TIME DEPENDENCE OF THE MAGNETIC FIELD IN A RECTANGULAR TOROID

by

445

GLEN LEROY SHURTZ

B.S.M.E., Kansas State University, 1963 B.S.E.E., Kansas State University, 1964

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1966

Approved by:

Charles A. Halijak Major Professor

LP 2011 1966 5 562

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
2.0	DERI	VATION OF THE HYSTERETIC DIFFUSION EQUATION OR A MAGNETIC BOUNDARY VALUE PROBLEM	4
	2.1	Introduction	4
	2.2	Magnetic Circuit Concepts	7
	2.3	Eddy Currents	10
	2.4	Flux Distribution in the Rectangular Toroid .	13
	2.5	Derivation of the Hysteretic Diffusion Equation	15
		Maxwell's Equations	15
	2.6	Approximation of the B-H Curve for U(H)	21
	2.7	Hysteretic Diffusion Equation	23
3.0	NUME	RICAL SOLUTIONS WITH THE MODIFIED EULER METHOD	25
	3.1	Euler Method for Solving an Ordinary Differential Equation	25
	3.2	Modified Euler Method for Solving an Ordinary Differential Equation	26
	3.3	Numerical Solution of the Hysteretic Diffu- sion Equation with the Modified Euler Method	34
	3.4	Conditions for Convergence	36
	3.5	Relationship Between ∆t and Other Parameters to Insure Convergence	38
4.0	PROGI EC	RAM FOR SOLUTION OF THE HYSTERETIC DIFFUSION QUATION	46
	4.1	Introduction	46
	4.2	Main Program EMEX	46
		4.2A. Comments (MG90000-MG90106)	47
		4.2B. Input Data (MG90122-MG90138) and (MG90262)	47

•		4.2C. Evaluation of the Hysteresis Loop Approximation Formula (MG90140- MG90250)	50
		4.2D. Calculation of Constants and Page Heading Routine	50
		4.2E. Initial Conditions Print-out Routine (MG90724-MG90874)	51
		4.2F. Programming the Modified Euler Process for the Hysteretic Diffusion Equa- tion (MG90876-MG91060)	51
		4.2G. Output Data (MG91078-MG91410)	56
	4.3	Subprogram FLUD	57
	4.4	Subprogram FORCX	59
	4.5	Subprogram FLUX	61
5.0	USING	G THE PROGRAM ON A SAMPLE PROBLEM	64
٠	5.1	Preparing the Input Data	64
	5.2	Output Data	67
		5.2A. Output Tape 6 (Pages 71-82)	67
		5.2B. Output Tape 9 (Pages 83-92)	69
		5.2C. Output Tape 15 (Pages 93-100)	69
	5.3	Discussion of Output Data and Results	.02
ACKNO	WLEDG	MENTS	_04
REFEI	RENCES	3	.05
APPEN	DICES	5	106

iii

1.0 INTRODUCTION

The purpose of this thesis is to formulate an equation which describes the time dependence of the flux distribution in a rectangular toroid of ferromagnetic material subject to given boundary conditions and to provide a numerical solution to the equation. This is of interest because it allows one to predict the time necessary to release a no-work magnet in an electromechanical system or define the switching time of a toroid used in the core plane of many modern digital computers. An analytical solution also provides a convenient tool for optimizing the many problem variables or studying the effect of changing one or more of the variables on the magnetic performance of a given electromagnetic circuit.

Development of theory and assumptions necessary to derive such an equation for the special case considered. i.e., for the toroid of rectangular cross section as illustrated in Fig. 7, or the electromechanical system as illustrated in Fig. 2, are given in section 2.0. The resulting equation obtained by manipulation of Maxwell's equations was found to resemble the diffusion equation when subject to the assumptions required for the problem of interest. The Hysteretic Diffusion Equation, equation (2-28), expresses the desired relationship for specifying the magnetic field intensity H as a function of position in the core and time. It should be noted that H is written as simply H for convenience and represents H(x,y,z,t).

(2-28)
$$\frac{\partial H}{\partial t} = \frac{(C_2 + H)^2}{\sigma C_1 C_2} \left[\frac{\partial^2 H}{\partial x^2} + \frac{\partial^2 H}{\partial y^2} \right]$$

where H is the magnetic field intensity (z component)

σ is the material conductivity

C1 is a constant specifying material properties

C₂ is a constant specifying material properties.

A discussion of the effects of eddy currents and concepts used to confirm the existence of a flux distribution in the cross section during a transient condition are given to aid the reader in understanding the problem.

The task of evaluating H was accomplished by using the Modified Euler method of numerical integration in which the rectangular cross section was thought of as being divided into a grid. Each grid represented a toroid with a time-variant field intensity. This allowed one to express the Hysteretic Diffusion Equation in its finite difference form and approximate $\partial H/\partial t$ by numerical techniques. Once this quantity was known, Euler's method was used to predict an approximate value for the field intensity of each grid area at a time Δt later, thus an approximate solution was obtained for H as a function of time for each grid area of the cross section. Values of flux density B, were obtained by substitution of H in an equation approximating the B-H relationship for the given ferromagnetic material.

One must remember the numerical process yields only an approximation to the actual values. Accuracy increases as the grid size decreases; however, the process becomes very slow for very small grid sizes because the maximum time increment allowable to insure convergence of the Modified Euler process is dependent on many of the problem variables as shown by equation (3-44).

(3-44)
$$0 < \Delta t < \frac{\sigma c_1 c_2 h^2}{2(c_2 + H_{max})^2}$$

Consideration of conditions for convergence and accuracy of the process are given in section 3.4.

The last two sections of the thesis describe the program and various input variables needed to execute the process. Each input variable and its function in the program is discussed in section 4.2B. A sample problem with a typical input data set and the corresponding output data is given in section 5.0. Results of the data indicate a flux distribution and flux decay as predicted by sections 2.3 and 2.4.

2.0 DERIVATION OF THE HYSTERETIC DIFFUSION EQUATION FOR A MAGNETIC BOUNDARY VALUE PROBLEM

2.1 Introduction

A problem of interest to many is the solution of the diffusion equation sometimes called the heat equation. It is useful in describing the temperature distribution in an iron bar as a function of time, or in the magnetic case, the time dependence of the flux distribution in a toroid of magnetic material subject to given boundary conditions. It is the latter case which will be considered in detail in this thesis. The solution of this particular boundary value problem is important in predicting performance objectives and analysis of many components in modern digital computers as well as being of use for analytical evaluation of heat transfer characteristics and other problems in many other fields described by the equation. For example, the memory of most modern computers consists of core planes in which rectangular toroids are affixed at the junction of two write windings as illustrated in Fig. 1.

To magnetize the toroid one-half of the current needed must flow in the proper direction through both write wires threaded through the core; thus the core is magnetized in one particular direction which designates a "1" bit and the opposite direction which designates a "0" bit. During a read out of the memory, the direction of magnetization determines the direction of current flow induced in a read winding and in turn determines the

Fig. 1. Section of a memory core plane.

Fig. 2. Electromechanical device (no-work magnet).

presence of a "O" or "l" bit. One can see that it may be desirable to know the time to accomplish flux reversal during the write time. Furthermore, an analytical method of determining the reversal time for various cores of different sizes, shapes, materials, etc., would be convenient since this time could be a significant factor in determining the speed of the computer.

The solution could also provide information useful for improvements in the design of present-day input-output equipment for computation systems. Many high-speed card punches and printers use electromechanical devices in various punching and printing techniques, all of which require elaborate sequential timing and mechanical movement to accomplish the desired result.

