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Abstract
Early detection of livestock diseases and development of cost optimal mitigation strategies are

becoming a global necessity. Foot and Mouth Disease (FMD) is considered one of the most seri-

ous livestock diseases owing to its high rate of transmission and extreme economic consequences.

Thus, it is imperative to improve parameterized mathematical models for predictive and preven-

tive purposes. In this work, a meta-population based stochastic model is implemented to assess the

FMD infection dynamics and to curb economic losses in countries with underdeveloped livestock

disease surveillance databases. Our model predicts the spatio-temporal evolution of FMD over a

weighted contact network where the weights are characterized by the effect of wind and movement

of animals and humans. FMD incidence data from countries such as Turkey, Iran and Thailand

are used to calibrate and validate our model, and the predictive performance of our model is com-

pared with that of baseline models as well. Additionally, learning-based prediction models can

be utilized to detect the time of onset of an epidemic outbreak. Such models are computationally

simple and they may be trained to predict infection in the absence of background data repre-

senting the dynamics of disease transmission, which is otherwise necessary for predictions using

spatio-temporal models. Thus, we comparatively study the predictive performance of our spatio-

temporal against neural networks and autoregressive models. Also, Bayesian networks combined

with Monte-Carlo simulations are used to determine the gold standard by approximation.

Next, cost-effective mitigation strategies are simulated using the theoretical concept of infec-

tion network fragmentation. Based on the theoretical reduction in the total number of infected

animals, several simulative mitigation strategies are proposed and their cost-effectiveness mea-

sures specified by the percentage reduction in the total number of infected animals per million

US dollars, are also analyzed. We infer that the cost-effectiveness measures of mitigation strate-

gies implemented using our spatio-temporal predictive model have a narrower range and higher

granularity than those for mitigation strategies formulated using learning-based prediction models.



Finally, we coin optimal mitigation strategies using Fuzzy Dominance Genetic Algorithms

(FDGA). We use the concept of hierarchical fuzzy dominance to minimize the total number of

infected animals, the direct cost incurred due to the implementation of mitigation strategies, the

number of animals culled, and the number of animals vaccinated to mitigate an epidemic. This

method has the potential to aid in economic policy development for countries that have lost their

FMD-free status.
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Chapter 1

INTRODUCTION

Foot and Mouth Disease (FMD) is a viral infection that spreads rapidly among cloven-hoofed

animals. It causes livestock to get sick, pregnant livestock to abort, dairy livestock to dry up, and

even death of the infected animals. This disease poses a global threat due to the rapid rate of

spread of the FMD virus that results in massive unethical culls as the common measure to impede

the infection spread. Although vaccines have been developed to increase the immunity of livestock

against FMD, administration of vaccines is not preferred primarily since the meat of a vaccinated

livestock responds similarly to the test of infection as an infected livestock. Loss of meat, dairy

and cattle trading privileges are the primary economic losses associated with a country reporting

an FMD outbreak besides many other secondary losses involved. Hence, adequate pre-emptive

modeling of disease dynamics is necessary to curb economic losses due to FMD.

Research indicates that 80% of the livestock slaughtered during the FMD outbreak in the UK

in 2001 on precautionary grounds, were actually not infected [1] [2]. Also, economic losses are

magnified by instances such as the FMD outbreak in Taiwan in 1997 that spawned situations

wherein farmers intentionally introduced the FMD virus into their flocks since the compensation

offered to culled swine was higher than the market value of swine [3], [4], [5]. Thus, mitigation

strategies must be optimized to reduce the total number of infected animals and the cost incurred

for the implementation of mitigation strategies. Although vaccination against the appropriate

strain of FMD virus may be effective in reducing the spread of infection, optimal vaccination

strategies will help not only to retard the spread of infection but also to help reduce the cost of
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mitigation.

Consequently, several network-based models have been devised to study the underlying dy-

namics in the spread of FMD, and to suggest optimized mitigation policies for reduced unethical

culls and losses [6], [7], [8]. Several spatio-temporal models have been designed to optimize the

impact of FMD outbreaks both ethically and economically [9], [10], [11]. Also, significant work

has been done in simulating experimental instances of FMD outbreaks, and analyzing the cost of

implementing optimal mitigation strategies [12]. Among the models that were developed based

on case studies of FMD outbreaks, a few well known models developed during the 2001 FMD

outbreak in the UK are the following:

1. Imperial College model from Imperial College, UK: This is a deterministic mathematical

model in which the disease is assumed to flow through the population [13], [14], [15],

2. Cambridge Edinburgh combined model from the Cambridge and Edinburgh University:

This is a nondeterministic model that simulates the progress of the disease from farm to

farm daily. Using the Monte Carlo technique it determines the likelihood that a farm will be

infected or not [16], [17], and

3. Veterinary Laboratories Agency (VLA) model from the state Veterinary Labs Agency with

colleagues from Massey University, New Zealand: This is a nondeterministic model based

on InterSpread, a computer program that can be used to model FMD. It relies on heavily

parameterized Monte Carlo method for simulations [18].

Several countries like Turkey, Iran, Afghanistan and Thailand for instance have reported reoc-

curring instances of FMD over the past decade. However, such countries do not maintain a well

developed database regarding the outbreak instances. The primary reason for reoccurring instance

of FMD in such countries is the lack of surveillance and inadequate modeling of disease dynam-

ics. In this work, we implement a meta-population based stochastic model to predict the disease

dynamics in such countries, and we devise mitigation strategies based on the model to curb ethical

and economic losses thus incurred.
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We use an S-I-R compartmental model in which individuals are either in a Susceptible ‘S’

state, an Infected ‘I’ state, or a Recovered/Removed ‘R’ state to study the evolution of FMD

over a weighted contact network [19]. The weight ages on the links of the contact network are

characterized by the human intervention between locations containing infected livestock, wind

directions, grazing patterns, heterogeneity in livestock populations and density of farms, feedlots,

dairy and meat markets. The rate of transmission of infection between locations (nodes) in time

has been modeled stochastically to predict the probability of infection at locations in future time

steps. The model is verified using a data set developed by the OIE Incidence Reports regarding the

incidence of the FMD virus in farms in Turkey from January 2005 through December 2006 and in

Iran and Thailand from January 2005 through December 2005. Our study invokes the contribution

of wind in the spread of FMD using network based predictive models. We analyze spatio-temporal

predictions with and without the impact of wind as a contributor to the spread of FMD virus.

Next, we analyze the spatio-temporal evolution of FMD using learning-based predictive mod-

els and compare the predictive performance to the network based predictive models. These models

include non linear predictive models such as neural networks, estimators of infection probability

distribution function such as autoregressive models, and Bayesian network models that serve as

good predictors in the absence of any consistent probability distribution function. Also, Monte-

Carlo simulations help to simulatively evaluate the predictive performance of Bayesian networks,

and to estimate the 95% confidence intervals for the learning-based predictions thus produced.

Finally, we assess mitigation strategies using simulative approaches for all the network-based

and learning-based prediction models. The cost-effectiveness of these mitigation strategies along

with the level of impedance offered to the spread of FMD by culling, vaccination and movement

ban strategies is studied. Our analysis leads to the conclusions that vaccination strategy is the

most cost-effective and sensitive mitigation strategy. Thus implementation of vaccinations and

movement ban strategies in the pre-outbreak period is a cost-effective mitigation strategy; however

premise culling is imperative to impede the rapid spread of infection after the onset of an epidemic

outbreak. We have also resorted to fuzzy-dominance based genetic algorithms to optimize the
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mitigation strategies at monthly time instants so as to reduce the economic cost impacts, as well

to reduce the pre-emptive unethical culls on precautionary grounds.

Chapter 2 describes the importance of predictive epidemiology and existing models and stud-

ies for FMD. This is followed up by chapter 3 that describes the spatio-temporal model that we

propose. Following this, chapter 4 describes learning-based models that can be used to predict

occurrences of FMD with time and chapter 5 which assesses mitigation strategies based on all

spatio-temporal predictive models discussed so far. Chapter 6 explains the use of genetic algo-

rithms to optimize the impact of the mitigation strategies and final conclusions and future work is

summarized in chapter 7.
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Chapter 2

MATHEMATICAL MODELS FOR
PREDICTING FOOD AND MOUTH
DISEASE

Livestock diseases have become a global concern owing to their welfare and economic conse-

quences. Notable examples of livestock diseases include classical swine-fever and swine vesic-

ular disease in pigs, bovine spongiform encephalopathy (BSE), and lumpy skin disease to name

a few. Additionally, some diseases such as avian influenza have the potential to cause infection

in humans, a typical phenomenon also known as zoonosis, thus increasing concern about their

prevalence. However, Foot-and-Mouth Disease (FMD) is considered by far the most serious of all

these infections owing to its rapid transmission between a wide range of cloven-hoofed livestock

species [20]. It is epi-zootic effect is caused by Foot-and-Mouth Disease Virus (FMDV), which is

picornavirus, the prototypic member of the Aphthovirus genus in the Picornaviridae family. This

virus is a highly variable and transmissible in nature. There are seven FMD serotypes: O, A,

C, SAT-1, SAT-2, SAT-3, and Asia-1. These serotypes are mostly specific to a particular region,

while the O serotype is the most common.

In general, FMD has a mortality rate of 40-94% in different species of livestock, however there

is a morbidity rate of almost 100%, causing blisters on the mouth and feet (hence the name) and

a deterioration of livestock health, often leading to a dramatic decline in milk production in dairy

cattle and very slow weight gain in other livestock [21]. Additionally, the economic consequences
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of an FMD epidemic outbreak within a country are severe, owing to massive reduction in the ex-

port of meat and milk to many regions of the world, thus eliminating a vital source of revenue.

Therefore, following the detection of an FMD outbreak, the goal of any control policy is to ob-

tain the disease-free status as quickly as possible, with the minimum of impact on the livestock

community. Unfortunately, these two objectives of minimizing economic impacts and epidemic

eradication are often in conflict. Striking a balance between these two objectives is a critical de-

cision that must be taken by the appropriate administrative authorities and policy makers since,

without the economic guidance, it is meaningless to talk about optimal control strategies.

Past outbreaks of FMD show that unplanned culling may result in massive unethical culling

actions being taken as a precautionary measure. Recent studies estimate that 80% of the livestock

slaughtered during the FMD outbreak in the UK in 2001 on precautionary grounds, were in fact

not infected [22]. Furthermore, reported economic losses are exaggerated in some instances, such

as the FMD outbreak in Taiwan in 1997 that spawned situations wherein farmers intentionally

introduced the FMD virus into their flocks since the compensation offered to culled swine was

higher than the market value of swine [22]. Thus, to combat the severe consequences of FMD,

accurate data collection and analysis is imperative for an economically-effective decision making

process. For all the three aspects of data collection, statistical analysis and computer-based simu-

lations, close collaborations are necessary to facilitate the best scientific and economic approach

to eliminate FMD. Well developed surveillance and infection incidence databases can thus aid the

implementation of optimal mitigation strategies [23].

After accurate data collection, mathematical modeling and computer simulated analysis play

a very crucial role in disease prediction and prevention as they help to trace several unknown en-

tities that contribute to the rapid spread of the FMDV. For example the entities responsible for the

2001 FMD outbreak in UK are: unknown origin and date of viral introduction, undefined viral

characteristics, weather conditions that favored virus survival, potential spread prior to identifica-

tion of the index case by, animals, people, equipment and vehicles, possible airborne transmission,

and involvement of numerous animals of different species and susceptibilities in widely varying
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regions of the UK [23].

Contrarily, it is argued by Taylor that “tactical decision making should be based more on real

veterinary intelligence than on predictive modeling [24]. Thus, mathematical models are neither

the final verdict for economic decision making, nor are they the best perfect cure to epidemics. The

shortfalls of mathematical modeling can be assessed with a example of the Contiguous Premise

(CP) /Dangerous Contact (DC) culling policy in UK in 2001 wherein livestock at dangerous con-

tiguous contacts were pre-emptively culled within 48 hours of infection reports. This policy was

later questioned due to the absence of “precise rationale for the target of 48 hours” [23]. Delayed

reporting, incompliance with mitigation strategies and economic concerns expedite the spread of

infection. In spite of all these shortcomings, mathematical analysis retains its novelty and im-

portance for coining mitigation policies with an example of the 3-km pre-emptive slaughter, also

known as ring culling and ring vaccination strategies that were developed to mitigate the impact

of the FMD outbreak in UK in 2001.

Consequently, several spatio-temporal models have been designed to study the underlying

dynamics in the spread of FMD and to optimize the impact of FMD outbreaks both ethically and

economically [10] [7]. Also, significant work has been done in simulating experimental instances

of FMD outbreaks, and analyzing the cost of implementing optimal mitigation strategies [12]. The

primary concerns of a few well established FMD prediction models are the following.

1. Interspread Model: Founded in the early 1990s, this model is a large, complex and very

flexible stochastic simulation model that can predict infection incidence by considering as

many as 50 different global parameters. It is intuitive that complex models are frequently

considered better and more accurate. However, it is noteworthy that any model is only as

good as the data that is used for parameterization, and since complex models require more

parameters, the impact of errors would complicate the prediction process. Hence, this model

suffered from over-parameterization in spite of providing qualitatively agreeable simulative

predictions.

2. Cambridge Edinburgh model: This is a explicit spatial model, which is initialized with the
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location of all farms in the UK and their livestock, recorded at the latest census. Transmis-

sion is modeled as a simple function of the disease between infected and susceptible farm,

compounded by the number and species of animals on each farm. However, this model

supported DC/CP culls, methods which were later deemed as questionable in their impact

on impeding the spread of the FMDV. Additionally, this model is a simplified version of

Interspread model and contains only a few parameters.

3. Imperial Model: It was based on differential equation based S-I-R models. The initial

versions of this model were very crude and under parameterized as they did not consider the

heterogeneities between farms containing different species of livestock. However, several

modifications have been made to this model till date. This model also sacrifices many of

the details present in InterSpread for the ability to rapidly and robustly to parameterize the

equations from the epidemic incidence data.

4. Simulative economic models: Several mathematical models have been developed after the

2001 outbreak in UK to account for the economic impacts of FMD outbreaks [9], [12], [25].

Since economic costs of an epidemic are multi-faceted, more research is required before all

the elements are well understood.

Thus, the implementation of minimally parameterized prediction models that are geographi-

cally independent and yet considerably accurate in their prediction capabilities is desired. This is

the challenge that we aimed to address in our work.

The first step towards optimal parameterization of a prediction model is the identification of the

prime causes to the spread of the disease virus. Movement of infected animals is one of the most

important method of spread of FMD from one property to another [13]. However, on occasions

movement of airborne virus particles by wind has been responsible for infecting properties some

distance downwind [26]. Under favorable climatic conditions wind-borne spread can be an impor-

tant factor in FMD epidemics [27]. Analysis of weather data has shows that long-distance spread

of virus particles requires stable atmospheric conditions and low wind speeds, factors which con-
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tributed to long-distance disease propagation in Australia [27]. However, for infection to occur

downwind, animals must be exposed to sufficient virus particles. This depends on the amount

of virus produced and the volume of air breathed by exposed animals. Thus, every species of

livestock has a different responsiveness to disease transmission and susceptibility.

Additionally, the risk of spread is proportional to the density of livestock downwind, with large

concentrations of animals such as sale yards and feedlots being particularly vulnerable. Cattle are

more likely to be infected than are sheep or pigs because of their higher respiratory volume sheep

have one quarter, and pigs one twelfth, the risk of cattle. Once one animal in a herd has become

infected, the disease will spread rapidly through the herd by close contact. All these factors help

us in identifying the primarily important parameters for the mathematical modeling of FMD that

has been presented in Chapter 3.

Finally we acknowledge that economic risks are higher for countries with un-developed databases

regarding the impact of FMD, since such countries report recurrence of FMD in absence of ade-

quate epidemic analysis or economic mitigation policies. Our work aims at studying in the subse-

quent chapters, the underlying transmission parameters in the spread of FMD to devise mitigation

strategies for such countries with an example of Turkey, Iran and Thailand.
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Chapter 3

PROPOSED NETWORK-BASED MODEL

We implement a stochastic compartmental model based on a weighted contact network to map the

dynamic spread of FMD independent of any geographic location [19]. This flexibility of epidemic

prediction in space and time is achieved by the weights on the links of the weighted contact

network that represent the heterogeneities in space and the parameterization of the proposed model

characterizes the dynamic spread of infection spatio-temporally.

The initial realization of a weighted contact network is achieved by defining nodes as geo-

graphical locations defined using the latitude and longitude of regions housing livestock that can

be potentially infected or that can contribute to the spread of the FMD virus. For our case studies

of FMD in Turkey from January 2005 through December 2006, Iran and Thailand from January

2005 through December 2005, we define a node as a single administration division in the respec-

tive countries. Due to the lack of detailed data, we assume each node to be equally susceptible

to impending infection and every node has an equal responsiveness to mitigation strategies. The

weighted links connecting the nodes of our meta-population based model are characterized using

the following factors:

- Human interactions between the various locations based on the rate of thoroughfare between

locations and the regional population densities [28], and

- Regional wind speed and direction [29].

However, it is important to note that our meta-population based stochastic model assumes that all
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individuals in the same node have the same state at a certain time instant.

Our model assesses the risk of wind borne spread of the FMDV over distances greater than

10 km. The human interactions between locations are modeled using the gravity model for meta-

population models. The impact of the wind vector projected onto the distance vector between

nodes is an additional term to fine tune the weightages on links. Long distance movements of

livestock due to their relocation from farms, to feedlots, to slaughter houses and to markets are

a vital parameter that heavily impacts the spread of FMD. However, we do not consider this

parameter for the construction of the weighted contact network owing to the lack of data bases

regarding long distance movements.

Next, we characterize parameters that impact the spread of FMD infection. For example,

different species of animals, such as cattle, sheep, and swine, react differently to the FMD virus,

and thus the rate of infectivity varies with the type of susceptible flock [21]. Additionally, different

grazing patterns at various locations add to the heterogeneities of the infection network [30], [28].

Thus, the type of livestock, the fraction of flocks of different species grazing away from, and

grazing into a specific region, and the distribution of slaughter houses and meat markets in a

particular geographical location characterize the parameters in our stochastic prediction model.

At discrete time steps, our model generates a probability of infection for every geographical

location (node). If this probability of infection at any time step for a particular node is high, it is

predicted to be infected. On the contrary, a low probability of infection refers to a node not being

infected but remaining susceptible. Thus, at any time step t we define three sets of nodesN , Ni(t)

and Ns as the following:

N = {x : x ∈ All nodes}

Ninf (t) = {y : y ∈ Infected nodes}

Ns(t) = {v : v ∈ Susceptible nodes} (3.1)

The node sets N , Ninf (t) and Ns(t) are related as: Ninf (t), Ns(t) ⊆ N .
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Initially, at time t = 0 all nodes are equally susceptible and no node is infected.

Thus, Ninf (t) = {φ} , Ns(t) = N .

After the infection is seeded at time t = 1, Ninf (t) and Ns(t) change at each following time

step, thus affecting the probability of infection at each node. At any given time step t, the prob-

ability (ζt,i) that a node i, does not receive infections from infectious neighbors j, is given as the

following [31], [32]:

ζt,i =

 ∏
j∈Ninf (t)

(1− ωi,jβi,jpt−1,j

ωi,jβi,j + δj(t)
)

∀i ∈ N (3.2)

For any node i, the second term in parentheses is the probability that at time step t, the node i re-

ceives infection from an infected node j. On subtracting this probability from unity we obtain ζt,i.

It is noteworthy that at any infected node j, there is a proportion of infected population (propor-

tional to ωi,jβi,j) and a proportion of recovered/removed population (proportional to δj(t)). Out

of these two subsets of the population the infected node, only the infected population contributes

towards the transmission of infection. Thus the effective proportion of population at any infected

node contributing to disease transmission is ωi,jβi,j
ωi,jβi,j+δj(t)

.

- pt,i is the probability of a node i being infected at time t and is given by the following [32]:

pt,i = {1− (1− pt−1,i)ζt,i − δi(t)pt−1,i} ∀i ∈ N (3.3)

- δi(t) = the rate at which the FMDV is removed from a node i, or the disease cure rate. This

value is estimated as the number of livestock removed due to slaughtering at a particular

node at a particular time instant t.

- ωi,j= the weightage associated with a link between node i and j.

- βi,j = the rate at which infection is incident on node i due to an infected neighbor j.

As a novel contribution, we parameterize the weights ωi,j on links of a fully connected contact

network using the data on human interventions between locations and the impact of wind.
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ωi,j =

{
cm[

mi ∗mj

di,j
]−γm + cw‖

~Di,j( ~Wi,j · ~Di,j)

| ~Di,j|2
‖

}
[∀i, j ∈ N, i 6= j] (3.4)

- mi = the scaled measure of population density in location i

- mj = the scaled measure of population density in location j

- di,j = the scalar distance between node i and i

- ~Di,j = the vector corresponding to the separation between node i and j in terms of the latitu-

dinal and longitudinal coordinates.

- ~Wi,j = the vector corresponding to the velocity of wind blowing between node i and j in

terms of the latitudinal and longitudinal coordinates.

- cm, cw = the constants due to human interventions and wind respectively.

- γm = the exponent to represent scale-free nature of human interventions [33].

Here, the first term represents the nature of human intervention between two nodes using the

gravity model. The extent of human interventions between two locations is estimated by the

population densities and the distance between the two locations applied using the power law [34].

The second term represents the magnitude of the wind vector projected onto the separation vector

between node i and node j. However, the wind data [29] is an incomplete dataset with missing

data. Thus, we had to estimate the wind at each node to the closest location in the data base.

Next we parameterize the FMD transmission characteristics βi,j that maps the flow of infection

through the contact network.

βi,j = {(SiσiniMi)(TjτjnjMj)K(di,j)}

[∀i ∈ N, j ∈ Ninf (t), i 6= j] (3.5)
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- Si = susceptibility of livestock in location i

- σi = fraction of the infected livestock grazing into the location i.

- ni = number of susceptible livestock in location i.

- Mi = weightage associated with node i due to the presence of grazing farms and slaughter

houses.

- Tj = transmissibility of infected livestock in neighborhood j.

- τj = fraction of the infected livestock grazing away from the location j.

