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Abstract 

 Prior to the Age of Enlightenment, arches were designed by empirical rules based off of 

previous successes or failures.  The Age of Enlightenment brought about the emergence of 

statics and mechanics, which scholars promptly applied to masonry arch analysis and design.  

Masonry was assumed to be infinitely strong, so the scholars concerned themselves mainly with 

arch stability.  Early Age of Enlightenment scholars defined the path of the compression force in 

the arch, or the shape of the true arch, as a catenary, while most scholars studying arches used 

statics with some mechanics to idealize the behavior of arches.  These scholars can be broken 

into two categories, those who neglected friction and those who included it.  The scholars of the 

first half of the 18th century understood the presence of friction, but it was not able to be 

quantified until the second half of the century.  The advancements made during the Age of 

Enlightenment were the foundation for structural engineering as it is known today.  The statics 

and mechanics used by the 17th and 18th century scholars are the same used by structural 

engineers today with changes only in the assumptions made in order to idealize an arch. While 

some assumptions have proved to be incorrect, many correctly interpreted behavior and were 

able to formulate equations for design and analysis that were successfully used to create arches 

that were structurally sound and more efficient than arches designed by empirical methods. This 

insight into design during the 18th and 19th centuries can help modern engineers better analyze 

and restore arches from this era and protect our architectural and engineering history. 
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Chapter 1 - Introduction 

In the built environment, masonry arches have been used for a few thousand years, due to 

their ability to span larger distances than masonry post and beam construction.   Until the age of 

enlightenment, arches were built based on rules of proportion made after the success or failure of 

previous arches.   On many occasions, an arch would be constructed multiple times and adjusted 

after original attempts led to its collapse.   

The Age of Enlightenment was the beginning of widespread study of structural 

mechanics.  The scholars of this period laid the foundation for the principles of structural 

engineering used today.  Their concepts of statics and material mechanics have been used and 

expanded on by the generations that followed them.  

The scholars during the Age of Enlightenment that studied masonry arches used the rules 

of statics to analyze and formulate rules for stability.  They made theories based on their 

observations of failure in existing masonry arches.  They focused on the shape and stability of 

arches as they assumed that the masonry would be strong enough to support whatever loads were 

imposed upon it.  

Early Age of Enlightenment scholars concerned themselves with the true arch shape, the 

shape that line of compression force, or thrust, takes within the arch.  This line of thrust, 

superimposed on an arch section was used by subsequent scholars to show the failure 

mechanisms of various arches.  The failure mechanism of arches was the main topic for debate 

and publication among scholars.  Many of the published works dealing with masonry arches 

were very similar due to the numerous factors that affected analysis and how the scholars chose 

to approach and adjust those factors. 
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Methods and assumptions in analyzing friction changed significantly over the Age of 

Enlightenment.  Early Age of Enlightenment scholars either assumed frictionless voussoirs or 

assumed that friction was significant enough that voussoirs could not slide along each other.  

Most scholars neglected the presence of mortar in the joints if it was there.  Not until the second 

half of the 18th century was the force of friction understood to be some proportion of the force 

normal to the plane of contact.  

The theories on masonry arches during this time show the growth of statics and material 

mechanics and the progression from empirical design to structural engineering.  They gave 

subsequent scientists a solid foundation to build upon.   

Scholars during the Age of Enlightenment were able to apply the advancements made 

during the era to analyze structures built before the time or to modify the design of new 

structures to be more efficient.   

While the design rules of the Age of Enlightenment have been built upon and are not 

used in the same form today, understanding them will be beneficial in understanding how arched 

structures of the Age of Enlightenment and shortly after were built.  

 The arch theories during the age of enlightenment can be broken down three categories: 

the catenary, theories neglecting friction, and theories including friction. These theories are 

discussed in chapters 2, 3, and 4, respectively. Also included are discussions of the arch theories 

applied to the design and analysis of two prominent cathedrals, St. Paul’s Cathedral in London 

and St. Peter’s Cathedral in the Vatican. 
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Chapter 2 - Arch Theory and Design prior to the age of 

Enlightenment 

The period between when the Middle Ages ended near the close of the 15th century and 

the start of the Age of Enlightenment during the 17th century is referred to as the Age of 

Discovery.  During this many scientists began to study the mechanics of structures.  They were 

curious as to why things worked, not simply satisfied with the knowledge they did.  Prior to this 

time, as most of the arches built stood the test of time, very little thought was put into 

researching the mechanics of arches.  

 Leonardo Da Vinci (1452-1519) 

Leonardo da Vinci studied arches long before the Age of Enlightenment, but his 

deductions and theories, while not mathematical in nature, did give a basis for the scholars of the 

Age of Enlightenment.  His definition of an arch states: 

An arch is nothing but a strength caused by two weaknesses; that is why an arch in 

buildings is composed of two quarter-circles; these quarter-circles, each very weak in 

itself, wish to fall, and opposing each other’s ruin, convert weakness into a single 

strength (Benvenuto, 1991, p. 309). 

This definition suggests an incomplete arch is weak and unstable and only a fully complete arch 

is stable and capable of carrying a load.   

 Da Vinci’s main contribution to the area of arch mechanics came from a short 

proposition, “the arch will not break if the outer arc chord does not touch the inner arc 

(Benvenuto, 1991, p. 309)” as shown in Figure 1.   
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Figure 1: da Vinci's proposal of arch stability (Benvenuto, 1991, p. 310) 

 

This method of da Vinci’s shows a primitive understanding of the thrust line in an arch; the 

theoretical line through the arch that represents the path of the compression forces.  This theory 

on stability was built upon by many of the scholars of the Age of Enlightenment. 

 1643 – Francois Derand (1588-1644) 

In 1643, Francois Derand published his treatise L’architecture des voutes.   Specifically, 

his specialty was stereotomy, which is the technique of cutting solids, such as stones, to specified 

forms and dimensions.  In chapter 7 of his treatise, he outlines a rule for determining the size of 

the abutments to a masonry arch.  Derand was the architect of the Église Saint-Paul-Saint-Louis 

in Paris (Montclos, 2009) and it is likely he used this rule in determine the width of the walls 

supporting the arches and vaults.  This rule was commonly used to find abutment sizes for arches 

and vaults during the 17th and 18th centuries.  The rule’s simplicity was a likely cause of its 



5 

popularity, as architects and builders could easily use it.  His rule, using the geometry and 

notations of Figure 2, is: 

Given the circular vault ABCD, marked P at the center; divide it into three equal [parts] at 

points B, C; from one of these thirds, CD, draw the straight line CDF; and taking the 

same point D as center and opening [your] compass as far as the chord CD, make the arc 

EF below and out of the same center. And by point F, where the said arc cuts line CF, 

draw the plumb line FG; it will be the outside of the wall which will carry vault ACD; so 

the thickness of the said  can be comprised between the line EH and FG, and it will be 

sufficient to resist the thrust of the vault, as practice and experience have shown. If the 

vaults are depressed [segmented or shallow], like IKA in figure Q (Figure 2), using the 

same construction, the wall will be thicker; this is necessary because the thrust of these 

vaults is stronger than that of vaults which have their full center, as in the foregoing, and 

much stronger than that of vaults which are raised or ogival . . . Now it is not always 

necessary that the aforementioned thicknesses found by practice must be maintained over 

the whole extension of the walls that carry the vaults; it will be sufficient to conserve 

them at the points of the principal arches, where they will form juts  which are commonly 

called flying buttresses. (Benvenuto, 1991, p. 314) 
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Figure 2: Derand’s Rule for arches of various shapes (Benvenuto, 1991, p. 314) 

 

The points A, B, C, and D, are on the intrados of the arch.  Arch thickness does not play a 

part in the rule, which is wholly based on geometry, nor does the rule give a way of determining 

the arch thickness.  Derand assumed, as did many others of the time, masonry was infinitely 

strong, and a sufficiently sized abutment would invoke stability on the arch. 

