] \Delta t \quad \text{(D-67)}$$

and

$$\frac{\partial P_T}{\partial T_{25}} = 2C_T(T_{15} - T_{25}) \Delta t \quad \text{(D-68)}$$

Equations (D-54) through (D-68) represent the gradients for the 5-stage production and advertisement model.
Fig. 12 Flow Chart for the Main Program of the Conjugate Gradient Method
1

\[e = 0 \]

Yes

No

Add \(H_i \) to initial basis, all \(i \) in \(e \), store inverse

Read \(B \) vector

Yes

No

\[k-s = 0 \]

Rescale \(b_i \)

\[i = k-s+1, \ldots, k \]

Read \(x \) vector

Compute all \(\lambda_i(x) \) and check

Yes

\(x \) feasible

No
\[|\lambda_i| \leq \varepsilon_2 \]

all \(i \) in \(q \)

No

x-correction
compute all \(\lambda_i(x) \)
and check

\[|\lambda_i| \leq \varepsilon_2 \]

all \(i \) not in \(q \)

Yes

Compute most negative \(\lambda_i \)
\[\ell = i, \sigma = 0 \]

No

\[|Pn_\ell| > \varepsilon_3 \]

Add \(H_\ell \) to basis

Yes

\[|\lambda_i| \leq \varepsilon_2 \]

all \(i \) in \(q \)

Yes

No

6

4

5
Classify H_i, i not in q to v, w compute $||g||$

Yes: $||Hg|| = ||g||$

$||Pg|| = ||g||$

$q = 0$

31

$s = 0$

11

$q = 0$

12

Project gradient

21

Compute $||Hg||$

$||Pg|| = ||g||$

Yes: $v = 0$

13

No

14

$\min z^n_{i>0}$

i in v

Yes:

No

$v = v - 1$

15

16
15

$||P_n|| \geq \epsilon_3$

Yes

Add H_i to basis

$n = 0$

No

H_i linearly dependent

11

14

$v \neq 0$

No

$q^* \text{ or } n=0$

Yes

16

17

No

$\frac{r_i}{\sqrt{\lambda_{ij}}} > 2||H_{ig}||$

Yes

Drop H_i from basis

$n = 0$

No

18

Save f and x

Set $s_i = H_{ig}^i$

12

Compute

$H_i = H_i + \frac{P_{q-1}n_T n_{q}^T q_{q-1}}{n_{q}^T q_{q-1} n_{q}}$

10
Compute $\tau^i = \min\{\tau_{\text{max}}, \frac{2(f(x^i) - f^*)}{(g^*)^T s^i}\}$

- If $\tau^i < \tau_{\text{min}}$, then $\tau^i = \tau_{\text{max}}$
- Otherwise, go to step

Step:
- $\eta = \eta + 1$
- $\text{KOUNT} = \text{KOUNT} + 1$

- If $w = 0$, then
 - Compute $\lambda^i_j = -(n_j^T x^i - b_j) / n_j^T s^i$
 - $\lambda^i = \min(\lambda^i_j > 0)$

 $\tau = \min(\tau^i, \lambda^i)$

- Compute $x^{i+1} = x^i + \tau s^i$

- Compute $f(x^i), g(x^i)$

19
19

\((s_i^i)^T g \leq 0\)

No

Yes

\(f(x^i) < f(x^i)\)

No

Yes

\(\tau \geq \tau_{\text{max}}\)

No

Yes

Compute

\[
H_{q+1}^{i+1} = H_{q}^{i} + s_i^i (s_i^i)^T / (s_i^i)^T g_i^i
\]

Interpolate cubically, obtain \(\gamma^i, x_{i+1}^i, g_{i+1}^i\)

\(y^i = \lambda_i^i\)

No

Yes

Add hyperplane corresponding to \(\min (\lambda_j)\)

\[
H_{q+1}^{i+1} = H_{q}^{i} - \frac{H_{n_i^i} n_i^i}{n_i^i, q_i^i, j_i^i q_j^i}
\]

\[
[a = q + 1, i = i + 1]
\]
\(\sigma_i = y_i^{i+1} \)
\[y_i^{i+1} = \frac{y_i^i}{\epsilon_i} - \epsilon_i \]

\[(\sigma_i^i)^T y_i^i = 0 \quad \text{or} \quad (y_i^i)^T H_q y_i = 0 \]

\(H_q^{i+1} = H_q^i + A_i^i + B_i^i \)
\[H_q^i = \frac{\sigma_i^i (\sigma_i^i)^T y_i^i}{(\sigma_i^i)^T y_i^i} \]
\[B_i^i = - H_q^i y_i^i (y_i^i)^T H_q^i / (y_i^i)^T H_q^i y_i^i \]

24. \(\sigma = 0 \)

25. Compute all \(\lambda_i(x) \) and check

\[|\lambda_i| < \epsilon_2 \]
all \(i \) in \(q \)

\[\lambda_i \geq \epsilon_2 \]
all \(i \) not in \(q \)

26. \(\sigma = 0 \)

27. \(\sigma > 1 \)

28. 'Constr. Viol.'
27

Find H_i with most negative λ_i

$||P_n|| > \varepsilon_3$

Yes

Add H_i to basis

$\eta = 0$

$\sigma = \sigma + 1$

x - correction

28

25

29

$\sigma = 0$

Yes

$K_\text{OUNT} < \text{LIMIT}$

Yes

10

No

Compute f and g

30

f-Decrease

No

Maximum steps'

31

Yes

Re-Invert

118

32

STOP

Output x, g

31

Maximum f
Fig. 13 Flow Chart for Subroutine REINV
Fig. 14 Flow Chart for Subroutine COMPl
To test for and drop H_i from basis if any, c^i given

$\delta = \epsilon$
$\zeta = 0$
$l \equiv e+1$

Yes

$\frac{r_l}{\sqrt{d_{ll}}} < \delta$

Yes

$\delta = \frac{r_l}{\sqrt{d_{ll}}}$
$\zeta = l$

No

No

Yes

Yes

Yes

NEXIT = 1

RETURN

$\zeta = 0$

Yes

$\ell = \ell + 1$

No

Find H_i corresponding to r_ζ and remove from q^*
$q^* = q^* = 1$

$\ell < q$

$\ell = \ell + 1$

Fig. 15 Flow Chart for Subroutine COMP2
\[d_{ij} = \frac{d_{ij} - v_i v_j}{\gamma \zeta} \]

\[1 \leq j \leq q \]

\[u \neq 0 \]

Yes

All \(H_i \) in \(u \) to \(v \)
\[v = u + v \]
\[u = 0 \]

No

'\(H_i \) dropped'
\[\text{NEXIT} = 2 \]

Subroutine COMPL(4)

\[H_{q}^{i} = H_{q}^{i} + y_i y_j / \| y \|^2 \]

RETURN

END
COMPUTER PROGRAM FOR THE CONJUGATE GRADIENT METHOD

DIMENSION G(20),X(20),P(20),V(20),JXB(40),IHI(20),R(20),
1SD(40),RR(20),Z(20),XD(20),G(20),X1(20),DELX(20),X2(20),Y(20),
1AMBD(40),FG(20),IU(40),IV(40),Iw(40),B(40),PG(20),AX(20)
DIMENSION D(20,20),DN(20,20),A(40,20),H(20,20),YY(20),HG(20)
COMMON Y,PN,AMBD, M,G,X,F,P,EPSI1,NEXIT,KQ,D,IH,NB,V,A,JXB,IHI,
1 EPSI3,EPSI2,LD, IU,R, KEQ, MEXIT, IV, KV,B, KMNB, IW, KW,K, MXRN, INV, DN,
1MU, NETA, INT, LDC, H
COMMON/ARO/NFNC, KOUNT, NOFE
EQUIVALENCE (Y,P), (PN,PGRNM), (SD, AMBD), (Z, HG)
909 FORMAT(F10.4)
910 FORMAT(4I4,4F10.5)
1000 FORMAT(4(I5))
1010 FORMAT('/ INITIAL X')
1020 FORMAT(20I4)
1040 FORMAT(6F12.6)
1050 FORMAT(6F12.6)
1060 FORMAT(I3)

