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Abstract 

 

The hemibiotrophic rice blast fungus Magnaporthe oryzae undergoes complex 

morphological development throughout its infection cycle. From 8-20 hours after a fungal spore 

lands on a leaf surface, the fungus differentiates a complex appressorium that punctures the host 

cuticle. By ~24 hours post inoculation (hpi), the fungus grows inside an epidermal cell as a 

primary hypha, and by 36 hpi the fungus has differentiated specialized biotrophic invasive 

hyphae (IH) that are filling the first-invaded cell and moving into neighbor cells. Throughout its 

life cycle, IH invade living rice cells although invaded cells appear dead when the fungus moves 

into the next cell. Biotrophic invasion must be mediated by fungal effectors, proteins that 

pathogens secrete inside live host cells to control them. However, little is known about blast 

effectors, and the low fungal biomass in early infection stages complicates identification of 

effector genes, as well as identification of rice genes controlled by effectors. The characterized 

AVR-Pita effector gene is specifically expressed in planta, but it was not clear how its gene 

expression pattern changed in different infection stages. We found that AVR-Pita is first 

expressed around the time of penetration. AVR-Pita is highly expressed in IH developing in 

asymptomatic tissue from 36 hpi to as late as 7 days post inoculation when lesions are maturing. 

Using inoculated rice sheaths, we successfully enriched for infected tissue RNA that contained 

~20% IH RNA at 36 hpi. We compared IH gene expression to expression in mycelium from pure 

culture using a whole-genome M. oryzae oligoarray, and we compared infected rice gene 

expression to expression in mock-inoculated tissue using a rice oligoarray. Rice genes that were 

induced >50-fold during infection were enriched for genes involved in transferring information 

from sensors to cellular responses. Fungal genes that were induced >50-fold in IH included 

known effectors and many IH-specific genes encoding hypothetical secreted proteins that are 

candidate effectors. Gene knock-out analyses of three putative effector genes failed to show 

major effects on pathogenicity. Details of the blast interaction transcriptome will provide insights 

on the mechanisms of biotrophic plant disease. 
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Abstract 

The hemibiotrophic rice blast fungus Magnaporthe oryzae undergoes complex 

morphological development throughout its infection cycle. From 8-20 hours after a fungal spore 

lands on a leaf surface, the fungus differentiates a complex appressorium that punctures the host 

cuticle. By ~24 hours post inoculation (hpi), the fungus grows inside an epidermal cell as a 

primary hypha, and by 36 hpi the fungus has differentiated specialized biotrophic invasive 

hyphae (IH) that are filling the first-invaded cell and moving into neighbor cells. Throughout its 

life cycle, IH invade living rice cells although invaded cells appear dead when the fungus moves 

into the next cell. Biotrophic invasion must be mediated by fungal effectors, proteins that 

pathogens secrete inside living host cells to control them. However, little is known about blast 

effectors. The low fungal biomass in early infection stages complicates identification of effector 

genes as well as identification of rice genes controlled by effectors. The characterized AVR-Pita 

effector gene is specifically expressed in planta, but it was not clear how its gene expression 

pattern changs in different infection stages. We found that AVR-Pita is first expressed around the 

time of penetration. AVR-Pita is highly expressed in IH developing in asymptomatic tissue from 

36 hpi to as late as 7 days post inoculation when lesions are maturing. Using inoculated rice 

sheaths, we successfully enriched infected tissue RNA that contained ~20% IH RNA at 36 hpi. 

We compared IH gene expression with expression in mycelium from pure culture using a whole-

genome M. oryzae oligoarray, and we compared infected rice gene expression to expression in 

mock-inoculated tissue using a rice oligoarray. Rice genes that were induced >50-fold during 

infection were enriched for genes involved in transferring information from sensors to cellular 

responses. Fungal genes that were induced >50-fold in IH included known effectors and many 

IH-specific genes encoding hypothetical secreted proteins that are candidate effectors. Gene 

knock-out analyses of three putative effector genes failed to show major effects on pathogenicity. 

Details of the blast interaction transcriptome will provide insights into the mechanisms of 

biotrophic plant disease. 
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CHAPTER 1 - Molecular Analysis of Biotrophic Plant-

Microbe Interactions  

General Overview 

 

Resistance is the most common response of plants to pathogens and susceptibility is the 

rare event. Plants have evolved to develop effective mechanisms of defense and resist the attack 

of microbes that are constantly in contact with their potential host. To establish disease, 

pathogens need to face and neutralize different obstacles on their way into the plant tissue. The 

first barrier is the plant cell surface.  Penetration could occur through natural openings like 

stomata, through wounds, or by direct penetration using enzymes and/or mechanical forces. 

Once pathogens gain access by penetrating the plant cuticle, they face the second obstacle, the 

plant cell wall. After cell wall penetration, the pathogen is separated from plant cytoplasm just 

by the plasma membrane (Chisholm et al., 2006). Plasma membranes contain specialized 

proteins, extracellular surface receptors, which are involved in the detection of pathogen-

associated molecular patterns (PAMPs) to trigger immune responses. Chitin is a component of 

cell walls that is considered one of the major fungal PAMPs.  

 

 Plants use different strategies to fight against pathogen attacks, including production of 

antimicrobial substances or neutralization of the pathogen using resistance (R) protein-mediated 

defense responses. Effectors have been described as pathogen-derived proteins that are secreted 

inside the host, to the apoplast or cytoplasm depending on the pathosystem. R proteins have been 

classified in 5 major groups depending on their structures that are correlated with their role in the 

recognition of pathogen effectors. Group 1, represented by only one member (Pto), corresponds 

to a protein with a serine/threonine kinase region and a myristylation motif at the N terminus. 

Group 2, represented by many members, includes proteins with a leucine rich repeat (LRR) 

region, a putative nucleotide binding site (NBS) domain, and a  putative leucine-zipper (LZ) or 

coiled-coil (CC) sequence. Group 3 members have LRR-NBS domains and a Toll Interleukin 1 
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Receptor (TIR) region at the N terminus. Group 4 has a transmembrane (TM) domain and an 

extracellular LRR.  Group 5, similarly to the group 1, is represented only by the rice Xa21 gene 

and has a TM-LRR and a cytoplasmic serine/threonine kinase domain. Members of the first three  

classes of R proteins are predicted to be limited to the cytoplasmic space (Martin et al., 2003). 

Recently a new R gene cloned from rice  has identified a new group (Chen et al., 2006). This 

new class of R gene has a receptor-like kinase domain, a predicted extracellular B-Lectin 

domain, and an intracellular serine-threonine kinase domain.  The finding of R genes with new 

structures represents the increasing divergence of these genes which means that the previous R 

gene classes will continue expanding. It also raises the question about how many types of R 

genes actually exist (Bent and Mackey, 2007). Interestingly, the high level of evolution is not 

only found in the host side. Only few R proteins interact with their corresponding effectors in a 

direct way. Indirect interaction (termed the guard hypothesis) has been reported in bacterial 

systems, which involves the detection of host protein modifications induced by pathogen 

effectors (Ellis et al., 2007). This strategy shows an active-evolving mechanism from the 

pathogen to suppress plant defense responses (Van Damme, 2005). 

 

Any particular disease resistance event may occur through diverse mechanisms that could 

involve components interfering with the pathogen invasion process at different stages. The first 

plant response to pathogen attacks has been related to perception of PAMPs(Chisholm et al., 

2006).  If the pathogen suppresses the PAMPs-induced defense, plants can counteract this by 

activating a more specialized response, an effector-triggered immunity. PAMPs detection 

involves plant transmembrane receptors and effector recognition involves intracellular NBS-

LRR proteins, these two responses represent two different branches of the plant immune 

response (Jones and Dangl, 2006). Because PAMPs recognition by plants seems to be a very 

common response, the pathogen needs to develop new strategies to be able to cause disease 

(Huckenlhoven, 2005) first, by masking PAMPs; second, by circumventing recognition; third, by 

suppressing defense. As a common feature in a non-specific interaction, susceptible and resistant 

responses have overlapping components, especially at the beginning of the infection, that are 

defined as basal defense responses that differ mostly in timing and duration of each event (Birch 

and Kamoun, 2000).  
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The molecular basis of plant susceptibility has been less studied because plant response 

research is focused mainly on incompatible interactions and little is known about the plant 

components that make them prone to pathogen infection. Nevertheless, studies to identify plant 

genes required for susceptibility have been published. Mutation of the PMR6 gene confers 

resistance to powdery mildew in Arabidopsis, which illustrates an example of a gene required for 

susceptibility (Vogel, 2002). The pmr6 mutants contain more pectin in their cell walls than wild 

type Arabidopsis plant cells. This gene encodes a pectate lyase and presumably interferes with 

pathogen growth by accumulating pectin in the extrahaustorial matrix, which could interfere with 

nutrient availability. In the same way, loci required for Arabidopsis susceptibility to the downy 

mildew pathogen have been identified (Van Damme, 2005). Mutants in DMR loci lost 

susceptibility and the effect is predicted to be related to impaired signaling, nutrient transport, or 

membrane biogenesis mechanisms.  Interestingly, some host susceptibility factors have been 

isolated and mutants defective in these genes do not exhibit a constitutive defense response; 

defenses are only activated after pathogen challenge. For example, a susceptibility gene has also 

been identified in the rice-Xanthomonas oryzae pv. oryzae system (Yang, 2006). The Os8N3 

gene encodes a predicted integral membrane protein that is part of the MtN3 gene family with 

unknown function. Another example involves defense regulators WRKY proteins that are 

transcriptional regulators of genes involved in different plant biological processes including plant 

defense. Recently, the WRKY7 gene in Arabidopsis has been shown to be over-expressed during 

pathogen infection and loss-of-function mutants exhibited enhanced resistance to Pseudomonas 

syringae (Kim, 2006). The WRKY7 gene appears to function as a plant defense negative 

regulator. Thus, gene products that render the host susceptible to the pathogen attack could either 

be negative regulators of defense responses or substrates specifically used by the pathogen 

(Huckenlhoven, 2005). The identification of Os8N3, a dominant susceptibility gene supports the 

hypothesis relating developmentally-regulated genes with disease susceptibility. Both PMR6 and 

Os8N3 are also involved in other cellular processes, cell expansion and pollen viability, 

respectively. The fact that susceptibility genes can have pleiotropic effects points out the strategy 

pathogens use to manipulate host genes required for normal plant development. These findings 

expand the possibilities in the types of genes that expression and functional analyses should 

focus on, compromising experimental designs such as the use of cDNAs obtained from 

subtracted libraries or enrichment for incompatible interaction factors. As a take home message 
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from characterization of susceptibility genes, studies of compatible interactions should not be 

limited to genes that are repressed during pathogen interactions. Plant genes over-expressed 

during the compatible interaction could represent potential plant factors involved in 

susceptibility. 

 

Eukaryotic plant pathogens, fungi and oomycetes, can establish different kinds of 

interactions with their host. A necrotrophic pathogen kills host cells before colonization. 

Necrotrophs use toxic molecules and lytic enzymes to destroy host cells and subsequently 

decompose them, and subsequently use their components as nutrient sources (van Kan, 2006). 

On the other hand, a biotrophic association is characterized by a tightly controlled infection 

strategy in which the infected cell is maintained alive to be used as a nutrient source. Plant 

biotrophic pathogens, especially fungi, are characterized by highly developed infection 

structures, limited secretion of lytic enzymes, carbohydrate-rich and protein-containing 

interfacial layers for the separation of the fungal surface from the plant plasma membrane, long-

term suppression of host defenses, and haustoria or specialized hyphae for nutrient absorption 

(Mendgen and Hahn, 2002).  Interactions that are initially biotrophic, but later involve cell death 

are known as hemibiotrophic. Interactions established by this type of pathogen shows 

characteristics of biotrophy because the pathogen initially develops in living cells, but later 

switches to a destructive necrotrophic phase (Liu et al., 2007). As is the infection strategy, 

biotrophic and necrotrophic defense responses are also different. For biotrophic pathogens, the 

gene-for-gene interaction is an important form of resistance (Glazebrook, 2005). In dicots, it is 

mainly associated with the salicylic acid-dependent signaling and systemic acquired resistance. 

On the other hand, the gene-for-gene strategy is not relevant for the resistance to necrotrophs 

because host cell death will not stop pathogen development. 

 

In a recent report, Van Damme and colleagues (Van Damme, 2005) have listed the main 

steps that are relevant for the establishment of compatible interactions by biotrophic 

microorganisms. The first step involves the formation of specialized structures used for host 

penetration and nutrient acquisition. During this stage the pathogen uses its effector repertoire to 

initiate the interaction with the host. In the second step the pathogen is inside the host 

environment and exposed to the host’s defense machinery. It is here where the pathogen needs an 
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efficient strategy to suppress plant defense responses triggered after recognition. In the third step, 

the establishment of a nutrient acquisition system that assures the pathogen survival is crucial 

because this is what disease progression depends on. 

 

Biotrophic oomycete and fungal plant pathogens develop intracellular structures called 

haustoria that are used as feeding structures. In most hemibiotrophs, functionally similar 

structures, invasive hyphae, are formed. This morphological differentiation has multiple roles in 

establishing infection because it is critical for effector secretion and establishment of nutrient 

acquisition. Several studies have been published on the identification of secreted proteins 

expressed in haustoria. A cDNA library from haustoria formed by the broad bean rust Uromyces 

fabae allowed the isolation of in Planta Induced Genes (PIGs) (Hahn, 1997). Some of these 

genes were shown to be highly expressed in the haustorium. PIGs sequences showed similarity 

with amino acid transporters, and genes involved in metabolism such as thiamine biosynthesis. A 

similar approach in the rust-flax interaction focused on secreted proteins and allowed the 

identification of 21 haustorially-expressed secreted proteins (HESPs). One of them corresponded 

to an already characterized avirulence gene, AvrL567 (Catanzariti et al., 2006). Comparison of 

the genes expressed in these two studies showed the functional diversity of genes expressed in 

haustoria, on one side, host-interacting genes and on the other, metabolism-related genes. 

 

As part of the host interaction, intracellular pathogen development requires suppression 

of the plant defense responses. Described pathogenicity determinants often correspond to 

pathogen-derived molecules that are needed to avoid host defense responses or to counteract 

their effects. In filamentous fungi, in general, the secretion of degradative enzymes and other 

proteins is a defining characteristic (Paper et al., 2007). Small secreted proteins representing 

effectors or others of unknown function are produced to establish host colonization. Some 

effectors, encoded by avirulence genes, are recognized by plant R proteins to trigger defense 

responses. Most avirulence gene products are apparently secreted proteins that need to be 

localized into the host cytoplasm to exert their avirulence function. In plant pathogenic bacteria, 

effector proteins are scattered along the genome, but there is little evidence suggesting genome 

location dependency in fungi. Ustilago maydis is the only fungal pathogen in which clusters of 

secreted proteins have been identified (Kamper et al., 2006). Cluster deletion analyses in this 
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system have shown that proteins in those clusters that are important for virulence range in size 

between 135 to 799 amino acids (aa). Recently, van der Does and Rep (van der Does, 2007) have 

reviewed some fungal virulence genes, which encode small secreted proteins involved only in 

virulence. These examples of virulence genes show the tendency for virulence factors to be small 

secreted proteins. In Fusarium graminacearum, analysis of secreted proteins identified 120 

proteins that were produced in planta, from which 49 were not seen under in vitro conditions 

(Paper et al., 2007). Other pathogenicity determinants include genes that encode proteins 

involved in protein degradation, cellular detoxification, or transcription factors. Their molecular 

roles could be somehow simpler to identify because a large effect can be observed in the 

pathogen when their expression is impaired. On the other hand, other equally important genes, 

whose function is not directly associated with the ability to produce disease but is important for 

the pathogen adaptation to the new environment, could also represent interesting genes to be 

identified. A protein of Uromyces favae involved in the maintenance of biotrophic interaction 

has been identified (Kemen et al., 2005). The 220-aa long Uf-RTP1p protein localizes inside the 

plant cell and does not exhibit similarity with any other protein in the public databases. Similar 

proteins could represent important weapons for long-lasting biotrophs, and, why not, 

hemibiotrophs because host infected cells are maintained alive for certain period of time. 

 

Pathogens can exhibit dynamic changes in metabolism depending on the developmental 

stage during the infection. In the case of the Blumeria graminis-barley interaction, expression 

analysis of the pathogen shows that the fungus expresses genes involved in building components 

for the appressorium, in degrading plant cell walls and in penetration during the first 15 hours 

post infection (hpi). After penetration, pathogen genes involved in metabolism of host are 

induced (Both et al., 2005). Gene expression analysis in the same patho-system, but using a 

single-cell transcript profile, also showed the over-expression of nutrition-related sucrose 

synthase genes HU03P12 and HY10G10 (Gjetting et al., 2007). 

 

Nitrogen starvation stress has been widely correlated with in planta conditions of many 

fungi.  The Avr9 gene from Cladosporium fulvum, which induces a hypersensitive response in 

Cf9-carrying tomato plants, was shown to be expressed after fungal penetration and when the 

fungus was grown in vitro with limiting nitrogen (Van den Ackerveken, 1994). With this finding, 
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it was hypothesized that nitrogen starvation could be a key condition regulating expression of 

pathogenicity-related proteins. However, recent studies demonstrated that Avr9 is the only 

avirulence gene from this pathogen whose expression is regulated by nitrogen-limitation 

conditions. Expression of other pathogenicity genes was not affected when C. fulvum was grown 

in vitro under different nitrogen concentrations (Thomma, 2006).  

 

Unlike bacteria-plant systems, in which secretion of effectors inside host cells is well 

known to be dependant on the type III secretion system (TTSS), how eukaryotic-derived 

effectors reach the plant cytoplasm is still unknown. About 17 fungal and oomycete effectors 

containing signal peptides have been identified, which represents evidence for their secretion 

from the pathogen. Only oomycete pathogens has an additional motif, the RXLR-DEER motif, 

associated with secretion into the plant cell’s cytoplasm (Whisson, 2007). Nothing is known in 

any system about the mechanism of secretion inside the host cell. Effector endocytosis involving 

specialized cell receptors is one hypothesis {Chisholm, 2006 #458}, but this remains to be 

proven. In this sense, host transmembrane proteins induced during infection could be good 

candidates.  

 

Rice Blast Disease  

Magnaporthe oryzae 

Magnaporthe oryzae (Couch and Kuhn) is a filamentous ascomycete fungus that can be 

grown in vitro. This heterotallic fungus occurs in two mating types, MAT1-1 and MAT1-2, which 

permits genetic studies when fertile strains from opposite mating types are available (Kato and 

Yamaguchi, 1982; Notteghem and Silue, 1992). The majority of field isolates from rice are 

infertile, but fertile isolates do occur rarely. The strain GUY11, a MAT1-2 strain, isolated in 

French Guiana, is one of these rare fertile rice pathogens (Leung et al., 1988). The genome 

sequence of M. oryzae, laboratory strain 70-15, is available (Dean et al., 2005). The genome is 

predicted to be around 40 megabases (Mb) in size and to contain about 11,109 genes distributed 

on 7 chromosomes (Dean et al., 2005). Seventy nine percent of the predicted genes correspond to 

conserved hypothetical proteins and 20% represent predicted proteins. Genome sequencing also 

showed that the M. oryzae genome is rich in G-protein-coupled receptors (GPCRs), which are 
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involved in inducing signal transduction pathways, including 61 GPCRs described for the first 

time. Additional valuable information coming from this whole genome analysis is the prediction 

of 739 putative secreted proteins (Dean et al., 2005). 

 

Oryza sativa 

Rice (Oryza sativa) is one of the most important sources of food in the world, especially 

for developing countries. As the most important disease of rice, rice blast represents a major 

threat to global food security. The O. sativa L. ssp. japonica cv. Nipponbare finished genome is 

predicted to be 389-Mb in size organized into 12 chromosomes with 37,544 protein-encoding 

sequences {Sequencing, 2005 #296} . 

 

After a genome sequence is available, another important stage, the prediction of coding 

sequences, begins. Even though rice has been studied for a long time and many genes have 

already been identified, predicting the structures of the remaining genes is accomplished using 

automated methods for gene calling. Good evidence for the correct calling of a gene structure is 

represented by expression data, such as expressed sequence tags (EST) and full-length cDNAs 

(FL-cDNA). The last one represents valuable information because it provides information about 

transcription start and stop sites, and also about intron and exon structures. An extensive rice FL-

cDNA collection is available, representing expressed genes from ~20 different tissues and stress 

conditions, including seedlings, calli, germinating seeds, panicles, UVB, UBC, cold, heat, auxin, 

cytokinin, absicic acid, and cadmium (Kikuchi et al., 2003). Homology searches with FL-cDNAs 

allowed the assignment of potential functions to 21,596 of these clones. A total of 17,016 rice 

genes reported in the finished version of the rice genome sequence matched with FL-cDNAs 

(Kikuchi et al., 2003). 

 

Development of resistant cultivars is considered to be the most effective method to 

control diseases in many crops including rice blast. The effort to identify and characterize rice 

blast resistance genes has been very productive, mainly in the last decade. So far, about 37 major 

blast resistance genes have been identified and 6 have been cloned (Pib, Pi-ta, Pi2, Pi9, Piz-t, 
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and Pi-d2) (Dai, 2007) and references therein.  The availability of plant and fungus genome 

sequences has made rice blast a good model system for the study of plant-pathogen interactions.  

 

In the specific case of rice, resistance to blast disease imparted by the Pi-ta gene (Bryan 

et al 2000), an NBS-LRR gene, is part of the immune resistance triggered by the fungal effector 

AVR-Pita. The Pi-ta gene encodes a cytoplasmic receptor that interacts with the AVR-Pita 

avirulence protein (Jia et al., 2000) and blocks lesion development. Microscopic studies using 

leaf inoculation have shown that formation of appressoria at 24 hpi is similar in resistant and 

susceptible cultivars. At 34 hpi, cell invasion progresses in most of the infection sites in 

susceptible cultivars and in some sites of the resistant cultivar(Berruyer et al., 2006). Fungal 

growth stops completely by 48 hpi in the resistant cultivar. 

 

The Pathogenic Process and the Genes Involved 

 

The infection process begins when a three-celled spore lands on the leaf surface and 

attaches to it by a mucilage produced at the spore tip (Hamer, 1988; Howard and Valent, 1996). 

After this initial step, a germ tube emerges from the spore and grows on the leaf surface. 

Recognition of the hard hydrophobic surface by the germ tube is followed by the formation of a 

penetration-specific structure called an appressorium at ~8 hpi. The melanization of mature 

appressoria is a critical cellular process for building the enormous turgor pressure used by the 

penetration peg for breaching the plant cuticle (~20 hpi).  Melanized appressoria can be 

generated in vitro on several artificial surfaces, which facilitates the study of this stage in the 

absence of the plant host (Hamer, 1988; Bourett and Howard, 1990; Dean, 1997; Talbot, 2003). 

Once the fungus penetrates the plant cuticle, a thin primary hypha elongates from the penetration 

peg and is the first intracellular fungal structure that receives all the cytoplasmic components 

migrating from the appressorium (~24 hpi). At 27 to 30 hpi, this primary hypha differentiates 

into a more bulbous and branched invasive hypha (IH) that colonizes the first invaded plant cell 

and later moves to the neighboring cells (>36 hpi). During this period of the infection, the fungus 

grows within the plant tissue without producing macroscopic symptoms. Symptoms begin to 

develop only after 4 days, which corresponds to the time that the fungus has established itself 
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inside the host and is preparing to sporulate and initiate a new infection cycle. Lesions continue 

expanding until ~ 7 dpi. The entire disease cycle can be defined as pre-penetration growth, 

biotrophic invasive growth, and mixed biotrophic and necrotrophic growth and sporulation.  

 

Appressorium Formation and Leaf Penetration 

 

The fungus must overcome the hydrophobic host surface barrier to have access to the 

plant intracellular compartment. To accomplish the invasion process, the fungus attaches to the 

leaf cuticle, and penetrates it. The MPG1 gene, which encodes a fungal hydrophobin, plays an 

important role in leaf attachment (Talbot et al., 1996). MPG1 was also highly expressed during 

appressorium formation and at later colonization stages during symptom development. The mpg1 

mutants are compromised in mycelial hydrophobicity, hydrophobic spore coat formation and 

appressorium differentiation on the leaf surface.  

