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ABSTRACT 

Understanding irrigation water demand is vital to policy decisions concerning 

water scarcity.  This thesis evaluates irrigation water-use responses to changes in prices, 

while accounting for cross-sectional characteristics of irrigators’ resource settings.  An 

irrigator’s profit-maximizing decision is modeled in two stages.  In the first stage, he 

decides which crop to plant, and in the second stage he decides how much water to apply 

given the crop choice. 

This thesis employs an econometric modeling technique not previously used in 

the irrigation water demand literature, a multinomial logit selectivity model.  This 

econometric technique allows the intensive (change in water use for each crop in the 

short run) and extensive (change in water use in the long run due to changes in crop-

choice) margin effects to be computed in a simultaneous equation system.  A multinomial 

logit selectivity model has applications to many resource issues in production agriculture 

where the two-stage decision process is common.  The model is estimated from field-

level data on water use and crop-choice for a 25-county region in western Kansas over 

the period 1991-2004. 

Water use was found to be highly inelastic to the price of natural gas, but becomes 

more elastic as the price increases.  The intensive margin effect was significant for 

natural gas price.  The extensive margin effect only comprised half the total effect under 

high natural gas prices and was negligible for low prices.  However, the extensive margin 

effect under high natural gas prices declined over time due to more efficient irrigation 



 

systems and improved crop varieties.  The intensive margin effect explained most of the 

water use response from changes in other variables, including corn price.  An increase in 

corn price has a negligible extensive margin effect because corn is most often substituted 

with alfalfa, which has a similar water requirement.   

Inelastic demand implies that policies aiming to conserve the Ogallala Aquifer by 

increasing the price of water will not accomplish their purpose and will  affect irrigators’ 

incomes. More effective policies would be voluntary or mandatory quantity restrictions. 

However, efficient restrictions would need to account for spatial variation in the rate of 

depletion and the remaining saturated thickness. 



iv 

TABLE OF CONTENTS 

List of Figures ................................................................................................................... vii 

List of Tables ...................................................................................................................... x 

Acknowledgements........................................................................................................... xii 

CHAPTER 1 - Introduction ................................................................................................ 1 

CHAPTER 2 - Irrigation Water Policy............................................................................... 9 

2.1 Kansas Irrigation Water Policy............................................................................... 12 

CHAPTER 3 - Literature Review..................................................................................... 15 

3.1 Econometric Demand Studies................................................................................. 15 

3.2 Programming Demand Studies ............................................................................... 19 

3.3 Other Relevant Studies ........................................................................................... 21 

3.4 Conclusions............................................................................................................. 22 

CHAPTER 4 - Theoretical Model .................................................................................... 25 

4.1 Deriving Input Demands......................................................................................... 25 

4.2 Deriving Intensive and Extensive Marginal Effects ............................................... 29 

4.3 Proof that the Extensive Marginal Effect is Negative ............................................ 32 

CHAPTER 5 - Empirical Model....................................................................................... 34 

5.1 Empirical Estimation of Crop-Choice .................................................................... 34 

5.1.1 Marginal Effects............................................................................................... 37 

5.1.2 Hypothesis Testing........................................................................................... 38 

5.1.3 Goodness of Fit Measures................................................................................ 39 

5.1.4 Logit versus Probit ........................................................................................... 40 



v 

5.1.5 Assumption of Independence of Irrelevant Alternatives ................................. 42 

5.1.6 Multinomial versus Conditional ...................................................................... 43 

5.2 Empirical Estimation of Water Demand................................................................. 44 

5.2.1 Intensive and Extensive Marginal Effects ....................................................... 46 

CHAPTER 6 - Data .......................................................................................................... 48 

6.1 WIMAS (Water Information Management and Analysis System)......................... 49 

6.2 Output Prices........................................................................................................... 51 

6.3 Input Prices ............................................................................................................. 52 

6.4 Soil Characteristics ................................................................................................. 53 

6.5 Weather ................................................................................................................... 54 

6.6 Time Trend ............................................................................................................. 55 

6.7 Data Limitations ..................................................................................................... 57 

6.8 Descriptive Statistics............................................................................................... 58 

CHAPTER 7 - Results ...................................................................................................... 69 

7.1 Model Estimation and Evaluation........................................................................... 69 

7.2 Impact of Variables on Crop-Choice and Water Use ............................................. 79 

7.2.1 Impact of Natural Gas Price............................................................................. 80 

7.2.1.1. Interaction of Natural Gas Price Impact with Irrigation Systems 87 

7.2.1.2. Interaction of Natural Gas Price Impact with Time Trend .......... 90 

7.2.1.3. Interaction of Natural Gas Price Impact with Well Capacity ...... 92 

7.2.2 Impact of Crop Prices ...................................................................................... 96 

7.2.3 Impact of Climate/Weather Conditions ......................................................... 102 

7.2.4 Impact of Soil Characteristics ........................................................................ 103 



vi 

7.2.5 Impact of Irrigation System ........................................................................... 106 

7.2.6 Impact of Well Capacity ................................................................................ 108 

7.2.7 Impact of Technological Improvements ........................................................ 112 

CHAPTER 8 - Conclusions and Implications ................................................................ 114 

8.1 Research Implications........................................................................................... 116 

8.2 Policy Implications ............................................................................................... 119 

CHAPTER 9 - References .............................................................................................. 123 

Appendix 1 – Alternative Model Specifications............................................................. 128 

Pumping Cost versus Natural Gas Price ..................................................................... 128 

Alternative Expected Price Series............................................................................... 132 



vii 

 

LIST OF FIGURES 

Figure 1.1 Averaged 1997-1999 Saturated Thickness for the Ogallala Aquifer in Kansas 4 

Figure 1.2 Change in Saturated Thickness for the Ogallala Aquifer in Kansas, 

Predevelopment to 1997-99 ........................................................................................ 4 

Figure 1.3 Percent Change in Saturated Thickness for the Ogallala Aquifer in Kansas, 

Predevelopment to 1997-99 ........................................................................................ 5 

Figure 2.1  Irrigation Water Policy Options ..................................................................... 11 

Figure 5.1 Cumulative Probability Densities of Normal and Logistic Functions............. 41 

Figure 6.1 Kansas Agricultural Statistics Districts Map................................................... 51 

Figure 6.2  Irrigated Acreage in Kansas by Crop ............................................................. 56 

Figure 6.3 Average Irrigated Corn Yield.......................................................................... 56 

Figure 6.4 Average Irrigated Soybean Yield .................................................................... 56 

Figure 6.5 Average Irrigated Sorghum Yield ................................................................... 57 

Figure 6.6 Average Irrigated Wheat Yield ....................................................................... 57 

Figure 6.7  Histogram of Parcel Size ................................................................................ 58 

Figure 6.8 Alfalfa Price Series.......................................................................................... 63 

Figure 6.9 Corn Price Series ............................................................................................. 63 

Figure 6.10 Sorghum Price Series .................................................................................... 64 

Figure 6.11 Soybean Price Series ..................................................................................... 64 

Figure 6.12 Price of Natural Gas ($/Mcf) 1991-2004....................................................... 64 

Figure 7.1  Probability of Planting Each Crop as Natural Gas Price Changes ................. 81 



viii 

Figure 7.2  Expected Water Use as Natural Gas Price Changes....................................... 83 

Figure 7.3  Probability of Planting Corn or Sorghum under Different Systems as Natural 

Gas Price Increases ................................................................................................... 87 

Figure 7.4  Expected Water Use under Different Systems as Natural Gas Price Changes88 

Figure 7.5  Probability of Planting Corn or Sorghum for Different Years as Natural Gas 

Price Increases .......................................................................................................... 90 

Figure 7.6  Expected Water Use for Different Years as Natural Gas Price Changes ....... 91 

Figure 7.7  Extensive Marginal Effect when Natural Gas is $5/Mcf as Time Changes ... 92 

Figure 7.8  Probability of Planting Corn or Sorghum for Well Capacities (gpm) as 

Natural Gas Price Increases ...................................................................................... 93 

Figure 7.9  Expected Water Use for Well Capacities as Natural Gas Price Changes....... 94 

Figure 7.10  Extensive Marginal Effect when Natural Gas is $5/Mcf as Well Capacity 

Changes..................................................................................................................... 95 

Figure 7.11  Impact of Corn Price on the Probability of Planting each Crop................... 97 

Figure 7.12  Impact of Corn Price on Expected Water Use.............................................. 98 

Figure 7.13  Probability of Planting Corn under Different Systems as Corn Price 

Increases.................................................................................................................... 99 

Figure 7.14  Probability of Planting Corn for Different Years as Corn Price Increases. 100 

Figure 7.15  Impact of Alfalfa Price on the Probability of Planting each Crop ............. 101 

Figure 7.16  Impact of Land Classification on the Probability of Planting Each Crop .. 103 

Figure 7.17  Impact of Land Classification on Expected Water Use.............................. 104 

Figure 7.18  Impact of Permeability on the Probability of Planting Each Crop............. 105 

Figure 7.19  Impact of Well Capacity on the Probability of Planting Each Crop .......... 108 



ix 

Figure 7.20  Impact of Well Capacity on Water Use for Corn ....................................... 109 

Figure 7.21  Impact of Well Capacity on Overall Expected Water Use......................... 110 

Figure 7.22  Impact of Technological Improvement on Probability of Planting Each Crop

................................................................................................................................. 112 

Figure 7.23  Impact of Technological Improvement on Expected Water Use ............... 113 

Figure 9.1 Percent Acres Planted to Each Crop and Average Hydrological Characteristics 

by County and GMD............................................................................................... 131 



x 

 

LIST OF TABLES 

Table 6.1  Percent of Acres Planted to each Crop by Year............................................... 59 

Table 6.2  Descriptive Statistics of Annual Water Use per Acre (inches) by Crop.......... 60 

Table 6.3  Percent of Acres Planted with each Irrigation System .................................... 60 

Table 6.4  Percent of Acres Under Each Irrigation System by Year ................................ 61 

Table 6.5  Descriptive Statistics of Well Capacity (gpm) by Crop .................................. 62 

Table 6.6  Correlation Matrix of Expected Crop Prices ................................................... 62 

Table 6.7  Percent Acres Planted to Each Crop and Well Capacity by County and GMD

................................................................................................................................... 66 

Table 6.8 Descriptive Statistics of Selected Variables ..................................................... 67 

Table 6.9  Descriptive Statistics of Normalized Prices..................................................... 68 

Table 7.1  Multinomial Logit Model Parameter Estimates............................................... 71 

Table 7.2  Logit Goodness of Fit Measures...................................................................... 72 

Table 7.3  Frequencies of Actual and Predicted Outcomes .............................................. 73 

Table 7.4  Marginal Effects on Crop-Choice Averaged Across Observations ................. 74 

Table 7.5  Parameter Estimates for Water Use OLS Regressions .................................... 76 

Table 7.6  Marginal Effects of Prices in Water Use Regressions ..................................... 78 

Table 7.7  Intensive and Extensive Marginal Effects at Different Natural Gas Prices..... 85 

Table 7.8  Marginal Effects by Crop when Natural Gas is $5/Mcf .................................. 86 

Table 7.9  Marginal Effects by Irrigation System when Natural Gas is $5/Mcf .............. 89 

Table 7.10  Marginal Effects by Year when Natural Gas is $5/Mcf ................................ 92 



xi 

Table 7.11  Marginal Effects by Well Capacity when Natural Gas is $5/Mcf ................. 95 

Table 7.12  Intensive and Extensive Marginal Effects for Corn Price ............................. 98 

Table 7.13  Intensive and Extensive Marginal Effects for Well Capacity...................... 111 

 



xii 

ACKNOWLEDGEMENTS 

I would like to first and foremost acknowledge the help and support provided by 

my major professor, Dr. Jeff Peterson.  Dr. Peterson provided important direction and 

focus for this research.  I would also like to acknowledge helpful comments and critique 

from my committee members, Dr. Jeff Williams and Dr. Tian Xia.  Dr. Bill Golden 

provided help compiling the data.  But above all, I acknowledge that I am completely 

dependent on my Lord and Savior, Jesus Christ.



1 

CHAPTER 1 - INTRODUCTION 

Water scarcity is a serious issue across the world, and understanding irrigation 

water demand plays an integral role in developing policies.  In the past, water scarcity 

issues were addressed by expanding the supply of water by exploiting natural resources, 

such as through building dams or drilling deeper wells.  However, this option is rapidly 

becoming infeasible and impractical as the convenient natural resources are exploited, so 

reasonable policies addressing water scarcity must focus on reducing the demand for 

water.  In particular, obtaining irrigation water demand elasticity estimates is especially 

critical for evaluating the efficacy of raising prices to reduce consumption.  If demand is 

inelastic, price increases will be ineffective at reducing water use and have an adverse 

effect on irrigators’ incomes.  The impacts that other factors, such as crop price and 

irrigation technology changes, have on water use have important policy implications also. 

Irrigation water is vital to the western Kansas economy not only because it 

increases the productivity of the land, but because many businesses are needed to support 

the input-intensive crops produced.  Increasing the productivity of the land not only adds 

value for irrigators, but it also provides feed for the cattle industry and inputs for the 

emerging ethanol industry.  The Ogallala Aquifer, which is one of the most significant 

water resources in the United States and the primary source of water for western Kansas, 

is essentially a finite resource because there is very little recharge, making future water 

availability dependent on current usage. 

Irrigated agriculture consumed 89 percent of water in Kansas in 1995.  Most of 

the irrigation is confined to western Kansas, so this number is significantly larger for 
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western Kansas communities.  In addition, the source of 93 percent of this consumption 

was from groundwater supplies as opposed to surface water.  Kansas ranked as the 14th 

largest consumer of water in the United States (Solley, Pierce, and Perlman).   

The Department of Commerce and the U.S. Congress understood the importance 

of research to this issue, so they commissioned the High Plains Ogallala Regional 

Aquifer study, which was completed in 1982 (Peterson and Bernardo).  For the Kansas 

portion of the Ogallala region, the study actually found that the depletion problem was 

not as dire as suspected at the time, projecting that over the next 40 years, irrigated acres 

would decrease due to increasing energy prices and limited water supply.  Yields and real 

crop prices were expected to increase, but the overall effect was an expected reduction in 

annual water use due to reduced acres and improved irrigation efficiency (High Plains 

Study Council). 

However, the trend in energy prices up to the present fell well below projections, 

and together with improved efficiencies and larger-than-expected increases in yields, this 

caused an increase in irrigated acres.  Not only have the number of irrigated acres 

increased since 1982, but production of water-intensive crops such as alfalfa and corn on 

irrigated acres has increased.  This has been in large part due to the unexpectedly large 

increases in corn yields.  In spite of the increase in the acreages of water-intensive crops, 

water use has decreased since 1982, although not as much as the Ogallala Regional 

Aquifer study predicted (Peterson and Bernardo). 

Figure 1.1 shows the current (1997-1999) estimated saturated thickness of the 

aquifer in Kansas.  Southwest Kansas has the richest supply of water available with much 

of the region having a saturated thickness between 200 and 300 feet, and some areas 
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having more than 300 feet.  Meanwhile, much of northwest and south central Kansas has 

a saturated thickness of 100-200 feet.   

Figure 1.2 and Figure 1.3 show the change in saturated thickness since the aquifer 

was first developed for irrigation use in absolute and relative measures, respectively.  

Even though southwest Kansas has the largest saturated thickness, a large amount of the 

aquifer has been depleted in that region, even in relative terms; many areas have 

witnessed a decline in saturated thickness exceeding 100 feet (or 30%). 

West central Kansas had a very shallow saturated thickness even at the time of 

predevelopment, but a large fraction of the initial resource has now been depleted.  Figure 

1.3 shows that much of the region has seen 45-60% reductions in the original saturated 

thickness with some areas depleting more than 60% of the resource. 

From these figures, it is evident that the supply of water will be an issue of 

increasing importance.  Currently, the issue is of greatest urgency to west central Kansas, 

but the concern will spread.  Even though southwest Kansas has large reserves, this 

region is quickly depleting the aquifer.  This has led to an increasing interest in 

conserving the aquifer among policy makers and irrigators and warrants research to 

evaluate policy options. 
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Figure 1.1 Averaged 1997-1999 Saturated Thickness for the Ogallala Aquifer in 

Kansas 

 

Source: Kansas Geological Survey 

Figure 1.2 Change in Saturated Thickness for the Ogallala Aquifer in Kansas, 

Predevelopment to 1997-99 

 

Source: Kansas Geological Survey 
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Figure 1.3 Percent Change in Saturated Thickness for the Ogallala Aquifer in 

Kansas, Predevelopment to 1997-99 

 

Source: Kansas Geological Survey 

This thesis does not attempt to answer whether or not conserving the Ogallala 

aquifer is the most desirable policy goal, but instead evaluates the efficacy of policies to 

conserve the aquifer, assuming conservation is a policy consensus.  Because of the finite 

nature of the resource in Kansas, conserving for the future has an opportunity cost in 

terms of foregone production in the present.  Whether this tradeoff can be justified in 

economic efficiency terms is debated in the literature.  

As noted earlier, quantification of water demand is essential to evaluate 

alternative conservation policies.  Research in estimating water demand has typically 

used programming models (Shumway; Howitt, Watson, and Adams; Bernardo et al.; 

Buller and Williams; Schaible), but more recently econometric methods (Nieswiadomy; 

Moore, Gollehon, and Carey (1994 a&b); Schoengold, Sunding, and Moreno) have also 
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been applied.1  Programming models directly model profit maximizing behavior in 

response to a particular set of prices, and then water price is varied to trace out a demand 

relationship.  On the other hand, econometric studies infer the demand relationship from 

data that are assumed to be generated by a profit maximization process. 

A limitation of previous research on water demand is that it has usually focused 

on future trends, which always depend on unknown variables, rather than trying to 

understand causes of past trends (Peterson and Bernardo).  This research focuses on 

understanding the past behavior of farmers.  Their response to changes in relevant factors 

will lead to policy implications for conserving the Ogallala. 

This thesis uses econometric analysis to estimate demand for irrigation water for 

the Ogallala Aquifer in western Kansas.  Farmers are viewed as multioutput producers 

who make a two-stage production decision annually, where the crop to plant is chosen in 

stage one and the amount of water to pump is decided in stage two.  A multinomial logit 

model is used to estimate the stage one decision.  Then a linear regression is estimated for 

water demand, accounting for selection bias due to crop-choice. 

The overall goal of this study is to add to the discussion of the effect of water 

price (measured as the price of natural gas) on water demand.  The three specific 

objectives to achieve this goal are to (1) estimate the total demand elasticity for irrigation 

water for groundwater irrigation in the Ogallala aquifer region of Kansas, (2) decompose 

marginal effects of water use with respect to prices into extensive and intensive marginal 

effects, and (3) identify and quantify other variables which impact the price 

responsiveness of irrigators. 

                                                 

1
 Scheierling, Loomis, and Young and Koundouri give comprehensive lists of literature using programming 

and econometric models to estimate irrigation water demand 
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The first objective of this study is to estimate an overall elasticity of demand for 

irrigation water.  Scheierling, Loomis, and Young recently performed a comprehensive 

review of the literature on irrigation water demand.  Across the 24 studies they reviewed, 

they found a mean price elasticity of 0.48 (in absolute terms) and median elasticity of 

0.16.  But the standard deviation (0.53) was large and the elasticities ranged from 0.001 

to 1.97.  This shows the wide range of estimates and the need for further research with 

improved and updated data sources. 