NOMENCLATURE

NSP = NUMBER OF SETS OF STARTING POINTS
LIMIT = MAXIMUM NUMBER OF ITERATIONS
MXRN = MAXIMUM NUMBER OF RE-INVERSIONS
MUMAX = MAXIMUM NUMBER OF INTERPOLATIONS
EPSI1 = GRADIENT TOLERANCE
EPSI2 = CONSTRAINT TOLERANCE
EPSI3 = LINEAR DEPENDENCE TOLERANCE
TMAX = MAXIMUM STEP SIZE
M = NUMBER OF VARIABLES
K = NUMBER OF CONSTRAINTS INCLUDING BOUNDS
NB = NUMBER OF BOUNDS
NE = NUMBER OF EQUALITY CONSTRAINTS
KMNB = NUMBER OF CONSTRAINTS EXCLUDING BOUNDS
KQ = NUMBER OF CONSTRAINTS IN THE PRESENT BASIS
KEQ = NUMBER OF CONSTRAINTS IN THE INITIAL BASIS
LDC = NUMBER OF LINEARLY DEPENDENT CONSTRAINTS
INV = REINVERSION FLAG USED TO DETERMINE IF ANY CHANGE IN BASIS
IS MADE BETWEEN TWO REINVERSIONS

READ 1060, NSP
READ 910, LIMIT, MXRN, MUMAX, INTMAX, EPSI1, EPSI2, EPSI3, TMAX
READ 909, ESTF

INITIALIZE COUNTERS

IN = 0
NOFE= 0
10 INT= 0
NFUNC=0
KQ=0
KEQ=0
LDC=0
INV=1
11 MU=0
KOUNT=0
IN = IN + 1
IF(IN-1) 12,12,27
12 TMIN = 0.0001*TMAX
READ 1000,M,K,NB,NE
NBP1=NB+1
KMNB=K-NB
IF(NB)24,24,22
C READ AND PRINT SUBSCRIPTS FOR BOUNDS
C 22 READ 1020,(JXB(I),I=1,NB)
PRINT 1020,(JXB(I),I=1,NB)
IF(KMNB)27,27,24
C READ AND PRINT CONSTRAINTS
C 24 READ 1040,((A(I,J),J=1,M),I=1,KMNB)
PRINT 1040,((A(I,J),J=1,M),I=1,KMNB)
DO 26 I=1,KMNB
C NORMALIZE CONSTRAINTS
C 26 SD(I)=0.
DO 25 J=1,M
25 SD(I)=SD(I)+A(I,J)**2
SD(I)=SORT(SD(I))
DO 26 J=1,M
26 A(I,J)=A(I,J)/SD(I)
PRINT 1040,((A(I,J),J=1,M),I=1,KMNB)
27 IF(NE)29,29,28
29 DO 606 I=1,M
DO 605 J=1,M
605 H(I,J)=0.
606 H(I,I)=1.
GO TO 30
C SET SUBSCRIPTS FOR EQUALITY CONSTRAINTS, ADD H TO INITIAL
C BASIS FOR ALL I IN KE, STORE INVERSE
C 28 KQ=0
IH=NB+1
DO 610 I=1,NE
610 IW(I)=0
CALL COMP1(1)
 IHI(1)=IH
615 IF(NE-KQ)675,675,620
620 N=1
 INDEX=0
 DELTA=EPS13
625 N=N+1
 IF(IN(N)) 630,630,650
630 DO 635 J=1,M
635 V(J)=A(N,J)
 CALL COMP1(2)
 PN=0.0
 DO 640 J=1,M
640 PN=PN+Y(J)**2
 PN=SQR(PN)
 IF(IPN-DELTA) 650,650,645
645 DELTA=PN
 INDEX=N
650 IF(N-NE) 625,655,655
655 IF(INDEX) 675,675,660
660 IH=INDEX+NB
 CALL COMP1(1)
 IW(INDEX)=777
 IHI(KQ)=IH
 GO TO 615
675 KEQ=KQ
 DO 676 I=1,M
 DO 676 J=1,KEQ
 DN(I,J)=0.
 DO 676 N=1,KEQ
 KK=IHI(N)-NB
676 DN(I,J)=DN(I,J)+A(KK,I)*DN(N,J)
 DO 678 I=1,M
 DO 677 J=1,M
 H(I,J)=0.
 DO 677 N=1,KEQ
 KK=IHI(N)-NB
677 H(I,J)=H(I,J)-A(KK,I)*DN(J,N)
678 H(I,I)=H(I,I)+1.
 DO 680 I=1,KQ
 DO 680 J=1,KQ
680 DN(I,J)=DN(I,J)
30 IF(IN-1) 33,33,45
C
C READ AND PRINT RIGHT HAND SIDE OF CONSTRAINTS
C
33 READ 1050,(B(I),I=1,K)
 PRINT 1050,(B(I),I=1,K)
 IF(KMNB) 40,40,31
31 DO 32 I=1,KMNB
J=I+NB
32 BI(J)=B(J)/SD(I)
 PRINT 1040, (BI(I), I=1,K)
40 CONTINUE

READ AND PRINT INITIAL X-VECTOR
45 READ 1040, (X(I), I=1,M)
 PRINT 1010
 PRINT 1040, (X(I), I=1,M)

COMPUTE ALL LAMBDAS AND CHECK
52 CALL AMDA
 IF(NB)=54,54,64
64 DO 53 I=1,NB
 IF(AMFDA(I)+EPSI2)=59,53,53
53 CONTINUE
54 IF(NBP1-K)=65,65,130
65 DO 57 J=NBP1,K
 IF(J-NBP1-NE)=55,56,56
55 IF(ABS(AMFDA(J))=EPSI2)=57,57,59
56 IF(AMFDA(J)+EPSI2)=59,57,57
57 CONTINUE
 GO TO 130
59 PRINT 1040, (X(I), I=1,M)
 PRINT 1050, (AMFDA(J), J=1,K)
 IF(KQ)=80,80,60
60 DO 61 I=1,KQ
 J=IHI(I)
 IF(ABS(AMFDA(J))=EPSI2)=61,61,70
61 CONTINUE
 GO TO 80

X-CORRECTION COMPUTE ALL LAMBDAS AND CHECK
70 DO 71 J=1,M
71 V(I,J)=X(J)
 CALL COMPL(3)
 DO 72 J=1,M
72 X(J)=Y(J)
 CALL AMDA
 IF(KQ)=80,80,66
66 DO 62 I=1,KQ
 J=IHI(I)
 IF(ABS(AMFDA(J))=EPSI2)=62,62,110
62 CONTINUE
80 DO 83 I=1,K
 IF(AMFDA(I)+EPSI2)=85,83,83
83 CONTINUE
GO TO 130

C FIND MOST NEGATIVE LAMBDA

85 N=1
SIGMA=AMBDA(1)
IF(K-2) 89,86,86
86 DO 88 I=2,K
IF(AMBDA(I)-SIGMA) 87,88,88
87 N=I
SIGMA=AMBDA(I)
88 CONTINUE
89 SIGMA=0.0
IH=N
90 CALL COMPE15
GO TO (100,100,95),NEXIT
95 KQM1=KQ-1
IF (KQM1) 97,97,94
94 DO 96 I=1,KQM1
96 AMBDA(I)=0.0
97 INV=1
GO TO 70
100 IF(SIGMA) 110,101,110
101 CALL COMPE2(EPSI3)
GO TO (105,103),MEXIT

