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Abstract 

Radiometric methods may provide more objective and quantitative assessments of turf 

quality and density than visual ratings and may be useful in measuring green leaf area index 

(LAI), aboveground biomass, and chlorophyll concentration. This three-year study was 

conducted near Manhattan, KS to examine: 1) relationships between canopy reflectance and 

visual quality and density ratings in four cool-season grasses tall fescue (Festuca arundinacea 

Schreb.), Kentucky bluegrass (Poa pratensis L.) and two hybrid bluegrasses (HBG); 2) effects of 

species, mowing height, and irrigation deficit on relationships between visual quality and 

reflectance; 3) comparisons of visual quality with reflectance and digital images of individual 

plots; and 4) relationships of LAI, aboveground biomass, and chlorophyll concentration with 

canopy reflectance in the same four grasses and in perennial ryegrass (Lolium perenne), 

zoysiagrass (Zoysia japonica Stued.), and bermudagrass [Cynodon dactylon (L.) Pers.]. 

Reflectance was strongly correlated with visual ratings in the normalized difference vegetation 

index (NDVI, [935-661]/[935+661] nm, r = 0.88), the near infrared to red (NIR/R [935/661] nm, 

r = 0.83), Stress1 (706/760 nm, r=-0.84), and Stress2 (706/813 nm, r=-0.70) ratios and at 

wavelengths 613 (r=-0.74) and 661 nm (r = -0.80), but correlations varied among years at each 

wavelength and vegetation index. For density, highest correlations were in NDVI (r=0.86), R661 

(r=-0.84), and Stress2 (r=-0.82). Regressions between reflectance and quality and density ratings 

indicated cultivar- and mowing height-specific models. Irrigation-deficit strongly affected 

reflectance in KBG and both HBG but not in TF, indicating greater sensitivity to drought of 

bluegrasses than TF. Digital images indicated strong correlations between percentage green cover 

and visual quality (r=0.89). However, wide ranges in visual quality were observed in plots with 

 



similar green cover or NDVI for reasons that are not apparent. Correlations of LAI, aboveground 

biomass, and chlorophyll concentration with reflectance were strong in some species at different 

wavelengths and ratios. Results indicated both potential and limitations in using spectral 

reflectance to estimate turfgrass canopy characteristics. 
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CHAPTER 1 - General Introduction 

Visual quality of turfgrass is evaluated by integrating the factors of color, canopy 

density, texture, and uniformity (Turgeon, 1991). The most traditional way to evaluate turfgrass 

quality is with a visual rating system (scale from 1 to 9), in which an observer rates the aesthetic 

appearance of turfgrass. Although this method is relatively quick, it tends to be subjective and 

non-reproducible and may vary widely among evaluators (Horst et al., 1984). Density is defined 

as an estimate of living shoots or tillers per unit area (NTEP, 2005) and may be estimated 

subjectively, separately from visual quality, on a scale from 1 to 9. Manually counting shoots in 

a specified area, however, requires significant time and labor. Therefore, alternative methods are 

needed that provide more objective, consistent, and time - saving assessments of turfgrass quality 

and density.  

Multispectral radiometry (MSR) quickly measures light reflectance from plant canopies 

at a number of wavelengths and has been used to monitor appearance, growth status, disease, 

environmental stresses, and nitrogen deficiency (Raikes and Burpee, 1998; Trenholm et al., 

1999; Trenholm et al., 2000; Fitz-Rodríguez and Choi, 2002; Jiang et al., 2003; Kruse et al., 

2006) in turfgrasses.  

Digital photography has also been used to detect stresses such as N deficiencies in Zea 

mays L. (Ewing and Horton 1999) and salinity and drought stress in bermudagrass (Cynodon 

dactylon [L.], ‘Princess 77’) and in a hybrid bluegrass (HBG; Poa arachnifera (Torr.) × Poa 

pratensis [L.], ‘Reveille’) (Ikemura and Leinauer, 2007). High correlations have been found 

between estimates of percentage green canopy cover and color quality in turfgrass (e.g., hue) 

using visual and digital image analysis methods in zoysiagrass (Zoysia japonica Stued.), 
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creeping bentgrass (Agrostis palustris Huds.), and bermudagrasses (Cynodon dactylon [L.], Pers., 

‘Tifway’) (r2> 0.99)(Karcher and Richardson, 2003: Richardson et al., 2001).). Direct 

comparisons have not been made, however, among estimates of turfgrass quality using visual 

ratings, digital imagery, and spectral reflectance methods.  

Green leaf area index (LAI) is an important indicator of photosynthetic and 

transpirational capacity in turfgrass canopies. Additionally, aboveground biomass is an indicator 

of ecosystem productivity and is strongly related to LAI (Loomis and Conner, 1992). 

Chlorophyll concentration is a vital factor that links leaf light reflectance at certain wavelengths 

and photosynthetic activity (Danks et al., 1983: Haboudane et al., 2002) and is an indicator of 

both nitrogen (N) concentration and visual quality in turfgrasses. Measuring LAI in particular, 

and to a lesser extent aboveground biomass and chlorophyll content in turfgass is tedious, time 

consuming, usually destructive, and is complicated by the small size of the canopies (Brede and 

Duich, 1980; Kopec et al., 1987). Therefore, faster methods of accurately estimating green LAI, 

aboveground biomass, and chlorophyll content in turfgrasses are needed. 

Normalized difference vegetation index (NDVI) and the ratio of near infrared to red 

(NIR/R) are calculated from reflectance data and have been used to detect relationships with LAI 

and aboveground biomass in other crops. For example, Daughtry et al. (1992) determined that 

NDVI was highly correlated with LAI, and NIR/R was correlated with shoot biomass in corn 

(Zea mays L.) and soybean [Glycine max (L.) Merr.]. In a grassland in Italy, NDVI was strongly 

correlated with effective LAI (r2 = 0.74) and dry biomass (r2 = 0.78) (Vescovo et al., 2004). 

Strong correlations also were found between chlorophyll concentration and canopy 

reflectance at 705 nm, and the ratios of reflectance at 750/705 nm in Aescules hippocastanum L. 

and Acer platanoides L. leaves, at 675/700 nm in soybean leaves (Gitelson and Merzlyak, 1994; 
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Chappelle et al., 1992). Kruse et al. (2006) found that NDVI, Stress1 (R706/R760), and Stress2 

(R706/R813) ratios were highly correlated with N concentration in creeping bentgrass (Agrostis 

stolonifera L. ‘Penncross’). However, few relationships between vegetation indices and LAI, 

biomass, or chlorophyll concentrations in turfgrasses have been reported. 

The objectives of this study were to determine: 1) relationships of visual quality and 

density with canopy spectral reflectance among four cool-season turfgrasses under different 

irrigation regimes and mowing heights; 2) differences in turfgrass quality as estimated by 

methods of digital imagery, canopy reflectance, and visual ratings; and 3) relationships of LAI, 

aboveground biomass, and chlorophyll concentration with canopy spectral reflectance among 

different species and mowing height.
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CHAPTER 2 - Comparisons of Visual Ratings of Turfgrass Quality 

with Multispectral Radiometry and Digital Imagery 

 

 

Abstract 
Radiometric methods may provide more objective and quantitative assessments of turf 

quality than visual ratings. This study was conducted under a rainout shelter near Manhattan, KS 

for two years to examine: 1) relationships between canopy reflectance and visual quality ratings 

in four cool-season grasses tall fescue (Festuca arundinacea Schreb. ‘Dynasty’), Kentucky 

bluegrass (Poa pratensis L. ‘Apollo’) and two hybrid bluegrasses (HBG [‘Thermal Blue’] and 

[‘Reveille’]); 2) effects of species, mowing height, and irrigation deficit on relationships between 

visual quality and reflectance; and 3) comparisons of turfgrass quality rated visually, with 

reflectance and digital photographs of individual plots. Correlation analyses indicated significant 

relationships between reflectance and visual ratings at normalized difference vegetation index 

(NDVI, [935-661]/[935+661] nm, r = 0.88), the near infrared to red (NIR/R [935/661] nm, r = 

0.83), and R661 (r = -0.80) in 2004 and 2005. Additionally, visual ratings were highly correlated 

with Stress1 (706/760 nm, r=-84), Stress2 (706/813 nm, r=-0.70) ratios, and R613 (r=-0.74) in 

2005. Analysis of covariance revealed different regression models among species at each 

wavelength and index and within each mowing height in both years. Differences in reflectance 

between well-watered and irrigation-deficit plots were observed in KBG and both HBG but not 

in TF in 2005; TF was not as strongly affected by irrigation deficit as KBG and both HBG. 

 7



Digital images indicated strong correlations between percentage green cover and visual quality 

(r=0.89). In some instances, wide ranges in visual quality were observed in plots with similar 

percentage green cover or NDVI for reasons that are not apparent. Results indicated significant 

potential but also important limitations in using spectral reflectance as a method of estimating 

turfgrass quality.  

 

 8



Introduction 
Visual quality of turfgrass is evaluated by integrating the factors of color, canopy density, 

texture, and uniformity (Turgeon, 1991). The most traditional way to evaluate turfgrass quality is 

with a visual rating system (scale from 1 to 9), in which an observer rates the aesthetic 

appearance of turfgrass. Although this method is relatively quick, it has several disadvantages 

including a tendency to be subjective and non-reproducible (Horst et al., 1984). In addition, 

visual ratings may vary among evaluators or even with the same evaluator over time. Therefore, 

alternative methods are needed that provide more objective and consistent assessments of 

turfgrass quality. 

Multispectral radiometry (MSR) measures light reflectance from plant canopies at a 

number of wavelengths and has been used to monitor appearance, growth status, disease, 

environmental stresses, and nitrogen deficiency (Raikes and Burpee, 1998; Trenholm et al., 

1999a; Trenholm et al., 2000; Fitz-Rodríguez and Choi, 2002; Jiang et al., 2003; Kruse et al., 

2006). Trenholm (1999a), using MSR, reported significant correlations between light reflectance 

and visual quality, density, shoot tissue injury, and shoot growth on seashore paspalum 

(Paspalum vaginatum Swartz) ecotypes and hybrid bermudagrass cultivars (Cynodon dactylon L. 

x C. transvaalensis Burtt-Davy); spectral discrimination between wear-treated and untreated 

plots was also found. In another study (Fitz-Rodríguez and Choi, 2002), vegetation indices 

calculated from reflectance data (i.e., NDVI [normalized difference vegetation index], RVI [ratio 

vegetation index], and DVI [difference vegetation index]) were strongly correlated with visual 

quality (r2 = 0.73, r2 = 0.71, and r2 = 0.70, respectively) under different irrigation regimes on 

bermudagrass. Differences in spectral reflectance were found between C4 (bermudagrass) and C3 

(bentgrass) turfgrasses at all wavelengths (except 706 nm) and with NDVI and NIR/R (Trenholm 
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et al., 2000). In the latter study, NDVI in particular was useful for detecting growth differences 

between species. 

Although significant correlations between visual quality and canopy reflectance have 

been reported, there is sufficient unexplained variability in the relationships to warrant further, 

more refined examinations of the use of MSR in evaluating visual quality. Previous turfgrass 

studies have revealed r2 values as high as 0.82. However, r2 values in those studies, even when 

significant, were frequently <0.50 (Trenholm et al., 1999; Fitz-Rodríguez and Choi, 2002; Jiang 

and Carrow, 2005), which indicates >50% unexplained variability in the relationship between 

visual quality and reflectance values. Undoubtedly, some of this error can be attributed to the 

subjectivity of human evaluations of turfgrass appearance as described above (Horst et al., 1984). 