The second objective of this study is to decompose the demand response of 

irrigators into extensive and intensive marginal effects to better understand how irrigators 

respond to changes in natural gas prices.  The extensive marginal effect is the change in 

water use due to changes in land allocation among various irrigated crops, while the 

intensive marginal effect reflects the short-run change in water use after cropping 

decisions have been made. The use of a multinomial logit selectivity model allows 

extensive and intensive margin effects to be computed in a simultaneous equation system.  

Research on many resource issues in agriculture involves this two stage modeling 

approach where crop-choice is the first stage and crop-specific input use is the second 

stage (Antle and Capalbo).  Therefore, this research benefits the resource use literature 

because of the econometric technique employed.   

The third objective of this study is to identify and quantify the impact other 

variables have on irrigation water demand.  For example, a variable, such as irrigation 

technology, may have an impact on the price responsiveness of irrigators, so that 

irrigators with more efficient technologies are less price responsive and demand is more 

inelastic. 
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However, other marginal effects are also of interest, such as the effect of crop 

prices and irrigation technology on crop-choice and water demand.  The direction and 

magnitude of these effects is of great value to policy makers. 

While numerous studies have researched these issues, the results from this study 

will distinctly benefit the literature on irrigation water demand because of the unique data 

set and econometric techniques employed.  The data for water use, crop-choice, irrigation 

technology, and well capacity are at the field-level.  Previous studies were limited by 

more aggregate data.  Furthermore, this study will provide information on the nature of 

irrigation water demand in response to recent energy price increases.
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CHAPTER 2 - IRRIGATION WATER POLICY 

Three possible motivations for conserving exhaustible aquifer resources such as 

the Ogallala are economic efficiency, equity, and as a moral principle.  The goal of 

economic efficiency is for the water resource to “yield the greatest net benefit to society.”  

Due to the common property attributes of the aquifer and because irrigators only pay 

what it costs them to extract the resource, irrigators do not incur external costs and the 

rate of depletion exceeds the economically efficient rate (Peterson, Marsh, and Williams).    

Secondly, equity may motivate policy, where the goal is to assure that water is 

fairly distributed among users and preserves a fair amount for future generations.  

Thirdly, conservation policy is also motivated simply as a moral principle.  This 

motivation does not account for costs and benefits, but recognizes a moral duty to 

preserve natural resources (Peterson, Marsh, and Williams).   

This thesis addresses policy options to conserve the aquifer, setting aside the 

question of whether or not conservation is a desirable policy goal.  The motivations for 

conservation differ, but a general policy consensus has emerged to conserve the aquifer.  

Therefore, research is needed to evaluate the efficacy of different conservation policy 

options. 

Policy to conserve irrigation water can be divided into three categories: pricing, 

management, or quantity restrictions (Figure 2.1).  Two types of pricing policies are 

considered.  First, policies could be implemented which increase the cost of using water, 

and therefore reduce its use.  However, the reduction in water use depends on the 

elasticity of demand.  This reduction in water use would be accomplished through either 



10 

a unit tax on water use, or an energy tax that would effectively increase pumping costs.  

The second type of pricing policy is for the government not to intervene at all.  At first 

this may not appear to be a pricing policy; however, implicitly it is a policy where the 

policy makers trust the market prices are sufficient to provide incentives that properly 

allocate water across users and throughout time. 

There are also two ways to reduce water use through policies that encourage 

farmers to alter their management practices:  increase efficiency (reduce the amount of 

irrigation water lost through evaporation, run-off, etc.), or preserve the existing soil 

moisture.  One can improve the efficiency by converting to a more efficient irrigation 

technology or utilizing ET reports to improve application timing and minimize excess 

pumping.  Secondly, a farmer can also improve soil moisture through capturing and 

retaining more precipitation.  This is accomplished by reducing evaporation with more 

crop residue, reducing precipitation runoff by contour farming and preserving residue, 

controlling weed pressure, and growing less water intensive crops.  Regulations to alter 

management practices are not well received by producers.  Instead, this policy option has 

been implemented by funding research and extension and providing water conservation 

incentives, such as cost-share programs. 

The third policy option is to impose quantity restrictions on water use.  These 

restrictions are either voluntary or mandatory.  Voluntary restrictions include some 

incentive for irrigators to reduce their water use and they could choose to either accept 

the incentive or continue irrigating.  Mandatory restrictions are imposed on irrigators 

whether they agree to them or not, and may or may not include some compensation to the 
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water user.  A quantity restriction is either a partial restriction in water use or a complete 

restriction, where the irrigator may no longer pump water. 

Figure 2.1  Irrigation Water Policy Options 

 

A water market was first proposed as a policy option by Vernon Smith (1977).  

Implementing a water market is at the intersection of quantity restriction and pricing 

policies; implicitly, it may also have management impacts.  The idea behind a water 

market is to issue water rights to irrigators with the sum of the allowed use affixed to the 

rights less than the current water use or at some predetermined goal, then allows users to 

trade their rights.  Therefore, the government defined water rights, which act as property 

rights, restrict the total quantity of water consumed, but the water market also allows a 

market to determine a price for water.  Theoretically, this market should result in the 

Pareto-optimal allocation of the resource, given the property right arrangements in place.  

The market should allocate water to the user who obtains the most value from the water, 

which will likely have the impact of giving incentives for improved management 

practices.  Undoubtedly, hydrological characteristics of the aquifer in western Kansas 

present difficulties in determining initial water rights and trading those rights.  Peterson, 
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Marsh, and Williams illustrate that an advantage of a water market is that it considers all 

three motivations to conserve.  The moral principle of conservation is addressed because 

there is a restriction on the total amount of water used.  Equity is addressed through the 

quantity restriction also because water is conserved for future generations.  The market 

for the rights distributes the water most efficiently across users as well. 

2.1 KANSAS IRRIGATION WATER POLICY 

In 1945, Kansas adopted the Kansas Water Appropriation Act.  The Act stated 

that any user of water in the state must obtain an appropriation right, except for domestic 

users.1  The Division of Water Resources (DWR) of the Kansas Department of 

Agriculture is charged with appropriating and enforcing the rights.  In particular, 

enforcement and administration is designated to the Chief Engineer of the DWR.  Water 

rights may be given for any beneficial purpose (Kansas Water Office). 

Groundwater Management Districts (GMDs) were created by the state legislature 

in 1972 to manage water use at a local level as long as they complied with state 

regulations.  The Kansas Water Office (KWO) was created in 1981.  The KWO does not 

have any inherent power, but it is assigned with the responsibility of providing policy 

recommendations to the state legislature and governor and designing a state water 

management plan (Brenn). 

The High Plains Ogallala Regional Aquifer Study in 1982 found that the depletion 

problem was not as dire as many suspected at the time.  Their models projected that over 

                                                 

1 The Kansas Water Appropriations Act defines domestic use as “the use of water by any person or by a 

family unit or household for household purposes, or for the watering of livestock, poultry, farm and 
domestic animals used in operating a farm, and for the irrigation of lands not exceeding a total of two acres 
in area for the growing of gardens, orchards and lawns.” 
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the next 40 years, irrigated acres would decrease due to increasing energy prices and 

limited water supply.  Yields and real crop prices were expected to increase, but the 

overall effect was an expected reduction in annual water use due to reduced acres and 

improved irrigation efficiency (High Plains Study Council). 

Therefore, policies in Kansas focused on pricing and management strategies and 

were driven by the motivation for economic efficiency.  The pricing strategy was to leave 

water use to market forces, because energy costs were expected to force water use to 

decline.  Research and extension efforts focused on improving irrigation efficiency 

through improved irrigation technology and irrigation scheduling.  Kansas also 

implemented a cost-share program to give incentives to irrigators to convert to more 

efficient irrigation systems through the State Conservation Commission.  The National 

Resource Conservation Service’s (NRCS) Environmental Quality Incentives Program 

(EQIP) also provides cost-share opportunities for irrigators to adopt better management 

practices and more efficient irrigation systems (National Resource Conservation Service 

2005).   

However, contrary to expectations, energy prices did not increase as much as 

projected, and together with improved efficiencies and larger increases in yields than 

expected, this caused irrigated acres to increase.  Not only have the number of irrigated 

acres increased since 1982, but production of water-intensive crops such as alfalfa and 

corn on irrigated acres has increased.  This has been in large part due to the increases in 

corn yields relative to other crop yields.  However, in spite of the increase in acres of 

water-intensive crops, water use has decreased since 1982, but not as much as the 

Ogallala Regional Aquifer Study had predicted (Peterson and Bernardo). 
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Some of the most recent policies have shifted in focus, and more voluntary 

quantity restriction policies have been implemented.  The Water Transition Assistance 

Program (Water TAP) is a voluntary water right buyout program adopted by the state 

legislature in 2006.  After the water-right is purchased, the land may be dryland farmed.  

Particular regions with serious scarcity issues are targeted for this program.  The 

Conservation Reserve Enhancement Program (CREP) is a voluntary water right buyout 

program, but the enrolled land must be planted with grass instead of dryland farmed as in 

Water TAP.  CREP targets areas near rivers in particular, and eighty percent of the 

funding is provided by the federal government (Kansas Water Office).  EQIP has also 

been used to convert irrigated cropland to less water intensive crop rotations or 

nonirrigated cropland. 
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CHAPTER 3 - LITERATURE REVIEW 

The purpose of this chapter is to briefly summarize some of the previous work 

that applies to this thesis.  Many articles that apply to specific areas of the thesis are cited 

throughout the text, so this chapter is meant only to give a broad overview.  Studies 

evaluating irrigators’ demand response to energy prices using econometric methods are 

reviewed, followed by those modeling the demand response with programming models.  

Emphasis is given to studies using econometric methods, since that is the method 

employed in this thesis.  Finally, other relevant literature on irrigators’ water use and 

crop-choice responses to variables other than energy prices are briefly discussed. 

3.1 ECONOMETRIC DEMAND STUDIES 

Nieswiadomy estimated demand for water in the High Plains of Texas using an 

econometric approach.  Water use was specified as a function of crop prices, pumping 

cost, furrow cost, wage rate, and rainfall.  Counties were used as observational units in 

the analysis.  Nieswiadomy suggested a structural change in the market between 1972 

and 1973.  From 1957-1972 water price did not have a significant effect on demand, but 

from 1973-1980 there was an inverse relationship with an estimated elasticity of demand 

of -0.80.  Peterson and Bernardo pointed out that a limitation of this study was the water-

use data, which were inferred from county-level observations of water level changes over 

time. 

In 1989, Ogg and Gollehon studied water demand with a linear regression using 

cross-sectional data.  The 1984 FRIS (Farm and Ranch Irrigation Survey) dataset was 
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used to obtain water use and variation in perceived prices due to different pumping costs.  

They estimated the demand equation with linear, log-log, and quadratic functional forms.  

The log-log functional form offered the most elastic demand estimate of -0.26, and was 

used throughout their analysis.  The cost of pumping water was computed using survey 

data on water use and total irrigation energy costs.  Therefore, a farmer’s error in 

reporting water use not only affected the dependent variable in the model (water use), but 

also affected the independent variable (price of water).  Ogg and Gollehon note that any 

error in the reported water use may be negatively correlated with the error term in the 

regression.  To account for this possible bias, Ogg and Gollehon used instrumental 

variables, but the estimates were not greatly affected.  The authors suggested that from 

the results of their research, the use of pricing policies alone to reduce the use of 

irrigation water would have an adverse effect on farmers’ incomes with little reduction in 

water use. 

Moore, Gollehon, and Carey published two articles in 1994 that follow a very 

similar framework to that proposed in this thesis.  The objectives of Moore, Gollehon, 

and Carey (1994b) were to examine factors affecting producers’ decision on crop-choice, 

evaluate the extensive and intensive marginal effects of water price, and investigate any 

regional differences in water demand estimation.  They evaluated irrigation farmers’ 

crop-choice decisions between 5 crops in 4 different regions of the U.S.  The 1984 and 

1988 Farm and Ranch Irrigation Surveys (FRIS) were the primary sources of data. 

The authors modeled crop-choice, land allocation, and supply functions as long-

run decisions, while crop-level water use was a short-run decision.  A binomial probit 

model was used to estimate each crop-choice equation.  The land allocation and supply 
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functions were estimated with Tobit models, and Heckman’s model was used to estimate 

the water demand function. 

The authors assumed that farmers’ choices follow a variable input model, 

implying that water demand is a function of own-crop price, input prices, water price, 

own-crop acres, and a vector of other variables.  Water price affects water demand both 

directly (at the intensive margin of use) and through a reallocation of crop acreage (at the 

extensive margin of use), because acreage is also a function of water price. 

The authors found that regional differences were significant, so researchers 

should not model crop-choice or water demand across regions in a single model.  The 

model also showed that, in general, the extensive margin effect was statistically 

significant, but the intensive margin effect was not.  This indicates that producers respond 

to changes in water price through crop-choice, and after the crop-decision is made, 

producers do not alter their water use based on water price.  When water price increases, 

producers decrease water use at the extensive margin through decreasing acres planted to 

water-intensive crops and vice versa for less water-intensive crops.  The farm-level 

response to an increase in water price was negative in 3 of the 4 regions, and was highly 

inelastic in every region. 

Moore, Gollehon, and Carey (1994a) was a follow-up to the previous article.  In 

the previous article, the authors found that the variable input model did not explain water 

demand very well because farmers did not seem to respond to the price of water in the 

short-run.  In this article, they proposed three models to explain producers’ short-run 

decisions regarding irrigation water use.  The first model was the variable input model 

explained previously.  The second model was a fixed, allocatable input model.  This 
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model differed from the variable input model because water demand was not a function 

of water price.  Instead, a farm-level water constraint was imposed on the model, which 

assumes that each farmer has a fixed amount of water on his farm to allocate to different 

crops.  Therefore, water demanded by a particular crop was a function of all crop 

acreages and all crop prices, but not water price.  The third model was a satisficing 

model, which assumed that production of a particular crop requires a fixed water-land 

ratio. In this model, once producers allocate their land, the only relevant factors affecting 

water consumption are the number of acres planted and weather. 

They compared models with specification tests (F-tests) and prediction accuracy 

measures (mean absolute error, root mean square error, and mean absolute percentage 

error).  Under the specification tests, the researchers found that the fixed, allocatable 

model was the best at explaining the dataset.  The prediction accuracy measures were not 

conclusive, but also gave support that the fixed, allocatable input model was superior.  In 

summary, Moore, Gollehon, and Carey (1994a) provided evidence that a fixed, 

allocatable input model should be used to evaluate producers’ decisions regarding 

irrigation water use.  A primary implication from this research is that producers do not 

respond to changes in water price in the short-run. 

Schoengold, Sunding, and Moreno analyzed water demand for irrigators north of 

Los Angeles, CA.  The choice of outputs is quite different from those in this thesis, but 

the data and methods have importance.  They used panel data, which provided a richer 

dataset for analysis than the data used by Moore, Gollehon, and Carey.  The variation in 

water price for Moore, Gollehon, and Carey was due to cross-sectional variation of 

depth-to-water and irrigation technology.  Schoengold, Sunding, and Moreno utilized a 
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Tobit model to estimate the land allocation function, and an instrumental variables (IV) 

analysis to estimate water demand.  The IV analysis accounted for the endogeneity of 

land allocation in the water demand function.  Crop acreage and irrigation technologies 

were paired as a set of dependent variables to also account for the effect of a change in 

water price on irrigation technology choice. 

Schoengold, Sunding, and Moreno estimated the direct and indirect effects water 

price has on water use.  This is parallel to the intensive and extensive margin effects, 

respectively, discussed by Moore, Gollehon, and Carey.  They computed direct 

elasticities of demand between -0.22 and -0.382, which were significant at the 1% level.  

The indirect elasticity of demand was -0.51; therefore, indirect effects accounted for 60% 

of total elasticity of demand.  Compared to previous estimates, this estimated water 

demand as much more elastic and had a much larger share of the total effect coming from 

the direct effects.  One limitation of this study is that precipitation was not accounted for 

in the water demand equation. 

3.2 PROGRAMMING DEMAND STUDIES 

Buller and Williams studied the effect of natural gas prices and commodity prices 

on the amount of water pumped by irrigators.  They used a linear programming model for 

a representative farmer in western Kansas, which incorporated different irrigation 

schedules for each of the modeled crops as separate activities.  Natural gas prices varied 

between $.50/Mcf to $9.00/Mcf to provide insight to the largest range of gas prices 
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foreseeable.  For each of the gas prices they also used low and high commodity prices.1  

Buller and Williams’ results showed that irrigated corn acres began to sharply decline 

when natural gas prices exceeded $2.00/Mcf.  They also found that water demand 

decreased with increases in natural gas prices, and that demand was more responsive to 

energy costs with low commodity prices. 

Howitt, Watson, and Adams argued that linear programming models 

underestimate demand elasticities and proposed a quadratic programming model.  They 

estimated elasticities using a statewide model of California agriculture.  They estimated 

arc elasticities of -1.50 and -0.46 for water prices of $25-35/acre-foot and $35-45/acre-

foot, respectively.  Therefore, they found relatively elastic demands, but that water 

demand became less elastic and eventually inelastic as water price increased. 

Schaible evaluated the efficacy of water-price policy reform in the Pacific 

Northwest.  He argued that due to the high cost of increasing irrigated acreage and limits 

of infrastructure and policy, land and water should be evaluated as fixed, allocatable 

inputs.  Schaible used a multistage, multi-output, normalized profit-maximization 

programming model approach.  Scenarios were run where farmers were allowed to 

substitute groundwater for surface water and where farmers were restricted from 

substitution.  Estimated demand elasticities were very inelastic, but elasticities were 

typically larger for alfalfa and small grains.  He also evaluated changes in water use and 

net farm returns from an increase in surface water price by 10, 25, 50, and 75 percent.  

Generally, Schaible found that water-price policy reform would be an ineffective policy 

option at reducing water use and would have an adverse effect on farmers’ incomes.  

                                                 

1
 Low prices for wheat, corn, and sorghum were $2.44/bu, $1.96/bu, and $1.86/bu, respectively.  High 

prices for wheat, corn, and sorghum were $3.86/bu, $2.60/bu, and $2.45/bu, respectively. 
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Schaible also recognized regional differences in water sources, crop production options, 

and water management institutions; therefore, he recommended region specific analysis 

of water-price policy. 

3.3 OTHER RELEVANT STUDIES 

Peterson and Ding studied the effect of irrigation efficiency on gross irrigation.  

They empirically estimated their model using corn yield data generated by an agronomic 

simulation model formulated for western Kansas.  They also incorporated risk and well 

capacity into their model.  They estimated a Just-Pope production function for corn where 

water impacts the mean and variance of yield.  However, they found that variation in 

water use explained only a small proportion of yield risk.   

Under all scenarios of risk and well capacities, gross irrigation decreased when 

the producer converted from flood to sprinkler or drip irrigation.  Although per acre 

irrigation increased when converting from flood to sprinkler, the reduction in acres had 

an overall decreasing effect on gross irrigation.   

Lichtenberg estimated the effect of land quality, crop prices, and irrigation system 

costs on crop-choice in western Nebraska from 1966-80.  He estimated the effects with a 

log odds multinomial logit model using a quadratic specification.  Lichtenberg 

recognized the high correlation of crop prices, so he only included futures corn price to 

explain output price for all crops; however, he did distinguish the price of hay.  