 

The control of cellular developmental stages is very important in pathogens because their 

success depends upon the formation of the suitable structures at the right moment. Appressorium 

formation is surprisingly not strictly dependent on perception of host signals, but shows a 

physical stimulus-dependency instead, which makes this pathogen-associated cellular 

differentiation very intriguing. Fungal appressorium formation occurs in vitro on hard, 

hydrophobic surfaces. The transmembrane GPCR protein encoded by the PTH11 gene has been 

shown to be important for appressorium differentiation in response to surfaces signals (DeZwaan 

et al., 1999). It plays a role in activating appressorium formation on highly inductive surfaces 

and in repressing this morphological differentiation on poorly inductive surfaces. 

 

After spore attachment indicates to the fungus to start forming its penetration arsenal, 

orchestrated signal transduction pathways play critical roles. Plant stimuli are converted to 

morphological differentiation through classical signal transduction pathways (Xu, 2000). 

Appressorium development is known to be regulated by two independent signal transduction 

pathways, the MAP kinase-dependent pathway involving PMK1, and the cAMP-dependent 

pathway. Although upstream signals for PMK1-mediated appressorium formation have been 

suggested to involve different components, one of them has been identified. MGB1 is one of the 
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first components upstream of MAP kinase signaling. It encodes the β-subunit of a G-protein, 

which has been shown to affect diverse cellular processes such as conidiation, appressorium 

formation, penetration and invasion (Nishimura et al., 2003). Following recognition, downstream 

components MST11 and MST7 are the kinases that activate PMK1 MAP kinase. The MST11 and 

MST7 genes are orthologs to the yeast STE11 and STE7 MAP kinase kinase kinase and MAP 

kinase kinase genes , respectively (Zhao et al., 2005), even though it is still unclear what 

component directly activates MST11. Mutants in MST11, MST7 and PMK1 are unable to form 

appressoria and fail to produce disease. PMK1 functions also include the arrest of germ-tube tip 

growth, the formation of appressorium-specific cell wall layers, the generation of turgor 

pressure, and blockage of invasive growth (Xu and Hamer, 1996). A transcription factor, 

MST12, acting downstream of PMK1 has been identified. Mutants lacking MST12 expression 

formed appressoria but failed to penetrate and invade plant cells (Park et al., 2002). More 

recently, Mst50 has been shown to interact with MST11, MST7 and MGB1 and could be the 

adaptor protein between G-proteins, such as MGB1, and the downstream MAP kinase cascade 

components (Park, 2006). 

 

Unlike the PMK1 kinase pathway, few components of the cAMP pathway have been 

characterized.  cAMP has been shown to activate appressorium formation even on poorly 

inductive surfaces (Lee and Dean, 1993). Therefore, this is an alternative pathway that the 

fungus can use to differentiate appressoria.  The MAC1 gene that encodes a membrane-

associated protein has been characterized (Choi and Dean, 1997). This protein is an adenylate 

cyclase involved in the production of cAMP from ATP. On the other hand, a cytoplasmic 

component CPKA , that encodes the catalytic subunit of cAMP-dependent protein kinase A, has 

been shown to be dispensable for appressorium formation, but not for penetration (Mitchell and 

Dean, 1995; Xu et al., 1997). Appressoria formed by CPKA mutants are melanized but smaller 

than wild type. This shows that appressorium formation and penetration are genetically 

independent processes.  

 

The melanization process is accomplished during appressorial maturation, and is critical 

for plant penetration. The melanin layer is deposited between the appressorial membrane and cell 

wall, and serves as a permeability barrier that blocks leaking out of glycerol required for 
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establishing the turgor pressure powering mechanical penetration (Howard and Valent, 1996). 

This permeability also has been associated with the retention of plant penetration essential 

components such as degrading enzymes and signaling-related molecules. Poorly or non-

melanized appressoria are unable to penetrate the plant cuticle but fungus can infect normally 

through wounds. The genetics of melanin biosynthesis has been fully characterized. Three 

unlinked genes have been involved in different steps of the melanin biosynthetic pathway; ALB 

is essential for the initial steps of melanin biosynthesis and has homology with a polyketide 

synthase of other organisms; RSY encodes scytalone dehydratase that functions in the conversion 

of scytalone into trihydroxynaphthalene; and BUF encodes a polyhydroxynaphthalene reductase 

mainly involved in reduction of trihydroxynaphthalene to vermelone (Chumley and Valent, 

1990; Howard and Valent, 1996). Once the fungus has accomplished the penetration process, the 

cellular pigmentation is not required for invasive growth. Defective mutants in melanin 

biosynthesis develop normal invasive hyphae when they infect wounded tissues (Kankanala et 

al., 2007). 

 

Biotrophic Development 

Biotrophic interactions involve the strict and complex mode of infection in which living 

host cells are used by the pathogen as a nutrient supplier (O'Connell and Panstruga, 2006).  The 

pre-penetration steps of infection usually are not critical to determine whether a biotrophic or 

necrotrophic association occurs. It is the way that plant tissue is colonized after penetration that 

defines the relationship between the partners.  

 

Rice blast infection is considered as a dynamic hemibiotrophic interaction because the 

pathogen initially invades as a biotroph; but invaded cells subsequently die. It was recently 

confirmed that in the initial stage of the infection, M. oryzae invades the first epidermal cell 

using specialized invasive hyphae (IH) that are wrapped in plant-derived membrane called the 

extra-invasive hyphal membrane, EIHM (Kankanala et al., 2007). Every newly invaded rice cell 

is initially alive but it dies by the time the fungus moves to the neighboring cells (Kankanala et 

al., 2007). How the fungus establishes itself inside the host cell without affecting that cell’s 

viability is still unknown. In other systems, the interfacial membrane that divides plant and 
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pathogen has been associated with bridged communication, for delivery of nutrient supplies from 

the host to the pathogen and for delivery of effectors from the pathogen to the host (O'Connell 

and Panstruga, 2006). In the case of hemibiotrophs like Magnaporthe, there is no direct evidence 

that proves that intracellular hyphae are the nourishing organelle.  

 

Cell walls of fungi and oomycetes have polysaccharide components like chitin and β-1-3-

glucans that are recognized and targeted by defense machinery that causes hyphal tip destruction. 

It is unknown if the pathogen modifies its cell wall when growing intracellularly, which might 

represent a strategy to avoid the recognition by the host basal defense response. Recently studies 

in M. oryzae showed that hyphal tips moving to the second-invaded cells are enclosed in EIHM 

with distinctive membrane caps at their tips (Kankanala et al., 2007), suggesting that this could 

be the strategy that the fungus is using to hide from host recognition and protect its invading 

hyphae. 

 

The haustorium, the pathogen structure representing the closest interaction between the 

pathogen and its host, is involved in the secretion of effectors into the host and the uptake of 

nutrients from the host (O'Connell and Panstruga, 2006). In the specific case of M. oryzae, 

biotrophic hyphae could be considered as parallel structures to haustoria in terms of 

functionality. To exert their role, biotrophic hyphae would need to express a plethora of genes 

involved in metabolism, membrane component biosynthesis, and cellular transporters. These 

fungal genes along with components of the host machinery that facilitate pathogen feeding are 

still unknown. In rice blast, the time point of infection in which IH are already established 

intracellularly represents an appropriate disease stage to identify not only pathogen effectors, but 

also fungal components important for nutrient absorption and metabolism. At the same time, host 

genes that facilitate the pathogen infection process, including nutrient interchange and disease 

susceptibility can also be identified.  

 

 Fungal Avirulence Genes and Putative Effectors 

Invasive growth in rice blast disease is defined as the infection stage that follows leaf 

cuticle penetration and which is initiated by the formation of primary hypha (>24 hpi). Invasive 
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growth is harder to study than the pre-penetration phase of infection because this stage can not be 

mimicked on artificial surfaces. So far there are few genes identified to be essential for invasive 

growth (Fig 1.1), introducing a big gap in the identification of fungal components that are 

necessary for formation of the plant-fungus interface. Unlike the pre-penetration process the 

identification of genes involved in invasive growth of infection has been less efficient because 

these are usually plant specific, even though some could be expressed also under in vitro 

conditions. Another limitation in the case of avirulence genes is the fact that their functionality 

can be proven only if the corresponding mutant is inoculated on the appropriate plant 

background that lacks the matching R gene. Most of the mutants lacking avirulence gene 

function can grow normally under both in vitro and in vivo conditions (Orbach et al., 2000).  

 

M. oryzae avirulence genes include one of the rare cases in which the avirulence activity 

is not directly accomplished by the gene product or is not a secreted protein. ACE1 (Avirulence 

Conferring Enzyme1), a cytoplasmic protein recognized by the rice R gene product Pi33 has 

been characterized. ACE1 encodes a putative hybrid between a polyketide synthase and a 

nonribosomal peptide synthetase, and is expressed only during the appressorial penetration 

process (Böhnert et al., 2004). Apparently it is the secondary metabolite produced by this 

enzyme in mature appressoria that is recognized by the resistance gene product.  

 

As part of the M. oryzae infection-related secretome, two avirulence genes encoding 

secreted proteins have been extensively studied. A telomeric avirulence gene AVR-Pita was 

isolated using a map-based cloning strategy (Orbach et al., 2000). This gene encodes a putative 

223-aa metalloprotease that triggers disease resistance by interacting with the rice R protein Pi-

ta. The AVR-Pita mature protein (176-aa) interacts directly with the leucine-rich domain of Pi-ta 

protein in vitro and in vivo (Jia et al., 2000). In the second example, the PWL2 (Pathogenicity 

toward Weeping Lovegrass) gene encodes a 145-aa glycine-rich protein with a predicted signal 

peptide. Strains containing a functional allele of PWL2 are not able to infect weeping lovegrass, 

but are pathogenic in other hosts (Sweigard et al., 1995). Rice seems to lack a resistance gene 

that recognizes PWL2. This gene is highly conserved among rice pathogens isolated from the 

field, which suggests it may have an important role even though pwl2 - mutants appear to have 

normal pathogenicity. These few effector examples expose the need to increase effort to identify 
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more pathogen effectors that can be recognized by rice R genes and mediate defense responses, 

or that induce susceptibility in the absence of a corresponding R gene. 

 

So far, few M. oryzae genes affecting the development of the invasive hyphae inside host 

cells have been identified. During interaction with their host, plant pathogenic microorganisms 

secrete proteins into the plant cell that induce or block defense responses. Genome sequence 

analysis suggested M. oryzae possesses ~739 secreted proteins, which is double the amount 

predicted for the non-pathogenic saprobe Neurospora crassa (Dean et al., 2005). One possible 

explanation for this difference is the pathogenic nature of M. oryzae, raising the possibility that 

this secretome contains an unexplored arsenal of putative effectors. As a hemibiotrophic fungus,  

M. oryzae needs to avoid recognition by the host defense system, and secreted proteins are good 

weapons to trick and control the host. Only downstream responses, after the first cell is invaded, 

will define how successful the fungal development will be. Once the fungus is growing 

intracellularly, it is the right moment to deliver effector proteins.  

 

Fungal Detoxification and Metabolism in Planta 

After penetration, plant colonization takes place and the pathogen needs to overcome 

different host responses, such as production of toxic compounds that could be very harmful if a 

good detoxification system is not activated at the right time. An ATP-binding cassette (ABC) 

transporter ABC1 was identified in M. oryzae and shown to be involved in the efflux of toxic 

molecules during infection. Mutants with a defect in this gene are not able to survive inside host 

cells after penetration (Urban et al., 1999). Recently, another ABC transporter, ABC3, was also 

identified and shown to be important in both host penetration and invasive growth. Mutants 

lacking ABC3 expression are nonpathogenic due to defects in penetration that were partially 

reversed by antioxidant treatment. Once inside the cell, the fungus was unable to survive in the 

intracellular environment, demonstrating the ABC3 gene’s role in the regulation of fungal 

response to the oxidative stress inside the host cell (Sun et al., 2006). 

 Nutrient Availability and Its Role in the Infection Process 

Not only detoxification processes are activated in the pathogen as a response to the new 

environment during infection, other cellular activities like carbohydrate metabolism, are also 
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activated to respond to stress-related conditions and different nutrient sources. One of these 

processes is trehalose synthesis and its metabolism. In M. oryzae, the TRE1 gene that encodes a 

neutral-acid trehalase, has been involved in metabolism and mobilization of the intracellular 

trehalose (Foster et al., 2003). Activity of this gene was shown to be dispensable for fungal 

infection because mutants resembled the wild type strain in pathogenicity. In this same study, the 

NTH1 gene encoding for a neutral trehalase was shown to be expressed both during sporulation 

and invasive growth. Strains with a mutation in NTH1 appeared to be normal in sporulation, but 

they produced fewer disease lesions. Detailed functional analysis showed that these mutants 

were able to penetrate the plant cuticle, but the development of IH was slower compared with the 

wild type strain. Recently, a nuclear localized protein encoded by MIR1 has been identified and 

shown to be highly specific for growth in planta (Li et al., 2007). This gene showed no homology 

with any sequence in GenBank and the only known motif found at the protein level was a 

nuclear localization signal. Mutation in this gene did not affect appressorium penetration or 

invasive growth, but it is still intriguing what the function of this protein is, and why it is 

localized in the nucleus during invasive growth. 

 

In the case of M. oryzae, there is not much information about the role of nitrogen in the 

regulation of virulence genes. The only piece of information available so far is during the pre-

penetration stage. M. oryzae NUT1, a nitrogen regulator, is essential for expression of MPG1, but 

not for pathogenicity (Froeliger, 1996). It is expected that before penetration the fungus can 

experience nutrient starvation, which makes nitrogen starvation a relevant condition for gene 

expression analysis. This assumption might not be true for expression analysis after penetration 

because plenty of nutrients should be available from the host. A non-overlapping pattern is 

expected when the nitrogen limitation condition is compared with in planta colonization.  

 

Using global genome analysis, Donofrio et al.(Donofrio et al., 2006) assessed the 

question of how nitrogen starvation impacts the gene expression pattern and how these changes 

correlate with in planta conditions. They found that NUT1 was slightly up-regulated under 

nitrogen starvation. Meanwhile, MPG1 was clearly over-expressed after 12 hours of starvation 

and its expression was reduced after 48 hours. No avirulence genes were shown to be over-
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expressed in the studied conditions adding evidence for the theory that these invasive growth 

specific genes are not regulated by nitrogen limitation. 

 

An important goal in the M. oryzae-rice pathosystem is the identification of the entire set 

of fungal effectors that promote biotrophic invasion of rice cells. There are currently no defining 

characteristics that would allow one to recognize effectors among the complete M. oryzae gene 

set. We report here progress in two strategies to identify additional fungal effectors. The first 

(Chapter 2) involves understanding transcriptional regulation of the best characterized blast 

effector, AVR-Pita. Identification of promoter motifs and ultimately of key transcription factors 

mediating AVR-Pita expression could lead to identification of co-expressed effector genes. The 

second strategy (Chapter 3) uses genome-wide transcriptional profiling to identify all fungal 

genes that are specifically expressed during biotrophic invasion. Biotrophic IH-specific genes 

that encode secreted proteins could be excellent candidates for blast effectors. At the same time, 

a close-up view of changes in rice expression during biotrophic invasion would be expected to 

provide clues as to what plant genes are being affected by fungal invasion. 
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Figure 1.1 M. oryzae genes discussed in this chapter involved in different infection steps.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fungal genes involved in different infection processes. The invasive growth genes correspond to 

genes that affect or are specifically expressed during invasive growth. Only ACE1, AVR-Pita, 

PWL2 and AVRCO39 correspond to avirulence genes. For more details see  (Talbot, 2003; 

Ebbole, 2007). 
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CHAPTER 2 - Promoter Analysis of the Avirulence gene 

AVR-Pita 

Abstract 

Rice blast disease resistance is governed by a gene-for-gene interaction. Transient 

expression of AVR-Pita inside rice cells triggered Pi-ta-mediated resistance, and AVR-Pita 

interacted directly with Pi-ta in vitro. Therefore, AVR-Pita represents a putative effector secreted 

by biotrophic blast invasive hyphae (IH) into living rice cells. In a previous study, AVR-Pita 

expression was not detected in culture and was difficult to detect during infection. We developed 

a method to obtain infected rice tissues enriched in IH, and used it to measure the amount of 

AVR-Pita transcript at different infection time points by RT-PCR. No AVR-Pita expression was 

detected at 20 hpi, before penetration had occurred. AVR-Pita expression was weak at 24 hpi, 

when penetration just began, and its expression increased at 36 and 48 hpi when IH were 

developing inside plant cells. Quantitative real-time PCR showed that there is no AVR-Pita 

expression in spores, but that there is in mature appressoria that are ready to penetrate. Another 

unexpected finding from our promoter analysis is that the AVR-Pita promoter activity as 

measured using GFP fusion constructs differs from the promoter activity measured by assessing 

the avirulence phenotype in whole plant infection assays. This suggests that there is a special 

regulation mechanism of avirulence activity besides transcriptional regulation.  One goal of this 

study was to identify the cis-elements responsible for AVR-Pita regulation. Different 

bioinformatic programs were unable to predict putative regulatory elements specific to AVR-Pita 

and other infection-specific genes. We found that the putative regulatory elements predicted in 

this in planta specific gene were also found in genes that are known to be repressed during plant 

colonization, such as the melanin-related genes. Instead, we gained information about AVR-Pita 

expression kinetics. Data obtained in this study can be used in comparative analysis using 

promoters of other plant-specific fungal genes to identify putative co-expressed genes. 

 

Introduction 
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A few pathogen genes that are expressed specifically during plant infection have been 

identified but most of them have not been fully characterized. Even though most research has 

focused on discovery and dissection of their functionality, understanding how expression of 

these genes is regulated during the infection process is also an important area of research. This 

information is critical for the identification of transcription factors that activate the expression of 

genes that are important for host colonization.  

 

Analysis of fungal infection-related promoters has been used to gain insight into gene 

regulation mechanisms of important pathogenicity factors. This involves the identification of 

promoter sequences that are important for the regulation of gene expression during plant 

infection, and ultimately the identification of transcription factors. This last approach has not 

been very successful.   

 

The U. maydis mig1 gene encodes a small secreted protein that is weakly expressed 

during filamentous growth in vitro. Using a promoter fusion with an enhanced Green Fluorescent 

Protein (eGFP) , it was shown that mig1 is not expressed in hyphae growing on maize leaf 

surface; its expression was first detected after penetration, and it was highly expressed during 

invasive growth in planta (Basse, 2000). Deletion of different regions of the promoter showed 

modified patterns of expression compared with that obtained using the larger promoter fragment. 

In the same pathogen, a 350-bp region was shown to contain all the regulatory elements 

necessary for the regulation of expression of another gene, mig2-5. Mutation analysis performed 

with the eGFP reporter fusion allowed the identification of promoter elements that are important 

for in planta gene induction (Farfsing et al., 2005). The AVR9 avirulence gene of the fungal 

tomato pathogen C. fulvum is known to be highly expressed during leaf colonization. Fungus 

transformed with the AVR9 promoter fused with the β-glucuronidase (GUS) gene revealed that 

the expression of this gene is induced after penetration (Van den Ackerveken, 1994). It is also 

known that this gene is induced in vitro under nitrogen starvation conditions, not only in C. 

fulvum but also in Aspergillus nidulans. More recent studies using mutational analysis of the 0.6-

kb functional AVR9 promoter, fused with the GUS reporter gene, has identified two regions that 

are important for the induction of AVR9 gene in A. nidulans (Snoeijers, 2003). These regions 
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contain TAGATA consensus sequences that are bound by transcription factors that regulate 

genes involved in nitrogen metabolism. 

 

In M. oryzae, promoter analysis of genes involved in pathogenicity has also been 

investigated. The MPG1 gene encodes a small secreted protein that is important for fungal 

conidiation, appressorium formation, and virulence. Using sGFP as the reporter gene, three 

different regions of the MPG1 promoter have been identified. One region was important for the 

gene to be expressed in conidia, in appressoria, and when the fungus is experiencing nutrient 

limitations; another region was important for the repression when the fungus was grown with 

sufficient nutrients; and a third region was critical for MPG1 expression in conidia and 

appressoria (Soanes et al., 2002). In a second example, the use of a promoter trapping strategy 

allowed the identification of the MIR1 gene in M. oryzae, wich was highly expressed only during 

invasive growth. Using an eGFP fusion, a 1.4-kb long promoter sequence of MIR1 was fully 

characterized. In this study, a 97-bp region of the promoter that contains two inverted repeat 

sequences, of TTCCCA and TCCACC, was shown to be critical for MIR1 gene expression 

during plant colonization (Li et al., 2007). Similarly, the promoter of the avirulence gene ACE1 

has been studied using an eGFP fusion strategy. Results obtained from this study showed that 

ACE1 gene expression is tightly regulated during the penetration process and also that its 

expression is independent of plant signals (Fudal, 2007).   

 

The AVR-Pita avirulence gene from the Chinese field isolate O-137 of M. oryzae encodes 

a putative secreted metalloprotease (Orbach et al., 2000). AVR-Pita protein is different from 

most other characterized avirulence proteins due to its homology to proteins with a well 

characterized function. A neutral zinc metalloprotease motif identified in the AVR-Pita carboxy-

terminal region was critical for avirulence activity. Expression of the mature protein in Pi-ta-

containing rice cells triggered HR but not in cells lacking the R gene. This finding indicated that 

AVR-Pita is a fungal effector that is secreted into the plant cytoplasm where it triggers Pi-ta-

mediated defense responses (Jia et al., 2000).  

 

In strain 0-137, AVR-Pita is located within a 1.5-kb region adjacent to one of the 

telomeres of chromosome 3. A DNA fragment corresponding to the 1531-bp region extending 
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from the telomere repeat sequence was able to confer avirulence activity when it was 

transformed into a virulent strain of the fungus. Fragments from ApaI and HindIII sites to the 

telomeric repeats failed to confer avirulence activity in similar complementation tests (Fig 2.1) 

(Orbach et al., 2000). Deletion analysis showed that an 89-bp region extending from 1531-bp site 

to  the ApaI site in the AVR-Pita promoter was critical for avirulence activity when 

complementation analyses were done using a virulent fungal strain and whole plant inoculation 

assays (Orbach et al., 2000). The 475-bp promoter region from 1531 to the translation start site 

will be referred from here after as the active promoter and the 393-bp fragment starting from the 

ApaI site as inactive promoter (Fig 2.1). In another study, the AVR-Pita active promoter fused to 

a GUS reporter gene showed the specific expression of this gene during later stages of the fungal 

infection (G.T. Bryan and B. Valent, unpublished results). Besides this GUS reporter gene 

expression, there is no available data showing the kinetics of AVR-Pita expression. Detection of 

mRNA is more difficult when the target gene is expressed specifically in the plant, especially at 

early stages of the infection, because of the low amount of fungal biomass compared with host 

tissue. We developed an enrichment protocol for fungal content in infected tissues and detected 

AVR-Pita expression around the time of penetration and during invasive growth when the fungus 

is developing in the first-and-second invaded cells. We also fused different AVR-Pita promoter 

fragments to a GFP reporter sequence in order to analyze the regulatory regions of AVR-Pita.  

 

 

Results 

 

Identification of the expression kinetics of AVR-Pita 

Even though previous expression analysis done during the initial characterization of the 

AVR-Pita gene suggested its infection specificity, it was not clear how its expression pattern 

changed among the different infection stages. To pursue this objective, we screened early time 

points of fungal invasion to determine when the expression began. Initial studies to detect AVR-

Pita mRNAs during infection showed high levels of expression at 36 hpi when biotrophic 

invasive hyphae were developing inside the first invaded cell and beginning to move to the 

neighboring cells. Time courses were run and fungal spores were used as time zero; appressoria 
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formed on plant tissue as a pre-penetration time; appressoria developing primary hyphae as the 

earliest post-penetration time; and invasive hyphae after 36 and 48 hpi as reference time. RT-

PCR analysis showed that AVR-Pita was not expressed at 20 hpi in mature appressoria that were 

ready to penetrate plant cuticle (Fig 2.2). It was just after the fungus had penetrated and formed 

primary hyphae (24 hpi) that AVR-Pita mRNA was weakly detected in the infected samples and 

mRNA increased substantially after 36 hpi. Other times of infection showed that the expression 

is also high at 48 hpi and in the surrounding tissue of 7 day-old lesions (data not shown). Lack of 

amplification in appressoria in this experiment was due only to absence of the specific AVR-Pita 

RNA because an expected band was seen when fungal actin primers were used in the same 

sample. 