- nj = number of infected livestock in location j.

- Mj = weightage associated with location j due presence of grazing farms and slaughter

houses. Missing data was estimated using weightage associated with the number of meat

markets.

- K(di,j) = Kernel function based on the distance between location i and j.

Thus, βi,j depicts the rate of transmission of infection from node j to node i due to the grazing

movements of infected livestock in location j into locations with susceptible livestock. A non-

linear kernel function characterizes the relative risk of infection with varying Euclidean distance

between nodes (3.6). We assume that the relative spread of infection decreases exponentially with

increasing distance which is parallel to the general assumption that FMD infection at a particular

location affects regions within a 10 km radius as shown in Figure 3.1. The parameter cj is a mul-

tiplicative constant that depicts the rate of infection incidence in node i due to infected neighbor

j, such that cj = 1 under normal conditions of infection spread without mitigation strategies. Ad-

ditionally, the parameters a and γ are known as the kernel offset and kernel exponent respectively

which are estimated from the data set during the model calibration phase.

K(di,j) = cj

{
1 +

di,j
a

}−γ
(3.6)
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Figure 3.1: Relative risk of infection represented using the transmission kernel as a function of
Euclidean Distance.

3.1 Model Assessment

Predictive performance of our model is assessed in comparison to three other network based mod-

els. The four network based models under analysis are defined as:

- W = The proposed Weighted, Parameterized model.

- NW= Weighted, Parameterized model without considering the impact of wind.

- B1 = Unweighted, Parameterized Baseline model with ωi,j in eqn. 3.4 constant.

- B2 = Unweighted, Unparameterized Baseline model with ωi,j in eqn. 3.4 and parameters

Si, σi, Tj , τj and Mj in eqn 3.5 constant.

We assess the contribution of wind in the spread of FMD by comparing the predictability of

modelW against modelNW . Besides, the contribution of a weighted underlying contact network

and disease transmission parameters that are novel to our model are assessed by comparing model

W with baseline model B1 and B2 respectively.
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3.1.1 Model Calibration

The parameters specific to the network based models need to be estimated so as to fit the data

set of Turkey, Iran and Thailand accurately. For calibration purpose, we consider 60% of the

data set, which is FMD infection incidence reports for a 15 month period from January 2005

March 2006, as training data. For optimal parameter set estimation of the four network based

models, we perform the Nelder Mead optimization, wherein we minimize the root mean squared

error (RMSE) iteratively between the true monthly probability distribution of infection and the

simulated probability (pi,t)across all nodes as shown in Figure 3.2.

Figure 3.2: Iterative minimization of Root Mean Squared Error by Nelder Mead Optimization

The model W requires optimized values for its set of five parameters (cm, γm, cw, a, γ). While

model NW requires optimization of its set of four parameters (cm, γm, a, γ) and baseline models

B1, B2 require an optimized set of 2 parameters (a, γ) respectively. All 50 parameter sets were

simulated for 100 instances of randomly selected threshold probabilities (pth) in the range [0,1], to

compute the spatial prediction performance of each network based model. A threshold probability

(pth) is defined such that if the probability of infection at a particular node pi,t ≥ pth, then node

i is said to be infected, or else node i is susceptible. Spatial performance is measured in terms
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of average sensitivity and specificity of the predictions over the training data set such that the

nodes actually infected according to the data set, when predicted to be infected, are marked as true

positives (TP). The nodes that are actually uninfected and predicted as uninfected are marked as

true negatives (TN). However, the nodes that are actually infected and predicted to be susceptible

are false negatives (FN), while the nodes actually susceptible but predicted to be infected are false

positives (FP). The statistics of sensitivity and specificity are defined as the following:

sensitivity =
TP

TP + FN
(3.7)

specificity =
TN

TN + FP
(3.8)

(3.9)

The optimal parameter set is denoted by the best point marked by the ring in the Receiver Oper-

ating Characteristic curve that is plotted to show the performance of sensitivity against specificity

for each parameter set as shown in Figure 3.3.

The optimal parameter sets for the calibrated network models are summarized in Table 3.1.

Table 3.1: Model Parameters
Country Model cm γm cw Kernel offset (a) Kernel exponent (γ)

W 0.5709 4.053 0.5642 459.3133 27.338
NW 0.4056 3.3248 - 215.74 49.486

Turkey B1 - - - 98.98 42.272
B2 - - - 170.0467 52.062
W 4.4276 0.0434 0.6916 489.495 42.662

NW 4.9144 0.4417 - 398.84 29.64
Iran B1 - - - 219.79 16.124

B2 - - - 16.8227 24.288
W 4.0547 0.5588 0.1838 249 61.428

NW 2.9243 0.2809 - 493.54 36.734
Thailand B1 - - - 1742.5 47

B2 - - - 248.215 35.798
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(a) Turkey Data set (b) Iran Data set

(c) Thailand Data set

Figure 3.3: Receiver Operating Characteristic curve for determining the optimal parameter set
for model W for the three data sets. The optimal parameter set is denoted by the parameter set
corresponding to the position marked by the dark ring on the curve.
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3.1.2 Model validation

The calibrated network based infection models are validated for a validation data set that cor-

responds to the remaining 40% of the data set defined by a period of 9 months from April 2006

through December 2006. Also, an aggregated validation is performed on the entire data set defined

by a period of 24 months from January 2005 through December 2006.

Sensitivity and specificity as defined in eqn 3.7 are the primary statistical parameters that char-

acterize the spatial predictions. Additionally, some other spatial prediction statistics are defined

as the following:

Positive Prediction V alue(PPV ) =
TP

TP + FP
(3.10)

Negative Prediction V alue(NPV ) =
TN

TN + FN
(3.11)

Accuracy =
TP + TN

TN + TP + FP + FN
(3.12)

The ability of a network based model to predict an infected node to be infected is depicted

by a high value of sensitivity and PPV. Specificity and NPV denote instances when an uninfected

node is correctly predicted to be uninfected. Accuracy of any model refers to the closeness of the

prediction from the models to the actual data.

Temporal prediction is assessed using the coefficient of determination (R2) and symmetric

mean absolute percentage error (sMAPE) which is an accuracy measure based on percentage (or

relative) errors. If Yi refers to actual data series andXi refers to the fitted data series, n refers to the

number of data points, STOT is defined as the total sum of errors and SSE is the sum squared

errors, then sMAPE and R2 are defined in Equations 3.13 and Equation 3.14 respectively. A

higher of value R2 and a lower value of sMAPE signifies a well fitted model.

sMAPE =
100

n

n∑
i=1

|Yi −Xi|
(Yi +Xi)

(3.13)

.
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SSE =
n∑
i=1

(Yi −Xi)
2 (3.14)

STOT =
n∑
i=1

(Yi − Y )2 (3.15)

R2 = 1− SSE

STOT
(3.16)

Predictive performance of the models is evaluated in a Bayesian framework using the De-

viance Information Criterion (DIC), which is particularly useful in Bayesian model selection prob-

lems where the posterior distributions of the parameters sets of the models have been obtained by

Markov chain Monte Carlo (MCMC) simulations. Deviance is defined as follows:

D(θ) = −2log(p(y|θ)) + C (3.17)

- y: the predicted probability of infection

- θ: parameter set

- p(y|θ): likelihood function. Whenever the outcome of a predictive model is observed by

varying the underlying parameter set, the likelihood function is defined in terms of the vari-

able parameter set (θ).

- C: constant that cancels out in all calculations that compare different models, and which

therefore does not need to be known.

Next, the measure of goodness of fit is defined as the following:

D = Eθ[D(θ)] (3.18)

A smaller value of D ensures a well fitted model. Next, the effective number of parameters of the

model is computed as following:

pD = D −D(θ) (3.19)
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Here, θ is the expectation of θ. The larger this is, the easier it is for the model to fit the data.

Finally, DIC is defined as follows [35]:

DIC = pD +D (3.20)

Thus, the complexity associated with each of the four predictive models is estimated using

DIC. However, it is important to note that the likelihood function regarding the predicted prob-

ability of infection for a particular parameter set, if defined with respect to the true probability of

infection as in [36], it defines the Divergence distance of the predictive model from the true in-

fection probability distribution. Here, we define the likelihood function as the absolute predicted

probability of infection for a particular parameter set such that a lower value of DIC ensures a

better model. The statistical results after comparison of the four network models over the entire

data set for 24 months and the validation data set of 9 months is summarized in Table 3.2.

Thus, spatial predictions of weighted network based models are clearly better than unweighted

models B1, B2 by an acceptable margin. However, the accuracy of spatial and temporal predic-

tions from model W and NW are found to be comparable. Additionally, the model W when

compared to NW has a higher sensitivity, but a lower PPV. These observations result from the

fact that we have considered an incomplete wind data set wherein we the estimated missing data

for computation. However, it is noteworthy, that in spite of an incomplete wind data set, model

W demonstrates a higher specificity, NPV, R2, sMAPE and a lower DIC than all other network

based models. Thus, we infer that although the positive prediction of infection improves in the

model W when compared to NW , the negative test for infection in both these models is almost

similar. Further analysis of the contribution of wind using wind-plume models may enhance the

granularity of predictive performance in future.

Additionally, we observe a better spatial and temporal prediction performance for the entire

data set as compared to the validation data set. This is true since the model parameters were

estimated based on the calibration data set, and thus the validation data set suffers a from greater

error as compared to the calibration data set. Also, from the Turkish data set it is evident that

the first 12 months from January 2005 through December 2006, are characterized with lesser
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Table 3.2: Statistical Analysis of Spatial and Temporal Prediction
Entire Data Validation Data

Country Statistics W NW B1 B2 W NW B1 B2

sensitivity 0.711 0.661 0.546 0.377 0.721 0.667 0.554 0.372
specificity 0.945 0.959 0.706 0.613 0.943 0.969 0.539 0.376

PPV 0.722 0.749 0.494 0.327 0.878 0.918 0.535 0.361
Turkey NPV 0.876 0.859 0.749 0.633 0.802 0.778 0.583 0.389

accuracy 0.878 0.872 0.719 0.626 0.847 0.837 0.595 0.449
R2 0.993 0.955 0.725 0.492 0.993 0.972 0.629 0.417

sMAPE 9.391 14.914 21.190 33.181 12.628 16.691 25.513 41.705
DIC 5896.4 6168.5 7245.2 7567.2 - - - -

sensitivity 0.776 0.716 0.482 0.275 0.754 0.692 0.447 0.198
specificity 0.974 0.974 0.924 0.864 0.975 0.977 0.941 0.846

PPV 0.889 0.883 0.778 0.362 0.905 0.903 0.800 0.291
Iran NPV 0.937 0.921 0.801 0.802 0.926 0.909 0.769 0.769

accuracy 0.929 0.915 0.816 0.73 0.922 0.908 0.792 0.690
R2 0.964 0.930 0.609 0.443 0.952 0.919 0.559 0.326

sMAPE 8.393 11.524 22.937 34.167 9.214 15.702 35.538 41.658
DIC 1953.63 2018.56 2130.6 2301.4 - - - -

sensitivity 0.782 0.737 0.567 0.514 0.773 0.691 0.506 0.427
specificity 0.963 0.947 0.945 0.923 0.982 0.953 0.951 0.921

PPV 0.852 0.594 0.583 0.406 0.931 0.613 0.604 0.358
Thailand NPV 0.939 0.974 0.945 0.952 0.932 0.971 0.934 0.943

accuracy 0.929 0.922 0.902 0.888 0.932 0.931 0.898 0.877
R2 0.882 0.818 0.472 0.225 0.700 0.487 0.428 0.205

sMAPE 12.675 21.525 28.893 54.240 22.285 31.065 47.608 81.205
DIC 1146.7 1467.9 1653.8 1947 - - - -
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outbreak reports than the next 12 months from January 2006 through December 2006. Hence,

the probability of error in infection prediction is lesser in the initial 12 month period which is a

part of the calibration data set. Similar observations for the Iranian and Thai data set show lower

prediction errors in the training period owing to the lower number of outbreaks in the pre-outbreak

period from January 2005 through June 2005.

Temporal predictions regarding the number of infected livestock per month are depicted for

each network model in Figure 3.4 and Figure 3.5.

The simulations bear evidence to the temporal predictability of all the four network based

models. We observe that model W has a tighter confidence interval as compared to the other

models. Additionally, weighted network based models provide better temporal predictions than

unweighted baseline models. The baseline models B1 and B2 suffer from over predictions and

greater prediction errors.

3.2 Simulation of Infection Networks

Having calibrated and validated our model W , we further analyze the FMD infection networks

thus produced. We perform Monte-Carlo simulations with randomly selected threshold proba-

bilities to analyze the various infection routes that can be taken during the spread of FMD. An

important assumption for our simulations is that the state of complete removal of a node from the

infection network is achievable only if either all the herds at that particular node have been culled,

or they have all recovered from the infection such that they are immune to acquiring the infection

in future time steps. Since our simulation is limited to a specific time period of observation, we do

not encounter any node becoming completely recovered or removed from the infection network at

any time step.

The simulation proceeds as the following: we initialize all the nodes as equally susceptible

to receive FMD infection before January 2005. Next, we seed the infection according to the in-

cidence reports [37] in January 2005. Following this, we use our mathematical model to obtain

the probability of each node being infected in progressive time steps of one month. If this prob-
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(a) Model W (b) Model NW

(c) Baseline Model B1 (d) Baseline Model B2

Figure 3.4: Monte Carlo Simulations indicating the 95% confidence intervals for temporal pre-
dictions produced by the network based models. The upper and lower confidence bounds along
with the mean predictions are plotted against the actual data. Model W has the best predictions
when compared to the others.
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(a) Model W (b) Model NW

(c) Baseline Model B1 (d) Baseline Model B2

Figure 3.5: Simulated runs corresponding to different randomly selected pth are plotted against
the actual data. The mean temporal predictions and 20 simulation runs are plotted out of the 100
simulation runs.
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(a) Model W (b) Model NW

(c) Baseline Model B1 (d) Baseline Model B2

Figure 3.6: Monte Carlo Simulations indicating the 95% confidence intervals for temporal pre-
dictions produced by the network based models. The upper and lower confidence bounds along
with the mean predictions are plotted against the actual data. Model W has the best predictions
when compared to the others.
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(a) Model W (b) Model NW

(c) Baseline Model B1 (d) Baseline Model B2

Figure 3.7: Simulated runs corresponding to different randomly selected pth are plotted against
the actual data. The mean temporal predictions and 20 simulation runs are plotted out of the 100
simulation runs.
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(a) Model W (b) Model NW

(c) Baseline Model B1 (d) Baseline Model B2

Figure 3.8: Monte Carlo Simulations indicating the 95% confidence intervals for temporal pre-
dictions produced by the network based models. The upper and lower confidence bounds along
with the mean predictions are plotted against the actual data. Model W has the best predictions
when compared to the others.
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(a) Model W (b) Model NW

(c) Baseline Model B1 (d) Baseline Model B2

Figure 3.9: Simulated runs corresponding to different randomly selected pth are plotted against
the actual data. The mean temporal predictions and 20 simulation runs are plotted out of the 100
simulation runs.
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ability is higher than a threshold probability of infection, then that particular node is deemed to

be infected. Next, the probability of any link contributing to the spread of FMD (plinki,j(t)) is

formulated as below:

plinki,j(t) =
ωi,jβi,j(t)

ωi,jβi,j(t) + δi(t)
(
pt,i + pt,j

2
) (3.21)

Hence, simulated infection networks are realized at discrete time steps. It is however note-

worthy that although model W realizes the transmission of FMD virus over a fully connected

underlying weighted contact network, the infection networks traced out at various time instants

are not fully connected.

Simulations enable visualization of different routes that can be traced out by the FMD infection

network. A single realization of such a simulation is shown in Figure 3.10, 3.11 and 3.12. These

simulations depict the dynamic growth of the infection network both spatially and temporally.

Additionally the infection networks track the direction and velocity of the spread of the FMD

virus based on which effective mitigation strategies may be coined.

3.3 Ergodicity of Infection Networks

To ensure realistic network structure of the dynamically growing infection networks, it is essential

to asses if the underlying behavior of the network structure remains unchanged over the entire

course of the epidemic [38][39]. For the model W , although the underlying weighted contact net-

work is fully connected, the infection networks traced out at different time instants corresponding

to different values of pth are not necessarily fully connected. Thus, it would be feasible to con-

struct infection networks over all possible time instants starting January 2005 through December

2006 using the a single threshold probability for determination of infected nodes and links, as

well as by randomly selecting different threshold probabilities to realize infection networks in a

particular time instant only. The concept of ergodicity in networks states that the mean underlying

network feature shall remain unchanged for both such realizations. Hence, different snapshots

of the infection networks will give the same estimate regarding the distribution of the size of the

giant component growing with a certain reproduction ratio (R0) defined as follows:
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(a) Initial Conditions before January 2005 (b) Infection seeded in January 2005

(c) Infection in February 2005 (d) Infection in November 2005

(e) Infection in March 2006 (f) Infection in December 2006

Figure 3.10: Foot and mouth disease infection network in Turkey after seeding the infection in
January 2005. The links signify the direction in which FMD spreads from a previously infected
node to a recently infected node. Visualization is generated using KING [http://kinemage.biochem.
duke.edu/software/king.php.]
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(a) Initial Conditions before Jan-
uary 2005

(b) Infection seeded in January
2005

(c) Infection in February 2005 (d) Infection in June 2005

(e) Infection in December 2006

Figure 3.11: Foot and mouth disease infection network in Iran after seeding the infection in
January 2005. The links signify the direction in which FMD spreads from a previously infected
node to a recently infected node. Visualization is generated using KING [http://kinemage.biochem.
duke.edu/software/king.php.]

32



(a) Initial Conditions be-
fore January 2005

(b) Infection seeded in
January 2005

(c) Infection in February
2005

(d) Infection in May 2005 (e) Infection in December
2005

Figure 3.12: Foot and mouth disease infection network in Thailand after seeding the infection in
January 2005. The links signify the direction in which FMD spreads from a previously infected
node to a recently infected node. Visualization is generated using KING [http://kinemage.biochem.
duke.edu/software/king.php.]
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R0 =
〈kinkout〉
〈kin〉

(3.22)

Here, kin and kout are the node in degree and node out degree for the infections networks.

Figure 3.13 depicts the distribution of the size of the giant connected component against (R0) such

that it comprises of 10 realizations of infection networks with a single pth in [0.01, 0.2], simulated

over all the monthly time instants and 10 realizations of infection networks formed at a randomly

chosen time instant for 10 different randomly chosen pth in [0.01, 0.2]. We choose a small range

of values for pth to reduce the range of observations which eases our analysis. For a wider range of

pth in [0, 1], we would obtain similar inferences, but over a wider range of possible observations.

The inference is that the distribution of the size of the giant connected component versus (R0) is

independent of the method of realization. Hence, any possible realization of infection networks

will give similar insights on growth of the giant component. This is an important property to study

the viability of mitigation strategies on the infection networks.

Thus, we have defined, calibrated and validated the performance of a weighted contact net-

work predictive model. The comparative validation has been done against network based baseline

models. However, there are existing learning-based predictive models that may be applied to pre-

dict the probability of infection spatio-temporally and temporally. In the next chapter, we shall

study the performance of such learning-based predictive models to further validate the predictive

performance of our model.
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(a) 300 realizations of the two methods each in
Turkey for 24 month period

(b) 100 realizations of the two methods each in Iran
for 12 month period

(c) 50 realizations of the two methods each in Thai-
land for 12 month period

Figure 3.13: The growth of the size of the Giant connected Component for different values of R0

using two methods of realization. In the first method infection networks are realized by using a
single randomly selected value of pth in [0.01, 0.2] over all possible time instants in the particular
data set. In the second method, infection networks are realized by using a randomly selected
value of pth in [0.01, 0.2] over a particular randomly selected time instant. Both realizations
provide similar estimates regarding the rate of growth of the giant connected component versus
the secondary reproduction ratio. Since the slope of both realizations is almost similar, ergodicity
of the dynamic infection networks may be assumed.
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Chapter 4

LEARNING-BASED PREDICTION
MODELS

Predictive epidemiology refers to the analytical study of disease dynamics to predict future out-

breaks in space and time so that effective mitigation strategies can be implemented to curb the

recurrence of epidemics. Since epizootic diseases like the Foot and Mouth Disease (FMD) raise

several political, administrative, economic and welfare issues, it is imperative to analyze the dis-

ease dynamics to facilitate adequate preventive measures, especially in countries that report re-

curring epidemic outbreaks instances. Since the FMD outbreak in the United Kingdom in 2001,

several analytical spatio-temporal models have been developed to spatially locate such epidemic

outbreaks in time [18], [10], [11], [12], [13], [16]. However, it is important to address that spatio-

temporal models have parameters of a possibly global structure. Such structures allow region-

independence and adaptability of the models by taking information regarding the environment

and neighborhood of geographical locations expressed in terms of model parameters. But, in the

absence of the sensitive spatial parameters, we may attempt to train a local model on local data

with latent parameters to mimic the predictive performance of spatial predictive models. These

local models can be learning-based temporal predictive models which, when trained for predic-

tive purposes in a local region, can provide predictions regarding the evolution of infection with

time. The novel contribution of this chapter is that we study local information regarding the tem-

poral evolution of infection that is hard-coded in geographical regions, by using learning-based
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models that mimic the global parameters of a spatio-temporal model. Additionally, we simulate

instances of mitigations strategies to study the cost-effectiveness of culling, vaccination and move-

ment strategies to reduce the total number of infected livestock at the end of a period under study.

Also, the utility function to assess the cost-effectiveness of mitigation strategies is defined in terms

of the percentage reduction in the total number of infected livestock to the total cost incurred in

million US dollars.

Numerous learning-based models have been developed so far to achieve temporal epidemic

predictions. For example, neural network models have been argued to effectively model the dy-

namics of temporal data [40], while time series models have been applied for forecasting the

incidences of influenza-like illnesses (ILI) in France [41]. Also, Bayesian networks are useful for

reasoning under uncertainty in artificial intelligence which not only detects an outbreak, but also

estimates how acute the epidemic is [42], [43], [44]. Regressive models have also been imple-

mented to fit and predict outbreak related data [25] [45]. Additionally, learning-based prediction

models have found their importance in predicting wheat leaf wetness [46], [47], soy-rust [48] in

plants and critical diseases like influenza [49], malaria [50], [51] and SARS [52] in humans. How-

ever, such models have not found any application in prediction of global epizootic epidemics like

FMD so far. Our study aims at analyzing the temporal prediction capability of various temporal

prediction models and applying them for spatial predictions of FMD epidemic outbreaks in time.