Figure 2 shows that a shallow arch requires a larger abutment.  This is a result of the 

larger force being transferred horizontally from the arch into the abutment, which necessitates a 



7 

larger abutment to support the horizontal force.  Deeper arches, where the force being transferred 

to the abutment is largely vertical, will need a narrower abutment. 

Derand’s rule has been said to be both correct and incorrect by those who came after 

Derand (Benvenuto, 1991).  Scholars of the 19th century criticized the rule to some extent for 

being incorrect, however the rule was on the conservative side and was not criticized for being 

unsafe.  Jean-Baptiste Rondelet, an architect of the 18th and 19th centuries, criticized the rule for 

over-built walls. (Benvenuto, 1991) 

This rule has been attributed to Derand, although some historians believe the rule was in 

place well before his time.  Viollet le Duc, a French architect of the 19th century believed that 

evidence of application of the rule could be seen in gothic cathedrals and was therefore in place 

prior to Derand (Benvenuto, 1991).  Derand has been given credit based on formalizing the rule 

in a manner that was easily applicable to design.  
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Chapter 3 - The Catenary 

Near the end of the 17th century many scholars were trying to define the best form of an 

arch.  Robert Hooke was the first known scholar to theorize that a catenary, or shape of a 

hanging chain, could be used to define an arch.  Prior to this, mathematical scientists studied the 

shape of a hanging chain in an attempt to define its shape.  Many believed that a hanging chain 

formed a parabola but Huygens disproved this in 1646 (Heyman, 1998).  Later it would be 

discovered that the correct definition of catenary was that of a hyperbolic cosine (1998).   

 1675 – Robert Hooke (1635-1703) 

In 1675, Robert Hooke published an anagram within his book on helioscopes.  

Translated, the anagram reads, “As hangs the flexible line, so but inverted will stand the rigid 

arch” (Heyman, 1972, p. 76).  Hooke’s anagram describes the relationship between the shape a 

hanging line or chain takes when being held at each end and a rigid arch. Both the arch and the 

hanging chain must be in equilibrium, and the forces are simply reversed; since the chain can 

only carry tension, the arch therefore acts under compression.  This was Hooke’s solution to “the 

true mathematical and mechanical form of all manner of arches for building” (1972, p. 76).  This 

shape, the shape of the chain under its own weight, is a catenary. Hooke’s anagram did not 

provide means of determining this shape other than observing the shape of the hanging chain.   

Hooke’s publication of his finding in anagram form was not uncommon in the 

competitive scientific climate of the era (Heyman, 1998).  Hooke would not have wanted his 

findings to provide any clues to other scientists who were trying to find the solution to the 

correct shape of an arch.  Since Hooke likely did not have any mathematical proof to his solution 

or a mathematical equation of the shape, he would have hidden his findings so others could not 
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reach the solution before him because he wanted credit for discerning the correct behavior and 

shape.   

Publishing his anagram did give him credit for his discovery: “the statics of a hanging 

cord in tension were the same as that of an arch in compression” (Heyman, 1998, p. 41), but his 

anagram was not deciphered until after his death, by Richard Waller in 1705 (1998).  Hooke’s 

idea signifies that the shape a string takes under a set of loads, if rigidified and inverted, 

illustrates a path of compressive forces for an arch structure to support the same set of loads.  

This shape of the string and arch is a funicular shape for these loads. 

Until the middle of the 18th century, it was believed a hanging chain formed a parabola.  

While a hanging chain can form a parabola under specific loading, a parabola does not accurately 

describe the shape of chain of consistent weight hanging under its own weight.  In Figure 3 the 

difference between a catenary (or chain), a parabola, and a semi-circle can be seen.  The catenary 

falls between the parabola and semi-circle. 

 

Figure 3: Catenary vs. Parabola and Semi-Circle (Heyman, 1998, p. 43) 
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Another factor determining the shape the chain takes is the uniformity of weight of the 

chain.  It is possible to conclude a line can form any shape if weighted properly (Benvenuto, 

1991).  By adjusting the weight and uniformity of the chain, the shape of the chain will change. 

Similarly, by changing the loading on an arch or the weight of the arch, the thrust line within the 

arch will change. 

An equation for the shape of the catenary was not derived until 1690. James Bernoulli 

challenged Gottfried Leibniz, Christiaan Huygens, and John Bernoulli to derive this equation. 

They found the shape of the hanging chain could be described by the equation of a hyperbolic 

cosine (Lockwood, 1961). 

 1697 – David Gregory (1659-1708) 

Twenty years after Hooke’s discovery David Gregory used the same principles in 

describing the stability of arches.  In a letter Gregory wrote in 1697, he relates the catenary shape 

to the stability of an arch.  In the letter, he writes:  

“In a vertical plane, but in an inverted situation, the chain will preserve its figure without 

falling, and therefore will constitute a very thin arch, or fornix; that is, infinitely small 

rigid and polished spheres disposed in an inverted arch of a catenaria will form an arch; 

no part of which will be thrust outwards or inwards by other parts, but, the lowest part 

remaining firm, it will support itself by means of its figure … And, on the contrary, none 

but the catenaria is the figure of a true legitimate arch, or fornix.  And when an arch of 

any other figure is supported, it is because in its thickness some catenaria is included.  

Neither would it be sustained if it were very thin, and composed of slippery parts.” 

(Heyman, 1972)  
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The hanging chain as a series of small spheres is shown in Figure 4.  It’s shape, line BAC, 

reflected across line DE, is the shape of the ideal arch, line BFC. 

 

 

Figure 4: Hanging Chain/Arch as a series of small spheres (Poleni, 1748, p. 34) 

 

The italicized sentence was added by Ware, another scholar on arch mechanics, when he 

translated the letter in 1809 (Heyman, 1972).  Ware meant that if the catenary, or thrust line, of 

an arch with specific loading fits within the cross section of the arch then the arch is stable, but if 

any part of the catenary falls outside of the arch, then it is not.  While the catenary may be the 

ideal shape for an arch, an arch does not need to be shaped as a catenary to be stable, the 

catenary must fit inside it.  The catenary is the direction of force within the arch.  Gregory also 

notes, while the chain represents a very thin arch that will theoretically stand up, this is only 

under perfect conditions and thus the thickness of the arch must be greater than the thrust line.    
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Chapter 4 - Theories Neglecting Friction 

Many theories on the behavior of arches were published starting at the very end of the 

17th century.  In order to come to these theories, scholars had to simplify the arch into a system 

more easily analyzed.  At this time, friction was not understood well and was ignored for 

simplicity.  The theories neglecting friction laid the groundwork for future methods but were not 

themselves accurate.   

 1695 – Philippe de la Hire (1640-1718) 

In his Traite de mécanique of 1695, de la Hire proposes a way to determine the weight of 

voussoirs, a wedge shape element used in building an arch, needed to stabilize an semicircular 

arch of a given shape.  In this method, de la Hire assumes the planes of contact between the 

voussoirs are infinitely smooth, therefore neglecting friction.  He also assumes the forces 

between the voussoirs act perpendicularly to the plane of contact.   

 His propositions give geometric rules for determining the weights of the voussoirs.   He 

applies the weights of all the voussoirs at their respective centers of gravity, then draws a 

horizontal line through the center of gravity of the keystone (line EP in Figure 5).  The lines of 

contact between the voussoirs are then extended to meet this horizontal line in one direction and 

the center point of the arch in the other.   
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Figure 5: De la Hire’s model for calculating voussoir weight (Hire, 1695, p. 466) 

 

The triangles now drawn around each voussoir created by the extended lines of joints on either 

side of the voussoir and the line EP can be used to find the required weight of each voussoir.  