 

 

Location of the transcriptional start site of AVR-Pita promoter and prediction of cis-

regulatory elements 

 

To have more information about the AVR-Pita promoter structure, the transcriptional start 

site was determined by 5’-RACE PCR. Amplification of the AVR-Pita 5’ cDNA end revealed 

that the transcription start site is 130-bp upstream from the start codon (Fig. 2.3). Therefore, the 

AVR-Pita active promoter resides between -130 and -475-bp upstream from the translation start 

site. 

 

Sequence analyses using web-based searches were used to determine whether the 

previously reported active promoter, in terms of avirulence activity, contains putative regulatory 

elements that could be responsible for gene regulation. Prediction of cis-elements in the 1.1-kb 

promoter sequence using a plant promoter program TSSP Softberry 

(http://softberry.com/berry.phtml?topic=tssp&group=programs&subgroup=promoter) identified 

the repeated sequence RSP00161 (WAAAG where W may represent A or T) once in the active 

region and four times in the inactive one (Table 2.1). Another repeated sequence RSP00508 

(gcaTTTTTatca where lower case letters mean non-conserved nuleotides) was also found to be 
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present 3 times in the whole promoter of AVR-Pita (Table 1.1). We determined if these repeats 

occurred in the promoter of another M. oryzae avirulence gene, PWL2. Two RS00161 and eight 

RSP00508 repeated sequences were found in PWL2. To evaluate the significance of the presence 

of these sequences in the two avirulence genes, other genes known to be highly induced and 

repressed during infection were also analyzed. This analysis showed a lack of correlation 

between presence of these repeats and up-regulation in plant. These repeated sequences were 

also present in the promoters of two genes, AMG01944 and AMG02948, which are significantly 

down-regulated during infection (see Chapter 3).  

We also searched for the potential promoter motifs using the MEME program 

(http://meme.sdsc.edu/meme/), which is used to discover highly conserved regions in related 

sequences, using AVR-Pita and promoters from other eight genes, including PWL2, that are 

known to be expressed specifically during infection. No conserved motifs in AVR-Pita were 

found to co-localize in the active region of the promoter. Multiple sequence alignment was also 

done using different sizes of the AVR-Pita promoter with others from infection-specific genes. 

We could not identify conserved sequences among different promoters. The REPFIND program 

(http://zlab.bu.edu/repfind/form.html), TRANSFACT® and MATCH ™ (http://www.biobase-

international.com/pages/index.php?id=transfac) were also used, but no significant results were 

obtained. 

 

Assessing promoter activity using GFP as reporter gene 

 

Because we failed to identify putative cis-elements in the AVR-Pita promoter using 

computer-based analysis, we decided to analyze the whole promoter fused to a GFP reporter 

gene. Evaluating promoter activity of different regions would narrow down the sequence that is 

responsible for infection-specific regulation. The avirulence inactive fragment of the AVR-Pita 

promoter was fused to the GFP reporter gene to evaluate its activity in different M. oryzae 

morphological stages. Ten independent transformants were tested for GFP activity in spores. 

Surprisingly, a GFP signal was seen in all the transformants, although individual transformants 

showed different levels of expression (Table 2.2). There were 2 transformants showing low 

levels, 6 showing intermediate levels, and 2 showing high levels of fluorescence in the spores. 
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No detectable levels of expression were seen in the wild type spores. Three transformants 

containing the inactive promoter fragment showing low, intermediate and high levels of GFP 

expression in spores were chosen for further analysis. Appressoria and invasive hyphae were 

examined to evaluate the promoter activity during infection. A good correlation was seen 

between level of expression seen in spores and these other stages; transformants with low levels 

of expression in spores showed weak expression in appressoria and invasive hyphae. The same 

results were obtained with the other two transformants. Taken together, the 393 fragment of the 

AVR-Pita promoter is inactive in avirulence assays, but it is still active in expressing the GFP 

reporter protein. The expression pattern was not substantially different from that obtained from 

strains transformed with the active (475-bp) promoter. Table 2.1 illustrates the level of 

expression obtained with each construct; transformants showing high, intermediate, and low 

levels of expression are numbered as 1, 2, and 3 respectively.  Mycelia from transformants 

containing both the inactive and active promoters did not appear to express any GFP. 

 

 Because our previous results showed that AVR-Pita gene was not expressed in spores, 

the GFP signal in spores of all the transformants was unexpected. There are two possible 

explanations for these results: First, the level of expression of AVR-Pita could be very low in 

spores making it harder to detect the mRNA by RT-PCR in spores; second, the  AVR-Pita 

promoter has regulatory sequences upstream of the 475 region that repress its expression in 

spores. To investigate the second hypothesis, the longer 1.1-kb promoter fragment was fused to 

GFP. When the longer promoter was used, the expression in 10 transformants was less variable 

than expression seen when the inactive promoter was used. Eight of them showed low, one 

intermediate and one high level of expression. Leaf sheath infection assays were performed using 

transformants showing high, intermediate, and low levels of expression in spores. Contrary to 

results with other constructs, the transformant showing intermediate expression in spores showed 

very high expression in invasive hyphae, similar to that obtained with the high-expressing 

transformant. The transformants from the other two categories, low and high expression in 

spores, showed the same strength of GFP expression in invasive hyphae. The transformants 

showing intermediate expression in spores from each construct were used for comparison (Fig 

2.3). 
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Using the larger AVR-Pita promoter, there was less of a normal distribution of expression 

intensities compared to smaller promoters. Because only one of the ten transformants showed 

very high GFP expression, we hypothesized that this level of expression was due to a positional 

effect resulting from random ectopic integration of the reporter gene and not to the AVR-Pita 

promoter alone. Surprisingly, this transformant did not show high expression in mycelia so its 

expression was not constitutive. The expression level of GFP seen in mycelium of this 

transformant was comparable with wild type lacking GFP expression (data not shown). These 

results demonstrated that even though this transformant is out of range in GFP expression in 

spores, it still behaves as the AVR-Pita promoter in being in planta specific. 

 

Using mRNA from spores, we were unable to detect AVR-Pita mRNAs using a 

conventional RT-PCR assay. This finding contrasted with the results obtained from the GFP-

fused promoter, which showed variable levels of expression in spores with all the promoter 

fragments analyzed (Fig 2.4).  To address the question of whether the expression of AVR-Pita in 

spores is real but too low to be detected by RT-PCR, we used a more accurate method for 

quantification of expression.  Real-time RT-PCR was performed using RNA from spores, from 

tissue-developed appressoria (20 hpi) and from invasive hyphae (36 hpi). After normalization of 

fungal content in infected tissue using actin primers, no expression was obtained in spores using 

AVR-Pita specific primers (Fig 2.5).  As expected, this gene was highly expressed in infected 

tissue when the fungus was growing inside the first-invaded cell. This assay suggested that AVR-

Pita was also expressed in appressoria, although it is not known if significant numbers of these 

appressoria had penetrated and begun to form primary hyphae. 

 

 

 

 

 

Discussion 

AVR-Pita gene expression correlates with the biotrophic phase 
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To understand the precise timing of expression of AVR-Pita in planta, we used other time 

points of infection. Conidiospore mRNA was used as time zero and mature lesions 7 days post 

inoculation as the final time point. All of our results using RT-PCR and quantitative RT-PCR 

showed that AVR-Pita is not expressed in spores. However, these data showed contrasting results 

on expression of AVR-Pita in appressoria. Although we detected expression of the fungal actin 

gene in all appressorial samples (infected sheath at 20 hpi), AVR-Pita expression was not 

detected in our RT-PCR experiments and it was detected in our quantitative RT-PCR 

experiments. One possibility for this inconsistency is the biological variability inherent in 

pathogen-plant interactions. The infection can develop either quickly or slowly depending on 

variables in the biological assay that are beyond our control. Using the light microscope, it is not 

possible for us to see when penetration has occurred until a significant primary hypha is visible. 

Also, although we scan some samples of our infected tissue to see that appressoria have formed, 

it is not feasible to scan all tissue for uniform infection development, and some sheath sections 

processed for RNA extractions may contain infection sites that are further developed. Therefore, 

the different experiments may have used appressoria that differed in whether or not penetration 

was actually occurring at the time of RNA extraction. As the current techniques do not allow us 

to sample appressoria at more precise pre- and post-penetration stages, new techniques are 

needed to define the precise timing of AVR-Pita expression relative to penetration into the plant 

tissue. 

 

New details on the nature of hemibiotrophy in rice blast disease (Kankanala et al., 2007) 

suggest that new cell invasions are always biotrophic throughout lesion development, and that 

newly invaded rice tissue initially lacks any visible symptoms of disease. We found that AVR-

Pita is still being expressed in asymptomatic tissue immediately surrounding maturing lesions at 

7 dpi. These results are consistent with this novel view of hemibiotrophy in rice blast. A major 

question that remains to be addressed is if the thinner necrotrophic hyphae that develop in leaf 

tissue after biotrophic invasion also expresses AVR-Pita. Gene expression analysis in necrotic 

tissue in maturing lesions will address this question. 
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Identification of regulatory regions in the AVR-Pita Promoter 

Deletion analysis of the AVR-Pita promoter identified a region that is essential for 

avirulence activity in spray-inoculated plants. From these results, it was expected that the 

promoter region that differentiated the active from the inactive fragment contained the regulatory 

elements needed for in planta specific expression. Bioinformatic search analyses for cis-elements 

using this AVR-Pita promoter region seemed to be inaccurate after our results showed that 

inactive fragment still showed promoter activity in IH, when it was fused to GFP. For this 

reason, instead we used the 1.1-kb upstream region from the start codon. Different programs 

were unable to predict putative regulatory elements specific to AVR-Pita and other infection-

specific genes. We found that the putative regulatory elements predicted in this in planta specific 

gene were also found in genes that are known to be repressed during plant colonization (see 

Chapter 3) such as the melanin-related genes (Table 2.1).  

 

One commonly used method for defining expression patterns and for promoter functional 

analysis is fusion of the promoter sequence to reporter genes such as GFP. Surprisingly, the GFP 

expression patterns we see with all three promoter fragments were inconsistent with all of our 

RT-PCR results. That is, the AVR-Pita promoter:GFP reporter gene is consistently expressed in 

conidiospores even though we have never detected the AVR-Pita mRNA in these spores. All 20 

transformants analyzed from this study (10 from each of the 2 promoter constructs) showed GFP 

fluorescence in spores, although the levels of fluorescence varied from transformant to 

transformant. The variation in levels of expression in spores is likely to be due to positional 

effects resulting from integration of the reporter gene in random genome locations by the non-

homologous integration events that predominate in transformation of M. oryzae. However, 

position effects would not account for the uniform inappropriate expression in spores. These 

results suggest that other factors in addition to the AVR-Pita promoter sequence itself may be 

contributing to regulation of AVR-Pita expression in planta. So far, there is only one report of 

extensive promoter analysis of an avirulence gene in M. oryzae (Fudal, 2007), which makes it 

difficult to interpret our results. We do not know if similar results will be obtained with every 

avirulence gene of this pathogen or if AVR-Pita promoter is very unique in its complexity. 
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Another unexpected finding from our promoter analysis is that the AVR-Pita promoter 

activity as measured using the GFP fusion construct differs from the promoter activity measured 

by assessing the avirulence phenotype in whole plant expression assays. The 393-bp promoter 

fragment that was inactive in the whole plant avirulence assay was active in conferring in planta-

specific fluorescence in invasive hyphae. It would be interesting to investigate how much protein 

is actually produced by the inactive promoter (starting from the ApaI site, figure 2.1). This 

information can reveal if there is a special regulation mechanism of avirulence activity besides 

the repression of expression. Data obtained in this study can be used in comparison analysis 

using promoters of other plant-specific fungal genes to identify putative co-expressed genes. 

Those promoters that exhibit similar patterns of expression to AVR-Pita will be potential genes 

for finding conserved motifs in their promoter regions, and possibly targets of the same 

transcription factor.  

 

 

Materials and Methods 

Fungal strains and transformation 

M. oryzae KV1, a strain that was transformed for constitutive cytoplasmic expression of 

enhanced Yellow Fluorescence Protein (EYFP) (Kankanala et al., 2007), was used to extract 

genomic DNA for AVR-Pita promoter amplification. The fertile laboratory strain CP987 (Orbach 

et al., 2000) was used as the recipient for transformation using Agrobacterium strain AGL1. 

Spore suspensions at 1x105 spores/ml were used for co-cultivation with the induced 

Agrobacterium strains harboring each construct. Transformants were selected for hygromycin B 

resistance and single-spored on 4% water agar. Single germinated spores were transferred to 

oatmeal agar plates and left for growth and sporulation.  
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Plant material and RNA procedures 

Excised leaf sheaths of 3 week old YT-16 plants were inoculated with the KV1 strain 

using a suspension of 1x105 spores/mL. The inoculated sheaths were incubated for 48 hpi at 

room temperature and one of them was scanned using fluorescence microscopy to confirm 

infection. The remaining samples were trimmed (as described in Chapter 3) and placed in 1.5 mL 

tubes to be stored at -80˚ C until processing. Four pieces of leaf sheath were ground in mortars 

using liquid nitrogen, and RNA was extracted from the powdered tissue using the SV Total RNA 

Isolation System (Promega Corporation, Madison, WI). After a washing step, 45 ul of nuclease-

free water was applied to each column to elute the RNA. This step was repeated twice, giving a 

final volume of 90 µl. The concentration of RNA was estimated using a Nanodrop 

spectrophotometer and 20 to 70 ng were used for cDNA synthesis using a First Strand cDNA 

Synthesis kit (Promega Corporation, Madison, WI) and 4 µl of random primers. The rest of the 

protocol was followed as indicated by the kit. Each cDNA sample with its corresponding 

negative control (without reverse transcriptase) was tested for fungal actin and AVR-Pita 

amplification using MgACTIN328-F 5’ TCCCATGTCACCACTTTCAA and  MgACTIN328-R 

5’ TTCGAGATCCACATCTGCTG; AVR-PITA-F 5’GCACCTTTTCACACCCAGTT and 

AVR-PITA-R 5’CTCGGACGCACGTATAAACA primers respectively. Each PCR reaction was 

set for a final volume of 25 µl containing 2.5 µl of 10X reaction buffer, 1.5 µl of 25mM MgCl2, 

0.5 µl of 20mM of dNTP’s, 0.5 µl of 10 µM of each primer, 0.2 µl of  10 u/ml Taq polymerase, 

and 2 µl of each cDNA. The amplification profile was as follows: 95˚C for 30 seconds (secs), 

50˚C for 45 secs, 72˚C for 1 minute (min) repeated 35 cycles and a final step of 72˚C for 1 min. 

Ten µl of each PCR reaction were run on 2% agarose gels. RNA for detection of AVR-Pita at 

different time points of the infection was extracted using the TRIZOL method (Invitrogen, 

Carlsbad, CA) to increase the amount of starting material and the yield.  

Microscopy  

Differential Interference Contrast microscopy (DIC) and epifluorescence microscopy 

were performed using a Zeiss Axioplan 2 IE Mot microscope. Cells were observed with a 63X 

C-Apochromat (NA 1.2) water immersion objective lens. Fluorescence of the EYFP protein was 

observed using a fluoArc lighting system and a YFP-specific filter (excitation 500 ± 20nm, 
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emission 535 ± 30 nm, filter set 46), both from Zeiss. Images were acquired using a Zeiss 

AxioCam HRc camera and analyzed with Zeiss Axiovision® Digital Image Processing Software, 

Version 3.1. Fluorescence was evaluated in spores, at 20 hpi in appressoria and at 28 hpi in 

invasive hyphae, using 5 sec exposures for fluorescence imaging of each sample.  

 

Quantitative real-time RT-PCR 

cDNA was synthesized using 1 to 2 µg of total RNA extracted from spores of the fungus 

grown for two weeks on oatmeal agar. Infected tissue and spores were processed similarly using 

the TRIZOL method (Invitrogen, Carlsbad, CA).  As a housekeeping gene, the M. oryzae actin 

gene (MGG_03982) was amplified using MgActinF 5’AGC GTG GTA TCC TCA CTT TGC 

and MgActinR 5’ ATC TTC TCT CGG TTG GAC TTG G primers. Primers AVR-PitaF 5’ TGC 

CCT CCT TTC TTC AAC AAC and AVR-PitaR 5’ CCC ATT CGT AAC CAT AAT CTT TCC 

were used to amplify the infection specific AVR-Pita gene. Both primers and templates were first 

tested using a regular RT-PCR assay. Real-time RT-PCR was performed using the following 

protocol: Cycle 1(1X); step 1, 95.0ºC for 05:00; Cycle 2 (40X); step 1, 95.0ºC for 00:20; step 2, 

54.0ºC for 00:30; step 3, 72.0ºC for 00:45. Data collection and real-time analysis were enabled. 

Cycle 3 (1X); step 1, 95.0ºC for 01:00; Cycle 4(1X); step 1, 55.0ºC for 01:00; Cycle 5, (80X); 

step 1, 55.0ºC for 00:10. Increase setpoint temperature after cycle 2 by 0.5ºC.  Each reaction was 

set to 25 µl of final volume containing 12.5 µl of 2X iQ™ SYBR Green Supermix, 1 µl of 10 µM 

of each primer and 10.5 µl of cDNA.  Four dilutions of all cDNAs samples were used to test 

primer efficiency with the housekeeping gene primers. Reactions were run in an iCycler machine 

(Bio-RAD, Hercules, CA). The sample with the lowest concentration (highest Ct value) was used 

to adjust the concentration of the other samples using the formula: dilution factor = 2 – (CtA-CtB), 

where CtA is the Ct value of sample A and CtB is the Ct value of the sample with the lowest 

concentration. Two replications of the obtained dilutions were used for the real experiment. 

Determination of AVR-Pita transcription start site 

Infected tissue RNA samples whose cDNAs were positive for the Avr-Pita transcript 

were used for 5’-RACE PCR analysis. About 180 ng of RNA were used for cDNA synthesis 

using the BD SMARTTM RACE cDNA Amplification kit (BD Biosciences, San Jose, CA) 

according to the manufacturer instructions. cDNA was used as a template for 5’-end 
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amplification using a gene specific primer RACEAvr3 5’ GCC CCA 

CGAGGCGAGCTCGGCACA AC  3’. The amplification profile was as described in the manual 

instructions using the program 1 recommended for primers with Tm >70 ˚C and a final step with 

25 cycles. A band ranging between 300 and 400-bp was isolated from the agarose gel using 

NucleoTrap® Nucleic Acid Purification kit (BD Biosciences). The purified fragment was ligated 

into pGEM®T-Vector (Promega Corporation, Madison, CA) as described by the manufacturers, 

and cloned into NovaBlue competent cells (Novagen, San Diego, CA). Two independent clones 

were used for plasmid extraction and sequencing analysis using M13F and M13R universal 

primers. 

 

AVR-Pita promoter constructs 

A longer AVR-Pita promoter fragment was amplified using 200 ng of genomic DNA 

from strain KV1.  The primers used were Avr-PitaInactiveEcoRI-F primer 5’ GCG AAT TCA 

TAA TAT GGG CCC AAC TCTTA and Avr-PitaBamHI-5R 5’ GCG GAT CCG CAA AAA 

TAA TGT TAA TTG TGC (restriction enzyme sites are underlined). The 393-bp fragment was 

cleaned by using QIAquick® PCR Purification Kit (Qiagen, Valencia, CA), and cloned into the 

pGEM® T-Vector. Two positive clones from plasmid restriction analysis were used for 

sequencing with vector-specific T7 and SP6 universal primers. The inactive EcoRI /BamHI 

fragment was subcloned into pBV144. The binary plasmid pBV144, containing a 475-bp 

fragment corresponding to the minimal active AVR-Pita promoter and a hygromycin resistance 

gene, was used as the backbone to replace the active for the inactive fragment. The new plasmid 

was introduced into NovaBlue competent cells under selection using kanamicyn resistance. 

Positive clones were tested by restriction analysis and sequencing to confirm the insert ligation 

and orientation. 

A longer AVR-Pita promoter fragment, 1.129-bp long, was amplified and cloned using 

the same conditions described above for the inactive fragment using WAvr-pita-SacI-F 5’ ATT 

GAG CTC GGG TAA TAC CTT ATC GA and Avr-PitaBamHI-5R 5’ GCG GAT CCG CAA 

AAA TAA TGT TAA TTG TGC primers. Because this large promoter fragment has an internal 

EcoRI restriction site, a SacI site was used in the forward primer. Blunt ends were created in the 

SacI ends from the insert and vector for ligating the insert into the vector. 
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Figure 2.1 Avirulence activity of AVR-Pita using different promoter fragments  

 

 

 

 

 

 

Fragments of AVR-Pita used in whole plant infection complementation tests. The 4 exons 

of AVR-Pita are shown. The stop codon is separated from the telomere repeat sequences (Boxed 

T) by 48-bp. Letters indicate restriction enzyme sites: A, ApaI; H, HindIII. Only relevant sites 

mentioned in the text are indicated. Numbers on the left indicate number of avirulent 

transformants from the total that were tested (Orbach et al., 2000). 
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Figure 2.2 Expression of AVR-Pita at different infection stages of rice blast disease 

20hpi

24hpi

36hpi

A

20
hp

i

24
hp

i

36
hp

i

20
hp

i

24
hp

i

36
hp

i

Actin Avr-Pita
B

20hpi

24hpi

36hpi

A

20
hp

i

24
hp

i

36
hp

i

20
hp

i

24
hp

i

36
hp

i

Actin Avr-Pita
B

20
hp

i

24
hp

i

36
hp

i

20
hp

i

24
hp

i

36
hp

i

Actin Avr-Pita

20
hp

i

24
hp

i

36
hp

i

20
hp

i

24
hp

i

36
hp

i

20
hp

i

24
hp

i

36
hp

i

20
hp

i

24
hp

i

36
hp

i

Actin Avr-Pita
B

 

 

 

 (A)  Representative images of samples analyzed for the AVR-Pita transcript.  Merged 

image of DIC and EYFP fluorescence showed the stage of development of strain KV1 

expressing constitutive EYFP in rice sheath epidermal cells.  Appressoria formed at 20 hpi and 

primary hyphae were expanding into bulbous IH at 24 hpi.  By 36 hpi, the fungus was growing 

as biotrophic IH. (B)  RT-PCR using total RNAs extracted from infected sheath samples in (A) 

showed that the fungal actin mRNA was detected in each sample.  AVR-Pita mRNA was barely 

detected at 24 hpi (hard to see in this image) and was relatively abundant at 36 hpi. 
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Figure 2.3 Sequence of the 1.1-kb AVR-Pita promoter used in this study 

Arrows indicate the location of the primers used to amplify the respective promoter fragments. 

Letters in blue indicate the start of active promoter, and the letters in red indicate the ApaI site 

that delimits the inactive fragment. The asterisk indicats the transcription start site and the bold 

ATG corresponds to the translation start site.  