Lichtenberg found that land quality has a very significant effect on crop-choice and that 

there is typically a range of land quality each crop is planted on, which was captured with 

the quadratic term.  As crop price increased, acreage of corn, soybeans, and small grains 

increased, while sorghum acres decreased. 
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Peterson and Bernardo reviewed the literature on crop and irrigation schedule 

selection.  Three of the studies they reviewed are briefly summarized here.  Hornbaker 

and Mapp found that the optimal irrigation schedule for LEPA (Low Energy Precision 

Application) technology resulted in less water use than high pressure and low pressure 

center pivot systems.  Chenlaw, Featherstone, and Buller studied how crop allocation is 

affected by the amount of groundwater available for irrigation per year.  They found that 

as the supply of water decreases, acres are shifted out of corn production into dryland 

sorghum, but corn and sorghum were the only crop alternatives provided.  Llewelyn, 

Williams, and Diebel found a similar result that alfalfa was substituted for corn when 

water supply decreases.  They also found that crop allocation can be responsive to 

different policy scenarios. 

3.4 CONCLUSIONS 

Moore, Gollehon, and Carey provided a useful framework for modeling a 

producer’s decision-making process using econometric techniques.  An advantage of 

econometric techniques is their grounding to detailed data on producers’ actual responses 

to price changes in different situations.  The challenge is to have data on enough other 

variables that account for differences in water use.  The advantage of mathematical 

programming models is that they directly represent the responses of a theoretical 

optimizing decision-maker.  However, they sometimes make predictions of land use at 

odds with observed data, most likely because some elements of the decision process 

cannot be represented in the model.  Moore, Gollehon, and Carey found that farmers are 

not very responsive to water price in the short-run.  However, their conclusion that a 

fixed, allocatable input model was best may not apply to the situation of groundwater 
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irrigation in western Kansas.  This assumption does not hold for most irrigation decisions 

in this region because a farm-level water constraint does not exist.  

Schoengold, Sunding, and Moreno found a more elastic demand using 

econometric techniques.  They also found a significant effect at the intensive margin of 

use, contrary to previous studies.  One key advantage of their study was the use of panel 

data analysis. 

The studies reviewed above produce varying estimates of water demand 

elasticities.  Scheierling, Loomis, and Young studied demand elasticities of irrigation 

water using a meta-analysis.  They included 24 studies from 1963 to 2004, resulting in 73 

price elasticity estimates.  They found a mean price elasticity of 0.48 (in absolute terms) 

and median elasticity of 0.16.  But the standard deviation (0.53) was large and the 

elasticities ranged from 0.001 to 1.97.  Price elasticity was the dependent variable in a 

weighted least squares regression that used characteristics of the empirical method and 

data to explain variations in elasticity estimates.  They found that results from 

mathematical programming and econometric studies give more elastic results than those 

from field experiments.  However, there did not appear to be much of a difference 

between mathematical programming and econometric studies.  A higher price of water 

used in the model resulted in more elastic estimates.  They also found that studies 

involving high-value crops, such as fruits and vegetables, yielded more inelastic demand 

elasticities.  Allowing producers to change irrigation technology or scheduling in the 

study did not significantly affect estimates.  Long run demand estimates were more 

elastic, but were not statistically different from short run demand estimates.  Aggregate 
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data, at the regional or state level, as opposed to field or farm-level data gave more 

inelastic estimates. 

Results from Scheierling, Loomis, and Young suggest the need for further 

research to estimate the demand elasticity for irrigation water.  A wide range of demand 

elasticities have been estimated, so policy analysis will need region-specific estimates 

and a range of methods to fully understand how producers may react to changes in water 

prices. 
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CHAPTER 4 - THEORETICAL MODEL 

A profit maximizing theoretical framework is proposed to guide the empirical 

estimation of irrigation water demand.  It is assumed that irrigation water is a variable, 

allocatable input, but the presence of nonallocatable inputs is recognized in the model.  

Nevertheless, due to the assumption that profit is linearly related to acreage, allocatable 

input demands are a function only of their own crop prices.  Given the framework, a 

method for deriving the intensive and extensive marginal effects is shown.  Finally, a 

proof is given, using duality theory, that the total extensive marginal effect is negative. 

4.1 DERIVING INPUT DEMANDS 

A producer seeks to maximize profit on each parcel of land in a multioutput 

setting.1  The producer’s decision is two-fold, involving choices about which crops 

(outputs) to grow as well as the optimal levels of crop inputs.  The producer is 

constrained by the fact that the sum of acres allocated to each crop cannot exceed the 

total acres on the parcel of land.  This implies land is a fixed allocatable input.  The 

producer’s constrained profit maximization problem can be formulated as 

                                                 

1
 For purposes here, a parcel is defined as a field, or a contiguous area of land on which a single crop is 

normally grown.  A limitation of this model is that farm-level constraints and attributes (such as other 
operations creating economies of scope) are not considered.  However, for fields irrigated from the 
Ogallala, it is not unreasonable to assume that each field is regarded as a distinct production unit because 
water is seldom transported across fields.  In any case, a field-level formulation is necessary to conform 
with the available data, as discussed in detail in chapter 6. 
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where Π is the profit of the parcel of land, subscript j represents crops, where there are J 

crop choices, p is output price, y is output quantity per acre, rw is an input price vector 

corresponding to w, w is a vector of allocatable inputs including quantity of water applied 

per acre, rz is an input price vector corresponding to z, z is a vector of nonallocatable 

inputs, L  is the number of acres in the parcel, and Lj is the number of acres allocated to 

crop j.  Furthermore, it is assumed that yield is of the form 

(4.2) ( )vzwfy jjj ,,, γ=  

where γ is a vector of exogenous characteristics of the parcel of land such as soil 

characteristics, hydrological characteristics, and weather conditions, which do not depend 

on crop choice, and v is a vector of unobservable variables such as producer preferences 

and management practices.   

Irrigation water, which is included in the vector w, is viewed as an allocatable 

input.  This is a disputed topic in the literature, with some arguing more recently that 

water is best regarded as a fixed allocatable input (Moore, Gollehon, and Carey 1994a).  

A fixed allocatable formulation makes sense in many farm-level surface water 

applications, where farmers have a fixed amount of water available to allocate among the 

crops on their farm.  This formulation is also appropriate in groundwater studies where 

the farmer is constrained in the amount of water he can pump due to hydrological 

constraints.  However, in western Kansas agriculture the water constraint would not be at 
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the farm-level, but at the parcel-level because the constraint reflects the pumping capacity 

of the well servicing a particular parcel, not the available supply of water for the whole 

farm.  This will become an increasingly appropriate formulation of the issue as the 

aquifer is depleted; an increase in multiple crops grown on individual parcels will be an 

indication of this occurring.   

However, at this time most farmers in western Kansas are capable of pumping 

more water than is needed for any of the observed crops.  Therefore their decision of how 

much water to pump is still affected by the price of water.  Peterson and Ding found that 

if an irrigator in western Kansas has a well capacity of 500 gallons per minute (gpm) to 

irrigate a 160-acre field (the most common field size in western Kansas), then the well 

capacity is rarely constraining on the optimal quantity of irrigation of corn.  Additionally, 

they demonstrate that legal limits on the amount of water a producer can pump are rarely 

constraining.  In the sample data available, only 13 percent of the observations reported a 

well capacity less than 500 gpm. 

The vector of allocatable inputs, w, also includes inputs such as fertilizer and 

insecticides, which require different usage depending on the crop-choice.  Meanwhile, the 

vector of nonallocatable inputs, z, are inputs which are the same no matter which crop is 

grown, such as land rent and machinery. 

The Lagrangian function (Λ ) for problem (4.1) is 

(4.3) ( )
1 1

J J

j j j w j z j

j j

L p y r w r z L Lµ
= =

 
Λ = − ⋅ − ⋅ + − 

 
∑ ∑  

where µ is the Lagrange multiplier on the land constraint.   
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The First Order Conditions (FOCs) with respect to wj, z, and µ are: 
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where fwj is the vector of first derivatives of fj with respect to the elements of w, and fzj is 

the vector of first derivatives of fj with respect to the elements of z.  Because profit is 

linearly related to land allocation, the optimal condition for Lj takes a binary form.  The 

derivative of Π with respect to Lj is a constant, j j w j zp y r w r z− ⋅ − ⋅ , which is simply the 

profit per acre of crop j.  Let jπ  denote the profit per acre of crop j.  In this model, jπ is 

assumed constant within each parcel of land, reflecting negligible within-field variation 

in soil characteristics.  The optimal land allocation, ∗
jL , can be written 

(4.7) 
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Let j* denote the most profitable crop, so that *jL L∗ = . Substituting (4.7) into 

equation (4.5) gives *j zj zp f r= , which is the condition that the values of marginal 

products of the inputs in z on crop j* are equal to the corresponding prices of those 

inputs, rz.  Substituting (4.7) into equation (4.4) produces a similar result. 

These equations can then be solved for the factor demands on the optimally 

chosen crop, j*: 

(4.8) ( ) ( )*

* * * * *, , , , ,j j j w z j jw w p r r v w x vγ= =  
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(4.9) ( ) ( )*

* *, , , , ,j w z jz z p r r v z x vγ= =  

That is, factor demands are only defined for the crop actually selected.  Substituting the 

optimal factor demands into jπ  gives the indirect profit per acre function for this crop. 

(4.10) ( ) ( )*

* * * * *, , , , ,j j j w z j jp r r v x vπ π γ π= =  

For simplicity of notation, xj, is the vector of output price of crop j, input prices, and other 

characteristics embodied in γ. 

 One important result is that factor demands for a crop are a function only of its 

own output price.  Typically in a multioutput profit maximization problem with 

allocatable and nonallocatable factors, factor demands are a function of all output prices 

because the production functions are linked by the nonallocatable factor (Beattie and 

Taylor).  However, the results differ here because of the presence of corner solutions for 

land allocation on a parcel of land. 

The factor demands are actually the same for this model as the variable input 

model.  The difference is that this model acknowledges the presence of nonallocatable 

inputs.  However, due to the evaluation of the issue at the parcel-level and resulting 

corner solutions for land allocation, the model yields the same factor demands.  If the 

model were evaluated at the farm-level, factor demands would be a function of all output 

prices. 

4.2 DERIVING INTENSIVE AND EXTENSIVE MARGINAL EFFECTS 

Therefore, an irrigator’s decision problem is most usefully regarded as a two-

staged problem, where the crop (a discrete variable) is chosen in the first stage, and water 

applied to this crop (a continuous variable) is chosen in the second stage. 
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In stage one, crop j is optimally chosen (j = j*) if  

(4.11) kj ππ ≥  Jk ...1=∀ . 

From the perspective of an outside observer, to whom the elements of v are random 

variables, there is no certainty that a particular crop will be grown given the vector of 

observed variables, x.  Rather, crop choices must be represented probabilistically.  The 

probability that crop j is chosen is the probability that condition (4.11) holds, which can 

be represented with a probability mass function.  More formally, this is written 

(4.12) Prob( *) ( )jj j xδ= =   Jj ...1=∀  

where δ is the probability mass function of crop j, and x is a vector containing all the 

elements in the xj’s.  Therefore, the ex ante version of equation (4.7) is 

(4.13) LxL jj )(δ=∗  

Total water use on a parcel of land, W, is 

(4.14) ∑ ∗= *

jjwLW  

To find how total water use changes as an exogenous variable, θ, changes, the function W 

is differentiated with respect to θ.  This is complicated by the fact that ∗
jL  as defined in 

equation (4.7) is not a differentiable function.  However, ∗
jL  as defined in equation (4.13) 

is a differentiable function.  Substituting equation (4.13) into equation (4.14) gives 

(4.15) ∑∑ ∗∗ == jjjj wxLwLxW )()( δδ , and 

differentiating with respect to θ gives 
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However, it may be more appropriate for interpretation to obtain the effect of a change in 

an exogenous variable on the water use per acre, LWw = . 

(4.17) ∑ 
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The first term on the right hand side of equation (4.17) is the change at the 

intensive margin and the second term is the (ex ante) change at the extensive margin.  

When θ is the price of water, the intensive margin change is the short-run, direct effect on 

water use from an increase in the price of water after crop selections have been made.  A 

change in water use at the intensive margin results from improved irrigation management 

practices or perhaps simply reducing the amount of water applied to the crop.  The 

intensive margin effect should be negative for each crop by the law of demand.   

The extensive margin effect is the long-run response of water use from changing 

cropping patterns.  The extensive margin effect is the change in probability of planting a 

crop from a change in water price, weighted by the amount of water applied to the crop.  

The extensive margin effect will be positive for some crops and negative for others, 

which is evident because the marginal probabilities must sum to zero.  However, the sum 

of the extensive marginal effects across all crops need not equal zero because of the 

weighting by water use.  It is possible for the water use on a given crop to increase if the 

sum of the intensive and extensive margin effects is positive.  However, the assumptions 

of convexity of the profit function in input prices requires that the overall impact of an 

increase in water price decreases water use, that is 0<
∂
∂
r

w
.  Moreover, as proven for the 



32 

two-crop case in the section below, the overall extensive margin effect will be negative: 

0
j

jw
δ

θ

∂
<

∂∑ . 

4.3 PROOF THAT THE EXTENSIVE MARGINAL EFFECT IS NEGATIVE 

It can be proven simply by contradiction in the two output case with a single 

allocatable input, w, that the total extensive marginal effect is negative.  Assume that crop 

1 is more water intensive than crop 2.  This means the per acre water allocation to crop 1 

is greater than the per acre allocation to crop 2, ∗∗ > 21 ww .  Also assume that crop 2 is 

initially more profitable than crop 1, ∗∗ > 12 ππ ; the solution to the land allocation is then 

LL =∗
2  and 01 =

∗L .   

Under the maintained assumption that f1(w1) and f2(w2) are concave functions, if 

input price increases and the same crop is chosen then input use must decrease (the 

intensive margin effect is negative).  Therefore, for input use to increase with an increase 

in input price, r, the first condition is that crop-choice must change from crop 2 to crop 1.  

The reduction in profit of crop 2 from an increase in r must be larger (more negative) 

than the reduction in crop 1.  Furthermore, the difference in reduction of profits must be 

greater than the original difference in profits, thus making crop 1 more profitable than 

crop 2.  Mathematically, this condition is written 012
21 >−>

∂

∂
−

∂

∂ ∗∗
∗∗

ππ
ππ
rr

.   

The second condition is that the new input use on crop 1 must exceed the original 

input use on crop 2.  The original optimal water allocation plus the reduction in input use 

from an increase in r must be greater than the original input use on crop 2.  This is written 
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An application of Hotelling’s Lemma proves quickly that 
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possible, given the assumptions. 
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The conclusion in equation (4.19) contradicts the initial assumption that ∗∗ > 21 ww .  

Therefore, 
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 is not possible, and therefore the conclusion is that 0<
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Therefore, the overall value of the extensive margin effect summed across all 

crops is negative.  An important implication of this result is that if the extensive margin 

effect is not accounted for in research, then demand response will be underestimated (in 

absolute terms).  That is 
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CHAPTER 5 - EMPIRICAL MODEL 

A multinomial logit selectivity model is proposed to estimate irrigation water 

demand.  The multinomial logit model is used to estimate the crop-choice decision in 

stage one of the problem.  The use of the multinomial logit model is defended, and 

methods of evaluating the model are discussed.  Then, accounting for selectivity, a 

modified ordinary least squares regression model to estimate irrigation water demand is 

presented.  Finally, the method of computing the intensive and extensive marginal effects 

is explained. 

5.1 EMPIRICAL ESTIMATION OF CROP-CHOICE 

The theoretical chapter demonstrated that the crop-choice decision in stage one is 

best represented as a discrete choice probability, where the probability of planting crop j 

depends on a vector, x, of independent variables.  The elements of x include all crop 

prices, input prices, energy prices, and location specific factors.  These same variables 

affect the water-use decisions in stage two, but the exact definitions of the variables will 

differ because of the sequential timing of the decisions.  For example, the expected value 

of energy prices during the irrigation season, formulated when the crop-choice is made, is 

the relevant measure in stage one, while the observed within-season energy price is the 

appropriate measure corresponding to stage two.  For this reason, the empirical 

specification makes a distinction between the independent variables in the two stages, 

where x~ , which contains expected prices and expected climate conditions, denotes the 

independent variables in stage one, and x denotes the regressor vector in stage two.   
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For estimation purposes, the crop choice decision is modeled with the 

multinomial logit model, where the probability function in equation (4.12) is specified as 

(Greene 1993) 

(5.1) 
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where αj is a vector of parameters to be estimated and i denotes each individual parcel of 

land.  A standard normalization in the multinomial logit model is α0 = 0.  Therefore, 

when j=0, the probability in (5.1) simplifies to 
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(Note that j starts at 0 instead of 1 in the notation above for estimation purposes.) 

Intuitively, the probability function should be homogenous of degree 0 in prices, 

so that if all prices double, the probability of planting each crop would remain the same.  

To force this property on the function, prices are normalized.  Quadratic terms of prices 

are also included in the estimation to allow for nonlinear price responses.  The quadratic 

price terms are simply squared normalized prices.  This specification is homogenous of 

degree 0 as demonstrated in equation (5.3), where for simplicity x is taken to include only 

output prices, p, and input prices rw, along with their squares,  t is some constant, and r is 

an input price (excluded from rw) used to normalize all prices. 
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The method of maximum likelihood is used to estimate the parameters of the 

multinomial logit model.  The maximum likelihood method chooses a set of parameters 
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to maximize the likelihood that the actual choices, represented in the dependent variable, 

would actually occur given the set of independent variables facing the producer (Pindyck 

and Rubinfeld).  The joint probability or likelihood (L) for J choices is 

(5.4) 
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for each parcel of land i with a total of n parcels, and where d is a binary variable equal to 

1 if crop j was planted on parcel i and 0 otherwise.  Taking the log of this equation yields 

the log likelihood function 
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The log likelihood function yields a more tractable expression to optimize, and 

the points of maximization for the two functions are equivalent, so the log likelihood is 

preferred for estimation purposes.  A typical optimization algorithm to find coefficients 

that maximize the value of ln L is Newton’s method (Greene 1993).  The maximum 

likelihood estimator is consistent, asymptotically normally distributed, and 

asymptotically efficient (Greene 1993).   

As noted above, the coefficients for the equation when j=0 are normalized to all 

equal 0.  This normalization, which accounts for the property that the probabilities for a 

set of independent variables must sum to 1, allows the model to only estimate J-1 

equations rather than J equations.  Another alternative would be to estimate all J 

equations and then restrict the J sets of coefficients so that the probabilities sum to 1. 

However, the α0 = 0 normalization saves computational time.  This application of the 

multinomial logit model is similar to that of Lichtenberg as described in the literature 

review. 
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5.1.1 Marginal Effects 

The coefficients of the independent variables estimated by the logit model do not 

have a straightforward interpretation like the slope coefficients of the OLS (Ordinary 

Least Squares) regression model.  Therefore, to find the marginal effect of changes in 

independent variables, the following equation must be used (Greene 1993): 

(5.6) 
1

J
j

j j k k

kx

δ
δ α δ α

=

∂  
= − ∂  

∑
ɶ

  1...0 −=∀ Jj  

When j=0 then the marginal effect is 
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The marginal effect ∂δj/∂ x
~  is interpreted as the change in the probability of 

outcome j resulting from a one-unit increase in x~ , given the set of values of the 

independent variables.  The marginal effects depend on the probabilities, which depend 

nonlinearly on all independent variables, implying that the marginal effects are not 

constant.  To facilitate comparison across regressors, the probabilities and marginal 

effects are often computed at the means of the independent variables.  However, it is also 

of interest to vary the independent variables and examine how the probabilities and 

marginal effects change.   

The marginal effects are further complicated by the fact that the characteristics in 

x~  include quadratic terms.  To compute marginal effects, the term xj
~α  in equations 

(5.1) and (5.2) can be represented more generally as some function )(⋅jq .  Then it can be 

shown that more general forms of equations (5.6) and (5.7) are 
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and when j=0 the marginal effect is 
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Elasticities, ω, for the crop-choice are computed as 

(5.10) 
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where x~  is the value of the independent variable at which the probability is computed. 