The ratio of lengths of each of these sides is used to find the ratios between the weight of the 

voussoir and the forces acting on the voussoir at each joint.   

Starting with an assumed weight for the keystone, the ratios can be used to find the forces 

acting perpendicular to each end of the keystone which can then be used on the next voussoir to 

find its required weight by ratios, repeating the process to the last voussoir.  The forces acting 

between the voussoirs act along the line between their centers of gravity.  Each voussoir has 

three forces that require balancing; its self-weight and the force it exerts on the two voussoirs 

adjacent to it.  Starting with the keystone, the force acting upon its neighboring voussoir is found 

by the following ratio: 
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 𝑄: 𝐹𝑙: 𝐹𝑟 = 𝐾𝐿: 𝐶𝐾: 𝐶𝐿 ( 1 ) 

Here, Q, Fl, and Fr are all forces acting from the center of mass of the voussoir. Fl acts 

perpendicular to the left joint and Fr acts perpendicular to the right joint. K is the point of the 

intersection of the line of the left joint of the keystone and the horizontal line drawn through the 

center of mass of the keystone. L is the point of the intersection of the line of the right joint of 

the keystone and horizontal line drawn through the center of mass of the keystone. KL represents 

the length between points K and L.  Point C is the center of the arch and CK and CL represent 

the distance between points C and K and C and L, respectively.  In this scenario the weight of the 

keystone and the length of each segment are known, so the forces can be calculated.  Once the 

forces the keystone exerts on the adjacent voussoirs are known, the same process can be applied 

for the voussoirs adjacent to the keystone.  The forces for the voussoir adjacent to the right of the 

keystone are shown in Figure 6. 

 

Figure 6:  Forces acting on a voussoir (Benvenuto, 1991, p. 326) 
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In this case, Fl is known.  It is Fr from the keystone calculation.  A similar ratio to the keystone 

ratio can be used to find Q2 and Fr. 

 𝑄2: 𝐹𝑙: 𝐹𝑟 = 𝐿𝑂: 𝐶𝐿: 𝐶𝑂 ( 2 ) 

LO, CL, and CO are the lengths of the line segments shown in Figure 5.  The same method as 

was used for the keystone can be used here.  This method can be repeated across the arch span, 

with Fr being substituted as Fl in each subsequent voussoir and the line segments measured from 

Figure 5.   

The last voussoir is not enclosed in a triangle because the edge line of the voussoir is 

parallel to the horizontal line formed through the center of gravity of the keystone.  This implies 

the weight of the last voussoir must be infinite.  However, de la Hire explains friction would 

solve this.  This makes his assumption of frictionless joints incorrect, as his model demonstrates 

that with this assumption no stone is heavy enough to make the arch stable.  While de la Hire’s 

process for designing arches was incorrect, his model was examined and expanded on by other 

scholars also looking to explain the behavior of arches. 

 1729 – Pierre Couplet (1670-1744) 

Pierre Couplet presented a memoir to the Academiè Royale des Sciences in 1729 titled 

De la poussee des voutes.  Similar to de la Hire’s 1695 memoir, he considers a frictionless arch 

by determining the required weight of each voussoir based on the known weight of the keystone 

(Benvenuto, 1991).  

Using Figure 7 to describe Couplet’s model, the lines of the joints separating the 

voussoirs will, if extended, pass through point O.  Point O is the point at which the lines of the 

joints between the abutments and arches, and the vertical line drawn from the center of the 

keystone, intersect.  These lines, SO, GO, and λO are shown in Figure 7. 
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Figure 7: Couplet’s frictionless arch (Benvenuto, 1991, p. 339) 

 

 An improvement over Philippe de la Hire’s method, Couplet’s method for determining 

the weight of the voussoirs can be utilized for arches of any shape and for arches of non-uniform 

thickness, as shown in Figure 7.  He starts by finding forces FAl and FAr along lines AE and AF, 

respectively, based on the known weight of the keystone, QA.  FAl and FAr are the forces acting 

perpendicular to the left and right joints of the keystone, respectively.  Point A is the center of 

gravity of the keystone and lines AE and AF are perpendicular to the joints between the keystone 

and adjacent voussoirs.  Once these forces, FAl and FAr, are determined, the weight of the next 

voussoir can be determined.  Point B is the center of mass of voussoir B.  The weight of this 

voussoir can be applied vertically from this point, and per Couplet, the force FAl is transposed 

from point A to point B (AE is equal to BH).  To find the resultant force from voussoir B acting 

on voussoir C, FB; which acts perpendicular to the joint between these two voussoirs; and the 

weight of the voussoir, QB, the force triangle, BHI, is balanced based on the triangle’s geometry 
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(Benvenuto, 1991).   This process continues to find the weights of all the voussoirs.  This method 

works correctly unless the joints at the abutments are horizontal, in which case Couplet’s theory 

has the same problem as de la Hire’s, and the weight of the final voussoir is found to be infinite.  

Couplet concurs with de la Hire that the last stone cannot move due to friction, and therefore a 

voussoir of infinite weight is not needed – the loadbearing system as a whole is in equilibrium 

(Benvenuto, 1991).    

 Couplet provides a simpler method of finding voussoir weights and thrusts by examining 

the geometry in Figure 7.  As shown, a line is drawn between point S and point λ.  Then, 

segments XY, VX, TV, and ST on this line are found to be proportional to the weight of the 

voussoir they represent (Benvenuto, 1991).  As the weight of the keystone is already known and 

this weight corresponds to segment XY, the rest can be found through simple ratios.   

 In the same method, the lines OX, OV, OT, and OS can be used to find the thrust of each 

voussoir on the block below it (Benvenuto, 1991).  The thrust of the keystone on the adjacent 

voussoir must be found from the weight of the keystone using geometry.  Then by ratios, the rest 

of the thrusts can be found 

 In this memoir, Couplet also briefly discusses centering.  He states only the voussoirs 

within 30° of horizontal will not put force onto the centering.  Rather, only the voussoirs within 

60° of the crown of the arch will be supported by the centering (Benvenuto, 1991).   

 1773 – Charles-Augustin de Coulomb (1736-1806) 

In 1773, approximately 50 years after Couplet, Coulomb submitted his memoir Sur une 

application des règles de Maximis & Minimis à quelques Problemes de Statique., relatifs à l’ 

Architecture to the Royal Academy of Science in Paris who published it in their Memoires de 

Mathematique & de Physique in 1776.  Section 27 of this memoir considers arches neglecting 
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both friction and cohesion of the joints.  The arch he considers in this problem is one of 

infinitesimal thickness and the thrust, P, acts perpendicular to the joint at point M, shown in 

Figure 8.   

 

Figure 8: Geometry of Coulomb’s Arch statics (Coulomb, 1776)  

 

The thrust at this location can be represented in a horizontal component and a vertical 

component.  Coulomb refers to the horizontal component, Qφ, as π, and the vertical component, 

QZ, as Φ.  For equilibrium, all forces between a and M must be resolved in the thrust at M.  

Therefore, it is possible to solve for π and Φ.  He additionally defines “aP = y, PM = x, Mq = dy, 

qM’ = dx” (Heyman, 1972, p. 61).  With these defined, Coulomb, using calculus, states: 

 
𝑃

𝑑𝑥

𝑑𝑠
= 𝜋 ( 3 ) 

And  

 
𝑃

𝑑𝑦

𝑑𝑠
= Φ ( 4 ) 
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Dividing ( 3 ) by ( 4 ) gives the equation for the slope of an arch. This equation is: 

 𝑑𝑥

𝑑𝑦
=

π

Φ
 ( 5 ) 

He gives this equation as “the shape of an arch when acted upon by any given forces” (Heyman, 

1972).   