Let us consider the electromechanical device in Fig. 2. Suppose a voltage E causes a current I to flow through the coil which produces a flux \emptyset sufficient to overcome the force kx and hold the core and armature together. When I is removed (i.e., E = 0), the holding force is removed and the spring force allows the hammer to impact the stop. An extension of this principle is used for modern printers which can print at the rate of twelve hundred lines per minute with one hundred twenty characters per line. The time required to release the magnet becomes of prime importance since sequential timing and logic circuits required to release the armature cause a release and hold operation cycle to occur at very high rates of speed. A typical release time might be one millisecond. This same mechanism is used for obtaining punched cards and the same discussion could apply. Due to effects of mechanical inertia, eddy currents generated by the rapidly changing boundary conditions on the magnetic circuit, and other factors, it may be desirable to provide an analytical solution which would account for changes in the parameters affecting the electromagnetic performance of an electromechanical system as outlined in the previous discussion. Assuming that the junction of the armature and core assembly of Fig. 2 does not provide an additional reluctance to impede the flow of flux across it other than that of the material itself, one can use the results of the following procedure to gain insight on effects that parameter changes produce on the electromagnetic performance.

2.2 Magnetic Circuit Concepts

Magnetic circuit considerations are closely analagous to those of resistive electrical circuits; however, the cause and effect relationship in the magnetic case is nonlinear, i.e., the reluctance of a d-c magnetic circuit depends on the flux in the circuit, while for the d-c electrical case resistance is relatively unaffected by the amount of current.

If one considers a toroid of magnetic material with a coil of wire wound tightly and distributed uniformly around it, a magnetic circuit problem is encountered. (See Fig. 3.)

The voltage E produces a flux \emptyset in the magnetic material. The flux lines are perpendicular to a cross section of the toroid and should be uniformly distributed over the cross section in

7

Fig. 3. Toroidal magnetic circuit.

Fig. 4. Hysteresis loops and magnetization curve.

the steady-state case. To insure uniform boundary conditions produced by the current I, assume the cross-sectional diameter of the ring is very small when compared to the inside and outside diameters of the ring. Under these conditions the following relationships hold:

- $(2-1) \qquad \qquad \mathbf{\mathcal{F}} = \mathbf{NI} = \mathbf{H1} = \mathbf{R}\phi$
- (2-2) $B = \mu H = \phi / A$
- (2-3) $R = \mu 1/A$
- (2-4) Force (F) = $B^2 A / 2\mu_0$

The above also assumes that no leakage occurs and that one is only considering the steady-state solution; however, the transient operation is of major importance when an electromagnet or rectangular toroid is used in the applications as outlined in section 2.1.

If one desires to know the value of the flux at several discrete points in time during a build-up or decay cycle. one must use a different method of analysis than presented previously. During the transient state a relationship exists between flux and magnetic field intensity as illustrated by the hysteresis curve of Fig. 4. This curve specifies the magnetic properties of the ferromagnetic material.

One can also see that during a flux build-up or decay residual magnetism B_r, and coercive force H_c, depend on the original values of the flux density B and magnetic field intensity H. A typical ferrite material in the memory of a computer exhibits what is known as a square-loop property. This means that

the material's B-H characteristic has a square or rectangular hysteresis loop, which allows an immediate change in the direction of magnetization once the proper value of H is present. In all cases the value of B for a corresponding H follows the upper curve if in the decay portion of the cycle and follows the lower curves if in the build-up portion of the cycle. Furthermore, during either build-up or decay, a flux distribution exists across the cross section of the magnetic core due to eddy currents generated from the changing flux; i.e., the outside of the core reaches the new value of flux density immediately while the center of the core remains at the original value and gradually attains the same value specified by the boundary in the steady-state condition. A more complete discussion of the eddy-current problem and its relation to the flux distribution is given in the next section.

2.3 Eddy Currents

Eddy currents are generated by a change of flux in the magnetic material of a core as shown in Fig. 3, and become a very important factor in the analysis of the transient behavior of high-speed electromagnetic circuits. These currents affect the change in flux by tending to produce an opposing flux, thus changing the flux distribution across the pole face in addition to delaying flux build-up or decay. Flux build-up is not affected nearly so significantly as flux decay because the eddycurrent opposition flux is a small part of the total flux

10

applied. Since a no-work magnet uses flux decay to accomplish its function, the eddy currents play a large part in controlling the release operation; thus they can limit the speed of operation for many of the electromechanical systems used in modern input-output machines of digital computation systems.

One can visualize the effect of eddy currents on the flux distribution by considering a cylindrical core to be made up of concentric shells, each shell being a hollow cylinder of differential thickness. Each shell constitutes a short-circuited turn enclosing part of the core flux. The outside shells link all the flux while the inner shells link only a small part of it. A voltage is induced in the shells upon a change of flux. The magnitude of the induced emf is determined by the amount of flux linked by the coil; thus the outer shells have larger emf's and eddy currents than the inner shells. Induced currents apply a magnetomotive force to the part of the core that lies within it; thus the center of the core is subject to the magnetomotive force of all eddy currents while the surface is subject to none. This accounts for the distribution present in the transient state. Induced currents tend to oppose any change in flux; thus they will tend to sustain a decreasing field and oppose an increasing field. It can be seen that the flux distribution is altered by the eddy currents and is not only a function of time but also of core radius. An approximate flux distribution with radius is shown in Figs. 5 and 6. Figure 5 illustrates the effect of eddy currents during the transient flux build-up condition while Fig. 6 illustrates the effect of eddy currents

Fig. 5. Effect of eddy currents on flux buildup in a ferromagnetic material.

Fig. 6. Effect of eddy currents on flux decay in a ferromagnetic material.

during flux decay.

Let us represent the applied field intensity with vectors in the direction of the applied field. We may then illustrate the flux at 't = 0⁺ by Fig. 5a. Once the field is applied, eddy currents i₁, i₂, i₃, . . ., are set up in the core as illustrated by Fig. 5b. These eddy currents induce an opposing flux ϕ_{e} shown in Fig. 5c. The resultant flux at t = 0⁺ is then $\phi_{1} + \phi_{e}$ and is illustrated by Fig. 5d. Since the eddy currents depend on a changing flux they will decrease as time increases, thus ϕ_{e} will approach zero in the steady state and the steady-state flux will be equal to the applied flux ϕ_{1} .

Upon release the same phenomenon occurs; however, the core is originally in the magnetized state and eddy currents will be induced opposite in direction to that of the previous example. This follows from Lenz's Law. The only flux present at $t = 0^+$ is that induced by the eddy currents as shown in Fig. 6b. As time increases, \emptyset_e decreases until the flux returns to zero. Actually it will return to a residual value ϑ_r .

2.4 Flux Distribution in the Rectangular Toroid

With the preceding discussion of eddy-current phenomena in mind, one can readily visualize a flux distribution existing in a toroid of rectangular cross section. Furthermore, one knows that the flux distribution is changing with respect to time and values of flux at any point within the core depend on the distance from the outer edge of the core at which the boundary

condition is applied, the boundary condition itself, the material of which the toroid is made, and time. If one considers a rectangular cross section to be divided into many small squares of nearly infinitesimal area, the value of flux density in a given square within the core is a function of time and is different for each area. Time dependence of the flux density may be obtained if one can find a relationship sufficient to specify the value of magnetic field intensity for this area as a function of time. After division into small areas one may then consider each area separately as a rectangular toroid with uniform flux density provided the area is very small in comparison to the total cross-section area. Values of H, B. and \emptyset for each area can then be calculated for each value of time according to the relationships given in section 2.7. One might note that once H is determined, it is a simple matter to evaluate B from the hysteresis loop. Multiplication of B and the area corresponding to the value of B calculated will yield a value of flux for that particular area. It then becomes possible to calculate total values of H, B, and \emptyset for the entire cross section. If the above calculations are made for each value of time in the transient state, curves relating the time dependence of the flux distribution and total flux can be computed for various boundary conditions and the effect of parameter changes can be analyzed theoretically. Since no literature was found that expressed the magnetic field intensity as a function of position and time for the case in question, equation (2-28) was derived. It will be referred to as the "Hysteretic Diffusion Equation" and its

14

derivation is included in the next section.

2.5 Derivation of the Hysteretic Diffusion Equation

The derivation presented requires only basic electromagnetic theory and simply applies Maxwell's Equations to the special case being considered. To refresh the reader's memory, the time variant Maxwell Equations are listed below in both point and integral form. Overbarred symbols designate vector quantities in the cartesian co-ordinate system. This system was the most convenient for the rectangular cross section being considered. A co-ordinate transformation of the resulting equation could be used if different cross-section shapes are studied.