C DROP CONSTRAINT FROM BASIS

103 SIGMA=1.0
INV=1
IH=N
GO TO 90
105 IF(KQUNT) 106,106,110
106 PRINT 5001
5001 FORMAT(* ' NOT FEASIBLE X')
GO TO 120

C X-CORRECTION FAILED. RE-INVERT AND RE-CHECK LAMBdas TO FIND
C FEASIBLE X

110 PRINT 5002
5002 FORMAT(* ' X-CORRECTION FAILED')
120 CALL REINV
IF(NEXIT) 60,60,460
130 PRINT 5003
5003 FORMAT(* ' FEASIBLE X')
PRINT 1040,(X(J),J=1,M)
PRINT 5004
5004 FORMAT(* ' LAMdas')
PRINT 1050,(AMBDA(J),J=1,K)
CALL FUNCT(M,X,F,G,KQ)
IF(KOUNT) 133,133,140
133 IF(KQ=KEQ) 9999,138,134
134 CONTINUE
138 CONTINUE
NETA=0
C
C CLASSIFY CONSTRAINTS
C
140 CALL CLASS
INV=1
GNORM=0
DO 141 J=1,M
141 GNORM=GNORM+G(J)**2
GNORM=SQRT(GNORM)
PRINT 5006,GNORM,(G(J),J=1,M)
5006 FORMAT(//' GRADIENT',F12.4/(10F12.4))
C
C CHECK GRADIENT AGAINST TOLERANCE
C
142 IF(GNORM-EPSSL) 142,142,150
142 HGNORM=GNORM
PGNORM=GNORM
KQ=0
GO TO 420
150 SIGMA=0.0
160 IF(KQ) 161,161,170
161 HGNORM=0.0
PGNORM=GNORM
DO 163 J=1,M
PG(J)=G(J)
HG(J)=0.0
DO 162 I=1,M
162 HG(J)=HG(J)+H(J,I)*G(I)
163 HGNORM=HGNORM+HG(J)**2
HGNORM=SQRT(HGNORM)
PRINT 7000,HGNORM,(HG(J),J=1,M)
7000 FORMAT(//' CONJ GRAD',F12.4/(10F12.4))
GO TO 180
C
C PROJECT GRADIENT AND CHECK AGAINST TOLERANCE
C
170 DO 169 J=1,M
169 V(J)=G(J)
CALL COMP1(2)
PGNORM=0.0
HGNORM=0.0
DO 171 J=1,M
HG(J)=0.0
DO 1715 I=1,M
1715 HG(J)=HG(J)+H(J,I)*G(I)
 HGNORM=HGNORM+HG(J)**2
1716 PGNORM=PGNORM+PG(J)**2
 PGNORM=SQRT(PGNORM)
 HGNORM=SQRT(HGNORM)
 PRINT 5007,PGNORM,(PG(J),J=1,M)
5007 FORMAT(' PROJ GRAD',F12.4/(10F12.4))
 PRINT 7000,HGNORM,(HG(J),J=1,M)
 IF(PGNORM-EPSI1) 175,175,172
172 IF(M-KQ) 9999,173,180
173 PRINT 5008
5008 FORMAT(' PROJ NOT ZERO AT VERTEX')
C
C RE-INVERT AND RE-CLASSIFY CONSTRAINTS IF PROJECTION NOT ZERO
C AT VERTEX
C
174 CALL REINV
 IF(NEXIT) 1745,1745,460
1745 CALL CLASS
 GO TO 150
175 IF(SIGMA) 176,177,176
176 PRINT 5009
5009 FORMAT(' PROJ ZERO AFTER DROP')
 GO TO 174
177 IF(KQ-KEQ) 9999,420,178
178 CALL COMP2(EPSI1)
 GO TO (420,179),MEXIT
C
C DROP CONSTRAINT FROM BASIS
C
179 NETA=0
 INV=1
 SIGMA=5.0
 GO TO 160
180 LDQ=0
 IF(KV)9999,200,190
190 KEQP1=KEQ+1
 KEQP=KEQP1
 IF(KEQP1-KQ)1903,1903,1902
1903 DO 1901 J=KEQP,KQ
1901 RR(J)=R(J)
1902 L=0
 INDEX=0
 DELTA=0.0
191 L=L+1
 IF(IV(L)-NB) 1912,1912,1915
1912 KK=IV(L)
 J=JXB(KK)
 IF(J) 1913,9999,1914
1913 J=-J
ZN=-Z(J)
GO TO 1925
1914 ZN=Z(J)
GO TO 1925
1915 KK=IV(L)-NB
ZN=0,0
DO 192 J=1,M
192 ZN=ZN+Z(J)*A(KK,J)
1925 IF(ZN-DELTA) 193,1935,1935
193 INDEX=IV(L)
LL=L
DELTA=ZN
1935 IF(KV-L) 194,194,191
194 IF(INDEX) 9999,200,195
195 KV=KV-1
IF(KV-LL) 195,198,198
198 DO 199 I=LL,KV
199 IV(I)=IV(I+1)
1995 IH=INDEX
CALL COMP1(I)
GO TO (197,197,196),NEXIT
196 NETA=0
INV=1
GO TO 150
197 IF(KV) 9999,197,190
1977 IF(KEQP-KQ) 198,1998,200
1997 DO 1999 J=KEQP,KQ
1999 RI(J)=RR(J)
200 IF(NETA) 201,204,201
201 IF(KQ-KEQ) 202,204,202
202 CALL COMP2(1,*HGNORM)
GO TO (204,203),MEXIT
203 NETA=0
INV=1
GO TO 160
204 FY=F
MU=0
INT=0
C
C PRINT SUMMARY
C
C Q - CONSTRAINTS IN BASIS
C E - EQUALITY CONSTRAINTS
C Q* - CONSTRAINTS ADDED TO THE INITIAL BASIS
C U - LINEARLY DEPENDENT CONSTRAINTS
C V - CONSTRAINTS NOT IN BASIS WITH LAMBDA = 0
C W - CONSTRAINTS NOT IN BASIS WITH LAMBDA > 0
C
KQS=KQ-KEQ
PRINT 5010,KQ,NE,KQS,LDC,KV,KW
5010 FORMAT(4X2H Q, I2, 3H E, I2, 4H Q*, I2, 3H U, I2, 3H V, I2, 3H W, I2)
 IF(KQ)212,212,211
211 PRINT 9211,(IHI(J), J=1,KQ)
212 IF(LDC)214,214,213
213 PRINT 9213,(IU(J), J=1,LDC)
214 IF(KV)216,216,215
215 PRINT 9215,(IV(J), J=1,KV)
216 IF(KW)218,218,217
217 PRINT 9217,(IW(J), J=1,KW)
9211 FORMAT(' Q*/1013)
9213 FORMAT(' U*/1013)
9215 FORMAT(' V*/1013)
9217 FORMAT(' W*/1013)
218 ZGY=0.0
 DO 205 I=1,M
 ZGY=ZGY+Z(I)*G(I)
 GO(I)=G(I)
205 Y(I)=X(I)

C COMPUTE INITIAL STEP SIZE

C

208 T=AMIN1(TMAX, 2.0*(ESTF-F)/ZGY)
 IF(T.GE.TMIN) GO TO 230
 T=TMAX
230 NETA=NETA+1

C STEP ITERATION COUNTER

C

KOUNT=KOUNT+1
L=0
 IF(KW)9999,240,231
231 DO 239 I=1,KW
 J=IW(I)
 IF(J-NB)232,232,235
232 KK=JXB(J)
 IF(KK) 233,9999,234
233 KK=-KK
 ZN=-Z(KK)
 GO TO 2365
234 ZN=Z(KK)
 GO TO 2365
235 KK=J-NB
 ZN=0.0
 DO 236 N=1,M
236 ZN=ZN+Z(N)*A(KK,N)
2365 IF(ZN) 237,239,239
237 TI=-AMBDA(J)/ZN
 IF(TI-T)238,239,239
238 T=TI
 L=J
CONTINUE
PRINT 5011, KOUNT
5011 FORMAT(' STEP', I4)