 He then uses this equation for the shape of an arch in three corollaries.  The first corollary 

is the case of an arch without thickness loaded under its own weight.  For this case, the only 

forces acting on section mM are the horizontal thrust at a and the weight of the arch from a to M.  

Equation ( 5 ) becomes: 

 𝑑𝑥

𝑑𝑦
=

A

∫ 𝑝 ∗ 𝑑𝑠
 ( 6 ) 

Here A is the horizontal thrust and p is weight per unit length of the arch (Heyman, 1972).  Using 

this equation, the uniform weight of an arch needed for a given curve is found, or inversely, the 

curve needed for a given weight of arch is found.  As any built arch will have thickness, this 

method is only theoretical.  

 Coulomb’s second corollary now considers the arch having a thickness.  This thickness, 

which Coulomb defines as the variable z, is the distance between M and m in Figure 9: .   
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Figure 9: Coulombs geometry for an arch of any shape (Coulomb, 1776) 

 

For calculation purposes, Coulomb defines the area of section MM’mm’ as: 

 
𝑀𝑀′𝑚𝑚′ =

𝑧𝑑𝑠(2𝑅 + 𝑧)

2𝑅
 ( 7 ) 

This equation for area can be used in equation ( 6 ) as a substitute for weight per unit length of 

the arch.  In corollary 1, Coulomb found the equation for an arch of an infinitesimal thickness 

and p was the weight of that arch per unit length.  With an arch of finite thickness, the arch area, 

equation ( 7 ), is substituted for arch weight in equation ( 6 ), and, assuming the arch is 

homogeneous and of constant thickness the equation becomes: 

 dx

dy
=

A

∫
zds(2R + z)

2R

 ( 8 ) 

This can be rearranged to: 

 
Ad (

dy

dx
) =

zds(2R + z)

2R
 ( 9 ) 

Coulomb states the radius can be written in terms of the change in ds, dx, and dy: 
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R =

ds3

d(dy)dx
 ( 10 ) 

Which rearranged gives: 

 
d (

dy

dx
) =

ds3

Rdx2
 ( 11 ) 

Combining equations ( 9 ) and ( 11 ): 

 A

R
(

ds

dx
)

2

=
z(2R + z)

2R
 ( 12 ) 

This equation can also be rearranged to give: 

 

R + z = [R2 + 2A (
ds

dx
)

2

]

1/2

 ( 13 ) 

Which Coulomb gives as the equation for any arch under gravity loading (Heyman, 1972).   
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Chapter 5 - Theories Including Friction 

The scholars studying structural mechanics and arches eventually realized the need to 

include friction in the behavior and stability of arches.  Some early theories, such as that of de la 

Hire in 1712, include friction as an infinite force while theories from the second half of the 18th 

century were aware of friction’s proportional relationship with the contact force.   

 1712 – Philippe de la Hire (1640-1718) 

In 1712, de la Hire submitted another memoir, Sur la construction des voûtes dans les 

édifices, discussing a theory of the behavior of semi-circular arches and a method of design. 

Unlike his memoir of 1695, he did not neglect friction but rather assumed friction was great 

enough to prevent sliding between the voussoirs.  In this memoir he focuses on abutments in 

addition to the arch.  De la Hire wrote, “when the piers of an arch are too weak to carry the 

thrust, that arch breaks at a section somewhere between the springing and the keystone” 

(Heyman, 1972, p. 83).  His theory is based on his observations of vaulted structures and their 

faults or failures.  He states a semi-circular arch will break at 45° between the impost and 

keystone, creating a hinge in the arch.  After the arch breaks, the top section drops due to its 

weight and pushes the two other sections of the arch and abutments apart and they will rotate 

around the outer base of the abutments (Benvenuto, 1991, p. 332).  This movement is shown in 

Figure 10. 
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Figure 10: De la Hire's theory on arch movement (Benvenuto, 1991, p. 333) 

 

 As the two portions of the arch, including the abutments, rotate around their bases, only 

the intrados of the lower arch portion is in contact with the top arch portion.  The thrust of the 

arch is transferred through this point.  In order to determine the stability of the structure, de la 

Hire sums the moments about the outer edge of the abutment (Point A in Figure 10, Point H in 

Figure 11) (Heyman, 1972, p. 83).  De la Hire then derives a method to determine the minimum 

width of the abutment needed to stabilize the arch.  His geometric method uses the diagram in 

Figure 11. 
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Figure 11: De la Hire's geometry for determining abutment width (de la Hire, 1713, p. 71) 

 

 If the weight of the top portion of the arch is Qc, then the force of the thrust acting 

perpendicular to the 45° break at the point L is 𝑄𝑐 ∗ √2.  A line is then drawn from point L where 

the arch breaks to point H, the outer edge of the abutment and another line perpendicular to this 

line at point L.  The force of the thrust is broken down into components parallel to line LH and 

LD.  He then applies the weights of the abutment and lower arch to a point T, the horizontal 

center of mass of the abutment.  These forces are seen in Figure 12, where D is the portion of 

𝑄𝑐 ∗ √2 perpendicular to the lever arm LH (Benvenuto, 1991, pp. 332-333). 



25 

 

Figure 12: Abutment Forces (Benvenuto, 1991, p. 333) 

 

 Benvenuto describes the method de la Hire uses from here as intricate and almost obscure 

(Benvenuto, 1991, p. 332).  Indeed, de la Hire’s process for determining the required weight of 

abutment requires significant manipulation of variables.  He notes the mechanics determines “the 

ratio between Qc and D is equal to the ratio between LG and CG” (Benvenuto, 1991, p. 334).  

CG and LG can be determined based on the following equations: 

 
𝐶𝐺 = 𝐶𝐸 − (

𝐿𝐸

𝐿𝐴
) (𝐻𝑆 − 𝑆𝐴) ( 14 ) 

 

𝐿𝐺 = √𝐿𝐸2 +
𝐿𝐸2

𝐿𝐴2
(𝐻𝑆 + 𝑆𝐴)2  ( 15 ) 

Combining these equations with the known ratios and having a known Qc; weight of 45° of the 

arch; the force D is determined. 
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D = Qc

(CE ∗ LA) − (LE ∗ HS) − (LE ∗ SA)

LE ∗ √LA2 + (HS + SA)2
 ( 16 ) 

 Another force needed is Q.  De la Hire assumes the arch and abutment are equivalent 

densities and thicknesses and therefore can be determined based on area.  The weight Q can be 

found by the following equation. 

 

𝑄 = (𝐻𝐵 ∗ 𝐻𝑆) +
(

1
2 𝐻𝑆 + 𝑇𝑂) 𝑄′𝑐

1
2 𝐻𝑆

 ( 17 ) 

Here the first portion of equation ( 17 ) is the weight, or area, of the abutment and the second 

portion is the lower portion of the arch adjusted to act through the center of mass of the 

abutment.  Q’c is the weight of the lower portion of the arch.  If the lower portion of the arch has 

the same density as the upper portion, Q’c will equal Qc. 

 Now de la Hire states based on the law of the lever: 

 𝐷 ∗ 𝐻𝐿 =  𝑄 ∗ 𝐻𝑇 ( 18 ) 

at the limit state of stability for the arch.  To ensure stability the right side of the equation must 

be greater than or equal to the left.  The distance HL is found by equation ( 19 ) and by 

substituting all known quantities into equation ( 18 ), equation ( 20 ) is derived. 