Measurements of canopy reflectance, however, are also subject resulting from differences in 

solar elevation and viewing angles, atmospheric conditions (e.g., clouds), soil background effects, 

and instrument calibration and operator error (Avery and Berlin, 1992; Chang et al., 2005; Jensen, 

2007).  

A number of turfgrass management practices, which may not necessarily affect visual 

quality, may nevertheless affect spectral reflectance and therefore, could confound attempts to 

evaluate turfgrass quality with MSR. For example, turfgrass species or cultivars with similar 

visual quality may have differences in reflectance values because of differences in leaf angles, 

canopy structure, wetness, or color among species (Turgeon, 1991; Loomis and Connor, 1992; 

Madeira et al., 2001; Jiang and Carrow, 2005, 2007). Mowing heights may affect leaf area index 

(LAI) and aboveground biomass, which may result in difference in vegetation indices (e.g., 

NDVI) using reflectance data, even when visual quality among mowing heights is similar (Fitz-

Rodríguez and Choi, 2002). High correlations between NDVI and LAI (r2 = 0.96) and between 
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NIR/R and shoot biomass was reported in corn (Zea mays L.), soybean [Glycine max (L.) Merr.] 

(Daughtry et al., 1992), and wheat (Triticum aestivum L.) (Asrar et al., 1984).  

As turfgrasses progressively become water-stressed under dry and hot conditions, their 

leaves lose turgor and roll or fold to reduce surface area and water loss from ET (Salisbury and 

Ross, 1969; Carrow et al., 2001; Park et al., 2007). Other researchers have reported that 

multispectral data detected differences in turfgrass performance and health under drought stress 

(Fenstermaker-Shaulis et al., 1997; Jiang and Carrow, 2005; Jiang et al., 2007).  

Digital photography has also been used to detect stresses in a number of crops. For 

example, N deficiencies in Zea mays L. were detectable by analyzing differences in hue values 

among fertility treatments (Ewing and Horton 1999). Salinity and drought stress in bermudagrass 

(Cynodon dactylon [L.], ‘Princess 77’) and in a hybrid bluegrass (HBG; Poa arachnifera (Torr.) 

× Poa pratensis [L.], ‘Reveille’) were detected with digital image analysis (Ikemura and 

Leinauer, 2007). In the latter study, drought and salinity stresses were also detected with MSR, 

but only with digital image analysis could salinity stress be differentiated from drought stress. 

High correlations have been found between estimates of green canopy cover using visual and 

digital image methods in bermudagrasses (Cynodon dactylon [L.]  Pers. x C. transvaalensis, 

‘Tifway’) (r2> 0.99) (Richardson et al., 2001). Other research has demonstrated significant 

correlation between visual and digital image assessments of turf color among bentgrass cultivars 

(Thorogood et al., 1993; Landschoot and Mancino, 1997; Landschoot and Mancino, 2000). 

Direct comparisons are needed of turfgrass quality estimates among plots using the 

methods of visual rating, digital imagery, and reflectance using MSR, with consideration given to 

effects of turfgrass management practices (e.g., mowing height, species differences). Therefore, 

the specific objectives of this research were to investigate: 1) the relationships between canopy 
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spectral reflectance data and visual quality ratings in four cool-season turfgrasses; 2) effects of 

mowing height, species, and irrigation deficit on the relationship between visual quality and 

spectral reflectance; and 3) relationships between digital photographs of individual turfgrass 

plots with corresponding spectral reflectance and visual quality data. 
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Materials and Methods 

Study site 

This research was conducted under an automated rainout shelter (12 × 12 m) for two 

consecutive years from 26 July to 3 October (DOY 208 to 277) in 2004 and 20 June to 30 

September (DOY 172 to 274) in 2005 at the Rocky Ford Turfgrass Research Center (39o13’53” N, 

96o34’51” W ) in Manhattan, KS. The rainout shelter allowed us to control water amount that 

was applied to each plot by person. A minimum of 1 mm of precipitation activated the shelter, 

which rested adjacent to the study area, to move on rails by an electronic drive system and 

completely cover the plots within two minutes. The shelter then returned to its resting position 

one hour after precipitation stopped. The soil at the site was a Chase silt loam (fine, smectitic, 

mesic Aquertic Argiudoll).   

 

Turfgrass maintenance, treatments, and experimental design 

Visual ratings, reflectance measurements, and digital images were collected from 

turfgrass plots in two concurrent experiments under the rainout shelter. The first was an 

investigation of the effects of mowing height and irrigation deficit on the performance of 

Kentucky bluegrass (KBG; Poa pratensis L. ‘Apollo’) and a HBG (‘Thermal Blue’). Sixteen 

plots (1.36 × 1.76 m) of KBG and 16 plots of Thermal Blue were arranged in a randomized 

complete block design with whole plot treatment in a two (mowing height) by two (irrigation) 

factorial. Species was a split-plot factor. The mowing height factor (high mowing =7.62 cm and 

low mowing =3.81 cm) was randomized in a whole –plot strip to one of the two rows in each 

block. The irrigation factor (100% and 60% evapotranspiration [ET] replacement) was 

randomized to one of two columns in each block (Cochran and Cox, 1992). Therefore, in a block 
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each of the four combinations of mowing height by irrigation treatments were applied to two 

plots and the two species (HBG and KBG) were randomly seeded in those two plots. 

The second study was an investigation of irrigation deficit on the performance of four 

cool season turfgrasses that included eight plots each (1.36 × 1.76 m) of KBG, Thermal Blue, tall 

fescue (TF; Festuca arundinacea Schreb. ‘Dynasty’), and a second HBG (‘Reveille’). Two 

irrigation treatments include well watered (replacement of 100% of ET) and irrigation deficit 

(60% ET replacement) to impose water stress. Plots were mowed at 7.62 cm and were arranged 

in a randomized complete block design with four replications  

Turfgrasses in both study were mowed twice weekly with a walk-behind rotary mower. 

Water was applied twice a week with a metered hand wand (Model 03N31, GPI, Inc., Wichita, 

KS) to accurately measure irrigation applications. All plots were bordered by 10-cm deep metal 

edging to prevent lateral water movement across plots after irrigation. Evapotranspiration was 

calculated with the Penman-Monteith equation (FAO, 1998) using data from an on-site weather 

station located within 50 m of study site. 

 

Measurements of visual quality, spectral reflectance, and canopy image 

Quality of each plot was rated visually on a scale from 1 to 9 (1=brown and dead turf, 

9=optimum turf, and 6= minimally acceptable turf for use in home lawns) by the same person in 

both years. Spectral reflectance of the canopy was measured in eight wavebands from 507 to 935 

nm with a hand-held multispectral radiometer (model MSR16, CropScan, Inc. Rochester, MN). 

Two reflectance measurements (0.5 m diam. Each according to manual) were collected near the 

center of each plot with the sensor at 1 m above ground level and the two measurements were 

then averaged. To reduce variation, canopy reflectance was taken between 1200 and 1430 h 
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central standard time (CST) with no cloud cover. All turfgrass plots were fully vegetated and thus, 

soil background effects were negligible.  

Turfgrass quality was compared with reflectance at each wavelength as well as with 

vegetation and stress indices (Trenholm et al., 1999). Four vegetation and stress indices were 

evaluated: 1) Normalized difference vegetation index (NDVI) computed as R935-

R661/R935+R661; 2) near infrared to red (NIR/R) computed as R935/R661; 3) Stress1 

computed as R706/R760; 4) Stress2 computed as R706/R813. In 2004, an intermittently loose 

cable between the sensor and datalogger caused significant error in the 706 waveband. Because 

W706 was used in calculations of Stress1 and Stress2, these data (i.e., R706, Stress1, and 

Stress2) were omitted from analyses for 2004.  

Green cover images were taken by the First Growth Digital Canopy Camera (Version 1.1 

Decagon Devices, Inc., Pullman, WA). Data from all plots were collected on seven measurement 

days (DOY 193, 210, 216, 224, 231, 245, and 274), concurrent with MSR measurements. All 

measurements were collected from 1 m above ground level, which was the same height as the 

MSR. 

 

Statistical analysis 

Data were analyzed with the regression and correlation procedures of SAS (SAS Institute 

Inc., Cary, NC) for comparisons of visual quality versus reflectance and visual quality versus 

percentage green color at each wavelength, vegetation indices, and stress indices. Data analyses 

included pooling all data among plots and days, although separately for each year. Data were 

also evaluated to determine the effects of 1) turfgrass height; 2) turfgrass species; 3) day of year; 

and 4) solar elevation angle on relationships between visual quality and reflectance. The GLM 
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procedure was used to analyze the effects of irrigation deficit as the study progressed and to 

conduct on analysis of covariance test for equal slopes and intercepts in regression models 

among species. 
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Results and Discussion 

Relationship between visual quality ratings and canopy spectral reflectance 

When reflectance data from all turfgrass plots were pooled, significant correlations (p < 

0.05) were found between turf quality and reflectance at all wavelengths and vegetation and 

stress ratios during both years of the study (Table 2.1). In 2004, R661, R760, R813, R935, NDVI 

and NIR/R were most highly correlated with visual ratings with correlation coefficients ranging 

from 0.65 to 0.75. In 2005, correlations were generally stronger than in 2004, with correlations 

as high as r=0.88. Similar to 2004, correlations with visual quality in 2005 were strong at R661, 

R760, NDVI, and NIR/R. Correlations were also high in 2005 at Stress1 and Stress2, which were 

not available in 2004, and at R613. Reflectance at 661 nm was strongly correlated with visual 

quality in both 2004 and 2005. 661 nm is the band that absorbs light for photosynthetic activity, 

which affects reflectance. The generally stronger correlations in 2005 were likely caused by 

drought and heat stress, which were more severe than in 2004 (Su et al., 2008). Greater stress in 

2005 generally expanded differences in quality and provided a broader base for comparing 

qualitative with quantitative data (Fig. 2.1).  

Interestingly, correlations with visual quality in 2005 were the weakest in R813 (r=0.38) 

and R935 (r=0.40), which was contrary to strong correlations at those wavelengths in 2004. 

Reflectance in the NIR range (e.g., R813 and R935) is caused primarily by intracellular light 

scattering from cellular air-water interfaces within mesophyll cells (Salisbury and Ross, 1969; 

Gupta and Woolley, 1971; Taiz and Zeiger, 2002). Therefore, as the amount of water increases in 

grass leaves, reflectance in the NIR also increases. Under the hotter and drier conditions of 2005 

than 2004 (Su et al., 2008), water content in leaves may have decreased before visible reductions 
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in quality were evident, which may explain the weaker relationship between reflectance in the 

NIR and visible quality.  

Relationships with visual quality were linear at R661, NDVI, Stress1, and Stress2, and 

quadratic at NIR/R (Fig. 2.2). Other researchers have reported high correlations between visual 

ratings and reflectance at 661 and 813 nm, as well as the ratios NDVI, NIR/R, Stress1, and 

Stress2 (r ranging from 0.77 to 0.80) on seven seashore paspalum (Paspalum vaginatum Swartz) 

ecotypes and three hybrid bermudagrass cultivars (Cynodon dactylon L. Pers. x C. transvaalensis 

Burtt-Dacy, ‘Midiron’) (Trenholm et al., 1999a). Additionally, Fitz-Rodríguez (2002) reported 

that NDVI and reflectance at 710, 760, and 810 nm were strongly correlated with visual quality 

for a hybrid bermudagrass cultivar (Cynodon dactylon L. Pers. x C. transvaalensis Burtt-Dacy, 

‘Midiron’). In our research, correlations between visual quality and NDVI were consistently 

stronger between visual quality and NDVI across years than between visual quality and other 

wavelengths and vegetation ratios (Table 2.1).  