Maxwell's Equations

(Point form)

(Integral form)

(2-1)	A. $\overline{\nabla} \times \overline{E} = -\partial \overline{B} / \partial t$	B. $\oint \overline{E} \cdot d\overline{l} = (\partial/\partial t) \int_{S} \overline{B} \cdot d\overline{S}$
(2-2)	A. $\overline{\nabla} \times \overline{H} = \overline{i} + \partial \overline{D} / \partial t$	B. $\oint \overline{H} \cdot d\overline{l} = \int_{S} (\overline{i} + \partial \overline{D} / \partial t) \cdot d\overline{S}$
(2-3)	A. $\overline{\nabla} \cdot \overline{B} = 0$	$B. \oint \overline{B} \cdot d\overline{S} = 0$
(2-4)	A. $\overline{\nabla} \cdot \overline{D} = \rho$	$B. \oint \overline{D} \cdot d\overline{S} = \int_{V} \rho \cdot dv$

Consider a toroid with a very large inside diameter in comparison to the bar diameter or an infinite bar of ferromagnetic material which undergoes a change of magnetomotive force on its boundary due to a change of the exciting current I supplied from a voltage E. (See Fig. 7.)

Fig. 7a. Rectangular toroid.

Fig. 7b. Cross section of a rectangular toroid.

Fig. 8. Hysteresis loop.

16

It is known with some certainty that a flux distribution exists within the core due to eddy currents while the magnetization of the core is in the transient state, thus steady-state techniques cannot be applied; however, Maxwell's Equations hold in the transient state as well as for the steady state, thus an equation relating the effects of \overline{H} as it varies with x, y, z, and t can be derived.

First we may assume that an mmf has been applied. When applied, a magnetic field \overline{H} , an electric field \overline{E} , and a flux density \overline{B} , exist in the toroid, and all are governed by Maxwell's Equations. If the electric field current density \overline{D} , is neglected, Maxwell's second equation becomes

$$(2-5) \qquad \overline{\nabla} \times \overline{H} = \overline{i}$$

Since the current flow in a conductor is in the direction of the applied electric field and perpendicular to an incremental surface \overline{dS} , the total current I is obtained by integrating the current density \overline{i} over the surface; i.e.,

(2-6)
$$I = \int_{S} \overline{i} \cdot \overline{dS} = \int_{S} (\overline{\nabla} \times \overline{H}) \cdot \overline{dS}$$

These currents are the eddy currents present in the transient state and can be represented by the scalar multiplication

$$(2-7) \qquad \overline{i} = \sigma \overline{E}$$

Thus the relationship between the magnetic field intensity \overline{H} , electric field intensity \overline{E} , material conductivity σ , and the conduction current density \overline{i} , is determined since

(2-8)
$$I = \int_{S} \overline{i} \cdot \overline{dS} = \int_{S} (\overline{\nabla} \times \overline{H}) \cdot \overline{dS} = \sigma \int_{S} \overline{E} \cdot \overline{dS}$$

Therefore one can now show that

$$(2-9) \qquad \overline{\nabla} \times \overline{H} = \sigma \overline{E} = \overline{i}$$

A relationship between the flux density \overline{B} and magnetic field intensity \overline{H} can be found by combining equation (2-5) and Maxwell's first equation, equation (2-10).

$$(2-10) \qquad \overline{\nabla} \times \overline{E} = - \partial \overline{B} / \partial t$$

Combining equation (2-9) with equation (2-10) results in

(2-11)
$$\overline{\nabla} \times \overline{\nabla} \times \overline{H} = - \partial \overline{B} / \partial t$$

In the general case \overline{B} , \overline{H} , and \overline{E} are functions of x, y, z, and t and should be written $\overline{B}(x,y,z,t)$, $\overline{H}(x,y,z,t)$, and $\overline{E}(x,y,z,t)$. It is also known that a nonlinear relationship exists between \overline{B} and \overline{H} ; thus one can say that

$$(2-12) \qquad \overline{B} = f(\overline{H})$$

$$(2-13) \qquad \partial \overline{B} / \partial t = (\partial \overline{B} / \partial \overline{H}) (\partial \overline{H} / \partial t)$$

Further examination of the functions $\overline{B}(x,y,z,t)$ and $\overline{H}(x,y,z,t)$ illustrates the fact that total derivatives may be used since

(2-14)
$$\frac{d\overline{B}}{dt} = \frac{\partial\overline{B}}{\partial x} \frac{dx}{dt} + \frac{\partial\overline{B}}{\partial y} \frac{dy}{dt} + \frac{\partial\overline{B}}{\partial z} \frac{dz}{dt} + \frac{\partial\overline{B}}{\partial t}$$

(2-15)
$$\frac{d\overline{H}}{dt} = \frac{\partial\overline{H}}{\partial x} \frac{dx}{dt} + \frac{\partial\overline{H}}{\partial y} \frac{dy}{dt} + \frac{\partial\overline{H}}{\partial z} \frac{dz}{dt} + \frac{\partial\overline{H}}{\partial t}$$

and the derivatives of distance with respect to time are equal to zero if the toroid is stationary with respect to the exciting rmf. Thus we have

$$\partial \overline{B} / \partial t = d \overline{B} / d t$$

$$\partial \overline{H} / \partial t = d \overline{H} / d t$$

$$(2-16) \qquad d \overline{B} / d t = (d \overline{B} / d \overline{H}) (d \overline{H} / d t) = U(\overline{H}) d \overline{H} / d t$$

$$(2-17) \qquad \partial \overline{B} / \partial \overline{H} = d \overline{B} / d \overline{H} = U(\overline{H})$$

The quantity $U(\overline{H})$ represents the relationship between \overline{B} and \overline{H} as illustrated by the slope of the hysteresis loop of Fig. 8. Combining equations (2-17), (2-13), and (2-11), we find that the following equation exists.

$$(2-18) \qquad \partial \overline{H} / \partial t = -(1/\sigma U(\overline{H})) \ (\overline{\nabla} \times \overline{\nabla} \times \overline{H})$$

Solution of equation (2-18) will provide an expression for \overline{H} as a function of the position within the rectangular toroid and time; however, a solution is very hard to obtain. If one assumes the only component of field intensity present is along the z axis (see Fig. 7) and that this value of field intensity \overline{H} is the same value at all points on the z axis, equation (2-18) reduces to a form generally recognized as the diffusion equation in two dimensions; i.e.,

(2-19)
$$\partial \overline{H} / \partial t = \overline{\nabla}^2 \overline{H} / \sigma U(\overline{H})$$

The above assumptions require that

$$H_x = H_y = \frac{\partial H_z}{\partial z} = 0$$

where in general \overline{H} is given by the vector equation

$$\overline{H} = H_x \overline{i} + H_y \overline{j} + H_z \overline{k}$$
.

Thus equation (2-18) may be written as

(2-20)
$$\frac{\partial H}{\partial t} = -\frac{1}{\sigma U(H)} (\overline{\nabla} \times \overline{\nabla} \times H_z \overline{k})$$

Expanding the expression ($\overline{\nabla} \ge \overline{\nabla} \ge \overline{H}$) of equation (2-18) with $\overline{H} = H_z \overline{k}$ and noting that

$$\overline{\nabla} \cdot \overline{H} = \left[\frac{\partial}{\partial x} \overline{i} + \frac{\partial}{\partial y} \overline{j} + \frac{\partial}{\partial z} \overline{k} \right] \cdot (H_{z}\overline{k}) = \frac{\partial \overline{H}_{z}}{\partial z} = 0$$

we may evaluate the expression ($\overline{\nabla}$ x $\overline{\nabla}$ x \overline{H}), i.e.,

Thus equation (2-18) is now reduced to the diffusion equation for the two-dimensional case, i.e.,

(2-22)
$$\frac{\partial H}{\partial t} = \frac{1}{\sigma \upsilon(H)} \left[\frac{\partial^2 H_z}{\partial x^2} + \frac{\partial^2 H_z}{\partial y^2} \right]$$

An approximate solution of the above equation may be accomplished through use of numerical integration techniques once a suitable approximation for U(H) is determined. The remainder of the thesis will deal with the special case outlined above. The vector notation may be deleted since the only component present is H_Z and the equation was solved only for this particular case.