 𝐻𝐿 = √(𝐻𝑆 + 𝑆𝐴)2 + 𝐿𝐴2 ( 19 ) 

 1

2
(𝐻𝐵 ∗ 𝐿𝐸 ∗ 𝐻𝑆2) +

1

2
(𝑄′

𝑐 ∗ 𝐿𝐸 ∗ 𝐻𝑆) + (𝑄′
𝑐 ∗ 𝐿𝐸 ∗ 𝑇𝑂)

= (𝑄𝑐 ∗ 𝐶𝐸 ∗ 𝐿𝐴) − (𝑄𝑐 ∗ 𝐿𝐸 ∗ 𝐻𝑆) − (𝑄𝑐 ∗ 𝐿𝐸 ∗ 𝑆𝐴) 

( 20 ) 

All the variables in this equation except HS, the abutment thickness, are predetermined, the 

abutment thickness needed to stabilize the arch is found.   

 While de la Hire gives these equations in relation to a semi-circular arch, he states the 

equations can also be used for a variety of arch shapes.  All of the variables can also be applied 
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to an arch of any shape so the process of how it was derived will work for arches of other shapes. 

However, his assumption of the hinging location on the arch is incorrect so therefore the process 

as it relates to any arch is incorrect.   

 1729 – Bernard Forest de Belidor (1698-1761) 

Belidor’s La science des ingenieurs dans la conduit des travaux de fortification et 

d’architecture civile focuses, similar to de la Hire’s 1712 memoir, on determining the abutment 

thickness needed to stabilize an arch.  Belidor assumes, as does de la Hire, a hinge will form in 

an arch at 45° between the keystone and the impost.  Unlike de la Hire, Belidor assumes the 

force acts at the center of the arch and perpendicular to the joint (Benvenuto, 1991, p. 336).  This 

change in the location of the thrust makes the force diagram in Figure 12 change to look like the 

diagram in Figure 13. 

 

Figure 13: Belidor’s Location of Forces in an arch (Benvenuto, 1991, p. 337) 
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Belidor assumes the same behavior as de la Hire; when the hinge forms between the 

impost and keystone, the top arch segment will try to drop and cause the abutment and lower 

arch segment to rotate about point H.  Finding the force tangent to the arch at 45° is the same as 

in de la Hire’s method and is equal to 𝑄𝑐 ∗ √2 where Qc is the weight of the arch above the 

breaking joint to section aA as shown in Figure 14.  Where the arch is of consistent thickness and 

of homogenous material, Qc can also express the area.  F is equal to 𝑄𝑐 ∗ √2 in Figure 13. 

Thus, Belidor uses the geometry shown in Figure 14 to determine the forces and lever 

arms needed to balance moments about point H and find the minimum abutment thickness.  All 

dimensions except the width of the abutment are set prior to solving for the abutment width and 

therefore the abutment width is the only variable.   

 

Figure 14: Belidor’s arch geometry (Benvenuto, 1991, p. 338) 

 

 Belidor sets simple variables in order to simplify the equations.  He sets the abutment 

width, HS, equal to y; the abutment height, SK, equal to l; the horizontal distance between the 
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abutment intrados and the lower arch segment center of mass equal, RS, equal to b; and the 

horizontal distance between the intrados of the abutment and point L, KO-OC, equal to c 

(Benvenuto, 1991, p. 338).  The balancing moment equation can be written as: 

 𝐹 ∗ 𝐻Ω = 𝑄𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡 (
𝑦

2
) + 𝑄′

𝑐(𝑦 − 𝑏) ( 21 ) 

F has already been determined as equal to 𝑄𝑐 ∗ √2, and Q’c can be set equal to Qc as it is 

assumed the arch is constant thickness and made of homogenous material.  He then sets other 

dimensions in terms of his chosen variables.  It is interpreted from the diagram: 

 
𝐻Ω =

√2𝐻𝑁

2
 ( 22 ) 

And  

 𝐻𝑁 = 𝐻𝑌 − 𝑁𝑌 = 𝐻𝑌 − 𝑌𝐿 ( 23 ) 

Where 

 𝑌𝐿 = 𝑦 + 𝑐 ( 24 ) 

 𝐻𝑌 = 𝑙 + 𝑂𝐶 ( 25 ) 

Now by substituting equations ( 24 ) and ( 25 ) into equation ( 23 ) and by setting a new variable 

f equal to OC+l-c to simplify the equation:: 

 𝐻𝑁 = 𝑓 − 𝑦 ( 26 ) 

And  

 
𝐻Ω =

√2(𝑓 − 𝑦)

2
 ( 27 ) 

 The last variable needed is Qabutment.  As area is assumed to be proportional to weight, 

Qabutment is equal to ly.  Substituting all known variables into equation ( 21 ) gives: 

 
𝑄𝑐√2 ∗

√2(𝑓 − 𝑦)

2
=

𝑙𝑦2

2
+ 𝑄𝑐(𝑦 − 𝑏) ( 28 ) 
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After simplifying and solving for y using the quadratic formula: 

 

𝑦 =
−2𝑄𝑐

𝑙
+ √

4𝑄𝑐
2 + 2𝑙𝑄𝑐(𝑏 + 𝑓)

𝑙2
 ( 29 ) 

This method does not make any advancements on the work of de la Hire, as the only difference 

is the location of the force at the breaking joint.  Belidor’s assumption that the force will act at 

the center of the arch cross section contradicts his assumption of the hinging collapse of the arch.  

At the time of collapse, only the intrados of the arch will be in contact, therefore the force must 

pass through the intrados at the hinge location.  Therefore, de la Hire’s model will be more 

accurate as the hinge indicates the force is through the intrados.   

 1730 – Pierre Couplet (1670-1744) 

In his second memoir Seconde partie de l’examen de la poussee des voûtes, Couplet 

reiterates Da Vinci’s theorem on the stability of an arch, saying an arch will be stable “if the 

chord of half the extrados does not cut the intrados, but passes anywhere within the thickness of 

vault” (Benvenuto, 1991, p. 342).  The limiting case for this theorem is shown in Figure 15.  For 

this theorem, Couplet assumes the voussoirs of the semi-circular arch have infinite compressive 

strength and friction between the voussoirs prevents sliding failure.   
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Figure 15: Couplet’s Stability of an Arch based on Leonardo’s Theorem (Couplet, 1730)  

 

 While this method provides the thickness of an arch needed for stability, an arch of 

smaller thickness will not automatically be unstable.  In this memoir, Couplet proceeds to 

explain a theorem to determine the smallest uniform thickness of a semi-circular arch under only 

its own weight, based on his understanding of the failure of an arch.  For this theorem he 

assumes friction will be sufficient to prevent a sliding failure and therefore the arch will break at 

points of rotation about the extrados or intrados, which he calls charnières, or hinges (Benvenuto, 

1991).  Couplet says these hinges will occur at 45° from the horizontal and vertically at the 

crown of the arch (Heyman, 1972).  Couplet then derives an equation relating the thickness of 

the arch, t, to its average radius, R.  This relationship is: 

 𝑡

𝑅
= 10.1% ( 30 ) 
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Couplet’s assumption of the 45° hinge location was an assumption common at that time. This 

assumption greatly impacts the minimum thickness that Couplet is solving for. He assumes that 

the force acts through the hinge location and tangential to the intrados. This is a correct 

assumption of behavior however centuries later Jacques Heyman showed that the force is not 

parallel to the intrados at 45° (Heyman, 2009).  