5.1.2 Hypothesis Testing 

To test if an individual independent variable is significantly impacting the log 

likelihood function, the standard t-test is applied just as in the Ordinary Least Squares 

(OLS) regression models (Greene 1993).  The null hypothesis of the test is that the single 

coefficient is equal to zero.  If the null hypothesis is rejected, then the coefficient is 

statistically significantly different from zero. 

There are three key statistics that measure whether multiple independent variables 

are significantly making an impact on the log likelihood function: the likelihood ratio 

(LR) statistic, the Lagrange multiplier (LM) statistic, and the Wald test.  These three tests 

are asymptotically equivalent, so if the sample size is sufficiently large they will all yield 

the same statistic with the same result.  However, the tests could potentially yield 

different results if the sample size is small.  The Wald test will always give the largest 

test statistic and the LM statistic will always be the smallest.  Therefore, if the test is 

rejected for the LM statistic then the test is rejected for the LR and Wald tests also 

(Pindyck and Rubinfeld). 

The LR, LM, and Wald tests are analogous to the F-test in the OLS regression.  

These three statistics test the null hypothesis that all the coefficients in the logit model are 
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jointly equal to zero.  If the null hypothesis is rejected then at least one of the coefficients 

is not equal to zero.  If the model fails to reject the null hypothesis then the model is 

poorly specified as the independent variables are not making a significant difference in 

likelihood.  The three tests can also be used to test if a subset of coefficients in the model 

is jointly equal to zero.  The test statistics are distributed according to the chi-squared 

distribution with degrees of freedom equal to the number of restrictions being tested 

(Greene 1993). 

5.1.3 Goodness of Fit Measures 

Three common measures have been proposed to indicate the goodness of fit of a 

multinomial model.  However, the statistics do not have a precise interpretation like the 

OLS R2 measure.  Nonetheless, they do provide some insight into the model’s predictive 

capacity and are especially helpful when comparing across models.  The three measures 

are the count R2, McFadden’s R2, and the pseudo R2.  Each of the statistics is bounded 

between 0 and 1, similar to the OLS R2 (Maddala). 

The simplest measure is the count R2.  It is defined simply as 

(5.11) 2 number of correct predictions
count 

total number of observations
R =  

However, Train discourages the use of this statistic.  Train states, “This statistic 

incorporates a notion that is opposed to the meaning of probabilities” (p. 73).  The count 

R
2 assumes that the decision-maker chooses the option with the highest probability.  

Probability, by definition though, is the proportion of outcomes for a given alternative 

with numerous repetitions of a situation.  Even if an alternative has a very low 

probability, given enough repetitions we would still expect to see the outcome (Train). 
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McFadden’s R2, also known as the likelihood ratio index (LRI), is 

(5.12) 2 ln
McFadden's 1

ln
U

R

L
R

L
= −  

where ln LU and ln LR are the maximum values of the log-likelihood functions in the 

unrestricted and restricted models, respectively.  Here, the restricted model is the null 

model where all coefficients are equal to zero.  Unlike the OLS R2, McFadden’s R2 

cannot equal 1, so an extremely large value may be an indication of a misspecified model 

rather than a perfect fit (Greene 1993). 

Cragg and Uhler propose a pseudo R2 (Maddala). 
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The pseudo R2 is derived as an analogous measure of the R2 for maximum likelihood 

estimation of a continuous dependent variable regression and can equal values from 0 to 

1 (Maddala). 

5.1.4 Logit versus Probit 

The logit model is based on the cumulative logistic probability function.  An 

alternative specification is the probit model, which is based on the cumulative normal 

distribution.  These models are easiest to compare in the case when there are only two 

discrete choices (i.e., j=0,1).  Figure 5.1 shows the differences in the cumulative 

probability distributions of choosing j=1 over j=0.  The x-axis is labeled Z, which is the 

value of the vector of estimated coefficients multiplied by the vector of independent 

variables, ij x'α .  Z is then transformed by equation (5.1) into a cumulative probability 

according to the logistic probability function.  So even though the parameters to be 
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estimated, 1α , are linear coefficents on the ixɶ ’s, the probabilities are not linearly related 

to the independent variables as demonstrated in Figure 5.1 (Pindyck and Rubinfeld). 

Figure 5.1 shows that the probability is most sensitive to changes in Z when the 

probability is near half.  Conversely, when the model yields high or low probability 

predictions for the independent variables, then the model is less sensitive to changes in 

variables. 

Figure 5.1 Cumulative Probability Densities of Normal and Logistic Functions 
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Source: Pindyck and Rubinfeld 

The differences in the probit and logit models are evident from Figure 5.1 because 

of the distributions on which they base their estimations.  The cumulative logistic 

probability is more sensitive to changes in the independent variables when probabilities 

are very high or low compared to the normal distribution.  On the other hand, the 

cumulative normal distribution is more sensitive to changes in independent variables 

when the probability is close to half. 
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A series of simple, binomial probit models could be used to estimate farmers’ 

decisions to plant each crop individually as used in Moore, Gollehon, and Carey (1994b).  

However, it is a closer representation to model a farmer’s decision as one of choosing 

which crop to plant from among several alternatives, rather than choosing whether or not 

to plant each particular crop.  Furthermore, the sum of the probability of planting each 

crop is not constrained to equal one when using binomial probit models for each crop.  

With the multinomial logit model, the sum of probabilities across all crops equals one 

and the sum of marginal effects across crops equals zero.  This property of the 

multinomial logit model is an appropriate constraint for decision-behavior and is 

convenient for calculating intensive and extensive marginal effects.    

Multivariate probit models are used to estimate models with numerous decisions, 

but each decision has only two alternatives.  However, the multinomial logit model is 

used to estimate a model of one decision with more than two alternatives (Greene 1993).  

Given the issue of this paper, clearly the multinomial logit model is the appropriate 

choice.  Each farmer makes a single decision of which crop to plant, and that decision is 

among all the possible crops. 

5.1.5 Assumption of Independence of Irrelevant Alternatives 

The multinomial logit model assumes the “independence of irrelevant 

alternatives,” which is clearly a limitation in modeling farmers’ behavior.  Wu and 

Babcock state, “This assumption states that the relative choice probabilities for any two 

alternatives are independent of the other choices available.  This is a convenient property 

with regards to estimation, but it is often an unappealing restriction to place on farmer 

behavior” (p. 496).  In spite of alternative discrete choice specifications that relax this 
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assumption, the multinomial logit model is used due to current econometric limitations 

with selectivity models (Wu and Babcock). 

5.1.6 Multinomial versus Conditional 

Another possible specification for estimation is the conditional logit model.  The 

probability function for the conditional logit model is (Greene 1993) 

(5.14) 
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The conditional logit model is appropriate when the independent variables are 

choice specific, rather than individual specific (Greene 1993), hence the regressors are 

indexed by j instead of i.  In the conditional logit model the independent variables are 

specifically related to the particular choice.  The observed independent variables may 

differ across individuals, but only to the extent to which they are embodied in the 

individuals’ choices.  Individual-specific variables that do not vary with the choice made 

are not included.  Here, only one vector of coefficients is estimated, α , which relates the 

attributes of given choice, jxɶ , to the probability that it is selected.    

In the context of crop decisions, the conditional logit model would be appropriate 

if the independent variables were variables like input use and output measures, which are 

specific to the crop.  However, in the modeling framework described above, the 

multinomial logit model is the proper choice because the independent variables are 

specific to the individual.  Each individual has his/her own soil and climate 

characteristics on which they base their decision. 

It is more difficult to decipher if the vector of crop and input prices is crop-

specific or individual-specific.  All individuals do face the same price vectors each year.  
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However, there is not a single measure for crop price that varies across choices as would 

be the case for a conditional logit framework.  Instead, individuals face all crop prices 

and these prices affect the decision to plant each crop.  The price of corn affects the 

probability of whether a farmer chooses to produce alfalfa or not.  Input prices are the 

same across all crop decisions, so that the farmer will pay the same amount per unit of 

water whether he/she plants corn or soybeans.  Conversely, if water usage of the crop 

were the independent variable then the farmer would face a different amount of water use 

for each crop and a conditional logit model would be more appropriate. 

5.2 EMPIRICAL ESTIMATION OF WATER DEMAND 

The estimation of optimal water use for a given crop is specified as 

(5.15) ( ) ( )vxgw jjjjj ηβ += ;  

where βj is a vector of parameters to be estimated and ηj is regarded as a random 

disturbance.  The function )(⋅jg  is linear in normalized prices assuming a quadratic 

production function as supported by the literature (Schoengold, Sunding, and Moreno).  

Normalizing prices gives the appropriate theoretical property that input demand is 

homogenous of degree 0. 

Estimation of equation (5.15) is complicated by a sample selection problem.  This 

problem arises because the sample to estimate βj consists only of observations where crop 

j was chosen.  If ηj and εj are correlated, OLS estimation of (5.15) will produce biased 

estimates of βj because E[ηj] ≠ 0.  Intuitively, the problem is that the observations for 

crop j were likely generated by farmers who, for unobservable reasons, prefer that crop 

over alternatives (implying εj is large for these individuals).  In the case where ηj is 
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positively correlated with εj, the observed values of wj will be larger, on average, than 

those in a purely random sample.  Lee (1983) showed that  

(5.16) 
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where ρj is the correlation coefficient between ηj and a particular transformation of εj, σj 

is the variance of ηj, φ(·) is the standard normal p.d.f., and Φ–1(·) is the inverse of the 

standard normal c.d.f.  

Lee proposed a method to correct for sample selection by including an extra term 

in equation (5.15).  The new term is derived from the predicted probabilities of the 

discrete choice model, and is constructed to ensure that the expected residual of the 

estimated equation is indeed zero.  In particular, let jα̂  be the estimated coefficients from 

equation (5.1).  The predicted probability that crop j was chosen, ˆjδ , can then be 

obtained by inserting these coefficients into equation (5.1) and a new variable, λj, is 

constructed as ( )1 ˆ ˆ( )j j jλ φ δ δ−= Φ .  Unbiased estimates of βj are obtained by applying 

OLS to the equation 

(5.17) ( ; )j j j j j j jw g x eβ κ λ= + +  

where E[ej] = 0 and κj is an additional coefficient to be estimated.  Rejecting the null 

hypothesis κj = 0 indicates the presence of sample selectivity.  For valid inferences to be 

made, however, the estimated standard errors of all parameters must be corrected.  The 

correction procedure is described by Greene (1993) and Wu and Babcock. 

Wu and Babcock also explain that selectivity models can suffer from a lack of 

robustness and multicollinearity if the variables in the multinomial logit model are the 
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same as the variables in the linear regression.  However, as noted above, the regressors in 

the two stages differ in their definitions.  The multicollinearity and robustness issues are 

addressed in assessing the model performance in chapter 7. 

5.2.1 Intensive and Extensive Marginal Effects 

Moore, Gollehon, and Carey (1994b) were the first to econometrically estimate 

the intensive and extensive margin effects of water use.  Schoengold, Sunding, and 

Moreno also estimated these effects.  Both of these articles estimated a land allocation 

function with acres as a continuous function of water price, and a water demand function 

with water use as a function of acres and water price.  This allowed for fairly 

straightforward estimation of the effects.  However, as explained earlier, this data set 

does not allow for the estimation of a continuous land allocation function, so the 

intensive and extensive margin effects are defined slightly differently. 

From equation (4.15) 

(5.18) j jw wδ=∑  

where )(xjδ  takes on the specific functional form of the probability assumed in the 

multinomial logit model expressed in equation (5.1). 

Differentiating w with respect to the price of water gives 
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where the first term in the sum is the intensive margin effect and the second term is the 

extensive margin effect.  The marginal effect of water price on the probability of planting 

crop j takes the form as given in equations (5.6) and (5.7).  Intensive and extensive 
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marginal effects for other variables, which are included in both the crop-choice and water 

use models, are analogously defined. 

Because a multinomial logit selectivity model is used, the intensive and extensive 

marginal effects are calculated from a simultaneous equation system.  Estimating crop-

choice with the multinomial logit model provides convenient constraints for calculating 

the intensive and extensive marginal effects; the sum of probabilities across all crops 

equals one and the sum of marginal probabilities equals zero.  Moore, Gollehon, and 

Carey (1994b) did not calculate marginal effects in a simultaneous equation system.  

Intensive marginal effects were derived from a water demand model estimated with the 

Heckman selectivity model and extensive marginal effects were calculated from a 

separate land allocation model estimated with the Tobit model.  While their procedure 

produces unbiased estimates because their equations are diagonally recursive, there is a 

statistical efficiency gain from simultaneous estimation. 
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CHAPTER 6 - DATA 

This chapter discusses the data used to estimate the model described in the 

previous chapter.  The data are from a 25 county region in western Kansas that pumps 

groundwater from the Ogallala Aquifer.  The uniqueness of these data is that they are at 

the parcel-level, which allows for more accurate estimation of the model.  Furthermore, 

the data span 14 years (1991-2004), and during this time natural gas prices greatly 

increased.  The left-hand side variable for crop-choice in the multinomial logit model is 

obtained from WIMAS (Water Information Management and Analysis System).  Right-

hand side variables in the logit model include: normalized expected alfalfa, corn, and 

natural gas prices; average precipitation and evapotranspiration from the Kansas Weather 

Library; land classification and permeability from NRCS (Natural Resource Conservation 

Service); irrigation technology dummy variables and well capacity from WIMAS; and a 

time trend.  The left-hand side variables for water use per acre in the water demand 

regressions are from WIMAS.  Right-hand side variables in the water use regressions 

include: normalized own crop and natural gas prices; precipitation and evapotranspiration 

from the Kansas Weather Library; permeability from NRCS; and irrigation technology 

dummy variables and well capacity from WIMAS.  All prices are normalized by an Index 

of Prices Paid by Farmers obtained from NASS (National Agricultural Statistics Service). 
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6.1 WIMAS (WATER INFORMATION MANAGEMENT AND ANALYSIS 

SYSTEM) 

The WIMAS dataset is obtained from the Kansas Water Office (KWO).  The data 

are from annual reports that all water-right holders are required to submit to the Kansas 

Department of Agriculture-Division of Water Resources.  The WIMAS dataset provides 

parcel-level data on the quantity of water pumped (in acre feet), number of acres 

irrigated, crop-choice, well capacity, and irrigation technology.  A parcel, or field, is 

defined as the area irrigated by a single well, also referred to as a point of diversion in the 

WIMAS dataset.  For analysis, total water use was converted to acre-inches and then 

divided by the total number of acres irrigated in each parcel, so water use is measured in 

acre-inches per acre.  The well capacity is the pumping or flow rate (gallons per minute) 

reported by users.  If well capacity was not reported in some years, yet it was reported in 

a previous year, it was assumed that well capacity was equal to the previous year. 

Beginning in 1988, strengthened enforcement resulted in more farmers reporting 

their water use and improved the accuracy of the data, yet the type of irrigation 

technology was not requested on the report until 1991.  Therefore, the dataset used in this 

analysis is from 1991 to 2004.  Only observations for the following irrigation 

technologies were included in the analysis: flood, standard center pivot, and center pivot 

with low drop nozzles.1  These are by far the most common technologies, so removing 

                                                 

1
 Flood irrigation uses gravity to deliver water to the crops through ditches in the field rows.  Center pivot 

with low drop nozzles is also commonly referred to as the Low Energy Precision Application (LEPA) 
system. 
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observations from WIMAS for irrigation systems other than these three types only 

resulted in only a 1.5% reduction in observations.  Additionally only observations with 

alfalfa, corn, sorghum, or soybeans grown on the entire field are used in the analysis.  If 

fields were split between crops, there were no data on the portion of the field devoted to 

each crop.  So the difficulties with inadequate data are avoided by simply removing 

observations with multiple crops planted on a single field.  Wheat is another crop 

sometimes grown on irrigated parcels, but it is excluded because of the difficulties of 

identifying its water application, since application occurs over two irrigation periods in 

separate years to produce one crop.  Furthermore, cropping practices vary between wheat 

and row crops, which could bias results.  So to avoid the difficulties wheat presents, all 

observations are deleted, which decreased the number of observations by 5.3%.   

The data are further limited to only groundwater use and only counties in the 

northwest (NW), west central (WC), southwest (SW), and south central (SC) agricultural 

districts as defined by KASS (Figure 6.1).  Barton County, although not in any of these 

districts, is also included in the analysis.  This region includes the major area overlaying 

the Ogallala Aquifer. 
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Figure 6.1 Kansas Agricultural Statistics Districts Map 

 

Source: KASS, available at http://www.nass.usda.gov/ks/distmap.htm 

6.2 OUTPUT PRICES 

Two distinct measures of output prices are used in the two-stage regression 

model.  Stage one requires expected crop prices formulated when crop decisions are 

made, while stage two requires within-season expectations of crop prices.  The crop-

choice expectations were taken from futures price data obtained from the Commodity 

Research Bureau, Inc.  This series is the monthly average price of the December contract 

in February for corn.  For soybeans, the November contract price in February is used.  

There is no expected price for sorghum, since there is no sorghum futures price.  This is 

not an issue, however, because expected sorghum and corn prices are likely to be highly 
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correlated.  The three year average basis for Scott City is then added to this price.  Since 

alfalfa does not have a futures contract, the previous three year average price is calculated 

from NASS (National Agricultural Statistics Service) price series data.2   

The series of actual crop prices used in the water demand model is from NASS.  

The series is a marketing year average state-level price as reported in the publication 

Agricultural Prices.  While this price is inconsistent with the Scott City expected price 

since it is state-level, this should not be an issue because the data is used in separate 

regressions and only relative price changes are relevant for regression.  Prices for alfalfa, 

corn, sorghum, and soybeans are dollars per ton ($/ton), dollars per bushel ($/bu), dollars 

per hundred pounds ($/cwt), and dollars per bushel ($/bu), respectively. 

6.3 INPUT PRICES 

Natural gas prices were also collected from the Commodity Research Bureau, Inc.  

The expected natural gas price is the average of the average monthly prices of the June 

and July contracts in February.  Prices for the water demand model are the average prices 

of the June and July nearby futures contracts.  Farmers are not likely to respond to a price 

change in August since they are nearly done irrigating and will finish the season with the 

current irrigation schedule.  Prices are reported as dollars per thousand cubic feet 

($/Mcf).  Natural gas price is used because natural gas is the most common source of 

energy for irrigation in Kansas.  According to the 1998 Farm and Ranch Irrigation Survey 

                                                 

2
 Because the alfalfa data series only started in 1989, the expected price for 1991 is only a two year 

average. 
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(FRIS), natural gas was the energy source of 60.4% of wells in Kansas.  Electricity and 

diesel fuel are the energy source for 21.1% and 13.7% of wells in Kansas, respectively. 

The Index of Prices Paid by Farmers (1990-92=100) including production items, 

interest, taxes, and wage rates computed by NASS is used to account for prices of non-

water inputs.  The index is used to normalize prices; therefore, the index does not have a 

coefficient in the regression equations.  The index was scaled by dividing it by 100.  This 

scaled index was used to normalize prices. 

6.4 SOIL CHARACTERISTICS 

Variables describing the soil characteristics were obtained from the Natural 

Resource Conservation Service (NRCS), State Soil Geographic (STATSGO) dataset.  

These data were compiled by Golden and Peterson (2006), who assigned the data PLSS 

(Public Land Survey System) section identification using ArcGIS.  The characteristics 

were then merged to the WIMAS dataset at the PLSS section-level.  The relevant 

variables used in this model are average land classification, and average permeability of 

the root profile. 