 

F
-1134 AGGGTAATAC CTTATCGACG TCGCGTTAAA TTCAAAATTT TGTTTGTTTC CTTTCCTTTC

-1074 CTCAAAATAG AATCTTCGTC GATAAATGCC AATAGACTAG CTTCCGTGCT ATGTTTACCC

-1014 TGGCCGTGAC AACTACCATG GAACCCAAGA TTGTTAGAGG ACATTGTAAA CCTGACGATA

-954 ATCTCTGCAC GCCGAATATA TGCGACAATT TAAAGGCATA TTAAAATATA GCCAACCGCC

-894 AAATAAATTC CGTACTAACT AAGCATATTT TC AAAAGGGG TTCGGAAACT GCACTGTGGC

-834 TACATTGTAG GTAAAACGGG CAAATATTGT TCAGCTTAGG TATTTGCTTA GATTTGACGG

-774  AATTCCATAC CTGCCTAATT TTGACCACAA ATTAGAGAAC GTAATCCGAA CCAAGCTTTT

-714 AGTGTTGCCA ACGTGATACG GAGTTTTTGC TGCCGAGTCT GCCGGGCAAA AACGGAACCC

-654  AATGTCACGG CCAGGCATAC ATTGGAGAGC CTCAGTGTAT TAGGCGCTAT TAACGAAAAT

-594  TCTAAACTGA AGAGAAGAGA GAAATTACAA TCGACGACGC GCTCAAGAGA CGCGCTTGAA

-534  TCCGGAGTTA GTGGACCCTT GTCCGATCCC TGGCTCGGCG TGGAGCCGAG TCGTTCTGAG

-474 GGTAGGTCTA GGGGCCTGAT CCTCACAATA TTTTTGTAAA TTTCAAAAGT CAGGGAGCAT

-414 GAATTATGTA GTTATTAATA ATATGGGCCC AACTCTTACC TTATATAAAA TTGTGGATGA

-354 TATACTAATA AAAGTGGACC TAATTACCTG CATAATAATG CAGATAATTA ACACTAGCAA

-294 AATATAATTC GATAATATTA TTAATGCTAA ATAACGCATT AATAAACCAA ATAAGTTTTA

-234 CATCTTCCTA AAGCTTTGAA AAAAGTCAAG CTGAAATAAT AAATAAGTTG GCGTTGTTAT

-174 AAAATCGACC CGTTTCCGCC TTTATTGGTT TAATTCGGAT AGAGAACATT TTGCTTATAA

-114  TTCCAAACAT ACAAACAATT ATCCACTGAC TGAAAATCGA CAGTTTTGTT TGCACAATCA

-54   ACATTATAAT TACAATTAAA AACTTCTGCA CAATTAACAT TATTTTTGCA ATTATG

F

R

*

F
-1134 AGGGTAATAC CTTATCGACG TCGCGTTAAA TTCAAAATTT TGTTTGTTTC CTTTCCTTTC

-1074 CTCAAAATAG AATCTTCGTC GATAAATGCC AATAGACTAG CTTCCGTGCT ATGTTTACCC

-1014 TGGCCGTGAC AACTACCATG GAACCCAAGA TTGTTAGAGG ACATTGTAAA CCTGACGATA

-954 ATCTCTGCAC GCCGAATATA TGCGACAATT TAAAGGCATA TTAAAATATA GCCAACCGCC

-894 AAATAAATTC CGTACTAACT AAGCATATTT TC AAAAGGGG TTCGGAAACT GCACTGTGGC

-834 TACATTGTAG GTAAAACGGG CAAATATTGT TCAGCTTAGG TATTTGCTTA GATTTGACGG

-774  AATTCCATAC CTGCCTAATT TTGACCACAA ATTAGAGAAC GTAATCCGAA CCAAGCTTTT

-714 AGTGTTGCCA ACGTGATACG GAGTTTTTGC TGCCGAGTCT GCCGGGCAAA AACGGAACCC

-654  AATGTCACGG CCAGGCATAC ATTGGAGAGC CTCAGTGTAT TAGGCGCTAT TAACGAAAAT

F
-1134 AGGGTAATAC CTTATCGACG TCGCGTTAAA TTCAAAATTT TGTTTGTTTC CTTTCCTTTC

-1074 CTCAAAATAG AATCTTCGTC GATAAATGCC AATAGACTAG CTTCCGTGCT ATGTTTACCC

-1014 TGGCCGTGAC AACTACCATG GAACCCAAGA TTGTTAGAGG ACATTGTAAA CCTGACGATA

-954 ATCTCTGCAC GCCGAATATA TGCGACAATT TAAAGGCATA TTAAAATATA GCCAACCGCC

-894 AAATAAATTC CGTACTAACT AAGCATATTT TC AAAAGGGG TTCGGAAACT GCACTGTGGC

-834 TACATTGTAG GTAAAACGGG CAAATATTGT TCAGCTTAGG TATTTGCTTA GATTTGACGG

-774  AATTCCATAC CTGCCTAATT TTGACCACAA ATTAGAGAAC GTAATCCGAA CCAAGCTTTT

-714 AGTGTTGCCA ACGTGATACG GAGTTTTTGC TGCCGAGTCT GCCGGGCAAA AACGGAACCC

-654  AATGTCACGG CCAGGCATAC ATTGGAGAGC CTCAGTGTAT TAGGCGCTAT TAACGAAAAT

-594  TCTAAACTGA AGAGAAGAGA GAAATTACAA TCGACGACGC GCTCAAGAGA CGCGCTTGAA

-534  TCCGGAGTTA GTGGACCCTT GTCCGATCCC TGGCTCGGCG TGGAGCCGAG TCGTTCTGAG

-474 GGTAGGTCTA GGGGCCTGAT CCTCACAATA TTTTTGTAAA TTTCAAAAGT CAGGGAGCAT

-414 GAATTATGTA GTTATTAATA ATATGGGCCC AACTCTTACC TTATATAAAA TTGTGGATGA

-354 TATACTAATA AAAGTGGACC TAATTACCTG CATAATAATG CAGATAATTA ACACTAGCAA

-294 AATATAATTC GATAATATTA TTAATGCTAA ATAACGCATT AATAAACCAA ATAAGTTTTA

-234 CATCTTCCTA AAGCTTTGAA AAAAGTCAAG CTGAAATAAT AAATAAGTTG GCGTTGTTAT

-174 AAAATCGACC CGTTTCCGCC TTTATTGGTT TAATTCGGAT AGAGAACATT TTGCTTATAA

-114  TTCCAAACAT ACAAACAATT ATCCACTGAC TGAAAATCGA CAGTTTTGTT TGCACAATCA

-54   ACATTATAAT TACAATTAAA AACTTCTGCA CAATTAACAT TATTTTTGCA ATTATG

F
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-1134 AGGGTAATAC CTTATCGACG TCGCGTTAAA TTCAAAATTT TGTTTGTTTC CTTTCCTTTC

-1074 CTCAAAATAG AATCTTCGTC GATAAATGCC AATAGACTAG CTTCCGTGCT ATGTTTACCC

-1014 TGGCCGTGAC AACTACCATG GAACCCAAGA TTGTTAGAGG ACATTGTAAA CCTGACGATA

-954 ATCTCTGCAC GCCGAATATA TGCGACAATT TAAAGGCATA TTAAAATATA GCCAACCGCC

-894 AAATAAATTC CGTACTAACT AAGCATATTT TC AAAAGGGG TTCGGAAACT GCACTGTGGC

-834 TACATTGTAG GTAAAACGGG CAAATATTGT TCAGCTTAGG TATTTGCTTA GATTTGACGG

-774  AATTCCATAC CTGCCTAATT TTGACCACAA ATTAGAGAAC GTAATCCGAA CCAAGCTTTT

-714 AGTGTTGCCA ACGTGATACG GAGTTTTTGC TGCCGAGTCT GCCGGGCAAA AACGGAACCC

-654  AATGTCACGG CCAGGCATAC ATTGGAGAGC CTCAGTGTAT TAGGCGCTAT TAACGAAAAT
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Figure 2.4 GFP expression pattern using different AVR-Pita promoter fragments  

 

 

 

 

 

Merged image of DIC and EGFP fluorescence showing promoter activity in spores 

produced on oatmeal agar plates; and appressoria at 20 hpi, and invasive hyphae at 28 hpi, 

formed on rice sheath epidermal cells. Due to the high level of variation in the expression of GFP 

in transformants harboring different constructs, only transformants showing intermediate levels 

of expression in spores are shown here. The 1.1, 0.4 and 0.3 correspond to the larger, active and 

inactive promoter, respectively. The background strain is the CP987 without the GFP construct. 

The excitation light exposure time was fixed to 5 seconds for comparison of the relative levels of 

fluorescence for each GFP construct.. 
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Figure 2.5 Expression of AVR-Pita is not detected in spores using real-time RT-PCR  
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Quantitative analysis of AVR-Pita gene expression using RNA from KV1 spores collected from 

10 day old oatmeal agar plates. The 20 hpi and 36 hpi samples correspond to leaf sheath infected 

with KV1. Actin expression was used for template normalization. 
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Table 2.1  Number of occurrences of repetitive sequences found in thepromoters of AVR-Pita 

and other M. oryzae genes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Promoter regions corresponding to 1.0-kb of 5’-sequence were analyzed by the Softberry-

TSSP program for prediction of plant promoters. The most frequent repetitive sequences are 

indicated as RPS00161 and RSP00508. Other M. oryzae genes used in this analysis and their 

level of expression (Fold Change as determined in Chapter 3) during infection are also indicated. 

 

 

Number  of copies  

Gene Name 

 

Fold Change RSP00161 RSP00508 

AVR-Pita 3.0 5 3 

Pwl2 63.0 2 8 

AMG08263 100 5 3 

AMG16216 48.0 3 4 

AMG08160 58.0 0 1 

AMG15980 61.0 6 3 

AMG06765 75.0 2 6 

PTH11 -5 0 0 

AMG01944 -28.1 3 5 

AMG02948 -24.9 3 2 

AMG06064 -24.6 0 0 
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Table 2.2 Description of the different fungal transformants obtained from the AVR-Pita 

promoter-GFP analysis 

 

 

 
Fluorescence in:  

Promoter 
Size 

 
Transformant 

 
GFP copies 

Spores 
 

Appressoria 
 

Invasive hyphae 

1.1-kb  1 1 +++ +++/- +++ 

 2 1 + +/- ++++ 
 3 1 +/- +/- + 
0.48-kba 1 2 +++ +++/- +++ 
 2 1? ++ ++/- ++ 
 3 1 ++ ++/- ++ 
0.37-kb  1 1 +++ + ++ 
 2 1 ++ + ++ 
 3 1 + - + 
 
 
 
 

  

Transformants obtained from each construct showed different levels of GFP expression.  Size of 

each promoter is indicated and expression level obtained in each developmental stage in 3 

independent transformant is also shown. Number of copies of GFP was determined by Southern 

blot analysis. Pluses and minus indicate arbitrary measurement of GFP intensity. Measurement in 

appressoria indicates that some of them were showing fluorescence and others not in the same 

transformant (indicated by +++/-, or ++/- or +/-). a Data were obtained from C. H. Khang and S. 

Kang (Penn State University). 
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CHAPTER 3 -  Analysis of the Interaction Transcriptome 

of Biotrophic Invasion by the Rice Blast Fungus, 

Magnaporthe oryzae 

Abstract 

The hemibiotrophic fungus Magnaporthe oryzae produces intracellular invasive hyphae 

(IH) that alter host cellular processes and defense responses as they successively invade living 

rice cells. Understanding fungal and rice genes that contribute to biotrophic invasion has been 

difficult because so few plant cells have encountered IH at the earliest infection stages. We 

developed a procedure for reproducibly obtaining infected rice sheath RNA that contains ~20% 

fungal RNA at a point when most IH were still growing in first-invaded cells. The RNAs were 

analyzed using the whole-genome M. oryzae oligoarray and a rice oligoarray. Using a 3-fold 

differential expression threshold, 1693 fungal genes and 1259 rice genes were induced or 

repressed during the interaction. Rice genes induced >50-fold during infection were enriched for 

genes involved in transferring information from sensors to cellular responses. Fungal genes 

induced >50-fold in IH included the PWL2 avirulence gene and many genes encoding 

hypothetical secreted proteins. The IH-specific secreted proteins are candidates for effectors, 

proteins that pathogens secrete inside live host cells to control cellular processes. Gene knock-

out analyses of three putative effector genes failed to show major effects on pathogenicity, 

underscoring challenges ahead for functional analyses of the genes in the biotrophic interaction 

transcriptome. 
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INTRODUCTION  

 
Rice blast is a significant disease that affects one of the most important food sources in 

the world. Each year rice blast causes losses between 10 and 30% even though diverse cultivars 

expressing different resistance genes are used for cultivation (Talbot, 2003; Kawasaki, 2004). 

The causal agent, the hemibiotrophic fungus Magnaporthe oryzae (formerly Magnaporthe 

grisea, (Couch and Kohn, 2002), undergoes complex morphological development throughout its 

infection cycle. Many studies have focused on the process by which fungal spores land on leaves 

and produce germ tubes that differentiate into appressoria, specialized cells for leaf surface 

penetration (Howard and Valent, 1996; Talbot, 2003; Dean et al., 2005). After appressorial 

penetration, the fungus first grows within plant cell lumens as thin, filamentous primary hyphae, 

which then differentiate into biotrophic invasive hyphae (IH) in susceptible (compatible) 

interactions. Kankanala et al. (Kankanala et al., 2007) recently reported new cellular details of 

biotrophic blast invasion. They showed that IH are tightly enclosed in a plant-derived extra-

invasive hyphal membrane (EIHM), and that IH stimulate membrane dynamics within invaded 

rice cells. They suggested that IH co-opt plasmodesmata for cell-to-cell movement and for 

preparing neighboring cells before invasion. To execute this complicated disease strategy, IH 

must express specialized genes that, among other things, control rice gene expression. We refer 

to these pathogen and host genes whose expression directly relates to the biotrophic interaction 

as the interaction transcriptome (Birch and Kamoun, 2000).  

 

Few fungal genes that are specifically expressed in IH have been identified (Talbot, 2003; 

Donofrio et al., 2006). Some genes that function in other infection stages also play a role during 

invasive growth in planta. For example, the mitogen-activated protein kinase (MAPK) PMK1 

functions in appressorium formation and in planta growth. PMK1 expression is detectable in 

various fungal cell types (vegetative mycelium, conidia and IH), but it is induced in appressoria 

and developing conidia (Bruno et al., 2004). A few genes, such as the efflux pump gene ABC1 

and the neutral trehalase NTH1, have their major effect on plant cell colonization. MIR1 encodes 

an IH-specific nuclear protein, although gene replacement experiments have not identified its 

function (Li et al., 2007).  
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IH-specific genes that encode secreted proteins are of special interest. These genes might 

encode effectors, proteins that the fungus secretes inside live plant cells to control plant cellular 

processes. In various pathosystems, effectors have been identified by their avirulence activity in 

triggering R gene mediated hypersensitive resistance. Currently, three blast effector candidates 

were identified as avirulence (AVR) genes. The PWL genes (Kang et al., 1995; Sweigard et al., 

1995), AVR-CO39 (Peyyala and Farman, 2006), and AVR-Pita  (Orbach et al., 2000) all encode 

IH-specific proteins with secretion signals. The predicted mature AVR-Pita protease functioned 

to trigger hypersensitive resistance when it was transiently expressed in rice cells with the R gene 

Pi-ta (Bryan et al., 2000). Thus, AVR-Pita, and probably PWL2 and AVR-CO39, appear to be 

rice blast effectors. However, the few, diverse examples of blast AVR/effectors have not 

provided motifs for identification of additional effectors among the genes predicted in the M. 

oryzae genome (Dean et al., 2005). One strategy for identification of AVR proteins among those 

secreted by intracellular fungal structures was validated by Catanzariti et al. (Catanzariti et al., 

2006)when they showed that proteins secreted by haustoria of the flax rust fungus are enriched in 

AVR proteins. Therefore, identification of IH-specific secreted proteins represents a reasonable 

approach for identification of additional blast effectors.  

 

On the host side of the interaction, plant genes encoding enzymes of phytoalexin 

biosynthesis as well as defense and pathogenesis-related proteins were up-regulated during 

infection in diverse host pathogen systems (van Loon et al., 2006). The same genes were induced 

in incompatible (resistant) and compatible interactions, although expression usually occurred 

later and at lower levels during compatibility (Song and Goodman, 2001; Tao et al., 2003; 

Vergne et al., 2007). For blast, the jasmonic acid-induced rice transcription factor gene JAMyb 

(AK069082) represented a rare example of a host gene that was more highly expressed in 

compatible than in incompatible interactions (Lee et al., 2001).  

 

Several studies have examined gene expression by the blast fungus during axenic growth. 

For example, >28,000 expressed sequence tags (ESTs) were obtained from cDNA libraries 

representing fungal cell types that are produced in vitro (mycelia, conidia, appressoria, and 

perithecia), mycelium from different culture conditions, and a pmk1
- 
nonpathogenic mutant 

lacking PMK1 (Ebbole et al., 2004; Soanes and Talbot, 2005). Expression data available for 
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appressoria and/or mycelia include serial analysis of gene expression (SAGE), robust-long 

SAGE, massively parallel signature sequencing (MPSS), and microarray analyses (Irie et al., 

2003; Takano et al., 2003; Gowda et al., 2007). Microarray analyses have compared gene 

expression in germlings growing on inductive surfaces (promoting appressorium formation) and 

non-inductive surfaces (Dean et al., 2005), and gene expression in mycelium grown in nitrogen-

rich and nitrogen-deficient media (Donofrio et al., 2006). All studies showed statistically 

significant expression differences for the various fungal cell types and growth conditions.  

 

In planta expression analyses have also been performed. Studies performed after 

macroscopic symptoms developed identified both fungal and rice genes expressed in planta (Kim 

et al., 2001; Rauyaree et al., 2001; Matsumura et al., 2003). However, infected tissue with visible 

symptoms probably included filamentous necrotrophic hyphae in addition to IH (Berruyer et al., 

2006). Large scale EST analysis (Jantasuriyarat et al., 2005) and microarray analysis (Vergne et 

al., 2007) performed at early infection stages before appearance of macroscopic symptoms 

focused on rice gene expression because so little fungus was present in the infected leaf tissue. 

Expression analysis of early biotrophic invasion, when the fungus occurs predominantly as IH in 

first-invaded cells, will provide the best opportunity to assess IH gene expression and how IH 

affect rice gene expression. Since this early colonization stage corresponds to the point when 

most AVR/R gene interactions induce hypersensitive resistance, detailed expression analyses 

should identify effector/AVR proteins that function in blast disease.  

 

Our goal was to obtain an in depth view of the rice blast interaction transcriptome during 

biotrophic invasion and to relate this view to the cellular biology of invasion. Using the highly 

compatible interaction between AVR-Pita-containing fungal strain KV1 and susceptible rice leaf 

sheath lacking Pi-ta (Kankanala et al., 2007), we developed a procedure to obtain infected tissue 

RNAs that were enriched for RNA from IH growing in first-invaded rice cells. After assessing 

the proportion of IH RNAs in infected samples, we produced balanced control samples 

containing a similar proportion of RNA from pure mycelium and mock-inoculated rice. An M. 

oryzae microarray was used to compare gene expression in IH to expression in mycelium, and a 

rice microarray was used to compare expression in the infected tissue to expression in mock-
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inoculated tissue. We report the first detailed view of the biotrophic blast interaction 

transcriptome, and initial functional analyses resulting from this view.  

 
 

 

RESULTS  

 

 

Infected Leaf Sheath Samples Enriched for Biotrophic Invasive Hyphae  

 
 

A major challenge for expression profiling at early stages of fungal infection is that most 

plant cells have not yet encountered the fungus. We developed a reproducible procedure to 

obtain infected tissues enriched for rice cells containing IH and their immediate neighbors. We 

used sheath tissues at 36 hours post inoculation (hpi) because infection development at this point 

was relatively synchronous: some IH were growing in first-invaded cells, some had filled first-

invaded cells, and some had just moved into neighbor cells (Figure 3.1A). Use of a fungal strain 

with strong constitutive, cytoplasmic expression of enhanced yellow fluorescent protein (EYFP) 

allowed visualization of contaminating fungal cell types in the tissue as well as the state of 

development of IH. Although we confirmed that inoculation of fungal conidia in gelatin solution 

was important for achieving uniform distribution of appressoria, this practice promoted growth 

of vegetative mycelium on the sheath surface. The first step in our procedure was to remove 

vegetative hyphae, appressoria and conidia from this surface. Abundant hyphae that invaded the 

tissue from cut sheath ends were also discarded. Using the procedure of Kankanala et al. 

(Kankanala et al., 2007)we next manually dissected the sheath tissue to produce pieces with the 

inoculated adaxial epidermal layer and ~3 underlying mesophyll cell layers, thus removing many 

cell layers that had not yet experienced fungal invasion. The last steps were rapid 

epifluorescence screening for selection of only densely invaded sheath segments and freezing of 

selected segments in liquid nitrogen. The process was carried to completion with a single sheath 
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piece at a time, resulting in ~2 min of processing time for each. With this procedure, we obtained 

infected tissues that were enriched both for fungal RNA content and for the biotrophic IH cell 

type (Figure 3.1A).  

 

To estimate the ratio of fungal to rice RNAs in the infected sheaths, we compared RT-

PCR amplification of the fungal actin gene in infected tissue to amplification in standards 

produced by mixing pure mycelial RNA and mock-inoculated rice RNA. cDNAs were prepared 

from both samples, and the actin gene was amplified using specific primers. Presence of IH RNA 

was confirmed using AVR-Pita primers. Using this assay, fungal RNA content in infected tissues 

was generally ~20% of the infected tissue RNAs (Figure 3.1B). The trimmed sheath procedure 

provided a significant enrichment of IH RNAs compared to RNAs from leaf samples using spray 

inoculation (Figure 3.1C).  

 

Identification of the Interaction Transcriptome Using Microarray Hybridization  

 

Samples from three biological replicates of 36 hpi-infected rice sheaths were analyzed 

using the M. oryzae whole genome microarray (Agilent Technologies). This DNA oligoarray 

contains 60-bp oligonucleotide probes corresponding to 15,170+ predicted M. oryzae genes and 

6,325 rice genes. Genes represented in this oligoarray are described in the Magnaporthe grisea 

Oryza sativa (MGOS) Database (http://www.mgosdb.org), (Soderlund et al., 2006). The same 

samples were used with the Agilent rice microarray, which contains oligonucleotides 

corresponding to ~21,500 expressed rice genes (based on cDNAs from the KOME database; 

~60% coverage of the genes in japonica rice; http://cdna01.dna.affrc.go.jp/cDNA/). 

Complementary RNAs from infected tissues were labeled with Cy3 or Cy5 and hybridized 

together with control RNA mixtures (20% mycelial RNA and 80% mock-inoculated rice RNA) 

labeled with the other dye  (Hughes et al., 2001). Three biological replications were performed, 

each with 4 separate microarray hybridizations (2 technical replicates and 2 dye swap 

experiments). Data were analyzed by Rosetta Resolver® and signature sequences (denoted as 

significantly different from the diagonal) showed correlations of >80% between biological 
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replicates. Technical replicates of the same biological samples showed correlations >95%. All 12 

data sets were subsequently analyzed together to yield all values reported in this Chapter. 

 

If we were accurate in balancing the fungal to plant RNAs in infected and control 

samples, we would expect that fungal housekeeping genes would show roughly similar signals in 

both. The ribosomal protein genes showed expression ratios between +3 and -1 when comparing 

IH to mycelium. Therefore, either IH are slightly more metabolically active than mycelium in 

liquid culture, or we underestimated the proportion of IH RNA in the infected tissue. In either 

case, due to the relative expression levels for housekeeping genes, we focused on the genes that 

showed at least 3-fold changes in expression levels (Fugure 3.6). Using the 3-fold threshold, 

1079 fungal genes were induced and 614 genes were repressed in IH relative to mycelium. For 

rice, 963 genes were induced and 296 genes repressed in invaded tissue. With noted exceptions, 

P-values corresponding to differentially expressed genes were highly significant (Figure 3.6).  

 

For validation of microarray results, we performed RT-PCR on a selection of fungal and 

rice genes with differential expression. cDNAs from four sources including mycelium, 36-hpi 

mock-inoculated sheaths, 36-hpi inoculated sheaths, and mycelium/mock mixtures were used as 

templates for amplification. Quality of the cDNA was tested using M. oryzae actin primers that 

spanned an intron to differentiate cDNA from genomic sequences. The expected actin fragment 

was amplified from mycelium and infected tissue (Figure 3.2A). Amplification was not seen in 

negative controls in which the reverse transcriptase had been omitted (data not shown). In 

subsequent experiments, only three samples were included for each gene (Figure 3.2A,B).  