The only remaining unknown is the functional relationship existing between B and H. One knows this relationship is expressed by the hysteresis curves of various magnetic materials; thus an equation which approximates the specific curve of interest would be desirable. Development of such an equation is undertaken in the next section.

2.6 Approximation of the B-H Curve for U(H)

Because of the flux distribution within the toroidal core, each small area as defined in section 2.4, will have a different value of field intensity and flux density at any given time in the transient condition; thus an approximation would allow \emptyset to be calculated directly for each area once H for that area is known. This may be accomplished if an equation can be found which approximates the particular B-H curve of interest. Since this particular curve is determined by the initial values of H for a given material, an approximation of only this B-H curve would be sufficient to compute B once H is known.

A modified Froelich approximation equation as given by equation (2-23) can be used for generation of one-fourth of a given hysteresis loop.

21

(2-23)
$$B = \frac{C_1 H}{C_2 + H} + B_r$$

where B is the flux density

B_r is the residual flux density

H is the field intensity

Cl constant specifying material properties

C₂ constant specifying material properties.

Values of C_1 and C_2 determine the shape of the curve and may be varied to generate an approximation to most hysteresis loops. They may be calculated from B_r and selection of two values, B_1 , H_1 , and B_2 , H_2 , taken from near the knee of the decay portion of a given hysteresis loop representative of the operating range in a given material. (See Fig. 8.)

Since both points selected must lie on the curve, a simple simultaneous solution of two equations formed by substituting B_1 , H_1 , and B_2 , H_2 , in equation (2-23) will be sufficient to specify C_1 and C_2 . Performing this operation yields

$$(2-23a)$$
 \therefore $B_1 = \frac{C_1H_1}{C_2 + H_1} + B_r$

(2-23b)
$$B_2 = \frac{C_1 H_2}{C_2 + H_2} + B_r$$

Solving for C_1 and C_2 we have the following relationships:

(2-24)
$$C_2 = \frac{H_2H_3(B_3 - B_2)}{(B_2 - B_r)H_3 - (B_3 - B_r)H_2}$$

(2-25)
$$C_1 = \frac{(B_2 - B_r)(C_2 + H_2)}{H_2}$$

After determining C_1 and C_2 , one-fourth of the hysteresis loop can be plotted using the values calculated from equation (2-22). If there is a reasonable correspondence between the original curve and the curve plotted using the approximation equation, one can assume C_1 and C_2 are sufficiently accurate to specify the B-H relationship. Reflection and translation of this quarter section of the hysteresis loop generates the remaining portions of the loop. Calculation of B for values of $H < -H_c$ for flux decay and $H > H_c$ for flux build-up are considered in section 4.3.

This method of approximation is perhaps rather crude; however, it does suffice in this case. More accurate approximations are no doubt possible although maybe not practical since the magnetic properties of a given material will vary and cause larger errors than those due to the approximation.

2.7 Hysteretic Diffusion Equation

If we now use the approximation equation (2-22) for evaluating U(H), we have

(2-26)
$$U(H) = \frac{dB}{dH} = \frac{d}{dH} \left[\frac{C_1H}{C_2 + H} + B_r \right]$$

Performing the differentiation we have

23

(2-27)
$$U(H) = \frac{C_1 C_2}{(C_2 + H)^2}$$

Combining equations (2-22) and (2-27), we obtain the hysteretic form of the diffusion equation.

(2-28)
$$\frac{\partial H_z}{\partial t} = \frac{(C_2 + H_z)^2}{\sigma c_1 c_2} \left[\frac{\partial^2 H_z}{\partial x^2} + \frac{\partial^2 H_z}{\partial y^2} \right]$$

It is this equation whose solution will yield the time dependence of the flux distribution pattern in the rectangular toroid subject to boundary conditions as outlined in section 2.5.

The remainder of this thesis is concerned with the numerical methods for obtaining this solution, implementation of these methods, and demonstration of the numerical process by actually obtaining a solution of equation (2-28) with its boundary values.

3.0 NUMERICAL SOLUTIONS WITH THE MODIFIED EULER METHOD

3.1 Euler Method for Solving an Ordinary Differential Equation

Numerous methods of obtaining solutions to ordinary and partial differential equations have become practical since the advent of the high-speed digital computer. The Modified Euler Method was chosen for this problem because of its simplicity, although other methods may provide a more accurate approximation to the solution or take less computation time. Before showing the application of Euler's Method and its modification to equation (2-28), let us consider the solution of an ordinary differential equation of first order. In symbolic form we may write

$$(3-1) \qquad \frac{dH}{dt} = f(t,H) = D$$

The integral of equation (3-1) gives H as a function of time; thus we have H = F(t). A graph of F(t) is a curve in the H-t plane which may be approximated by a series of short line segments provided the curve is continuous; thus we have the approximation relation (see Fig. 9)

(3-2)
$$\Delta H = \Delta t \tan \theta = \begin{bmatrix} \frac{dH}{dt} \end{bmatrix}_0 \Delta t = D_0 \Delta t$$

$$(3-3)$$
 $H_1 = H_0 + D_0 \Delta t$

If we let $\Delta t = h = t_{i+1} - t_i$, we can express the approximation

by

$$(3-4)$$
 $H_{i+1} = H_i + D_ih$ $(i = 0, 1, 2, ... 1)$

This is known as Euler's Method. However, if h is taken small enough to yield sufficient accuracy the method is too slow; if h is larger, inaccuracies will cause the approximation to be unsatisfactory; furthermore, if the graph is monotonic, the approximation will diverge from the actual curve for any value of h chosen. A modification of this method tends to eliminate the divergence.

3.2 Modified Euler Method for Solving an Ordinary Differential Equation

Starting with an initial value H_0 one can approximate H_1 in the same manner as before to yield

$$(3-5)^{1}$$
 $H_{1}^{(1)} = H_{0} + D_{0}h$

Substituting $H_1^{(1)}$ into equation (3-1), one obtains an approximation for dH/dt at the end of the first interval, i.e.,

$$(3-6)^{l}$$
 $D_{l}^{(l)} = f(t_{l}, H_{l}^{(l)})$

An improved value of H is then found by multiplying h by the average of the values of dH/dt at the ends of the interval t_0 to t_1 ; thus we have

^LNote that D_i represents (dH/dt)_i. This notation will be used throughout the remainder of this section.

Fig. 9. Approximation with Euler method.

Fig. 10. Approximation with modified Euler method.

(3-7)
$$\Delta H = \frac{1}{2} h(D_0 + D_1^{(1)})$$

A more accurate value of H_l can now be calculated and will be denoted as follows:

$$(3-8)^{1}$$
 $H_{1}^{(2)} = H_{0} + \frac{1}{2}h(D_{0} + D_{1}^{(1)})$

If we look at Fig. 10, it is evident that this value of $H_1^{(2)}$ is more accurate than $H_1^{(1)}$. $H_1^{(1)}$ is represented by the line H_0 + BC if calculated according to Euler's formula. Substitution of $H_1^{(1)}$ in equation (3-1) gives an approximation of the slope represented by the tangent at point F. If a value of H_1 were calculated using the slope at the end of the interval, we would have $H_1 = H_0$ + BE. When the average of the slopes at the ends of the interval are used in place of D_0 we find that $H_1^{(2)} = H_0$ + BG which is definitely a better approximation to the real value of H_1 at t_1 than the first value of H_1

(3-9)
$$\Delta H = \frac{1}{2} h(D_0 + D_1^{(1)})$$

 $\Delta H = \frac{1}{2} (BE + BC) = \frac{1}{2} (BE + BE + EC)$

				1	
(3-10)	$\Delta H =$	= BE	+	_	ΕC
				2	

(3-11)
$$H_1^{(2)} = H_0 + \Delta H = H_0 + (BE + \frac{1}{2}EC)$$

¹The superscript (k) on $H_1^{(k)}$ indicates the kth value of H_1 where H_1 is the approximation to the actual value of H_1 at a time t = t₁ = 0 + Δ t.