In the 20th century, Heyman was able to form a transcendental equation for the exact 

location of the hinges in a semicircular arch based on the location where the force, or line of 

thrust, in an arch is tangential to the intrados.  This equation is (Heyman, 2009): 

 𝜋

2
= 𝛽 cos 𝛽 [

2𝛽 cos 𝛽 + sin 𝛽𝑐𝑜𝑠2𝛽 + sin 𝛽

2𝛽 cos 𝛽 + sin 𝛽𝑐𝑜𝑠2𝛽 − sin 𝛽 cos 𝛽
] ( 31 ) 

β, the angle between the crown and hinge, is 58° 49’ by this equation, significantly different 

from the common assumption in the early 1700’s of a 45° hinge location.  Heyman (1972) uses 

this angle in his equation for minimum safe thickness: 

 𝑡

𝑅
= 2

(𝛽 − 𝑠𝑖𝑛𝛽)(1 − 𝑐𝑜𝑠𝛽)

𝛽(1 + 𝑐𝑜𝑠𝛽)
 ( 32 ) 

He finds the minimum thickness to radius ratio equal to 10.6%, which while very close to 

Couplets ratio, makes Couplet’s ratio un-conservative. 

 1773 – Charles-Augustin de Coulomb (1736-1806) 

Also included in Coulomb’s 1773 memoir was an arch theory considering friction and 

cohesion between the voussoirs due to mortar.  Section 28 of his memoir does not give any 

practical methods for designing arches, but gives the required horizontal thrust to ensure stability 

of an arch under its own weight.  His rule is given based on the geometry in Figure 16, with the 

horizontal force at the crown being applied at point f.   
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Figure 16: Coulomb’s Arch Geometry including friction (Coulomb, 1776, p. 382) 

 

Coulomb defines the horizontal thrust at f as A.  GaMm is the portion of the arch above 

the joint Mm, R is the point at which the lines extended from Ga and mM meet and the angle 

between them is h.  φ is the weight of the section GaMm.  The portion of the horizontal thrust 

along Mm is A*sin(h).  The portion of the weight along Mm is φ*cos(h).  The portion of the 

horizontal thrust perpendicular to Mm is A*cos(h).  The portion of the weight perpendicular to 

Mm is φ*sin(h). 

 Coulomb finds the horizontal thrust required at f based on two mechanisms of failure.  

The first failure mechanism is the sliding of the voussoirs at joint Mm.  Coulomb writes an 

equilibrium equation for the joint based on its tendency to slide along joint Mm taking into 

account both friction along the joint and cohesion of the joint due to the mortar.  This equation 

is: 
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𝜙 cos ℎ − 𝐴 sin ℎ −

𝜙 sin ℎ + 𝐴 cos ℎ

𝑛
= 𝛿𝑀𝑚 ( 33 ) 

Here 1/n is the coefficient of friction and δ is the maximum tangential (or shear) stress the mortar 

between the joints can support.   

 He rearranges this equation to write the equation for the thrust A required to resist a 

sliding failure.  This equation is: 

 

𝐴 =
𝜑 (cos ℎ −

1
𝑛 sin ℎ) − 𝛿𝑀𝑚

sin ℎ +
1
𝑛 cos ℎ

 ( 34 ) 

Coulomb states this equation must be solved for multiple locations of joint Mm in order to find 

the values of A needed for stability against sliding failure at all joint locations.  The highest 

required value of A he calls this value A1.  And the thrust A at point f must be greater than this 

value.   

 This method ensures stability against the voussoir above joint Mm sliding down the joint, 

but sliding failure can also occur in the other direction.  For this case the signs of the forces from 

the thrust and cohesion in equation ( 34 ) are switched, giving the equation: 

 

𝐴 =
𝜑 (cos ℎ +

1
𝑛 sin ℎ) + 𝛿𝑀𝑚

sin ℎ −
1
𝑛 cos ℎ

 ( 35 ) 

The forces from the weight of the arch remain in the same direction.  This equation is solved for 

multiple locations of joint Mm to find the minimum value of A for equilibrium.  This value, 

distinguished as A2, is the maximum value of A allowed before the arch slides out or up at joint 

Mm.  The value of A must be between A1 and A2.  If values of A1 and A2 are found and A1 is 

greater than A2, equilibrium cannot be achieved.   
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 The second failure mechanism is the rotation of the arch around point M or m.  For 

stability, the force must pass through a point along the line between points M and m.  For this 

failure mechanism, B is defined as the horizontal thrust at point f, instead of A.  Coulomb writes 

the equation of equilibrium as: 

 
𝐵 ∗ 𝑀𝑄 = 𝜙 ∗ 𝐺𝑀 − 𝛿′(𝑀𝑚)2 

( 36 ) 

Here, δ’ is the maximum tensile stress the mortar between the voussoirs can carry.  The equation 

rearranged to solve for the horizontal thrust B is: 

 
𝐵 =

𝜙 ∗ 𝐺𝑀 − 𝛿′(𝑀𝑚)2

𝑀𝑄
 ( 37 ) 

For any location of Mm, B from equation ( 37 ) is the minimum magnitude for the resultant force 

that will pass at or above point M, thus providing stability.  It is necessary to solve for all joint 

locations to find the location with the largest value of B, which will be the minimum required 

value of B for the arch.  Coulomb calls this value B1 (Heyman, 1972). 

 Equation ( 37 ) defines the thrust from the equilibrium equation with respect to rotation 

around the intrados, or point M.  To discover the maximum thrust, the equilibrium equation must 

be found with respect to rotation around the extrados, or point m.  This equation for the 

horizontal thrust is: 

 
𝐵 =

𝜙 ∗ 𝑔′𝑞 + 𝛿′(𝑀𝑚)2

𝑚𝑞
 ( 38 ) 

This gives the maximum thrust magnitude which will support a stable arch (Heyman, 1972).  

The largest permissible B magnitude for a stable arch is the minimum value found by solving 

equation ( 38 ) for all joint locations.  This value Coulomb calls B2 (Heyman, 1972).   

 As with the case of sliding failure, the magnitude of the horizontal thrust exerted at f must 

be between B1 and B2 to ensure stability of the arch.  If B2 is less than B1, then the arch is not 
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stable.  As either collapse mechanism can occur, the minimum permissible value of the thrust at f 

is the larger of A1 and B1, and the maximum is the smallest of A2 and B2. 

 Coulomb comments often that it can be assumed friction is large enough sliding friction 

cannot occur and the case of the thrust A can be neglected.  He adds when an arch is first 

constructed it should be assumed there is no cohesion between joints.  The B thrusts become: 

 
𝐵1 =

𝜙 ∗ 𝐺𝑀

𝑀𝑄
 

( 39 ) 

 
𝐵2 =

𝜙 ∗ 𝑔′𝑞

𝑚𝑞
 ( 40 ) 

The values of B1 and B2 are found by the same method as previously outlined.  This method of 

calculating the thrust is most easily solved by calculating the thrust at each joint and using the 

required maximum or minimum.   

 This method of Coulomb’s is more theoretical than practical as it cannot be used to 

design the arch but rather to analyze the forces within it.  In addition, Coulomb deduces the 

single condition necessary for an arch to be stable – the line of thrust should be within the 

masonry arch at all locations along the arch. 

 1785 – Lorenzo Mascheroni (1750-1800) 

 In 1785 Lorenzo Mascheroni’s Nuove ricerche sull’equilibrio delle volte was published.  

In this publication, Maschheroni describes his methods for determining the necessary abutment 

size very similarly to de la Hire and Couplet.  He assumes infinite compressive strength of the 

arch, no tensile strength between voussoirs, and sliding cannot occur between voussoirs.  