 

First, the 30 fungal sequences having expression levels >50-fold higher in IH were 

chosen for validation (Figure 3.2A). Among these sequences, 22 were successfully amplified 

from infected rice. No amplification was seen with mock-inoculated rice or mycelial samples. 

One predicted gene had two possible transcripts, AMG08417.1 and AMG08417.2. Primers 

designed to differentiate these transcripts showed that the transcript identified in our microarray 

analysis corresponded to AMG08417.2, and suggested that AMG08417.1 was incorrectly 

annotated. For some sequences that failed to amplify, new primers were designed and tested 



 47 

without success. Maybe genes identified in sequenced laboratory strain 70-15 contain 

polymorphisms in the primer binding sites in strain KV1.  

 

The same cDNAs were used for amplification of down-regulated fungal genes (Figure 

3.2A). A gene homologous to clock-controlled gene-9 from Neurospora crassa (AMG12697.1) 

and the G-protein coupled receptor PTH11 (AMG05260), both >5-fold down-regulated, were 

amplified only from the mycelial sample. Melanin biosynthesis genes scytalone reductase 

(AMG06064, -24.6-fold) and tetrahydroxynaphthalene reductase (AMG01944, -28.1-fold), were 

amplified only from mycelial RNAs. The hydrophobin MPG1 (AMG14765, -21.6-fold) was 

amplified from mycelial RNAs, though a weaker band was amplified from infected tissue (data 

not shown). This is probably because there is still expression of MPG1 in IH even though it is 

significantly down-regulated compared to mycelium.  

 

RNA samples used for validation of fungal genes were also used for validation of up-

regulated rice genes (Figure 3.2B). For the eight rice genes we tested with expression levels 26-

fold or higher during infection, gene-specific fragments amplified from infected but not from 

mock-inoculated rice. A gene with 9.5-fold higher expression was only amplified from infected 

tissue. However, three genes, with 4-, 13-, and 3-fold up-regulation, were amplified from both 

infected and mock-inoculated tissues. Primers designed for rice genes did not amplify PCR 

fragments from the mycelial sample.  

 

 

Up-regulated IH Genes Are Enriched for AVR Genes and Newly-Described Genes  

The cRNAs from differentially-labeled 36-hpi infected tissue and control mixtures were 

hybridized to M. oryzae microarrays. The two expected AVR genes were among the 1079 fungal 

genes expressed at >3-fold levels in IH relative to mycelium. AVR-Pita (RMG00001) was 

induced 3-fold in IH, and PWL2 (AMG11184) was induced 63-fold. In planta specific expression 

of both AVR genes was verified by RT-PCR (Figure 3.2A). The third in planta-specific AVR 

gene, AVR-CO39 was not represented on the microarray. The appressorium-specific AVR gene 

ACE1 encodes a cytoplasmic polyketide synthase-nonribosomal peptide synthetase (Böhnert et 
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al., 2004), and it showed negligible signals in both IH and mycelium. Detection of expression of 

AVR genes suggested that these data represent an in depth view of IH gene expression.  

 

Fungal genes that were highly expressed in IH were more likely to encode secreted 

proteins and less likely to have previous expression data (Figure 3.6). In the >50-fold group, 50% 

of encoded proteins had predicted signal peptides and 3% had ESTs. In the 10 to 50-fold group, 

19.3% of encoded proteins had predicted signal peptides and 19% had ESTs. In the 3- to 10-fold 

group, 9.5% of encoded proteins had predicted signal peptides and 38% had ESTs. These results 

demonstrated that the most abundant IH mRNAs often corresponded to extracellular proteins that 

are being identified as expressed for the first time. The absence of previously reported expression 

data for the highly up-regulated genes in IH was consistent with the general lack of early-stage in 

planta expression data available for the blast fungus. These results validate our hypothesis that 

IH express many specialized genes during biotrophic invasion of rice.  

 

For the 59 predicted secreted proteins that were >10-fold up-regulated in IH (Table 3.1), 

only 5 had putative functions based on homology to known proteins. These included PWL2, an 

endochitinase, a laccase, a cellulase, and an endonuclease. None of these genes had 

corresponding ESTs. Five genes of unknown function had reported ESTs. The remaining 

sequences corresponded to genes predicted from genome sequencing and annotated as 

hypothetical proteins. Overall, these results are consistent with the prediction that the fungus 

induces and subsequently delivers specialized proteins inside the host cell to establish biotrophic 

infection.  

 

Genes Expressed in Fungal Cell Types Outside the Plant Are Down-Regulated in IH  

In infected samples, 614 fungal genes were down-regulated more than 3-fold (Figure 

3.7). For this down-regulated gene set, 71% were hypothetical proteins and 9% had predicted 

signal peptides. While only 17% of the 256 genes that were induced >10-fold in IH had reported 

expression data, 76% of the 135 genes that were repressed >10-fold had expression data (Figure 

3.7). This finding showed that genes that were down-regulated in IH were highly represented in 

the sequenced cDNA libraries from axenically-grown fungus. Among the 50 most down-
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regulated genes (Table 3.2), EST hits were obtained from all cDNA libraries representing the 

different in vitro growing conditions and cell types (Ebbole et al., 2004).  

Known Pathogenicity Genes Were Unchanged or Down-Regulated in IH  

We first assessed expression levels for genes involved in appressorium formation (Table 

3.3). PTH11, the G-protein coupled receptor involved in surface sensing and appressorium 

formation, was repressed 5.3-fold in IH (relative to mycelium), and MPG1, the hydrophobin 

gene with a major role in appressorium development (Soanes et al., 2002) was repressed 21.6-

fold in IH. PTH11 showed low intensity signals in both channels (317 in mycelium and 78 in 

IH), whereas MPG1 showed relatively high signals (169,000 in mycelium and 7,530 in IH). 

Although probe design has a major impact on hybridization signals, the large differences in 

signal intensities suggest that PTH11 has low expression levels in both mycelium and IH and 

that MPG1 is highly expressed in mycelium and is also expressed in IH, although at a lower level 

than in mycelium.  

 

Other genes with a role in appressorium formation showed similar expression levels in IH 

and mycelium (Table 3.3). The adenylate cyclase-interacting protein ACI1, which is involved in 

signal transduction during appressorium formation, was the only known pathogenicity gene that 

reached the 3-fold threshold. The MAGB and MGB1 genes, encoding Gα and Gβ subunits, 

respectively, of heterotrimeric G proteins did not give significant hybridization signals in IH or 

mycelium. The MAP kinase PMK1 plays a key role in appressorium formation, and is highly 

expressed in appressoria (Bruno et al., 2004) et al., 2004). Although PMK1 also plays a role in 

infectious growth, it shows similar expression levels in IH and mycelium. Genes for calmodulin 

and the vacuolar serine protease were relatively highly expressed in both tissues.  

 

We also analyzed fungal genes with a role in penetration (Table 3.3). The MST12 

transcription factor is regulated by PMK1, and is required for both penetration and invasive 

growth. This transcription factor showed similar hybridization signals in both IH and mycelium. 

The multi-drug resistant efflux pump gene ABC3(Sun et al., 2006) is not significantly expressed 

in either cell type. However, the RSY1, BUF1, and 4HNR genes in the melanin biosynthesis 

pathway showed dramatic down-regulation in IH (>20-fold). This later result is consistent with 
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demonstrations that melanin-deficient mutants form unpigmented appressoria that can only 

penetrate abraded cuticle (Howard and Valent, 1996; Kankanala et al., 2007).  

 

Expression levels for pathogenicity genes that function in invasive growth might show 

differential expression. However, ABC1 and MgAPT2 (Gilbert et al., 2006) showed low 

hybridization signals in IH and mycelium. NTH1 showed higher expression levels in both cell 

types. The alternative oxidase gene MgAOX was repressed 20-fold during invasive growth, 

supporting reports that MgAOX was repressed during normal invasive growth, and that it may 

only play a role during oxidative stress conditions generated by respiration inhibitor fungicides 

(Avilla-Adams and Köller, 2002) and references therein). As one note of caution, the MIR1 gene 

is specifically expressed in IH (Li et al., 2007), but our analysis did not detect this differential 

expression.  

 

In vitro Growth Conditions Do Not Mimic Biotrophic Invasion  

The blast fungus produces numerous enzymes that degrade xylans, cellulose and other 

components of plant cell walls. However, their role during biotrophic invasion is not understood. 

Plant cell wall degrading enzymes are induced in mycelium grown on nutrient medium 

containing isolated walls as the major carbon source (Wu et al., 2006), and cDNAs sequenced 

from mycelium grown on plant cell wall medium have a higher representation of extracellular 

proteins than cDNAs from other sources (Ebbole et al., 2004). As mentioned, one of the >10-fold 

up-regulated secreted protein genes (Table 3.1) encodes a putative cellulase. However, out of 5 

characterized xylanases (Wu et al., 2006) represented in the microarray, none were up-regulated 

during biotrophic invasion. ESTs from cell wall-grown mycelium were well represented among 

transcripts that were repressed in IH (Table 3.2), but none corresponded to the >10-fold induced 

genes. These results suggest that growth on nutrient medium containing plant cell walls does not 

mimic the intracellular environment experienced by IH undergoing biotrophic invasion.  

 

Genes required for pathogenicity in several fungal pathogens are induced during growth 

in media lacking sufficient nitrogen, suggesting that the plant environment might be nitrogen-

deficient for the pathogen (Reviewed in (Donofrio et al., 2006). We compared our results on 
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expression in IH to an expression analysis for mycelium grown under nitrogen starvation 

conditions, also performed using the M. oryzae microarray (Donofrio et al., 2006). Expression 

profiles for the two conditions are totally different. Of the 5 pathogenicity genes up-regulated by 

nitrogen starvation, PTH11, MPG1, 4HNR, and AOX were highly down-regulated in IH (Table 

3.3). NTH1, the remaining pathogenicity gene induced by nitrogen starvation, was unchanged in 

its expression level (Table 3.3). Only 3 of the top 55 genes up-regulated by nitrogen starvation 

were also up-regulated in IH. These were an L-serine dehydratase (AMG03487), an 

oligonucleotide transporter (AMG11118) and a putative sensor histidine kinase (AMG04824). 

Neither the global nitrogen regulatory transcription factor NUT1 (AMG14166), nor a predicted 

nitrogen regulatory protein tamA (AMG09252) (Donofrio et al., 2006) was up-regulated in IH. 

We conclude that IH were not experiencing nitrogen starvation during biotrophic invasion.  

 

Highly Up-Regulated Rice Genes Encode Signal Transduction Components and 

Transcription Factors  

RNA samples that are enriched for IH genes must also be enriched in rice genes from 

cells impacted by IH. Using the same IH-enriched RNA samples in experiments with the Agilent 

rice microarray and a 3-fold cut-off level, 963 genes were induced and 296 were repressed in 

biotrophically invaded tissue. These genes belonged to multiple categories (Table 3.5).  

 

Seventeen genes showed >50-fold induction (P-values ranged from 3x10
-15 

to 0) in 

infected rice relative to mock-inoculated rice (Table 3.6). Several of these encode unknown 

proteins, including the most highly induced gene AK071227. Several themes, defined by 3 or 

more examples, occur in this protein set. Genes for mitogen-activated protein kinase kinase 

kinases (MAPKKK), for transcription factors, and for cytochrome P450 proteins are represented 

at least 3 times (Table 3.4). According to PSORT, many genes encode proteins with predicted 

nuclear or microbody localization.  

 

Three genes showing 96-fold, 86-fold and 77-fold up-regulation in invaded rice (Table 

3.4, Figure 3.2B) encoded putative MAPKKKs, the upstream kinases in the MAPK cascades 

passing signals from receptor/sensor proteins to transcription factors. These particular 
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MAPKKKs have homology to NPK1-related protein kinase from Z. mays (Shou et al., 2004). 

NPK1, originally described from tobacco, encodes a MAPKKK involved in responses to the 

abiotic stresses drought, cold and high salt (Nakagami et al., 2005). Interestingly, three more 

NPK-related kinases were up-regulated at moderate levels. These were AK107168 (43.8-fold), 

AK058518 (28.9-fold) and AK105946 (25.9-fold). In contrast, the better studied rice MAPKKK 

OsERD1 (AK111595), which plays a role in defense/stress signaling and development, showed 

low levels of expression in both samples (Nakagami et al., 2005). The MAP kinases that have 

been characterized for response in blast disease were not highly induced in our study (Reyna and 

Yang, 2006).  

 

A transcription factor in the OsDREB family (Dehydration Response Element-Binding 

protein), which regulates genes expressed in response to drought, cold and high salt (Dubouzet et 

al., 2003), was up-regulated 75-fold in infected tissue (Table 3.4, Figure 3.2B). The transcription 

factor OsNAC4 (AK073848), which plays a role in initiation of hypersensitive cell death induced 

by flagellin recognition in rice (Kaneda et al., 2007), was 64-fold up-regulated (Figure 3.2B). A 

transcription factor (AK062882) of the APETALA2 (AP2) / Ethylene-Responsive Element 

Binding Protein (EREBP) family was 58-fold up-regulated. Three additional proteins (Table 

3.4), including another putative transcription factor, have predicted nuclear localization 

according to PSORT. The rice transcription factor JAMyb (AK069082) previously associated 

with compatibility (Lee et al., 2001) only showed 9.3-fold higher expression levels (P-value of 

0), a difference that we validated by RT-PCR (Figure 3.2B). Overall, these results are consistent 

with extensive reprogramming of rice cell processes during biotrophic invasion.  

 

Rice Resistance and Defense Response Genes Show Low to Moderate Levels of 

Induction in Infected Tissue  

 

Proteins associated with various types of resistance showed between 3- and 50-fold up-

regulation in infected tissue (Table 3.5). AK100135, the rice PDR-type ABC transporter (49-

fold) has been suggested to be regulated by abiotic stress in rice roots (Moons, 2003),. Our 

results demonstrate that it is also induced during blast infection. AK105311, induced 12-fold 
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during infection, encodes a pleiotropic drug resistance-like protein with homology to NtPDR, an 

elicitor-responsive gene in tobacco (Sasabe et al., 2002). AK101439, an NBS-LRR resistance 

protein with homology to a barley resistance protein was up-regulated by 8-fold.  

 

Rice defense genes reported to be highly induced during both compatible and 

incompatible interactions were induced at low to moderate levels during biotrophic invasion 

(Table 3.5). Out of 6 phenylalanine ammonia lyases (Lee et al., 2001)represented on the rice 

array, only two showed slightly enhanced expression (~5-fold) in infected tissue. Fifteen putative 

peroxidases were induced between 3- and 14-fold. An endo-1,3-beta-glucanase (AK063953) 

with homology to the pathogenesis-related protein PR-2 of A. thaliana (Accession 

NP_191285,1) was up-regulated 32-fold. Three other glucanases were induced 5-, 14- and 28-

fold, seven chitinases were induced from 3- to 20-fold, and two of 6 thaumatin-like genes were 

induced 4- to 5-fold.  

 

Based on evidence that IH manipulate plasmodesmata (Kankanala et al., 2007), we 

searched for genes related to plasmodesmatal structure and function. Interestingly, a rice 

ortholog of the NtNCAPP gene (AK106058, P-value of 2.9E-32) was 8.7-fold up-regulated in 

infected tissue. In tobacco, NtNCAPP1 appears to play a role in translocation of some non-cell-

autonomous proteins across the plasmodesmatal channel (Lee et al., 2003). Plasmodesmatal pore 

sizes defining the size exclusion limit depend on a dynamic equilibrium between synthesis and 

degradation of callose, a β-1,3-glucan (Heinlein and Epel, 2004). An endo-1,3-beta-glucanase 

implicated in plasmodesmatal callose degradation encodes a post-translationally modified 

glycosylphosphatidylinositol (GPI) lipid-anchored protein (Levy et al., 2007). However, none of 

the induced glucanases in our data were GPI-anchored proteins. Plasmodesmata structure and 

plasticity might be impacted by plant cell wall degrading enzymes specific for pit field walls 

(Heinlein and Epel, 2004), although little is known about these walls in monocots. Annotated 

rice wall degrading enzymes, pectin methyl esterases, polygalacturonases, and cellulases fell 

within the +4- to -4-fold range (Table 3.5).  

A recent expression analysis used the Agilent rice array to assess impact of wounding 

rice leaves by similar procedures (incubating cut leaf pieces) to ours (Katou et al., 2007). 

Comparing our expression results to theirs showed no correlation (Figure 3.8). Additionally, a 
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mitogen-activated protein kinase phosphatase OsMKP1 (AK105748) that was highly induced by 

wounding (Katou et al., 2007)showed no change in expression levels in our infected tissue. 

These results confirmed that our control samples eliminated expression changes due to wounding 

from consideration. They also showed that plant response to biotrophic blast invasion did not 

resemble a wounding response.  

 

Unchanged and Down-Regulated Rice Genes in Invaded Tissue  

The 7 rice genes that were down-regulated >50-fold in infected tissue differed in 

properties from >50-fold up-regulated genes. These repressed genes include PSORT-predicted 

extracellular and cytoplasmic proteins (Table 3.4). Additional down-regulated genes included 

AK107345 (-43-fold) encoding a putative integral membrane protein (Table 3.5). Although the 

largest class of up-regulated genes encoded putative protein kinases, only five kinase genes 

showed down-regulation (-3 to -5-fold) in infected tissue. There were no putative transcription 

factors among the repressed genes.  

 

Comparison of our results with Vergne et al. (Vergne et al., 2007) showed little overlap 

with their highest up-regulated genes in the compatible interaction. These researchers 

investigated rice gene expression in compatible and incompatible interactions in rice leaves at 24 

and 48 hpi. A wall-associated kinase (AK067041) that showed the highest level of induction in 

their study (16-fold at 24 hpi, down again at 48 hpi) was not differentially regulated in ours. 

Additionally, an LRR-kinase that was induced in their 24-hour compatible data was not 

differentially regulated in ours.  

 

Mutational Analysis of Highly Up-Regulated Fungal Genes  

 

Genes that encoded IH-specific secreted proteins were candidate effectors with a role in 

controlling plant cell processes. After RT-PCR validation, 4 such genes were chosen for 

functional analysis (Table 3.1; Figure 3.2A; P-values = 0). AMG08261 (100-fold up), 

AMG08541 (84-fold up), AMG12560 (71-fold up), amd AMG08859 (64-fold-up) encode 

hypothetical and predicted proteins with 115, 102,113, and 135 amino acids, respectively. Other 
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than signal peptides, no conserved domains were found in these predicted proteins, except for 

AMG08261, using PSORT (Table 3.6).  

 

Plasmids for producing gene replacement mutants were constructed by cloning the 

hygromycin resistance gene between ~1-kb fragments of 5’- and 3’- sequences flanking each 

predicted coding sequence (Figure 3.3). Gene replacement constructs were transformed into 

strain KV1 using Agrobacterium tumefaciens-mediated transformation. Knock-out mutants 

produced by homologous recombination were identified by PCR and confirmed by Southern 

analysis. For each gene, two independent gene replacement mutants were compared to the wild 

type strain, and to an ectopic transformant with the hygromycin resistance gene inserted at some 

other genomic location. Each ∆AMG08261, ∆AMG08541, ∆AMG12560, and ∆AMG08859 

mutant showed normal growth and sporulation on nutrient agar plates. For each mutant, 

appressorium formation and leaf penetration were similar to the wild type and ectopic 

transformants in susceptible leaf sheaths (Figure 3.4). Biotrophic colonization of epidermal cells 

by each mutant in the leaf sheath assay was not noticeably different from the wild-type and 

ectopic transformant. Finally, there were no reproducible differences in lesion sizes or numbers 

in the whole plant infection assay, although occasional assays showed some symptom reduction 

in the mutant strains (Figure 3.5). According to these assays, proteins encoded by these three 

highly up-regulated genes were dispensable for pathogenicity.  We could not replace the gene in 

AMG15373 and AMG08263 using the same methology.  Even though 250 transformants were 

analyzed for each of these genes, all of them resulted from ectopic insertion of the knock-out 

cassette. 
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DISCUSSION  

 

We report rice and fungal gene expression profiles during early stage biotrophic invasion 

when most IH were colonizing the first-invaded epidermal cell and a few were moving into 

second cells. We developed a robust procedure to obtain infected tissue RNA with ~20% IH 

RNA. This ensured that the rice RNA was enriched in RNAs from cells interacting with IH. The 

same samples were used to compare expression between IH and mycelium, and between infected 

and mock-inoculated rice. Due to our success in enriching for RNAs in the interaction 

transcriptome, the numbers of differentially-regulated genes and the transcript abundance ratios 

we report are much higher than in previous rice blast gene profiling experiments. Detection of 

mRNAs corresponding to AVR genes AVR-Pita and PWL2 in IH-colonized tissue validated our 

biological samples as a potentially rich source for additional effectors. A broad overview of 

expression patterns in the biotrophically-invaded rice tissue supported the hypothesis that 

biotrophic IH secrete effector proteins that reprogram gene expression in rice cells.  

 

Rice genes induced >50-fold included MAP kinase kinase kinases, the first responders of 

the three component MAP kinase modules that link sensors/receptors to transcription factors and 

downstream targets. The biological complexity of MAPK cascades is becoming clear (Nakagami 

et al., 2005). The same MAPK pathway can perform independent cellular functions, and various 

MAPK components can serve different functions in different biological contexts. The induced 

MAPKKKs are homologous to the NPK1 kinase from tobacco. NPK1 is associated with heat, 

cold, hyperosmotic stress, cytokinesis, auxin signaling, pathogen response, drought and freezing 

tolerance. One NPK1 pathway (NPK1-MEK1-NTF6) is implicated in both cytokinesis and N-

mediated resistance of tobacco to Tobacco Mosaic Virus. Arabidopsis NPK orthologs, ANP 

genes, are involved in response to H
2
O

2
, in cytokinesis and in auxin signaling (Kovtun et al., 

2000). MAPK modules are associated with AvrPto-Pto mediated signaling and resistance in 

tobacco and tomato (Pedley and Martin, 2004), and with flagellin-induced innate immunity in 

Arabidopsis (Asai et al., 2002). Just how MAPK cascades contribute to biotrophic invasion and 

compatibility remains an exciting topic for study.  

 



 57 

Rice genes highly induced during biotrophic invasion include three transcription factors 

and unknown nuclear proteins. The transcription factors have been studied in different biological 

contexts. Five homologs to the Arabidopsis DREB transcription factors, considered to be master 

switches of drought-, cold- and salt- responsive genes, have been characterized in rice (Dubouzet 

et al., 2003). DREB factors recognize the dehydration responsive element (DRE) binding motif. 

We report that the OsDREB1B gene is 76-fold up-regulated in infected rice. Another 

transcription factor, AK062882 (58-fold up), belongs to the AP2/EREBP family, which includes 

members regulating expression of pathogenesis related proteins 

(http://drtf.cbi.pku.edu.cn/gene_info.php?gn=OsIBCD044038). The 3
rd 

transcription factor, 

OsNAC4, is induced by 64-fold during biotrophic invasion. In a different study, using both PCR-

subtraction and the Agilent rice oligoarray, OsNAC4 was identified as strongly induced during 

flagellin-mediated hypersensitive cell death in cultured rice cells (Kaneda et al., 2007). These 

authors suggest that OsNAC4 is a key initiator of plant HR cell death. Interestingly, out of 87 

genes with differential expression induced by bacterial flagellin, the only induced genes in 

common between their study and ours were OsNAC4, the MAPKKK (AK107168, 44-fold up in 

our study), and a C2H2 zinc finger protein (AK068861, 42-fold up in our study). This suggests 

that OsNAC4 is acting in a different context in the two distinct biological processes. Future 

functional studies for these transcription factors will directly assess a role in biotrophic invasion.  