 

Mowing height effects on spectral reflectance 

Despite higher correlations between visual quality and NDVI than visual quality and 

other indices and wavelengths, data revealed distinct mowing effects that confounded the 

relationship between NDVI and visual quality in 2005 (Fig. 2.3). For example, early in 2005 

(DOY 172-224), NDVI values were consistently greater in high- than in low-mown turfgrasses 

even though visual ratings were similar (Fig. 2.3A). Higher NDVI in high-mown plots in 2004 

and early in 2005 may indicate greater green biomass and LAI than in low-mown plots (Asrar et 

al., 1984; Gallo et al., 1985; Daughtry et al., 1992; and Goward and Huemmrich, 1992). 

Regression analyses for the early season in 2005 indicated separate relationships between 
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mowing heights of visual quality with reflectance; differences between mowing heights were 

observed at all wavelengths and indices (including NDVI) (data not shown). Clearly, this 

demonstrates that turfgrasses should be at similar heights when using MSR to evaluate turf 

quality.  

Interestingly, differences in NDVI diminished between high- and low- mown plots later 

in 2005 (Fig. 2.3A). Low mowing may stimulate tillering in bluegrasses, which may cause green 

LAI and biomass to increase (Kraft and Keeley, 2005). In our study, increased tillering in 

response to mowing may have caused green LAI and biomass to increase in low-mown plots as 

the season progressed. Consequently, increased tillering may have caused NDVI to increase in 

low-mown plots and thus, have diminished differences in NDVI between high- and low-mown 

plots. Further research is needed to determine relationships between spectral reflectance and 

green LAI and biomass in turfgrass.  

In 2004, visual quality and NDVI were both consistently lower in low- than in high-

mown plots throughout the study (Fig. 2.3B). The differences in quality and NDVI between 

mowing heights may be partially explained by a scalping effect in low-mown plots in 2004. The 

scalping, which occurred in late June, exposed the leaf sheaths and resulted in a lighter color and 

hence, lower visual quality in low- than high-mown plots, even long after the mowing height was 

adjusted upward in low mown plots (i.e., from 2.54 cm to 3.81 cm, on DOY 194, 2004, before 

the study began).  

Early in 2004, NDVI declined with visual quality from DOY 208 to 247, and NDVI was 

strongly correlated with visual quality at both mowing heights (r=85; Fig. 2.3B). As in early 

2005 (Fig. 2.3A), regression analyses of visual quality versus reflectance for early 2004 indicated 

discriminate relationships between low-mown and high-mown treatments for NDVI as well as 
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for wavelengths 507 through 661 nm (data not shown). Late in 2004 (i.e., from DOY 254 to 277), 

however, NDVI increased from 0.65 to 0.80 in low-mown plots and from 0.73 to 0.87 in high 

mown plots but visual quality remained relatively steady. A similar trend was observed in 2005 

between DOY 224 and 245, when NDVI increased from 0.61 to 0.7, while visual quality 

remained at about 5. These patterns indicate that while canopy reflectance is demonstrably 

related to visual quality, there are significant deviations from these relationships that are poorly 

understood. 

 

Species effects on reflectance 

Within the high mowing treatment, analyses of covariance revealed discriminate 

regression models among grass species at each wavelength and index during both years (data not 

shown). This is similar to the results of Jiang and Carrow (2005), who also reported differences 

in the relationship between turf quality and reflectance among species of warm-season 

turfgrasses. Those authors attributed differences in spectral reflectance among species to varying 

smoothness and shininess of leaf surfaces.  

In the current study, relationships were consistently strongest between visual quality and 

NDVI and visual quality and NIR/R among wavelengths and indices and therefore, relationships 

between visual quality with NDVI and NIR/R are presented in detail among species (Fig. 2.4 and 

2.5). Regression models between visual quality and NDVI were linear in both years, but separate 

models were evident among species in both years (Figs. 2.4A and 2.4B). The relationships 

between visual quality and NIR/R were quadratic, and differences in regression models were also 

observed among species in both years (Figs. 2.5A and 2.5B). In general, models were weaker for 

TF, probably because TF was less affected by the irrigation-deficit treatment; lesser effects of 
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irrigation deficit on visual quality and reflectance in TF resulted in narrower ranges of data for 

comparing qualitative with quantitative data (Trenholm et al., 1999a). 

Visual quality was significantly correlated with reflectance within each of the four 

turfgrasses at the high mowing height (Table 2.2). Furthermore, in 2005, correlations between 

reflectance and turf quality were significant at each wavelength and index in each turfgrass with 

the exception of at 813 nm in TF. In 2004, correlations were weaker, but remained significant 

among grasses at all wavelengths except at 507 and 613 in KBG, 559 in TB and R, and at 760, 

813, and 935 in TF. In general, correlations between quality and reflectance were strongest for 

the three bluegrasses. In 2005, peak correlations for the bluegrasses were in NDVI (r = 0.85 to 

0.91), NIR/R (r = 0.81 to 0.9), and Stress1 (r = -0.82 to -0.89), while peak correlations in 2004 

were at 760 nm (r = 0.69 to 0.75) and 935 nm (r = 0.67 to 0.75).  

At the low mowing height, which included only KBG and TB, discriminate regression 

models were also found between turfgrasses but differences were not consistent across 

wavelengths and indices during the two years of the study (data not shown). For example, in 

2004, separate models between KBG and TB were found at 507, 613, and 661 nm and in the 

NDVI and NIR/R indices. In 2005, however, no differences in regression models were found 

between species at those wavelengths or indices. In 2005, significant differences were found 

between KBG and TB at 760, 813, and 935 nm and in the Stress1 index.  

Within each turfgrass at the low mowing height, significant correlations between 

reflectance and visual quality were found at all wavelengths and indices during both years with 

the exceptions in 2004 at 559 nm in KBG and at 507, 559, and 613 nm in TB (Table 2.3). 

Correlations were consistently high at 760 nm in both KBG and TB during both years. Otherwise, 

correlations at other wavelengths and in the indices varied by year but were similar between 
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KBG and TB. For example, highest correlations (in addition to at 760 nm) in both grasses were 

at 813, and 935 nm in 2004, but were at 613 and 661 nm and in the NDVI, NIR/R, and Stress1 

indices in 2005. In 2004, correlations were also high in KBG at 661 nm and in the NDVI index.  

In general, correlations between visual quality and reflectance data were stronger in KBG 

and Thermal Blue and weaker in Reveille and TF when separated rather that pooling data among 

species (Tables 2.2 and 2.3). This further indicates that different species or cultivars may require 

separate models in estimating visual quality from reflectance data. Therefore, it is likely less 

effective or even inappropriate to estimate turfgrass quality with reflectance data using models 

derived from pooled data among species. 

 

Effects of irrigation deficit on reflectance 

Irrigation-deficit effects were not evident among species on DOY 179, 2005 (Table 2. 4), 

which was two days after irrigation-deficit treatments began. By DOY 196, however, irrigation 

deficit significantly affected visual quality and reflectance data at all but two wavelengths in 

Kentucky bluegrass. In Thermal Blue, irrigation-deficit effects were also evident on visual 

quality by DOY 196, but the only reflectance data affected were NDVI and NIR/R. By DOY 216, 

however, all four indices and all but two wavelengths revealed irrigation-deficit effects in 

Thermal Blue; this indicated an increasing severity of drought symptoms. In Reveille, no effects 

of irrigation deficit were evident until DOY 216, when visual quality, all indices, and all but two 

wavelengths revealed significant drought effects. No irrigation deficit effects were evident in TF 

on any dates with the exception of in visual quality on DOY 216. Tall fescue was never 

significantly affected by irrigation deficit, presumably because of its deep rooting system 

combined with deep soils at this site (Bremer et al., 2006; Su et al., 2008)). 
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Reveille, and to a lesser extent Thermal Blue (i.e., both HBG), were apparently less 

sensitive to irrigation deficit than KBG as illustrated by the time between initiation and detection 

of the effects of irrigation deficit treatments (Table 2.4). For example, by DOY 196, visual 

quality and reflectance data at all but two wavelengths in KBG were affected by irrigation deficit, 

while Thermal Blue was affected only in visual quality and NDVI and NIR/R and Reveille was 

not affected until DOY 216. Our observations of visual quality are generally in agreement with 

others who reported greater drought resistance in Reveille than in KBG, but negligible 

differences in drought resistance between Thermal Blue and KBG (Read et al., 1999; Supplick-

Ploense and Qian, 2005; Bremer et al., 2006; Su, 2007; Su et al., 2007, 2008). Research with 

irrigated and non-irrigated bermudagrasses also indicated that subtle treatment differences could 

be detected by NIR/R (Park et al., 2007) 

It is not clear why Stress1 and Stress2 indices and reflectance at all but two wavelengths 

detected irrigation-deficit effects in KBG but not in Thermal Blue despite visible symptoms in 

quality in both cultivars on DOY 196 (Table 2.4). Similarly, in TF, visual quality but not 

reflectance data was affected by irrigation deficit on DOY 216. These results indicate that 

irrigation-deficit symptoms were detected with the human eye before detection with canopy 

reflectance or may not have detected at all. Reflectance at 613 and 661 nm are strongly affected 

by photosynthetic activity and thus, are generally sensitive to stress symptoms. Reflectance at 

those wavelengths, however, was not affected in Thermal Blue on DOY 196 or in TF on DOY 

216 even though irrigation-deficit symptoms were visible. One possibility is that human bias 

may have influenced estimates of visual quality between well-watered and irrigation-deficit plots. 

In 2004, overall, differences in visual quality and reflectance at individual wavelengths 

and vegetation indices between well-watered and water-deficit plots were generally not 
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significant among species (data not shown). Air temperatures were cooler in 2004 than in 2005, 

in part because the study was conducted later in 2004, which minimized the effects of irrigation 

deficit (Su et al., 2008). 

 

Digital images of plots compared with NDVI and visual quality 

Strong correlations have been reported between visual and digital image assessments of 

turf color and between visual quality and NDVI (Thorogood et al., 1993; Landschoot and 

Mancino, 1997; Trenholm, 1999a; Landschoot and Mancino, 2000; Karcher and Richardson, 

2003). Digital images of plots in 2005, however, clearly illustrated disparities in relationships 

among visual appearances and percentage of green cover among plots with similar NDVI (Fig. 

2.6). For example, three plots of a HBG (Thermal Blue) with similar NDVI (i.e., 0.61 to 0.63) 

had subjective quality ratings that ranged from 4 to 6 and percentage green cover that ranged 

from 31 to 61% (Fig. 2.6A, 2.6B, and 2.6C). Similarly, photos of other HBG (Thermal Blue) 

plots with similar NDVI (i.e., 0.70 to 0.71) revealed ranges of visual quality from 5 to 7 and 

green cover from 55 to 88% (Fig. 2.6D, 2.6E, and 2.6F). Images of TF plots with comparable 

NDVI (i.e., 0.79 to 0.80) also exhibited a wide range in visual quality (i.e., from 5 to 8) and 

green cover from (i.e., from 56 to 95%) (Fig. 2.6G, 2.6H, and 2.6I). 