The NRCS defines the land capability classification as “a system of grouping soils 

primarily on the basis of their capability to produce common cultivated crops and pasture 

plants without deteriorating over a long period of time” (National Resource Conservation 

Service 2007).  Soils with a low capability classification have fewer limitations to 

produce crops.  A land classification of 6 or higher indicates that the soil has limitations 

which make it “generally unsuitable for cultivation.”  The permeability of the soil 
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measures the rate water flows down through the soil.  A higher permeability indicates 

that water moves more quickly through the soil, which is the case for sandier soils. 

6.5 WEATHER 

Climate and weather data were obtained from the Kansas Weather Library.  

Weather data were merged to observations by the agricultural statistics districts (refer 

back to Figure 6.1).  Weather observations for the northwest, west central, southwest, and 

south central districts were taken from the Colby, Tribune, Garden City, and St. John 

weather stations, respectively.  Barton County is also included in the analysis and is 

matched with weather observations from the south central district. 

Climate variables (expected weather conditions) include average precipitation and 

average ET (evapotranspiration) during the sample period.  Average precipitation is the 

average annual precipitation from 1991 to 2004, and average ET is the average 

cumulative ET from May through August from 1991 to 2004.  ET is the amount of water 

lost into the air through both evaporation and transpiration, which depends on solar 

radiation, temperature, wind, and humidity.  For this dataset calculation of ET is alfalfa-

based.  The units of both precipitation and ET are inches.     

Weather variables (used in the water demand model) are computed for each year, 

and include two precipitation variables and an ET variable.  The two precipitation 

variables are the cumulative precipitation for January through April and the cumulative 

precipitation for May through August.  The variable for ET is the cumulative ET from 

May through August. 
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6.6 TIME TREND 

A time trend is also included in the crop-choice model.  This variable is intended 

to capture the effect of improved technologies in corn and soybeans that have made them 

more appealing to plant.  Improved hybrids in corn and soybeans have increased yields, 

and the Glyphosate resistant technology in soybeans has made them an appealing crop to 

include in a rotation to relieve weed pressure.  The time trend variable is simply the year 

minus 1990. 

Figure 6.2 shows the trend in irrigated acreage for four of the major crops grown 

in Kansas (irrigated alfalfa acreage data was not available) from 1985 to 2005.  In 1985, 

corn, sorghum, and wheat were all grown on about the same number of acres.  This 

quickly changed, however, as corn acreage increased rapidly and both wheat and 

sorghum acres decreased.  Soybean acreage has remained steady, although in 1997 

acreage began to increase.  Corn yields have steadily increased, while wheat and sorghum 

yields have fluctuated around relatively constant means, as shown in Figure 6.3 through 

Figure 6.6.3  The slight improvement in soybean yields, along with the advent of 

Glyphosate resistant technology, likely contributed to the increase in the acreage of 

soybeans.   

                                                 

3
 Yield data were obtained from Kansas Agricultural Statistics Service. 
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Figure 6.2  Irrigated Acreage in Kansas by Crop 
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Source: Kansas Agricultural Statistics Service (KASS) 

Figure 6.3 Average Irrigated Corn Yield 
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Figure 6.4 Average Irrigated Soybean Yield 
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Figure 6.5 Average Irrigated Sorghum Yield 
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Figure 6.6 Average Irrigated Wheat Yield 
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The time trend could be capturing effects other than hybrid improvements in corn 

and soybeans, such as changes in policies or other input costs.  It is possible that the time 

trend could be collinear with other variables already included in the model.  For example, 

irrigation technology choice has a trend over time (Table 6.4), and natural gas price has 

increased over time (Figure 6.12). 

6.7 DATA LIMITATIONS 

Parcel-level data provides many advantages, but also has limitations.  Crop-choice 

decisions are field specific, but there are also farm-level aspects to the decision.  For 

example, if an operator has equipment for a specific crop, such as alfalfa, then he will be 

more likely to plant that crop on his fields.  So a limitation of this data is that there are no 

operator characteristics.   

Crop rotations are not accounted for either.  There are no data on the crop planted 

in the previous year for many of the observations, so a lag term to account for crop 

rotations is not possible.  Continuous corn appears to be the most popular crop rotation in 

the sample, as 70.49% of acres are planted to corn (Table 6.1).  If a corn-soybean rotation 
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were more common, as it is in other regions of the United States, accounting for crop-

rotations would be more important. 

6.8 DESCRIPTIVE STATISTICS 

The resulting dataset has 5,075 unique parcels of land over 14 years resulting in a 

total of 39,457 observations.  Therefore, not every parcel of land has observations for all 

14 years in the series.  There were observations in 25 counties in western Kansas, with 

observations in each Groundwater Management District (GMD).   

Parcels between 120 and 139 acres compose the majority (68.6%) of the sample 

observations (Figure 6.7).  This is the most popular size because it is the typical area 

irrigated by a center pivot on a quarter-section (160 acre) field.  The minimum parcel size 

in the sample is 11 acres and the maximum parcel size is 680 acres.   

Figure 6.7  Histogram of Parcel Size 
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Corn was by far the most commonly grown crop in the sample, with an average of 

70.49% of acres planted to corn over the data period (Table 6.1).  The percent of acres 

planted to corn reached its peak in 1996, stayed relatively constant for the next four 

years, then after 2000 trended downwards.  Sorghum acres dropped drastically after 1992 

and made up less than 2% of acres planted from 1998-2001.  In 1991, only 6.24% of 

acres were planted to soybeans, but acreage continued to increase, representing 16.16% 

of acres in the sample in 2004.  Alfalfa acreage remained fairly steady over the sample 

period, accounting for an average of 16.94% of acres. 

Table 6.1  Percent of Acres Planted to each Crop by Year 

Year Alfalfa Corn Sorghum Soybeans

1991 20.20% 63.15% 10.41% 6.24%

1992 18.21% 67.04% 9.24% 5.51%

1993 17.74% 73.06% 4.45% 4.75%

1994 18.53% 72.45% 3.72% 5.30%

1995 18.55% 71.85% 4.54% 5.06%

1996 15.26% 76.68% 3.46% 4.60%

1997 15.85% 73.31% 3.23% 7.61%

1998 16.08% 72.90% 1.78% 9.23%

1999 15.09% 72.70% 1.94% 10.27%

2000 12.86% 74.54% 1.16% 11.44%

2001 15.94% 70.66% 1.89% 11.51%

2002 18.33% 67.49% 2.27% 11.90%

2003 19.39% 64.24% 4.80% 11.57%

2004 17.27% 64.14% 2.43% 16.16%

Total 16.94% 70.49% 3.73% 8.84%  

Alfalfa is the most water intensive crop with an average of 18.51 inches of water 

applied per acre in the sample, but also has the largest standard deviation of water use 
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(Table 6.2).  Corn is the second most water intensive crop, followed by soybeans and 

sorghum.  An average of only 11.39 inches of water was applied to sorghum. 

Table 6.2  Descriptive Statistics of Annual Water Use per Acre (inches) by Crop 

Crop Mean

Standard 

Deviation

Alfalfa 18.51 7.49

Corn 15.88 6.04

Sorghum 11.39 6.59

Soybeans 14.01 5.25  

When farmers in the sample had flood irrigation technology, they tended to plant 

more sorghum and less alfalfa and soybeans.  On parcels using flood irrigation, 16.16% 

of the acres were planted to sorghum (Table 6.3).  Crop choices were similar under the 

two center pivot technologies, although generally less sorghum was grown under the 

more efficient technology, center pivot with low drops.  Standard center pivot was the 

most popular irrigation system, used on 49.50% of acres in the sample, while flood 

irrigation was only used on 6.30% of the observations.   

Table 6.3  Percent of Acres Planted with each Irrigation System 

Alfalfa Corn Sorghum Soybeans Total

Flood 6.67% 71.61% 16.16% 5.56% 6.30%

Standard Center Pivot 19.27% 69.72% 3.75% 7.26% 49.50%

Center Pivot with Low Drops 15.80% 71.19% 1.94% 11.08% 44.20%  

However, the number of acres under standard center pivot decreased drastically 

during the sample period from 87.34% of acres to 9.69% of acres, while center pivot with 

low drop nozzles increased over the period from 0.43% of acres to 88.12% of acres 

(Table 6.4).  Even though standard center pivot was the most common system in the 



61 

 

 

entire sample, currently center pivot with low drops is by far the most popular system.  

The percent of acres under flood irrigation steadily decreased from 12.23% to 2.18% 

from 1991 to 2004. 

Table 6.4  Percent of Acres Under Each Irrigation System by Year 

Year Flood

Standard 

Center Pivot

Center Pivot 

with Low Drops

1991 12.23% 87.34% 0.43%

1992 10.92% 83.73% 5.35%

1993 9.53% 82.51% 7.96%

1994 9.67% 81.57% 8.76%

1995 8.54% 83.56% 7.89%

1996 7.76% 84.70% 7.54%

1997 7.00% 58.29% 34.71%

1998 5.52% 44.92% 49.57%

1999 4.63% 38.06% 57.31%

2000 4.33% 25.95% 69.72%

2001 3.72% 18.30% 77.97%

2002 2.84% 11.64% 85.52%

2003 2.61% 10.57% 86.82%

2004 2.18% 9.69% 88.12%

Total 6.30% 49.50% 44.20%  

The average well capacity is similar for each of the crops, except the average well 

capacity when sorghum is planted is about 200 gpm less than the other three crops (Table 

6.5).  Sorghum also has the largest standard deviation of well capacity, however.  The 

overall average well capacity in the sample is 740.3 gpm, with a large standard deviation 

of 255.8 gpm. 
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Table 6.5  Descriptive Statistics of Well Capacity (gpm) by Crop 

Crop Mean

Standard 

Deviation

Alfalfa 770.7 204.0

Corn 741.6 264.9

Sorghum 564.3 302.7

Soybeans 764.5 202.3

Total 740.3 255.8
 

High correlation among prices could lead to multicollinearity among model 

regressors, creating estimation difficulties.  Table 6.6 shows the correlation matrix for the 

expected price series.  The price of sorghum is not included in the analysis because there 

is no expected price for sorghum as noted previously.  Expected corn and soybean prices 

are highly correlated (94.0%), so including both variables in the model would likely 

result in multicollinearity issues.  Therefore, only the expected alfalfa and corn prices are 

included in the multinomial logit model. 

Table 6.6  Correlation Matrix of Expected Crop Prices 

Alfalfa Corn Soybeans

Alfalfa 1

Corn 0.113 1

Soybeans -0.070 0.940 1  

Although the price trends in the expected price series and the NASS price series 

are similar, there are differences, which make it important to use the expected price series 

in the crop-choice model (Figure 6.8 and Figure 6.9).  In particular, the expected price 

series tends to lag the NASS price series.  The alfalfa NASS price series dropped quickly 

in 1998 and 2003, but alfalfa prices were high in 1996-1997 and 2001-2002.  Corn price 

remained relatively constant with a spike in price in 1995 and another increase in 2002.  
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Currently, corn prices are over $4/bu in many areas of western Kansas.  Unfortunately, 

the corn price in the sample period came nowhere near $4/bu, so the model does not have 

data to examine how farmers respond at such a high price.  Indeed, corn prices only 

exceeded $3/bu once during the sample period.

Figure 6.8 Alfalfa Price Series 
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Figure 6.9 Corn Price Series 
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Expected sorghum and soybean prices are not included in the model, for reasons 

explained earlier.  Therefore, Figure 6.10 and Figure 6.11 only show the NASS price 

series for sorghum and soybean prices.  The trends in sorghum and soybean prices are 

similar to the trend in the NASS price series for corn with high prices around 1995, 1996, 

2002, and 2003 and low prices in the late 1990s.
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Figure 6.10 Sorghum Price Series 
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Figure 6.11 Soybean Price Series 
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Figure 6.12 shows both the expected and in-season natural gas price series 

throughout the sample period.  The price of natural gas increased greatly during the 

period.  In 1991, the in-season price of natural gas was $1.24/Mcf and by 2004 the price 

had increased five fold to $6.26/Mcf. 

Figure 6.12 Price of Natural Gas ($/Mcf) 1991-2004 
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The percent of acres planted to each crop and the well capacity at the county and 

GMD-level are given in Table 6.7.  A set of descriptive statistics for selected variables is 

given in Table 6.8.  The set of descriptive statistics for normalized prices is given in 

Table 6.9.  These are important statistics because marginal effects are only computed 

within the range of the data, and normalized prices, not actual prices, are used in 

estimating the model.
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Table 6.7  Percent Acres Planted to Each Crop and Well Capacity by County and 

GMD 

County GMD Alfalfa Corn Sorghum Soybeans

Cheyenne 4 6% 84% 2% 8% 584

Decatur 4 5% 88% 3% 4% 423

Rawlins 4 2% 83% 10% 5% 428

Sheridan 4 2% 90% 4% 5% 532

Sherman 4 4% 89% 4% 4% 598

Thomas 4 1% 90% 3% 6% 577

Average 4 3% 89% 4% 5% 562

Scott 1 1% 65% 32% 1% 271

Wallace 1 3% 91% 5% 1% 613

Wichita 1 9% 70% 18% 2% 289

Average 1 4% 79% 16% 1% 411

Finney 3 43% 51% 2% 4% 781

Ford 3 11% 73% 10% 7% 710

Grant 3 28% 68% 3% 1% 871

Kearny 3 51% 47% 1% 1% 792

Meade 3 7% 83% 6% 3% 973

Morton 3 20% 64% 16% 0% 651

Seward 3 25% 68% 5% 2% 913

Stanton 3 2% 91% 7% 0% 685

Stevens 3 13% 85% 1% 1% 1126

Average 3 31% 63% 3% 3% 823

Barton 5 19% 57% 8% 16% 783

Edwards 5 19% 63% 2% 15% 823

Kiowa 5 13% 64% 3% 20% 862

Pawnee 5 20% 54% 5% 21% 727

Pratt 5 6% 78% 2% 14% 870

Reno 2 & 5 2% 61% 8% 29% 810

Stafford 5 10% 71% 2% 17% 833

Average 2 & 5 13% 66% 3% 17% 823

Total 17% 70% 4% 9% 740

Percent of Acres Planted Well Capacity 

(gpm)
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Table 6.8 Descriptive Statistics of Selected Variables 

Variable Mean

Standard 

Deviation Minimum Maximum

Expected Price Series

Alfalfa Price 77.83 7.31 66.17 91.17

Corn Price 2.52 0.27 2.13 3.06

NASS Price Series

Alfalfa Price 79.15 9.55 66.50 97.00

Corn Price 2.34 0.37 1.81 3.24

Sorghum Price 3.66 0.72 2.64 5.53

Soybean Price 5.66 1.02 4.16 7.68

Input Prices

Expected Natural Gas Price 2.72 1.46 1.22 5.51

In Season Natural Gas Price 2.93 1.42 1.24 6.26

Index of Prices Paid 114.49 8.97 100 132

Acres in Parcel 128.1 48.9 11 1545

Climate/Weather

Average Annual Precipitation 21.04 1.99 15.31 23.08

Average May-Aug Cumulative ET 37.60 1.77 35.43 39.44

Jan-April Precipitation 4.47 1.93 0.69 9.26

May-Aug Precipitation 12.61 4.34 3.22 22.77

May-Aug Cumulative ET 37.62 5.73 28.42 56.25

Soil Characteristics

Average Land Classification 3.32 1.29 1.67 6

Average Permeability in Root Profile 4.93 4.36 0.48 13

Hydrological

Well Capacity 740.26 255.78 30 3000  
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Table 6.9  Descriptive Statistics of Normalized Prices 

Variable Mean

Standard 

Deviation Minimum Maximum

Normalized Expected Price Series

Alfalfa Price 67.99 3.67 60.93 73.98

Corn Price 2.22 0.29 1.76 2.66

Normalized NASS Price Series

Alfalfa Price 69.22 7.01 55.30 80.17

Corn Price 2.06 0.40 1.60 3.00

Sorghum Price 3.23 0.74 2.23 5.12

Soybean Price 4.98 0.95 3.41 6.23

Normalized Input Prices

Expected Natural Gas Price 2.31 1.07 1.21 4.52

In Season Natural Gas Price 2.49 1.01 1.24 4.75
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CHAPTER 7 - RESULTS 

The results of estimating the multinomial logit selectivity model with the data 

described previously are presented in this chapter.  Hypothesis tests confirm that the 

variable, allocatable input specification for irrigation water is appropriate.  Water use is 

decreasing in natural gas price and the marginal effects are decomposed into intensive 

and extensive marginal effects.  The extensive marginal effect is negligible at low natural 

gas prices, but increases with high prices.  The intensive marginal effect is significant; 

and even when natural gas price is high, the intensive marginal effect comprises more 

than half of the total marginal effect.  Water use on corn is the least responsive of all the 

crops to changes in natural gas price in the short-run.  More efficient irrigation 

technology and other technological improvement, represented with a time variable, 

reduce the magnitude of the marginal effect of natural gas price.  Corn and alfalfa are 

estimated to be economically competing outputs, and since they are both water intensive 

crops, corn and alfalfa prices have a negligible extensive marginal effect.  Over the 

sample range, the magnitude of the effect of well capacity on water use is the largest of 

all the variables. 

7.1 MODEL ESTIMATION AND EVALUATION 

The results of the multinomial logit model for crop-choice are given in Table 7.1 

where the coefficients correspond to the vector αj as defined in the model chapter.  The 
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coefficients of this model do not have a direct interpretation, as noted in chapter 5, and 

the sign of the coefficients may not correspond to that of the marginal effects.  The 

coefficients for the crop-choice of alfalfa are equal to zero, which is a normalization for 

estimation purposes. 

The significance of the coefficients, however, is important to evaluate.  Nearly all 

the coefficients in the model are statistically significant at the 10% level, and frequently 

significant at the 1% level.  The coefficients on natural gas price and its squared term are 

not significant in two of the equations; however, they are significant in the sorghum 

equation at the 1% level.  A Wald test was run with the restricted model excluding the 

two natural gas price terms from the logit model.  The test statistic is 250, compared to a 

critical Chi-squared value of 16.81 (1% significance level), indicating that the two 

variables have a very statistically significant impact in the model.  The test statistic for 

excluding the two terms from only the corn equation is 64.67 compared to the critical 

value of 9.21, while excluding the natural gas price squared terms from the model yields 

a test statistic of 34.15 compared to the critical value of 11.34.  Each of these tests 

demonstrates that natural gas price and its squared term do make a statistically significant 

impact in crop-choice, and are therefore included in the model. 
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The goodness of fit measures are given in Table 7.2.  The likelihood ratio test 

statistic is very large, indicating that the variables in the model help explain irrigators’ 

crop-choices much better than simply defining irrigators’ crop-choices with the average 

probability of planting each crop in the sample.  The pseudo R2 and McFadden’s R2 also 

give an indication of fit.  These numbers are low, but should not be compared to statistics 

from different models and cannot be interpreted as the R2 in OLS.  However, these two 

measures can be used to compare the fit of different specifications for the same model.  

Choosing the crop with the highest probability for each observation, the model accurately 

predicts 70% of the crop-choice decisions.  

Table 7.2  Logit Goodness of Fit Measures 

Likelihood ratio test statistic 10240

Pseudo R
2

0.14

McFadden’s R
2

0.14

Count R
2

0.70  
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Table 7.3 gives a more detailed description of the crop-choice prediction accuracy 

of the model.  The model frequently predicts corn (92% of the time) and never predicts 

soybeans.  However, this does not indicate a problem with the model.  As discussed in 

chapter 5, Train warns against relying too heavily on this result, because it counters the 

very idea of probabilities.  Soybeans may always have a lower probability of being grown 

than corn; nevertheless, a probability states that with enough repetitions, soybeans will be 

planted.  However, under the assumption that the crop with the highest probability is 

planted, soybeans will never be predicted.  The model may have difficulty correctly 

predicting soybeans because the decision to plant soybeans may be due to idiosyncratic 

factors.  Glyphosate resistance makes soybeans an appealing crop to rotate with corn to 

relieve weed pressure, which will arise at periodic but unpredictable intervals on different 

parcels. 