Learning-based predictors are proactive methods for the classification of epidemic severity and

for the development of preemptive disease mitigation strategies. They are good tools to analyze

infection spread patterns without relying on background spatial information which is generally

unknown or estimated. Due to the independence of learning-based models from the background

information, they incur a higher prediction error when compared to spatio-temporal predictive

models [19]. The reason being that learning-based models require a considerable amount of train-

ing data in order to predict well. While an under-trained model produces higher prediction errors,

an over-trained model will depict a high variance in its predictions. Such confidential training data

in the form of infection incidence reports are often not enough for training such models well. Ad-
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ditionally, learning-based predictive models require that the data being used for training and the

predicted probability of infection are well correlated. In the absence of correlation, such models

fail to provide effective disease predictions. However, it is noteworthy that a trained predictive

model can estimate logical bounds to the evolution of disease infectiousness and susceptibility

over time [49], [53]. Such bounds can eventually be used for development of mitigation strategies

to curb the epidemic impacts thus predicted. Here, we primarily categorize the period under study

into two categories. The period wherein the number of reported outbreaks and infected livestock

remains at a steady low value is defined as the pre-outbreak period. Contrastingly, the outbreak pe-

riod is defined as the period when the number of infected livestock increases rapidly to a very large

value. The transition period between the pre-outbreak and the outbreak period, is the time when

the epidemic sets in. Thus, a well trained model is one which can predict the transition period,

and also estimate the total number of infected livestock in the epidemic period under study.

In this chapter, we propose a few learning-based prediction models that can be used to study

the temporal evolution of FMD infection and susceptibility at different administrative districts

in Turkey. The predictive models when trained for each administrative district separately, can be

used to predict the probability of infection and the probability of susceptibility to the FMD virus in

future time instants. The different temporal prediction models are:neural networks, autoregressive

models and Bayesian networks backed up with Monte-Carlo simulation models. Neural networks

are non-linear models to detect sudden fluctuations in infection incidence data and respond ac-

cordingly. Contrarily, autoregressive models map the randomness in correlated data by trying to

estimate a probability distribution function to fit the time series data in the best possible way. Addi-

tionally, Bayesian networks may be applied in instances where no good approximations regarding

the probability distribution functions are feasible so that Bayesian estimators based on historical

data can be used to predict future occurrences of infection. Also, Monte Carlo simulations help to

achieve the gold standards regarding the 95% confidence intervals in the infection and susceptibil-

ity probability distribution. Additionally, we evaluate the performance of each prediction model in

simulating mitigation strategies, and we eventually justify their predictive performances in terms
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of the effectiveness of the various mitigation strategies proposed.

Additionally, we have simulated and analyzed the effectiveness of mitigation strategies for

FMD based on the temporal infection predictions in space. From these simulations, we infer that

vaccination and movement ban strategies are effective in impeding the spread of the FMD Virus

(FMDV) before the onset of an epidemic outbreak, whereas premise culls are important to severely

impede the spread of FMDV after an outbreak as set in. In countries which report recurrences of

FMD such as the example of Turkey, it may be effective to develop adequate infrastructure to

facilitate mass vaccinations for long term disease mitigation.

4.1 Experimental Data

Since learning-based models require considerable data in the training phase, we study FMD pre-

dictions using the infection incidence data in Turkey from January 2005 through December 2006.

The 24 month period under study is divided into two segments, the training data set, which corre-

sponds to the first 15 months (60% of entire data), and the validation data set, which corresponds

to the last 9 months (40% of the entire data set). We study the probability of infection incidence,

and the probability of infection susceptibility at 79 administrative districts in Turkey denoted by

nodes in Figure 1, assuming that each node is independent and identical in nature. Thus, we com-

pute the probability of infection on data set I and probability of susceptibility on data set S. For

the infection data, the training data set is It, while the validation data set is Iv. Similarly, for the

susceptibility data, the training data set is St, while the validation data set is Sv.

4.2 Statistics for model parameterization

We compute spatio-temporal variation in infectivity and susceptibility by studying the temporal

evolution in the probability of infection and probability of susceptibility at different regions in

space (nodes). Thus, the predictive performance of the learning-based models is analyzed with

respect to the actual data such that all prediction errors are probabilistic. The models predict the

probability of infection and the probability of susceptibility at each node in progressive time steps
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Figure 4.1: Map of Turkey depicting 79 administrative districts represented by circular nodes.
The temporal evolution of FMDV in each node is studied separately.

of one month, which is compared to the actual probability of infection/susceptibility calculated by

the ratio of infected/susceptible animals at a node at a certain time step over the total number of

infected/susceptible animals all over Turkey in that time step.

Predictive performance of each model is analyzed in terms of the Mean Squared Error (MSE)

defined as Equation 4.1

MSE =

∑N
i=1(pact − ppred)2

N
(4.1)

- pact =Actual probability from data set. It is calculated by the number of infected or sus-

ceptible animals at a particular location at a particular time step over the total number of

infected or susceptible animals at all locations at that time step respectively.

- ppred = Probability of infection or susceptibility predicted from the models.

- N = Total number of locations under consideration. In our case, we have 79 locations being

studied.

Root mean squared error (RMSE) is the square root of the MSE.

Additionally, the goodness of model fit is defined in terms of sMAPE andR2 defined in Equa-

tion 3.13 and Equation 3.14 respectively. Besides, Akaike Information Criterion (AIC), Bayesian

Information Criterion (BIC) are the measure of goodness for a model such that a model with a

lower AIC/BIC has higher likelihood to fit the actual data while incurring a lower computational
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complexity due to parameterization. In Krueger et al [54], it is written “BIC provides a quantita-

tive index of the extent to which each model maximizes correspondence between the observed and

model predicted variances and covariances while minimizing the number of parameters. Better

fitting models have more negative values, and the difference in BIC values relates to the posterior

oddsthe odds ratio formed by taking the probability that the second model is correct, given the

data, over the probability that the first model is correct given the data. When comparing models, a

difference in BIC of 10 corresponds to the odds being 150:1 that the model with the more negative

value is the better fitting model and is considered very strong evidence in favor of the model with

the more negative BIC value.”

AIC is the measure of goodness of fit for a model such that a model with a lower AIC has

higher likelihood to fit the actual data. If L is the maximized value of likelihood function for the

estimated model, k is the number of parameters to be estimated by the model and n is the number

of data points, then if we assume the observations to be identically normally distributed, AIC is

given below.

AIC = 2k − 2ln(L) (4.2)

AIC = 2k + nln(MSE) (4.3)

Similarly, BIC is defined below for normally distributed error with error variance(σ2
e ).

BIC = ln(σ2
e) +

k

n
ln(n) (4.4)

Kullback Leibler (KL) divergence distance is a method used to measure the goodness of fit by

estimating a non-symmetric measure of distance between two distributions, the actual probability

distribution (P), and the probability distribution predicted by a model (Q). This method relies on

the concept of relative entropy given in the following equation, such that the model with the lowest

KL divergence distance is the best fit model.

DKL(P ||Q) =
∑
i

P (i)
P (i)

Q(i)
(4.5)
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4.3 Model Description

This section describes the application of neural networks, autoregressive models, Bayesian net-

works and Monte-Carlo simulations for temporal epidemic predictions. The method for parameter

estimation is described, and the predictive performance of each model is also analyzed.

4.3.1 Neural Network Models

Starting with measured data from some known or unknown source, a neural network may be

trained to perform classification, estimation, simulation, and prediction of the underlying process

generating the data. Hence, neural networks, are software tools designed to estimate correlations

in data. A Neural Network(NN) is a set of processing units called neurons and connections with

adjustable weights that get modified during the learning process [55]. Usually a NN has a multi-

layer structure with one input layer, one or more hidden layers and one output layer. The entire

system gets trained by virtue of supervised learning mechanism called backpropagation, by uti-

lizing a selective portion of the data called the training data set. During the training process, the

weights and biases associated with each neuron are adjusted to minimize the root mean squared

error. We apply the gradient-descent algorithm to adjust the weights and biases in each training

step. The step following training is validation. In this phase, the feed forward algorithm runs on

the validation data set and the output thus obtained is matched with the actual output for validating

the prediction accuracy of the multi-layered neural network.

While constructing a mathematical model of a biological neuron, usually each weight is de-

fined as wji, which reflects the connective impact that unit i has on unit j. wji can have negative

or positive values. Negative values imply inhibitory connections between units i and j, while pos-

itive values are associated with excitatory connections. Within each unit a summer is present to

add all the inputs, multiplied by their respective weights. This sum is denoted as sj . Furthermore,

there is an external bias bj which is equivalent to a weight applied to a constant input with value

of 1. This unit also includes a nonlinear activation function Fj(.). Given an input sj , the output is
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Figure 4.2: Showing a Multi-Layered Neural Network.

defined as:

sj =

j−1∑
i=1

wjiyi + bj (4.6)

yj = Fj(sj) (4.7)

Fj(sj) =
1

1 + e−sj
(4.8)

We implement a three layered neural network with an input layer, hidden layer and output layer

using a sigmoidal activation function. The reason for choozing the sigmoidal function is that

it is a continuous function that simplifies the backprogation process. Besides, the derivative of

a sigmoidal function can be easily calculated for weight updation using the Chains rule. Also,

the inputs are the scaled monthly infection incidence levels at a particular location in previous

time instants and the output is the predicted infection incidence at the same location in the next

time instant. The input and target data are normalized between 0.1-0.9 although the desired ideal

input and output valued range between [0,1], in reality, 0 and 1 are asymptotes to the sigmoidal

activation function and hence they must be avoided since to reach asymptotic values,enormous

weights and/or input values are required. For a particular set of inputs if to is the target output,
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yo is the output produced by the neural network ,µ is the learning rate of the gradient descent

algorithm, then the error function(Ep) and the corresponding weight updation rule (∆ωoi) using

gradient descent is given in Equation 4.9.

Ep =
1

2

∑
o

(tpo − ypo)2 (4.9)

∆ωoi = µ(to − yo)yi (4.10)

Besides using learning rate, another way to avoid oscillation is to add a portion of past gradi-

ent ∆ωoi(t − 1) in addition to the current gradient ∆ωoi(t) when updating weights according to

Equation 4.11 where (t-1) refers to the previous training iteration and α is the momentum factor.

∆ωoi(t) = µ(to − yo)yi + α∆ωoi(t− 1) (4.11)

ωoi = ωoi + ∆ωoi(t) (4.12)

Having understood the underlying features of the neural network, the first important task in

building a neural network is the selection of the number of neurons in the input layer and the hid-

den layer. By experience from all the applications of NN, the preference goes to the structure in

which there are fewer neurons in the hidden layer than neurons in the input layer. Also, according

to Ockham’s razor principle, its more possible that a simpler computing model has better gener-

alization abilities. Additionally, there exits a problem known as the bias/variance dilemma: when

the model is too small it will generally be biased, but when the model is too large it’s parameter

estimates can have large variance leading to large variance in the output.

Thus for estimating the best size of the neural network we implement the following set of

rules:

1. The neural network is trained using the data sets It, St and validated using Iv, Sv respec-

tively. Thus the errors for all these 4 data sets are studied separately to find the best neural

network structure that minimizes RMSE variation for all the 4 data sets.

2. There will be only one output neuron since we desire single step predictions only.
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3. We wish to estimate the size of of a single neural network that shall predict for all the exist-

ing nodes. Thus, we spot the node with maximum fluctuations in data S, and I respectively,

following which, we estimate the optimal neural network structure to that fits the data of

the node with most variations. It is assumed that a neural network which responds to high

fluctuations will respond to lesser fluctuations too.

4. We vary the number of neurons in the input layer from 2 through 11, since the pre-outbreak

period for the data set of Turkey shows the onset of an epidemic at the end of the twelveth

month and hence, to predict an outbreak in time, the pre-outbreak data (comprising of 11

months) must be sufficient to predict the time of onset of an epidemic in the following

time step. Also, the neurons in the input layer correspond to the month number and scaled

probability of infection/susceptibility in previous time instants. Additionally, due to the lack

of data, the size of input layer must be kept minimally small although the input layer cannot

have only 1 neuron since a 1x1x1 neural network would intuitively be biased.

5. It is established that the number of neurons in the hidden layer are at most the number of

neurons in the input layer for a minimized network structure.

6. Thus we compare the predictive performance of all possible combinations of neural net-

works from 2x1x1 through 11x11x1. The network with the smallest variance in error and

smallest average error is the best network.

7. For computational purpose, we implement the neural networks with momentum 0.18, learn-

ing rate 0.5, and 10 generations of 200 iterative cycles for each network.

8. At the end of each 200 iterative cycle the RMSE between the probability of infection/susceptibility

and the actual data is computed. The average and standard deviation of the RMSE from the

10 generations is used to determine the best neural network structure.

The result of the above comparison is shown in Table B.12, B.13,B.14 which depict the com-

binations of input and output neurons and the respective average RMSE and standard deviation
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of the RMSE. The respective surface plots are shown in Figure 4.3, 4.4. We look for the net-

work structure with lowest standard deviation in the RMSE of error and considerably low average

RMSE such that the network has least number of neurons in it. Thus we infer that the neural net-

work with 4 input neurons and 4 hidden neurons has the smallest deviation in RMSE for a major

portion of the iterative process. Thus we select 4x4x1, neural network as the optimal size.

Neural Network Parameterization

Having determined the best size of the predictive neural network, we examine the predictive per-

formance of a 4x4x1 neural network to predict the probability of infection and probability of

susceptibility at each 79 administrative district locations. We denote each district location by a

unique node ID and we examine the predictive performance of the neural network on data sets

I, S separately. For AIC, BIC calculations, it is important to note that the number of parameters

to be estimated is equal to the size of St, It times the number of weights and biases that are up-

dated by each backpropagation. In our case, for a 4x4x1 network, we have 29 such weights and

biases. The predictive performances for each node on the data sets are elucidated in Table B.4,

B.5,B.6,B.7 respectively.

Finally, the predictive performance on data set I, S are shown in Figure 4.5. Here the input

refers to the actual probability in the training data set. The output is the predicted probability for

the fitted training data set and the validation data set also. A sample fit for node ID 52 is shown in

Figure 4.6.

4.3.2 Autoregressive Models

The second temporal prediction approach is based on time-series analysis of the FMD outbreak.

An autoregressive (AR) model is a random process that models the randomness in a natural phe-

nomena such as epidemic spread. These models predict the output at a time instant t based on the

outputs of previous time instants by modeling the randomness in correlated data. To ensure corre-

lation of data, we consider the evolution of probability of infection and probability of susceptibility

at each node separately, thus ensuring the data to be correlated in space. The first step towards
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time-series modeling is to subtract the mean value of data followed by eliminating the seasonality

and trend in data. Next, the error in the probability is modeled and hence it becomes possible to

fit a probability distribution function at each node corresponding to probability of infection and

probability of susceptibility. In our analysis, since the data is sparse and having irregular trends,

we analyze sliding windows of varying sizes for prediction. The method for implementing the

sliding windows in training and validation phase is described as follows:

• Training phase: For data set I, if the window size is 6, we use the probability of infection

at time instants 1 through 6 to predict the probability of infection at time step 7. In the next

iteration, we use the actual probability of infection from time instant 2 through 7 to predict

the probability at time instant 8 and so on.

• Validation phase: For data set I, if window size is 5, we use the probability of infection

at time instants 1 through 5 to predict the probability of infection at time step 6. In the

next iteration, we use the previously predicted probability of infection from time instant 2

through 6 to predict the probability at time instant 7 and so on.

The window size and order of autoregressive models with the lowest Akaike Information Crite-

rion and lowest Mean Squared Error (MSE) is selected as heuristically optimal and used for future

predictions. Since we wish to minimize parameter estimation, we consider only autoregressive

models without the moving average parameters.

X(t) = φ0 +

i=p∑
i=1

φiX(t− i) + εt (4.13)

Here, εt is additive white Gaussian noise which models the randomness part in the data while

X(t), X(t−i) are the probability of infection/susceptibility at time instants t, t−i respectively. φ0

is a constant and p is the order or the autoregressive model. Also, the order of the autoregressive

model can be estimated using the Yule-Walker Equations [56]. To find the best data windows

size and order of an AR model pertaining to each node separately, we fist analyze the seasonality

of infection incidence. From Figure 4.7 we see that the seasonality of infection incidence is six
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months, i.e. the peak season with high probability of infection lasts for six months. Hence, the

order and window size of the AR models must be at most equal to 6 since we wish to reduce the

error that will creep into the predicted probability of infection during the transition from a peak

season to an off-peak season of infection in Turkey.

Autoregressive Model Parameterization

Hence to estimate the best data window size and order of AR models (p) at each node separately,

we perform the following operations:

1. For all combinations of window size from 2,3,4,5,6 and order p= 1,2,3,4,5, we compute the

AIC, BIC and MSE of the fitted model on data sets St, It, which are given in Figures 4.8,

4.9.

2. The window size and order corresponding to lowest AIC/BIC is selected as the best param-

eter choice for that particular node. For the AIC/BIC calculation, it is important to note that

the number of parameters to be estimated shall be equal to the total number of coefficients

estimated for each node for data sets S,I.

3. The best parameter set at each node is used to fit the data in the training set and predict

probability of infection/susceptibility for the validation set. The fitted data is evaluated in

Table B.10,B.11,B.8,B.9 respectively.

The goodness of fit is shown in Figure 4.10. The predicted versus the input probability is

depicted in Figure 4.11. The predictions have the randomness feature in them to a certain extent.

4.3.3 Bayesian Network Model

A Bayesian network is a directed acyclic graph representing a set of random variables and their

conditional or probabilistic relationships. Since FMD outbreaks are random events, in the absence

of a specific probability distribution function, they can be successfully modeled using probabilis-

tic methods like Bayesian Networks for temporal predictions regarding the number of infected
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livestock at any record time instant. Each random variable in the network is depicted by a node

in the graph with connections between the parent and child nodes [55], considering input random

variables to be parent nodes and the predicted output to be the child node respectively. A single

connection leads a parent (causal) node to a child (influenced) node, thus depicts the conditional

dependence between the child and parent nodes [55]. However, if there is no connection between

two nodes, it indicates conditional independence. There is a conditional probability table for each

child node, which can be computed by the prior probabilities of the parent nodes [55].

A single-layer discrete Bayesian network shown in Figure 4.12, is constructed with two in-

put parent nodes representing the month type and the probability of infection/susceptibility in

the previous time step, and one child output node representing the present probability of infec-

tion /susceptibility, such that inputs and outputs are classified into discrete levels. Based on the

OIE Incidence reports regarding the FMD outbreaks, a conditional probability table and causal

relationships are derived for each data set. Bayesian parameter estimation is carried out using

Maximum Likelihood Estimation (MLE) and the mean expected output probability is compared

with the actual data set. In our analysis, we consider 10 discrete input levels and 10 discrete output

levels. Since we aim at magnifying the impact of input probability in the previous time instants

on the output probability in the present time instant, thus we consider 5 levels of input probability

and 2 types of month classifications (5x2=10 input levels). The output probability, for the sake

of even-ness has 10 discrete probability levels, each corresponding to a mean expected output

probability level.

Bayesian Network Parameterization

It is necessary that the classification for the input parent nodes should be done in a way such that

all the data points which have similar influences on the child output nodes are grouped into the

same level. For the child node, the classification should be done so as to have as many levels as

possible, with relevant number of data entries in each level [55]. Classification of the input month

type is based on the number of infections reported each month. Now, survival of the FMDV in

the environment depends on the initial concentration of virus in the material, the strain of virus,
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the humidity, the pH and ambient temperature. Considering the seasonal average number of FMD

outbreaks annually in Turkey, we find that reported foot and mouth disease outbreaks in sum-

mer (60%) is higher than in winter (40%)[30]. All regions in Turkey have lower incidence in

December-February (winter) and September-October (autumn) with incidence rising over sum-

mer to mainly a peak in March to July [30]. Thus, we categorize the months for Turkey as the

following:

• Month Type 1: Months of January, February, March, October, November, and December in

each year. From the Figure 4.7 we observe that during these months, the number of infected

livestock is comparatively lower than the rest of the months in that year cycle.

• Month Type 2: Months of April, May, June, July, August, and September in each year. From

the Figure 4.7 it is evident that these months have a higher number of infected than the rest

of the months in a year.

Next, Classification of previous time instant input probability level (I) is done in Table 4.1:

Table 4.1: Input Probability Level Classification
InputLevel(I) Probability at time (t− 1)

1 < 0.0001
2 0.0001-0.007
3 0.0071-0.04
4 0.041-0.1
5 > 0.1

Following this, the classification of the output level(O) based on the output probability of

infection/susceptibility is given by Table 4.2:

The conditional probability table (CPT) which gives the probability of occurrence of each

output level given the probability of input in the previous time instant and the month classification

type is given by Equation 4.14 and tabulated in Table 4.3:

P (Outagelevel = i|Inputstate = m) =
Ni

Tm
(4.14)
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Table 4.2: Output Probability Level Classification
OutputLevel(O) Probability at time instant (t)

1 0-0.00002
2 0.000021-0.00005
3 0.000051-0.0014
4 0.00141-0.0035
5 0.00351-0.0080
6 0.0081-0.0133
7 0.01331-0.05
8 0.051-0.1
9 0.1-0.3

10 > 0.3

Table 4.3: The Conditional Probability Table
Output Level 1 2 3 4 5 6 7 8 9 10
Input Level 1 0.9720 0.0089 0.0115 0.0000 0.0000 0.0000 0.0000 0.0038 0.0025 0.0013
Input Level 2 0.0000 0.0000 0.0976 0.4634 0.4390 0.0000 0.0000 0.0000 0.0000 0.0000
Input Level 3 0.0000 0.0000 0.0000 0.0000 0.0667 0.3000 0.6333 0.0000 0.0000 0.0000
Input Level 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3030 0.6970 0.0000 0.0000
Input Level 5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7241 0.2759
Input Level 6 0.9524 0.0253 0.0223 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Input Level 7 0.0000 0.0000 0.0978 0.5435 0.3587 0.0000 0.0000 0.0000 0.0000 0.0000
Input Level 8 0.0000 0.0000 0.0000 0.0000 0.1167 0.3250 0.5583 0.0000 0.0000 0.0000
Input Level 9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3143 0.6857 0.0000 0.0000

Input Level 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7241 0.2759

Where,

Ni =Number of occurrences in outage level i.