Percentage green cover, estimated digitally, was strongly correlated to visual quality (r2 = 

0.79) (Fig. 2.7). Nevertheless, there were also disparities in the relationships between visual 

quality and percentage green cover. For example, two plots of a HBG (Thermal Blue) with a 

visual quality of five exhibited green cover of 41% and 55% (Figs. 2.6B and 2.6D). Similarly, 

two other plots of Thermal Blue with visual qualities of six had green cover of 61% and 77% 

(Figs. 2.6C and 2.6E). From Figure 2.7, it is evident that for each percentage green value on the 
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abscissa, values of visual quality differed by two to four. For example, at 20% green cover, visual 

quality ranged from 4 to 7. The subjective nature of visual quality ratings undoubtedly 

contributed to variability in these relationships. Other variables that affect visual quality, 

however, may not have been detected by estimates of percentage green cover from digital images, 

such as canopy density, texture, uniformity, and hue of green. 
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Conclusions 
This study revealed strong correlations of turfgrass quality with spectral reflectance and 

percentage green cover from digital images (r = 0.65 to 0.88). Furthermore, data indicated that 

separate models are required among turfgrass species when estimating turfgrass quality with 

reflectance and that mowing height confounds relationships between visual quality and spectral 

reflectance. In a number of instances, however, significant disparities were observed among 

estimates of quality obtained visually, from reflectance using MSR, and from percentage green 

cover using digital imagery. For example, significant changes in NDVI were sometimes observed 

despite negligible, concurrent changes in visual quality, and vice versa. Similarly, there were 

instances when visual quality varied substantially despite similar percentage green cover, and 

vice versa. 

Results from this study illustrate the complexity in estimating turfgrass quality, whether 

subjectively or objectively. Each of the variables that may affect visual quality (e.g., canopy 

uniformity, texture, density, and color) may affect spectral reflectance differently, which in turn 

may confound estimates of turfgrass quality using reflectance data. Additional confounding 

effects of canopy architecture, soil background, solar elevation angles, atmospheric conditions, 

operator error, and turfgrass cultural practices (e.g., mowing height, turfgrass species) may 

exacerbate attempts to estimate visual quality with spectral reflectance data. Because of the 

subjectivity and inherent error in human evaluations of turfgrass visual quality, reflectance 

measurements may be useful in providing more objective and accurate estimation of visual 

quality. Nevertheless, it may not be appropriate to totally discredit evaluations of turfgrass 

quality with the human eye because ultimately that is how turfgrass will be judged and evaluated, 

particularly for aesthetic purposes. In this study, we found important limitations in using 
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reflectance data to estimate visual quality. Therefore, the replacement of traditional visual 

assessments of turfgrass with reflectance measurements will require circumspection. 
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Figures and Tables 
Figure 2.1 Visual quality among the four turfgrasses in the rainout shelter during the growing 

season in 2005 and 2004. HBG (R), HBG (TB), KBG, and TF indicate Reveille, Thermal Blue, 

Kentucky bluegrass, and tall fescue, respectively. 
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Figure 2.2 Relationship between visual quality ratings and reflectance at 661 nm (A) the 

normalized difference vegetation index (NDVI) (B), near infrared to red (NIR/R) (C), Stress1 

(D) and Stress2 (E) in 2005. Data were regressed across the entire study period for four cool-

season turfgrasses from all mowing height and water deficit treatments. 
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Figure 2.3 Normalized difference vegetation index (NDVI) and visual quality ratings (VQ) at 

high and low mowing heights in KBG and Thermal Blue during the study periods in 2005 (A) 

and 2004 (B). 
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Figure 2.4 Regression models of individual species between visual quality (VQ) and normalized 

difference vegetation index (NDVI) at the high mowing height in 2004 (A) and 2005 (B).  
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Figure 2.5 Regression models of individual species between visual quality (Q) and near infrared 

to red (NIR/R) at the high mowing height in 2004 (A) and 2005 (B). 
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Figure 2.6 Digital images of individual turfgrass plots taken in 2005. Text on each image represents (left to right); species (HBG = 

hybrid bluegrass, TB = Thermal Blue, and TF = tall fescue); visual quality ratings; normalized difference vegetation index; day of 

year; and percentage green cover. 

 33



 

HBG (TB), 4, 0.61, 224, 31% HBG (TB), 5, 0.63, 224, 41% HBG (TB), 6, 0.61, 245, 61%

HBG (TB), 5, 0.70, 210, 55%

TF, 5, 0.80, 231, 56% 

HBG (TB), 6, 0.70, 245, 77%

TF, 7, 0. 80, 231, 80% 

HBG (TB), 7, 0.71, 245, 88%

TF, 8, 0.80, 245, 95% 

A B 

D E F 

G H I 

C

 34

 



Figure 2.7 Relationship between percentage green cover as estimated from digital image analysis 

and visual quality ratings. All turfgrass species and mowing height and water deficit treatments 

were pooled in this analysis. 
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Table 2.1 Correlation coefficients of visual quality with spectral reflectance at each wavelength 

and ratio in four cool-season turfgrasses in 2004 (n = 384) and 2005 (n =576) (data for all four 

turfgrasses, treatments, and measurement dates pooled). Coefficients of R706, Stress1 and 

Stress2 in 2004 were deleted due to instrument error. 

 

Correlation Wavelength & 
Ratio¥ r (2004) r (2005) 
R507 -0.55 -0.48 
R559 -0.30 -0.64 
R613 -0.57 -0.74 
R661 -0.69 -0.80 
R706 -- -0.54 
R760 0.74 0.76 
R813 0.73 0.38 
R935 0.75 0.40 
NDVI 0.74 0.88 
NIR/R 0.65 0.83 
Stress1 -- -0.84 
Stress2 -- -0.70 

¥ Percentage of reflectance at selected wavelengths of ratios. NDVI, normalized difference 

vegetation index computed as (R935-R661)-(R935+R661); NIR/R, near infrared to red computed 

as R935/R661; Stress1 computed as R706/R760; and Stress2 computed as R706/R813 



Table 2.2 Correlation between visual quality and reflectance data at each wavelength and ratio within four turfgrasses at the high 

mowing height (7.62 cm) in 2004 and 2005. Shaded cells denote highest correlations in a given species and year. Coefficients of R706, 

Stress1 and Stress2 in 2004 were deleted due to instrument error. 

 

◊ ns = non significant correlation (p<0.05)  

KBG† TB‡ R¶ TF§ Wavelength & 
Ratio¥ r (2004) r (2005) r (2004) r (2005) r (2004) r (2005) r (2004) r (2005) 
R507 ns◊ -0.48 -0.44 -0.48 -0.35 -0.31 -0.38 -0.39 
R559 0.3 -0.69 ns -0.67 ns -0.49 -0.25 -0.6 
R613 ns -0.75 -0.44 -0.76 -0.42 -0.63 -0.32 -0.64 
R661 -0.51 -0.82 -0.62 -0.81 -0.57 -0.71 -0.4 -0.69 
R706 -- -0.69 -- -0.56 -- -0.31 -- -0.51 
R760 0.75 0.86 0.69 0.76 0.7 0.77 ns 0.38 
R813 0.71 0.32 0.68 0.33 0.64 0.42 ns ns 
R935 0.75 0.36 0.7 0.35 0.67 0.45 ns -0.13 
NDVI 0.62 0.91 0.67 0.9 0.65 0.85 0.32 0.75 
NIR/R 0.58 0.89 0.51 0.9 0.61 0.81 0.25 0.66 
Stress1 -- -0.89 -- -0.86 -- -0.82 -- -0.63 
Stress2 -- -0.81 -- -0.7 -- -0.61 -- -0.39 

† Kentucky bluegrass; ‡ Thermal Blue; ¶ Reveille; § tall fescue. 

¥ Percentage of reflectance at selected wavelengths of ratios. NDVI, normalized difference vegetation index computed as (R935-

R661)-(R935+R661); NIR/R, near infrared to red computed as R935/R661; Stress1 computed as R706/R760; and Stress2 computed as 

R706/R813. 
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Table 2.3. Correlation between visual quality and reflectance data at each wavelength and ratio within two turfgrasses at low mowing 

height in 2004 and 2005. Shaded cells denote higher correlations (i.e., r ≤ -0.6 and r ≥ 0.6) and the boxes indicate the highest 

correlations. Coefficients of R706, Stress1 and Stress2 in 2004 were deleted due to instrument error. 

  

◊ ns = non significant correlation (p<0.05)  

KBG† TB‡ Wavelength & 
Ratio¥ r (2004) r (2005) r (2004) r (2005) 
R507 -0.57 -0.44 ns -0.4 
R559 ns◊ -0.57 ns -0.52 
R613 -0.58 -0.7 ns -0.69 
R661 -0.71 -0.77 -0.42 -0.77 
R706 -- -0.36 -- -0.33 
R760 0.79 0.86 0.71 0.8 
R813 0.75 0.48 0.67 0.36 
R935 0.81 0.55 0.72 0.36 
NDVI 0.75 0.85 0.53 0.87 
NIR/R 0.68 0.86 0.45 0.88 
Stress1 -- -0.81 -- -0.81 
Stess2 -- -0.68 -- -0.59 

† Kentucky bluegrass; ‡ Thermal Blue 

¥ Percentage of reflectance at selected wavelengths of ratios. NDVI, normalized difference vegetation index computed as (R935-

R661)-(R935+R661); NIR/R, near infrared to red computed as R935/R661; Stress1 computed as R706/R760; and Stress2 computed as 

R706/R813. 
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Table 2.4  Probability values for irrigation-deficit effects on four turfgrasses by selected day of year (DOY) among visual quality, 
reflectance ratios, and individual wavelengths in 2005. Two irrigation treatments included 100% evapotranspiration (ET) replacement 
(well watered) and 60% ET replacement (irrigation deficit). Irrigation treatments began on DOY 177 and were terminated on DOY 
246. Shaded cells denote significant irrigation effects (p < 0.05).   
 

Spp. DOY Quality NDVI NIR/R Stress1 Stress2 R507 R559 R613 R661 R706 R760 R813 R935 

179 0.1340 0.3675 0.4734 0.3432 0.5472 0.4150 0.3225 0.3947 0.3849 0.4313 0.8586 0.9557 0.6940 

196 <.0001 0.0330 0.0232 0.0338 0.0273 0.0452 0.0590 0.0319 0.0220 0.0875 0.0467 0.0494 0.1241 

216 0.0011 0.0002 0.0005 0.0001 <.0001 <.0001 0.0003 <.0001 <.0001 0.0002 0.0114 0.0098 0.1198 

KBG† 

238 0.0011 0.0003 0.0008 0.0003 0.0003 0.0003 0.0018 0.0003 0.0003 0.0077 <.0001 0.0001 0.0003 

179 0.5370 0.5060 0.3874 0.3464 0.2872 0.4622 0.4579 0.2657 0.4155 0.4154 0.5456 0.4985 0.5227 

196 0.0240 0.0448 0.0544 0.1017 0.1396 0.1368 0.4150 0.1238 0.0650 0.4794 0.0764 0.1077 0.1110 

216 0.0106 0.0127 0.0139 0.0239 0.0208 0.0386 0.0698 0.0309 0.0259 0.0801 0.0061 0.0050 0.0033 

TB‡ 

238 0.0001 0.0081 0.0033 0.0100 0.0077 0.0329 0.1528 0.0176 0.0104 0.5585 0.0055 0.0054 0.0080 

179 0.3559 0.4128 0.3420 0.1002 0.1763 0.2300 0.0513 0.0742 0.1890 0.0816 0.7114 0.8048 0.8794 

196 0.3559 0.2892 0.3230 0.3790 0.4626 0.7614 0.4485 0.5032 0.3175 0.4266 0.2841 0.3607 0.2055 

216 0.0038 0.0080 0.0028 0.0117 0.0117 0.0069 0.0161 0.0071 0.0064 0.0556 0.0334 0.0962 0.1219 

R¶ 

238 0.0033 0.0022 0.0001 0.0012 0.0014 0.0071 0.2255 0.0040 0.0013 0.5045 0.0029 0.0052 0.0059 

179 · 1.0000 0.9394 0.9152 1.0000 0.5956 0.6724 0.8385 0.7710 0.6399 0.5898 0.6329 0.7541 

196 0.5370 0.8864 0.9123 0.9172 0.8345 0.6230 0.6639 0.7473 0.7075 0.5244 0.4557 0.6415 0.4866 

216 0.0300 0.1775 0.2674 0.2234 0.2639 0.5716 0.4603 0.2801 0.1958 0.3168 0.3547 0.3321 0.9281 

TF§ 

238 0.0686 0.1002 0.1324 0.2376 0.2571 0.1870 0.2048 0.1270 0.0935 0.1577 0.8600 0.6925 0.8268 

† Kentucky bluegrass; ‡ Thermal Blue; ¶ Reveille; § tall fescue. 
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CHAPTER 3 - Estimation of Visual Quality, Canopy density, Leaf 

Area Index, Aboveground Biomass, and Chlorophyll Concentration 

Using Multi-spectral Radiometry in Turfgrasses  

Abstract 
Measurements of visual quality, canopy density, leaf area index (LAI), aboveground 

biomass, and leaf chlorophyll content in turfgrasses are typically subjective or time- and labor-

intensive. Spectral reflectance may provide faster, more objective estimates of canopy 

characteristics than conventional methods. This study was conducted near Manhattan, Kansas, 

USA to determine relationships of canopy characteristics with spectral reflectance among 

different species and mowing heights. Relationships of canopy reflectance with visual quality 

and density were evaluated in four turfgrasses including tall fescue (Festuca arundinacea Schreb. 