However, while both de la Hire and Couplet base their models on resisting overturning of the 

abutment, Mascheroni also considers resisting sliding of the base of the abutment (Benvenuto, 

1991).  He also considers two separate collapse mechanisms.  The first collapse mechanism is 
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the mechanism first outlined by de la Hire. It is a sliding mechanism where the center portion of 

the arch slides downwards without friction at the imminent rupture of joints and infinite friction 

at the springings of the arch, shown in Figure 17. The second collapse mechanism corresponds to 

the five hinge mechanism identified by Couplet or Coulomb as shown in Figure 18, although he 

made no mention of Coulomb in his work.   

 

Figure 17: de la Hire Collapse Mechanism (Benvenuto, 1991, p. 416) 
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Figure 18: Couplet/Coulomb Collapse Mechanism (Benvenuto, 1991, p. 418) 

 

In addition to the abutment size being variable, he also assumes the locations of B and D in 

Figure 17 and Figure 18 are also variable.  After deriving equations for the stability of the arch, 

Mascheroni notes the equations must be solved for various locations of B to determine the 

weakest joint location and therefore the location of the hinge.   

 For Mascheroni’s model, based off the collapse mechanism of de la Hire, the geometry is 

in Figure 19. 
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Figure 19: Three-Segment Geometry (Benvenuto, 1991, p. 417) 

 

He gives equilibrium equations for sliding and overturning of the abutments.  HA, the horizontal 

force at the base of the abutment, which is the same magnitude as the horizontal component of 

the thrust at point B, although opposite in direction.  Therefore: 

 

𝐻𝐴 = 𝐻𝐵 = 𝑄𝐺 tan 𝛼 
( 41 ) 

Where QG is the weight of the arch from joint Bb to the crown and α is the angle between joint 

Bb and horizontal.  The force resisting this horizontal reaction is the force of friction which is the 

vertical force being exerted at the base multiplied by a friction factor.  The vertical force at the 

base VA is: 

 

𝑉𝐴 = 𝑄𝐺 + 𝑄𝑂 
( 42 ) 

Where QO is the weight of the abutment and portion of the arch below joint Bb.  The equilibrium 

equation for sliding of the abutment is: 
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𝑓𝑠𝑉𝐴 = 𝐻𝐴 
( 43 ) 

Substituting equations ( 41 ) and ( 42 ) into equation ( 43 ) yields: 

 

𝑓𝑠(𝑄𝐺 + 𝑄𝑂) = 𝑄𝐺 tan 𝛼 
( 44 ) 

The moment about the base, A, due to the horizontal component of the thrust at B is: 

 

𝑀 = 𝐻𝐵 ∗ 𝐵𝑀 
( 45 ) 

And the moment resisting the overturning is: 

 

𝑀𝑂 = 𝑄𝐺 ∗ 𝐴𝑀 + 𝑄𝑂 ∗ 𝐴𝑇 
( 46 ) 

For equilibrium: 

 

𝑀𝑂 = 𝑀 
( 47 ) 

So by equations ( 41 ), ( 45 ), ( 46 ), and ( 47 ): 

 

𝑄𝐺 ∗ 𝐴𝑀 + 𝑄𝑂 ∗ 𝐴𝑇 = 𝑄𝐺 tan 𝛼 ∗ 𝐵𝑀 
( 48 ) 

For stability, the left side of equations ( 44 ) and ( 48 ) must be greater than the right side and 

both equations must be solved for multiple locations of B to find the weakest section. 

 Mascheroni uses a similar method to solve for stability with Coulomb’s collapse 

mechanism (Figure 20).   
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Figure 20: Four Segment Geometry (Benvenuto, 1991, p. 418) 

 

He starts by idealizing the weight of the arch as acting at the hinge locations.  He sets QG as the 

weight of the arch segment BbCc and QO as the weight of the segment aAbB.  He then sets the 

vertical force at points A, B, and C based on the following ratios: 

 
𝑄𝐴 = 𝑄𝑂

𝑇𝑀

𝐴𝑀
 ( 49 ) 

 
𝑄𝐵 = 𝑄𝑂

𝐴𝑇

𝐴𝑀
+ 𝑄𝐺

𝑅𝐾

𝐵𝐾
 ( 50 ) 

 
𝑄𝐶 = 𝑄𝐺

𝐵𝑅

𝐵𝐾
 ( 51 ) 

From these equations he determines the horizontal and vertical resultant forces at A, HA and VA. 

 

𝐻𝐴 = (𝑄𝐵 + 𝑄𝐶) tan 𝛼 
( 52 ) 

 

𝑉𝐴 = 𝑄𝐴 + 𝑄𝐵 + 𝑄𝐶 
( 53 ) 



42 

Due to equilibrium, and balancing overturning, the horizontal force at B must be balanced so: 

 

𝑄𝐶 tan 𝛽 = (𝑄𝐵 + 𝑄𝐶) tan 𝛼 
( 54 ) 

α and β can be expressed in terms of ratios of length: 

 
𝛼 =

𝐴𝑀

𝐵𝑀
 ( 55 ) 

 
𝛽 =

𝐵𝐾

𝐶𝐾
 ( 56 ) 

Now equations ( 49 ) through ( 53 ), ( 55 ) and ( 56 ), are substituted into equations ( 43 ) and      

( 54 ) to find the equilibrium conditions for sliding and overturning, respectively.  These simplify 

to: 

 
𝑓𝑠𝑄𝑜 = 𝑄𝐺 (

𝐵𝑅

𝐶𝐾
− 𝑓𝑠) ( 57 ) 

For sliding equilibrium, and: 

 
𝑄𝑜

𝐴𝑇

𝐵𝑀
= 𝑄𝐺 (

𝐵𝑅

𝐶𝐾
−

𝐴𝑀

𝐵𝑀
) ( 58 ) 

Similar to the de la Hire model, the left side of equations ( 57 ) and ( 58 ) must be greater than or 

equal to the right in order for the arch to be stable and the equations must be solved for multiple 

locations of B to find the critical section. 
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Chapter 6 - Applications of Age of Enlightenment Theories 

While the previously explained theories and advancements of arch mechanics did not 

have an immediate impact on arch design, it’s trace is visible on a few structures during the age 

of enlightenment.  The domes of St. Paul’s Cathedral and St. Peter’s cathedral were either 

designed or analyzed by methods founded during the era.    

 St. Paul’s Cathedral 

On the 27th August, 1666, Sir Christopher Wren’s designs for a new dome of St. Paul’s 

Cathedral in London were approved.  Six days later the Great Fire of 1666 broke out and the plan 

for the new dome was halted.  Following the fire, Wren and Hooke were appointed to positions 

in charge of the rebuilding of the city.  While Wren was in charge of the building of churches 

throughout the city, he worked very closely with Hooke on many of them.  Following the fire, 

Wren submitted three designs of a new St. Paul’s Cathedral with the final design finally being 

approved in 1675.  The final design, the Warrant Design, was changed significantly from its 

original approved design to the built design, specifically in the design of the dome (Heyman, 

1998).   

Wren used Hooke’s analogy of an arch to a hanging chain to adjust the shape of the 

dome.  In addition to changing the shape of the dome, he changed the orientation of the base of 

the dome to be angled outward, as Hooke’s experiments demonstrated the force would never be 

transferred only vertically, in addition to changing the shape of the dome.  The final dome 

section is shown in Figure 21.   
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Figure 21: Cross Section of the dome of St Paul's Cathedral (Gwynn, 1755) 

 

As seen the interior support walls for the dome are inclined.  In no catenary but a weighted 

catenary that forms a semi-circular arch, will the catenary be vertical at its springing.  The most 

efficient transfer of forces will occur when the forces in the arch are able to transfer straight 

through the abutments.  Inclining the abutment walls inward helped to counteract the horizontal 

force exerted by the dome.   