C STEP ALONG THE CONJUGATE DIRECTION
C
240 DO 241 J = 1, M
241 X(J) = Y(J) + T*Z(J)
KMUO = PGNORM
250 CALL FUNCT(M,X,F,G,KQ)
ZG = 0.0
DO 251 J = 1, M
251 ZG = ZG + Z(J)*G(J)
PRINT 5012, MU, INT, NETA, L, T, F, ZG
5012 FORMAT(4(3XI3), 3F12.6)
ZGX = ZG
IF(ZGX) 260, 260, 253
253 IF(FY - F) 254, 260, 260
254 IF(T - TMAX) 257, 255, 255
255 DO 256 I = 1, M
256 DO 256 J = 1, M
H(I, J) = H(I, J) + Z(I)*Z(J)*T/ZGY
256 CONTINUE
257 GO TO 280

C INTERPOLATE CUBICALLY
C
260 ZZ = (3./T)*(F-FY)-ZGX-ZGY
W = SQRT((ZZ**2-ZGX*ZGY))
FRAC = (-ZGX+W-ZZ)/(-ZGX+ZGY+Z.*W)
GAMMA = T*(1.-FRAC)
DO 262 J = 1, M
262 YY(J) = X(J)
R(J) = GAMMA*Z(J)
262 X(J) = Y(J) + R(J)
FY = F
CALL FUNCT(M,X,F,G,KQ)
IF(ABS(F - FY) .LT. EPS11) GO TO 269
ZGZ = 0.0
DO 265 J = 1, M
265 ZGZ = ZGZ + Z(J)*G(J)
266 IF(AMAX1(FY, FY) - F) 269, 269, 264
264 IF(MU-MUMAX) 2695, 2696, 2696
2695 IF(FY-FY) 267, 266, 266
2696 PRINT 7001
7001 FORMAT(' MAXIMUM INTERPOLATION')
CALL REINV
IF(NEXIT) 280, 280, 460
266 T = (1.-FRAC)*T
ZGX = ZGZ
GO TO 260
267 T=FRACT
FY=F
F=FFY
ZGZ=ZGZ
DO 268 J=1,M
Y(J)=X(J)
268 X(J)=YY(J)
GO TO 260
269 CONTINUE
270 DO 271 J=1,M
271 Y(J)=G(J)-G0(J)
SIGY=0.
YHY=0.
DO 273 I=1,M
RRI=0.
DO 272 J=1,M
RRI=RRI+Y(J)*H(J,I)
272 CONTINUE
SIGY=SIGY+RRI*Y(I)
273 YHY=YHY+RRI*Y(I)
IF(SIGY*YHY,NE.,0.) GO TO 274
C
C SEARCH IN THE DIRECTION OF STEEP ETEST ASCENT IF RESULTS ARE
C NOT SATISFACTORY
C
278 DO 276 I=1,M
DO 276 J=1,M
IF(I.EQ.J) GO TO 277
H(I,J)=0.0
GO TO 276
277 H(I,J)=1.0
276 CONTINUE
GO TO 280
274 CONTINUE
C
C UPDATE MATRIX OPERATOR AS PER STEP 5 OF THE ALGORITHM
C
DO 275 I=1,M
DO 275 J=1,M
HIJ=H(I,J)-(R(I)*R(J))/SIGY-(RR(I)*RR(J))/YHY
275 CONTINUE
280 SIGMA=0.
C
C COMPUTE LAMBDAS FOR NEW X AND CHECK
C
290 CALL AMDA
IF(KQ)284,284,283
283 DO 281 I=1,KQ
J=IHI(I)
PRINT 6002, AMBDA(J)
6002 FORMAT(' AMBDA(J)', 10F10.4)
IF(ABS(AMBDA(J))-EPSI2) 281, 281, 300
281 CONTINUE
284 DO 282 I = 1, K
 IF(AMBDA(I)+EPSI2) 292, 282, 282
282 CONTINUE
GO TO 320
292 IF(SIGMA-1.0) 293, 293, 301
293 L = 1

C
C FIND MOST NEGATIVE LAMBDA AND ADD CONSTRAINT TO THE BASIS
C
RHO = AMBDA(1)
IF(K-2) 298, 299, 299
299 DO 295 I = 2, K
 IF(AMBDA(I)-RHO) 294, 295, 295
294 L = I
 RHO = AMBDA(I)
295 CONTINUE
298 IH = L
 CALL COMP 1(5)
 GO TO(300, 300, 296), NEXIT
296 NETA = 0
 INV = 1
300 IF(SIGMA) 301, 310, 301

C
C CONSTRAINT VIOLATION
C
301 PRINT 5021
5021 FORMAT(' CONSTRAINT VIOLATION')
 GO TO 120
310 SIGMA = SIGMA+1.0

C
C X-CORRECTION
C
PRINT 5032
5032 FORMAT(' X-CORRECTION')
 DO 311 J = 1, M
311 V(J) = X(J)
 CALL COMP 1(3)
 DO 312 J = 1, M
312 X(J) = V(J)
 INV = 1
 GO TO 290
320 IF(SIGMA) 321, 325, 321
321 CALL FUNCT(M, X, F, G, KQ)
 IF(F-FY) 322, 325, 325
C
C F DECREASE
C
322 PRINT 5013
5013 FORMAT(' F DECREASE')
CALL REINV
 IF(NEXIT)325,325,460
 IF(KOUNT-LIMIT)327,326,326
326 PRINT 5014
5014 FORMAT(' MAXIMUM STEPS TAKEN')
 GO TO 460
327 PRINT 5015,(X(J),J=1,M)
5015 FORMAT(6F12.6)
 GO TO 140
C
C MAXIMUM F
C
420 PRINT 5018 ,F
5018 FORMAT(/' MAXIMUM F =',F12.6)
460 CALL CLASS
470 PRINT 5019
5019 FORMAT(/' J X VECTOR GRADIENT')
 DO 5678 J=1,M
5678 PRINT 5020,J,X(J),G(J)
5020 FORMAT(13,2F12.6)
 GO TO 480
9999 PRINT 5031
5031 FORMAT (' ERROR')
480 IF(IN-NSP) 485,481,481
485 PRINT 486
486 FORMAT(1H1)
 GO TO 10
481 STOP
END
SUBROUTINE REINV

THIS SUBROUTINE REFURMS THE INVERSE MATRIX

DIMENSION G(20),X(20),P(20),V(20),JXB(40),IHI(20),R(20),
1SD(40),RR(20),Z(20),XO(20),GO(20),X1(20),DELX(20),X2(20),Y(20),
1AMBDA(40),FG(20),IU(40),IV(40),IW(40),B(40),PG(20)

DIMENSION D(20,20),DN(20,20),A(40,20),H(20,20),YY(20),HG(20)

COMMON Y,PN,AMBDA,M,G,X,F,P,EPSI1,NEXIT,KQ,D,IH,NB,V,A,JXB,PHI,
1 EPSI3,EPSI2,LD,LU,R,KEQ,MEXIT,IV,KV,B,KMNB,IW,KW,K,MXRN,INV,DN,
1MU,NETA,INT,LDC,H

EQUIVALENCE (Y,PG),(PN,PGNORM),(SD,AMBDA),(Z,HG)