 

The association of drought-response genes, the NPK1-related MAPKKK and OsDREB 

genes, with biotrophic invasion should be considered in the context of the field biology of blast 

disease. That is, drought stress makes rice more susceptible to blast disease. These results are 

consistent with a report that the rice MAP Kinase OsMAPK5 positively regulates drought, salt 

and cold tolerance and negatively regulates PR gene expression and resistance to blast disease 

(Xiong and Yang, 2003). Understanding the role of the drought-associated MAPKKK and 

OsDREB during biotrophic blast invasion takes on practical significance, because both classes of 

genes are being used in transgenic strategies to confer drought resistance in rice and maize 

(Dubouzet et al., 2003).  

 

We report that rice defense response genes were induced at low to moderate levels 

(between 3- and 40-fold) during biotrophic invasion. Such genes are generally the most highly 
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induced genes reported for compatible and incompatible blast interactions (Kim et al., 2001; 

Rauyaree et al., 2001; Matsumura et al., 2003; Jantasuriyarat et al., 2005; Vergne et al., 2007). 

Interestingly, Jantasuriyarat et al. (Jantasuriyarat et al., 2005) reported major changes in rice 

gene expression at 6 and 24 hpi before most of the fungus even had the possibility of penetrating 

inside the plant, and genes encoding β-1,3-glucanase and phenylalanine ammonia lyase were 

among the most highly induced. Their results are even more significant due to the extremely low 

levels of fungal biomass in the tissues (only 4 out of 68,920 ESTs were homologous to known 

fungal genes). Vergne (Vergne et al., 2007) report similar results. Therefore, it appears that many 

rice cells that are distant from the invading fungus were expressing basal resistance responses. 

By enriching for rice cells near to growing IH, we have identified rice genes involved in 

“effector-triggered susceptibility (ETS)” (Jones and Dangl, 2006). We suggest that different rice 

cells in our infected sheaths may be expressing different gene sets. Rice cells near to and 

controlled by IH may express ETS genes and distant rice cells may express basal resistance 

genes. This hypothesis can best be tested using laser microdissection to achieve purification and 

analysis of rice cells with specific spatial relationships to IH (Tang et al., 2006).  

 

In addition to sensor response and transcription factor genes, rice ETS genes controlled 

by IH may impact rice membrane dynamics and plasmodesmatal recognition and function 

(Kankanala et al., 2007). A putative rice endomembrane protein that is 58.9-fold up-regulated 

during infection (Table 3.4) may participate in membrane manipulation by IH. The up-regulated 

rice plasmodesmatal receptor is a putative ortholog of tobacco NtNCAPP1, which is involved in 

translocation of some non-cell-autonomous proteins through plasmodesmata (Lee et al., 2003) . 

This protein may play a role in sending fungal signals into neighboring cells or even in 

plasmodesmatal recognition and recruitment for cell-to-cell movement. These rice genes are 

strong candidates for functional analyses.  

 

Biotrophic IH are morphologically and developmentally distinct from the thin 

filamentous hyphae that grow in nutrient medium, suggesting that they express different genes. 

We have clearly shown that this is the case. Many genes previously only predicted by genome 

sequencing are highly up-regulated in IH (Figure 3.6 & Table 3.1), and many genes previously 

identified from mycelium were highly down-regulated in IH (Table 3.2).  
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Our results on IH gene expression are consistent with known blast biology. Melanin 

biosynthesis genes are not required for biotrophic invasion (Kankanala et al., 2007) and they are 

highly down-regulated in IH. Lack of induction of plant cell wall degrading enzymes in IH is 

consistent with biotrophic IH appearing to cross plant cell walls at pit fields using highly 

constricted IH pegs, and with the general lack of visible degradation of plant cell walls during 

this early invasion stage (Kankanala et al., 2007).  

 

Our report that the hydophobin gene MPG1 is significantly down-regulated in IH at 36 

hpi is consistent with the report (Talbot et al., 1993) that MPG1 expression was high at 12 hpi 

(when appressoria were forming), not detectable at 18, 24 or 48 hpi, and detectable again from 

72 to 96 hpi, when macroscopic symptoms occurred. MPG1 was reported among the most highly 

expressed genes in a compatible blast interaction in rice leaves at 10 days post inoculation 

(Matsumura et al., 2003), and in the partially compatible interaction (strain 70-15 in Nipponbare 

leaves) from 84 to 120 hpi (Kim et al., 2001). Reports of high expression of MPG1 at 48 hpi by 

Rauyaree et al. (Rauyaree et al., 2001) might be contradictory. However, in this study of the 70-

15/Nipponbare interaction, extensive dark brown hypersensitive spots were clearly visible at 48 

hpi (Figure 1 in Rauyaree et al, (Rauyaree et al., 2001)). Thus, the 70-15/Nipponbare interaction 

differs from our highly compatible interaction, in which visible symptoms do not occur until ~96 

hpi. Together, the results are consistent with MPG1 playing a role as lesions appear and the 

pathogen prepares to sporulate, and perhaps at earlier stages in less compatible interactions when 

the fungus is growing but failing to thrive.  

 

Pathogenicity genes PTH11, MPG1 and the melanin biosynthesis genes play important 

roles during appressorium formation and function (Talbot, 2003), and they are highly induced in 

nitrogen-starved mycelium (Soanes et al., 2002; Donofrio et al., 2006) and references therein). 

These genes were highly down-regulated in IH. Thus, it appears that expression in response to 

nitrogen starvation has relevance to the pre-penetration phase when the fungus is growing on the 

plant surface, but not to early stages of growth inside the plant. On the other hand, plant cell wall 

degrading enzymes appear to be highly expressed at later infection stages during macroscopic 

symptom development (Wu et al., 2006). Thus, growth of fungus in nutrient medium with 
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isolated rice cell walls as the main carbon source should have relevance to later stages of plant 

tissue colonization. In general, our analysis has found no evidence that in vitro fungal models 

can substitute for direct studies of in planta biotrophic growth, confirming the importance of our 

strategy and the unique insights on IH-specific invasion we report.  

 

As signals exchanged between fungus and plant, secreted proteins are potential players 

for controlling plant responses. From the M. oryzae genome, 739 sequences, 6.6% of ~11,109 

predicted proteins (Dean et al., 2005), encode secreted proteins according to the prediction 

programs SignalP and PROTCOMP (Soderlund et al., 2006). Indeed, M. oryzae contains double 

the number of putative secreted proteins found in the saprobe Neurospora crassa (Dean et al., 

2005). We showed that ~19% of these secreted proteins are induced >3-fold during early 

biotrophic infection. Hypothetical secreted proteins comprise nearly half of sequences expressed 

>50 fold in IH (Figure 3.6). Although it is likely that secreted IH-specific proteins play key roles 

in biotrophic invasion, targeted gene replacement experiments on 3 of the most highly up-

regulated IH genes did not result in clear phenotypes in planta or in vitro. This result is consistent 

with the general failure to identify phenotypes associated with many known effector/AVR genes 

and the apparent difficulty in identifying genes with IH-specific phenotypes through classical 

mutational analyses (Talbot, 2003). Further refinement of plant infection assays to reliably detect 

small changes in pathogen aggressiveness was assessed by extended whole plant inoculation 

assay (10 pots per strain) but similar results were obtained. In addition, fusion of coding region 

to a EYFP reporter gene confirmed that some of these genes are invasion specific (Giraldo, M. 

and Valent, B. unpublished results). In the future assaying double mutants, identifying avirulence 

activities for IH proteins, and determining if IH-specific proteins interact physically with induced 

rice proteins will provide clues about possible role of these genes during infection.  

 

The recent finding that intracellular IH are enclosed in plant membrane, the EIHM 

(Kankanala et al., 2007), has important implications because blast AVR/effector proteins must 

cross the EIHM to reach the plant cytoplasm. So far, the mechanism of secretion of effector 

proteins across host membranes is not known for plant pathogenic fungi or oomycetes. 

Oomycete pathogens secrete their cytoplasmic effectors through an uncharacterized mechanism 

that requires an RXLR-containing motif following the classical signal peptide (Bhattacharjee et 
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al., 2006; Birch et al., 2006). In the case of M. oryzae, we searched among known AVR/effector 

proteins and the >50-fold induced secreted proteins for RXLR-like sequences or other potential 

conserved motifs and found no candidate motifs. We recently showed that blast IH secreted 

AVR-Pita and PWL proteins, and that they accumulated at predictable locations inside the EIHM 

(Berruyer et al., Unpublished results). There is no direct evidence that these effectors cross the 

EIHM, and it is possible that some IH-secreted proteins may be retained in the fungal wall or the 

interfacial zone between the fungal wall and the EIHM. Proteins secreted outside the fungus but 

not crossing the EIHM would introduce noise into translocation motif searches. Simple assays to 

determine delivery of blast effector proteins across the EIHM into the rice cytoplasm will aid in 

the identification of protein motifs mediating membrane crossing and allow elucidation of the M. 

oryzae effector secretion system.  

 

Assembling a large set of IH-specific genes also permitted bioinformatic searches for 

promoter cis-elements mediating IH-specific transcription. Such motifs would be valuable for 

identifying additional co-regulated genes. We predicted that promoters for AVR-Pita, PWL2 and 

other putative effector-encoding genes share cis-elements for in planta-specific transcription 

factors. To discover these, we analyzed the 500 bp up-stream regions of known and putative 

AVR/effector genes using the MEME program. We found no candidate motifs. Promoter analysis 

can be useful in the identification of co-regulated genes, but confusing results may be obtained 

when the analyzed sequences are not properly chosen. Our single time point study identified 

genes that are expressed by IH in planta but not by mycelium grown in vitro. Time course studies 

during in planta growth might further divide these genes into coordinately expressed clusters, 

which would provide the best gene groupings for motif searches.  

 

Analysis of the interaction transcriptome of rice blast disease will be an ongoing process. 

The annotations for M. oryzae and for rice are changing rapidly. Our data will be entered on a 

gene by gene basis in the MGOS database (http://www.mgosdb.org), the site for blast 

community annotation of the fungus and rice (Soderlund et al., 2006). Therefore, new 

annotations for the many unknown genes will be immediately associated with the gene’s relative 

expression levels in IH and mycelium. Our analysis will continue to be valuable for genome 

annotation efforts, especially with the annotation of sequences that encode unknown and 
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hypothetical proteins. From this data set, many genes remain to be analyzed for their impact on 

biotrophic blast invasion.  

 
 

Future work 

The data generated in this work opens new perspectives in the study of rice blast disease. 

Fusion of fungal coding sequences of putative secreted proteins and their native promoters with 

YFP reporter genes are in progress (M. Giraldo thesis project). This research will confirm their 

specific expression during infection and also their secretion outside the fungus. Other studies 

include the generation of a system to test if secreted proteins can induce HR in rice and prove 

that they are effectors. We also need to generate knock-out mutants in other fungal genes 

encoding putative secreted proteins. Finally, it will be interesting to see if some of the plant 

genes that are over-expressed during infection can represent putative susceptibility genes. To 

prove this, We can generate knock-down lines in specific genes and evaluate their effect in the 

rice blast infection. 

MATERIAL AND METHODS  

Fungal Culture  

M. oryzae strain KV1 (Kankanala et al., 2007) expressing constitutive EYFP was derived 

from strain O-137, a highly aggressive field isolate collected from rice in China. The fungus was 

maintained in frozen storage and cultured on oatmeal agar plates at 24°C under continuous light 

(Valent et al., 1991). For tissue inoculation, spores were collected in 0.25% gelatin (Cat. # G-

6650, Sigma) solution to produce a suspension of 1 x10
5 
spores/mL. For growth in liquid 

medium, a 1 cm square piece of agar containing fungus was excised from the surface of an 

oatmeal agar plate and blended in 25 ml of 3,3,3 medium (3g/L of glucose, 3g/L of casamino 

acids, and 3g/L of yeast extract). The blended mycelium was mixed with 225 ml of fresh 

medium in a 500 ml flask. The culture was incubated at 24°C under continuous rotation at 120 

RPM. Mycelium was collected by filtration after 24 h of incubation, and the blending treatment 

was repeated for 3 rounds of growth. Mycelium was finally collected, dried using paper towels 

and stored at -80°C for RNA extraction.  
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Assays for Growth, Sporulation, Appressorium Formation and Plant Infection  

Fungal growth and sporulation was observed on oatmeal agar plates (Valent et al., 1991). 

Appressorium formation, penetration and biotrophic invasion were observed in the leaf sheath 

assay. Whole plant infection assays were performed by spray inoculations (Berruyer et al., 2006) 

using three week old YT-16 plants and suspensions of 5 X 10
4 
spores/mL in gelatin solution. 

Lesion formation in whole plant assays were evaluated at 7 days (Valent et al., 1991).  

 

For sheath inoculations, samples were handled as previously described (Kankanala et al., 

2007). Briefly, five cm-long sheath pieces from 3 week old plants were placed in Petri dishes 

containing wet filter papers to maintain high humidity. Sheaths were placed in wire supports to 

avoid contact with the wet paper and to hold them horizontally flat for even inoculum 

distribution over the mid-vein. Spore suspension (1 X 10
5 
spores/mL in gelatin) was injected in 

one end of the sheath using a 1 mL pipet. At 36 hpi, 0.5 cm pieces were removed from the 

incubated sheath ends to eliminate fungus that invaded the injured tissue. Each sheath segment 

was cleaned using a wet sterile swab to remove spores, appressoria and mycelium on the surface, 

trimmed, and immediately scanned for infection site density using epifluorescence microscopy. 

Heavily infected samples were frozen in liquid nitrogen and stored at -80°C. For mock-

inoculated controls, sheaths were inoculated with gelatin solution, incubated and processed 

identically to inoculated pieces.  

 

Microscopy  

Differential Interference Contrast microscopy (DIC) and epifluorescence microscopy 

were performed using a Zeiss Axioplan 2 IE Mot microscope. Cells were observed with a 63X 

C-Apochromat (NA 1.2) water immersion objective lens. Fluorescence of the EYFP protein was 

observed using a fluoArc lighting system and a YFP-specific filter (excitation 500 ± 20nm, 

emission 535 ± 30 nm, filter set 46), both from Zeiss. Images were acquired using a Zeiss 

AxioCam HRc camera and analyzed with Zeiss Axiovision® Digital Image Processing Software, 

Version 3.1. RNA Extraction, cDNA Preparation, RT-PCR. Total RNAs from mycelium and rice 

tissues were extracted using a Trizol method (Invitrogen, Carlsbad, CA). Briefly, 100 mg of 
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tissue was ground using a mortar and pestle with liquid nitrogen, and the resulting powder was 

suspended in 1mL of trizol. After 5 min of incubation, 0.2 mL of chloroform was added and 

samples were mixed manually for 15 seconds. After 15 min of centrifugation, the supernatant 

was recovered and mixed with 0.25 ml of 3 M sodium acetate and 0.25 ml of isopropanol. The 

pellet was washed twice with 75% ethanol. RNA quantity was measured using a NanoDrop 

Spectrophotometer (Nano-Drop Technologies, Wilmington,, DE). For microarray hybridizations, 

RNA quality was determined using an Agilent Bionalyzer (Agilent Technologies, Palo Alto, 

CA). To obtain control RNAs with similar fungal and plant content, we produced a mixture of 

20% mycelial RNA and 80% mock inoculated rice sheath RNA. Five hundred nanograms of 

total RNA were used for cDNA synthesis reaction using the SuperScript® First Strand kit from 

Invitrogen according to the manufacturer’s instructions. For RT-PCR, two microliters of cDNA 

were used for PCR amplification. All primers are listed in Table 3.7. When possible, primers 

were designed to span introns in order to differentiate genomic and cDNA copies. Twenty-seven 

rounds of PCR amplification were used in all expression validation experiments (Figure 3.2).  

 

Microarray Hybridization and Data Analysis  

Total RNA (500 ng) was labeled using a Low RNA Input Fluorescent Linear 

Amplification Kit (Agilent Technologies, Palo Alto, CA). Typical cRNA yields after one round 

of amplification were 10-15 ug. The cRNAs were labeled with Cyanine-3 CTP or Cyanine-5 

CTP according to the manufacturer’s specifications. Fluorescent cRNAs were purified and 

quantified using a NanoDrop Spectrophotometer (NanoDrop Technologies, Delaware), and 1 µg 

aliquots of the labeled cRNAs were hybridized to M. oryzae microarray slides, version 2 (Cat. # 

G4137B, Agilent Technologies), and to Rice microarray slides (Cat # G4138A, Agilent 

Technologies).  

For hybridization, the labeled samples (1 ug each Cy3 and Cy5 labeled cRNA) were 

fragmented by the addition of 25X Agilent Fragmentation buffer and incubated for 30 min at 

60°C. The sample was adjusted to a final volume of 450 µl with formamide-containing 

hybridization buffer(Hughes et al., 2001) and then added to the microarray slides. Slides were 

incubated for 18 hours with continuous rotation at 40°C. After hybridization, slides were washed 

in 6X SSPE, 0.005% sarcosyl for 1 min, in 0.06X SSPE for 30 sec, in water for 30 sec, and then 
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air dried. Slides were scanned on an Agilent G2565BA DNA microarray scanner, and TIFF 

images were extracted using the Agilent Feature Extraction software (version 8.5). Resultant 

.xml and .jpeg files were imported into Rosetta Resolver software (Rosetta Biosoftware, Seattle, 

WA). Data were analyzed separately for each of the three independent biological replicates (four 

hybridizations for each) for purposes of comparison. Numbers reported in this manuscript 

resulted from separate analyses of the 12 data sets combined for each microarray. Data sets were 

plotted as intensity scatter plots (background subtracted/dye normalized Cy3 channel vs 

background subtracted/dye normalized Cy5 channel). Signature sequences were identified by 

Resolver and exported to Excel. The P-value range for 3-fold up- and down-regulated fungal 

genes is shown in Figure 3.6 . P-values for rice genes that were ≥3-fold up-regulated ranged from 

0.00841 to 0, and for the rice genes that were ≥3-fold-down-regulated ranged from 0.0067 to 0.  

 

Vector Construction, Fungal Transformation and Southern analysis  

Transformation cassettes were constructed by amplifying ~1.0-kb of 5’- and 3’-flanking 

regions for each predicted coding sequence. The hygromycin gene was cloned between the two 

flanking region using a fusion PCR strategy. The three pieces together were cloned first into the 

pGEMT-T® vector (Promega, Madison, WI) for sequence analysis, and later into binary vector 

pGKO2 (Khang et al., 2005) using a restriction-ligation strategy. KV1 spores were transformed 

using Agrobacterium tumefaciens (Khang et al., 2005). After two rounds of selection in TB3 

media containing 250 ug/ml of hygromycin, 50 to 150 independent fungal transformants were 

analyzed for gene replacement events by PCR amplification. Those that showed no amplification 

of the coding sequence were further tested for presence of the hygromycin resistance gene using 

hph-specific primers. Gene replacement events were confirmed by Southern blot analysis using 

the AlkPhos Direct Labeling Kit for non-radioactive labeling of DNA probes (Amersham 

RPN3690, Piscataway, NJ).  

Datasets for the M. oryzae and rice microarrays can be accessed through NCBI GEO 

superSeries accession number GSE8670 (www.ncbi.nlm.nih.gov/geo). This data is available to 

reviewers at the following link:  

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=lfyvnuqqggoiujm&acc=GSE8670  
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Figure 3.1 Characterization of infected sheath tissues used for microarray analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Biotrophic invasive hyphae (IH) in rice sheath epidermal cells at 36 hpi.  
Typical bulbous IH used for microarray analysis were growing in the first-invaded epidermal 
cell. In one cell, filamentous IH (arrows) that had not yet enlarged into bulbous IH were growing 
after crossing the cell wall (Kankanala et al., 2007). Merged DIC and fluorescence channels are 
shown (size differences due to image cropping).  
(B) Relative RT-PCR amplification of fungal actin in 36 hpi infected sheath tissue and 
control mixtures. RNA mixtures were obtained by combining defined amounts of RNA from 
fungal mycelium and mock-inoculated sheath. Percentage values (%F) correspond to the fungal 
RNA content. 100%P is pure plant RNA. For each, 22 cycles of amplification were used.  
(C) RT-PCR amplification of fungal actin in infected sheaths and leaves at 36 hpi. A 
prominent fungal actin band was seen from infected sheath RNAs after 28 cycles, but not from 
the infected leaf samples. After 35 cycles, faint bands were seen in the infected leaf samples, but 
not in controls that lacked reverse transcriptase (RT-). For infected leaf tissue, whole plants were 
inoculated. Samples were collected separately for the most susceptible leaf 1 (the half-extended 
youngest leaf at the time of inoculation), and the lesser susceptible leaf 2 (the next youngest leaf, 
fully extended at the time of inoculation). LS36 = Leaf sheath; Leaf 1= youngest leaf; Leaf 2 = 
older leaf.  
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Figure 3.2 Validation of microarray data using RT-PCR.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 RNAs were produced from mock-inoculated sheath at 36 hpi (Mock 36h), from mycelium 
(Mycelia), and from infected sheath at 36 hpi (Infected 36h).  
(A) Amplification of fungal genes with Mock 36h RNA as the negative control. For each 
primer pair, 27 rounds of PCR amplification were used. Amplification of the fungal actin gene 
control reflects the lower amount of fungal RNA in the infected tissue (20%) compared to 
mycelial RNA, resulting in increased significance for differential amplification of up-regulated 
genes.  
(B) Amplification of rice genes with mycelial RNA as the negative control. Again, 27 cycles of 
PCR were used. Primers for plant actin were used as controls.  
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Figure 3.3. Gene replacement analysis of the AMG8541 gene 

 

 

 

 

 

 

 

 

 

The same methods were used for gene knock-out analyses of AMG08261 and AMG12560.  
(A) Schematic diagram of the AMG08541 (black arrow) genomic locus. The gene replacement 
construct contained the hph gene (gray arrow) flanked by ~1000-bp of sequences up-stream and 
down-stream from the predicted coding sequence.  
(B) Southern hybridization analysis was performed using genomic DNAs from an ectopic 
transformant (ec), two independent knock-out mutants (Mut-1 and Mut-2), and the wild-type 
strain KV1 (WT). Kpn I-digested genomic DNAs were separated by electrophoresis in a 0.8% 
agarose gel. Probe 1 (wild-type coding sequence) hybridized to the expected 1.4-kb fragment in 
the wild type strain and ectopic transformant, but not in the mutants. Probe 2 (hph coding 
sequence) hybridized with DNAs from the ectopic transformant and the mutants, but not from 
wild-type.  
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Figure 3.4 . Leaf sheath inoculation assay using M. oryzae amg08261-_ knock-out mutants 

 
 

 
 
 
 
Evaluation of the infection of amg08261 mutants at early stages on rice leaf sheaths. KV1 
indicates the wild type strain; 20.1EC indicates an ectopic transformant; 33.2 and 45.2 indicate 
two independent mutants. Time points 20 hpi, 32 hpi and 43 hpi correspond to formation of 
appressoria, infection of the first invaded cell, and movement to the second cell, respectively. 
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Figure 3.5 Whole plant inoculation assay using M. oryzae amg08541- knock-out mutants 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Whole plant spray inoculation assays were done and plants were incubated for 7 days. Symptoms 

are shown for the youngest, most susceptible leaf at the time of inoculation. Leaves were 

inoculated with: 1, gelatin control; 2, wild-type KV1; 3,  ectopic transformant; and 4, and 5, two 

independent amg08541 knock-out mutants. Assays were repeated at least 3 times.  
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Figure 3.6 Properties of M. oryzae genes that were up-regulated in IH  
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Figure 3.7 Properties of M. oryzae genes that were down-regulated in IH 
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Figure 3.8 Comparison of expression of rice genes due to infection and wounding response 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wounding data taken from Katou et al. 2007. Rice tissue was cut into pieces and incubated by 24 

h at 26°C under continuous light. 
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Table 3.1 Putative secreted proteins expressed >10-fold in IH compared to mycelium 

Probe  

(MGOS namea) 

Fold 

change 

P-value 
Putative identity EST

AMG08263 

 

100 

 

0 Hypothetical protein 

 

AMG08261c 

 

100 

 

0 Hypothetical protein 

 

AMG08417.2 

 

88 0 Hypothetical protein 

AMG08541c 

 

83.8 

 

0 Hypothetical protein 

 