‘Dynasty’), Kentucky bluegrass (Poa pratensis L. ‘Apollo’) and two hybrid bluegrasses 

(‘Thermal Blue’ and ‘Reveille’). Relationships of reflectance with green LAI, aboveground 

biomass, and chlorophyll content were evaluated in the same four grasses along with perennial 

ryegrass (Lolium perenne, ‘Alliance’ Blend), zoysiagrass (Zoysia japonica, ‘Meyer’), and 

bermudagrass (Cynodon dactylon, ‘Midlawn’). Strongest correlations with visual quality were in 

the normalized difference vegetation index (NDVI, [935-661]/[935+661] nm, r=0.77), at 613 nm 

(r=-0.71), and in the near infrared to red (NIR/R [935/661] nm; r=0.68) and Stress2 (706/813 nm, 

r=-0.70) ratio. For density, highest correlations were with NDVI (r=0.86), reflectance at 661 nm 

(r=-0.84), and Stress2 (r=-0.82). Analyses of covariance revealed different models for visual 

quality and density among grasses at each wavelength and index in KBG, TB, and R. Significant 

correlations of LAI, aboveground biomass, and chlorophyll concentration with reflectance were 
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found in some species at different wavelengths and ratios and the strongest was r=0.63. Weak 

relationships of reflectance with green LAI and aboveground biomass indicates further research, 

perhaps using hyperspectral technology, is needed to determine the suitability of using 

reflectance to determine LAI and aboveground biomass in turfgrasses. 
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Introduction 

Visual quality of turfgrass is typically evaluated by an observer on a scale from 1 to 9 

based on integrating the factors of canopy density, texture, uniformity, and color (Turgeon, 

1991). Although this method is relatively quick and convenient, it is subjective and may vary 

widely among evaluators (Horst et al., 1984). Among the factors that affect visual quality, 

density is defined as an estimate of living shoots or tillers per unit (NTEP, 2005). Density may 

be estimated subjectively, separately from visual quality, using a similar rating scale where 9 is 

maximum density. Density also can be measured by counting shoots in a specified area. 

Manually counting shoots, however, requires significant time and labor. Therefore, alternative 

methods are needed that provide more objective, consistent, and time saving assessments of 

turfgrass quality and density.  

Multispectral radiometry (MSR) provides a method for measuring light reflectance from 

canopies at a number of wavelengths and has been used to evaluate appearance, growth status, 

and physiological changes caused by environmental stresses in a number of turfgrass species 

(Trenholm et al., 1999; Trenholm et al., 2000; Fitz-Rodríguez and Choi, 2002; Jiang and Carrow, 

2005). Trenholm (1999), using MSR, detected significant correlations between light reflectance 

and both visual quality and density in seashore paspalum ecotypes and hybrid bermudagrass 

cultivars.  

Green leaf area index (LAI) is an important indicator of photosynthetic and 

transpirational capacity in turfgrass canopies. Additionally, aboveground biomass is an indicator 

of ecosystem productivity and is strongly related to LAI (Loomis and Conner, 1992). Despite the 

importance of LAI to such basic physiological factors as canopy-level photosynthesis and 
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transpiration, few LAI data are reported for turfgrass in the literature. Measuring LAI in turfgass 

is tedious, time consuming, usually destructive, and is complicated by the small size of the 

canopies (Brede and Duich, 1980; Kopec et al., 1987). Therefore, faster methods of accurately 

estimating green LAI in turfgrasses are needed.  

Vegetation indices, such as normalized difference vegetation index (NDVI) and the ratio 

of near infrared to red (NIR/R) are calculated from reflectance data and have been used to detect 

relationships with LAI and aboveground biomass in other crops. For example, Daughtry et al. 

(1992) determined that NDVI was highly correlated with LAI, and NIR/R was correlated with 

shoot biomass in corn (Zea mays L.) and soybean [Glycine max (L.) Merr.]. In a grassland in 

Italy, NDVI was strongly correlated with effective LAI (r2 = 0.74) and dry biomass (r2 = 0.78) 

(Vescovo et al., 2004). Asrar et al. (1984) detected that NDVI was correlated with absorbed 

photosynthetically active radiation (APAR) in wheat (Triticum aestivum L.) (r2 = 0.97); APAR is 

directly related to LAI (Loomis and Conner, 1992). Moreover, strong relationships between 

NDVI and plant biomass were found in spinach (r2 = 0.98) (Weckler et al., 2003). However, few 

relationships between vegetation indices and LAI or biomass have been reported for turfgrasses.  

Chlorophyll concentration is the vital factor that links leaf light reflectance at certain 

wavelengths and photosynthetic activity (Danks et al., 1983: Haboudane et al., 2002). 

Wavelengths in the visible spectral range (i.e., 400-700 nm), especially blue and red light, are 

absorbed by chlorophyll and consequently, reflectance is relatively low at those wavelengths. 

Chlorophyll content typically decreases when plants are under environmental stresses, attacked 

by diseases, or lacking sufficient nitrogen (N), which in turn lead to increased reflectance in the 

visible range (Raikes and Burpee, 1998) and decreased reflectance in the near infrared as the 

internal leaf structure degenerates (Guyot, 1990, Raikes and Burpee 1998). Strong correlations 
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were found between chlorophyll concentration and canopy reflectance at 705 nm and at the 

reflectance ratios of 750/705 nm in Aescules hippocastanum L. and Acer platanoides L. leaves, 

and 675/700 nm in soybean leaves (Gitelson and Merzlyak, 1994; Chappelle et al., 1992). In 

addition, the red edge, which is the sharp change in wavelengths between 680 (used as an 

indicator of red absorbance) and 760 nm (near infrared region which is sensitive to high internal 

scattering of light within mesophyll cells) was strongly affected by chlorophyll concentration in 

winter wheat (Munden et al, 1994).  

In turfgrass, chlorophyll concentration is an indicator of both N concentrations and 

visual quality. For example, strong correlations were detected between canopy reflectance and 

chlorophyll (r2 = 0.79), N concentration (r2 = 0.71), and visual ratings (r2 = 0.74) of St. 

Augustinegrass [Stenotaphrum secondatum (Walt.) Kuntze] (Rodriguez and Miller, 2000). Kruse 

et al. (2006) found that NDVI, Stress1 (R706/R760), and Stress2 (R706/R813) ratios were highly 

correlated with N concentration in creeping bentgrass (Agrostis stolonifera L. ‘Penncross’). 

Additionally, chlorophyll content have been correlated with turfgrass visual ratings (r2 = 0.91) 

(Madison and Anderson, 1963). Because different species of turfgrasses, even in non-stressed 

conditions, may exhibit different colors that may result from differing amounts of chlorophyll in 

the leaves, specific relationships of canopy reflectance with chlorophyll content and visual 

quality may exist among species as plants undergo stress. Such relationships, however, have not 

been reported.  

The objectives of this study were to determine: 1) relationships of visual quality and 

density with canopy spectral reflectance among four cool-season turfgrasses; 2) relationships of 

green LAI, aboveground biomass, and chlorophyll concentrations with reflectance among seven 

cool- and warm-season turfgrasses; and 3) effects of mowing height on visual quality, density, 
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green LAI, aboveground biomass, and chlorophyll concentration and on their respective 

relationships with canopy reflectance. 

 50



Materials and Methods 
Two research projects were conducted at the Rocky Ford Turfgrass Research Center 

(39o13’53” N, 96o34’51” W) near Manhattan, Kansas, USA, during the periods 26 April to 28 

July (Study 3-1) and 29 July to 11 October (Study 3-2) in 2006. The soil at the study site was 

classified as a Chase silt loam (fine, smectitic, mesic Aquertic Argiudoll).  

Visual quality and Density 

Turfgrass species included tall fescue (TF, Festuca arundinacea Schreb. ‘Dynasty’), 

Kentucky bluegrass (KBG, Poa pratensis L. ‘Apollo’) and two hybrid bluegrasses (HBG, 

‘Thermal Blue’ and ‘Reveille’), which are genetic crosses between native Texas bluegrass (Poa 

arachnifera Torr.) and Kentucky bluegrass. The experimental area was under an automated 

rainout shelter (12 x 12 m). Forty eight plots (1.36 × 1.76 m each) were arranged in a 

randomized complete block design with four replications. Two irrigation treatments included 

well watered (replacement of 100% of the water lost from plans and soil via evapotranspiration 

[ET]) and water deficit (replacement of 60% of ET). Irrigation treatments were applied from 

DOY 143 to 174 but irrigation treatments were halted after DOY 175 due to an infestation of 

billbugs (Sphenophorus parvulus Gyllenhal). Two mowing height treatments (high mowing = 

7.62 cm and low mowing = 3.81 cm) were applied to KBG and Thermal Blue for the whole 

duration of the experiment. 

A hand-held multi-spectral radiometer (model MSR16, CropScan, Inc. Rochester, MN) 

was used to measure spectral reflectance of the canopy surface from l m above ground level.  

Reflectance at eight wavelengths in the visible and near infrared region of the electromagnetic 

spectrum (i.e., at 507, 559, 613, 661, 706, 760, 813, and 935 nm) were acquired weekly. Two 

readings (approximately 0.5 m diam. each plot) were collected from each plot and were later 
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averaged. Data from all plots were collected on 12 days (DOY 117, 133, 139, 148, 159, 168, 174, 

182, 188, 194, 201, and 210) with no cloud cover, between 1200 and 1300 h central standard 

time (CST). Four vegetation and stress indices were calculated from reflectance data: 1) NDVI, 

computed as (R935-R661)/(R935+R661); 2) NIR/R (near infrared to red), computed as 

R935/R661; 3) Stress1 computed as R706/R760; 4) Stress2 computed as R706/R813.  

Visual quality was rated weekly on a scale of 1 to 9 (1 = brown and dead turf, 6 = 

minimally acceptable turf for use in home lawns, and 9 = optimum turf); turfgrass quality was 

based on integrated, visual estimates of uniformity, texture, density, and color. Density ratings, 

which were evaluated weekly by the same person who estimated visual ratings, also consisted of  

ratings from 1 to 9 but were based only on shoot density (1 = no grass, 6 = minimally acceptable 

density, and 9 = dense grass) (Trenholm et al., 1999). Measurements of visual quality and 

density were collected on the same day as spectral reflectance readings. 