Table 7.3  Frequencies of Actual and Predicted Outcomes 

Actual Alfalfa Corn Sorghum Soybeans

Alfalfa 1561 4933 13 0 6507 (16.5%)*

Corn 1312 26063 74 0 27449 (69.6%)

Sorghum 27 1712 105 0 1844 (4.7%)

Soybeans 81 3567 9 0 3657 (9.3%)

Total 2981 36275 201 0 39457
(7.6%) (91.9%) (0.5%) (0.0%)

* The percent of total observations are in parentheses.

Predicted

Total
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Table 7.4 reports the marginal effects, of all variables except prices on the 

probability of planting each of the crops, averaged across all observations.  As an 

example of how to interpret the marginal effect of a dummy variable, if the parcel of land 

has flood irrigation technology, then the farmer is 7.17% less likely to plant corn 

compared to the center pivot with low drops system (the omitted base group).  Prices are 

excluded at this point because they have squared terms that complicate the marginal 

effects; they are fully described in later sections.  Most of the variables have a very 

statistically significant effect in explaining crop-choice. 

Table 7.4  Marginal Effects on Crop-Choice Averaged Across Observations 

Alfalfa Corn Sorghum Soybeans

Climate

Average Precipitation 0.0748 ** -0.0874 ** -0.0018 ** 0.0144 **

Average ET 0.0635 ** -0.0384 ** -0.0010 -0.0241 **

Soil Characteristics

Land Classification 0.0321 ** -0.0232 ** -0.0059 ** -0.0031

Permeability 0.0076 ** -0.0048 ** -0.0014 ** -0.0014 *

Other

Flood 0.0083 -0.0717 ** 0.0705 ** -0.0071

Std. Center Pivot 0.0196 ** -0.0284 ** 0.0208 ** -0.0120 **

Well Capacity -0.0001 ** 0.0003 ** -0.0001 ** -0.0000 **

Time Trend -0.0062 ** 0.0054 ** -0.0059 ** 0.0068 **

* and ** indicate significance at the 10% and 1% levels, respectively.  

The results from the OLS regressions for water use for each crop, accounting for 

selectivity, are given in Table 7.5.  The results show estimates from four different 

regressions, where water use per acre (inches) is the dependent variable.  Previous 

research has used total water use as the dependent variable and included acres as one of 

the independent variables.  The number of acres explains a large share of the variation in 
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water use, so the R2 may be very large for those models.  However, this variable simply 

captures the obvious relationship that larger irrigated parcels consume more water.  

Evaluating water use per acre allows for consistent comparisons of water use across 

parcels of various sizes.   
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Table 7.5  Parameter Estimates for Water Use OLS Regressions 

Variable Alfalfa Corn Sorghum Soybeans

Constant 35.87 ** 2.78 ** 13.71 ** -2.37 *

(1.404) (0.416) (2.253) (1.008)

Normalized Prices

Own Price -0.055 ** 1.531 ** 0.497 * -1.045 **

(0.011) (0.105) (0.260) (0.107)

Natural Gas -0.675 ** -0.182 ** -0.788 ** -0.440 **

(0.092) (0.047) (0.234) (0.093)

Climate

Precipitation (Jan-April) -0.843 ** -0.650 ** -0.324 ** 0.106 *

(0.040) (0.019) (0.094) (0.053)

Precipitation (May-Aug) -0.346 ** -0.329 ** -0.312 ** -0.236 **

(0.019) (0.009) (0.044) (0.024)

ET 0.161 ** 0.258 ** 0.170 ** 0.329 **

(0.015) (0.007) (0.033) (0.021)

Soil Characteristics

Permeability -0.398 ** 0.139 ** 0.325 ** 0.228 **

(0.024) (0.014) (0.058) (0.021)

Other

Flood -0.583 * 2.379 ** -2.277 ** 1.327 **

(0.333) (0.135) (0.671) (0.338)

Std. Center Pivot -0.905 ** 0.001 -0.853 * -0.265

(0.163) (0.085) (0.483) (0.196)

Well Capacity 0.0084 ** 0.0093 ** 0.0113 ** 0.0142 **

(0.001) (0.000) (0.002) (0.001)

Well Capacity Squared -1.27E-06 * -2.35E-06 ** -2.45E-06 * -6.02E-06 **

(0.000) (0.000) (0.000) (0.000)

λ -9.259 ** 3.075 ** -4.628 ** 2.667 **

(0.261) (0.287) (0.685) (0.294)

Adjusted R
2

0.31 0.22 0.14 0.28

* and ** indicate significance at the 10% and 1% levels, respectively.

Standard Errors are in parentheses.  

Most of the variables in the regressions are significant, frequently at the 1% level.  

Most of the signs of the coefficients match expectations, although a few are counter-
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intuitive.  For example, it is expected that alfalfa and soybean water use would increase 

as their prices increase, but the signs of the coefficients are negative.  The coefficients on 

precipitation should all be negative, but the coefficient on January-April precipitation is 

positive for soybeans.   

The variables included in the model explain 31% of the variation in water use per 

acre when alfalfa is planted.  However, only 14% of the variation is explained by the 

variables when sorghum is planted.  The coefficients on λ are significant in each of the 

regressions, indicating that if selectivity were not accounted for, the results would be 

biased.   

The coefficients on natural gas price are significant in each of the regressions, 

which give evidence that the variable, allocatable input specification is appropriate.  A 

squared term for well capacity is included in the regression because water use is expected 

to increases as well capacity increases but at a decreasing rate.  In other words, there is 

not expected to be as large a difference in water use between parcels with very large well 

capacities.  Technological improvements in hybrids are not thought to have had a 

significant impact on water use, so a time trend is not included in the regressions. 
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The marginal effects of the variables in the water use regressions are the effects at 

the intensive margin.  The effect of actual prices on short-run water use is of interest, but 

the prices in the regression are normalized by the index of prices paid for inputs.  

Therefore, the marginal effect of each price at the data means is computed by dividing the 

coefficient on the normalized price by the mean value of the index.  The marginal effects 

at the mean index of prices paid are reported in Table 7.6. 

Table 7.6  Marginal Effects of Prices in Water Use Regressions 

Alfalfa Corn Sorghum Soybeans

Own Price -0.048 1.338 0.434 -0.912

Natural Gas Price -0.589 -0.159 -0.688 -0.385  

In the empirical model chapter (chapter 5) it was stated that multinomial logit 

selectivity models can suffer from multicollinearity and a lack of robustness if the 

variables in the multinomial logit model and the linear regressions are the same.  

However, this model specification should have enough difference in the variables in the 

two models to prevent such issues.  The variables for average land classification and the 

time trend are used in the multinomial logit but not in the water demand equations.  The 

squared term for well capacity is used only in the water demand equations and not crop-

choice, whereas squared price terms are only used in the crop-choice model.  Only the 

own-crop price is used in each of the water demand equations; however, alfalfa and corn 

price are both used in the crop-choice equation.  In addition, expected prices and weather 

variables are used in the crop-choice model, and actual prices and weather variables are 

used in the water demand equation.   
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7.2 IMPACT OF VARIABLES ON CROP-CHOICE AND WATER USE 

In the subsequent sections, the effects of each variable on crop-choice and short-

run water use are discussed.  The crop-choice probabilities and marginal effects are 

computed at the means of the independent variables, unless otherwise noted.  For 

example, the statement “when natural gas price is $5/Mcf, the marginal effect (or 

probability)…” means that the marginal effect is computed when natural gas price equals 

$5/Mcf and all other variables are held at their means.  The marginal effects of prices are 

adjusted for normalization as described in the previous section, so they can be interpreted 

as a marginal effect of the actual price rather than the normalized price.  The marginal 

effect on probabilities is also reported as an average across individual observations (Table 

7.4). 

The impact of variables on expected water use is also discussed.  For the purposes 

of this thesis, expected water use is defined as the sumproduct of the probability of 

planting each crop and its respective water use.  The expected water use is represented in 

the model chapter in equation (5.18).  In the discussions that follow, expected water use 

is graphed to show how water use responds to changes in variables.  The total marginal 

effect of water use in equation (5.19) is not constant across all values of the variables 

because the marginal effect on probabilities is not constant; therefore, the effect of some 

variables on expected water use is best shown graphically. 
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7.2.1 Impact of Natural Gas Price 

The impact of natural gas price on water use is analyzed first by evaluating its 

impact on the 1st stage decision, crop-choice.  Then the 2nd stage, short-run impacts are 

analyzed from the results of the water use demand regressions for each crop.  Finally, the 

effects are presented as extensive and intensive marginal effects.  Important interactions 

on the effect of natural gas price with irrigation systems, technological improvements, 

and well capacity are also discussed. 
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Focusing first on the impact of natural gas price on crop-choice, Figure 7.1 

reveals that the probability of planting corn is the most responsive of the crops.  As 

natural gas price increases, the marginal probability becomes more negative.  When 

natural gas is $1.50/Mcf, a $1/Mcf increase in natural gas reduces the probability of 

planting corn by 1.33%; however, when natural gas is $5.00/Mcf, a $1/Mcf increase in 

natural gas reduces the probability of planting corn by 8.47%.  As natural gas price 

changes from $1.50/Mcf to $5.20/Mcf, the probability of planting corn decreases 13.9%. 

Figure 7.1  Probability of Planting Each Crop as Natural Gas Price Changes 
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The probability of planting alfalfa is fairly unresponsive to natural gas prices, but 

increases slightly at a decreasing rate.  When natural gas price is $5.00/Mcf, a $1/Mcf 

increase in natural gas only increases the probability of planting alfalfa by 0.83%. 

The probability of planting soybeans is unresponsive to changes in natural gas 

prices across the whole range of prices.  Likewise, the probability of planting sorghum is 
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unresponsive to changes in natural gas price, until natural gas reaches $3.50/Mcf.  As 

natural gas price changes from $3.50/Mcf to $5.20/Mcf, the probability of planting 

sorghum increases 8.1%.  This result arises because much of the acreage substitution in 

response to natural gas price increases occurs between corn and sorghum. 

Next turning to the impact on short-run water use, the values in Table 7.6 indicate 

that as natural gas increases $1/Mcf, water use decreases 0.589, 0.159, 0.688, and 0.385 

inches given the irrigator plants alfalfa, corn, sorghum, or soybeans, respectively.  Alfalfa 

and sorghum have the largest short-run response and corn has by far the smallest.  The 

small response of corn water use in the short-run is probably because corn yield is very 

sensitive to water shortages, especially in certain stages of crop growth.  If a farmer were 

to reduce water use on corn a little, he may lose the entire crop or at least have major 

yield loss.  On the other hand, alfalfa and sorghum yields are not as sensitive to water 

use.  If a farmer chooses to reduce water to alfalfa, he may lose a cutting or his cutting 

may be smaller, but he will not run the risk of losing the entire crop for the year.  

Sorghum is much more drought tolerant than corn, so reducing water use is not as risky.   

Irrigators may reduce water use in the short-run by either improving management 

practices to conserve water or simply pumping less.  Farmers may improve their 

management practices by more intensive supervision of water application and only 

pumping when necessary.  In terms of price response, if natural gas is cheap, farmers may 

keep pumping to reduce risk because doing so is not that costly; but when the cost to 

pump increases, they manage the water more intensively and bear more risk.  Farmers 

may also be responding by simply applying less water to crops, thereby reducing yields.  
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Given responses of the various crops to water stress, this is a more likely scenario in 

alfalfa and sorghum production, but less likely on corn, where reduced water use is 

probably more economic to obtain from improved management.  Reduced water use on 

soybeans could be a combination of the two scenarios. 

Finally, Figure 7.2 shows that the overall impact of natural gas price is to decrease 

expected water use.  The relationship is fairly linear until natural gas reaches $3.50/Mcf.  

Below $3.50/Mcf, the reduction in water use is all due to changes in short-run water use, 

but as natural gas price increases above $3.50/Mcf, water use also decreases due to shifts 

in planted acres from corn to sorghum.  This causes expected water use to begin 

decreasing at an increasing rate and gives curvature to the relationship.  However, the 

overall effect of natural gas increasing from $1.50/Mcf to $5.20/Mcf only decreases 

water use per acre by 1 inch. 

Figure 7.2  Expected Water Use as Natural Gas Price Changes 
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Calculations of special interest in the literature are the intensive and extensive 

marginal effects.  These are calculated with equation (5.19), as defined in the empirical 

model chapter.  Due to the nonlinearities in the crop-choice model, the marginal effects 

are not the same at every price and the varying impact of the natural gas price on water 

use is best understood by evaluating these effects at different prices and exploring the 

interaction with other variables. 

The intensive marginal effect summed across crops increases only slightly as 

natural gas price increases (Table 7.7).  The increase in the intensive margin effect is 

because the probability of growing corn decreases1 at higher natural gas prices and corn 

water use is the least responsive to natural gas price of all the crops.  When natural gas 

price is $5/Mcf, the intensive marginal effect on water use is -0.297 inches.  Or, in 

elasticity terms, when natural gas price is $5/Mcf, as the natural gas price increases 1%, 

water use decreases 0.09% at the intensive margin. 

The extensive marginal effect is positive, but nearly zero, at low natural gas 

prices, but becomes negative as natural gas price increases (Table 7.7).  The positive 

extensive marginal effect at low natural gas prices is an unexpected result, as a proof was 

given in chapter 4 that the extensive margin effect is negative.  However, the proof was 

only for 2 crops and the most profitable crop was planted with probability one.  In the 

empirical model, there are 4 crops and the probabilities are smooth curves with no 

                                                 

1
 The intensive margin effect depends on the probability of growing the crop because it is the marginal 

effect from the water demand regression weighted by the probability of growing the crop (Equation (5.19)).  
The intensive margin effect summed across crops is not the sum of the marginal effects of the water 
demand regressions. 
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certainty that a particular crop will be planted.  So the same result from the proof in 

chapter 4 may not necessarily hold.  Empirically, the extensive margin effect is positive 

because the probability of planting alfalfa increases, and alfalfa consumes a large amount 

of water.  When natural gas is $5/Mcf, as natural gas price increases 1%, water use 

decreases 0.07% at the extensive margin.  Therefore, when natural gas is $5/Mcf, the 

intensive and extensive marginal effects are nearly equal; about half the reduction in 

water use is through short-run adjustment and half is through changing to less water 

intensive crops.   

Irrigation water use is very inelastic at all price levels, but becomes more elastic 

as natural gas price increases.  An estimate of the elasticity of water when natural gas 

price is $5/Mcf and all other variables are at their means is -0.1645. 

Table 7.7  Intensive and Extensive Marginal Effects at Different Natural Gas Prices 

Natural Gas Price ($/mcf) Intensive Extensive Total Intensive Extensive Total

2 -0.241 0.060 -0.181 -0.0288 0.0072 -0.0217

3.5 -0.256 0.028 -0.228 -0.0547 0.0060 -0.0488

5 -0.297 -0.226 -0.523 -0.0934 -0.0711 -0.1645

Marginal Effect Elasticity

 

Table 7.8 decomposes the marginal effects by crop when natural gas is $5/Mcf 

(the last line of Table 7.7).  The change at the intensive margin is greatest from corn, 

which is only because the probability of planting corn is so high.  Even though water use 

on sorghum and alfalfa decrease the most from increasing natural gas prices, the 

probabilities of planting these crops are relatively low. 
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The extensive margin effect is negative for corn and soybeans because the 

marginal probability of planting these crops is negative.  The largest negative effect at the 

extensive margin is from corn.  However, the increase in water use on sorghum due to 

increased acres nearly cancels the effect of decreased corn acreage.  Similarly, the 

marginal effects of more alfalfa and fewer soybeans negate each other.  The overall 

extensive margin effect is negative when summed across all crops due to an increase in 

the probability of planting a less water intensive crop, sorghum. 

Table 7.8  Marginal Effects by Crop when Natural Gas is $5/Mcf 

Crop Intensive Extensive Total Intensive Extensive Total

Alfalfa -0.100 0.153 0.053 -0.0314 0.0482 0.0168

Corn -0.106 -1.353 -1.459 -0.0334 -0.4253 -0.4587

Sorghum -0.064 1.127 1.063 -0.0203 0.3544 0.3341

Soybeans -0.027 -0.154 -0.180 -0.0084 -0.0484 -0.0568

Total -0.297 -0.226 -0.523 -0.0934 -0.0711 -0.1645

Marginal Effect Elasticity
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7.2.1.1. Interaction of Natural Gas Price Impact with Irrigation Systems 

The irrigation system used has some very interesting impacts on the marginal 

effect of natural gas price on water use.  Farmers using flood irrigation are more likely to 

switch crops from corn to sorghum than farmers using center pivot irrigation technology 

(Figure 7.3).

Figure 7.3  Probability of Planting Corn or Sorghum under Different Systems as 

Natural Gas Price Increases 
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Even though expected water use is greater under flood irrigation, natural gas price 

response is much larger also (Figure 7.4).  Expected water use is 1.5 inches greater under 

flood irrigation than center pivot irrigation when natural gas price is $1.50/Mcf; however, 

when natural gas increases to above $5.00/Mcf, expected water use is nearly identical 

across systems.  The natural gas price response is very similar for standard center pivot 

and center pivot with low drops, although the more efficient technology, center pivot 

with low drops, is slightly less responsive to changes in natural gas prices.  Expected 

water use decreases more quickly with flood irrigation because flood irrigators are more 

likely to switch from corn to sorghum. 

Figure 7.4  Expected Water Use under Different Systems as Natural Gas Price 

Changes 
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The intensive and extensive marginal effects with different irrigation systems, 

when natural gas is $5/Mcf, are shown in Table 7.9.  As reflected in the slopes of the 
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curves in Figure 7.4, irrigators with more efficient irrigation systems are less responsive 

to natural gas prices.  Table 7.9 shows that this response gap comes from differences at 

both the intensive and extensive margins.  The intensive marginal effect is lower for more 

efficient irrigation technologies because more corn is grown under these technologies, 

and corn is the least responsive crop to natural gas price.  The extensive marginal effect is 

also smaller for more efficient technologies because the marginal probability of planting 

corn is not as negative.  The difference in the extensive margin effects is especially large.  

The overall elasticity of water use under flood irrigation is -0.55, but under center pivot 

irrigation with low drops is only -0.11. 

Table 7.9  Marginal Effects by Irrigation System when Natural Gas is $5/Mcf 

Irrigation System Intensive Extensive Total Intensive Extensive Total

Flood -0.3811 -1.3911 -1.7722 -0.1193 -0.4354 -0.5547

Standard -0.3045 -0.2505 -0.5550 -0.0973 -0.0801 -0.1774

Low Drops -0.2789 -0.0747 -0.3536 -0.0876 -0.0235 -0.1111

Marginal Effect Elasticity

 



90 

 

 

7.2.1.2. Interaction of Natural Gas Price Impact with Time Trend 

Another interaction of importance is the effect technological improvement 

(primarily through improved yields of corn and soybeans) has on the response of water to 

natural gas price increases.1  Yield improvement in corn has reduced the marginal effect 

of natural gas price on the probability of planting corn.  Irrigators are also less likely to 

switch to sorghum production (Figure 7.5).  Improved hybrids have made corn more 

profitable, so it takes a larger increase in the natural gas price to give enough incentive 

for farmers to switch out of corn production. 