AMG06765 

 

74.8 

 

0 Hypothetical protein 

 

AMG06650 

 

73.9 

 

0 Hypothetical protein 

 

AMG12560c 

 

71.3 

 

0 Hypothetical protein 

 

AMG07384 

 

71.0 

 

0 Hypothetical protein 

 

AMG08859 

 

64.1 

 

0 Hypothetical protein 

 

AMG13014 

 

63.4 

 

0 Hypothetical protein 

 

AMG11184 

 

63.2 0 PWL2, E-value = 0.0 

AMG15980 

 

61.4 

 

0 Hypothetical protein 

 

AMG08160 

 

57.8 

 

0 endochitinase [Amanita muscaria]; E-value = 

9e-59 

AMG08787 56.5 0 Hypothetical protein 
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AMG08432 

 

51.1 

 

0 Hypothetical protein 

 

AMG14799 

 

49.2 

 

0 Hypothetical protein 

 

AMG16216 

 

48.2 

 

0 Hypothetical protein 

 

AMG05133 

 

46.2 

 

0 laccase [Gaeumannomyces graminis var. 

graminis]; E-value = 0.0 

AMG03019 

 

42.7 

 

0 Hypothetical protein 

 

AMG16197 

 

36.0 

 

0 Hypothetical protein 

 

my

AMG13593.2 

 

35.7 

 

0 Hypothetical protein 

 

AMG13918 

 

35.6 

 

2.7 E-24 Hypothetical protein 

 

AMG02533 

 

35.5 

 

1.29E-29 Hypothetical protein 

 

AMG05132 

 

35.2 

 

0 Hypothetical protein 

 

AMG15524 

 

33.4 

 

0 Hypothetical protein 

 

AMG07601.1 

 

30.1 

 

0 Hypothetical protein 

 

cm

AMG12804 

 

28.9 

 

0 Hypothetical protein 

 

AMG02457 28.2 0 Hypothetical protein 

 

AMG13251 28.1 0 Hypothetical protein 
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AMG01557 

 

27.5 

 

0 Hypothetical protein 

 

AMG02692 

 

27.0 

 

0 Hypothetical protein 

 

AMG03089 

 

26.7 

 

0 Hypothetical protein 

 

my, ap

AMG07577 

 

24.8 

 

0 Hypothetical protein 

 

AMG06843 

 

22.3 

 

0 Hypothetical protein 

 

AMG11086 

 

21.8 

 

0 Hypothetical protein 

 

AMG08195 

 

21.2 

 

1.01E-41 Hypothetical protein 

 

AMG09820 

 

20.3 

 

0 Hypothetical protein 

 

AMG07137 

 

19.6 

 

0 Hypothetical protein 

 

AMG12553 

 

19.1 

 

0 Hypothetical protein 

 

AMG15040 

 

17.7 

 

0 Hypothetical protein 

 

AMG04878 

 

17.2 

 

0 cellulase CelA [Clavibacter michiganensis 

subsp. sepedonicus];  E-value =  1e-18 

AMG13227 

 

17.1 

 

0 Hypothetical protein 

 

AMG02455 

 

16.1 

 

2.45E-12 Hypothetical protein 

 

AMG13025 15.4 5.7E-35 Hypothetical protein 
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AMG07056 

 

15.3 

 

0 Hypothetical protein 

 

AMG02439 

 

14.8 

 

5.1E-23 Hypothetical protein 

 

AMG06036 

 

13.9 

 

0 Endonuclease/Exonuclease/Phosphatase 

[Candida albicans SC5314] 

gb|EAL00625.1|; E-value = 5e-21 

AMG08482 

 

13.6 

 

3.41E-28 Hypothetical protein 

 

AMG02914 

 

13.4 

 

3.39E-30 Hypothetical protein 

 

AMG12924 

 

13.3 

 

0 Hypothetical protein 

 

AMG02925 

 

13.2 

 

0 Hypothetical protein 

 

AMG13855 

 

13.1 

 

8.01E-41 Hypothetical protein 

 

AMG00035 

 

13.0 

 

1.40E-45 Hypothetical protein 

 

AMG07561 

 

12.8 

 

0 Hypothetical protein 

 

cm

AMG02702 

 

11.6 

 

0 Hypothetical protein 

 

AMG04075 

 

11.4 

 

3.71E-42 Hypothetical protein 

 

AMG08865 

 

10.4 

 

0 Hypothetical protein 

 

AMG08416.1 

 

10.3 

 

0 Hypothetical protein 

 

cs
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AMG06620 

 

10.2 

 

2.60E-29 Hypothetical protein 

 

 
aMGOS gene names correspond to the probes used in version 2 of the Agilent M. oryzae 

microarray.  They will not change with new releases of the genome sequence.  MGOS names can 

be converted to Broad Database gene names at www.mgosdb.org.   
b “–“ indicates no EST hits.  Hits are labeled according to the library in which they occurred.  

Library abbreviations: ap = appressorium, cm = mycelium from complete medium, cs = 

conidiospores, my = mycelium from minimal medium, (Ebbole et al., 2004). 
cThese genes were used for gene replacement experiments.  
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Table 3.2 The 50 most down-regulated fungal genes during biotrophic infection 

Probe 
Fold 

change 

 

P-value Putative identity 

Predicted  

Signal 

Peptide 

cDNA 

Libraries a 

AMG06063.1 

 

-82.9 

 

0 Hypothetical protein 

 
 

cs cw my 

 

AMG13759.1 

 

-77.1 

 

0 Hypothetical protein 

 
 

cm 

 

AMG06063.2 

 

-59.6 

 

2.14E-40 Hypothetical protein 

 
 

cs cw my 

 

AMG11634.1 

 

-55.2 

 

0 Hypothetical protein 

 
 

cs mk mt 

 

AMG09784.1 

 

-53.6 

 

2.91E-41 Hypothetical protein 

 
 

mt ap cs 

 

AMG00941.1 

 

-46.3 

 

0 Hypothetical protein 

 
 

mt ns cs 

 

AMG14000.1 

 

-43.2 

 

0 
Hypothetical protein 

 
SP 

ap cs mk mt ns 

su 

 

AMG15966 

 

-39.3 

 

0 Hypothetical protein 

 
 

cm mt 

 

AMG09317 

 

-38.7 

 

0 Hypothetical protein 

 
 

cm cs cw 

 

AMG01344.2 

 

-38.4 

 

0 Hypothetical protein 

 
 

cm cs cw ns 

 

AMG12371.1 

 

-38.3 

 

5.76E-22 Hypothetical protein 

 
  

AMG09954 

 

-37.8 

 

0 Hypothetical protein 

 
 

cs cw 

 

AMG08367 

 

-37.4 

 

0 expressed protein [A. 

thaliana] ref|NP_974838.1| 
 

mk mt 

 

AMG04896.2 

 

-37.2 

 

0 Hypothetical protein 

 
SP 

my ns 

 

AMG01490 

 

-36.6 

 

0 Hypothetical protein 

 
 

cm ns 

 

AMG01344.1 -35.8 0 Hypothetical protein  cw su my 
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AMG10496 

 

-35.7 

 

0 metalloprotease 1 precursor 

[Coccidioides posadasii] 
SP 

cm 

 

AMG05375 

 

-35.2 

 

0 Hypothetical protein 

 
 

cm 

 

AMG07022 

 

-34.3 

 

0 Hypothetical protein 

 
  

AMG05270 

 

-33.7 

 

0 

Hypothetical protein  

cm cs cw mt my 

ns su 

 

AMG04953 

 

-33.5 

 

2.09E-34 acidic amino acid permease 

[Penicillium chrysogenum] 

 

 
cm cw mt 

 

AMG10872 

 

-33.3 

 

0 Hypothetical protein 

 
 

cs ns 

 

AMG14477 

 

-32.8 

 

0 Hypothetical protein 

 
SP 

ns 

 

AMG13759.2 

 

-32.7 

 

0 Hypothetical protein 

 
 

cw 

 

AMG07762 

 

-31.6 

 

0 Hypothetical protein 

 
 

cm cs cw 

 

AMG11366 

 

-31.3 

 

3.54E-16 Hypothetical protein 

 
 

cm 

 

AMG12878.2 

 

-31.0 

 

0 Hypothetical protein 

 
 

cm su ns 

 

AMG01944 

 

-28.1 

 

0 1,3,6,8-

Tetrahydroxynaphthalene 

Reductase 

 
mk cm 

 

AMG04981 

 

-27.8 

 

0 cytochrome P450 

monooxygenase [Botryotinia 

fuckeliana] 

 
cm ns su 

 

AMG05178 

 

-27.8 

 

4.13E-07 Hypothetical protein 

 
 

cm 

 

AMG05092.2 -27.4 
1.84E-10 

Hypothetical protein  
cm 

 

AMG13068.2 
-27.3 

 

0 Hypothetical protein 

 
 

ns 
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AMG06334 

 

-26.5 

 

1.74E-31 IgE-binding protein 

[Aspergillus fumigatus] 

 

SP 
cm cw 

 

AMG06993.1 
-26.3 

 

0 
Hypothetical protein   

AMG06707 

 

-26.2 

 

0 Dipeptidyl-peptidase V 

precursor –[Aspergillus 

fumigatus] gb|AAB67282.1| 

SP 
ns su 

 

AMG01829.1 

 

-25.1 

 

8.91E-34 Hypothetical protein 

 
 

cm cw my ns 

 

AMG02948 

 

-24.9 

 

1.19E-21 BUF1, 

trihydroxynaphthalene 

reductase 

 

 

ap cm cs cw mk 

mt ns su 

 

AMG08668.3 

 

-24.8 

 

0 Hypothetical protein 

 
  

AMG06064 

 

-24.6 

 

1.39E-37 scytalone dehydratase (EC 

4.2.1.94) - Magnaporthe 

oryzae 

 
ap cm mt su 

 

AMG00656 

 

-24.3 

 

5.82E-41 Hypothetical protein 

 
 

cm cw mt 

 

AMG02248 

 

-24.2 

 

0 Hypothetical protein 

 
  

AMG07563 

 

-24.2 

 

1.64E-10 Hypothetical protein 

 
  

AMG14788 

 

-24.2 

 

0 Hypothetical protein 

 
 

ns 

 

AMG06740 

 

-24.1 

 

5.06E-42 Hypothetical protein 

 
 

mt 

 

AMG06595 

 

-23.8 

 

0 Hypothetical protein 

 
 

cm cw mt my 

 

AMG11066 

 

-23.7 

 

0 Hypothetical protein 

 
  

AMG07092 

 

-23.6 

 

0 Hypothetical protein 

 
  

AMG06010 

 

-23.1 

 

0 Hypothetical protein 
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AMG01617 

 

-23.1 

 

0 related to beta-1, 3 

exoglucanase precursor 

[Neurospora crassa] 

SP  

AMG04610.2 

 

-22.4 

 

0 Hypothetical protein 

 
 

cm cw 

 

 

aLibrary abbreviations: ap = appressorium, cm = mycelium from complete medium, cs = 

conidiospores, cw = mycelium grown on rice cell walls, mk = pmk1- mutant, mt = mating type, 

my = mycelium from minimal medium, ns = nitrogen-starved mycelium, and su = subtracted 

library (Ebbole et al., 2004). 

 
 
 



 83 

Table 3.3 Expression levels of pathogenicity genes in IH relative to mycelium 

Probe 
Fold 

Change 

P-value 
Gene Identity E-value, Accession # 

AMG04255 

 

3.0 0.00048 ACI1, MAC1 (adenylate cyclase)-interacting protein 1 4e-45, 

AY166602 

AMG05982 2.0 4.96E-09 MST12, transcription factor downsteam of PMK1 7e-37,  

AF432913 

AMG02428 

 

1.7a 

 

0.07995 ACE1, Appressorium-specific PK-NRPS enzyme  0.0   

AJ704622 

AMG03578.1 

 

1.5 

 

0.00435 CALM, Calmodulin  

 

7e-74, 

AF103729 

AMG06876 

 

1.5 

 

0.00056 NTH1 (PTH9), neutral trehalase  0.0, 

AAN46743 

AMG14183 

 

1.5a 

 

0.08556 MgAPT2, P-type ATPase  0.0,  

XM_366691 

AMG10289 

 

1.4 

 

0.02549 SPM1, vacuolar subtilisin-like serine proteinase  0.0, 

AB070268 

AMG07015 

 

1.3a 0.1 PMK1, pathogenicity MAP kinase 0.0,  

U70134 

AMG12418.1 

 

1.2a 

 

0.47419 MAGB, Gα subunit of a heterotrimeric G protein 1e-98, 

AF011341 

AMG06279 1.1 a 0.72849 MGB1, Gβ subunit of a heterotrimeric G protein 0.0, 

AB086901 

AMG08776 

 

1.1a 

 

075067 ABC1, ATP-driven efflux pump protein 0.0,  

AF032443 

AMG08216 

 

-1.1a 

 

0.60706 ABC3, MDR efflux pump  0.0 

DQ156556 

AMG05260 -5.3 1.39E-08 PTH11, integral membrane protein AF119670  0.0,  

AF119670 

AMG06174 -20.5 

 

0 AOX, alternative oxidase  1e-66, 

AB005144 

AMG14765 -21.6 

 

3.11E-40 MPG1, hydrophobin 

 

6e-54,  

L20685 

AMG06064 

 

-24.6 1.39E-37 RSY1, scytalone dehydratase 0.0,  

AB004741 

AMG02948 

 

-24.9 1.19E-21 BUF1, trihydroxynaphthlene reductase 0.0,  

AY846878 

AMG01944 -28.1 0 4HNR, tetrahydroxy-naphthalene reductase 0.0,  

XM_365550 
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aP-value >0.05. 
bPathogenicity trait affected: C=conidiation, A=appressorium formation, P=penetration, 

INF=infectious growth (usually defined as inability to infect wounded tissue), AVR=avirulence 

activity in rice with corresponding R gene 
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Table 3.4 Rice genes up-regulated or down-regulated >50-fold in infected tissue 

Sequence 

Id a 
Annotation (E-value) 

Fold 

change (P-

value) 

Commentsb 

 

Up-Regulated 

 

AK071227 

 

Unknown expressed protein 

 

99.1 

(0) 

Chr. 8; not predicted; 

none 

AK105196 

 

Zea mays NPK1-related protein kinase 

(mapkkk1) mRNA (E-value=7e-72) 

95.7 

(0) 

Chr. 1; microbody 

AK109702 

 

Z. mays NPK1-related protein kinase-like 

(mapkkk1) mRNA.(E-value=1e-62). 

86.2 

(0) 

Chr. 5; nucleus 

AK061237 

 

Arabidopsis thaliana mRNA, clone 

RAFL25-06-N10.(E-value=4e-79). 

82.9 

(0) 

Chr. 1; cytoplasmic; 

phosphatase 

AK071585 

 

Triticum aestivum mRNA 

wdi1c.pk004.j19:fis, (E-value=8e-94).  

77.4 

(0) 

Chr. 1; nucleus; (Related 

to NPK1 mapkkk) 

AK100808 

 

Z. mays inward rectifying shaker K+ 

channel mRNA, complete cds (E-value=0) 

76.9 

(2.8E-15) 

Chr. 2; microbody 

AK062422 

 

Oryza sativa putative DRE-binding 

protein 1B mRNA (E-value=0) 

75.9 

(0) 

Chr. 9; microbody 

AK106404 

 

Z. mays clone EL01N0511B03.d mRNA 

sequence (E-value=0) 

70.3 

(0) 

Chr.11; mitochondrial 

inner membrane; 

cytochrome P450 

AK071546 

 

Lolium rigidum Lol-5-v putative 

cytochrome P450 mRNA (E-value=1e-

163) 

68.2 

(0) 

Chr. 4; mitochondrial 

inner membrane 

AK111076 

 

Unknown expressed protein 66.0 

(2.6E-25) 

Chr. 4; nucleus; none 
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AK073848 

 

O. sativa mRNA for OsNAC4 

transcription factor (E-value=1e-174) 

63.8 

(0) 

Chr. 1; microbody 

AK064287 

 

Z. mays clone EL01N0511B03.d mRNA 

sequence (E-value=1e-163) 

59.2 

(0) 

Chr. 12; ER; cytochrome 

P450 

AK101957 

 

A. thaliana At2g46890 mRNA for 

unknown protein, clone: RAFL17-06-H20 

(E-value=1e-100) 

58.9 

(5.4E-19) 

Chr. 4; ER; 

endomembrane system, 

integral to membrane 

AK062882 

 

O. sativa AP2 domain-containing protein 

AP29 mRNA (E-value=2e-16) 

58.1 

(0) 

Chr. 8; nucleus; ethylene 

responsive element 

binding factor (1E-12) 

AK067516 

 

Unknown expressed protein 57.7 

(1.1E-20) 

Chr. 1; nucleus; none 

AK063042 

 

Unknown expressed protein 57.7 

(0) 

Chr. 3; nucleus; 

transcription factor 

AK111091 

 

Unknown expressed protein 56.7 

(0) 

Chr. 1; chloroplast 

stroma; none 

 

Down-Regulated 

 

AK107088 

 

A. thaliana At2g46930/F14M4.24 mRNA 

(E-value=1e-134) 

-50.5 

(8.5E-10) 

Chr. 1; extracellular; 

pectin acetyl esterase 

AK072459 

 

Malus domestica unknown mRNA (E-

value=0) 

-58.9 

(8.9E-11) 

Chr. 10; extracellular; 

methyl transferase 

AK105875 

 

Unknown expressed protein -68.5 

(8.7E-19) 

Chr. 1; nucleus; disease 

resistance kinase 

AK065689 

 

A. thaliana chloroplast carotenoid epsilon-

ring hydroxylase (LUT1) mRNA, nuclear 

gene for chloroplast product (E-value=0) 

-69.9 

(2.2E-12) 

Chr. 10; plasma 

membrane; cytochrome 

P450 

AK067229 

 

O. sativa alkaline alpha-galactosidase 

mRNA (E-value=0) 

-71.7 

(1.5E-8) 

Chr. 8; ER 
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AK105369 

 

Unknown expressed protein -72.0 

(1.6E-10) 

Chr. 7; cytoplasm; none 

AK107138 

 

M. truncatula triacylglycerol/steryl ester 

lipase-like protein mRNA (E-value=1e-

107) 

-74.7 

(1.7E-14) 

Chr. 8; extracellular 

 

aRice gene names are from the KOME database (http://cdna01.dna.affrc.go.jp/cDNA/). 
bChromosome #; PSORT localization prediction; function predicted by protein homology or GO 

annotation designations in the KOME database. 
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Table 3.5 Rice gene categories with members that were up- or down-regulated more than 3-fold  

 
Gene Id Annotation  Fold 

change 

P-value E- value 

WRKY     

AK106282 Oryza sativa (indica cultivar-group) transcription factor 

WRKY09 (WRKY09) mRNA, complete cds. 

18.6 

 

0 5.0E-80 

AK102093 O. sativa (indica cultivar-group) WRKY DNA-binding 

protein (WRKY89) mRNA, complete cds.|PLN 

11.7 

 

0 1.0E-121 

AK066255 O. sativa (japonica cultivar-group) WRKY45 mRNA, 

complete cds. 

11.0 

 

0 0.0 

AK108860 Solanum tuberosum StWRKY mRNA for WRKY-type 

DNA binding protein, complete cds.|PLN 

9.6 

 

0 5.0E-42 

AK108555 Arabidopsis thaliana WRKY transcription factor 51 

(WRKY51) mRNA, complete cds.|PLN 

8.0 

 

0 8.0E-29 

AK065265 

 

O. sativa (indica cultivar-group) transcription factor 

WRKY31 (WRKY31) mRNA, complete cds. 

4.6 

 

3.03E-11 1.0E-164 

 

AK101653 

 

A. thaliana putative WRKY-type DNA binding protein 

(At2g46400) mRNA, complete cds.|PLN 

4.0 

 

0 5.0E-14 

 

AK108389 

 

O. sativa (indica cultivar-group) transcription factor 

WRKY08 (WRKY08) mRNA, complete cds. 

3.3 

 

4.48E-09 2.0E-50 

 

AK109568 

 

O. sativa (japonica cultivar-group) WRKY17 mRNA, 

complete cds. 

3.3 

 

8.72E-21 0.0 

 

AK107199 

 

O. sativa (japonica cultivar-group) WRKY24 mRNA, 

complete cds. 

3.0 

 

8.65E--13 0.0 

 

Defense     

AK063248 Hordeum vulgare HvPR-1a mRNA for a basic PR-1-type 

pathogenesis-related protein.|PLN 

28.3 

 

0 2.0E-34 

 

AK060005 H. vulgare HvPR-1a mRNA for a basic PR-1-type 

pathogenesis-related protein.|PLN 

14.4 

 

0 1.0E-32 

 

AK066825 O. sativa lipoxygenase (CM-LOX2) mRNA, partial 

cds.|PLN 

13.9 0 0.0 

AK061606 O. sativa (japonica cultivar-group) RSOsPR10 mRNA 

for root specific pathogenesis-related protein 10, 

complete cds. 

13.0 

 

0 0.0 
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AK101439 H. vulgare mRNA for NBS-LRR disease resistance 

protein homologue (rga S-9202 gene). 

8.0 

 

4.83E-26 1.0E-51 

 

AK064985 A. thaliana RPT2 (RPT2) mRNA, complete cds.|PLN 6.1 0 1.0E-100 

AK060057 O. sativa (japonica cultivar-group) Prb1 mRNA, 

complete cds. 

5.3 

 

0 0.0 

AK101496 

 

H. vulgare partial mRNA for NBS-LRR disease 

resistance protein homologue (rga S-9203 gene). 

2.9 

 

0.00418 7.0E-90 

 

AK073881 

 

Prunus persica putative NBS-LRR type disease 

resistance protein (RPM1) mRNA, complete cds. 

2.9 

 

0.00004 2.0E-47 

 

AK108785 

 

Solanum lycopersicoides disease resistance protein SlVe2 

precursor, mRNA, complete cds. 

2.5 

 

0.00058 3.0E-53 

 

AK070856 

 

H. vulgare partial mRNA for NBS-LRR disease 

resistance protein homologue (rga S-9203 gene). 

2.1 

 

0.00105 1.0E-162 

 

AK072959 

 

Triticum aestivum stripe rust resistance protein Yr10 

(Yr10) mRNA, complete cds.|PLN 

-2.0 

 

4.54E-08 8.0E-41 

 

AK111610 

 

resistance to Pseudomonas syringae protein 5 [imported] 

- A. thaliana 

-3.0 

 

4.54E-11 2.0E-86 

Peroxidases     

AK102307 O. sativa cationic peroxidase (OsCPX1) mRNA, 

complete cds.|PLN 

13.7 

 

1.77E-28 0.0 

 

AK104277 

 

H. vulgare peroxidase BP 1 (Prx5) mRNA, complete 

cds.|PLN 

13.3 

 

0 6.0E-99 

 

AK072761 Gossypium hirsutum bacterial-induced peroxidase 

mRNA, complete cds.|PLN 

9.0 

 

0 1.0E-62 

 

AK064918 A. thaliana mRNA for peroxidase ATP22a.|PLN 8.8 0 1.0E-84 

AK109480 H. vulgare peroxidase BP 1 (Prx5) mRNA, complete cds. 8.5 0 1.0E-101 

AK069456 Asparagus officinalis mRNA for peroxidase (prx3 gene). 7.6 0 1.0E-125 

AK065893 A. thaliana At4g32320 mRNA for putative L-ascorbate 

peroxidase, complete cds 

6.8 

 

0.00162 1.0E-85 

 

AK065090 Z. mays mRNA for anionic peroxidase.|PLN 6.5 1.82E-18 4.0E-71 

AK070715 Triticum monococcum peroxidase 8 (POX8) mRNA, 

complete cds. 