The new value is much closer to the actual value of $H_1 = (H_0 + BF)$ than before. Continuation of this process by again calculating an approximation to the slope at the end point of the interval and by substituting $H_1^{(2)}$ in equation (3-1), will yield a more accurate approximation to the slope at point F. A new value of $H_1^{(3)}$ can then be calculated.

(3-12)
$$H_1^{(3)} = H_0 + \frac{1}{2}h(D_0 + D_1^{(2)})$$

 $H_1^{(3)}$ will be more accurate than $H_1^{(2)}$ since the approximation of the slope will be improved; i.e., D₁⁽²⁾ is more accurate than D, (1). Further continuation of the process will yield successively more accurate approximations to the actual value of H₁. The process may be continued until the value of $H_1^{(k+1)} = H_1^{(k)}$, where $H_1^{(k)}$ is the approximation of the actual value of H_1 . It must be noted that H₁^(k) is only an approximation to the actual H_1 . As successive values of $H_1^{(k)}$ are generated, $H_1^{(k)}$ will converge to a value H₁⁽ⁿ⁾ which will not be the same as the actual value of H₁. To force the approximation $H_1^{(k)}$ to converge to H, we must make h very small. The approximate solution will approach the exact solution as h->0; however, as h-> 0 the number of calculations increases and the computation time becomes very large. It then becomes necessary to determine the magnitude of errors permissible in relation to the time available and adjust h accordingly.

To illustrate the fact that the limit of $H_i^{(k)}$ does not approach the actual H_i as $k \longrightarrow \infty$, let us consider the following example. Suppose f(t, H) is expressed by equation (3-13) and the initial conditions $t_0 = 0.0$ and $H_0 = 1.0$.

$$(3-13)$$
 D = f(t, H) = t + H

Substituting these values of $t_{\rm O}$ and $\rm H_{\rm O}$ in equation (3-13) we obtain

$$D_0 = f(t_0, H_0) = t_0 + H_0 = 1.0$$

If we select h = 0.05, we may then write

$$H_1^{(1)} = H_0 + D_0h = 1.05$$

 $D_1^{(1)} = t_1 + H_1^{(1)} = 1.10$

The second approximation to H_1 and D_1 are

$$H_{1}^{(2)} = H_{0} + \frac{1}{2} h(D_{0} + D_{1}^{(1)}) = 1.0525$$
$$D_{1}^{(2)} = t_{1} + H_{1}^{(2)} = 1.1025$$

Continuing we have successive approximations to H_1 and D_1 as follows.

$$H_{1}^{(3)} = H_{0} + \frac{1}{2} h(D_{0} + D_{1}^{(2)}) = 1.05256$$
$$D_{1}^{(3)} = t_{1} + H_{1}^{(3)} = 1.10256$$
$$H_{1}^{(4)} = H_{0} + \frac{1}{2} h(D_{0} + D_{1}^{(3)}) = 1.05256$$

Since $H_1^{(4)} = H_1^{(3)}$ we should now stop the process if we desire $H_1^{(k)}$ to agree with $H_1^{(k+1)}$ only to the fifth decimal place. Further values of $H_1^{(k)}$ for $3 \le k \le \infty$ will yield the same value for $H_1^{(k)}$ in the first five decimal positions as $H_1^{(3)}$. This points out the fact that the approximation $H_1^{(k)}$ will not converge to the actual H_1 as $k \rightarrow \infty$ since H_1 actual = 1.05254. We now take

$$H_1 = H_1^{(3)} = 1.0526$$

 $D_1 = D_1^{(3)} = 1.1026$

Continuing, we can calculate the first approximation for H_2 and D_2 .

$$H_2^{(1)} = H_1 + D_1^{(1)}h = 1.1077$$

 $D_2^{(1)} = t_2 + H_2^{(1)} = 1.2077$

Then we calculate second and third approximations for H_2 and D_2 (i.e., $H_2^{(2)}H_2^{(3)}$ and $D_2^{(2)}$, $D_2^{(3)}$) and stop since $D_2^{(3)} = D_2^{(2)}$. Consequently $H_2^{(3)}$ agrees with $H_2^{(2)}$ and we have

- (3-14) $H_2 = H_2^{(3)} = 1.1104$
- (3-15) $D_2 = D_2^{(3)} = 1.2104$

Further continuations will yield successive values of H_3 , D_3 , H_{\perp} , D_{\perp} , etc.

To evaluate the accuracy of the method let us compare the approximated values of H_1 , H_2 , etc., to those calculated from the solution to dH/dt = t + H, which is

$$(3-16)$$
 $H = 2e^{t} - t - 1$

These are given in Table 1. Accuracies of H indicated in Table 1 can be improved only by using a smaller value for h.

i	: t	: H _i act	: H _i approx	: D _i act :	D _i approx
0	0.00'	1.00000	1.0000	1.00000	1.0000
l	0.05	1.05254	1.0526	1.10254	1.1026
2	0.10	1.11034	1.1104	1.21034	1.2104

Table 1. Comparison of approximate and exact solution of dH/dt = t + H = D.

In general, execution of the Modified Euler's method for the equation D = f(t, H) is as follows.

Step 1. Obtain the initial conditions

$$t = t_0$$

h = constant = Δt
H = H₀

<u>Step 2</u>. Evaluate the approximations to H_1 by generating the approximations

$$D_0, H_1^{(1)}, D_1^{(1)}, H_1^{(2)}, D_1^{(2)} \dots H_1^{(k)}, D_1^{(k)},$$

where

(3-17)	DO	$= f(t_0, H_0)$
(3-18)	H _l (1)	= H ₀ + D ₀ h
(3-19)	D _l (k)	= $f(t_{1}, H_{1}(k))$
(3-20)	H _l (k)	$= H_0 + \frac{1}{2} h (D_0 + D_1^{(k-1)})$

for $k = (1, 2, 3, \ldots, p)$ and p an integer such that

- (3-21) $D_1^{(p)} = D_1^{(p-1)}$
- (3-22) $H_1(p+1) = H_1(p)$

When this condition occurs take

(3-23)	D _l	11	D1 (p-1
(3-24)	Hl	=	H _l (p)

Then proceed to Step 3.

<u>Step 3</u>. Evaluate the approximations to H_2 from the calculated approximation to H_1 and D_1 obtained as the result of Step 2 and generation of

$$D_2^{(1)}, H_2^{(2)}, D_2^{(2)}, \ldots H_2^{(k)}, D_2^{(k)}$$

where

$$(3-25) H_2^{(k)} = H_1 + D_1h$$

$$(3-26) D_2^{(K)} = f(t_2, H_2^{(K)})$$

(3-27)
$$H_2^{(k)} = H_1 + \frac{1}{2}h(D_1 + D_2^{(k-1)})$$

for $k = 1, 2, 3, \ldots, q$ and q an integer where

(3-28)	$D_2^{(q)} =$	D ₂ (q-1)
	(7)	/ \

$$(3-29) H_2(q+1) = H_2(q)$$

When this condition occurs take

$$(3-30)$$
 $D_2 = D_2^{(q-1)}$

$$(3-31)$$
 $H_2 = H_2^{(q)}$

Then proceed to Step 4.

<u>Step 4</u> will generate the approximation to H_3 and D_3 after which we proceed to <u>Step 5</u> for an approximation to H_4 and D_4 and so on until we have an approximation for H_n and
D_n . The process should stop when the nth approximation has been evaluated. The value chosen for n will depend on the accuracy desired and maximum value of Δt to be used. A flow chart of the process is given in Fig. 11 for the function D = f(t, H).

If the function f(t, H) is specified by the Hysteretic Diffusion Equation and we apply the Modified Euler Method as before, we can solve for the value of H(x, y, z, t) as specified by the partial differential equation (2-28).