Tm =Total number of occurrences in input state m.

It is important to note at this stage, that we construct a single CPT using the St, It of all 79

nodes. This is done since we want the CPT to be as non-sparse as possible and it would not be

possible to populate such a CPT for each node individually, due to the lack of data. Thus, we

construct the CPT using the the training data sets and we validate the performance of the Bayesian

network using the validation data sets Sv, Iv. Next, we evaluate the expected output probability
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level as the prediction obtained from the CPT, which is based on the expected output for each

input level given below.

E(Nl|Inputstate = j) =
10∑
k=1

P (Ok|Ij)× Average(Ok) (4.15)

Where,

Nl:Output Probability

Ok:Outage level=k.

Ij:Input state=j.

The average output probability corresponding to each output level is given in Table 4.4

Table 4.4: Average output probability corresponding to each output level
Output Level Average Output

1 0.000105000000000000
2 0.000350000000000000
3 0.000950000000000000
4 0.00245000000000000
5 0.00575000000000000
6 0.0106666666666667
7 0.0316666666666667
8 0.0750000000000000
9 0.200000000000000

10 0.500000000000000

The predictive performance of the Bayesian network for a node ID 52 is shown in Figure

4.13. Additionally, the input probability versus the predicted probability of infection/susceptibility

against the ideal prediction curve is shown in Figure 4.14

4.3.4 Monte-Carlo Simulations

Monte-Carlo simulations (MCS) refer to a particular class of algorithms that rely on repeated

random sampling to compute results. Since these simulations rely on repeated computation of

random events, these methods are most suited to calculation by a computer and tend to be used
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when it is unfeasible or impossible to compute an exact result with a deterministic algorithm or to

simulatively verify the results obtained by other deterministic algorithms. In the Bayesian network

model, we assume that the predicted value for each state is the expected value, which represents

a point estimate for the output probability. But since a particular month type, and a particular

previous time step probability input level are themselves composed of a number of entities, an

input state represents a range of different values of factors, and thus it is only a rough classification

of the effects of month and input probability level on the predicted output probability. Thus, the

model is expected to have errors in prediction and we should simulatively find a range of values

within which the observed numbers of outages are expected to lie.

MCS algorithm

Monte Carlo simulation is a common method to find out the confidence intervals and to simula-

tively calculate the expected output probability of infection/susceptibility [55]. Thus, the follow-

ing steps illustrate the method of implementation of MCS.

1. We compute input state for a particular node at a given time step

2. We generate a uniform random number in [0,1].

3. Using roulette wheel selection with this random number, we select an outage level based on

conditional probability table.

4. We generate another uniform random number in [0,1].

5. Using roulette wheel selection with this random number, we select a value of output proba-

bility which follows uniform distribution within one outage level.

6. The simulation is repeated 1000 times for each monthly time step for each node.

7. At the end of the simulation, we find the average output probability from the 1000 values

corresponding to each node and each time step. This average value is compared to that

obtained as output from the Bayesian network model.
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8. For computing the confidence interval, we sort the 1000 output values corresponding to each

output probability and we select the upper limit for 95% confidence as the smallest integer

X such that the percentage of all the numbers below X exceeds 97.5% of the 1000 data

points. The lower limits are assumed to be the biggest integer which makes the percentage

of all the number below it smaller than 2.5%.

Finally, we analyze the goodness of fit of the MCS in a sample node in Figure 4.15, and also

the input probability versus the output probability comparison plots against the ideal output curve

in Figure 4.16.

4.4 Model Analysis

The predictions regarding the probability of infection and the probability of susceptibility obtained

using neural networks, autoregressive models, Bayesian network models and Monte-Carlo sim-

ulations is analyzed to evaluate the predictive performance of each model. The average of the

RMSE for all 79 nodes between the data set S and data set I is shown in Figure 4.17

We can now assume that so far we have performed spatio-temporal predictions regarding the

evolution of FMD, since we considered predictions at different administrative districts separately.

At the end of these spatio-temporal predictions, the probability of infection at each node, if mul-

tiplied with the total number of infected animals in Turkey at any particular time instant shall

yield the number of infected animals at that particular time step at the particular node. Thus, it

is possible to estimate the number of infected animals in Turkey at a particular time step spatio-

temporally. Having analyzed the spatio-temporal prediction of FMD using learning-based models,

we further analyze the predictive performance of each method temporally, i.e. when predictions

are made regarding the number of animals infected monthly in Turkey. It is important to note

that intuitively the temporal predictions should have more error than spatio-temporal predictions

owing to the lack of training data and the assumption that all locations in Turkey are correlated in

space in the pre-outbreak and in the outbreak period of the epidemic.

For temporal predictions, neural network uses the same 4x4x1 network structure for predicting
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the number of infected animals in future time instants. In auto-regressive models we observe that

order p = 1 and windowsize = 6 yield the lowest AIC/BIC values. Bayesian network however

has to be reevaluated for temporal predictions using the input level classification in Table B.1,

output level classification in Table B.2 and CPT in Table B.3. We observe that the new CPT is

more sparse than the spatio-temporal CPT.

The comparative performance of spatio-temporal and temporal predictions thus produced is

shown in Figure 4.18 and Table 4.5.

Table 4.5: Comparative analysis of spatio-temporal versus temporal predictions
Spatio-temporal Temporal

Model sMAPE R2 DKL sMAPE R2

NN 11.2164 0.9816 0.0056 23.922 0.9373
BN 16.3127 0.9371 0.0095 12.5603 0.9086

MCS 18.164 0.9387 0.0094 12.6702 0.9106
AR 22.2083 0.9535 0.00833 28.1051 0.8956

MCS upper bound 44.925 0.5071 - 32.5821 0.68
MCS lower bound 30.5148 0.4398 - 38.6698 0.6921

Additionally, on comparing the KL divergence distance of spatio-temporal predictions for the

data set S, we see neural network has a divergence distance of 0.0061, autoregressive models

is 0.00794, Bayesian networks is 0.0122 and MCS is 0.0120. As an inference we see that neural

networks have the lowest KL divergence distance, lowest error and bestR2 statistic. So it provides

best estimates spatially and temporally regarding the evolution of FMD infection. Auto-regressive

models incur higher error than neural networks, yet they fit the data aggregately and thus they

incur a considerably good R2 value. Bayesian networks on the other hand have a consistent

error incurred temporally and spatio-temporally and hence they set good bounds to the extent of

infection spread. Also, we see that the confidence intervals set by MCS by the upper bound and

lower bound are higher than the predictions obtained by all the four learning based models. Hence,

we can say that all the learning-based prediction models have acceptable prediction standards.

Finally, we compare the AIC and BIC of the learning-based predictive models and we infer

that auto-regressive models incur a lower AIC/BIC since they require lower parameter estimation
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than neural network models. Hence, if the number of nodes where spatio-temporal evolution is

to be studied is large, the computational complexity of neural networks becomes very high and

infeasible. Auto-regressive models in such cases provide lower computational complexity at the

cost of prediction errors. Bayesian networks have a different scale for computing complexity. This

statistic is called BICscore and it is defined in Equation 4.16 which implies that a higher BICscore

indicates a better model.

BICscore =
∑
i

∑
m

(log2θi −
log2M

2
Dim[i]) (4.16)

- i=Node in the Bayesian Network

- m=size of data set

- M= total size of data set

- θi= Bayesian estimator given by the CPT

- Dim[i]=number of independent parameters with respect to a particular node. Dim[G] is the

total number of independent parameters in the graph G.

We observe that BICscore for spatio-temporal Bayesian network predictions is -185.3445

while that of temporal predictions is -447.6649. This is indicative that Bayesian networks are

better spatio-temporal predictors than temporal predictors. Finally, we observe that although the

temporal prediction performance of learning based models is considerable, they are not as good

as the network based spatio-temporal models since for the spatio-temporal model W , sMAPE is

9.39 while R2 is 0.99. Additionally, spatio-temporal models are good predictors in the absence of

a large amount of correlated historical data which is otherwise required by learning-based models

for predictive purposes. Thus, we may conclude that estimating background parameters related

to the spread of epidemics using network based spatio-temporal models is a better method for

epidemic prediction as compared to learning-based predictions.
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(a) Standard deviation of RMSE for It. (b) Average RMSE for It.

(c) Standard deviation of RMSE for Iv . (d) Average RMSE for Iv .

(e) Standard deviation of RMSE for St. (f) Average RMSE for St.

Figure 4.3: Standard deviation and average RMSE for data sets It, Iv, St
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(a) Standard deviation of RMSE for Sv . (b) Average RMSE for Sv .

Figure 4.4: Standard deviation and average RMSE for data sets Sv

(a) Data set I (b) Data set S

Figure 4.5: Output versus input characteristic feature for Neural Network towards data set I and
S. The input is the actual probability of infection (I) or susceptibility (S) while the output is the
probability predicted by the neural network. The straight line is the ideal output curve.
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(a) Data set I (b) Data set S

Figure 4.6: Neural network predicted probability of infection or susceptibility fitted against actual
data on node 52 in Turkey.

Figure 4.7: Seasonality of Infection Incidence in Turkey
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(a) AIC for AR(1) (b) MSE for AR(1)

(c) AIC for AR(2) (d) MSE for AR(2)

(e) AIC for AR(3) (f) MSE for AR(3)

Figure 4.8: AIC and MSE for AR(1), AR(2) and AR(3) for all 79 nodes in Turkey.
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(a) AIC for AR(4) (b) MSE for AR(4)

(c) AIC for AR(5) (d) MSE for AR(5)

Figure 4.9: AIC and MSE for AR(4) and AR(5) for all 79 nodes in Turkey.
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(a) Data set I (b) Data set S

Figure 4.10: AR predicted probability of infection or susceptibility fitted against actual data on
node 52 in Turkey.

(a) Response in I (b) Response in S

Figure 4.11: The input is the actual probability of infection (I) or susceptibility (S) while the
output is the probability predicted by the autoregressive model.
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Figure 4.12: Showing a single layer Bayesian network model for predicting the probability of
infection/susceptibility. The month type is classified into 2 types according to the peak and off-
peak season for the virulence of FMD virus. The ’previous record level’ input is the probability
in the previous time step. The ’present record level’ output is the probability in the current time
instant that is predicted by the Bayesian network.

(a) Data set I (b) Data set S

Figure 4.13: Bayesian network predicted probability of infection or susceptibility fitted against
actual data on node ID 52 in Turkey.

63



(a) Data set I (b) Data set S

Figure 4.14: Output versus input characteristic feature for Bayesian network towards data set I
and S. The input is the actual probability of infection (I) or susceptibility (S) while the output is
the probability predicted by the Bayesian network.

(a) Data set I (b) Data set S

Figure 4.15: MCS predicted probability of infection or susceptibility fitted against actual data on
node 52 in Turkey.
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(a) Data set I (b) Data set S

Figure 4.16: Output versus input characteristic feature for MCS towards data set I and S. The
input is the actual probability of infection (I) or susceptibility (S) while the output is the probability
predicted by the Monte-Carlo Simulations.
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(a) Neural Networks (b) Auto Regressive models

(c) Bayesian networks (d) Monte-Carlo Simulations

Figure 4.17: The average of RMSE between data set S and data set I for 79 nodes for 24 monthly
time instants.
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(a) Neural Networks (b) Auto Regressive models

(c) Bayesian networks (d) Monte-Carlo Simulations

Figure 4.18: Spatio-temporal versus temporal predictions for number of animals infected monthly.
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Chapter 5

MITIGATION STRATEGIES

Mitigation of epidemics is necessary to alleviate the devastating impacts of FMD. Further, the-

oretical mitigation strategies based on isolation of nodes with high probability of infection [36]

are practically infeasible since complete isolation of nodes is impossible in real-world situations.

Also, there is a difference in the impedance to the spread of FMD due to the various practical

control policies that are adopted such as: movement bans, vaccination, infected premise culls or

dangerous contact culls. Though IP and DC culls are very successful in immediately retarding

infection spread, they are highly unethical [57]. Conversely, vaccination and movement bans are

ethical but they may be costly policies, and they may not retard FMDV spread as much as the

culling strategies. Thus, it is absolutely imperative to formulate mitigation strategies that are both

practically feasible, ethical and cost-effective too.

We have analyzed spatio-temporal models that model the evolution of FMD using network-

based models and learning-based models as well. In this chapter we assess the impact of mit-

igation strategies using these predictive models. Re-occurrence of FMD epidemics in countries

with un-developed livestock surveillance and infection incidence data-bases can be curbed by im-

plementing suitable mitigation strategies based on the phase of the epidemic outbreak. For our

analysis, we define an epidemic outbreak having two phases, the pre-outbreak phase where num-

ber of infection incidence reports are considerably low, and the outbreak phase wherein tens and

hundreds of thousands of livestock are reported to be infected per month. We analyze mitigation

strategies on both these phases separately and we attempt to draw some conclusions regarding the
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mitigation strategies thus imposed.

Using the network-based spatio-temporal model W , we analyze the background structure of

the infection networks thus formed to evaluate some network based properties which can be used

to obtain suitable theoretical bounds for FMD mitigation based on the concept of network frag-

mentation. Hence, we rely on percolation theory, which provides the theoretical guideline to

understand the effect on topology of a network due to node deletion [58] [59] since the main con-

tribution of the percolation theory is that if an infinite connected cluster appears in a network, it

implies that there is a high probability of an epidemic outbreak.

Network fragmentation helps us set theoretical bounds on the impact of mitigation strategies.

These impacts may be in the form of overall reduction in the total number of infected livestock,

the total direct costs incurred due to implementation of mitigation strategies, the total number of

livestock culled and vaccinated. Since theoretical node isolation is practically infeasible, and since

different mitigation tasks impede the spread of infection in a different manner, simulative practical

mitigation strategies yield a better insight into the impact of various mitigation strategies. Miti-

gation tasks that are generally adopted to impede infection spread are premise culls, vaccinations

and movement restrictions on livestock grazing and human movements as well. Thus, we study

the economic impacts of practical mitigation strategies that have been simulated for analysis. For

a complete study, we study the simulative mitigation strategies using the learning-based predictive

models as well as the network-based predictive models.

5.1 Theoretical Mitigation

Control strategies to bring the FMD epidemic under control involve isolation of specific nodes

which have a high probability of infecting susceptible nodes. Here, isolation refers to removing

individual markets (through a movement ban) or farms (through culling) from the FMD infection

network by total quarantine, vaccination, or culling of all infected and neighboring livestock.

Additionally, we know that the removal of a node from the network interrupts the spread of the

disease, and thus network may fragment into one or more clusters [60]. Thus, the size of the giant
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component following removal of a node represents the largest possible size of the epidemic at that

particular time instant. Also, the number of clusters resulting from the removal of a node is the

measure of relative importance of that particular node. Hence, the fragility of the infection network

is analyzed by deleting some particular nodes with certain characteristics, and then observing the

subsequent characteristics of the network, for example, the size of the largest component, and the

number of clusters. Deletion of nodes based on their betweenness centrality, closeness centrality

and node degree provides an insight into the optimal control strategies that may be adopted to

control the FMD epidemic.

Thus, greater the number of smaller clusters and lesser the size of the largest component,

the more effective fragmentation of the network is achieved. In our analysis we have computed

network fragmentation by removing certain nodes considering the following network properties:

1. greatest node degree: The degree of a node in a network is the number of links the node has

to other nodes in the network. These links may be undirected or bidirectional. Thus, any

node with highest node degree would refer to the most connected node, which has a lot of

immediate neighbors that it can infect.

2. greatest betweenness centrality: This is the measure of the number of shortest paths that

pass though a particular node in the network. A high betweenness centrality and low node

degree would imply bridge nodes which can be highly important in the process of infection

spread.

3. least closeness centrality: It is defined as the mean shortest path from a particular node to

all other nodes reachable from it. A low closeness centrality would imply highly central

location of a node and hence it can propagate infection to nodes in the periphery of the

network very quickly.

Hence, all the three network properties, node degree, betweenness centrality and closeness

centrality can be used to locate the highly significant nodes in the infection network. Significance

of a node is defined In terms of the capability of a particular node to spread the infection in the next
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time instant. It is thus imperative to decide which network property should be a good parameter

to decide upon a highly significant infectious node, and hence we rely on the theory of ergodicity

in dynamic infection networks for this purpose.

5.1.1 Ergodicity for theoretical mitigation

Earlier in Chapter 3, section 3.3, we have established that the infection networks display ergod-

icity in their growth rate. That is, irrespective of the realization, the size of the giant connected

component versus the secondary reproduction number remains consistent. This concept is use-

ful in understanding the parameters of the underlying network structure of the infection networks

thus formed, which remain consistent irrespective of the realization. Since mitigating a single

realization of infection networks is not the final goal, we need to identify the network property,

which can fragment the infection networks as well as demonstrate ergodicity, or in other words,

independence from the method of realization.

Thus, we extend the theory of ergodicity in infection networks to show that the distribution

of the size of the giant connected component against the maximum node degree of the infection

network is independent of the method of realization. for a range of pth in [0.01, 0.2]. However, the

size of the giant connected component versus greatest betweenness centrality and least closeness

centrality do not demonstrate such consistency in realization as in Figure 5.2, 5.3. This is con-

sistent with the fact that our infection network under consideration is not very large, and certain

links in the network are responsible for excessive flow of infection through them. From the Figure

5.1, we infer that the size of the giant connected component versus the greatest node degree is

consistent for different realizations, and hence targeted attacks on nodes with the greatest node

degree shall consistently fragment any instance of an infection network.

5.1.2 Theoretical network fragmentation

As implied by the ergodic behavior regarding the rate of growth of the giant connected compo-

nent versus the greatest node degree, we implement infection network fragmentation by delet-

ing/isolating nodes with the highest node degree from the infection network. The impact of theo-
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(a) Turkey for 24 month period (b) Iran for 12 month period

(c) Thailand for 12 month period

Figure 5.1: Ergodic behavior of the rate of growth of Giant connected component versus the
highest node degree in the infection network.
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(a) Turkey for 24 month period (b) Iran for 12 month period

(c) Thailand for 12 month period

Figure 5.2: Non-Ergodic behavior of the rate of growth of Giant connected component versus the
highest betweenness centrality in the infection network.
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(a) Turkey for 24 month period (b) Iran for 12 month period

(c) Thailand for 12 month period

Figure 5.3: Non-Ergodic behavior of the rate of growth of Giant connected component versus the
lowest closeness centrality in the infection network.
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(a) Turkey for 24 month period (b) Iran for 12 month period

(c) Thailand for 12 month period

Figure 5.4: Theoretical mitigation by node removal based on highest node degree.

retical deletion of nodes from the infection network based on the greatest node degree is illustrated

in Figure 5.4. A highly fragmented infection network implies a drastic reduction in the size of the

largest component, thus making eradication strategies effective.

By applying theoretical node removal from the FMD infection networks, we observe that al-

most 8% node deletion based on greatest node degree for the infection networks in Turkey, results
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in 40.8% reduction, while in Iran almost 9% node deletion brings about 38.2% reduction, and

almost 10% node deletion in Thailand results in 36.8% reduction in the total number of infected

livestock at the end of the period of study respectively. Thus, we set our theoretical targets to

achieve a reduction around 40% in the total number of infected livestock by implementing practi-

cal mitigation strategies.

5.2 Practical Mitigation

Theoretical mitigation strategies provide an estimate regarding the target theoretical reduction

in the number of livestock. Although network fragmentation theoretically checks the spread of

infection by reducing the size of the largest component, it is practically not possible to obtain a

similar level of node isolation in real-world infection networks. The primary reason being the

difference in the impedance to the spread of FMD due to the various practical control policies

that are adopted such as: movement bans, vaccination, infected premise (IP) culls or dangerous

contact (DC) culls. Although IP and DC culls are very successful in immediate checking of

infection spread, they are highly unethical [57]. Conversely, vaccination and movement bans are

ethical but they are costly policies, and they fail to check immediate infection spread. Thus, it is

absolutely imperative to formulate mitigation strategies that are both practically feasible, ethical

and cost-effective too.

For network-based spatio-temporal models, mitigation strategies are simulated using the weighted

network based model such that at the end of each month, each node is assigned a certain prob-

ability of infection pt,i based on which a certain mitigation task is performed at each node. The

following mitigation tasks are adopted to control the spread of FMD by varying the constant ci

of the infected neighbor node in the transmission kernel function. Multiple realizations of these

mitigation strategies for (pth) in [0.0, 0.3], provide a good estimate regarding the range of costs,

reductions in the number of infected animals, and the respective cost-effectiveness of the mit-

igation strategies using algorithm 2. Along with the total number of infected animals at each

progressive time step (Inf(t)), the total number of culled and vaccinated animals at each time
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step (cull(t), vacc(t)) is calculated according to the classification probabilistic level of pt,i.

For learning-based spatio-temporal models, we simulate multiple instances of mitigation strate-

gies which combine the implementation of several mitigation tasks to curb the impacts of an FMD

epidemic outbreak. A particular instance of any mitigation strategy is realized by randomly se-

lecting a threshold probability (pth) in [0, 1] for any each node such that, if the probability of

infection (pt,i) at any node i at time step t, is greater than pth, the node is deemed to be infected,

or else the node remains susceptible. In the simulations we have restricted pth in [0.01, 0.5] to

reduce the range of variation in the mitigation strategies, since a smaller range of values eases

analysis. Various mitigation tasks are implemented by introducing a multiplicative constant ct,i

for each pt,i. Since these mitigation tasks impede the spread of the FMDV, ct,i represents the extent

of impedance by dampening the probability of infection. When no mitigation tasks are enforced,

ct,i = 1, and when mitigation tasks such as premise culls, vaccination and movement bans are

enforced, ct,i = c, where c is a constant dependent on the mitigation task.