5.3 7.71E-44 1.0E-120 

AK067667 Z. mays mRNA for anionic peroxidase.|PLN 5.0 0 9.0E-73 

AK067416 Z. mays partial mRNA for peroxidase (pox3 gene).|PLN 4.3 2.81E-07 1.0E-123 

AK058883 Z. mays mRNA for peroxidase (pox1 gene).|PLN 4.1 0 4.0E-84 

AK104633 Ipomoea batatas mRNA for peroxidase (pod gene).|PLN 3.2 3.02E-38 7.0E-94 
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AK106200 

 

Spinacia oleracea peroxidase prx12 precursor, mRNA, 

complete cds.|PLN 

3.1 

 

0.00158 3.0E-72 

 

AK103558 Z. mays mRNA for anionic peroxidase.|PLN 3.0 4.19E-07 1.0E-79 

AK109551 

 

Nicotiana tabacum mRNA for cationic peroxidase 

isozyme 40K, complete cds.|PLN 

2.9 

 

1.14E-19 2.0E-70 

 

AK073202 

 

O. sativa peroxidase (POX22.3) mRNA, complete 

cds.|PLN 

2.8 

 

0 0.0 

 

AK060007 S.oleracea mRNA for peroxidase, clone PC55.|PLN 2.6 0 3.0E-92 

AK073978 

 

S. tuberosum mRNA for putative peroxidase (prx2 

gene).|PLN 

2.2 

 

0.00857 6.0E-98 

 

AK061809 Z. mays mRNA for peroxidase (pox2 gene).|PLN 2.0 1.07E-06 7.0E-17 

AK101508 

 

Nicotiana tabacum mRNA for cationic peroxidase 

isozyme 40K, complete cds.|PLN 

-3.2 

 

0.00009 1.0E-72 

 

AK069281 

 

 

Triticum monococcum peroxidase 7 (POX7) mRNA, 

complete cds. 

-3.3 

 

1.94E-08 0.0 

 

Kinases     

AK105196 Z. mays NPK1-related protein kinase-like protein 

(mapkkk1) mRNA, partial cds.|PLN 

95.7 

 

0 7.0E-72 

 

AK109702 Z. mays NPK1-related protein kinase-like protein 

(mapkkk1) mRNA, partial cds.|PLN 

86.2 

 

0 1.0E-62 

 

AK071585 NPK1-related protein kinase homolog T26B15.7 - A. 

thaliana 

77.4 

 

0 1.0E-58 

 

AK107168 Z. mays NPK1-related protein kinase-like protein 

(mapkkk1) mRNA, partial cds.|PLN 

43.8 

 

0 3.0E-93 

 

AK111977 Z. mays Avr9/Cf-9 induced kinase 1 (ACIK1) mRNA, 

complete cds. 

34.8 

 

1.71E-07 1.0E-124 

AK058518 NPK1-related protein kinase homolog F10M23.230 - A. 

thaliana 

28.9 

 

0 6.0E-64 

 

AK105946 Z. mays NPK1-related protein kinase-like protein 

(mapkkk1) mRNA, partial cds.|PLN 

25.9 

 

0 2.0E-70 

 

AK107566 O. sativa (japonica cultivar-group) clone OsJalk8 

putative leucine-rich repeat receptor-like kinase mRNA, 

complete cds. 

12.2 

 

0 0.0 

 

AK099582 wall-associated serine/threonine kinase (EC 2.7.1.-) 2 

[imported] - A. thaliana 

13.1 

 

0 6.0E-89 
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AK100906 probable diacylglycerol kinase [imported] - A. thaliana 10.4 0 0.0 

AK102590 Lycopersicon esculentum diacylglycerol kinase (DGK1) 

mRNA, complete cds.|PLN 

9.5 

 

0 0.0 

 

AK072014 A. thaliana WNK3 mRNA for protein kinase, complete 

cds.|PLN 

8.1 

 

1.38E-20 1.0E-63 

 

AK069094 A. thaliana protein kinase-like protein (At3g25840) 

mRNA, complete cds.|PLN 

7.7 

 

0.00038 5.0E-94 

 

AK068330 Nicotiana tabacum Avr9/Cf-9 induced kinase 1 (ACIK1) 

mRNA, complete cds. 

6.0 

 

0 1.0E-133 

AK105337 A. thaliana At5g47070 mRNA for putative protein 

serine/threonine kinase, complete cds, clone: RAFL17-

20-O04.|PLN 

6.0 

 

0 2.0E-95 

 

AK106447 receptor-protein kinase-like protein - A. thaliana 5.9 3.66E-07 2.0E-98 

AK069157 

 

O. sativa subsp. indica pyruvate dehydrogenase kinase 1 

mRNA, complete cds.|PLN 

5.7 

 

0 0.0 

 

AK110253 Z. mays mRNA for putative protein kinase.|PLN 5.6 4.25E-23 0.0 

AK109607 A. thaliana putative protein kinase (At2g05940) mRNA, 

complete cds.|PLN 

5.6 

 

0 1.0E-119 

AK100357 A. thaliana putative casein kinase (At3g13670) mRNA, 

complete cds.|PLN 

5.5 

 

0 0.0 

 

AK100082 A. thaliana putative receptor protein kinase (At1g28440) 

mRNA, complete cds.|PLN 

5.0 

 

2.21E-21 0.0 

 

AK068025 

 

O. sativa (japonica cultivar-group) mRNA for 

orthophosphate dikinase, complete cds.|PLN 

4.7 

 

0 0.0 

 

AK102758 

 

Z. mays KI domain interacting kinase 1 (KIK1) mRNA, 

complete cds.|PLN 

4.5 

 

0 0.0 

 

AK072243 

 

O. sativa fructose-6-phosphate-2-kinase/fructose-2,6-

bisphosphatase mRNA, complete cds.|PLN 

4.5 

 

7.20E-23 0.0 

 

AK106421 

 

A. thaliana Columbia protein kinase mRNA, complete 

cds.|PLN 

4.0 

 

1.10E-06 7.0E-97 

 

AK100389 

 

O. sativa (japonica cultivar-group) MAPK6 mRNA, 

complete cds. 

4.0 

 

4.03E-40 0.0 

 

AK066978 

 

Lycopersicon esculentum auxin-regulated dual specificity 

cytosolic kinase mRNA, complete cds 

3.7 

 

0 2.0E-50 

 

AK061645 

 

O. sativa (japonica cultivar-group) MAPK6 mRNA, 

complete cds. 

3.5 

 

2.03E-35 0.0 
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AK108455 

 

A. thaliana putative protein kinase (At1g67580; 

F12B7.13) mRNA, complete cds.|PLN 

3.5 

 

6.30E-16 5.0E-40 

 

AK110482 

 

A. thaliana putative receptor serine/threonine kinase 

PR5K (PR5K) mRNA, complete cds.|PLN 

3.4 

 

5.05E-33 1.0E-93 

 

AK071798 

 

Prunus armeniaca pyrophosphate-dependent 

phosphofructo-1-kinase mRNA, partial cds.|PLN 

3.4 

 

0 1.0E-109 

 

AK111550 

 

A. thaliana At4g23180 mRNA for putative receptor-like 

protein kinase 4 (RLK4), complete cds.|PLN 

3.4 

 

0 1.0E-110 

 

AK105151 

 

O. sativa (indica cultivar-group) choline kinase (CK) 

mRNA, complete cds. 

3.4 

 

0 0.0 

 

AK071968 

 

O. sativa (indica cultivar-group) choline kinase (CK) 

mRNA, complete cds. 

3.2 

 

0 0.0 

 

AK103306 

 

A. thaliana calcium-dependent protein kinase 

(At3g51850) mRNA, complete cds.|PLN 

3.1 

 

3.04E-06 1.0E-162 

 

AK067266 

 

A. thaliana ATPK64 mRNA for protein kinase, complete 

cds. 

3.1 

 

1.40E-45 3.0E-47 

 

AK109954 

 

Nicotiana tabacum cytokinin-regulated kinase 1 (CRK1) 

mRNA, complete cds.|PLN 

3.1 

 

5.23E-15 4.0E-78 

 

AK101080 

 

Z. mays phosphoenolpyruvate carboxylase kinase 1 

(PPCK1) mRNA, complete cds. 

3.0 

 

0 1.0E-149 

 

AK111842 

 

leucine-rich repeat transmembrane protein kinase 1 - Z. 

mays (fragment) 

3.0 

 

2.54E-08 1.0E-170 

 

AK061220 serine/threonine protein kinase-like protein - A. thaliana 2.9 0 1.0E-138 

AK065374 

 

A. thaliana SOS2-like protein kinase PKS8 mRNA, 

complete cds. 

2.9 

 

1.46E-22 1.0E-121 

 

AK064359 

 

A. thaliana putative receptor protein kinase (At5g53890) 

mRNA, complete cds.|PLN 

-2.9 

 

4.16E-13 0.0 

 

AK067238 

 

A. thaliana clone RAFL15-23-F05 (R20566) putative cell 

division-related protein (At1g53050) mRNA, complete 

cds. 

-3.2 

 

1.40E-45 1.0E-162 

 

AK067723 

 

A. thaliana putative receptor protein kinase (At1g28440) 

mRNA, complete cds.|PLN 

-3.4 

 

0 0.0 

 

AK103166 

 

A. thaliana putative receptor protein kinase (At5g53890) 

mRNA, complete cds.|PLN 

-4.3 

 

0 0.0 

 

AK073574 

 

 

Saccharum hybrid cultivar SP70-1143 SHR5-receptor-

like kinase mRNA, partial cds. 

 

-4.8 

 

2.06E-32 1.0E-142 
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Chitinases     

AK059767 Tulipa bakeri tbc1 mRNA for bulb chitinase-1, complete 

cds.|PLN 

19.8 

 

5.91E-37 1.0E-74 

 

AK071453 O. sativa (japonica cultivar-group) class III chitinase 

RCB4 (Rcb4) mRNA, complete cds.|PLN 

10.6 

 

0 1.0E-150 

 

AK100973 O. sativa (japonica cultivar-group) mRNA for acidic 

class III chitinase OsChib3a, complete cds.|PLN 

8.5 

 

1.10E-11 0.0 

 

AK102505 O. sativa (japonica cultivar-group) mRNA for chitinase, 

complete cds.|PLN 

6.8 

 

1.40E-45 8.0E-69 

 

AK108949 O. sativa mRNA for endochitinase.|PLN 4.5 3.49E-11 0.0 

AK073843 

 

O. sativa (japonica cultivar-group) mRNA for chitinase, 

complete cds.|PLN 

4.3 

 

4.72E-15 2.0E-87 

 

AK064180 

 

O. sativa (japonica cultivar-group) mRNA for chitinase, 

complete cds.|PLN 

3.1 

 

5.39E-08 2.0E-58 

 

AK061042 O. sativa mRNA for endochitinase.|PLN 2.9 3.14E-21 0.0 

     

Membrane 

Proteins 

    

AK107700 Z. mays plasma membrane integral protein ZmPIP2-6 

mRNA, complete cds.|PLN 

25.8 

 

0 1.0E-127 

 

AK072632 Z. mays plasma membrane integral protein ZmPIP2-6 

mRNA, complete cds.|PLN 

6.4 

 

0 0.0 

 

AK061898 

 

O. sativa (japonica cultivar-group) mRNA for membrane 

related protein (mrp1 gene). 

4.9 

 

0 0.0 

 

AK065035 

 

O. sativa (japonica cultivar-group) mRNA for membrane 

related protein (mrp1 gene). 

4.8 

 

0 0.0 

 

AK061782 

 

Triticum aestivum plasma membrane intrinsic protein 2 

(PIP2) mRNA, complete cds.|PLN 

4.7 

 

0 0.0 

 

AK102174 

 

Z. mays plasma membrane integral protein ZmPIP1-5 

mRNA, complete cds.|PLN 

3.8 

 

0 0.0 

 

AK058648 

 

Saccharum hybrid cultivar H65-7052 membrane protein 

mRNA, complete cds.|PLN 

3.5 

 

7.62E-12 2.0E-80 

 

AK102748 

 

Gossypium hirsutum membrane-anchored endo-1,4-beta-

glucanase (CEL) mRNA, complete cds. 

3.0 

 

0 0.0 

 

AK066134 

 

(O49621) MLO-like protein 1 (AtMlo1) (MLO protein 

homolog 1) (AtMLO-H1) 

3.0 

 

1.18E-18 1.0E-101 
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AK107345 A. thaliana integral membrane protein, putative 

(At3g21690) mRNA, complete cds.|PLN 

-42.9 

 

8.77E-10 1.0E-126 

 

 

Heat Shock 

proteins 

    

AK100412 

 

O. sativa (japonica cultivar-group) Spl7 mRNA for heat 

stress transcription factor Spl7, complete cds. 

5.0 

 

0 0.0 

 

AK064271 

 

A. thaliana At2g26150 mRNA for putative heat shock 

transcription factor, complete cds.|PLN 

4.9 

 

4.79E-07 5.0E-54 

 

AK101934 

 

Lycopersicon peruvianum heat stress transcription factor 

A3 (HSFA3) mRNA, complete cds.|PLN 

4.4 

 

0 1.0E-68 

 

AK101824 

 

O. sativa (japonica cultivar-group) heat shock factor 

RHSF5 mRNA, complete cds. 

3.5 

 

6.60E-06 0.0 

 

AK066844 

 

O. sativa (japonica cultivar-group) heat shock factor 

RHSF7 mRNA, complete cds. 

3.2 

 

3.39E-36 1.0E-149 

 

AK062091 

 

Fragaria x ananassa LMW heat shock protein mRNA, 

complete cds.|PLN 

3.0 

 

0 2.0E-24 

 

 

Cellulose 

Synthesis or 

Degradation 

    

AK073561 

 

Bambusa oldhamii cellulose synthase BoCesA6 mRNA, 

partial cds. 

2.4 

 

1.30E-19 0.0 

 

AK111344 

 

 

Nicotiana tabacum cellulose synthase-like protein CslE 

mRNA, complete cds. 

2.4 

 

0.0002 3.0E-15 

 

Plasmodesma 

Receptor 

    

AK106058 

 

Nicotiana tabacum non-cell-autonomous protein 

pathway2 (NCAPP2) mRNA, complete cds. 

8.7 

 

2.94E-32 3.0E-88 

 

Glucanases     

AK063953 

 

O. sativa endo-1,3-beta-glucanase mRNA, complete 

cds.|PLN 

32.4 

 

0 0.0 

 

AK058891 

 

Sorghum bicolor beta-1,3-glucanase mRNA, partial 

cds.|PLN 

4.2 

 

2.13E-18 5.0E-89 

 

AK069096 

 

O. sativa endo-1,3-beta-glucanase mRNA, complete 

cds.|PLN 

2.9 

 

3.88E-29 0.0 
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AK104139 

 

O. sativa endo-1,3-beta-glucanase mRNA, complete 

cds.|PLN 

-3.6 

 

0 0.0 

 

AK103072 

 

A. thaliana putative beta-1,3-glucanase (At2g27500) 

mRNA, complete cds.|PLN 

-4.0 

 

3.92E-33 1.0E-122 

Pectin-Degrading 

Enzymes 

    

AK100257 

 

Z. mays mRNA for pectin methylesterase-like 

protein.|PLN 

-3.3 

 

3.03E-08 1.0E-126 

 

AK101962 

 

A. thaliana clone U11512 putative pectin methylesterase 

(At5g09760) mRNA, complete cds. 

-4.7 

 

0 1.0E-135 

 

AK073853 

 

A. thaliana putative polygalacturonase 

(At1g60590/F8A5_12) mRNA, complete cds.|PLN 

3.6 

 

3.43E-10 1.0E-139 

 

AK105858 

 

Lycopersicon esculentum polygalacturonase (XOPG1) 

mRNA, complete cds.|PLN 

-4.1 

 

0 1.0E-112 

 

AK106049 

 

Lycopersicon esculentum polygalacturonase (XOPG1) 

mRNA, complete cds.|PLN 

-4.3 

 

0 1.0E-108 

 

PALs     

AK068993 

 

Bambusa oldhamii phenylalanine ammonia-lyase (PAL1) 

mRNA, complete cds. 

5.2 

 

0 0.0 

 

AK067801 

 

Bambusa oldhamii phenylalanine ammonia-lyase (PAL1) 

mRNA, complete cds. 

4.9 

 

3.28E-06 0.0 

 

Expansins     

AK060313 

 

O. sativa expansin Os-EXP3 (Os-EXP3) mRNA, 

complete cds.|PLN 

3.3 

 

0.00054 0.0 

 

AK064012 

 

O. sativa beta-expansin (EXPB4) mRNA, complete 

cds.|PLN 

3.1 

 

2.82E-15 0.0 

 

AK099870 

 

O. sativa (japonica cultivar-group) expansin-like protein 

mRNA, partial cds.|PLN 

2.1 

 

1.77E-24 0.0 

 

AK061423 

 

O. sativa beta-expansin (EXPB7) mRNA, complete 

cds.|PLN 

-2.2 

 

3.48E-29 0.0 

 

AK059638 

 

O. sativa beta-expansin (EXPB11) mRNA, partial 

cds.|PLN 

-2.3 

 

3.87E-12 0.0 

 

AK062225 

 

O. sativa alpha-expansin OsEXP10 mRNA, complete 

cds.|PLN 

-2.6 

 

4.20E-30 0.0 

 

AK061068 

 

O. sativa beta-expansin (EXPB2) mRNA, complete 

cds.|PLN 

-5.0 

 

0 1.0E-155 
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AK100959 

 

O. sativa beta-expansin (EXPB3) mRNA, complete 

cds.|PLN 

-8.8 

 

0 0.0 
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Table 3.6 Description of M. oryzae genes used for gene knock-out analysis 

Gene Annotation Features Homologya Score 

AMG08261 Hypothetical 

 protein  

Glycosyl 

hydrolase 

family 76 

Hypothetical protein of 

Gibberella zeae 

9e-128 

AMG08541 Predicted 

 protein 

 Predicted protein Pheosphaeria  

nodorum 

3e-14 

AMG12560 Predicted 

 protein 

 Cysteine desulphurase, SufS  

Mycobacterium smegmatis 

0.99 

AMG08859 Predicted  

protein 

 Disease resistance protein 

Aig2, putative Aspergillus 

fumigatus 

0.58 

 

a Homology based on BLASTP search 

(http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi?PAGE=Proteins&PROGRAM=blastp&BLAST

_PROGRAMS=blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on). 
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Table 3.7 List of primers used in this study 

Primer Name Sequence 5’-3’ Comment 

Fungal Primers   

AMG15373-3-F CGCCGTCTACGCCATCCTGG  

AMG15373-4-R CCGCCTGGTGATGACGTCGG  

AMG08263-F AAATCAATCAAACGCGGGACTGGC  

AMG08263-R ACATGGCGTCCTCATCATCGGAAT  

AMG08261-F TTTACGGTGCTTGCCACCTTTACC  

AMG08261-R GCCTTCCATTGCTCGAATCTGCTT  

AMG08541-F AAGAACGTCGGCACAGGTAACGG  

AMG08541-R CTTAACGGTCTGGGCCTTGTTGG  

AMG06765-F GAAGGCGACCGTGCTTGCATATTT  

AMG06765-R TTGCATCCCTCTCCTTCAGAGCAA  

AMG06650-F GCAGCTCCACAACGTCTGTTCAAT  

AMG06650-R AGTCACAGTAGCCGCACGAGTATT  

AMG12560-F AGACTTCCCCGGTGCCAAAGC  

AMG12560-R AGATGCAGGGGTTGTCCCCG  

AMG13016-F TTTCGCTACTGTTGCCACCTTGG  

AMG13016-R TTAGTTAAGCTGGGTACCCTCCGC  

AMG05292-F AGCACCTCGACCAAAGTCAAGCTA  

AMG05292-R TGGCAAGTGTAGCCGTTGATAAGC  

AMG13014-F GGACAACTTTACGCCGCTCAACAA  

AMG13014-R TATCATCCCTCAACCAGCCCAACA  

AMG08701-F CCGTGGGCTACGGCTATGAAATTA  

AMG08701-R ATGGAACCTGCATGTGACGCGTAT  

AMG15980-F AGCTCTCATTCTCAGCAATCGCCA  

AMG15980-R TCATTTCCGTCCAGAGACTTGGCA  

AMG08508-F TGTTACCATGTTCGCCGTTGGT  

AMG08508-R CATAGTCCGAGAACTTTGCTTGGC  

AMG08160-2-F ATGTCACTCGTTAACCTCTCCAGG  
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AMG08160-3-R AACGAGATGAAGTTGGCCGTGT  

AMG05133-F TGGCATCCGACAGAACTACACCAA  

AMG05133-R TCAAGCGAGAACTTCCAGTGCGTA  

AMG08859-F GCGATGTTCACCTGACCTGGG  

AMG08859-R AGCCGTACTGTAGCTGGTGCG  

AMG08417.2-F AAAGATCCTGCACTCGCTCATCGT  

AMG08417.2-R ACCTGGTCCCAATACTCAGTGCAA  

AMG16082-F CGCAAGCAGTTCCATCGAAGCTTTAC   

AMG16082-R ATTGCTCCACTTCTTCGAATCGGG  

AMG15020-F TGACCAATGGCAACAAGCGCGA  

AMG15020-R TCTTGGAGCCAGTCTTGGTGCTA  

PWL2-F GTGGCGGGTGGACTAACAAACAAT  

PWL2-R AAACTCGCCTGGCGGTCCATAATA  

AVR-PITA-F GCACCTTTTCACACCCAGTT  

AVR-PITA-R CTCGGACGCACGTATAAACA  

AMG12697.1-F ATTTCCGACAATGCACAGCCGCTAC  

AMG12697.1-R CATGTCGGCACCTTTGATGTTGCT  

AMG05260-F AATCCGACTCTTTCAGTAGCGGCA  

AMG05260-R CTCCATGCATTTGCCTTCGATGCT  

AMG06064-F ATGACTTGCGTCTATGAGTGGGCA  

AMG06064-R TATTTGTCGCCAAAGGTCTCCCGT  

AMG01994-F CTTTGTCATGTCCAACAGCGGCAT  

AMG01944-R CAAATGCACGGCAGAAACCCTCAA  

MgACTIN328-F TCCCATGTCACCACTTTCAA  

MgACTIN328-R TTCGAGATCCACATCTGCTG  

   

RICE PRIMERS   

OsACTIN-F GAAGATCACTGCCTTGCTCC  

OsACTIN-R CGATAACAGCTCCTCTTGGC  

MOS41902-F ATCTTGGCCGAGTGTTGACGAGAT AK071227  
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MOS41902-R TCAAAGTTGTTTGCTCGCCGAAGG  

MOS04462-F TACTGGAGCACCCATTTCTCGCAT AK105196  

MOS04462-R TCCGAAACTTCAGATGGGTCGCTT  

MOS28016-F ATTGGGAATCAGACGATGGCTGGA AK109702  

MOS28016-R TTGGCGGAGCTGTTCATCCACAAA  

MOS04461-F AAGGACTTCCTGGATGGCTGCTT AK071585 

MOS04461-R TGGAGGATTCGATCGCTTCTGCTT  

MOS45375-F ACATGCCGCTCTGGAGCTACTAAT AK062422  

MOS45375-R AGCTCTTTGGAGAGGAGAAGTAAA  

MOS19247-F AGCATCAGGGTGATTCCCTTGTCA AK071546  

MOS19247-R TCAATCAGGCCCTCATGGTCTTGT  

MOS03724-F CAGTGGAGCTTGTTGCAAACCCTT AK100135  

MOS03724-R TCACCACCTCGCTTCATCAGGAAA  

MOS52342-F GCTTGCCTTCGTCAAGTTCTTGGT AK059060  

MOS52342-R TCTCACTTCCACCTCTTCGCGTTT  

MOS56011-F ATGAAGCTCAACCCTGCTGTGGAT AK061606  

MOS56011-R AGGAAGCAGCAATACGGAGATGGA  

MOS52906-F CGACCATCGGCAATTTCATTCGGT AK069082  

MOS52906-R ACCGTTAAGCTGGTTGGTCCTGAA  

MOS00599-F TGGAGCTCCTGGATGCTGGAAATA AK108785  

MOS00599-R AGGAGCTGATGCACTTGGAGATGT  

AK107735-F AGCAAGAAAGTTGCTGGCAAGGTC  

AK107735-R TCAAATCTCAACCTGGGTCGTCGT  
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