IF(MXRN.GT.0)GO TO 10

9 NEXIT=1
RETURN
10 NEXIT=0
MXRN=MXRN-1
IF(MXRN.LE.0)GO TO 20
GO TO 40
20 IF(KEQ.EQ.0)GO TO 35

RESTORE INITIAL BASIS AND RESET COUNTERS

15 DO 30 I=1,KEQ
DO 30 J=1,KEQ
30 DI(I,J)=DN(I,J)
35 LDC=0
NETA=0
KQ=KEQ
INV=0
MU=0
INT=0
935 FORMAT(1,NEW BASIS)')
PRINT 935
RETURN
40 IF(INV).GT.9,9,50

RETURN IF THERE IS NO CHANGE IN BASIS

50 IF(KQ-KEQ).GT.15,15,51

LIST ALL CONSTRAINTS ADDED TO THE INITIAL BASIS

51 L=KQ-KEQ
IF(KEQ.GT.0)GO TO 54
DO 53 I=1,M
DO 52 J=1,M
H(I,J) = 0.
H(I,I) = 1.
GO TO 59

DO 46 I = 1, M
 DO 45 J = 1, KEQ
 D(I,J) = 0.
 DO 55 N = 1, KEQ
 KK = IHI(N) - NB
 D(I,J) = D(I,J) + A(KK,I) + DN(N,J)
 CONTINUE
45 CONTINUE
46 CONTINUE
 DO 57 I = 1, M
 DO 56 J = 1, M
 H(I,J) = 0.
 DO 56 N = 1, KEQ
 KK = IHI(N) - NB
 H(I,J) = H(I,J) - A(KK,I) * D(J,N)
56 H(I,I) = H(I,I) + 1.
 DO 58 I = 1, KEQ
 DO 58 J = 1, KEQ
58 D(I,J) = DN(I,J)

59 LOC = 0
 NETA = 0
 KQ = KEQ
 INV = 0
 MU = 0
 INT = 0
60 IH = IHI(KQ + 1)

C
 ADD CONSTRAINTS IN ORDER OF CONSTRAINT NUMBERS
C

CALL COMPI(5)

65 IF(L .LE. 1) GO TO 70
 L = L - 1
 GO TO 60
60 NEXT = 0
RETURN
END
SUBROUTINE COMP1(NSTART)

THIS SUBROUTINE CARRIES OUT THE MATRIX COMPUTATIONS REQUIRED BY
THE CONJUGATE GRADIENT METHOD.

DIMENSION G(20), X(20), P(20), V(20), JXB(40), IHI(20), R(20),
1 SD(40), RR(20), Z(20), XD(20), GO(20), X1(20), DELX(20), X2(20), Y(20),
1 LAMBDA(40), FG(20), IU(40), IV(40), IW(40), B(40), PG(20), TT(20)
DIMENSION D(20,20), DN(20,20), A(40,20), H(20,20), YY(20), HG(20)
COMMON Y, PN, AMBDA, M, G, X, F, P, EPS11, NEXIT, KQ, D, IH, NB, V, A, JXB, IHI,
1 EPSI3, EPSI2, LD, IU, R, KEQ, MEXIT, IV, KV, B, KMNB, IW, KW, K, MXRN, INV, DN,
1 MU, NETA, INT, LOC, H
EQUIVALENCE (Y, PG), (PN, PGNORM), (SD, AMBDA), (Z, HG)
GO TO (10, 80, 110, 25, 10), NSTART

10 IFLAG = 1
 IF (KQ) 20, 20, 30
20 D(1,1) = 1.0
 PN = 1.0
 GO TO 260
25 IFLAG = 2

CHECK WHETHER THE CONSTRAINT IS A BOUND

30 IF(IH-NB) 40, 40, 35
35 I = IH-NB
 DO 36 J = 1, M
36 V(J) = A(I,J)
 GO TO 90

GENERATE VECTOR V IF THE CONSTRAINT IS A BOUND

40 DO 50 I = 1, M
50 V(I) = 0.0
 JK = JXB(IH)
 IF (JK) 60, 60, 70
60 JKM = -JK
 V(JKM) = -1.0
 GO TO 90
70 V(JK) = 1.0
 GO TO 90
80 IFLAG = 2
90 IF (KQ) 85, 85, 88
85 DO 86 J = 1, M
 Y(J) = V(J)
86 CONTINUE
RETURN
88 DO 100 I = 1, KQ
90 KK = IHI(I)-NB
 IF (KK) 91, 91, 95
91 JBD = IHI(I)
JK = JXB(JBD)
IF (JK) 92, 92, 93
92 JKM = -JK
P(I) = -V(JKM)
GO TO 100
93 P(I) = V(JK)
GO TO 100
95 P(I) = 0.0
DO 99 J = 1, M
99 P(I) = P(I) + A(KK, J) * V(J)
100 CONTINUE
GO TO 130
110 IFLAG = 2
DO 120 I = 1, KQ
KK = IHI(I)
120 P(I) = AMBDA(KK)
130 DO 140 I = 1, KQ
R(I) = 0.0
DO 140 J = 1, KQ
R(I) = R(I) + D(I, J) * P(J)
140 CONTINUE
C
C PROJECT THE VECTOR
C
DO 160 J = 1, M
Y(J) = 0.0
DO 150 I = 1, KQ
KK = IHI(I) - NB
IF (KK) 151, 151, 155
151 JBD = IHI(I)
JK = JXB(JBD)
IF (JK) 152, 152, 153
152 IF (J+JK) 150, 156, 150
156 Y(J) = Y(J) - R(I)
GO TO 150
153 IF (J-JK) 150, 154, 150
154 Y(J) = Y(J) + R(I)
GO TO 150
155 Y(J) = Y(J) + A(KK, J) * R(I)
150 CONTINUE
160 Y(J) = V(J) - Y(J)
GO TO (180, 170), IFLAG
170 NEXIT = 1
RETURN
C
C COMPUTE PROJECTED NORM
C
180 PN = 0.0
DO 190 J = 1, M
190 PN = PN + Y(J)**2
YB2 = PN
PN = SORT(PN)

CHECK FOR LINEAR DEPENDENCE

IF (PN-EPISI3) 200,210,210
200 NEXT = 2
LDC = LDC+1
IUI(LDC) = IH
PRINT 9200, IH, PN
9200 FORMAT(' H ',I2,' LINEARLY DEPENDENT YB=',F12.6)
RETURN

ADD LINEARLY INDEPENDENT CONSTRAINTS

210 J = KQ + 1
I = J
D(I,J) = 1.0/YB2
220 IF (I-J) 240,240,230

COMPUTE NEW INVERSE

230 I = I-1
D(I,J) = D(I,J)+R(J)*R(I)/YB2
D(J,I) = D(I,J)
GO TO 220
240 IF (J-1) 260,260,250
250 J = J - 1
I = KQ + 1
D(I,J) = -R(J)/YB2
D(J,I) = D(I,J)
GO TO 220
260 KQ = KQ + 1
IHI(KQ) = IH
PRINT 9260, IH, PN
9260 FORMAT(' H',2XI2,' ADDED YB=',F12.6)
NEXT = 3
IF (NSTART-3) 270,270,290
270 RETURN
290 IF (IH-NB) 300,300,330
300 JK = JXB(IH)
IF (JK) 310,310,320
310 JK = -JK