3.3 Numerical Solution of the Hysteretic Diffusion Equation with the Modified Euler Method

When applying the Modified Euler Method to the Hysteretic Diffusion Equation, equation (2-28), we find that evaluating successive values of $\partial H/\partial t$ becomes somewhat more complex since f(t, H) now depends on many variables; i.e.,

(3-32)
$$f(t, H) = \frac{(C_2 + H_z)^2}{\sigma C_1 C_2} \left[\frac{\partial^2 H_z}{\partial x^2} + \frac{\partial^2 H_z}{\partial y^2} \right]$$

Because of this it becomes more difficult to visualize the physical significance of $\partial H/\partial t$ in terms of equation variables; however, no problem should exist in evaluating $\partial H/\partial t$ if we express the equation in its finite difference form and establish initial and boundary conditions. The quantity $\partial H/\partial t$ may now be evaluated simply by a series of numerical operations. Successive values of $\partial H/\partial t \Big|_{t=t_i}$ can be found through the recurrence relations as outlined in the flow chart of the Modified Euler

Process. Although some care must be exercised to limit the size of Δt to insure that the

$$(3-33) \qquad \lim_{k \to \infty} (H_i^{(k+1)} - H_i^{(k)}) \to 0$$

the problem is a straightforward procedure as outlined by the flow chart of Fig. 11.

In the following discussion, the magnetic field intensity for the I, Jth point in the grid of Fig. 12 is specified by H(I, J); the ith approximation to H at the I, Jth point is denoted by H(I, J)_i; and the kth value of the ith approximation of H for the I, Jth point is H(I, J)_i^(k). Note that the superscript does not indicate that H(I, J)_i is raised to a power or that it is the kth derivative of H. Let us also denote $(\partial H/\partial t)_i$ by P_i.

3.4 Conditions for Convergence

Conditions exist under which the process will not yield a solution. This is due to the fact that $\lim_{k \to \infty} (H_i^{(k+1)} - H_i^{(k)})_{k \to \infty}$ will not approach zero; however, we can establish a relation-ship between the time increment and other parameters such as grid size, C_1 , C_2 , σ , and H_{max} to insure convergence of the process and existence of a solution.

Let us divide a rectangular cross section of the toroid considered in section 3.0 into a rectangular grid network as shown in Fig. 12. Each grid is of equal area h² and H(I, J)

Fig. 12. One-fourth of rectangular toroid cross section for sample problem given in section 5.0. (See Fig. 7b.) Note: NI = 4, NJ = 8, NY = 6, NX = 10.

is the field intensity at the intersection of the I^{th} row and J^{th} column of the grid.

The Hysteretic Diffusion Equation for the I, J^{th} point is given by equation (3-34).

$$(3-34)^{1} \qquad P(I,J) = \frac{(C_{2} + H(I,J))^{2}}{\sigma c_{1}c_{2}} \left[\frac{\partial^{2}H(I,J)}{\partial x^{2}} + \frac{\partial^{2}H(I,J)}{\partial y^{2}} \right]$$

Expressed in its finite difference form the equation becomes

$$V(I,J) = H(I + 1,J) - 2H(I,J) + H(I - 1,J)$$
$$N(I,J) = H(I,J + 1) - 2H(I,J) + H(I,J - 1)$$

$$(3-35)^{1} \qquad P(I,J) = \frac{(C_{2} + H(I,J))^{2}}{\sigma C_{1}C_{2}} \left[\frac{W(I,J)}{h^{2}} + \frac{V(I,J)}{h^{2}} \right]$$

If we wish to evaluate P(I,J) at I = 5, J = 3, we obtain

$$V(5,3) = H(6,3) - 2H(5,3) + H(4,3)$$

 $W(5,3) = H(5,4) - 2H(5,3) + H(5,2)$

$$(3-36)^{1} \qquad P(I,J) = \frac{(C_{2} + H(5,3))^{2}}{\sigma C_{1}C_{2}} \left[\frac{W(5,3)}{h^{2}} + \frac{V(5,3)}{h^{2}} \right]$$

3.5 Relationship Between ∆t and Other Parameters to Insure Convergence

To investigate the relationship between Δt and other parameters of the problem let us consider a sample calculation of the

Note that P; represents $(\partial H/\partial t)_i$.

approximation to H at a corner position of the prid not on the boundary, i.e., the position I = NY - 1, J = NX - 1. (See Fig. 7 and Fig. 12, position (I,J) = (5,9).)

Let us apply initial conditions and boundary conditions when all points inside the boundary are at $H_0 = H_b$ and all points on the boundary are at $H_0 = -mH_b$ where m is some real constant.

If we examine the Hysteretic Diffusion Equation expressed in its finite difference form (equation 3-48), we find that the largest value of P will occur at the I = NY - 1, J = NX - 1 position. To approximate a value of H at this position after a time Δt , we use the equation

(3-37)
$$H(NY - 1, NX - 1)_{1}^{(1)} = H(NY - 1, NX - 1)_{0} + P_{0}(NY - 1, NX - 1) \Delta t$$

Since we are considering only one position in the grid we may drop the subscripts; thus

$$H_{1}^{(1)} = H_{b} + P_{0} \Delta t$$

Evaluating P_0 we find that

$$P_{0} = \frac{(C_{2} + H_{max})^{2}}{\sigma C_{1}C_{2}} \left[\frac{\partial^{2}H}{\partial x^{2}} + \frac{\partial^{2}H}{\partial y^{2}}\right]$$

since $\frac{\partial^2 H}{\partial x^2} = \frac{\partial^2 H}{\partial y^2}$ at this position we have

$$(3-38) P_0 = 2x_0(H(NY,NX - 1) - 2H(NY - 1,NX - 1)) + H(NY - 2,NX - 1))$$

$$P_0 = 2x_0(-mH_b - 2H_b + H_b)$$

 $P_0 = -2x_0(m + 1) H_b$

(3-39)
$$H_1^{(1)} = H_b - 2x_0(m+1) H_b \Delta t$$

We know the approximation H_1 is between $-mH_b$ and $+H_b$, thus $2x_0(m + 1) H_b \Delta t$ has to be chosen such that

$$(3-40)$$
 $-mH_b \le (H_b - 2x_0(m + 1)H_b \Delta t) \le H_b$.

We can therefore limit the value of Δt to satisfy this condition; i.e.,

$$(3-41) \qquad 0 \le 2x_0(m+1)H_b \quad \Delta t \le (m+1)H_b$$

Thus the possible values of Δt become

$$(3-42)$$
 $0 \le \Delta t \le 1/2x_0$

where

$$x_0 = \frac{(C_2 + H_{max})^2}{\sigma C_1 C_2 h^2}$$

Let us now investigate a few special cases.

Case I. For
$$\Delta t = 1/2x_0$$
 we have

$$P_0 = -2x_0(m + 1)H_b$$

$$H_1^{(1)} = H_b - 2x_0(m + 1)H_b \quad \Delta t = -mH_b$$

$$P_1^{(1)} = +2x_0(m + 1)H_b$$

$$H_1^{(2)} = H_b$$

$$P_1^{(2)} = -2x_0(m + 1)H_b$$

$$H_1^{(3)} = -mH_b$$

Fig. 13. Grid section of Fig. 12. Indicates values of H_z adjacent to $H_z(9,5)$ at $T = 0^+$.

$$P_1^{(3)} = +2x_0(m + 1)H_b$$

 $H_1^{(4)} = H_b$

Thus we can see that an oscillation between H_b and $-mH_b$ occurs and the approximation to H_l can never be found since the lim $(H_l^{(k+1)} - H_l^{(k)}) \longrightarrow 0$ is not satisfied. $k \longrightarrow \infty$

<u>Case II</u>. For $\Delta t = 1/4x_0$ we have

$$P_{0} = -2x_{0}(m + 1)H_{b}$$

$$H_{1}^{(1)} = H_{b} - 2x_{0}(m + 1)H_{b} \Delta t = \frac{H_{b}}{2} (1 - m)$$

$$P_{1}^{(1)} = 0$$

$$H_{1}^{(2)} = H_{b} - x_{0}(m + 1)H_{b} \Delta t = \frac{H_{b}}{4} (3 - m)$$

$$P_{1}^{(2)} = -x_{0}(m + 1)H_{b}$$

$$H_{1}^{(3)} = H_{b} - (3/2)x_{0}(m + 1)H_{b} \Delta t = \frac{H_{b}}{8} (5 - 3m)$$

$$P_{1}^{(3)} = -x_{0}/2(m + 1)H_{b}$$

$$H_{1}^{(4)} = H_{b} - (5/4)x_{0}(m + 1)H_{b} \Delta t = \frac{H_{b}}{16} (11 - 5m)$$

Thus the process is converging to some value $H_1^{(n)}$ and $\lim_{k \to \infty} (H_1^{(k+1)} - H_1^{(k)}) \longrightarrow 0$ is satisfied. One can easily $k \longrightarrow \infty$ visualize convergence by considering H to be zero on the boundary (i.e., m = 0), and establishing approximations $H_1^{(k)}$ as k increases. This process is shown in Fig. 16.