Figure 7.5  Probability of Planting Corn or Sorghum for Different Years as Natural 

Gas Price Increases 
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1
 Due to lack of reliable, exogenous measures of hybrid improvements, this was measured in the model by 

a time trend variable as a proxy.  However, the time trend could also be capturing effects other than hybrid 
improvements as discussed in section 6.6. 
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Therefore, technological improvement has reduced the response of irrigators to 

changes in natural gas price (Figure 7.6).  With the technology of 1991, expected water 

use decreases 1.43 inches when natural gas price increases from $1.50/Mcf to $5.20/Mcf, 

whereas water use only decreases 0.82 inches with the technology of 2004. 

Figure 7.6  Expected Water Use for Different Years as Natural Gas Price Changes 
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New technology has reduced the water demand responsiveness mainly due to a 

large reduction in the extensive marginal effect.  Figure 7.7 shows the absolute value of 

the extensive marginal effect with the technology of different years in the sample.  

Improved technology has made the probability of planting corn less responsive to price 

changes as discussed earlier, therefore decreasing the extensive marginal effect.  When 

natural gas is $5/Mcf, an additional $1/Mcf increase would cause water use to decrease 

0.55 inches through changes in crop-choice with the technology of year 1991, but only 

0.05 inches with the technology of 2004 (Table 7.10).  The intensive margin effect also 
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decreases with improved technology, because the probabilities of planting corn and 

soybeans, which are the least responsive crops at the intensive margin, increase, and the 

probabilities of planting alfalfa and sorghum decrease.  The elasticity of total water use 

when natural gas is $5/Mcf with the technology of year 1991 is -0.29, and with the 

technology of year 2004 is -0.10 (Table 7.10). 

Figure 7.7  Extensive Marginal Effect when Natural Gas is $5/Mcf as Time Changes 
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Table 7.10  Marginal Effects by Year when Natural Gas is $5/Mcf 

Time Intensive Extensive Total Intensive Extensive Total

1 -0.3644 -0.5512 -0.9156 -0.1161 -0.1756 -0.2917

14 -0.2621 -0.0549 -0.3170 -0.0827 -0.0173 -0.1000

Marginal Effect Elasticity

 

7.2.1.3. Interaction of Natural Gas Price Impact with Well Capacity 

Well capacity also has an interaction with the effect of natural gas price.  This is 

primarily due to larger shifts from corn to sorghum at low well capacities (Figure 7.8).  
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As Figure 7.8 shows, when natural gas price increases, the irrigators’ probability of 

growing corn decreases faster and the probability of growing sorghum increases faster at 

a low well capacity.  At a natural gas price of $5.00/Mcf and a well capacity of 1,150 

gpm, expected water use is 17.97 and 15.54 inches for corn and sorghum, respectively.  

When well capacity decreases to 250 gpm, expected water use is 12.54 inches and 8.46 

inches for corn and sorghum, respectively.  So, the marginal effect of well capacity is 

more negative for short-run water use on sorghum than corn.  Therefore, with a larger 

discrepancy in water use between corn and sorghum at low well capacities, the irrigator 

can reduce costs more by shifting to sorghum at a low well capacity. 

Figure 7.8  Probability of Planting Corn or Sorghum for Well Capacities (gpm) as 

Natural Gas Price Increases 
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At low well capacities the response in expected water use to energy prices is 

larger (Figure 7.9).  When the well capacity is 250 gpm, expected water use decreases 

1.55 inches per acre as natural gas increases from $1.50/Mcf to $5.20/Mcf.  However, 

when well capacity is 1,150 gpm, expected water use only decreases 0.75 inches per acre 
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as natural gas increases from $1.50/Mcf to $5.20/Mcf.  This is a surprising result, because 

it may be assumed that irrigators with a low well capacity will pump all they can with 

their limited capabilities, and therefore would not be as responsive to price changes.  

However, this result arises because farmers at low well capacities are more likely to 

substitute land into a less water intensive crop, namely sorghum.   

Figure 7.9  Expected Water Use for Well Capacities as Natural Gas Price Changes 
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As the well capacity increases, the extensive margin effect (in absolute terms) 

decreases at a decreasing rate (Figure 7.10).  The intensive marginal effect decreases 

slightly as well capacity increases; the intensive marginal effect is -0.38 and -0.24 for 

well capacities of 250 gpm and 1,150 gpm, respectively (Table 7.11).  When the well 

capacity is 250 gpm, the extensive marginal effect is nearly twice the size of the intensive 

marginal effect.  But as well capacity increases to 1,150 gpm, the extensive margin effect 

is less than ¼ the size of the intensive margin effect.  The extensive margin effect is 
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larger at smaller well capacities because of an increased probability of switching from 

corn to sorghum as explained previously in the section about the interaction of natural gas 

price and well capacity.  The intensive margin effect also decreases as well capacity 

increases because of an increased probability of growing sorghum.  The elasticity of total 

water use when natural gas is $5/Mcf with a well capacity of 250 gpm is -0.41, and with a 

well capacity of 1,150 gpm is only -0.08 (Table 7.11). 

Figure 7.10  Extensive Marginal Effect when Natural Gas is $5/Mcf as Well 

Capacity Changes 
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Table 7.11  Marginal Effects by Well Capacity when Natural Gas is $5/Mcf 

Well Capacity Intensive Extensive Total Intensive Extensive Total

250 -0.3814 -0.6152 -0.9965 -0.1582 -0.2552 -0.4135

1150 -0.2458 -0.0536 -0.2994 -0.0683 -0.0149 -0.0832

Marginal Effect Elasticity
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7.2.2 Impact of Crop Prices 

Unfortunately, due to limitations of the sample, the effect of corn price is only 

evaluated between $2/bu and $3/bu.  Due to increased demand for ethanol, corn prices 

have recently exceeded $4/bu in western Kansas.  The impact of these price levels on 

water use is an important question; however, this thesis does not attempt to simulate out 

of sample.  The extensive marginal effect was found to be negligible for corn price 

because an increase in corn price increases the probability of planting corn but also 

decreases the probability of planting alfalfa (both crops consume large amounts of water).  

The short-run change in water use is constant for different corn prices.  So even though 

there are no data on corn prices outside the sample, it is noteworthy that the effect of corn 

price is fairly constant over the prices within the sample due to a negligible extensive 

margin effect. 
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An increase in corn price increases the probability of planting corn at a decreasing 

rate, as expected (Figure 7.11).  The marginal effect decreases and almost becomes zero 

as corn price approaches $3/bu.  Based on this relationship, one might expect that 

including observations with corn price exceeding $4/bu would extend the effect of corn 

price, so that the probability would continue increasing, but at an ever decreasing rate.  

Corn and alfalfa were estimated to be economically competing outputs, but the corn price 

appears to have little effect on the probability of planting sorghum or soybeans. 

Figure 7.11  Impact of Corn Price on the Probability of Planting each Crop 
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As corn price increases, the expected water use also increases, as shown in Figure 

7.12.  However, this is only due to the increased water use on corn, as the effect at the 

extensive margin is negligible.  Increasing corn price by $1/bu, increases water use by 

1.338 inches on corn planted (Table 7.6).  When corn is worth more, apparently irrigators 

will increase water use to improve yields, which are more valuable.  Conversely, the 
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extensive margin effect, albeit small, is actually negative.  The intuition for this is more 

subtle: Alfalfa production uses more water than corn per acre, and a decrease in the 

probability of planting alfalfa more than offsets the increased water use from the extra 

corn acreage.  The intensive and extensive marginal effects at the data means are reported 

in Table 7.12. 

Figure 7.12  Impact of Corn Price on Expected Water Use 
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Table 7.12  Intensive and Extensive Marginal Effects for Corn Price 

Intensive Extensive Total Intensive Extensive Total

1.172 -0.103 1.069 0.179 -0.016 0.163

Marginal Effect Elasticity
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Farmers using more efficient irrigation systems are more responsive to corn price 

in their crop-choice.  The marginal probability of planting corn becomes negligible at 

high corn prices with flood irrigation, but remains positive with more efficient systems 

(Figure 7.13).  A similar effect on the marginal probability of planting corn has occurred 

because of technological improvement (Figure 7.14). 

Figure 7.13  Probability of Planting Corn under Different Systems as Corn Price 

Increases 
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Figure 7.14  Probability of Planting Corn for Different Years as Corn Price 

Increases 
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Even though technology has some interesting interactions with the impact of corn 

price on the probability of planting corn, because the extensive marginal effect is 

negligible, the interaction has little importance on expected water use.  Corn production 

replaces alfalfa production as corn price increases, and this effect results in very little 

change in the shape of the expected water use relationship in Figure 7.12. 

As alfalfa price increases, the probability of planting alfalfa increases as expected 

(Figure 7.15).  At high prices the marginal probability is negligible, however.  The 

marginal probability of planting corn increases as the alfalfa price increases, 

demonstrating again that alfalfa and corn are economically competing outputs.  Alfalfa 

price has a negligible effect on the probability of planting sorghum and soybeans.  The 

short-run marginal effect of an increase in alfalfa price is negative according to the water 
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use regression.  This result is contrary to the expected effect of alfalfa price, but is a 

relatively small effect.  If the alfalfa price increased $10/ton, the model predicts water use 

on alfalfa to only decrease 0.48 inches (Table 7.6). 

Figure 7.15  Impact of Alfalfa Price on the Probability of Planting each Crop 
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Short-run water use for sorghum increases 0.434 inches as sorghum price 

increases $1/cwt (Table 7.6).  This is a fairly large effect considering sorghum prices 

ranged from $2.64/cwt to $5.53/cwt.  Nevertheless, the intensive margin effect of 

sorghum is relatively unimportant because yield increases over the years have drastically 

reduced the probability of planting sorghum.  The marginal effect of soybean price on 

soybean water use is negative and quite large in magnitude, which is contrary to intuition 

(Table 7.6). 
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7.2.3 Impact of Climate/Weather Conditions 

As precipitation increases, the amount of water pumped decreases.  For an extra 

inch of rain in January through April, water use decreases 0.65 inches when corn is 

planted (Table 7.5).  All of the coefficients on the precipitation variables are less than 

one, so precipitation and irrigation water use are not perfect substitutes as one may 

expect.  January through April precipitation has a larger marginal effect than May 

through August precipitation in reducing water use in alfalfa, corn, and sorghum.  

Perhaps, if farmers feel they have sufficient soil moisture at the start of the crop season, 

they do not pump as much during the season, for example by delaying the start date of 

irrigation.  Conversely, early irrigations are essential for initial crop growth in years with 

a dry winter and spring.  Apparently this spring rain makes a large difference in water 

use.  The January through April precipitation coefficient is positive, but not as significant 

for soybeans.  This coefficient is contrary to expectations, but may have been obtained 

because soybeans have a later planting date than corn. 

Evapotranspiration (ET) also has a significant effect on irrigation water use.  As 

ET increases, water use must also increase.  For corn, for example, as cumulative ET 

increases one inch, water use increases 0.258 inches. 
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7.2.4 Impact of Soil Characteristics 

As the land classification improves (gets smaller) the probability of planting corn 

and sorghum increase.  The probability of planting corn increases 2.32% as the land 

classification decreases 1 rank, averaged across all observations (Table 7.4).  The 

marginal effect of land classification on the probability of planting soybeans is 

insignificant.  Conversely, the probability of planting alfalfa is larger on a poorer land 

classification; the probability increases 3.21% as land classification increases 1 rank.  The 

effects of land classification on the probabilities of planting different crops, at the means 

of the other independent variables, are shown in Figure 7.16. 

Figure 7.16  Impact of Land Classification on the Probability of Planting Each Crop 
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Expected water use decreases as the land classification improves because of this 

shift in crop-choice.  There is essentially a trade-off between corn and alfalfa as land 

classification changes, and alfalfa uses more water than corn.  The change in water use is 
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relatively small as it only decreases 0.58 inches when land classification improves from 6 

to 1.67 (Figure 7.17).  

Figure 7.17  Impact of Land Classification on Expected Water Use 
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The effect of soil permeability on crop-choice is similar to the effect of land 

classification.  As the permeability of the soil increases, the probability of planting corn 

decreases and the probability of planting alfalfa increases (Figure 7.18).  For a one unit 

increase in permeability, the probability of planting alfalfa increases 0.76% (Table 7.4).  

The effects of soil characteristics on crop-choice may be a result of the preference of 

farmers to raise alfalfa in sandy creek bottoms that have poor soil characteristics. 

Figure 7.18  Impact of Permeability on the Probability of Planting Each Crop 
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In the short-run, as the permeability of the soil increases, water use increases in 

three of the crops, as expected (Table 7.5).  However, water use decreases, and the 

coefficient is significant, for alfalfa.  Permeability is not expected to have a large 

influence on water application to alfalfa because alfalfa has a very deep root profile 

making it more likely to capture water percolating through the soil.  Nevertheless, this 

does not explain a negative coefficient in the model.  The probability of planting alfalfa 
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increases as the permeability increases, so these results may be confounded and the 

selectivity variable is not able to account for it.   

The magnitudes of the coefficients on permeability are quite large.  Average 

permeability ranged from 0.48 to 13 in the data, so if permeability increases 10, water use 

increases 1.39 inches, 3.25 inches, and 2.28 inches for corn, sorghum, and soybeans, 

respectively. 

Overall, expected water use increases as permeability increases, both because of 

increased use for corn, sorghum, and soybeans, and because of a crop-choice shift to 

alfalfa from corn.  However, the unanticipated result that water use on alfalfa decreases 

as permeability increases reduces the overall effect of permeability on expected water 

use. 

7.2.5 Impact of Irrigation System 

The probability of planting corn is greater for irrigators using more efficient 

irrigation systems, while the probability of planting sorghum is smaller.  Irrigators using 

flood irrigation are 7.17% less likely to plant corn than those with a center pivot with low 

drop nozzles, but are 7.05% more likely to plant sorghum (Table 7.4).  There is not a 

significant difference in the probability of planting alfalfa or soybeans.  Irrigators using a 

standard center pivot are 1.96% more likely to plant alfalfa, 2.84% less likely to plant 

corn, 2.08% more likely to plant sorghum, and 1.20% less likely to plant soybeans than 

irrigators with a center pivot with low drops. 
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Even though irrigators who use flood irrigation are less likely to plant corn, they 

apply 2.38 inches more than irrigators with low drops when they do grow corn (Table 

7.5).  Flood irrigators without limited water may plant corn and because of the 

inefficiency of the system, apply a lot more water than irrigators with more efficient 

systems.  However, flood irrigators apply 2.28 inches less on sorghum compared to 

irrigators with low drops.  Irrigators who plant sorghum on flood irrigation may have a 

very limited irrigation schedule, essentially growing dryland sorghum and only using the 

flood irrigation in dry periods, as opposed to irrigators with center pivot technology who 

irrigate sorghum to get the best yield possible.  This effect would result in less water 

applied to sorghum on flood irrigation compared to center pivot technology.  However, 

this result may also be an acreage effect.  Farmers, who are irrigating 160 acres with 

flood irrigation as opposed to 126 acres with a center pivot, apply less water per acre.  

Flood irrigators apply 1.33 inches more on soybeans and 0.58 inches less on alfalfa than 

irrigators with lows drops.  Overall, there is little difference in water application between 

standard center pivot and center pivot with low drops, although irrigators with low drops 

seem to apply less on alfalfa and sorghum. 

Accounting for crop-choice changes and differences in water use, expected water 

use for flood irrigation is 1.44 inches more than for center pivot with low drops.  There is 

a negligible difference in expected water use between the two center pivot technologies. 
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7.2.6 Impact of Well Capacity 

As well capacity increases, the probability of planting corn increases, and the 

probability of planting all other crops decreases (Table 7.4).  Corn production is very 

sensitive to water needs at certain growth stages, so irrigators have to be able to meet 

those demands by pumping water fast.  Other crops are not as sensitive to water deficits 

in short time periods during the season.  The probability of planting corn increases 3% as 

well capacity increases 100 gpm, averaged across all observations.  The effect on the 

probability of each crop at the means of the independent variables is presented in Figure 

7.19. 

Figure 7.19  Impact of Well Capacity on the Probability of Planting Each Crop 
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Water use on each crop is increasing in well capacity at a decreasing rate, as 

expected.  The impact of well capacity on corn water use is of particular importance 

considering the increase in probability of planting the crop.  Figure 7.20 shows that the 
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effect on corn water use is very large.  Water use is 5.43 inches more on parcels with a 

well capacity of 1,150 gpm than parcels with a well capacity of only 250 gpm.  

Figure 7.20  Impact of Well Capacity on Water Use for Corn 
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Of all the variables affecting water use that are evaluated in this model, the well 

capacity has the largest effect.  The overall impact on expected water use, accounting for 

changes in crop-choice and water use, is shown in Figure 7.21.  Expected water use is 

5.32 inches more on parcels with a well capacity of 1,150 gpm versus parcels with a well 

capacity of only 250 gpm.   

Figure 7.21  Impact of Well Capacity on Overall Expected Water Use 
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The increase in water use is essentially all from changes in water use at the 

intensive margin.  Table 7.13 reports the intensive and extensive marginal effects for well 

capacity on water use.  The extensive marginal effect is actually negative, mostly due to 

the decrease in the probability of growing alfalfa.  As well capacity increases 100%, 

which is common between parcels, water use increases 25.36%. 

Table 7.13  Intensive and Extensive Marginal Effects for Well Capacity 

Intensive Extensive Total Intensive Extensive Total

0.00593 -0.00026 0.00567 0.2652 -0.0116 0.2536

Marginal Effect Elasticity
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7.2.7 Impact of Technological Improvements 

Technological improvements have increased the probability of planting corn and 

soybeans, and decreased the probability of planting alfalfa and sorghum (Figure 7.22).  

This is likely because of relative yield improvements in both corn and soybeans.  

Additionally, extensive biotechnological improvements in these crops have made them 

especially appealing for weed and pest management.   

Figure 7.22  Impact of Technological Improvement on Probability of Planting Each 

Crop 
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The impact on overall expected water use is actually negative because the 

decreased water use from the decrease in the probability of growing alfalfa more than 

offsets the effect of the increase in probability of growing soybeans and corn.  However, 

the effect is relatively small; expected water use is only 0.33 inches less with the 

technology of 2004 versus 1991 (Figure 7.23). 

Figure 7.23  Impact of Technological Improvement on Expected Water Use 
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CHAPTER 8 - CONCLUSIONS AND IMPLICATIONS 

Understanding irrigation water demand is vital to policy making decisions to 

conserve the Ogallala Aquifer.  Previous research has demonstrated the need for regional 

studies of water demand, and a wide variety of elasticity estimates warrant a need for 

further research.  Water use was modeled as a two-stage decision: the first stage is a crop-

choice decision, and in the second stage water use is determined given the crop-choice.  

Irrigation water was modeled as a variable, allocatable input, but the presence of 

nonallocatable inputs is recognized.  Nevertheless, it is shown that if the decision is 

modeled at the parcel-level, with the assumption of a homogenous parcel, the presence of 

nonallocatable inputs does not require water demand to be a function of all output prices.  

This thesis employed an econometric modeling technique not yet used in the irrigation 

water demand literature, a multinomial logit selectivity model.  The response of water use 

to different variables, the response to natural gas price being especially of interest, was 

decomposed into intensive and extensive marginal effects. 