COMPUTE H(Q+1) AS PER STEP 4 OF THE ALGORITHM

DO 311 J = 1,M
311 TT(J) = -H(JK,J)
YB2 = H(JK,JK)
GO TO 335
320 DO 321 J = 1, M
321 TT(J) = H(JK, J)
 YB2 = H(JK, JK)
 GO TO 335
330 KK = IH-NB
 YB2 = 0.0
 DO 333 I = 1, M
 TT(I) = 0.0
 DO 332 J = 1, M
332 TT(I) = TT(I) + A(KK, J)*H(J, I)
333 YB2 = YB2 + TT(I)*A(KK, I)
335 DO 340 I = 1, M
 DO 340 J = 1, M
340 H(I, J) = H(I, J) - TT(I)*TT(J)/YB2
 RETURN
END
SUBROUTINE COMP2(DEL)
C
THIS SUBROUTINE CARRIES OUT THE MATRIX COMPUTATIONS REQUIRED BY
THE CONJUGATE GRADIENT METHOD
C
DIMENSION G(20), X(20), P(20), V(20), JXB(40), IHI(20), R(20),
1SD(40), RR(20), Z(20), XO(20), GO(20), XI(20), DELX(20), X2(20), Y(20),
1AMBDA(40), FG(20), IU(40), IV(40), IW(40), B(40), PG(20)
DIMENSION D(20, 20), DN(20, 20), A(40, 20), H(20, 20), YY(20), HG(20)
COMMON Y, PN, AMBDA, M, G, X, F, P, EPS12, NEXIT, KO, D, IH, NB, V, A, JXB, IHI,
1 EPS13, EPS12, LD, IU, R, KEQ, MEXIT, IV, KV, B, KMNB, IW, KW, K, MXRN, INV, DN,
1MU, NETA, INT, LDC, H
EQUIVALENCE (Y, PG), (PN, PGNORM), (SD, AMBDA), (Z, HG)
DELTA = DEL
NZ = 0
L = KEQ + 1
C
CHECK FOR CONSTRAINT DROP AND DROP CONSTRAINT CORRESPONDING TO
MAXIMUM RD > DELTA
C
40 IF (R(L)) 43, 43, 41
41 RD = R(L)/SQR(D(L, L))
 IF (RC-DELTA) 43, 42, 42
42 DELTA = RD
NZ = L
43 IF (L-KQ) 44, 45, 45
44 L = L+1
 GO TO 40
45 IF (NZ) 46, 46, 50
46 MEXIT = 1
 RETURN
C
COMPUTE NEW INVERSE
C
50 DO 60 I = 1, KQ
60 V(I) = D(I, NZ)
 IH = IHI(NZ)
 NZM = NZ - 1
 KQ = KQ - 1
 IF (NZM-KQ) 63, 63, 62
62 VNZ = V(NZ)
 GO TO 105
63 DO 80 I = NZ, KQ
 IHI(I) = IHI(I+1)
 IF (NZM) 75, 75, 65
65 DO 70 J = 1, NZM
 D(I, J) = D(I+1, J)
70 D(J, I) = D(I, J)
75 DO 80 J = NZ, KQ
80 D(I, J) = D(I+1, J+1)
VNZ = V(NZ)
DO 100 I = NZ,KQ
100 V(I) = V(I+1)
105 DO 130 I = 1,KQ
 DO 130 J = 1,KQ
 IF (I-J) 110,110,120
110 D(I,J) = D(I,J)-V(I)*V(J)/VNZ
 GO TO 130
120 D(I,J) = D(J,I)
130 CONTINUE
C
C RESET LINEARLY DEPENDENT CONSTRAINTS = 0
C
IF (LDC) 150,150,140
140 DO 142 I = 1,LDC
J = KV + I
142 IV(J) = IU(I)
 KV = KV + LDC
 LDC = 0
150 MEXIT = 2
PRINT 9150, IH, DELTA
9150 FORMAT(' H 'I2,' DROPPED DELTA=',F12.6)
C
C COMPUTE H(Q-1) AS PER STEP 2 OF THE ALGORITHM
C
CALL COMP1(4)
PN = 0.0
DO 160 J = 1,M
160 PN = PN + Y(J)**2
DO 170 I = 1,M
 DO 170 J = 1,M
170 H(I,J) = H(I,J) + Y(I)*Y(J)/PN
RETURN
END
SUBROUTINE AMDA

THIS SUBROUTINE COMPUTES LAMBDA\(_S\)

DIMENSION G(20), X(20), P(20), V(20), JXB(40), IHI(20), R(20),
1 SD(40), RR(20), Z(20), XD(20), GO(20), X1(20), DELX(20), X2(20), Y(20),
1 LAMBDA(40), FG(20), IU(40), IV(40), IW(40), B(40), PG(20)
DIMENSION D(20,20), DN(20,20), A(40,20), H(20,20), YY(20), HG(20)
COMMON Y, PN, AMBDA, M, G, X, F, P, EPSI1, NEXIT, KQ, D, IH, NB, V, A, JXB, IHI,
1 EPSI3, EPSI2, LD, IU, R, KEQ, MEXIT, IV, KV, B, KMNB, IW, KW, K, MXRN, INV, DN,
1 IMU, NETA, INT, LDC, H
EQUIVALENCE (Y, PG), (PN, PGNORM), (SD, AMBDA), (Z, HG)
IF (NB) 2,2,4

4 DO 7 I = 1, NB
 J = JXB(I)
 IF (J) 5,5,6

5 KK = -J
 AMBDA(I) = -X(KK) - B(I)
 GO TO 7

6 AMBDA(I) = X(J) - B(I)
7 CONTINUE

2 IF (KMNB) 10, 10, 3
3 DO 9 I = 1, KMNB
 SUM = 0.0
 KK = NB + I
 DO 8 J = 1, M
 8 SUM = SUM + A(I,J)*X(J)
9 AMBDA(KK) = SUM - B(KK)
10 RETURN
END
SUBROUTINE CLASS

THIS SUBROUTINE CLASSIFIES THE CONSTRAINTS

DIMENSION G(20), X(20), P(20), V(20), JXB(40), IHI(20), R(20),
1SD(40), RR(20), Z(20), XO(20), GO(20), X1(20), DELX(20), X2(20), Y(20),
1AMBDA(40), FG(20), IU(40), IV(40), IWH(40), B(40), PG(20)
DIMENSION D(20, 20), DN(20, 20), A(40, 20), H(20, 20), YY(20), HG(20)
COMMON Y, PN, AMBDA, M, G, X, F, P, EPSI1, NEXIT, KQ, D, IH, NB, V, A, JXB, IHI,
1 EPSI3, EPSI2, LD, IU, R, KEQ, MEXIT, IV, KV, B, KMNB, IWH, KW, K, MXRN, INV, DN,
1MU, NETA, INT, LDC, H
EQUIVALENCE (Y, PG), (PN, PGNORM), (SD, AMBDA), (Z, HG)
KW = 0
KV = 0
DO 50 I = 1, K
IF (KQ) 41, 41, 30
30 DO 40 J = 1, KQ
IF (I-IHI(J)) 40, 50, 40
40 CONTINUE
41 IF (ABS(AMBDA(I))-EPSI2) 42, 42, 43
42 KV = KV + 1
IV(KV) = I
GO TO 50
43 KW = KW + 1
IWH(KW) = I
50 CONTINUE
RETURN
END
SUBROUTINE FUNCT(M,X,F,G,KQ)

THIS SUBROUTINE COMPUTES THE VALUES OF THE OBJECTIVE FUNCTION
AND THE GRADIENTS FOR THE INVENTORY MODEL

DIMENSION X(10),G(10),VI(15),Q(15),FT(10),ST(10),F1(15),BR(10),
1CR(15),GR(15)
COMMON/ARO/NFUNC,KOUNT,NOFE

95 FORMAT(8F8.4)
200 FORMAT(/' ITERATION # = ',I3,' # OF FUNCTIONAL EVALUATIONS
1= ',I3,' # OF CONSTRAINTS IN BASIS = ',I3,/)!
440 FORMAT(21X,' STAGE 1',Y,STAGE 2',STAGE 3',STAGE 4',STAGE
1 5',/)!
451 FORMAT(' PRODUCTION',5F12.3,'/' INVENTORY',5F12.3,'/
1' SALE',5F12.3,' COST',5F12.3,/)!