 

Green leaf area index, aboveground biomass, and chlorophyll concentration 

In Study 3-2, green leaf area index (LAI), aboveground biomass and chlorophyll 

concentration were compared with reflectance data from each plot to evaluate the potential to 

estimate green LAI, aboveground biomass, and chlorophyll concentration in turfgrass with 

reflectance data . Data were collected from five cool-season turfgrasses including TF (Dynasty), 

KBG (Apollo), two HBG (Reveille and Thermal Blue), and perennial ryegrass (Lolium perenne, 

‘Alliance’ Blend), and from two warm-season grasses including zoysiagrass (Zoysia japonica, 

‘Meyer’) and bermudagrass (Cynodon dactylon, ‘Midlawn’). All turfgrasses except TF and 

Reveille were maintained at two heights to evaluate the effect of mowing on LAI, aboveground 

biomass and chlorophyll concentration and the ability of the MSR to detect those differences. 
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The high and low mowing heights varied among species. For example, the high mowing height 

of all grasses except perennial ryegrass was 7.62 cm; ryegrass was mowed at 8.89 cm. Low 

mowing heights were 3.81 cm for KBG and Thermal Blue, 0.56 cm for bermudagrass and 

zoysiagrass, and 5.08 cm for perennial ryegrass. Reveille and TF were maintained only at 7.62 

cm. 

Data were collected from plots (approximately 1.36 × 1.76 m) from random locations in 

established swards of each turfgrass at the study site; each species × mowing height combination 

was replicated three times. Two reflectance readings were taken per plot and then averaged. 

Turfgrasses were then clipped at ground level from three 45.58 cm2 areas within each plot (7.62 

diam. polyvinyl chloride ring). Clippings were collected and transported to the laboratory to 

estimate LAI, aboveground biomass, and chlorophyll concentration. Thus, a total of nine samples 

were collected from each mowing height by species combination. In the laboratory, green and 

dead leaves and shoots were separated and green leaf area was measured using an image analysis 

system (WinRHIZOTM 2002a,b,c., Régent Instruments Inc., Quebec City, Canada). Biomass 

samples were then dried in a forced-air oven for 24 hours at 70 C and weighed to determine dry 

biomass. 

For chlorophyll analysis, small amounts of green leaf tissue from both mowing heights 

(approximately 0.06 g from each species) were collected from the same plots concurrently with 

reflectance and LAI samples. Chlorophyll was extracted in dimethyl-sulphoxide (DMSO) for 

five days in a dark cabinet. Chlorophyll extractions were then transferred to a cuvette and 

absorbance was measured using a spectrophotometer (Spectronic Genesis 2, Spectronic 

Instruments Inc., Rochester, NY) set as 665 and 649 nm. Chlorophyll a and b concentration were 

calculated as Ch a = 12.19A665 – 3.45A649 and Ch b = 21.99 A649 – 5.32 A665 (Wellburn, 1994). 
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Data analysis 

In Study 3-1, data among plots were analyzed with the regression and correlation 

procedures of SAS (SAS Institute Inc., Cary, NC) for comparisons of visual quality and density 

with reflectance at each wavelength and index. The best fit (higher r value) describing the 

relationship between visual quality and density with reflectance data was determined by 

evaluating both linear and quadratic models for all wavelengths and vegetation indices. 

Correlation and regression analyses included pooling data among plots from all species on all 

measurement days. Data were also separated to determine the effects of turfgrass mowing height 

and species on relationships of visual quality and density with reflectance. The general linear 

model procedure of SAS was used to conduct an analysis of covariance test to test for equal 

slopes and intercepts in regression models among species.  

In Study 3-2, data among plots were analyzed separately by species and mowing height 

with the correlation procedures of SAS (SAS Institute Inc., Cary, NC) to determine relationships 

among species and mowing heights between reflectance at each wavelength and green LAI, 

biomass, Ch a, and Ch b. 
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Results and Discussion 

Visual quality and Density 

Relationships between visual quality and reflectance 

Significant correlations (p < 0.0005) were found between turf quality and reflectance at 

all wavelengths and vegetation and stress ratios during the study when data from all plots and 

measurement days were pooled (Table 3.1). In 2006, the strongest correlation between 

reflectance and visual quality ratings was at the ratio NDVI (r=0.77). Reflectance was also 

highly correlated with visual quality at wavelengths 507, 613, and 661, and the indices NIR/R, 

Stress1 and Stress2, with correlation coefficients ranging from 0.68 to 0.73. Conversely, 

correlations with visual quality were weakest at R706 (r = -0.37). Relationships with visual 

quality were linear through R706 and for the indices NDVI, Stress1 and Stress2 and quadratic at 

R760, R813, R935, and NIR/R. 

Our results are similar to those of Trenholm et al. (1999), who reported high correlations 

between visual ratings and reflectance at R661 and at the ratios NDVI, NIR/R, and Stress2 (r = 

0.72 to 0.91) in seven seashore paspalum (Paspalum vaginatum Swartz) ecotypes and three 

hybrid bermudagrass cultivars (Cynodon dactylon L. Pers. x C. transvaalensis Burtt-Dacy, 

‘Midiron’). Those authors also reported that visual quality was not correlated with reflectance at 

wavelength 706. Others have reported strong correlations between visual quality and NDVI (r = 

0.85) and NIR/R (r = 0.84) for a hybrid bermudagrass cultivar (Cynodon dactylon L. Pers. x C. 

transvaalensis Burtt-Dacy, “Midiron”) (Fitz-Rodriguez and Choi, 2002). 

Correlations between visual quality and reflectance were generally greater in years when 

turfgrasses were under more stress with the notable exception of in the NIR (Table 2.1; Table 2.2 

in Chapter 1). Presumably, correlations strengthened with stress because stress caused larger 
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ranges in both visual quality and reflectance among plots. For example, correlations were 

stronger in 2005, when drought and heat stresses were greater than in 2004 (Chapter 2; Su et al., 

2008). In 2006, drought and heat stress was not severe as in 2005 because irrigation-deficit 

treatments were halted due to an infestation of billbugs. Average of daytime air temperature 

(1000 – 18000 h CST) on measurement days was 30oC in 2005, but was 28oC in 2006. 

Consequently, correlations were usually weaker in 2006 than in 2005 between reflectance and 

visual quality. Correlations in 2006, however, were typically stronger than in 2004, probably 

because of stress related to billbug damage in 2006. 

Interestingly, correlations in the NIR range (e.g., R813 and R935) with visual quality in 

2006 were higher than correlations in 2005, but lower than correlations in 2004. Reflectance in 

the NIR range is caused primarily by intracellular light scattering from cellular air-water 

interfaces within mesophyll cell (Taiz and Zeiger, 2002). Therefore, more water in leaves causes 

greater reflectance in the NIR range. Because the irrigation-deficit treatment was stopped in 2006 

to relieve drought stress and enhance recovery from billbug injury, water content in grass leaves 

likely increased. Under stresses, water content may have decreased before visible reductions 

were evident, which would affect correlations in the NIR. The latter may explain the stronger 

relationships in 2006 between reflectance in the NIR and visual quality compared to 2005, when 

the grasses were under greater drought stress (Su et al., 2008). Lower drought and heat stress and 

the lack of stress from billbug damage probably resulted in higher reflectance in the NIR in 2004 

than in 2005 or 2006. 
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Species effects on relationships between visual quality and reflectance 

Within the high mowing height, visual quality was significantly correlated with 

reflectance at all wavelengths and indices in KBG, TB, and R (Table 3.2). The strength of the 

correlations, however, varied considerably among the three turfgrasses with the highest 

correlations in KBG and the lowest in TB. For example, correlations between visual quality and 

NDVI were 0.83 in KBG, 0.77 in R, and 0.65 in TB. In all three grasses, correlations were 

highest between NDVI and visual quality compared with all other indices and wavelengths. 

Among species, TF showed weaker relationships at most wavelengths and vegetation indices, 

and correlations were not significant at R760, R813, R935, and Stress1. Similar to the above 

discussion, correlations were generally stronger in species that exhibited greater stress symptoms 

because of subsequent greater ranges in visual quality during the study. Visual quality among 

plots ranged from a high of 8 in all grasses to a low of 3 in KBG, 5 in R and TB, and only 6 in TF. 

Visual quality averaged 6.02 in KBG, 6.53 in R, 6.79 in TB, and 7.48 in TF (Fig. 3.1) and thus, 

the strength of correlations was inversely proportional to average visual quality. 

Analyses of covariance revealed discriminate regression models among grasses at each 

wavelength and index during the study (data not shown). Relationships between visual quality 

and reflectance were greatest at the indices NDVI and NIR/R (Figure 3.2). Regression models, 

which were significantly different among species, all indicated linear relationships between 

visual quality and NDVI. Relationships between visual quality and NIR/R, however, were 

quadratic with the exception of TF, which was linear. In general, models were weaker for TF, 

probably because TF was less affected by the irrigation-deficit treatment; lower effects of 

irrigation deficit on visual quality and reflectance in TF resulted in narrower ranges of data for 

comparing qualitative with quantitative data (Trenholm et al., 1999a). 
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Jiang and Carrow (2005) also reported differences in relationships between turf quality 

and reflectance among warm and cool-season turfgrass cultivars and species (i.e., bermudagrass, 

seashore paspalums, zoysiagrass, and st. augustinegrass and tall fescue). Those authors attributed 

the differences among species to varying smoothness and shininess in leaf surfaces. When 

measuring reflectance, factors such as canopy architecture and leaf color may influence light 

reflectance even given similar qualities and thus, result in discriminate models of quality among 

turfgrasses. Also, different effects of stresses on individual cultivar and species may affect 

reflectance. These data indicate that turfgrass species or cultivars require separate models and 

that it may be inappropriate to estimate turf quality from models derived from pooled reflectance 

data from among species. 

 

Relationships between turfgrass density and reflectance 

Correlations between reflectance and canopy density were generally high (r = 0.54 to 

0.86) when data from all plots and measurement days were pooled (Table 3.3). Highest r values 

were obtained from NDVI (0.86), R661 (-0.84), R613 (-0.81), NIR/R (0.76), Stress1 (-0.80), and 

Stress2 (-0.82). Similar results were reported by Trenholm et al. (1999), who found highest 

correlations between density and reflectance at R661, NDVI, NIR/R, and Stress2. Regression 

analyses revealed linear relationships between density and reflectance at all wavelengths and 

indices except for NIR/R, which was quadratic. Generally, correlation values were higher for 

density (r = 0.54 to 0.86) than for visual quality (r = 0.37 to 0.77) except at R760 and R813. Our 

results were contrary to those of Trenholm et al. (1999), who reported that visual quality had a 

stronger relationship with reflectance data than density. 
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Species effects on relationships between density and reflectance 

Within the high mowing height, density ratings were significantly correlated with 

reflectance at all wavelengths and indices although correlations were generally strongest in KBG 

and weakest in TF (Table 3.4). Correlations between NDVI and density were 0.89 for KBG, 0.83 

for TB, 0.82 for R, and only 0.51 for TF. The highest correlations between density and 

reflectance for TF was at NIR/R (r = 0.66). Lower correlations in TF resulted from a narrower 

range in densities among TF plots because TF was not damaged by billbugs. Conversely, higher 

correlations indicated greater sensitivity to environmental stresses, which in this instance was 

primarily billbug damage. 

Analyses of covariance revealed different density models among grasses at each 

wavelength and index during study year (P<0.05; data not shown). Relationships were strongest 

among species between density and NDVI and NIR/R (Figure 3.2). Regression models were 

linear between density and NDVI and quadratic between density and NIR/R with the exception 

of TF, which was linear. Our data indicate that separate models are required when using 

reflectance data to evaluate canopy densities in different turfgrass cultivars or species. 