The model was estimated from a unique dataset on spatially referenced, field-

level water use.  Data on crop-choice, water use, acres, irrigation system, and well 

capacity were obtained at the parcel-level from water use reports that irrigators are 

required to submit.  Data were used from 1991-2004, a period in which irrigators 

encountered energy prices that increased fivefold. 
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The results showed that water demand is very inelastic; however, the elasticity 

increases in absolute value as natural gas price increases.  When natural gas price is high, 

$5/Mcf, the elasticity is -0.16, and the marginal effect from an additional increase of 

natural gas by $1/Mcf is a 0.52 inch decrease in water use per acre.  The extensive 

margin effect only comprises half the total effect when natural gas price is high, but is 

negligible when natural gas price is lower.  However, even when natural gas prices are 

high, more efficient irrigation systems and technological advances over time have 

dampened the extensive margin effect.  Interestingly, irrigators with a lower well capacity 

are actually more responsive to natural gas price because they are more likely to switch 

from corn to sorghum.  Farmers’ risk of not providing sufficient water for corn is larger 

with smaller well capacities, so when natural gas price is high, the return may no longer 

justify the risk. 

The estimated elasticity of water use with respect to corn price was 0.16, with all 

of the impact coming from the intensive margin effect.  Since the change in water use is 

nearly all at the intensive margin, the marginal effect of an increase in water price  

remains nearly constant across corn prices within the sample data.  Interestingly, the 

effect of a 1% increase in corn price offsets the effect of a 1% increase in natural gas 

price, when natural gas is $5/Mcf.  The effect of an increase in corn price on the 

extensive margin effect is negligible because corn and alfalfa were found to be 

economically competing outputs.  The results showed that irrigators using flood irrigation 

versus center pivot apply more water to corn and less water to sorghum, but flood 

irrigators are more likely to choose sorghum and less likely to choose corn.  Overall, 
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expected water use is 1.44 inches more for flood irrigators than irrigators with center 

pivot with low drop nozzles.  The difference in water use and crop-choice between 

standard center pivot and center pivot with low drops is minimal.  The well capacity has a 

large impact on water use, but the effect is all at the intensive margin.  Expected water 

use is 5.32 inches more on parcels with a well capacity of 1,150 gpm than parcels with a 

well capacity of only 250 gpm.  Technological improvements in corn and soybeans have 

actually slightly decreased water use because of a reduction in alfalfa acreage and an 

increase in soybean acreage. 

8.1 RESEARCH IMPLICATIONS 

This thesis has several implications for research, both theoretical and empirical.  

There are also limitations to the methods used in this thesis which are recognized and 

evaluated as opportunities for further research. 

The theory section of this thesis has some important implications for irrigation 

groundwater demand research.  First, the fixed, allocatable input model does not make 

logical sense for groundwater irrigation in settings such as the Ogallala region, unless 

there is an effective constraint on water use.  If there is an effective water constraint, and 

given the hydrological characteristics of groundwater, the water constraint should be 

modeled at the parcel-level rather than the farm-level. 

If water is not effectively constrained, water should be modeled as an allocatable 

input, but the model should also account for nonallocatable inputs.  The second 

implication for research is that the proper factor demands for this type of model depend 
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on whether the problem is analyzed at the parcel or farm-level.  If modeled at the parcel-

level, factor demands are only a function of own-crop price.  However, if modeled at the 

farm-level, factor demands are a function of all crop prices due to the linkage of demands 

through the nonallocatable inputs. 

The third theoretical research implication is that if the extensive margin effect is 

not accounted for, input demand is underestimated.  This concept has been accepted in 

the literature, but it is believed that a formal proof had not been shown previous to this 

thesis. 

Empirically, the model does find that accounting for selectivity in water demand 

is important, as the λ value was significant at the 1% level in each of the OLS regressions 

for water use.  If selection bias had not been accounted for with the addition of the λ term 

in each of the water use regressions, the parameter estimates would have been biased.  

Natural gas price is significant in the multinomial logit model and the water use 

regressions, providing empirical support for modeling water as a variable, allocatable 

input as developed in the theoretical model. 

A limitation of this model is that observations with wheat and multiple crops 

planted on the parcel were excluded from the analysis.  These observations were 

excluded because of complications with water use and soil data.  Water use on wheat 

cannot be reliably obtained from the dataset, because water is applied in two calendar 

years for the one crop, and a second crop is often grown before wheat in the first year of 

this cycle.  When multiple crops are planted, the data do not specify the number of acres 

planted to each crop, so that water use for each crop is not available.  To improve 
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analysis of water use, the DWR would need to revise their survey so the number of acres 

for each crop and water use on each crop is indicated by the farmer.  These data will 

become increasingly important if farmers plant more parcels to multiple crops to meet 

water constraints, especially as irrigation technology allows irrigators to do so with 

greater ease.  The exclusion of wheat and multiple crops may have biased the extensive 

marginal effect.  In particular, if wheat is substituted with corn, the extensive margin 

effect for natural gas and corn price may be larger than estimated in this thesis. 

Another limitation is the assumption of the independence of irrelevant alternatives 

imposed by the multinomial logit model.  However, the multinomial logit model was the 

best option available because econometric techniques have not been developed to account 

for selection bias with other discrete dependent variable models. 

Given these two limitations of the model, an opportunity for further research is to 

model crop-choice decisions (i.e., focus only of the first stage) with a discrete choice 

model that relaxes the assumption of the independence of irrelevant alternatives.  

Additionally, wheat and multiple crop-choices could be included in the analysis, because 

the need to quantify water use is circumvented.  If all crop-choices were included, the 

data set also would be balanced for panel data analysis.  Therefore, a panel data analysis 

of crop-choice with a nested logit model or a random parameters logit is highly relevant 

to confirm or refute the results of the crop-choice model in this thesis.  The extensive 

margin effect is negligible for most variables in this thesis mostly because alfalfa and 

corn are substituted; if instead for example, wheat and corn are substituted, the extensive 

margin effect could be larger than estimated. 
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Another important opportunity for further research is to investigate how farmers 

may respond to different quantity restriction scenarios.  Policy makers will need 

information on the impact of quantity restrictions on both production decisions and the 

welfare of irrigators.  Various methods of imposing the quantity restrictions should be 

investigated to provide the most complete information to policy makers. 

8.2 POLICY IMPLICATIONS 

The findings of this thesis suggest that policies aiming to conserve water in the 

Ogallala Aquifer which fit under the “pricing” category will not accomplish their purpose 

and may cause great economic harm.  The elasticity of demand for irrigation water with 

respect to natural gas price is very low.  Additionally, the current trends in production 

agriculture, such as improved irrigation technology and improved corn and soybean 

hybrids, are making water demand even more inelastic.  An inelastic demand means that 

irrigators will not decrease their water use much with increases in natural gas prices, but 

they will suffer large losses in income. 

Researchers’ projections in the 1980s that market forces would eliminate 

irrigation water use before the aquifer depleted seemed reasonable at the time.  However, 

prices did not rise as fast as expected and technology has trumped the impact of recent 

energy price increases.  Furthermore, recent increases in the corn price will increase 

water use.  Policies could restrict water use through either voluntary or mandatory 

quantity restrictions.  The conditions of the aquifer, shown in the introduction, strongly 

suggest that efficient restriction policies are not “one size fits all.”  To attain efficiency, 
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restrictions would need to account for both the rate of depletion and the remaining 

saturated thickness.  This logic is embedded to some degree in the targeted efforts of the 

WaterTAP and CREP policies.  The impact of these policies on water use will determine 

the scope of future restrictions. 

Converting from flood to center pivot irrigation was found to reduce water use per 

irrigated acre.  Assuming that irrigators are not allowed to change irrigated acreage in 

response to a technology upgrade, subsidies to replace flood systems with more modern 

equipment would contribute to water conservation.  However, there does not appear to be 

a very large difference in water use between standard center pivot and center pivot with 

low drop nozzle technologies.  Sufficient evidence exists that low drop nozzles are more 

efficient than the standard center pivot, but without quantity restrictions the adoption of 

more efficient technologies within center pivots will not reduce gross consumption of 

irrigation water.  Unfortunately, this thesis does not model changes in acreage due to 

irrigation technology choices, so the results cannot speak to the question of how irrigation 

technologies would affect water use if acreage changes were not controlled. 

Policies which encourage improved management practices may include research 

subsidies or cost-share programs with irrigators to encourage adoption of efficient 

technologies and practices.  However, more efficient irrigation systems reduce the price 

responsiveness of irrigators.  Therefore, the results demonstrate that these management 

policies actually reduce the effectiveness of pricing policies. 

One policy approach receiving little attention among policy makers to date is 

implementing water markets as a method of distributing restricted water rights.  A water 
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market incorporates all three types of water policies and has the ability to comply with all 

three motivations to conserve water.  The government would issue water rights 

periodically (yearly or every 5 years) and would only give a right if the irrigator has the 

capability to pump the amount of water in the right.  The appropriation should consider 

both the rate of depletion in that region and the remaining saturated thickness.  Due to the 

hydrology of the aquifer, trading must consider a spatial constraint.  Water trading in the 

Western United States has typically shifted water from farming practices to urban uses, 

and rural communities’ economies have suffered as a spillover effect of the policies 

(Gollehon).  Policy makers could resolve this issue by only allowing trading among 

agricultural producers.  Transferring water from western Kansas to urban areas may not 

even be feasible due to transportation costs.  However, selling or leasing water rights to 

industries may help rural communities.  Perhaps if water rights were available for 

industries, it would attract new industries to locate in rural western Kansas.  These 

industries may likely provide more jobs to the local economy than irrigated agriculture, 

and also use less water.  Obtaining the most value from the water in the Ogallala is to the 

greatest advantage of rural communities in western Kansas. 

Initially distributing the water rights is the most difficult step to implementing the 

market.  However, once rights are distributed, the most efficient irrigators who could 

obtain the highest value from the right would buy the rights from less efficient irrigators.  

The gross quantity restriction would encourage adoption of efficient technologies and 

conservation management practices, yet constrain the adoption of these practices from 

having the reverse effect of increasing water use. 
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Before implementing such a policy, researchers must investigate several issues.  It 

is vital to understand the hydrology of the aquifer, which would determine the spatial 

constraint of trading.  Economists also need to investigate how farmers would likely 

respond in a water market.  Would irrigators actually trade?  Are there any unexpected 

consequences or externalities?  This research requires an interdisciplinary understanding 

of the issues, and models that incorporate biophysical processes as well as economic 

markets.  Research must also attempt to quantify the expected effects on farmer profits 

and the economies of the local communities. 

Effective irrigation water policy is essential to conserve the Ogallala Aquifer, to 

sustain production agriculture’s revenues, to stimulate rural communities’ economies, to 

minimize the cost to the taxpayer, and to meet the growing food and energy demands of 

the world.  These interests are competing, but need not be mutually exclusive in 

developing policy.  Policy makers face difficult decisions that they have avoided in the 

past.  Research is one of the keys to informing policy makers as they formulate effective 

policy.
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Appendix 1 – Alternative Model Specifications 

Two alternative model specifications were considered.  First, the model was 

estimated using the pumping cost, which varies across parcels with the same energy price 

because of differences in depth to water, instead of the natural gas price.  Secondly, the 

model was estimated with an alternative expected price series.  The data used in these 

models is first discussed then the differences in the results from the base model are 

discussed. 

Pumping Cost versus Natural Gas Price 

Due to differences in the depth to water, each parcel has a unique cost of pumping 

water.  It makes intuitive sense that farmers with higher costs of pumping water would 

pump less, and that the model should account for this.  Indeed this is the method Moore, 

Gollehon, and Carey (1994b) utilized to evaluate the effect of water price on water use.  

They only have two years of data, so the variation in depth to water causes most of the 

variation in water price in their study. 

Water price (WTRP) is represented as the cost of pumping one acre foot of water.  

The formula (Rogers and Alam) to compute the pumping cost is 

))31.2(0223.0( PSIliftNTGPWTRP +=  

where NTGP is the price of natural gas ($/Mcf), lift is the distance from the water level to 

the well outlet (feet), and PSI is the pressure at the pump (pounds/square inch).  The 

constant 0.0223 is the natural gas (Mcf) use required to lift 1 acre-foot of water 1 foot in 
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height.  The constant 2.31 (feet/psi) is a conversion factor.  This formula assumes 

irrigation pumps are 75% efficient (not the same as application efficiency), and 100% of 

Nebraska Pumping Plant Criteria efficiency rating (Dumler and Rogers).  The three year 

average depth to water in 2001 is used for lift.  The pressures for flood, standard center 

pivot, and center pivot with low drop nozzles are assumed to be 10, 35, and 20 psi, 

respectively (Williams et al.). 

Hydrology data are from the Kansas Geological Survey’s “High Plains Aquifer 

Section-Level Database.”1  Data on depth to water and saturated thickness are available at 

the section-level.  Depth to water and saturated thickness are the 2001 three year average, 

reported in feet.  So each parcel has the same depth to water data for the whole period 

because data across time is neither readily available nor reliable.  The Section-Level 

Database only reports average depth to water for three years (1998, 2001, and 2004).  

Furthermore, the differences between these time periods are not meaningful estimates 

because of inherent measurement uncertainty of water depths, which varies with 

barometric pressure and other changeable factors. 

When pumping cost is used in the model instead of the natural gas price, the signs 

of the coefficients are opposite the expected signs.  The probability of planting corn 

increases as the pumping cost increases, and the probability of planting the other three 

crops decreases.  The marginal effects of pumping cost in the water use regressions are 

positive in all of the crops, except soybeans, which is contradictory to the law of demand.  

                                                 

1
 To access the Section-Level Database online: 

http://hercules.kgs.ku.edu/geohydro/section_data/hp_step1.cfm 
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Indeed, this is similar to the results Moore, Gollehon, and Carey (1994b) obtained in the 

Central Plains region of their study. 

The reason this result is obtained is likely because depth to water is confounded 

with other variables affecting crop-choice and water use.  When the base model with 

natural gas price is run with an extra variable for the depth to water, the probability of 

planting corn increases as the depth to water increases, and water use increases as the 

depth to water increases for each of the crops.  In Kansas, many of the areas that have a 

large depth to water are also some of the best places to grow corn and may have other 

conditions which make them conducive to pump large amounts of water.  For example, 

GMD 3 has the largest average depth to water, yet it also has the largest average saturated 

thickness and well capacity of any of the GMDs (Figure 9.1).  Well capacity should 

capture part of this effect, but apparently is not sufficient. 
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Figure 9.1 Percent Acres Planted to Each Crop and Average Hydrological 

Characteristics by County and GMD 

County GMD Alfalfa Corn Sorghum Soybeans

Cheyenne 4 6% 84% 2% 8% 173 102 584

Decatur 4 5% 88% 3% 4% 49 42 423

Rawlins 4 2% 83% 10% 5% 152 92 428

Sheridan 4 2% 90% 4% 5% 134 81 532

Sherman 4 4% 89% 4% 4% 151 123 598

Thomas 4 1% 90% 3% 6% 131 97 577

Average 4 3% 89% 4% 5% 139 98 562

Scott 1 1% 65% 32% 1% 124 46 271

Wallace 1 3% 91% 5% 1% 155 80 613

Wichita 1 9% 70% 18% 2% 135 37 289

Average 1 4% 79% 16% 1% 139 57 411

Finney 3 43% 51% 2% 4% 148 261 781

Ford 3 11% 73% 10% 7% 100 96 710

Grant 3 28% 68% 3% 1% 244 171 871

Kearny 3 51% 47% 1% 1% 152 237 792

Meade 3 7% 83% 6% 3% 140 309 973

Morton 3 20% 64% 16% 0% 149 207 651

Seward 3 25% 68% 5% 2% 177 310 913

Stanton 3 2% 91% 7% 0% 206 173 685

Stevens 3 13% 85% 1% 1% 185 351 1126

Average 3 31% 63% 3% 3% 152 239 823

Barton 5 19% 57% 8% 16% 17 107 783

Edwards 5 19% 63% 2% 15% 33 125 823

Kiowa 5 13% 64% 3% 20% 60 126 862

Pawnee 5 20% 54% 5% 21% 31 85 727

Pratt 5 6% 78% 2% 14% 45 157 870

Reno 2 & 5 2% 61% 8% 29% 23 125 810

Stafford 5 10% 71% 2% 17% 22 137 833

Average 2 & 5 13% 66% 3% 17% 34 128 823

Total 17% 70% 4% 9% 103 153 740

Percent of Acres Planted Depth to Water in 

2001 (ft)

Saturated Thickness in 

2001 (ft)

Well Capacity 

(gpm)

 

Using the natural gas price has another advantage.  The primary research 

objective is to understand how farmers have responded in their water use to energy price 

increases, not how farmers differ in water use due to cross-sectional differences in 

pumping costs.  The natural gas price, which changes for each farmer each year, is more 

conducive for evaluating the question rather than the pumping cost. 
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Alternative Expected Price Series 

It is very difficult and controversial to determine what prices farmers use as 

expected prices, so it is insightful to run the analysis with a couple different series and 

determine how sensitive the model is.  An alternative series of expected output prices is 

from reports published in the Kansas Farm Management and Marketing Handbook 

(Tierney, W.I. Jr. and J.R. Mintert; Langemeier, L.N. and M.R. Langemeier; Langemeier, 

L.N. and R. Jones; Langemeier, L.N., T.L. Kastens, and R. Jones; and Kastens, T.L., 

K.C. Dhuyvetter, and R. Jones).  From here after this price series is called the “K-State” 

price series and the expected price series used in the base model used in the thesis is 

called the “Futures” price series.  Every October Kansas State University publishes 

expected harvest prices for the next year.  This is published before many producers make 

their row crop decision, but is timely for those considering wheat as a crop alternative.  

The K-State price series is defendable from the standpoint that some farmers literally see 

these prices as expected prices for the next year. 

One issue with the use of this data is that the methodology of computing expected 

prices changed in 1996 (expected price for 1997).  In addition, corn, sorghum, and 

soybean prices were reported at the state-level from 1990-95, but after the change in 

methodology the prices were reported at the regional-level within the state.  The series 

used in this analysis is the price reported for Scott City, KS.  Therefore, for consistency, 

the previous 3-year average basis for Scott City was added to the state-level price 

reported as expected prices for 1991-96.  The expected price of alfalfa was only reported 

at state-level the entire period, so it does not need adjusting. 
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The goodness of fit measures are nearly identical using either price series, so they 

do not indicate a clear choice.  Additionally, the water use regressions are nearly 

identical, and variables other than prices have similar effects on crop-choice.  There are 

some differences in the marginal effects of prices on crop-choice though.  In general, 

crop-choice is more responsive to changes in the natural gas price with the Futures prices 

series.  The marginal effect of natural gas price on the probability of planting alfalfa 

becomes negative at high natural gas prices using the K-State prices, where it is always 

positive with the Futures series.  However, the probability of planting corn always 

decreases with increases in the natural gas price using the Futures price series, but at low 

natural gas prices the marginal effect is positive for the K-State series, and is generally a 

very small effect across all natural gas prices.  It is interesting that changing the crop 

price series changes the effect natural gas price on crop-choice.  The signs of the 

marginal effects on crop-choice from crop prices are nearly identical, although 

magnitudes of the marginal effects vary slightly. 

Theory indicates that both alfalfa and corn probabilities should decrease with 

increases in natural gas prices since they are the two most water intensive crops.2  When 

evaluated at high natural gas prices, the K-State price series gives the expected signs for 

these marginal effects.  However, at the mean natural gas price, the marginal effect of 

natural gas price on the probability of planting alfalfa and corn is positive.  Moreover, 

when evaluating the effect of natural gas price on the probability of planting corn, the 

                                                 

2
 Refer to section 4.3 of this thesis for a proof.  
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effect using the Futures price series fits intuition better.  Therefore, the Futures price 

series is used in the model estimation. 

 

 

 

 