In the simulation algorithm 1, sus(i) is the total number of animals that can be infected in

node i throughout the period of study, and Inf(t) is the evaluated total number of infected animals

across all nodes in time t. The mitigations strategies are applied from March 2005 and onwards,

since the first two months are considered for sample run, and they also indicate the delay in

detection of an FMD outbreak. It is noteworthy that the simulations of the mitigation strategies

do not involve re-evaluation of the probability of infection after each time step as done in the case

of network-based spatio-temporal models W,NW,B1, B2. However, the conclusions regarding

the effectiveness of the mitigation strategies thus obtained, are parallel to that using the spatio-

temporal analysis. The various mitigation tasks applied to impede FMDV spread are as follows.

1. Infected Premise cull (IP): This strategy is adopted at nodes with very high probability of

incident infection. Accordingly, all livestock in the particular premise (node) are culled

within next 24-48hours. Thus c = 0.73, since IP culls induce almost 27% impedence to the

infection spread [61]. IP culls provide the most impedance to the spread of infection.

2. Dangerous Contact cull (DC): This strategy is adopted at nodes that are not yet infected but
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they have an infected node in their neighborhood and hence, there is a high probability of

infection in future time steps. Accordingly, all livestock in such a premise (node) are culled

within the next 4-10 days, and thus c = 0.87, since DC culls can be estimated to yield 13%

impedence to the virus spread [61].

3. Vaccination (Vacc): If the vaccine to the particular strain of FMDV is available, its admin-

istration will reduce the probability of future infections. The impedance to the spread of

infection is represented by c = 0.77, due to almost 23% impedence by a potent oil-based

vaccine.

4. No Movement Bans (NM): For nodes not having very high probability of incident infection,

but with a potential of getting infected in the near future, the grazing movements of animals

are banned. Human movements are also banned from such territories to prevent the spread

of the virus. However, a high cost per day is incurred due to these movement restrictions

and thus, movement bans are implemented by varying c = 0.80, to incur 20% impedence

to infection spread. Although [13] states that movement restrictions could lead to as much

as 50% reduction in the rate of disease transmission, we dampen this effect in our data set

considering the granularity of the data set, and considering the delays in implementation of

such movement restrictions.

Finally, we evaluate the impact of six different mitigation strategies on reducing the total

number of infected animals at the end of the study periods for the three data sets of Turkey,

Iran and Thailand. These mitigation strategies are identified by a set of mitigation tasks defined in

Table 5.1.

To devise economic mitigation strategies, it is imperative to understand the cost-effectivenesses

of the mitigation strategies. We compute the direct costs of implementation of mitigation tasks

by assuming that the cost per head to breed cattle is 1133.5 US dollars and that of sheep is

121.0 US dollars [25]. Additionally, the cost of vaccinating cattle or sheep is 6.0 US dollars

per head. However, vaccinations must be well planned by training vaccination teams, provid-
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Algorithm 1 Simulative practical mitigation strategies
Randomly generate pth in [0.01,0.5].
Given c1,i = 1, c2,i = 1.
for i = 1 to Number of nodes do

for time t = 3 to Number of months do
Evaluate pth1, pth2, pth3, pth4 such that
pth1 = 0.95 ∗ pth
pth2 = 0.9 ∗ pth
pth3 = 0.85 ∗ pth
pth4 = 0.8 ∗ pth
if ct,i ∗ pt,i > pth then
Inf(t) = Inf(t) + ct,i ∗ pt,i ∗ sus(i)

end if
if ct,i ∗ pt,i > pth1 then
ct+1,i = c for Task 1 due to high impeding infection
If Task 1 is culling or vaccination, culli or vacci = ct,i ∗ pt,i ∗ sus(i)

else if pth1 ≥ ct,i ∗ pt,i ≥ pth2 then
ct+1,i = c for Task 2 due to considerably high impending infection
If Task 2 is culling or vaccination, culli or vacci = ct,i ∗ pt,i ∗ sus(i)

else if pth2 ≥ ct,i ∗ pt,i ≥ pth3 then
ct+1,i = c for Task 3 due to considerable impending infection
If Task 3 is culling or vaccination, culli or vacci = ct,i ∗ pt,i ∗ sus(i)

else if pth3 ≥ ct,i ∗ pt,i ≥ pth4 then
ct+1,i = c for Task 4 due to impending infection in near future
If Task 4 is culling or vaccination, culli or vacci = ct,i ∗ pt,i ∗ sus(i)

else
ct+1,i = 1, No mitigation task performed due to low impending infection.

end if
end for

end for

Table 5.1: Sequence of Mitigation Tasks in different Mitigation Strategies.
Strategy Mitigation Task 1 Mitigation Task 2 Mitigation Task 3 Mitigation Task 4

1 IP DC Vacc NM
2 Vacc NM - -
3 IP DC NM -
4 IP DC NM Vacc
5 IP Vacc - -
6 IP NM - -
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Algorithm 2 Simulative practical mitigation strategies
Randomly generate pth in [0.0,0.3].
ci = 1 for i ∈ N(set of all nodes)
Simulate infection networks for January and February 2005 (Month t=1, t=2 respectively).
for time t = 3 to Number of months do

Evaluate pth1, pth2, pth3, pth4 such that
pth1 = 0.95 ∗ pth
pth2 = 0.9 ∗ pth
pth3 = 0.85 ∗ pth
pth4 = 0.8 ∗ pth
for i = 1 to Number of nodes do

if pt,i > pth then
Inf(t) = Inf(t) + sust,i

end if
if pt,i > pth1 then
ci = c for Task 1 due to high impeding infection
If Task 1 is culling or vaccination, cull/vacc(t) = cull/vacc(t) + sust,i

else if pth1 ≥ pt,i ≥ pth2 then
ci = c for Task 2 due to considerably high impending infection
If Task 2 is culling or vaccination, cull/vacc(t) = cull/vacc(t) + sust,i

else if pth2 ≥ pt,i ≥ pth3 then
if Task 3 exists then
ci = c for Task 3
If Task 3 is culling or vaccination, cull/vacc(t) = cull/vacc(t) + sust,i

end if
else if pth3 ≥ pt,i ≥ pth4 then

if Task 4 exists then
ci = c for Task 4
If Task 4 is culling or vaccination, cull/vacc(t) = cull/vacc(t) + sust,i

end if
else
ci = 1, No mitigation task performed due to low impending infection.

end if
end for
Simulate infection network for month t.

end for
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ing proper equipment, and preparing for quick transportation of vaccines to affected sites. We

estimate such indirect costs at around 200,000 US dollars per geographic location. The cost to

administer euthanasia or cull cattle is 16.5 US dollars per head and 2.31 US dollars per head for

sheep [25]. Premise culling costs would thus include the breeding costs for livestock, the cost

for the safe disposal of carcass, for administering euthanasia and decontamination costs. In case

of movement restrictions, a cost of 157,968 US dollars is incurred per day for every geographic

location [45]. Although the mitigation strategies suggested above are effective in reducing unnec-

essary and unethical livestock culls, it is imperative to understand their cost-effectiveness as well.

These costs help in formulating the different mitigation strategies, wherein the priority of each of

the four mitigation tasks is different. The cost-effectiveness of a mitigation strategy is defined as

following.

effectiveness =
% Reduction in number of infected livestock

Cost incurred (million US $)
(5.1)

5.2.1 Learning-Based Models

We analyze the impact of the 6 mitigation strategies using the learning based models described

in Chapter 4 on the data set in Turkey. Since the learning-based models incur a higher error in

predictions, mitigation using these models do not reflect very accurate strategies quantitatively.

However, the significances of the mitigation strategies in terms of their effectiveness and in im-

peding the spread of epidemics remains unchanged. Thus we wish to analyze the impact of each

mitigation strategy towards reducing the total number of infected animals. The cost-effectiveness

of these strategies is elucidated in Figures 5.5, 5.6.

Analysis of the impacts of the 6 mitigation strategies in terms of the percentage reduction in the

total number of infected livestock at the end of the period of study, the cost of implementation of

the mitigation strategies in million US dollars, the total number of culled and vaccinated livestock

is presented in Table 5.2. Thus, we infer that strategy 5 incurs the most number of culled and

vaccinated animals, because of which, this strategy results in the maximum reduction in the total

81



number of infected animals. Strategy 5 is thus very effective in impeding the rate of spread of

FMDV when an epidemic has already set in. However, strategy 1 and 4 which rely on all 4

mitigation tasks have cost-effectiveness similar to each other, and they both incur a high cost of

implementation. This shows that implementation of all 4 mitigation task merely increases the total

cost of implementation without improving on the percentage reduction of the number of infected

animals or the strategy effectiveness. Thus, it is important to plan the order of mitigation tasks

instead of considering each task to be equally important. Also, we observe that the reduction

in the total number of infected livestock is almost double for culling based strategies 1, 3, 4, 5,

6 when compared to vaccination based strategy 2; however, the effectiveness of strategy 2 is

the highest. Thus, vaccinations must be preferred to culling strategies in the pre-outbreak period.

Finally, we observe that strategy 2 and 5 which rely on vaccination strategies have the highest

range of effectiveness. This shows that vaccination strategies need to be well planned, and a good

vaccination program needs to be developed, to obtain high cost-effectiveness of mitigation strategy

2, otherwise vaccination will not be effective in impeding the spread of FMDV. Also, potency of

vaccines play an important role in determining the cost-effectiveness of any vaccination strategy,

since oil-based vaccines are considered to be more potent and effective than the water-based ones.

5.2.2 Network Based Models

From Table 5.3 and Figure 5.7, we infer that pre-emptive vaccination followed by movement re-

strictions imposed by mitigation strategy 2 is the most cost effective strategy. However, mitigation

strategies that impose culls at the most probable nodes of infection are effective in reducing the

total number of infected animals by as much as 50%. Also, IP culls when followed up with vac-

cinations as in mitigation strategy 5, are cost effective as well as they achieve a high reduction in

the total number of infected animals.

From Figure 5.8 we infer that pre-emptive vaccination followed by movement restrictions

imposed by mitigation strategy 2 is the most cost effective strategy. However, other mitigation

strategies that impose culls at the most probable nodes of infection are effective in reducing the
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Table 5.2: Cost-effectiveness of mitigation strategies based on learning-based predictive models
on data set of Turkey.
Model Strategy %Reduction Cost(million USD) effectiveness Culled Vaccinated

1 27.338-34.253 514.514-680.597 0.05-0.053 154 -1108 0- 207
2 12.419-18.019 31.244-229.052 0.079-0.397 0 195-373

NN 3 26.488-35.023 443.186-614.489 0.057-0.06 154-905 0-199
4 27.134-36.896 490.215- 677.393 0.054-0.055 154-903 0-222
5 23.663-46.794 87.892-360.019 0.13-0.269 2217-15295 0- 1310
6 26.54-33.891 507.738-767.864 0.044-0.052 154-1064 0
1 27.055-37.178 371.233-557.004 0.067-0.073 110-1388 0-405
2 13.23-22.299 23.511-80.703 0.276-0.563 0 140-1761

AR 3 26.961-37.552 367.508 -523.402 0.072-0.073 110-1388 0 -372
4 27.879-36.669 371.624 - 548.711 0.067-0.075 110-1388 0-225
5 28.183-34.972 360.779 - 536.617 0.065-0.078 110-1388 0-207
6 27.606-36.569 372.846-561.948 0.065-0.074 110-1388 0
1 20.177-31.029 501.88-768.027 0.04- 0.042 483-965 0-21
2 9.627-17.408 33.88-42.338 0.284-0.411 0 770-1224

BN 3 20.006-31.644 501.88-584.517 0.04-0.054 483-965 0
4 20.002-31.872 501.88-906.258 0.035-0.04 606-965 0
5 20.608-34.468 143.742-384.179 0.09-0.143 3318-8888 0-437
6 20.278-31.675 501.88-753.125 0.04-0.042 585-965 0
1 20-32.19 501.88-660.437 0.04-0.049 483.004-965 0-21
2 9.627-15.07 33.88-0.377 0.284-0.373 0 743-1224

MCS 3 20.014-32.388 501.88-579.315 0.04-0.056 800-965 0-21
4 20.107-33.666 501.88-753.479 0.04-0.045 610-965 0
5 22.084-38.085 144.094-402.147 0.095-0.153 3976-8888 0-437
6 20.087-31.84 501.88-821.285 0.039-0.04 585-965 0
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(a) Neural Network model (b) Auto Regressive model

(c) Bayesian Network model (d) Monte Carlo Simulations

Figure 5.5: Total number of infected animals presented against the total cost incurred for the 6
mitigation strategies using learning-based predictive models.
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(a) Neural Network model (b) Auto Regressive model

(c) Bayesian Network model (d) Monte Carlo Simulations

Figure 5.6: Effectiveness of 6 mitigation strategies using learning-based predictive models.
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Table 5.3: Cost-effectiveness of network-based mitigation strategies on data set of Turkey, Iran
and Thailand.
Country Strategy %Reduction Cost in US Dollars effectiveness Culled Vaccinated

1 50.109 - 60.997 472.97 - 524.74 0.105 - 0.116 33968 - 34015 0 - 10119
2 29.927 - 31.535 199.50 - 310.36 0.150 - 0.101 0 448 - 38693

Turkey 3 45.439 - 57.56 473.13 - 571.013 0.096 - 0.101 378 - 34023 0
4 50.122 - 57.801 473.00 - 574.55 0.101 - 0.106 3723 - 34015 0 - 49
5 50.399 - 56.174 435.68 - 481.51 0.115 - 0.116 3723 - 34015 0 - 10119
6 50.226-57.633 432.93 - 571.25 0.100 - 0.116 3723 - 34015 0
1 50.253 - 63.179 169.87 - 247.13 0.255 - 0.295 948 - 16574 0 - 13982
2 26.974 - 33.544 23.00 - 37.26 0.900 - 1.172 0 0 - 14982

Iran 3 52.378 - 66.108 159.19 - 241.51 0.273 - 0.329 0 - 14385 0
4 50.912 - 65.213 168.39 - 252.82 0.257 - 0.302 894 - 16574 0 - 64227
5 46.539 - 65.111 167.60- 276.14 0.235 - 0.277 948 - 15409 0 - 155404
6 47.807 - 64.207 165.84 - 250.50 0.256- 0.288 948 - 14203 0
1 39.303 - 51.560 64.56 - 105.83 0.487 - 0.608 18169 - 19034 0-2709
2 20.946 - 28.473 14.40 - 32.89 0.865 - 1.454 0 4172 - 4544

Thai 3 39.303 - 52.357 60.24 - 108.79 0.481 - 0.652 18169 - 20490 0
4 34.491 - 56.284 96.73 - 141.56 0.356 - 0.397 0 0 - 854
5 39.132 - 51.966 51.35 - 56.21 0.761 - 0.924 18076 - 26212 0-2969
6 39.110 - 47.092 60.15 - 87.56 0.537 - 0.650 14033 - 20533 0
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total number of infected animals to almost 50%. Also, IP culls when followed up with vaccinations

as in mitigation strategy 5, are cost effective as well as they achieve a high reduction in the total

number of infected animals.

5.2.3 Impact of prediction errors on mitigation strategies

We quantify the impact of mitigation strategies using effectiveness following which we ob-

serve that predictions errors cause non-linear variations in the effectiveness of these mitigation

strategies. Hence, it is imperative to analyze the variations in the effectiveness of fixed mitiga-

tion strategies caused due to prediction errors, which in turn analyzes the robustness of mitigation

strategies against prediction errors. For instance, if any future spatio-temporal models claim as

high as 80-90% improvement in prediction error, but if the effectiveness of the mitigation strate-

gies change only by about 20%, we may say that our model W still holds good for understanding

the impact of mitigation strategies. Hence, for all baseline models with higher prediction errors

as compared to spatio-temporal model W , we analyze the impact on the effectiveness of the 6

mitigation strategies.

We analyze the change in effectiveness of each of the 6 mitigation strategies owing to degraded

prediction from baseline network models. We observe the change in prediction error (∆sMAPE)

in baseline models (NW,B1, B2) with respect to modelW . For a constant set of mitigation strate-

gies, we asses the impact of degraded prediction performance on the outcome of the mitigation

strategies. The utility factor in the downstream assessment of the mitigation strategies is defined

in terms of change in effectiveness (∆effectiveness) caused by the baseline models with respect

to that caused by model W . While sMAPE is prediction error in percentage, mitigation strat-

egy effectiveness has a unit of percentage per million US dollars. The downstream impact for

Turkey is elucidated in Figure 5.10, 5.11. The magnified impacts of prediction error on mitigation

strategies in Iran and Thailand are shown in Figure B.1, B.2 and B.3, B.4 respectively.

We observe that although the gradient of ∆sMAPE increases sharply from model NW

through model B2, the impact on mitigation strategies ∆effectiveness changes considerably
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for mitigations strategy 2 that imposes vaccinations. Conversely, strategies that impose culling

as the primary mitigation task such as strategy 1,3,4,5 and 6 do not depict a high variation in ef-

fectiveness. This fact is evident from Figures 5.10, 5.11. We observe that for the baseline model

NW , 43% variation in prediction error results in almost 35% variation on mitigation effective-

ness. Model B1 incurs about 42% variation in effectiveness for a 52% change in prediction error,

while model B2 incurs about 47% variation in effectiveness for 57% change in prediction error.

We have similar observations for prediction errors using learning-based models. Table 5.4

shows the range of variation in effectiveness of the 6 mitigation strategies (∆eff1 through

∆eff6 ) with variation in prediction errors (∆sMAPE). Here, we analyze the variation in pre-

diction error, and variation in cost-effectiveness of the mitigation strategies between the learning-

based models and the spatio-temporal predictive model in [36]. Since this spatio-temporal model

incurs lower prediction errors due to its global parameterization, we assess the impact of increased

prediction errors, by the learning-based models, on the downstream utility function defined in

terms of effectiveness of the mitigation strategies. We observe that for NN models almost 14%

change in prediction error causes about 30% variation in effectiveness, while AR models show

24% variation in effectiveness for 56% prediction error. BN and MCS show aound 18% varia-

tion in effectiveness due to a prediction error of 48%. Thus, we are able to assess the non-linear

variation and robustness in effectiveness of mitigation strategies for prediction errors from the

learning-based prediction models since, as much as 50% prediction errors incur as much as 30%

variation in cost-effectiveness of mitigation strategies. Further, we find that the variation in predic-

tion errors for NN and AR with respect to the spatio-temporal modelNW,B1, B2 , which requires

parameters such as wind, human movement and grazing movement of animals, is lesser than that

of other spatio-temporal models with lower parameterization. Hence, we infer that the predictive

performance of learning-based models can be better than under-parameterized spatio-temporal

models.

In this chapter, we have simulated instances of mitigation strategies such that the probabil-

ity bands for determining the nodes with high infection incidence have been fixed at 0.95, 0.9,
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Table 5.4: Impact of prediction errors using learning-based models
Statistic NN AR BN MCS

min ∆sMAPE 1.5469 12.5388 6.6432 8.4945
max ∆sMAPE 2.6581 13.6500 7.7544 9.6057

min ∆eff1 0.0352 0.0188 0.0452 0.0368
max ∆eff1 0.0440 0.0242 0.0569 0.0572
min ∆eff2 0.0701 0.1276 0.1505 0.1505
max ∆eff2 0.2638 0.4291 0.2624 0.2245
min ∆eff3 0.0661 0.0513 0.0689 0.0671
max ∆eff3 0.0716 0.0580 0.0915 0.0915
min ∆eff4 0.0420 0.0268 0.0613 0.0518
max ∆eff4 0.0465 0.0296 0.0620 0.0618
min ∆eff5 0.0006 0.0524 0.0129 0.0228
max ∆eff5 0.1387 0.0654 0.0409 0.0359
min ∆eff6 0.0415 0.0197 0.0533 0.0537
max ∆eff6 0.0583 0.0373 0.0604 0.0636

0.85, 0.8 times the pth. In the next chapter, we eliminate these fixed probability bands by ap-

plying fuzzy dominance genetic algorithms to dynamically generate the threshold probabilities

pth1, pth2, pth3, pth4 so as to minimize the total number of infected animals, the total direct costs,

the total number of culled and the total number of vaccinated animals respectively.
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(a) Turkey for 24 month period (b) Iran for 12 month period

(c) Thailand for 12 month period

Figure 5.7: Reduction in the total population of infected livestock due to implementation of mit-
igation strategy 1 adopted in Turkey, Iran and Thailand. The bounds on this reduction elucidate
the impact of immediate culls, potent vaccines and strict movement restrictions as well as delayed
culls and less strict movement bans. The implementation of the mitigation strategy is assumed
from March 2005 and onwards each data set. Delayed implementation shall result in a lesser
reduction of the total number of infected animals.
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(a) Turkey for 24 month period (b) Iran for 12 month period

(c) Thailand for 12 month period

Figure 5.8: Total number of infected animals presented against the total cost incurred for the
respective mitigation strategies.
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(a) Mitigation in Turkey (b) Mitigation in Iran

(c) Mitigation in Thailand

Figure 5.9: Cost-effectiveness of 6 mitigation strategies in Turkey, Iran and Thailand
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(a) Mitigation Strategy 1 (b) Mitigation Strategy 2

(c) Mitigation Strategy 3 (d) Mitigation Strategy 4

Figure 5.10: Impact of prediction errors due to baseline models NW, B1, B2 on mitigation strate-
gies 1-4 in Turkey. The prediction percentage error between the baseline models and model
W (∆sMPAE) is compared with change in effectiveness of mitigation strategies. The unit of
effectiveness is percentage per million US dollars.
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(a) Mitigation Strategy 5 (b) Mitigation Strategy 6

Figure 5.11: Impact of prediction errors due to baseline models NW, B1, B2 on mitigation strate-
gies 5,6 in Turkey.
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Chapter 6

OPTIMAL MITIGATION USING
GENETIC ALGORITHMS

A genetic algorithm (GA) is a way of mimicking and solving real-world optimizations problems

by providing exact or approximate solutions. As a particular class of evolutionary algorithms

(EA), GA use techniques inspired by evolutionary biology such as inheritance, mutation, selec-

tion, and crossover. From an implementation standpoint, GA is a computer simulation in which a

population of abstract representations (called chromosomes or the genotype of the genome) of can-

didate solutions (called individuals, creatures, or phenotypes) to an optimization problem evolves

towards better optimal solutions. Traditionally, solutions are represented in binary as strings of 0s

and 1s, but other encodings are also possible. The evolution usually starts from a population of

randomly generated individuals and progresses in generations. In every generation, the fitness of

every individual in the population is evaluated, multiple individuals are selected from the current

population (based on their fitness), and modified (recombined and possibly randomly mutated) to

form a new population. The new population is then used in the next iteration of the algorithm.