 

Green leaf area index, aboveground biomass, and chlorophyll concentration 

Relationships of green LAI and aboveground biomass with reflectance 

When data from all species and mowing heights were pooled, significant correlations 

were found between green LAI and reflectance at R507, R559, R613 and R706 (Table 3.5). No 

relationships, however, were evident between green LAI and NDVI or NIR/R (r = -0.04 and r = 

0.06, respectively).  
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When data were analyzed separately by species (Table 3.6), stronger correlations 

between LAI and reflectance were found in some species at different wavelengths and ratios. For 

example, KBG had high correlations in the R507 (r = -0.82), R559 (r = -0.90), R613 (r = -0.91), 

and R706 (r = -0.88), which were the same wavelengths that exhibited significant correlations 

when data were pooled (Table 3.5). Green LAI was strongly correlated with R813 in TB (r = 

0.87). The NDVI was highly correlated with LAI in R (r = 0.85), bermuda (r = -0.80), and zoysia 

(r = 0.99). In TF, however, no significant correlations were found between LAI and reflectance 

at any wavelengths or ratio.  

When all data were pooled, aboveground biomass was significantly (albeit not strongly) 

correlated with R559 (r = -0.34), R661 (r = 0.46), R706 (r = -0.34), and NDVI (r = -0.38) (Table 

3.5). No relationship between biomass and NIR/R was found in this study. Other researchers 

reported that shoot biomass was associated with NIR/R in corn and soybean (r2 = 0.99) 

(Daughtry et al., 1992). Trenholm et al. (1999) reported some correlation between shoot growth 

as clipping yield was and R661 (r2 = 0.29 and 0.11), R813 (r2 = 0.39 and 0.12), R935 (r2 = 0.35 

and 0.10), NDVI (r2 = 0.36 and 0.13), NIR/R (r2 = 0.39 and 0.16), and Stress1 (r2 = 0.12 and 

0.12) (r ranging from 0.32 to 0.59) although the associations were not consistent during their two 

year study.  

When data were analyzed separately by species (Table 3.6), results were similar to the 

relationships between green LAI and reflectance described above. For example, KBG had high 

correlations in the R507 (r = -0.87), R559 (r = -0.93), R706 (r = -0.93), R760 (r = -0.82), and 

R813 (r = -0.80). Aboveground biomass was strongly correlated with R613 (r = -0.88), R760 (r = 

0.83), R813 (r = 0.89), R935 (r = 0.86), NDVI (r = 0.81), and NIR/R (r = 0.81) in TB. Stronger 

correlations between aboveground biomass and reflectance were found in bermuda at NDVI (r = 
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-0.83) and NIR/R (r = -0.82), in zoysia at R507 (r = -0.97), R559 (r = -0.97), R613 (r = -0.97), 

R661(r = -0.97), R706(r = -0.98), NDVI (r = 0.99) and NIR/R (r = 0.99). In rye, the strong 

correlations were found at R706 (r = -0.92), R760 (r = -0.91), and R813 (r = 0.90). In TF, 

however, no significant correlations were found between aboveground biomass and reflectance 

at any wavelengths or ratio.  

In summary, our results did not indicate reflectance data as a strong predictor of green 

LAI and aboveground biomass in turfgrasses when data were pooled, although there were 

significant correlations at some wavelengths and NDVI. Stronger relationships were observed 

between LAI and aboveground biomass and reflectance when data were evaluated separately by 

species (e.g., r as high as 0.99). Small sample sizes (n=6) at only two heights per species, 

however, resulted in somewhat of a bimodal distribution in LAI and biomass between heights, 

which likely inflated r values artificially. Further measurements at smaller increments of height 

may increase confidence in the strength of the r values. Nevertheless, data indicated clear trends 

in the relationships between canopy reflectance and LAI and aboveground biomass. 

 

Leaf area index and aboveground biomass among species and mowing heights 

Green LAI varied significantly among species at all mowing heights (Fig. 3.4). At the 

high mowing height, LAI was greatest in TF and lowest in bermuda among species (Fig. 3.4.A).  

In TF, canopy density was visibly and consistently greater among species. In bermuda, a thick 

thatch layer probably reduced the canopy density and hence, reduced LAI. The LAI was similar 

among KBG, zoysia, and R. At lower mowing heights, LAI was greater in KBG than TB at 3.81 

cm while at 0.56 cm, LAI was greater in zoysia than in bermuda (Fig. 3.4.B). Presumably, 

factors such as canopy structure and cultural management practices (e.g., that affect thatch layer 
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development) result in differences in LAI among species mowed at the same heights. Not 

surprisingly, lower mowing reduced LAI in KBG, bermuda, zoysia, and PR (Fig. 3.5). In TB, 

however, LAI was not statistically different between two mowing heights. 

Tall fescue had the greatest biomass and bermuda the least among species, which was 

similar to the trend observed in green LAI (Figs. 3.6.A and 3.4.A). Interestingly, KBG and TB 

were not significantly different at the low mowing height despite their differences in LAI (Fig. 

3.6.B and 3.4.B). Zoysia was greater than bermuda at the low mowing height, however, which 

was the same trend as LAI. As with LAI, biomass was reduced with lower mowing in KBG, 

bermuda, zoysia, and PR (Figure 3.7). However, aboveground biomass in TB was not 

statistically different between mowing heights. 

 

Relationships of chlorophyll concentration on reflectance 

When data were pooled among species, no relationship was evident between chlorophyll 

a and reflectance at any wavelength or vegetation index. Chlorophyll b, however, had 

correlations with R661, R706, and NDVI (r = 0.35 to 0.44; Table 3.5). When chlorophyll 

concentration data were analyzed separately by species (Table 3.6), both bermuda and zoysia 

were correlated well with Ch a and Ch b at R507 (r = -0.86 and -0.93, respectively), R559 (r = -

0.92 and -0.93, respectively), R613 (r = -0.97 and -0.92, respectively), R661 (r = -0.93 and -0.93, 

respectively), R706 (r = -0.91 and -0.94, respectively), NDVI (r = 0.86 and 0.93, respectively), 

and NIR/R (r = 0.87 and 0.92, respectively). In addition, Ch b had strong relationships with R760 

(r = 0.99), and R935 (r = 0.99) in R and with R507 (r = 0.81) in rye. In other research, strong 

correlations were found between chlorophyll concentration and canopy reflectance at 705 nm 

and at the reflectance ratios of 750/705 nm in Aescules hippocastanum L. and Acer platanoides L. 
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leaves (Gitelson and Merzlyak, 1994), and 675/700 nm in soybean leaves (r2 > 0.97) (Chappelle 

et al., 1992). 
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Conclusions 
The strongest correlation between canopy spectral reflectance and visual quality ratings 

was at R507, R613, and R661, and the indices NDVI, NIR/R, Stress1 and Stress2, with 

correlation coefficients ranging from 0.68 to 0.77; correlations were weakest at R706 (r = -0.37).  

Within each high mowing height, visual quality was significantly correlated with 

reflectance at all wavelengths and indices in KBG, TB, and R. However, TF showed weaker 

relationships at most wavelengths and vegetation indices. Analyses of covariance revealed 

discriminate regression models among grasses at each wavelength and index during the study. 

Relationships between visual quality and reflectance were greatest at the indices NDVI (linear) 

and NIR/R (quadratic).  

Canopy density showed strong relationships with reflectance (r = 0.54 to 0.86) when 

data from all plots and measurement days were pooled.  The highest correlations were obtained 

with NDVI, R661, R613, NIR/R, Stress1, and Stress2. When evaluated by species, different 

relationships were found between density ratings and reflectance at all wavelengths and indices 

although correlations were generally strongest in KBG and weakest in TF. 

When data from all species and mowing heights were pooled, significant correlations 

were found between green LAI and reflectance at R507, R559, R613 and R706 (r = -0.54 

to -0.63). Similar to LAI, aboveground biomass was significantly (albeit not strongly) correlated 

with R559 (r=-0.34), R661 (r=0.46), R706 (r=-0.34), and NDVI (r=-0.38). When data were 

analyzed separately by species and mowing height, stronger correlations between LAI or 

biomass and reflectance were found in some species at different wavelengths and ratios (r = 0.80 

to 0.99).  
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No relationship was evident between chlorophyll a and reflectance at any wavelength or 

vegetation index, but Chlorophyll b had correlations with R661, R706, and NDVI when data 

were pooled among species. When data were analyzed by species, however, significant 

relationships were found of reflectance with both chlorophyll a (r = 86 to 94) and b (r = 0.83 to 

0.99) although relationships with chlorophyll a were evident only with warm-season grasses (i.e., 

bermudagrass and zoysiagrass). Effects of sampling on warm-season grasses as they were going 

dormant may affect chlorophyll concentration.  

In summary, results from this study indicate that evaluation of canopy characteristics 

using reflectance methods should evaluated separately by species because differences in their 

canopies may have important effects on spectral reflectance. Further research, perhaps using 

hyperspectral technology, is needed to determine the suitability of using reflectance to determine 

LAI and aboveground biomass in turfgrasses. 
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Figures and Tables 
Figure 3.1 Visual quality among the four turfgrasses in the rainout shelter during the growing 

season in 2006. HBG (R), HBG (TB), KBG, and TF indicate Reveille, Thermal Blue, Kentucky 

bluegrass, and tall fescue, respectively. 
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Figure 3.2 Regression models of individual species between visual quality (VQ) and normalized 

difference vegetation index (NDVI) (A), and near-infrared to red (NIR/R) (B) in 2006 
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Figure 3.3 Regression models of individual species between density (D) and normalized 

difference vegetation index (NDVI) (A), and near-infrared to red (NIR/R) (B) in 2006 
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Figure 3.4 Species effects on leaf are index (LAI) at the each mowing height. High mowing 

height = 7.62 cm on all species (A); low mowing height = 3.81 cm in KB and TB, 0.56 cm in 

Bermuda and Zoysia (B). Means with the same letter are not significantly different.  
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Figure 3.5 Effects of mowing height on leaf area index (LAI). High mowing height = 7.62 cm on 

all species except ryegrass = 8.89 cm; Low mowing height = 3.81 cm in KB and TB, 0.56 cm in 

Bermuda and Zoysia, 5.08 cm in Rye. Means with the same letter are not significantly different. 
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Figure 3.6 Species effects on aboveground biomass at the each mowing height. High mowing 

height = 7.62 cm on all species (A); low mowing height = 3.81 cm in KB and TB, 0.56 cm in 

Bermuda and Zoysia (B). Means with the same letter are not significantly different. 
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Figure 3.7 Effects of mowing height on aboveground biomass. High mowing height = 7.62 cm 

on all species except ryegrass = 8.89 cm; Low mowing height = 3.81 cm in KB and TB, 0.56 cm 

in Bermuda and Zoysia, 5.08 cm in Rye. Means with the same letter are not significantly 

different. 
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Table 3.1 Coefficient estimates of reflectance at each wavelength and ratio versus visual quality 

 four cool-season turfgrasses in 2006 (n =576) (data from all turfgrasses, mowing heights, and 

measurement dates were pooled).   

 

Wavelengths & 
Ratios¥ 

β0
 

β1
 

β2 r² Corr. 

in

 
R507 9.95 -0.76 0.49 -0.70*** - 
R559 10.79 -0.59 - 0.37 -0.61*** 
R613 9.29 -0.45 - 0.50 -0.71*** 
R661 8.64 -0.38 - 0.53 -0.73*** 
R706 10.25 -0.22 - 0.14 -0.37*** 
R760 -7.93 0.63 -0.0064 0.30 0.55*** 
R813 -10.88 0.69 -0.0064 0.38 0.62*** 
R935 -11.25 0.63 -0.0053 0.29 0.54*** 
NDVI -1.43 10.15 - 0.59 0.77*** 
NIR/R 3.17 0.49 -0.0132 0.46 0.68*** 
Stress1 11.02 -10.07 - 0.46 -0.68*** 
Stress2 11.09 -11.37 - 0.49 -0.70*** 

 

*** Significant at 0.0001 probability level. 

β0, β1, and β2 represent the intercept, linear coefficient, and quadratic coefficient, respectively. 