NFUNC = NFUNC + 1
NOFE=NOFE+1
IF(NOFE.GT.1) GO TO 90
READ 95,A,B,C,CI,CP,VIM,PM
N=M
EN=N
DELT=1./EN
N1=N+1
AS=-2.*CI*(DELT**2)
VI(1)=C
F1(1)=0.0
Q(1)=A
90 CONTINUE
DO 100 J=2,N1
I=J-1
ED=I
Q(J)=A+B*DELT*ED
VI(J)=VI(I)+(X(I)-Q(J))*DELT
FT(I)=CI*DELT*(VIM-VI(I)/2.-VI(J)/2.)*2
ST(I)=CP*DELT*(EXP((PM-X(I))*2))
BR(I)=VIM-VI(I)/2.-VI(J)/2.
CR(I)=-2.*DELT*CP*(PM-X(I))*EXP((PM-X(I))*2)
100 F1(J)=F1(I)+FT(I)+ST(I)
F=-F1(N1)
DO 102 I=1,N
GR(I)=0.0
BR(I)=BR(I)/2.
DO 101 J=I,N
101 GR(J)=GR(I)+BR(J)
102 G(I)=-GR(I)*AS-CR(I)
PRINT 200,KOUNT,NFUNC,KQ
PRINT 440
PRINT 451,(X(I),I=1,N),(Q(I),I=2,N1),(VI(I),I=2,N1),(F1(I),I=2,N1)
RETURN
END
SUBROUTINE FUNCT(M,X,F,G,KQ)

C
C THIS SUBROUTINE COMPUTES THE VALUES OF THE OBJECTIVE FUNCTION
C AND THE GRADIENTS FOR THE INVENTORY AND ADVERTISEMENT MODEL
C

DIMENSION X(10),G(10),P(15),Q(15),VI(15),U(15),V(15),AW(15),W(15),
1D(15),E(15),F1(15),GR(15),QX(15),XI(15),R(15)
COMMON/ARC/NFUNC,KOUNT,NOFE

200 FORMAT(1X,')XITERATION # = ',I3,') # OF FUNCTIONAL EVALUATIONS
1=','I3,') # OF CONSTRAINTS IN BASIS = ',I3,')
440 FORMAT(23X,'STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE
1 5',')
451 FORMAT(' INC. CONTACTS',5F12.3,') PRODUCTION',5F12.3,')
1' SALE',5F12.3,') INVENTORY',5F12.3,')
2' PROFIT',5F12.3,')

920 FORMAT(10F7.2)
NOFE=NOFE+1
NFE=NOFE+1
IF(NNOE.GT.1) GO TO 90
READ 920,A,B,C,EF,AN,PI,CA,CI,VI(1),Q(1)
N=M
N1=N+1
EN=N
DELT=1./EN
P(I)=A
F1(I)=0.0

90 DO 100 J=2,N1
I=J-1
ED=1
P(J)=P(J)+BDELT*ED
U(I)=Q(I)+((C+X(I))*DELT)
V(I)=U(I)+(C+X(I))*Q(I)*DELT/AN
Q(J)=U(I)/V(I)
VI(J)=VI(I)+(P(I)-Q(I))*DELT

100 F1(J)=F1(I)+(EF*Q(J)-CI*((PI-VI(J))**2)-CA*X(I)*Q(J))*DELT
F= F1(N1)
DO 101 I=1,N
AW(I)=(Q(I)*V(I)*DELT-Q(I)*U(I)*DELT/AN)/(V(I)**2)
D(I)=EF*DELT-CA*X(I)*DELT
E(I)=2.*CI*(PI-VI(I+1))*DELT
R(I)=-CA*Q(I+1)*DELT

101 CONTINUE
DO 102 J=2,N
W(J)=(1+(C+X(J))*DELT)*V(J)-U(J)+(C+X(J))*DELT/AN)/(V(J)**2)
E(N1)=0.0
W(N1)=0.0
DO 150 I=1,N
L=I+1
GR(I)=0.0
QX(I)=AW(I)

DO 102
XI(I) = -DELT*QX(I)
DO 140 J=L,N1
QX(J) = W(J)*QX(J-1)
XI(J) = XI(J-1) - QX(J)*DELT
140 GR(I) = GR(I) + D(J-1)*QX(J-1) + E(J)*XI(J-1)
150 G(I) = GR(I) + R(I)
PRINT 200,KOUNT,NFUNC,KQ
PRINT 440
PRINT 451,(X(I),I=1,N1),(P(I),I=2,N1),(Q(I),I=2,N1),(VI(I),I=2,N1),
1(FI(I),I=2,N1)
RETURN
END
SUBROUTINE FUNCT(M,X,F,G,KQ)

THIS SUBROUTINE COMPUTES THE OBJECTIVE FUNCTION AND THE
GRADIENTS FOR THE PRODUCTION AND ADVERTISEMENT MODEL

DIMENSION X(15),G(15),U(15),W(15),Y(15),Z(15),O(15),VI(15),GR(15),
1AK(15),BK(15),AK2(15),BK2(15),DAK(15),DAK2(15),DBK(15),AR(15),
2DBK2(15),DA(15),E(15),F1(10),QQ(15),QX(15),XI(15),QI(15),CA(15)
DIMENSION UU(10),HH(10),UU(10),YY(10),YY(10),ZZ(10),VIZ(10),
1UX(10),UX(10),UX(10),UX(10),XL(10),YL(10),ZU(10)

COMPASS/ADO/NFUNC,KOUNT,NOFE

100 FORMAT(2F7.0,9F5.0,F7.4,F6.3)
450 FORMAT(15F8.3)
451 FORMAT(/' SALE',5F12.3,'/' INVENTORY',5F12.3,'/
1' PROFIT',5F12.3,'/
930 FORMAT(/' ITERATION #=',I3,1' # OF FUNCTIONAL EVALUATIONS=',
113,1' # OF CONSTRAINTS IN BASIS=',I3,1'/)
1000 FORMAT(/5F6.3,3X,5F6.3,3X,5F6.3,3X,5F6.3)
1001 FORMAT(' EA=',F8.0,' EB=',F8.0,' R=',F4.0,' AQ=',F4.0,' V=',
1F4.0,' VM=',F4.0,' TM=',F5.0,' AN=',F5.0,' C=',F3.0,' C1=',
2F3.0,' C2=',F3.0,' CT=',F6.4,' CA=',F5.3,/

NFUNC=NFUNC+1
NOFE=NOFE+1
IF(ACFE>GT,1) GO TO 90
READ 100,EA,EB,R,AQ,V,VM,TM,AN,C,C1,C2,CT,CA
PRINT 1001,EA,EB,R,AQ,V,VM,TM,AN,C,C1,C2,CT,CA
N=M/3
EN=
DT=1./EN
NL=N+1
U(1)=C.53
Y(1)=C.53
W(1)=C.43
Z(1)=C.43
Q(1)=1.0
VI(1)=E.0
XO=0.53
YO=0.43
CA=C.535E11
GB=C.461E18
90 CONTINUE
FL(1)=C.0
DO 101 I=1,N
K=I+1
L=K+1
AK1(I)=CA*EXP(-EA/(R*X(K)))
BK1(I)=GB*EXP(-EB/(R*X(K)))
AK2(I)=CA*EXP(-EA/(R*X(L)))
BK2(I)=GB*EXP(-EB/(R*X(L)))
DAK1(I)=AK1(I)*(EA/(R*(X(K)**2)))
DAK2(I)=AK2(I)*(EA/(R*(X(L)**2)))
DBK1(I)=BK1(I)*(EB/(R*(X(K)**2)))
CBK2(I)=BK2(I)*(EB/(R*(X(L)**2)))