6.1 Methodology for Genetic Algorithms

The steps for optimization using GA is described below:

1. Initialization: The initial population comprises of randomly generated individuals. The pop-

ulation size depends on the nature of the problem, but typically contains several hundreds or
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thousands of possible solutions. Traditionally, the population is generated randomly, cover-

ing the entire range of possible solutions. Occasionally, the solutions may be “seeded” in

areas where optimal solutions are likely to be found.

2. Selection: During each successive generation, a proportion of the existing population is

selected to give rise to a new generation. Individual solutions are selected through a fitness-

based process to minimize certain objective functions. Most fitness-functions are stochastic

and designed so that a small proportion of less fit solutions are selected. This helps keep

the diversity of the population large, preventing premature convergence on poor solutions.

Popular and well-studied selection methods include roulette wheel selection and tournament

selection.

3. Reproduction (Crossover and Mutation): The next step is to generate a second generation

population of solutions from those selected through genetic operators: crossover (also called

recombination), and/or mutation. For each new solution to be produced, a pair of “parent”

solutions is selected for breeding from the pool selected previously. By producing a “child”

solution using the above methods of crossover and mutation, a new solution is created which

typically shares many of the characteristics of its “parents”. New parents are selected for

each new child, and the process continues until a new population of solutions of appropriate

size is generated. Although reproduction methods that are based on the use of two parents

are more “biology inspired”, some research suggests more than two “parents” are better to

be used to reproduce a good quality chromosome. These processes ultimately result in the

next generation population of chromosomes that is different from the initial generation.

4. Termination: This generational process is repeated until a termination condition has been

reached such that a solution is found that satisfies minimum criteria.

The genetic algorithm has parameters determining the nature of mutation and crossover as well

as the population size. These parameters can be tuned to improve performance for the problem

class at hand.
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Algorithm 3 Pseudo code for typical genetic algorithm
Choose the initial population of individuals (pop)
Evaluate the fitness of each individual in that population(fitness(pop))
repeat

Select the best-fit individuals for reproduction
Breed new individuals through crossover and mutation operations to give birth to offspring
Evaluate the individual fitness of new individuals
Replace least-fit population with new individuals
Parameter Tuning

until Termination condition satisfied

6.2 Optimal Mitigation using GA

We begin our analysis using the weighted network based prediction model for FMD,W defined in

Chapter 3 and the simulative practical mitigation strategy 1 as described in Chapter 5, section 5.2,

wherein the nodes most susceptible to infection are administrated with IP culls, followed by DC

culls, vaccination and no-movement bans. We study this strategy since it involves all the mitiga-

tion tasks in the order of criticality, and since it is the most critical mitigation strategy that requires

optimization for an improved mitigation effectiveness. As a sample data set we analyze process

of optimal mitigation in Turkey and accordingly we observe the total reduction in the number of

infected animals from January 2005 through December 2006 due to implementation of the miti-

gation strategy that is calculated for all the administrative locations (nodes) collectively. The cost

incurred due to the implementation, along with the total number of animals culled and vaccinated

across all nodes over the 24 month observation period is also calculated. The aim of the optimal

mitigation strategy is to choose an optimal set of threshold probabilities pth1, pth2, pth3, pth4, for

each month, such that at the end of December 2006, there is a reduction in the total number of

infected animals, low cost of implementation, less number of animals culled preventively and op-

timally less number of animals that are vaccinated. Thus, the set of solutions to be optimized is a

set of 88 probabilities (i.e. 4 threshold probabilities for 22 months). We consider 22 months, since

the infection is seeded in the first month and the predictive output for month 2 is a sample run

before the mitigation strategy is actually introduced. Thus the mitigation strategy is implemented
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from month 3 through month 24 ending in December 2006.

Thus, we apply genetic algorithm based on the concept of fuzzy dominance to minimize four

objectives defined as below:

- Objective 1: Total Number of Infected animals (fNI).

- Objective 2: Cost Incurred due to implementation of mitigation strategy. This cost is esti-

mated in million US Dollars (fDC).

- Objective 3: Total Number of animals culled as a preventive measure (fNC).

- Objective 4: Total Number of animals vaccinated (fV C).

6.2.1 Theoretical Framework

Without a loss of generality, we will assume that the multi-objective optimization problem involves

the simultaneous minimization of M objective functions, fm : Ω→ R+, m = 1, 2, M, where Ω is

the set of all feasible solutions, or the search space of the multi-objective problem, and its image

[f1(Ω), fM(Ω)] is the objective function space [62], [63].

Consider two solutions, u, v in Ω. We say that u dominates v iff, for each objectivem, fm(u) ≤

fm(v), and for at least one objective m, the inequality is strict, i.e. fm(u) < fm(v). This relation-

ship is written as u ≺ v. Given any subset of solutions, S in Ω, the non−dominated set of S,NS ,

is the subset of all solutions in S that are not dominated. The non-dominated set of Ω,NΩ, is called

the Pareto set. Its image in the objective function space is called the Pareto front.

6.2.2 Fuzzy Dominance

Unlike the previous approach which compares solutions that are Pareto-optimal, the method pro-

posed in [64] considers a fuzzy approach to compare arbitrary solutions, i.e. ones that need not

necessarily be Pareto-optimal. In order to apply this approach, it is necessary to first define a set

of M monotonically non-decreasing membership functions, one for each objective function. Let

these functions be µm : R → [0, 1], m = 1, 2,..., M. Any solution u is said to m-dominate another
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solution v, if and only if the condition fm(u) < fm(v) is met. This relationship will be denoted

as u ≺m v. The degree of fuzzy m-dominance is equal to µm(fm(v) < fm(u)) ≡ µm(u ≺m v).

Clearly, u ≺ v if a solution if for each m,u ≺m v. The degree of fuzzy dominance can be by

applying fuzzy intersection, using any t-norm:

µ(u ≺ v) =
M⋂
m=1

µm(u ≺m v) (6.1)

Equation 6.1 is equivalent to a t-co norm and is carried out over all M objectives. Next, we

establish the concept of hierarchies between objectives to discriminate more important objectives

from the less important ones. For hierarchy of objectives with L number of levels, f(.) and g(.)

distinguish between primary and secondary objectives, we denote as f l(.), l = 1, 2, L, to be an

objective function in the lth level. Hence, in terms of this notation, the primary objectives are

f 1(.), the secondary ones are g1(.), and so on. When a solution u dominates another one, v along

all the objectives f l(.) of the lth level, we denote the relationship as u ≺l v. In other words, for

each objective m, f lm(u) ≤ f lm(v),m = 1, 2, ....Ml, where Ml is the number of level l objectives.

Next we introduce the idea of domination up to a level. This will be defined in a recursive

manner. We say that u dominates v up to level l, if it u dominates v for the level l objectives, and

if there exist other levels below in the hierarchy, u dominates v up to level (l+ 1) as well. In other

words Equation 6.2 holds.

u ≺l+≡ (u ≺l v) ∨ ((u ≺l v) ∧ (u ≺(l+1)+ v)) for l < L (6.2)

≡ u ≺L v for l = L

In the above equation, u ≺l+ v denotes the relationship u dominates v up to level l+1. Letting

µ(u ≺L+ v) simply be equal to µ(u ≺L v), the fuzzy membership can be computed readily from

the above definition accordingly as Equation 6.3

µ(u ≺l+ v) = µ(u ≺l v) ∪ (µ(u ≺l v) ∩ µ(u ≺(l+1)+ v)) (6.3)

We consider u ≺ v only if u ≺1+ v. Therefore, µ(u ≺ v) is taken to be µ(u ≺1+ v). We next

turn our attention to selecting a representative from any given solution sample S.
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6.2.3 Mediality

Given a non-dominated set of solutions, S, in many applications, it is important to isolate one or

more samples in it, that may serve as representative of the entire set. A method to apply fuzzy

logic to identify such a solution is proposed. This method extends the concept of a median to

multiple dimensions. Given any set of solutions S, let Sm = ui be the ordered set of the solutions

in S, sorted along their values for the mth objective. We define the m-mediality of any solution ui

using Equation 6.4.

dm(ui) = min(i, |S| − i) (6.4)

where |S| denotes set cardinality. It can be seen that the median in Sm is the one that has the

highest value of m-mediality, at fl(|S|), where fl() is the floor function. The mediality of any

solution is simply given Equation 6.5,

d(ui) = minm(dm(ui)) (6.5)

The minimum in Equation 6.5 is carried out over all M objectives. Under these circumstances,

the median solution is given by Equation 6.6

med(S) = argmax(d(ui)) (6.6)

The above concepts can be extended using a fuzzy logic framework. Given monotonically

non-decreasing fuzzy membership functions, σm R → [0, 1],m = 1, 2, ,M, we define the fuzzy

m-mediality of solution ui to be σm(d(ui)) ≡ σm(ui). In a manner similar to fuzzy dominance,

the fuzzy mediality of the solution and the median solution can be defined using Equation 6.7.

σ(ui) = ∩Mm=1σm(ui) (6.7)

med(S) = argmax(σ(ui)) (6.8)
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6.2.4 Evolutionary Algorithm

We used the fuzzy dominance based genetic algorithm [64] that makes use of the concept of fuzzy

dominance. Unlike other multi-objective approaches that assume a crisp dominance measure for

Pareto ranking, fuzzy dominance is adopted here. The algorithm considers fuzzy dominances

between all solutions in the population to compute a measure reflecting its overall fitness, with

nonzero solutions being assigned zero values. This allows ranking the individuals and selecting

the non-dominated solutions based on their fuzzy dominance measure.

At each generation, binary tournament selection is used to selects candidate solutions for re-

combination. We have used a simple convex crossover and polynomial mutation for this problem.

Elitism is used to archive the best solution candidates (Pareto front solutions): any other solution

candidate in the population does not dominate them. The elite is not subjected to crossover and

mutation but re-introduced into subsequent population for evaluation, to ensure that it is still the

best solution candidate. The process is iterated for a desired number of generations.

We explore the application of the fuzzy dominance based evolutionary optimization algorithm

in two cases. In Case-I, all objectives are treated equally as in a traditional multi-objective setting,

and fuzzy dominance (as in [64]) is used. These four objectives are: fNI , fDC , fNC , andfV C .

In the second case (Case-II), the fuzzy dominance is calculated using the hierarchical domi-

nance described earlier. Keeping in view the earlier considerations, we apply three hierarchies.

The genetic algorithm is applied using fuzzy dominance without hierarchical dominance and

with hierarchical dominance. Without hierarchical dominance, all the four objectives have equal

importance of minimization. While implementing hierarchical dominance, we assume the follow-

ing hierarchy:

1. Primary Objective (Highest degree of importance): Objective 1 (fNI).

2. Secondary Objective (Second highest degree of importance): Objective 2 (fDC).

3. Tertiary Objective (Third highest degree of importance): Objective 3 (fNC) and Objective 4

(fV C).
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(a) Without Hierarchical Dominance (b) With Hierarchical Dominance

Figure 6.1: Reduction in the Total Number of Infected animals due to mitigation strategies without
and with hierarchical dominance.

Due to the extremely high computational overheads (of the order of a several hours) each approach

is run 5 times and the average is reported. The population size is 100, and the total number of

generations is fixed at 50. Fuzzy mediality is used to extract representative solutions, hereafter

referred to as the medial solution. No distinction is made here between the primary, secondary

and tertiary objectives.

6.3 Results

Using the concept of fuzzy mediality, we trace the rate of convergence of the medial solution in the

set of 100 solutions along every iteration. The expected observation would be faster convergence

of primary objective (fNI) and secondary objective (fDC) using hierarchical fuzzy dominance

than without hierarchy. However, the tertiary objectives (fNC and fV C) have a slower rate of

convergence using hierarchical fuzzy dominance than without hierarchy.

The medial best solution from the final solution archive after 100 runs of iteration is considered

to be the optimally best solution. The impact of these optimally best solutions in impeding the

spread of FMD virus is depicted in Figure 6.1.
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(a) fNI : Total number of infected animals. (b) fDC : Total cost incurred due to mitigation strate-
gies.

(c) fNC : Total number of animals culled. (d) fV C : Total numbers of animals vaccinated.

Figure 6.2: Optimization of fNI , fDC , fNC and fV C without hierarchical dominance

Initially, we observe the rate of reduction of the medial solution along the four objectives

without using the concept of hierarchical dominance in Figure 6.2.

Next, we observe the rate of reduction of the medial solution along the four objectives using

the concept of hierarchical dominance as Figure 6.3. Thus we infer from Figure 6.2 and Figure 6.3,

that the rate of convergence for fNI and fDC is faster with hierarchy and the rate of convergence

for fNC and fV C is faster without hierarchy. The final observations are tabulated below.
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(a) fNI : Total number of infected animals. (b) fDC : Total cost incurred due to mitigation strate-
gies.

(c) fNC : Total number of animals culled. (d) fV C : Total numbers of animals vaccinated.

Figure 6.3: Optimization of fNI , fDC , fNC and fV C with hierarchical dominance

Table 6.1: Optimization of 4 objectives
FDGA %Reduction1 fNI fDC fNC fV C
No Hierarchy 42.203% 443095 93.483 6611 0
Hierarchy 51.241% 373816 93.298 6622 1208
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From Table 6.1, we infer that using hierarchical fuzzy dominance, the set of optimal threshold

probabilities thus obtained bring about a greater reduction in the total number of infected ani-

mals than without hierarchy at the end of the observation period. Also, the cost incurred due to

the implementation of mitigation strategies using hierarchical fuzzy dominance is lower than that

without hierarchy. However, the hierarchical fuzzy dominance method focuses on optimal vacci-

nation, and hence it results in a lot of susceptible livestock getting vaccinated. On the other hand,

non-hierarchical fuzzy dominance method relies greatly on movement bans than on vaccinations.

Thus, we have considered a real-world problem regarding the spread of the FMD virus, thus

resulting in an epidemic. We have introduced the concept of fuzzy mediality and verified its

performance theoretically. Next we studied the optimization of medial solution to achieve an

optimal mitigation strategy for FMD epidemics with and without the concept of hierarchical fuzzy

dominance.

In conclusion, fuzzy dominance method provide an optimal solution to impede the spread of

FMD while reducing the economic losses also. While non-hierarchical dominance based fuzzy

optimization relies greatly on movement restrictions to impede the spread if infection, hierarchi-

cal fuzzy dominance suggests vaccination as a better policy. Both methods provide a cost optimal

reduction in the impact of the foot and mouth disease. The approach suggested here applies

multi-objective evolutionary optimization to obtain optimal values for the monthly thresholds to

minimize the extent of foot and mouth disease. Instead of applying a traditional method of opti-

mization, the new method proposed here, fuzzy hierarchical dominance, considers various levels

of objectives, where objectives at a higher level are more important to optimize. The approach

is tested to obtain optimal mitigation strategies, and the results show that the application of a

hierarchy produces more optimal threshold values.

As future implementation, we need to explore the impact of hierarchical dominance on op-

timization of other mitigation strategies described in Chapter 5. Besides other data sets need to

analyzed too for more conclusive results.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The primary contribution of this work is the modeling of FMD dynamics in countries such as

Turkey, Iran and Thailand, where FMD outbreaks have been inadequately recorded, reported and

insufficiently modeled as compared to countries like the United Kingdom where extensive study

has been done to predict and control FMD. To achieve modeling of disease dynamics in such

countries with undeveloped databases, we characterize a meta-population based stochastic model

that predicts the probability of infection at different locations in discrete time steps. The novelty

of this model is that it considers a fully connected heterogeneous contact network between loca-

tions denoted by nodes in space, such that the heterogeneous interaction between locations can

be depicted in terms of weights on links of the contact network. These weights are characterized

by wind and human interventions between the nodes. Additionally, the parameterization of the

spread of FMD dynamics is achieved by considering the grazing patterns of infected livestock, the

species of livestock, and the number of meat markets and slaughter houses in the different regions.

Our mathematical predictive model is optimally calibrated and validated using the FMD in-

fection data from Turkey (January 2005 through December 2006), Iran and Thailand (January

2005 through December 2005) from the FMD Bioportal. These data sets were selected for study

due to their non-sparse nature among other confidential epidemic incidence data sets. The spatial

and temporal predictability of the model is compared to that of unweighted and unparameterized
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baseline models. Additionally, the contribution of wind in the spread of FMD is also studied.

Our study lays foundation to the importance of wind in long distance spread of FMD virus. Al-

though the weights and parameterizations increase precision in spatio-temporal predictability, the

contribution of wind needs to be studied more extensively on other data sets in future to infer the

effectiveness of its contribution. However, for the current data set on Turkey, Iran and Thailand,

the predictive performance of our weighted network based model is noteworthy.

Next, we apply learning-based models to mimic the spatial characteristics of network based

spread models. Our study shows that it is possible to generalize local learning-based models

such as neural network, autoregressive, Bayesian network and Monte-Carlo simulation models to

recover the latent spatial parameters in it. Learning-based models may offer an improvement over

spatial models in epidemic predictions in the absence of data regarding spatial characteristics.

Additionally, we use the network-based and learning-based prediction models to simulate cost-

effective mitigation strategies. Different mitigation tasks such as Infected Premise (IP) culls, Dan-

gerous Contact (DC) culls, and Vaccination (V) and No Movement (NM) restrictions are simulated

and their importance in impeding the spread of the FMDV is analyzed. Conclusively, we observe

that IP and DC culls followed up by vaccinations result in a cost-effective reduction of the total

number of infected livestock, and this strategy retards the rapid spread of the FMDV. However, the

cost incurred in this process is quite high. Hence, this mitigation strategy may be preferred after

the onset of an epidemic outbreak when immediate reduction in the number of infected livestock

is mandatory. However, though a potent vaccination strategy, followed by movement restrictions,

incurs a lower reduction in the total number of infected livestock, this strategy results in the most

cost-effective control of the epidemic. Thus, vaccinations and movement ban strategies may be

adopted before the onset of an epidemic outbreak to control the rapid spread of the FMDV.

Further, the variation in cost-effectiveness of various mitigation strategies with prediction er-

rors from baseline network-based models and learning-based models provide insights into the

robustness of our simulative mitigation strategies. Such downstream utility impacts of predic-

tion errors in mitigation strategies analyze the non-linear relation between prediction error and
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mitigation effectiveness variations.

As a variation to the simulative study of various mitigation strategies, we apply fuzzy-dominance

genetic algorithms implemented using hierarchies between the objective functions to minimize

three levels of objective functions. The hierarchical dominance is achieved by minimizing the

total number of infected livestock at the end of the period under study as a primary objective,

minimizing the direct cost of implementing these mitigation strategies as a secondary objective

and minimizing the total number of unethical culls and vaccinations as the tertiary objectives.

Conclusively, we can say that hierarchical dominance provides better reduction in the impact of

an FMD outbreak than that compared to non-hierarchical optimizations wherein all the objectives

are treated to be of equal priority.

It is noteworthy that the proposed simulative model W is iterative, and the time steps can be

varied to suit the predictive requirements. Besides being efficient in epidemic predictions, the

model can be used to simulate dynamic mitigation and control policies to curb unethical culls

and reduce the economic adversities of FMD. Additionally, the proposed model is geographically

independent, and it can be used to model the disease dynamics at other countries with undeveloped

databases. However, there is a lot of scope for future work to complement our results and findings,

some of which are given below.

7.2 Future Work

The spatial network based prediction model can be further improvised by parameterizing the

spread of FMD virus in water since it is known that although the FMD virus spreads up to 40

miles in air, it spreads up to 180 miles in water. Since direction of water flow would be consis-

tent, it would be interesting to notice the improvement in epidemic prediction due to the impact of

flowing water bodies. Though, this addition in parameterization would require more granular data

regarding the location and routes of water bodies, but such a parameterization might enhance the

predictive performance considerably. Also, further analyses of the wind patterns by using wind-

plume models in Turkey, Iran and Thailand will give better insights into the impact of wind in
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FMDV spread.

Next, the prediction performance of the learning-based temporal prediction models may be en-

hanced for improved portability and enhanced global outlook. Besides, the predictive performance

of other learning-based local models such as recurrent networks, moving average and wavelet-

based prediction models to name a few may be analyzed for improved prediction performance.

Additionally, a dynamic system that requires local training but which is capable of performing

as good as the global prediction models is required, and this can be an interesting topic for fu-

ture research. This would mean a system that contains network-based spread models as well as

learning-based models inbuilt into it, such that, according to the amount of available data regard-

ing global spread parameters, a suitable predictive model may be dynamically selected to provide

infection incidence predictions.

The simulative mitigation strategies studied here may be altered and additional combinations

of mitigation tasks may be studied. Additionally, the impact of delays in implementation of mit-

igation tasks, such as a delay in development and deployment of vaccines, behavioral delays due

to in compliance with movement ban policies, or in compliance to DC culling strategies, may pro-

vide better insights into the critical nature of the mitigation strategies. Also, since we observe a

notably high cost-effectiveness of mitigation strategies involving vaccination and movement bans

in Turkey, Iran and Thailand, we may conclude that training of personnel, providing a good trans-

portation infrastructure, and enhancing research facilities for quicker development of vaccines

may be beneficial for long term eradication of FMD instead of suppressing the epidemic for a

short term by imposing massive culling strategies.