The exterior dome structure is separate from the interior structure.  The exterior dome is 

shown in Figure 22.   
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Figure 22: Dome of St. Paul’s Cathedral (Gagnon, 2008) 

 

By having multiple walls, Wren could incline the exterior walls while orienting the interior walls 

for maximum stability and strength.  He accomplished a similar feat with the dome.  He built a 

semi-circular dome-like structure over the interior dome to achieve the desired architecture.  The 

outer dome is supported on framing supported by slanted walls eventually meeting the less 

slanted walls of the interior dome.   

 By using Hooke’s theorem on the ideal shape of an arched structure, the dome of St. 

Pauls Cathedral was the first dome built with inclined supporting walls for the purpose of 

minimizing thrust. 

 St. Peter’s Cathedral 

The masonry dome of St. Peter’s Church in the Vatican City is one of the largest masonry 

domes in existence.  In the 18th century the Vatican worried about the structural integrity of the 

dome of St. Peters Basilica (Figure 23).  Many scholars and scientists studied the dome and made 
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recommendations as to its repair but no one was able to fully answer the question of its integrity.  

In 1743 Pope Benedict XIV summoned the scholar Giovanni Poleni to the Vatican to examine 

the dome.  His analysis and recommendations of repair were submitted to the Vatican later that 

year and restoration began almost immediately.   

 

Figure 23: The Dome of St. Peter’s Basilica (Stuck, 2004) 

 

In 1748 Poleni’s treatise, Memorie istoriche della gran cupola del tempio Vaticano e de’ 

danni di essa, e de’ ristoramenti loro (Historical memoirs of the great dome of the Vatican 

church, it’s damage and restoration), was published.  In this treatise he outlined his analysis of 

the dome and the theories of scholars that were used in the dome’s evaluation.   

Poleni used the work of many of the scholars discussed previously in this report to 

analyze the dome of St. Peter’s.  All of the methods could not be readily utilized for the dome, as 

most were for an arch of uniform thickness and a segment of a dome; a cupola, does not possess 

uniform thickness (Figure 24).   
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Figure 24: Arch Segment vs. Cupola (Poleni, 1748) 

 

Poleni’s work is based largely off the idea of the catenary as a series of spheres, a concept taken 

from David Gregory and James Stirling, another scholar whose work paralleled that of Gregory.  

As the width of each section of the dome tapered to a point at the top, the spheres were required 

to be of non-uniform weight to correctly represent the shape of the catenary, decreasing in 

weight from the abutment to the crown.  Here Poleni states this decreasing weight of the dome as 

it nears the crown is “admirable form .  .  .  in which the parts from the impost on the pilaster up 

to the keystone were becoming smaller” (Benvenuto, 1991, p. 360).  He bases this hypothesis on 

the work of Couplet and his own work which shows this decreasing weight from top to bottom.   

 To begin his analysis, Poleni divides the cupola into wedge segments and records their 

length and weight.  This data is seen in Figure 25.   
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Figure 25: Properties of Poleni’s Wedges of St.  Peter’s Dome (Poleni, 1748, p. 47) 

 

 The first column identifies the wedge identification letter and number, the second column 

identifies the length of each wedge, and the third column the weight of each wedge.  Poleni 

finally modeled the cupola by proportioning down the weight of each wedge (column 4) and 

created lead spheres of these masses.  Linking these together he discovered the catenary showing 

the direction of forces within the dome.  The chain of the lead spheres is shown in Figure 26.  

This figure also illustrates this shape transposed onto the dome geometry (smaller dashed line). 
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Figure 26: Weighted Catenary of St.  Peter's Dome compared to its geometry (Poleni, 1748) 

 

Poleni concludes because the weighted catenary fits entirely within the geometry of the dome, 

then the dome is sound.  This was the first time a safe theorem of limit analysis was applied to a 

masonry dome. (Lopez, 2006)  This conclusion, based off the work of age of enlightenment 
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scholars was able to relieve the worries of Vatican leaders that the dome was in immediate 

danger of collapsing.   
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Chapter 7 - Conclusion 

The first significant growth of the study and application of structural statics and 

mechanics occurred during the Age of Enlightenment.  This beginning of research and 

understanding of behavior of materials and structures was the beginning of the field of structural 

engineering.  Scholars during the Age of Enlightenment sought to design structures which 

supported the loads they were expected to resist.  Prior to the advancements made during this 

time period, lack of understanding of material behavior led to significant overdesign of 

structures.  

During the Age of Enlightenment many scholars spent significant time studying the 

behavior of masonry arches.  These scholars discovered and understood the importance of 

knowing the path of force within an arch, known as the thrust line.  They applied, then 

revolutionary, rules of statics to arches in order to determine stability.  Robert Hooke defined this 

shape as a catenary, or the shape of a hanging chain.  David Gregory explained that for an arch to 

be stable the thrust line must remain entirely between the intrados and extrados of the arch.  

Other scholars sought to create methods of analysis and design of masonry arches.  These 

theories are able to be broken into two groups based on how they approached friction.  Scholars 

such as de la Hire, Couplet, and Coulomb published methods of design neglecting friction as 

well as methods including friction.  Their methods disregard friction and consequently all run 

into the same problem of requiring a voussoir of infinite weight at the base of the arch.  The 

scholars knew the presence of friction meant that this infinite weight voussoir was not needed. 

Perhaps for this reason, all three scholars went on to formulate new methods that included 

friction. 
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Scholars included friction in their methods in two ways.  Most assumed that friction 

completely inhibited sliding between voussoirs but Coulomb used the actual force of friction in 

his calculations.  Friction was not fully understood until the middle of the 18th century therefore 

scholars prior to this time understood friction but could not quantify it.  These scholars focused 

largely on the collapse mechanisms of the arches.  They used statics and in some cases 

mechanics to balance moments and forces.  Their statics depended on their assumptions about 

how the arch collapsed, and were updated by subsequent scholars as the location of the weakest 

section became known. 

The new understanding of arches was used in the design of St. Paul’s Cathedral in 

London and in the conditions assessment of St. Peter’s Cathedral in the Vatican.  Both used the 

model of the hanging chain to demonstrate the proper shape of the arch.  At the time, Vatican 

officials were worried that the dome of St. Peter’s was unstable and would possibly need to be 

taken down.  Poleni’s assessment of the dome proved it was stable and minimal repairs were 

needed.  Due to Poleni’s assessment, the dome is still standing today. 

The methods formulated during the Age of Enlightenment are the basis of most structural 

analyses used today.  They were the first methods based off of an understanding of structural 

behavior.  As such, significant assumptions were made that have been changed and refined over 

time as more advancements were made and the breadth of understanding grew.  While these 

rules are no longer used, they provide insight into the inception of scientific arch design.  In the 

words of Edmund Burke (1860, p. 518), “In history a great volume is unrolled for our 

instruction, drawing the materials of future wisdom from the past errors and infirmities of 

mankind”  
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Appendix A - Glossary 

Abutment – the support an arch sits on 

Catenary – The shape of a hanging chain held at both ends 

Extrados – the exterior line of an arch 

Intrados – the interior line of an arch 

Impost – the location where the arch meets the abutment 

Pilaster – another term for abutment 

Keystone – the voussoir at the center of an arch 

Springing – The joint where the arch meets the support 

Voussoir – an individual block of a masonry or stone arch 
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Appendix B - Figure Permissions 

Included here are fair use evaluations of figures used in this report.  Evaluations were 

only made for figures used from recent works. All figures from works published prior to the 

1900s were considered to be in the public domain. All photographs were found using Google’s 

image search tool and licensed for noncommercial reuse. 
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