101 CONTINUE
 DO 12 C J=2,N1
 I=J-1
 K=I+N
 L=K+N
 Q(J)=C(I)+(C+X(I))*(C(I)-(C(I)**2)/AN)*DT
 VI(J)=VI(I)+(AO*Z(I)-C(I))*DT
 U(I)=L(I)+(AC*(XC-U(I)))/V-AK1(I)*U(I))*DT
 W(J)=U(I)+(AC*(AM-K(I))/V-BK1(I)*K(I)+AK1(I)*U(I))*DT
 Y(J)=Y(I)+(AC*(U(I)-Y(I))/V-AK2(I)*Y(I))*DT
 Z(J)=Z(I)+(AC*(W(I)-Z(I))/V-BK2(I)*Z(I)+AK2(I)*Y(I))*DT
 F1(I)=F1(I)+(C1*Q(J)-C1*(VI-VI(I))**2-CA*(X(I)**2)*(Q(J)**2)-(10*(11-M-X(K)**2)**2+(X(K)-X(L)**2))*DT

120 CONTINUE
 F=F1(I)
 DO 13 C I=1,N
 J=I+1
 D(I)=C1*DT-2*C*A*(X(I)**2)*Q(J)*DT
 E(I)=2*C*I*(V*I-V(I(J)))*DT
 AR(I)=-2*C*A*X(I)*(Q(J)**2)*DT
 QA(I)=C*(C(I))-(Q(I)**2)/AN)*DT
 130 CONTINUE
 DO 14 C J=2,N
 QQ(J)=1+C*X(J)*(1-2*Q(J)/AN)*DT

140 CONTINUE
 E(N1)=C,G
 QQ(N1)=0,G
 DO 16 C I=1,N
 L=I+N
 GR(I)=C,G
 QX(I)=Q(A(L))
 XI(I)=-DT*C*X(I)
 DO 15 C J=L,N1
 QX(J)=CC(J)*CX(J-1)
 XI(J)=XI(J-1)-DT*C*X(J)
 150 GR(I)=GP(I)+D(J-1)*GX(J-1)+E(J)*XI(J-1)
 160 G(I)=GR(I)+AR(I)
 DO 25 C I=1,N
 J=I+1
 K=I+N
 L=K+N
 XK(I)=2*CT*DT*(TM-X(K))-2*CT*DT*(X(K)-X(L))
 XL(I)=2*CT*DT*(X(K)-X(L))
 UX(I)=-U(I)*CT*AK1(I)
 WX(I)=-DT*(W(I)+EBK1(I)-U(I)*DAK1(I))
 YX(I)=-CT*(I+AK2(I))Y(I)
 ZX(I)=-DT*(Z(I)+CBK2(I)-Y(I)*DAK2(I))
CONTINUE
CD 26C J=2, N
UU(J)=1,-DT*(AO/V+AK1(J))
WW(J)=1,-DT*(AO/V+PK1(J))
WU(J)=DT*AK1(J)
YY(J)=1,-DT*(AO/V+AK2(J))
YU(J)=AO*DT/V
ZZ(J)=AO*DT/V
ZY(J)=CT*(AO/V+BK2(J))
VIZ(J)=AC*DT

CONTINUE
DZ3X6=ZW(2)*WX(1)
D14X6=VIZ(3)*DZ3X6
CW3X6=HW(2)*WX(1)+WU(2)*UX(1)
CY3X6=YY(2)*UX(1)
DZ3X6=UU(2)*UX(1)
D15X6=DI4X6+VIZ(4)*ZZ(3)*DZ3X6+ZW(3)*D14X6+ZY(3)*DY3X6
DZ4X6=ZZ(3)*CZ3X6+ZW(3)*D14X6+ZY(3)*DY3X6
D16X6=HW(3)*CW3X6+HW(3)*CU3X6
DY4X6=YY(3)*CY3X6+YY(3)*DU3X6
D15X6=C15X6+VIZ(5)*ZZ(4)*DZ4X6+ZW(4)*D14X6+ZY(4)*DY4X6
D16X6=HW(3)*CW3X6+HW(3)*CU3X6
DY4X6=YY(3)*CY3X6
D15X6=VIZ(4)*DZ4X6
D16X7=DI5X7+VIZ(5)*ZZ(4)*DZ4X6+ZW(4)*D14X6+ZY(4)*DY4X6
D16X8=VIZ(5)*ZW(4)*HW(3)
D13X1=VIZ(2)*ZX(1)
DZ3X1=ZZ(2)*ZX(1)+ZY(2)*YX(1)
DY3X1=YY(2)*YX(1)
D14X1=CY3X1
DY5X1=YY(4)*DY4X1
D14X1=DI3X1+VIZ(3)*DZ3X1
DZ4X1=ZZ(3)*DZ3X1+YX(3)
D15X1=DI4X1+VIZ(4)*DZ4X1
DZ5X1=ZZ(4)*DZ4X1+ZY(4)*DY4X1
D16X1=DI5X1+VIZ(5)*CZ5X1
D14X2=VIZ(3)*ZX(2)
DZ4X2=ZZ(3)*ZX(2)+ZY(3)*YX(2)
D15X2=DI4X2+VIZ(4)*CZ4X2
D16X2=DI5X2+VIZ(5)*CZ5X2
D15X3=VIZ(4)*ZX(3)
D16X3=DI5X3+VIZ(5)*ZZ(4)*ZX(3)+ZY(4)*YX(3)
G(6)=E(3)*D14X6+E(4)*C15X6+E(5)*C16X6+XK(1)
G(7)=E(4)*D15X7+E(5)*D16X7+XK(2)
G(8)=E(5)*D16X8+XK(3)
G(9)=XK(4)
G(10)=XK(5)
G(12) = E(3) * D14 + E(4) * D15 + E(5) * D16 + XL(2)
G(13) = E(4) * D15 + E(5) * D16 + XL(3)
G(14) = E(5) * V17 + XL(4) + XL(4)
G(15) = XL(5)
PRINT 930, KNOT, NFUNC, K
PRINT 450, (X(I), I=1, N)
PRINT 1000, (U(J), J=2, N1), (W(J), J=2, N1), (Y(J), J=2, N1), (Z(J), J=2, N1)
PRINT 451, (O(I), I=2, N1), (V1(I), I=2, N1), (F1(I), I=2, N1)
RETURN
ENC
OPTIMIZATION OF INDUSTRIAL MANAGEMENT SYSTEMS

BY

THE CONJUGATE GRADIENT METHOD

by

ASHOK KUMAR ARORA

B. Tech. (Hons), Indian Institute of Technology
Kharagpur, India, 1965

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the
requirement for the degree

MASTER OF SCIENCE

Department of Industrial Engineering
KANSAS STATE UNIVERSITY
Manhattan, Kansas

1970
ABSTRACT

Motivated by the successful applications of the gradient methods to unconstrained nonlinear problems, a number of methods have been proposed to solve constrained nonlinear problems. In 1966, Goldfarb developed a quadratically convergent method, called the conjugate gradient method, to solve a class of nonlinear problems characterized by linear constraints. This method is the extension of Davidon's variable metric method and has the inherited ability to use the information about the local curvature of the nonlinear function without requiring calculation of second partial derivatives.

The purpose of this thesis is to apply the conjugate gradient method to some industrial management systems and to analyze the results.

The method is initially described and then three problems concerning production, inventory control, and advertisement are solved with a view to making a critical study of the technique. The first problem is a simple inventory model involving the minimization of production and inventory costs. The second model is the well-known diffusion model requiring to maximize profit by controlling advertisement. The last model is relatively more complicated and involves six state variables and three control variables. The results obtained have been found satisfactory.