Also, the concept of ergodicity in dynamic infection networks that has been simulatively es-

tablished in this work may be mathematically implied in future. The predictive output of our

proposed network-based model along with the suggested mitigation strategies may be evaluated

in comparison with the FMD simulator developed by USDA. Most importantly, a good visualiza-

tion platform may be developed to enhance the implications from our model, and to present our

predictive model in a better way in the future.
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Finally, the optimal mitigation strategies developed in this work may be studied in detail for

the data sets of Iran and Thailand in future to yield more conclusive results regarding the optimal

mitigation strategies. So far, we have analyzed only the mitigation strategy 1 that combines IP

culls, DC culls, vaccination and movement ban strategies using hierarchical and non-hierarchical

Fuzzy Dominance Genetic Algorithm (FDGA). These results may be useful in studying the other

mitigation strategies 2 through 6, to assess the optimality induced by FDGA in each of them. Also,

the comparative study of FDGA versus NSGA2, may provide more conclusive results regarding

the optimal mitigation strategies.
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Appendix A

APPENDIX: TEMPORAL PREDICTIONS
OF H1N1 IN USA

Background: Rapidly changing trends in the incidence of strain A-H1N1 have made long term

predictions infeasible. Based on the weekly Influenza like Illness (ILI) incidence reports from the

Centre of Disease Control and Prediction (CDC), we are able to predict the ILI at 10 different

regions of the US and at a National level for 2 consequent weeks and seasonality of ILI for 4

consecutive weeks within a 95% confidence interval. Also, the rate of mortality is estimated for 6

major cities in the mid-western region of the US.

Methods: The selected temporal prediction models include: Time-Series, Neural Networks

for ILI predictions, and Bayesian Networks, Monte-Carlo Simulations for mortality predictions.

Weighted ILI incidence reports from weeks 40 in the year 2008 till week 41 of year 2009, and

mortality reports from week 1 in 1997 till week 41 in 2009 are used as data. ILI trends are

estimated using differenced time-series models, while ILI weekly incidences are predicted using

neural networks. Bayesian Networks and Monte-Carlo Simulations predict the number of mortal

casualties within a 95% confidence interval due to Pneumonia and Influenza.

Results, Discussion: While the time-series models have the lowest AICC/BIC values, neural

network models are characterized by coefficient of determination (R2) values in the range of

(0.8261-0.9811) and symmetric mean absolute percentage error (SMAPE) in the range (3.492-

12.289). ILI predictions at a National level for the US shows 8.21% and 8.07% ILI in week 42
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and 43 in the year 2009 with an increasing trend till week 42, followed by a slight decreasing trend

till week 46. Mortality in the Midwest is estimated to be in the range of (5.67-14.8) deaths per

week for most major cities, while as many as 2.74 deaths per week are estimated in Kansas City

till week 46 in the year 2009.

Temporal prediction models are very efficient in predicting the speed of spread of diseases,

like the the strain A-H1N1 virus. Such models are simplistic in computation, involve very low

parameterization and incur very low computational complexities. Besides, temporal prediction

models are not only capable of predicting the time when a disease will transition from the pre-

outbreak to the outbreak phase, but they also predict the mortality rate in the following time steps.

This information is very useful to plan cost-optimal mitigation strategies such as travel restrictions

and vaccinations with varying acuteness in different phases of the epidemic.

A.1 Predictions regarding Influenza Like Illness

Influenza-like illness (ILI), also known as acute respiratory infection (ARI) and flu-like syndrome,

is a medical diagnosis of possible influenza or other illness causing a set of common symptoms.

Symptoms commonly include fever, shivering, chills, malaise, dry cough, loss of appetite, body

aches and nausea, typically in connection with a sudden onset of illness. In most cases, the

symptoms are caused by cytokines released by immune system activation.

Outpatient Illness Surveillance if information on patient visits to health care providers for

influenza-like illness is collected through the US Outpatient Influenza-like Illness Surveillance

Network (ILINet). The Outpatient Influenza-like Illness Surveillance Network (ILINet) consists

of more than 3,000 health care providers in all 50 states, the District of Columbia and the U.S.

Virgin Islands reporting over 25 million patient visits each year. Each week, approximately 1,400

outpatient care sites around the country report data to CDC on the total number of patients seen

and the number of those patients with influenza-like illness (ILI) by age group. For this system, ILI

is defined as fever (temperature of 100F [37.8C] or greater) and a cough and/or a sore throat in the

absence of a KNOWN cause other than influenza. Sites with electronic records use an equivalent
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definition as determined by the state public health authorities [65]. The percentage of patient visits

to health care providers for ILI reported each week is weighted on the basis of state population.

This percentage is compared each week with the national baseline of 3.3%. The baseline is the

mean percentage of patient visits for ILI during non-influenza weeks for the previous three seasons

plus two standard deviations. Due to wide variability in regional level data, it is not appropriate

to apply the national baseline to regional data, therefore, region specific baselines are calculated.

[65] Regional baselines for the 2009-10 influenza season are:

1. Region 1 - Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Ver-

mont

2. Region 2 - New Jersey, New York, Puerto Rico, and the U.S. Virgin Islands

3. Region 3 - Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West

Virginia

4. Region 4 - Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Car-

olina, and Tennessee

5. Region 5 - Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin

6. Region 6 - Arkansas, Louisiana, New Mexico, Oklahoma, and Texas

7. Region 7 - Iowa, Kansas, Missouri, and Nebraska

8. Region 8 - Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming

9. Region 9 - Arizona, California, Guam, Hawaii, and Nevada

10. Region 10- Alaska, Idaho, Oregon, and Washington
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A.2 Temporal Prediction Models

We have looked at 4 temporal Prediction models in our work. Since the ILI has a fluctuating

trend and seasonality, we have used Time-Series Predictions and Feed-Forward Neural Networks

to predict the ILI in upcoming 20 weeks following week 40 in the year 2009. Mortality due to

Influenza and Pneumonia in the mid-western part of the United States is predicted using Bayesian

Networks and Monte-Carlo simulations. The source of data, for predicting the number of fatal

cases in the Mid-West is the mortality reports from CDC from the year 1997 till 2009.

A.2.1 Data and Statistics for ILI Predictions

We gathered ILI incidence data at all the 10 different regions in USA from the CDC public repos-

itory. The data ranges from week 40 in the year 2008 to week 39 in the year 2009. Based on

the weekly incidence, the seasonality, trend and rate of fluctuation of the ILI curve was fitted

against a time series (ARMA) model with lowest AICC/BIC and neural network models with

lowest SMAPE and highest R2 statistic.

The statistics SMAPE and R2 are defined below: Symmetric mean absolute percentage error

(SMAPE): It is an accuracy measure based on percentage (or relative) errors. A lower value of

SMAPE signifies a well fitted model.

SMAPE =
100

n

n∑
i=1

|Yi −Xi|
(Yi +Xi)

(A.1)

Coefficient of Determination (R2):It is the proportion of variability in a data set that is accounted

for by the statistical model. It provides a measure of how well future outcomes are likely to be

predicted by the model. A closer value of this statistic to unity signifies a well fit model. When

STOT is defined as the total sum of errors and SSE is the sum squared errors, the coefficient of
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determination is computed as the following.

SSE =
n∑
i=1

(Yi −Xi)
2 (A.2)

STOT =
n∑
i=1

(Yi − Y )2 (A.3)

R2 = 1− SSE

STOT
(A.4)

A.2.2 Temporal Prediction Model Description

1. Neural Network: A simple three-layered, feed forward, supervised, multi-layered percep-

tron is trained using 60% of the data set and the remaining 40% data is used for validation.

The first input layer contains neurons with incidence records from the previous time step

feeding into them. The output obtained from the neural network is compared to the inci-

dence record of the current time step so that the weights on the links between the neurons of

different layers can be correspondingly adjusted to minimize the root mean squared error.

The above procedure is repeated on the training data sets, and at the end of the training

phase we assume that the network has converged, and that the optimum weights and biases

minimize the mean squared error. Eventually, the validation data sets are used to quantify

the prediction efficiency of the network for the 11 independent data sets of National ILI, and

the reagional ILI for all the 10 different regions.

2. Time-Series: Autoregressive models account for the correlations between the numbers of

infected livestock in every data record. The time series model can detect the seasonality

and trend of the varying ILI, thus it predicts the time when ILI would have increasing and

decreasing trends. However, the ILI trends have changed drastically since week 35 of the

year 2009 ever since the strain A-H1N1 was declared to be the cause of swine flu pandemic.

Thus we fit a differenced Auto Regressive Moving Average (ARMA) model with a lag of 7

so as to take into consideration all the data points from the initiation of the swine flu pan-

demic specifically for future predictions. An appropriate order of the ARMA(p,q) model is
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chosen so as to minimize AICC and BIC values using the ITSM software.

3. Bayesian Network: A single-layer discrete Bayesian network is constructed with two in-

put nodes representing the month type and the previous record level, and one output node

representing the present record level, such that inputs and outputs are classified into dis-

crete levels. Based on the mortality data due to influenza in the Mid-West, a conditional

probability table and causal relationships are derived for each data set. Bayesian parame-

ter estimation is carried out using Maximum Likelihood Estimation (MLE) and the mean

expected output is compared with the actual data set for comparison.

4. Monte-Carlo Simulations: In the Bayesian Network implementation, we mathematically

computed the mean expected output. Using the Monte-Carlo simulations, we experimen-

tally evaluate the mean expected output by simulating 1000 instances of each input combi-

nation and probabilistically deciding on a random output level and a random output value

in that particular output level. The mean of the output values from all the simulated 1000

instances is the mean expected output level. Also, we generate a 95% confidence interval

from the 1000 simulated outputs corresponding to each input combination. This confidence

interval is represented against the mean simulated expected output and the actual data for

each data set.

A.3 Influenza Like Illness Predictions

The ILI predictions are achieved by time-series and neural network predictions fitted on the actual

data. The detailed results are presented below.

A.3.1 Time Series Model

The following table Represents the various ARMA(p,q) models fitted for each of the 10 regional

data sets and the National data set. The AICC and BIC is also tabulated. The order p,q are chosen
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so as to yield the lowest AICC/BIC. Based on the time-series model fitted against the actual data,

critical months are defined as the months when the virulence is greater than the acceptable baseline

level. Suitable vaccination and control strategies need to be adopted in these critical months to

prevent a stronger virulence in the following Influenza cycle that begins in spring 2010.
Region City Base ILI ARMA(p,q) AICC BIC

1 Boston 1.2 (3,4) 74.366 74.366
2 NY 2.3 (2,5) 116.296 124.277
3 DC 3.0 (1,0) 141.913 141.865
4 Atlanta 2.3 (2,4) 98.848 102.87
5 Chicago 1.7 (4.0) 70.153 72.107
6 Dallas 4.6 (1,5) 168.854 170.95
7 Kansas City 1.8 (1,0) 131.04 133.039
8 Denver 1.3 (2,1) 69.00 72.47
9 SanFrancisco 2.8 (1,0) 144.609 144.146

10 Seattle 3.3 (4,2) 131.71 137.94
Nation 3.3 (1,1) 90.6501 93.615

The National ILI data set used for predicting the ILI till the second week of November 2009

is shown in Figure A.1. The data regarding incident ILI from week 40 in the year 2008 till week

41 in year 2009 is used to fit an ARMA model. Subsequent 4 predictions regarding the strength of

ILI in the following weeks shows an increasing trend till week 42 and decreasing trends thereafter

till week 46 in the year 2009 when the next influenza cycle sets in.

Time-Series analysis and estimation is useful in predicting the months when the virulence of

the H1N1 virus is most critical, thus seeking immediate vaccination and mitigation. Differenced

ARMA models with adequate lag to cover the critical time period wherein the swine flu onset was

declared has been applied to predict the trends in ILI for 4 weeks following week 41 in the year

2009. The predicted ILI values and the ILI trends for 4 weeks is tabulated below.
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Figure A.1: Fluctuations in the National ILI from week 40 in the year 2008 to week 46 in the year
2009. The national baseline of ILI% is 3.3. Increasing trend of ILI is noticed till week 42 followed
by decreasing trends till week 46 in the year 2010.

Region Week42 predicted/actual Week43 predicted/actual Trend for next 4 weeks
1 4.72/4.94 5.471/5.6794 Increase(3)+Decrease(1)
2 6.1517/6.978 8.155/9.068 Increase(3)+Decrease(1)
3 9.67/10.113 11.36/10.724 Increase(2)+Decrease(2)
4 4.7878/4.878 5.097/4.9984 Decrease(1)+Increase(1)+Decrease(2)
5 8.7367/8.867 8.213/8.628 Increase(1)+Decrease(3)
6 10.39/11.1713 9.52/8.7658 Decrease(4)
7 11.98/11.7918 10.46/7.7745 Decrease(2)+Increase(2)
8 8.32/7.984 6.585/5.1685 Decrease(4)
9 6.85/6.32 6.398/7.3405 Decrease(4)

10 10.457/9.935 10.6032/9.4478 Decrease(2)+Increase(2)
Nation 8.2058/7.8735 8.073/7.7094 Increase(1)+Decrease(3)

Based on the weekly ILI trends thus predicted, the absolute ILI values can hereafter be esti-

mated using Neural Networks. Since Neural Networks are capable of responding to quick fluc-

tuations in data trends, thus once we are aware of the ILI trends, a well fit feed-forward neural

network is successful in predicting absolute ILI values for consecutive 2 weeks.
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A.3.2 Neural Network Model

Although Time-series models are very efficient in tracking the trend and seasonality of ILI pat-

terns, they do not track sudden fluctuations in ILI levels. Thus, we perform Neural network based

data fitting to check for sudden fluctuations in ILI levels that need to be detected. The following

table summarizes the performance of a 7x3x1 multi-layered feed forward neural network. Seven

neurons in the input layer signify the dependence of predicted values on ILI values of previous 7

weeks dating back till week 35 when swine flu was officially declared to be the cause in sudden

increase in ILI values. The errors introduced and the coefficient of fitness along with the predic-

tions for week 42 and 43 in year 2009 against the actual data has been tabulated below.
Region SMAPE R2 Week42 predicted/actual Week43 predicted/actual

1 9.1130 0.8261 5.5159/4.94 6.0274/5.6794
2 7.9295 0.9190 5.9797/6.978 8.4734/9.068
3 5.8042 0.8804 9.1842/10.113 11.722/10.724
4 6.7773 0.9673 4.4928/4.878 5.0607/4.9984
5 7.7287 0.8226 8.7615/8.867 8.4730/8.628
6 9.0832 0.9069 10.9539/11.1713 8.8192/8.7658
7 12.2891 0.9811 10.5773/11.7918 8.4496/7.7745
8 7.8263 0.9700 7.6120/7.984 5.0987/5.1685
9 5.9485 0.9056 7.678/6.324 7.0569/7.3405

10 10.3748 0.88171 9.833/9.9385 9.1054/9.4487
Nation 3.4919 0.9618 8.016/7.8735 7.9838/7.7094

National ILI fluctuations as predicted using Neural Networks is depicted in Figure A.2.

A.3.3 Comparison of Time Series and Neural Network Predictions

The following figures depict the variations in predictions for the same data set by time series and

neural network analysis. We observe that time series fitted data has a gradual decreasing curve for

the Seattle data set. Contrastingly, neural network predictions have steeper slopes. Both models

are successful in representing the critical time phases when the ILI levels are sharply changing

above the baseline levels.
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Figure A.2: National ILI from week 40 in the year 2008 to week 46 in the year 2009 predicted
using Neural Networks fitted against the real data. The national baseline of ILI% is 3.3. Unlike
the Time-series prediction, the seasonality is not captured. Contrastingly, neural networks predict
a steep decrease in the slope of ILI following week 42 in October 2009.

Figure A.3: Regional ILI from week 40 in the year 2008 to week 46 in the year 2009 predicted
using Time Series predictions for Atlanta. The regional baseline of ILI% is 2.3.
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Figure A.4: National ILI from week 40 in the year 2008 to week 46 in the year 2009 predicted
using Neural Networks fitted against the real data at Atlanta. The national baseline of ILI% is
2.3. This illustrates the dynamic fluctuations captured by neural networks.

A.4 Mortality Predictions

Data regarding the number of fatal cases due to Influenza from week 1, 1997 till week 41 , 2009

are used to track the expected number of fatal cases in the subsequent 4 weeks till the second

week of November 2009. This is done using Bayesian Networks and Monte-Carlo simulations

that predict the mean expected mortality and a 95% cinfidence interval for the expected fatal cases

in each time step.

The following table presents predictions regarding the number of fatal cases in the Mid-

Western region of the Unites States. For 6 different cities, the errors and goodness of fit are

tabulated. The mean expected number of fatal cases along with the 95% confidence interval on

the number of fatal cases is also presented week 42 and 43 for the year 2009.
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Figure A.5: Regional Mortality due to Pneumonia and Influenza from week 1 in the year 1997 to
week 41 in the year 2009 taken from http://www.cdc.gov/mmwr/, is collected used to train up a
Bayesian Network. Predictions regarding the expected mortality from week 42 in 2009 till week
46 in 2009, and a 95% confidence interval regarding the number of fatal cases has been depicted
for a sample case of Kansas City.

City Week 42/actual Week 42 95% CI Week 43/actual Week 43 95%CI
Wichita 4.644/6 7.7908 12.5/6 9.9394

Kansas City 0.6327/1 2.67 0.6327/0 2.7415
Denver 8.0046/10 10.912 8.0046/9 9.9009
Tulsa 13.5576/9 17.32 11.5/10 14.81

Lincoln 5.6667/4 6.025 3.9016/3 5.667
Omaha 6.3037/9 9.7929 5.50/7 7.8817

Figure A.6 depicts the predictions thus produced.

Thus, we have temporal prediction models that incur a low-complexity to predict the acuteness

of A-H1N1 influenza in USA in Fall 2009. Based on our results, the trends of influenza virus can

be predicted and suitable measures can be taken to alleviate its acuteness at critical months. Future

work would involve the implementation of a network based approach that will not only facilitate

temporal predictions but also spatio-temporal predictions regarding the virulence of influenza in

the United States.
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Figure A.6: Regional Mortality due to Pneumonia and Influenza from week 1 in the year 1997 to
week 41 in the year 2009 taken from http://www.cdc.gov/mmwr/, is collected used to train up a
Bayesian Network. Predictions regarding the expected mortality from week 42 in 2009 till week
46 in 2009, and a 95% confidence interval regarding the number of fatal cases has been depicted
for a sample case of Denver.
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Appendix B

Tables

Table B.1: Input Level Classification
InputLevel(I) Range of infected animals at (t-1)

1 0-10
2 11-30
3 31-110
4 111-250
5 > 250

Table B.2: Output Level Classification
OutputLevel(O) Range of infected animals at (t-1)

1 0-5
2 6-10
3 11-15
4 16-30
5 31-55
6 56-110
7 111-125
8 126-250
9 251-700

10 > 700
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Table B.3: The Conditional Probability Table with 10 input states
Output Level 1 2 3 4 5 6 7 8 9 10
Input Level 1 0.7156 0.2796 0.0047 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Input Level 2 0.0000 0.0000 0.3704 0.6296 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Input Level 3 0.0000 0.0000 0.0000 0.0000 0.6076 0.3924 0.0000 0.0000 0.0000 0.0000
Input Level 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2222 0.7778 0.0000 0.0000
Input Level 5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7857 0.2143
Input Level 6 0.7628 0.2372 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Input Level 7 0.0000 0.0000 0.3196 0.6804 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Input Level 8 0.0000 0.0000 0.0000 0.0000 0.4463 0.5537 0.0000 0.0000 0.0000 0.0000
Input Level 9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2245 0.7755 0.0000 0.0000

Input Level 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6829 0.3171
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Table B.4: Neural Network Results for Data set I
Node ID AIC MSE BIC

1 224.1337577 2.89000000000000e-09 31.58729417
2 206.7508321 1.40000000000000e-09 30.85553618
3 257.7288683 1.17000000000000e-08 34.71410641
4 208.1182038 1.48000000000000e-09 30.92747171
5 229.3940190 3.60000000000000e-09 33.58943458
6 394.4564164 3.49000000000000e-06 40.32940108
7 224.8722713 2.98000000000000e-09 33.10237404
8 217.2251261 2.17000000000000e-09 32.76683601
9 218.6520511 2.30000000000000e-09 32.11343213

10 221.2831838 2.57000000000000e-09 31.69055957
11 217.7942192 2.22000000000000e-09 32.63265895
12 227.0195456 3.26000000000000e-09 31.70080854
13 261.1380400 1.35000000000000e-08 34.71350246
14 387.7764560 2.65000000000000e-06 40.15273409
15 279.5660109 2.91000000000000e-08 35.55355512
16 209.4266550 1.57000000000000e-09 32.16366958
17 230.8708340 3.83000000000000e-09 33.49630834
18 271.1111378 2.05000000000000e-08 34.61638466
19 227.8758420 3.38000000000000e-09 32.80395615
20 323.2545567 1.80000000000000e-07 37.45442799
21 219.3957971 2.37000000000000e-09 32.12475263
22 261.5188008 1.37000000000000e-08 34.92284893
23 270.9708151 2.04000000000000e-08 35.31250038
24 177.4448611 4.13000000000000e-10 30.15960391
25 263.3431666 1.48000000000000e-08 34.83023019
26 219.3262720 2.37000000000000e-09 33.16145908
27 392.5468051 3.23000000000000e-06 40.32016628
28 202.5680825 1.18000000000000e-09 32.00359765
29 215.7278377 2.04000000000000e-09 31.28547181
30 334.3762935 2.86000000000000e-07 37.79006599
31 222.0628659 2.65000000000000e-09 32.24883452
32 374.2397322 1.51000000000000e-06 39.59401994
33 362.4627417 9.21000000000000e-07 39.10218791
34 227.1952718 3.29000000000000e-09 33.47678226
35 241.4265751 5.95000000000000e-09 34.09141021
36 229.5297183 3.62000000000000e-09 33.48177946
37 326.8323210 2.09000000000000e-07 37.63204011
38 381.8064600 2.06000000000000e-06 39.94067872
39 315.5176312 1.30000000000000e-07 37.17830469
40 259.8759379 1.28000000000000e-08 34.7082879
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Table B.5: Neural Network Results for Data set I continued
Node ID AIC MSE BIC