In order to have convergence we must not include zero or $1/2x_0$ in the permissible values; thus

$$(3-43)$$
 0 < Δt < $1/2x_0$

Selection of the Δt to be used is dependent on the computation time available and accuracies desired. As before, large

Fig. 15. Grid section of Fig. 12. Indicating values of $H_z(9,5)_1^{(k)}$, k = 1,2,3,4, for $H_{boundary} = -mH_b$, $\Delta t = 1/4x_0$.

Fig. 16. Grid section of Fig. 12. Indicating values of $H_2(9,5)_1^{(k)}$, k = 1,2,3, for $H_{boundary} = 0.0$, $\Delta t = 1/4x_0$.

 Δ t's introduce inaccuracies; however, they may allow evaluation of the maximum value of H more rapidly. This is not necessarily the case since more iterations are necessary to evaluate approximations when Δ t is large, and it becomes possible to use more time in evaluating these approximations than to evaluate H in smaller steps of Δ t. Selection of a permissible Δ t for convergence requires that

(3-44)
$$0 < \Delta t < \frac{\sigma c_1 c_2 h^2}{2(c_2 + H_{max})^2}$$
.

If we force the corner position to converge all other positions along the boundary will converge since they only require that

(3-45)
$$0 < \Delta t < \frac{\sigma c_1 c_2 h^2}{(c_2 + H_{max})^2}$$
.

To insure convergence we may write

(3-46)
$$0 < \Delta t < C_0 \frac{\sigma C_1 C_2 h^2}{(C_2 + H_{max})^2}$$

where the parameters of equation (3-46) are defined as follows:

C₀ = constant and is always < 0.5 **o** = material conductivity C₁ = constant for B-H approximation (see section 2-6) C₂ = constant for B-H approximation (see section 2-6) h = the grid size selected (see Fig. 12)
H_{max} = the magnitude of the maximum value of H(I,J)
specified by the initial conditions of
boundary conditions at time t = 0⁺.

It is now evident that Δt has to be selected in accordance with the conditions of equation (3-44) and is not an arbitrary variable. It might also be noted that smaller grid areas h^2 will require smaller time increments. This condition specifies the accuracy of the method in the same manner as limiting the value of Δt to be small in the example of section 3.2.

With the various limitations on Δt now specified we can proceed to implement the solution to equation (2-28) by constructing a program to perform the almost endless number of numerical calculations necessary. Discussion of this task is given in the next section.

4.0 PROGRAM FOR SOLUTION OF THE HYSTERETIC DIFFUSION EQUATION

4.1 Introduction

The basic function of the program is to execute the Modified Euler Method of numerical integration to solve the Hysteretic Diffusion Equation and to obtain the magnetic field intensity distribution pattern in the cross section of a rectangular toroid subject to given initial time and boundary conditions. Before this process may be executed we must first define the problem in terms of variable names in accordance with the FORTRAN IV programming language, read in the input data, and establish output data formats. A method of completing this task is given in the next section. It is assumed that the reader is familiar with the FORTRAN IV language.

Discussion of the program is given in various sections with card numbers indicating locations of the sections in the program listing of Appendix C. Notation and symbolism used in the program follow closely that used in previous discussion, although some modifications were necessary to satisfy programming requirements.

4.2 Main Program EMEX

This program controls all numerical operations and may be subdivided to indicate the particular functions performed.

4.2A Comments (MG90000 - MG90106)

The cards serve as a partial list of variable names in the program and specify various numerical values to provide given print-out formats.

4.2B Input Data (MG90122 - MG90138) and (MG90262)

The first five cards of each data set give all data necessary to execute a given problem except the initial and boundary conditions which are contained on the remaining cards 6 through n.

Any variable name beginning with I, J, K, L, M, or N is fixed point and read according to an I5 format. Variable names beginning with other letters are floating point quantities and are read according to an El6.8 format. The El6.8 format allows any of the common systems of units to be used without alteration of the input-output format specifications. Input variables are read in the sequential order as specified below.

Card Card Card Card Card Card	123456	EO, HSO, BR, HMAX, CUO TO, TKM, COND, AX, BY CDT, KZ, NI. NJ, K, KO, KI. KG B2, H2, B3. H3 HIO, DHX, I3, I4, I5
l _{Card}	n	((HO(I,J), J = 2,NX), I = 2,NY)

The value of n = 5 + (NI + 1)(NJ + 1)/5, NX = NJ + 2, NY = NI + 2. Definition of the variables and methods of obtaining numerical values for them are given as follows.

- 2. B2, H2 These are values of flux density and magnetic B3, H3 field intensity taken near the knee of the decay portion of the hysteresis curve. (See section 2.6.)
- 3. HIO, DHX Variables used for control information which I3 specify the number of points on the approximate hysteresis loop. For a symmetrical hysteresis loop as shown in Fig. 22, choose I3 = 1 + 2(HIO/DHX).
 - a. HIO Specifies the maximum value of H to be plotted on the hysteresis loop approximation.
 - b. DHX Specifies the increments of H plotted on the hysteresis loop approximation.
 - c. I3 Specifies the number of points on the decay portion of the hysteresis loop approximation. The maximum value is 100.
- 4. HMAX Specifies the maximum value of field intensity applied where H = **F**/l = NI/l. (See equations 2-1, 2, 3, 4.)
- 5. CUO Constant to allow for units conversion when computing values of force. Force = $B^2A/2\mu_0$ where $\mu_0 = 4\pi$ CUO.
- 6. COND - Conductivity of ferromagnetic material.
- 7. AX "X" dimension of the rectangular cross section as shown in Fig. 12.
- 8. BY "Y" dimension of the rectangular cross section as shown in Fig. 12.
- 9. NI Number of divisions of width CX in the "X" direction. (See Fig. 12, h = CX)
- 10. NJ Number of divisions of width CX in the "Y" direction. (See Fig. 12, h = CX.)
- 11. TO Specifies the initial value of time T(K).

- 12. K Subscript indicating iterations. Appears as T(K).
- 13. 15 Specifies execution for flux decay or flux buildup run. (See Appendix C for values.)
- 14. CDT Specifies length of time increment. Same as C₀ of section 3.5. Use CDT < 0.5 to insure convergence, smaller for higher accuracy.
- 15. KZ Specifies physical position of data set in relation to the last set; e.g., if four data sets are being run, KZ = 1 for the last set to be run, KZ = 4 for the first set to be run. etc.
- KI Specifies increments of time for which data is to be plotted; e.g., if we have 4000 values of total force or flux the printer need not plot every point; thus it plots every KIth point. (Use KI such that KO/KI < 800.)
- KG Specifies increments of time for which a printout of the flux distribution pattern is desired;
 i.e., a print-out for T(0), T(KG), T(2KG), etc.
- 18. E0 Specifies maximum error norm E as given by equation (4-1) to be less than E0; 1.e., E ≤ E0.
- 19. HS0 Specify halt condition. A halt will occur imme-TKM ately after any one of the conditions given below K0 are met. One should also note that $T(K) = K \Delta t$.
 - a. HSO HS is the sum of H(I,J) for all points in onefourth of the lattice. Halt occurs for HS ≥ HSO, buildup; HS ≤ HSO, decay.
 - b. TKM Specifies maximum time T(K) to be considered. Halt occurs when $T(K) \ge TKM$.
 - c. K0 Specifies maximum number of increments desired. Halt occurs when $K \ge KO$.
- 20. IL Specifies data selected for output and for.at specifications to be used. A detailed discussion of IL is given in section 4.2G.
- 21. HO(I,J) Specifies numerical value of magnetic field intensity at every point in one-fourth of the lattice at T(0) = 0⁺. This applies the boundary conditions and initial conditions at T(0) = 0. Quantities are "read" according to the instruction ((HO(I,J), J = 2,NX), I = 2,NY).