Abbreviation of corr. means correlation coefficient. 

¥ Percentage of reflectance at selected wavelengths of ratios. NDVI, normalized difference 

vegetation index computed as (R935-R661)-(R935+R661); NIR/R, near infrared to red computed 

as R935/R661; Stress1 computed as R706/R760; and Stress2 computed as R706/R813. 
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Table 3.2 Correlation between visual quality and reflectance data at each wavelength and 

vegetation ratios within four turfgrasses at high mowing height in 2006 (n=96). Shaded cells 

denote highest correlations in a given species. The highest correlation coefficients each species 

a

Wavelengths & 
R

† 
. 

TB‡ 
Corr. 

 
r. 

TF§ 
Corr. 

re highlighted.  

 

atios¥ 
KBG
Corr

R¶
Cor

R507 * -0.50** *** -0.23* -0.80** * -0.55  
R559 ** -0.3 *** 0.50*** -0.77* 9*** -0.50 -
R613 * -0.5 *** 0.45*** -0.77** 5*** -0.64 -
R661 * -0.6 *** -0.77** 3*** -0.73 -0.32** 
R706 -0.45*** -0.25* **  -0.34 -0.53*** 
R760 0.78*** 0.3 ** ns 4** 0.60*
R813 0.82*** .41** ** ns 0 * 0.72*
R935 0.78** .32** ** ns 0 * 0.67*
NDVI 0.83*** 0.65*** 0.77*** 0.24* 
NIR/R 0.80*** 0.59*** 0.69*** 0.34** 
Stress1 -0.79*** -0.51*** -0.63*** ns 
Stress2 -0.82*** -0.57*** -0.68*** -0.28** 

 

¥ Percentage of reflectance at selected wavelengths of ratios. NDVI, normalized difference 

vegetation index computed as (R935-R661)-(R935+R661); NIR/R, near infrared to red computed 

as R935/R661; Stress1 computed as R706/R760; and Stress2 computed as R706/R813. 

*, **, *** Significant at 0.05, 0.001, and 0.0001 probability levels, respectively. 

† Kentucky bluegrass; ‡ Thermal Blue; ¶ Reveille; § tall fescue. 

Abbreviation of corr. means correlation coefficient. 
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Table 3.3 Coefficient estimates of reflectance at each wavelength and ratio versus density 

in four cool-season turfgrasses in 2006 (n =576) (data from all turfgrasses, mowing heights, an

 

Wavelengths & 

ratings 

d 

measurement dates were pooled).  

Ratios¥ 
β0
 

β1
 

β2 r² Corr. 

R507 10.79 -0.90 0.60 -0.77*** - 
R559 12.08 -0.73 - 0.50 -0.71*** 
R613 1 -0.55 - 0.66 -0.81*** 0.14 
R661 -9 -0.46 - 0.71 -0.84*** .34 
R706 -12.73 -0.36 - 0.31 -0.56*** 
R760 -1.49 0.14 0.55*** - 0.30 
R813 0.76- 0.14 0.61*** - 0.37 
R935 -0.53 0.13 0.54*** - 0.29 
NDVI 12.13 0.74 0.86*** -2.77 - 
NIR/R 0.54 1 0.76*** 2.99 -0.0 0.58 
Stress1 - -12.71 -0.80*** 12.40 - 0.64 
Stress2 - -14.19 -0.82*** 12.43 - 0.67 

 

*** ant at 0.0 bility le

β0, β represen ept, line ent, and coefficie tively. 

Abbreviation of corr. means correlation coefficient. 

ifference 

, near infrared to red computed 

 Stress2 computed as R706/R813. 

 Signific 001 proba vel 

1, and β2 t the interc ar coeffici  quadratic nt, respec

¥ Percentage of reflectance at selected wavelengths of ratios. NDVI, normalized d

vegetation index computed as (R935-R661)-(R935+R661); NIR/R

as R935/R661; Stress1 computed as R706/R760; and
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Table 3.4 Correlation between density ratings and reflectance data at each wavelength and 

vegetation ratios within four turfgrasses at high mowing height in 2006 (n=96). Shaded cells 

denote highest correlations in a given species. The highest correlation coefficients each species 

were highlighted.  

wavelengths & 
R

† 
 

TB‡ 
Corr. 

 
r. 

TF§ 
Corr. atios¥ 

KBG
Corr.

R¶
Cor

R507 * -0.71** *** 0.38** -0.84** * -0.66 -
R559 ** -0.67** *** .59*** -0.84* * -0.62 -0
R613 * -0.78** *** .54*** -0.86** * -0.73 -0
R661 -0.88*** -0.84*** -0.79*** -0.44*** 
R706 ** -0.57** *** .48*** -0.68* * -0.52 -0
R760 * 0.21* ** 0.38** 0.70** 0.55*
R813 0.71*** 0.28** **  0.65* 0.47*** 
R935 0.66*** 0.21 ** * 0.60* 0.43*** 
NDVI 0.89*** 0.83*** 0.82*** .51*** 0
NIR/R 0.81*** .77*** ** 0  0.77* 0.66*** 
Stress1 -0.88*** -0.71*** -0.73*** -0.57*** 
Stress2 -0.89*** -0.78*** -0.78*** -0.67*** 

 

 tall fescue. 

omputed 

as R935/R661; Stress1 computed as R706/R760; and Stress2 computed as R706/R813. 

*, **, *** Significant at 0.05, 0.001, and 0.0001 probability levels, respectively. 

† Kentucky bluegrass; ‡ Thermal Blue; ¶ Reveille; §

Abbreviation of corr. means correlation coefficient. 

¥ Percentage of reflectance at selected wavelengths of ratios. NDVI, normalized difference 

vegetation index computed as (R935-R661)-(R935+R661); NIR/R, near infrared to red c
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Table 3.5 Correlation coefficients of spectral reflectance at each wavelength and vegetation 

6 

 Wavelengths 
&

r²  
(Line

r² 
(Quadratic)

Correlation 
efficient 

P-value 

indices versus chlorophyll b, green LAI, and aboveground biomass in seven turfgrasses in 200

(n = 36) (data for all species and mowing height pooled). 

 

 Ratio¥ ar) Co
R507 0.36 0.38 0.60 1 - 0.000
R559 0 0.41 .63  .40 -0 <.0001
R613 0 0.42 .54  .30 -0 0.0006

 
Green LAI 

0 0.36 .59  R706 .35 -0 0.0002
R559 0 0.26 .34  .11 -0 0.0443
R661 0 0.42 46  .21 0. 0.0047
R706 0.1 0.22 .34  2 -0 0.0409

 
Green Biomass 

0.1 0.20 .38  NDVI 5 -0 0.0207
R661 0.1 0.28 .43  8 0 0.0089
R706 0. 0.17 .35  12 -0 0.0381

 
Chlorophyll b 

0. 0.35 .44  NDVI 19 -0 0.0079

¥ Pe  of reflec lected w  of ratio normalized difference 

vegetation index computed as (R935-R661)-(R935+R661) 

rcentage tance at se avelengths s. NDVI, 
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Table 3.6 Correlation table between green LAI, aboveground biomass, and chlorophyll 

 (-) means that no significant 

differences were found.  

KBG† TF
§ 

concentration (chlorophyll a and chlorophyll b with each reflectance and vegetation indices by 

species in 2006. Significant at 0.05 probability level. Dash

TB‡ R¶ Bermudaǂ Zoysiaɂ Ryeɸ 

507 
.82)* 
.87)* 

Ch a )* 
Ch b )* 

L )**  
B )** 
C 3)*  
C 8) 

2)*  
* - LAI(r= -0

Bio(r= -0 - - (r= -0.86
(r= -0.83

AI(r= -0.97
io(r= -0.97
h a(r= -0.9
h b(r= -0.8

LAI(r= -0.9
Ch b(r= 0.81)

 

559 
AI(r= -0.90)*  
io(r= -0.93)* 

Ch a )* 
Ch b )* 

L )** 
B )** 
C 3)* 
Ch 89)* 

)** - 

613 LAI(r= -0.91)* 8)* Ch a( )** 
Ch b( )** 

LA ** 
B )** 
 C 2) 
C 8) 

8)* - 

LAI * Ch a )*  
Ch b )* 

LA ** 
B )** 
 C 3)* 
C * 

- 

L )** 

- 

- LAI(r= -0.92)**  
Bio(r= -0.94)* - 

813 Bio(r= -0.80)* LAI(r=0.87)*   
Bio(r=0.89)* Bio(r= -0.99)* - - LAI(r= -0.91)** 

Bio(r= -0.93)* - 

935 - Bio(r=0.86)* Ch b (r=0.90) - - LAI(r= -0.90)** 
Bio(r= -0.95)* - 

NDVI - Bio(r=0.81)* LAI(r=0.85)* 

LAI(r= 0.80) *  
Bio(r= -0.83)* 
Ch a(r= 0.86)*  
Ch b(r= 0.86)* 

LAI(r= 0.99)** 
Bio(r= 0.99)** 
Ch a(r= 0.93)* 
Ch b(r= 0.90) 

- - 

NIR/
R 

- Bio(r=0.81)* - 
Bio(r= -0.82)*,  
Ch a(r= 0.87)*  
Ch b(r= 0.87)* 

LAI(r= 0.99)*** 
Bio(r= 0.99)** 
Ch a(r= 0.92)* 
Ch b(r= 0.90)* 

- - 

L
B - - (r= -0.92

(r= -0.91

AI(r= -0.97
io(r= -0.97
h a(r= -0.9
 b(r= -0.
I(r= -0.97)

LAI(r= -0.94

Bio(r= -0.8 - r= -0.97
r= -0.97

io(r= -0.89
h a(r= -0.9
h b(r= -0.8

LAI(r= -0.8

661 - - (r=0.99)  (r= -0.93
(r= -0.90

I(r= -0.97)
io(r= -0.98
h a(r= -0.9
h b(r= -0.90)
AI(r= -0.95

- 

706 
LAI(r= -0.88)*  
Bio(r= -0.93)* - - Ch a(r= -0.91),*  

Ch b(r= -0.89)* 
Bio(r= -0.95)** 
Ch a(r= -0.94)** 
Ch b(r= -0.89)* 

LAI(r= -0.96)** 

760 Bio(r= -0.82)* Bio(r=0.83)* Ch b (r=0.99) - 

 

*, **, *** Significant at 0.05, 0.005, and 0.0001 probability levels, respectively. 

† Kentucky bluegrass; ‡ Thermal Blue; ¶ Reveille; § tall fescue; ǂ bermudagrass; ɂ zoysiagrass; ɸ 

ryegrass. 
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Appendix A - Abbreviations 

 
DOY day of year 

MSR multispectral radiometer 

NDVI normalized difference vegetation 

index 

NIR/R near infrared to red 

R507 reflectance at waveband 507 

KBG Kentucky bluegrass 

HBG (TB) hybrid bluegrass. ‘Thermal Blue’ 

HBG(R) hybrid bluegrass, ‘Reveille’ 

TF tall fescue 

Zoysia zoysiagrass 

Bermuda bermudargrass 

Rye ryegrass 

LAI leaf area index 

A649 absorbance at 649 nm 

Ch a chlorophyll a 

Ch b chlorophyll b 
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