41 216.6261627 2.12000000000000e-09 32.73935195
42 248.0644971 7.84000000000000e-09 34.23486778
43 242.6974709 6.27000000000000e-09 34.03997617
44 399.0419674 4.23000000000000e-06 40.36881870
45 443.1732615 2.66000000000000e-05 42.02182224
46 308.9748876 9.92000000000000e-08 36.53733949
47 263.6001105 1.50000000000000e-08 35.01455510
48 314.1111068 1.23000000000000e-07 37.02735931
49 306.7959711 9.06000000000000e-08 36.80488348
50 228.0494283 3.41000000000000e-09 33.37184031
51 225.3751855 3.05000000000000e-09 31.68155830
52 245.5672990 7.07000000000000e-09 34.24208628
53 286.1367129 3.83000000000000e-08 35.61126285
54 302.8752328 7.69000000000000e-08 36.62799111
55 396.5768445 3.82000000000000e-06 39.91148552
56 353.1351314 6.25000000000000e-07 38.59055351
57 202.5553462 1.18000000000000e-09 32.19149734
58 223.6190503 2.83000000000000e-09 31.55844009
59 413.1050166 7.60000000000000e-06 40.93466218
60 221.7632398 2.62000000000000e-09 32.23737911
61 345.8857140 4.62000000000000e-07 38.41992927
62 231.9052773 4.00000000000000e-09 33.65743464
63 246.0612679 7.21000000000000e-09 34.28147819
64 233.5262480 4.28000000000000e-09 33.73999848
65 291.2383775 4.74000000000000e-08 36.02380071
66 211.6540353 .72000000000000e-09 31.05933338
67 217.9924804 2.24000000000000e-09 32.97838077
68 250.8282729 8.80000000000000e-09 34.47471707
69 197.3049034 9.46000000000000e-10 30.46193868
70 409.0071742 6.41000000000000e-06 40.92371586
71 337.4947849 3.26000000000000e-07 38.07600794
72 238.8501245 5.34000000000000e-09 33.95905006
73 239.0828047 5.39000000000000e-09 33.88127932
74 393.5477697 .36000000000000e-06 39.939539040
75 388.8241796 2.76000000000000e-06 39.99168510
76 227.9006083 3.38000000000000e-09 32.53412786
77 245.2879897 6.98000000000000e-09 34.25242663
78 190.7760951 7.21000000000000e-10 31.06364562
79 301.6659742 7.32000000000000e-08 36.48366243
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Table B.6: Neural Network Results for Data set S
Node ID AIC MSE BIC

1 222.421180800000 2.69000000000000e-09 31.5079718200000
2 225.299151400000 3.04000000000000e-09 31.6319569600000
3 267.569074300000 1.77000000000000e-08 35.1258423900000
4 222.493183000000 2.70000000000000e-09 32.7304812500000
5 232.158287900000 4.04000000000000e-09 33.6735291300000
6 389.258975700000 2.81000000000000e-06 40.1925920800000
7 261.073206200000 1.35000000000000e-08 34.7522601300000
8 228.828502700000 3.52000000000000e-09 33.3035534500000
9 234.260409000000 4.41000000000000e-09 33.7290495800000

10 217.929004400000 2.23000000000000e-09 31.7739595800000
11 208.546357600000 1.51000000000000e-09 32.6849451300000
12 205.226232000000 1.32000000000000e-09 30.9237602100000
13 251.872861300000 9.19000000000000e-09 34.3742528100000
14 382.534180600000 2.13000000000000e-06 39.9219244500000
15 284.267026500000 3.54000000000000e-08 35.6306658400000
16 227.138278100000 3.28000000000000e-09 33.4830471100000
17 250.579898500000 8.71000000000000e-09 34.4630490200000
18 241.492194500000 5.96000000000000e-09 34.0619904400000
19 205.711050000000 1.34000000000000e-09 32.5589845300000
20 292.582446900000 5.01000000000000e-08 36.1790629900000
21 202.722115000000 1.19000000000000e-09 31.1460435300000
22 281.346840000000 3.14000000000000e-08 35.5018447500000
23 342.262841900000 3.97000000000000e-07 37.9612383500000
24 210.937209900000 1.67000000000000e-09 32.1281285700000
25 293.589389100000 5.23000000000000e-08 36.2600018600000
26 218.140856500000 2.25000000000000e-09 32.5569435800000
27 389.052255500000 2.79000000000000e-06 40.1455163300000
28 216.276939800000 2.09000000000000e-09 32.0377995900000
29 227.657550600000 3.35000000000000e-09 31.7578845500000
30 350.981517300000 5.71000000000000e-07 38.4347686900000
31 236.816669200000 4.91000000000000e-09 33.7185127700000
32 367.235852900000 1.12000000000000e-06 39.2937817800000
33 356.579559300000 7.21000000000000e-07 38.8623938400000
34 221.563875300000 2.60000000000000e-09 33.0584453000000
35 257.316684600000 1.15000000000000e-08 34.6342013200000
36 242.146487000000 6.13000000000000e-09 33.9792890200000
37 330.050545700000 2.39000000000000e-07 37.7618001600000
38 395.577277200000 3.66000000000000e-06 40.5087392500000
39 312.932138900000 1.17000000000000e-07 37.0708499500000
40 256.332616900000 1.11000000000000e-08 34.5464769200000
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Table B.7: Neural Network Results for Data set S continued
Node ID AIC MSE BIC

41 219.511720800000 2.39000000000000e-09 32.0129206400000
42 256.521908400000 1.12000000000000e-08 34.6807209000000
43 206.239056000000 1.37000000000000e-09 32.6249155000000
44 274.510756500000 2.36000000000000e-08 35.4598988300000
45 442.575666400000 2.59000000000000e-05 41.9172104400000
46 272.010325300000 2.13000000000000e-08 35.3645232300000
47 254.092118300000 1.01000000000000e-08 34.4959112800000
48 299.785744900000 6.76000000000000e-08 36.0827405300000
49 296.159037300000 5.82000000000000e-08 36.3068620100000
50 260.228644100000 1.30000000000000e-08 34.7574256700000
51 214.655431300000 1.95000000000000e-09 31.6003407200000
52 248.312713000000 7.92000000000000e-09 34.2976271400000
53 288.543996300000 4.23000000000000e-08 35.7365922600000
54 296.791765400000 5.97000000000000e-08 36.3982470100000
55 426.200889400000 1.31000000000000e-05 41.4820284000000
56 348.695443300000 5.19000000000000e-07 38.5121861500000
57 218.990222600000 2.33000000000000e-09 32.8088684200000
58 209.686143200000 1.58000000000000e-09 30.9773005400000
59 428.872160200000 1.47000000000000e-05 41.4976476100000
60 224.620168200000 2.95000000000000e-09 32.7073127100000
61 377.056112200000 1.69000000000000e-06 39.7315401700000
62 231.855318900000 3.99000000000000e-09 33.6753300500000
63 250.891606200000 8.82000000000000e-09 34.4426412200000
64 242.493736200000 6.22000000000000e-09 34.1279932600000
65 315.646687600000 1.31000000000000e-07 37.1809922900000
66 219.283512500000 2.36000000000000e-09 31.3781361300000
67 195.784383800000 8.88000000000000e-10 31.0818523600000
68 230.847446300000 3.83000000000000e-09 33.6507200200000
69 219.497510200000 2.38000000000000e-09 31.4021813300000
70 428.414652500000 1.44000000000000e-05 41.8670436800000
71 323.562371700000 1.82000000000000e-07 37.4775765500000
72 240.930575800000 5.82000000000000e-09 34.0018444500000
73 241.010967700000 5.84000000000000e-09 33.9364262500000
74 300.945469900000 7.10000000000000e-08 36.5235056000000
75 405.203786600000 5.47000000000000e-06 40.5031008600000
76 223.138811200000 2.78000000000000e-09 32.8260628900000
77 248.544615400000 8.00000000000000e-09 34.3252580300000
78 223.188682100000 2.78000000000000e-09 32.9180699000000
79 285.033232000000 3.66000000000000e-08 35.7453073900000
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Table B.8: AR Model Results for Data set I
Node ID p sample size AIC MSE BIC

1 1 3 -134.550529700000 1.34000000000000e-07 -13.7686240800000
2 1 5 -128.959958100000 1.49000000000000e-08 -15.7177337900000
3 1 5 -113.817833300000 0.000188847000000000 -6.12106761700000
4 2 4 -138.497522600000 1.40000000000000e-07 -10.9856199000000
5 1 3 -125.298709500000 1.60000000000000e-05 -8.42470244600000
6 1 4 -98.4800436900000 0.00305491300000000 -3.16148944200000
7 1 3 -155.911164600000 9.38000000000000e-06 -8.82605455800000
8 1 7 -140.543827900000 5.77000000000000e-06 -9.88639693200000
9 1 4 -130.571946100000 3.01000000000000e-06 -10.4141743200000

10 1 5 -129.045002600000 7.28000000000000e-07 -11.6069071200000
11 1 5 -117.443717300000 0.000199478000000000 -5.97423369500000
12 1 3 -146.525605500000 3.96000000000000e-08 -15.0177639900000
13 1 3 -140.131055100000 0.000311521000000000 -5.69222186900000
14 1 8 -103.895332800000 0.00269769500000000 -3.81314290000000
15 1 6 -113.126996200000 0.00422359600000000 -3.04215894300000
16 2 3 -187.582441500000 1.87000000000000e-05 -5.78123128000000
17 1 8 -121.956773800000 1.66000000000000e-05 -8.84490530600000
18 1 4 -110.193564500000 0.000972553000000000 -4.57570290800000
19 1 4 -151.010094700000 2.30000000000000e-05 -8.41158036800000
20 1 6 -101.952334000000 0.00143288600000000 -4.25272683200000
21 1 3 -145.744690900000 2.57000000000000e-06 -10.1026688300000
22 1 5 -133.387681000000 8.06000000000000e-05 -6.86744180100000
23 1 3 -115.797671100000 0.000299624000000000 -5.59408323100000
24 2 3 -119.999631100000 1.61000000000000e-05 -5.71026022600000
25 1 5 -139.329520700000 0.000366090000000000 -5.68560046100000
26 1 11 -126.827812400000 7.97000000000000e-06 -9.97607868000000
27 1 9 -83.2155878700000 0.00779478800000000 -2.83594808800000
28 1 5 -133.329741600000 1.11000000000000e-06 -11.3302337100000
29 1 3 -159.712054200000 2.03000000000000e-07 -12.5873953300000
30 1 11 -60.6181928000000 0.0298168340000000 -1.74880210500000
31 1 4 -152.457823000000 2.41000000000000e-06 -10.2634172000000
32 1 10 -86.9556004200000 0.00518964400000000 -3.38062628500000
33 1 4 -127.941716200000 0.000854371000000000 -4.43436898500000
34 1 6 -113.582647000000 0.000109818000000000 -6.96953683200000
35 1 3 -170.937155600000 3.00000000000000e-05 -7.62916455200000
36 1 5 -133.590032200000 1.70000000000000e-05 -8.63921654400000
37 1 3 -119.992413700000 0.000825446000000000 -4.28076418100000
38 1 11 -99.6090798400000 0.00546837600000000 -3.45103863900000
39 1 11 -82.5993198200000 0.0102406100000000 -2.82540738300000
40 1 5 -125.332303900000 0.000681772000000000 -4.73531405900000
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Table B.9: AR Model Results for Data set I continued
Node ID p sample size AIC MSE BIC

41 1 3 -138.900877100000 0.00105075000000000 -4.04131245700000
42 1 5 -125.921784400000 3.98000000000000e-05 -7.68642798000000
43 1 3 -173.413669800000 3.97000000000000e-05 -7.32013707000000
44 1 10 -74.7152683200000 0.0154658340000000 -2.28733965200000
45 1 3 -52.4201664600000 0.0186144180000000 -1.26070202500000
46 1 6 -112.940039400000 0.00167765600000000 -4.19184656300000
47 1 4 -149.495483100000 4.32000000000000e-05 -7.50290890000000
48 1 11 -84.0563710300000 0.0139809120000000 -2.51436535000000
49 1 7 -112.337860700000 0.00125888900000000 -4.57921016400000
50 1 3 -133.571676600000 0.000298842000000000 -5.34407456200000
51 1 8 -174.537358900000 2.73000000000000e-07 -12.9511142700000
52 1 3 -144.821010900000 0.000107139000000000 -6.78518603100000
53 1 3 -110.416504700000 0.000297662000000000 -5.30008328000000
54 1 3 -166.222502200000 8.13000000000000e-05 -6.63071308300000
55 1 6 -75.7259814200000 0.00956379000000000 -2.26471092600000
56 1 11 -102.312093900000 0.00217361200000000 -4.37097872200000
57 1 6 -125.268673000000 1.61000000000000e-06 -10.9444456300000
58 2 3 -145.430912800000 1.57000000000000e-08 -12.5738254600000
59 1 11 -65.8192767900000 0.0172775420000000 -2.39023651600000
60 1 3 -115.174443800000 0.000245076000000000 -5.52672038500000
61 1 6 -91.4205522800000 0.00295930100000000 -3.61220870600000
62 1 3 -123.851986500000 0.000206414000000000 -5.68778656600000
63 1 4 -116.479273200000 0.000304661000000000 -5.53981603200000
64 1 3 -125.997368300000 0.000204107000000000 -5.69985058400000
65 1 4 -128.272221900000 0.000313386000000000 -5.69881455300000
66 1 5 -134.044236000000 9.84000000000000e-09 -16.4993644700000
67 1 5 -107.652488100000 8.21000000000000e-06 -9.15502728600000
68 1 4 -119.407718300000 0.000428876000000000 -5.08173907400000
69 1 7 -118.923216200000 1.37000000000000e-08 -16.5094730400000
70 1 10 -66.2689391300000 0.0205315550000000 -2.02022318700000
71 1 8 -92.8503898400000 0.00266577500000000 -3.78950753400000
72 1 3 -146.886798600000 4.17000000000000e-05 -7.27059868200000
73 1 3 -116.561419000000 4.49000000000000e-05 -7.28734596100000
74 1 4 -88.6553702600000 0.00391419000000000 -3.03231423100000
75 1 11 -79.1210601000000 0.0131508870000000 -2.61948960000000
76 1 3 -122.903085300000 6.27000000000000e-05 -6.85971234100000
77 1 7 -110.219069700000 0.000827712000000000 -4.81871675800000
78 1 6 -120.116984200000 0.000328691000000000 -5.76883452900000
79 1 10 -103.338448000000 0.00118671100000000 -4.88638042300000
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Table B.10: AR Model Results for Data set S
Node ID p sample size AIC MSE BIC

1 1 8 -100.825427700000 1.95000000000000e-08 -16.3231448500000
2 1 3 -106.039121000000 3.29000000000000e-08 -14.4101577100000
3 1 5 -100.262636500000 0.000279333000000000 -5.81594202900000
4 1 9 -107.233952200000 4.81000000000000e-06 -10.2891582100000
5 1 5 -105.898028800000 0.000133955000000000 -6.61343902300000
6 1 3 -95.4030449800000 0.00218127400000000 -3.44463591300000
7 1 8 -112.731005400000 0.000153317000000000 -6.65297615900000
8 2 3 -151.922626400000 5.68000000000000e-05 -4.64444613200000
9 1 10 -108.175825500000 1.53000000000000e-05 -9.26902213500000

10 1 4 -117.744022700000 1.21000000000000e-06 -11.1584645600000
11 1 7 -105.281376300000 2.30000000000000e-05 -8.41391332300000
12 1 3 -132.095532400000 1.19000000000000e-06 -11.3504880100000
13 1 3 -145.598418100000 5.36000000000000e-05 -7.15051723900000
14 1 7 -83.9966998300000 0.00202215700000000 -3.95898844500000
15 1 7 -99.3132698400000 0.00501174700000000 -3.00427970400000
16 1 3 -142.281527200000 6.69000000000000e-05 -7.27037417800000
17 1 5 -97.9932371700000 0.000845043000000000 -4.83393528700000
18 1 5 -104.549892900000 0.000122500000000000 -6.80209424600000
19 1 4 -96.4828930900000 0.000532410000000000 -5.33766279100000
20 1 3 -104.915032700000 0.000902624000000000 -4.59785640800000
21 1 4 -144.606042600000 1.09000000000000e-06 -11.0671496500000
22 1 3 -86.7857231600000 0.000110044000000000 -6.36936777900000
23 1 11 -84.6945825400000 0.00189113800000000 -4.56706323400000
24 1 4 -120.792488900000 2.14000000000000e-05 -8.25764578300000
25 1 5 -98.1978400200000 0.00138221500000000 -4.44422993800000
26 1 3 -127.745831900000 5.02000000000000e-06 -9.48959657400000
27 1 8 -81.6324597800000 0.00442947400000000 -3.26567426700000
28 1 7 -94.4351232300000 5.81000000000000e-07 -12.0669712200000
29 1 3 -109.230243900000 1.78000000000000e-07 -12.7772590600000
30 1 11 -62.1588540300000 0.0291111730000000 -1.77307013000000
31 2 3 -140.454738300000 2.44000000000000e-05 -5.02638970700000
32 1 3 -85.8730150500000 0.00455864400000000 -2.60957114100000
33 1 3 -113.153131500000 0.000610741000000000 -4.60978729800000
34 1 5 -93.8331131300000 2.42000000000000e-05 -8.50616461600000
35 1 3 -92.3919063700000 4.12000000000000e-05 -7.45116920800000
36 1 3 -123.278393300000 0.000285754000000000 -5.91026942100000
37 1 3 -96.7425770800000 0.00148526900000000 -4.21936952800000
38 1 10 -95.6462646400000 0.00430881200000000 -3.55078085300000
39 1 3 -81.8374520000000 0.00557288000000000 -2.37550287800000
40 1 5 -116.110933400000 0.000373962000000000 -5.33301168700000
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Table B.11: AR Model Results for Data set S continued
Node ID p sample size AIC MSE BIC

41 1 4 -133.221363800000 6.90000000000000e-05 -6.90404707200000
42 1 4 -120.045563900000 0.000360291000000000 -5.33533416400000
43 1 3 -129.998421100000 1.97000000000000e-06 -10.3389231100000
44 1 10 -79.0706943500000 0.0114857620000000 -2.58669587800000
45 1 3 -51.9536851700000 0.0178807720000000 -1.33573858600000
46 2 3 -102.147155500000 0.000116161000000000 -3.61965594400000
47 1 5 -116.096038600000 1.65000000000000e-05 -8.45770268000000
48 1 4 -86.6307685100000 0.0104233690000000 -1.87453155500000
49 1 7 -96.0288296900000 0.00143838400000000 -4.28194474600000
50 1 3 -114.439013500000 0.000284239000000000 -5.41261229600000
51 1 4 -117.960247100000 1.25000000000000e-06 -10.9214099700000
52 1 4 -117.926533200000 0.000108315000000000 -6.77980123600000
53 1 3 -145.895105100000 0.000335702000000000 -5.20519348100000
54 2 3 -142.416486200000 6.07000000000000e-05 -4.13410521900000
55 1 3 -67.4311099400000 0.0106429240000000 -1.76933672800000
56 1 5 -102.577855700000 0.000495480000000000 -5.06397988100000
57 1 4 -93.6342017600000 4.62000000000000e-06 -9.84783685200000
58 1 3 -137.045138800000 9.60000000000000e-09 -16.1138345000000
59 1 11 -52.6263570500000 0.0261052140000000 -1.97624316700000
60 1 3 -106.109606900000 0.000313526000000000 -5.26845054500000
61 1 4 -89.2187157500000 0.00292173500000000 -3.20063133700000
62 1 3 -125.185385500000 0.000197105000000000 -5.70891880200000
63 1 3 -123.647152800000 0.000238831000000000 -5.60386108200000
64 1 3 -113.568637900000 7.80000000000000e-05 -6.82659664700000
65 1 9 -98.7102510800000 0.00129983700000000 -4.68974949600000
66 1 3 -100.099782900000 1.00000000000000e-08 -15.9740701300000
67 2 4 -117.529900000000 1.46000000000000e-06 -8.11747690400000
68 1 5 -111.587689300000 5.09000000000000e-05 -7.35401495600000
69 1 3 -117.639769900000 7.48000000000000e-08 -13.5851617900000
70 1 4 -63.8398594300000 0.0128878870000000 -1.90530971600000
71 1 4 -98.3268746200000 0.00212648500000000 -3.47642486200000
72 2 3 -125.565441500000 5.24000000000000e-05 -4.25861960000000
73 1 5 -95.2819979000000 4.00000000000000e-05 -7.65316103500000
74 1 3 -141.212397400000 0.000469040000000000 -5.33633575800000
75 1 11 -62.1663160500000 0.0268512390000000 -1.93215911200000
76 1 8 -105.212936800000 3.28000000000000e-05 -8.19678293500000
77 1 6 -93.7619299000000 0.000524535000000000 -5.16455873200000
78 1 5 -126.574839400000 5.40000000000000e-06 -9.61963940800000
79 1 5 -97.3090942900000 0.000893458000000000 -4.50852673400000
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(a) Standard deviation of RMSE for It.

(b) Average RMSE for It

(c) Standard deviation of RMSE for Iv .

Table B.12: RMSE analysis for best Neural network structure.
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(a) Average RMSE for Iv .

(b) Standard deviation of RMSE for St.

(c) Average RMSE for St.

Table B.13: RMSE analysis for best Neural network structure continued.
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(a) Standard deviation of RMSE for Sv .

(b) Average RMSE for Sv .

Table B.14: RMSE analysis for best Neural network structure continued.
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(a) Mitigation Strategy 1 (b) Mitigation Strategy 2

(c) Mitigation Strategy 3 (d) Mitigation Strategy 4

Figure B.1: Impact of prediction errors due to baseline models NW, B1, B2 on mitigation
strategies 1-4 in Iran. The prediction percentage error between the baseline models and model
W (∆sMPAE) is compared with change in effectiveness of mitigation strategies. The unit of
effectiveness is percentage per million US dollars.
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(a) Mitigation Strategy 5 (b) Mitigation Strategy 6

Figure B.2: Impact of prediction errors due to baseline models NW, B1, B2 on mitigation strate-
gies 5,6 in Iran.
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(a) Mitigation Strategy 1 (b) Mitigation Strategy 2

(c) Mitigation Strategy 3 (d) Mitigation Strategy 4

Figure B.3: Impact of prediction errors due to baseline models NW, B1, B2 on mitigation strate-
gies 1-4 in Thailand. The prediction percentage error between the baseline models and model
W (∆sMPAE) is compared with change in effectiveness of mitigation strategies. The unit of
effectiveness is percentage per million US dollars.
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(a) Mitigation Strategy 5 (b) Mitigation Strategy 6

Figure B.4: Impact of prediction errors due to baseline models NW, B1, B2 on mitigation strate-
gies 5,6 in Thailand.
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