This completes the definition of data set constituents. Further information may be obtained by studying the sample problem given in section 5.0.

4.2C Evaluation of the Hysteresis Loop Approximation Formula (MG90140 - MG90250)

This section evaluates the constants C_1 and C_2 as given equations (2-24) and (2-25), then calculates the B-H relationship as illustrated by the hysteresis loop of Fig. 22. A graphical and printed output of an approximation to the material hysteresis loop is available at the beginning of each set of output data. To accomplish this task a duplication of the subroutine FLUD was included; however, the variables were changed and an output routine was added. Refer to section 4.3 for discussion of the procedure.

4.2D Calculation of Constants and Page Heading Routine

These cards are used to place a heading at the beginning of each output data set which defines calculated variables specifying operations to be performed; provide a print-out of data read from the input data set; check for input data errors; etc. Page 76 of section 5.2 was generated by cards contained in sections 4.2D and 4.2E.

4.22 Initial Conditions Print-out Routine (MG90724 - MG90874)

This section provides a print-out of the initial input data and corresponding initial values of flux density and force at $T(0) = 0^{+}$. Cards MG90724 - MG90784 provide the output in a list form as shown for Tape 9. The remaining cards give a matrix output format as shown for Tape 15.

In addition to the print-out instructions total values of flux (FLUXT) and theoretical force (FORCT) are calculated and printed following listing of B(I,J), H(I,J), and FORCE(I,J).

4.2F Programming the Modified Euler Process for the Hysteretic Diffusion Equation (MG90876 - MG91060)

Execution of the process is nearly the same as described in section 3.2 and as outlined by the flow chart of Fig. 11; however, the condition $(r_0 - (r_0/r_1)) >> 1$ (see Fig. 7a) allows use of one-fourth of the cross-sectional area because symmetrical boundary conditions are present when the magnetic field is applied.

The finite difference representation of the Hysteretic Diffusion Equation (equation 3-36) requires that H for all points in the lattice adjacent to the point under consideration be known. We must compute H only at all points inside the outer boundary since the boundary conditions require flux on the boundary to remain constant. Because of symmetry, values of H immediately to the left of the Y-axis are equal to those immediately to the right and values of H immediately below the X-axis are equal to those directly above. (See Fig. 12.) Cards MG90884 - MG90900 and MG90946 - MG90962 were coded to accomplish this task when values of I and J placed the point in question on the inner boundaries. The desired values of P_0 were computed for every I and J as were the approximations $H_1^{(1)}$, $P_1^{(1)}$, $H_2^{(2)}$, . . ., etc. While computing successive approximations to H, an accumulative error norm, E was generated. This error is expressed by equation (4-1).

(4-1)
$$E = \sum_{I=2}^{NX-1} \sum_{J=2}^{NY-1} \left| H(I,J)_{i}^{(k+1)} - H(I,J)_{i}^{(k)} \right|$$

This method was chosen in order that new approximations for the surrounding points would be considered when calculating successive approximations. The maximum error is specified by EO and should be small if a high degree of accuracy is desired. Successive approximations for H will continue until the matrix error norm, E < EO. When a convergence condition is satisfied, NN (variable specifying number of successive approximations to H, i.e., the same as (k) in $H_i^{(k)}$) is returned to a value of 1; values of flux density, total force, and total flux are computed; and a new approximation of $H = H_{i+1}$ is begun. If the error is not converging rapidly enough to yield a solution in a reasonable amount of time or if the error is diverging, an error message will alert the operator and a machine halt will occur. A flow diagram of the Modified Euler Method for the special problem considered is given in Fig. 17.

Fig. 17. Flow chart of EMEX.

4.2G Output Data (MG91078 - MG91410)

The remaining cards are related to output data and appropriate headings for identification. Other special control functions are performed to specify the halt condition and to printout all existing data at halt time.

Output data are available on Tapes 6, 9, 15, and 16. A sample of the output is given for Data Set 3 in section 5.2. Each tape has an output data heading for identification and prints initial values of H, B, FORCE, total force, total flux, and boundary values. Output data contained on the various tapes are as given below.

- 1. Tape 6 Contains approximation to hysteresis loop and lists total force, total flux, and time. (See section 5.2A, Output Tape 6.)
- 2. Tape 9 Lists all values of FORCE, B, and H with the corresponding time. The number of iterations required to satisfy the condition for convergence is also listed with the associated error norm E, i.e., lists values of E, T(K), and NN.
- 3. Tape 15 Provides the same information as Tape 9 except that the output appears in a matrix form as shown in section 5.2C. Variables to be printed are selected by the value of I4 chosen. (See Table 2.)
- 4. Tape 16 Data on this tape is used to punch a deck which may be used as input to a new run continuing from the existing values of variables at the completion of the first run. A print-out of the same data occurs on the output of Tape 6. One must change the value of TKM, HSO, and KO to continue.

Desired output data can be selected by specifying different values of I4. These data are not written on the tapes if not desired since the write time is very large when compared to the computation time. I4 may range from 1-7 and the output can be determined from Table 2. If I4 = 7, only Tape 6 will have a useful output.

	Ta	pe 9 (li	st)	•	Tap)e 15 (me	trix)
14	: H(I,J)	:B(I,J):	FORCE(I,J)	: NN :	H(I,J)	:B(I,J):	FORCE(I,J)
1	х	x	x	x	x	x	x
2	х	x	x	x			
3				х		х	
4				x	x		
5				х			x
6				х	х	x	х
7				x			

Table 2. Values of IL and related output data.

4.3 Subprogram FLUD

Subprogram FLUD computes a value of B for a corresponding H. The approximation is given by equation (2-22); however, the value of B is computed by four different methods depending on the value of H and whether the flux decay or flux buildup problem is being considered. We assume the hysteresis loop to be approximated by reflecting the decay portion of the loop and translating the entire decay loop to the right by $2H_c$. (See Fig. 18.) Let us consider the following cases to illustrate the regions and four different methods of computing B. Figure 18 illustrates the regions considered.

Fig. 18. Approximating the hysteresis loop.

Region 1.¹ (Decay run, $-H_c < H < \infty$)

Flux density B is computed by a simple substitution of H in equation (2-23).

Region 2. (Decay run, $-\infty < H < -H_{c}$)

Since Region II of the hysteresis loop is a reflection of Region I about the H axis, we may compute B by evaluating the difference between H and H_c, forming a new variable equal to the sum of -H_c and $|H - H_c|$ to replace H in equation (2-23). Then compute B with H replaced by $|H - H_c| - H_c$. A minus sign is then assigned to B in order to obtain the reflection characteristic.

Region 3. (Buildup run, $-\infty < H < H_{c}$)

Values of B in this region may be obtained by adding the quantity $2H_c$ to H and computing the negative of B with H replaced by the sum H + $2H_c$.

Region 4. (Buildup run, $H_c < H < \infty$)

Values of B in this region are computed by subtracting the quantity $2H_c$ from H and computing B with H replaced by the difference H - $2H_c$.

Subroutine FLUD determines the particular region in which H falls, and computes the corresponding B according to the rules discussed above. A flow diagram of the subroutine is given in Fig. 20.

4.4 Subprogram FORCX

This subroutine computes a fictitious force for each point in the lattice where Force = $B^2 A/2\mu_0$. The reason for calculating forces is to obtain a force time relation for the electromechanical system shown in Fig. 2. The rectangular toroid was used

¹The value H_c is a positive real number.

Fig. 20. Flow chart of FLUD.

as an approximation to the system with the assumption that the gap would not increase the reluctance of the flux path.

Total force in the toroid is the summation of forces at each grid point; i.e.,

(4-2) Total force (FORCT) =
$$\sum_{I=2}^{NY-1} \sum_{J=2}^{NX-1}$$
 FORCE(I,J)

Computation of the force may be approximated by the formula given if the area A is adjusted as follows. Since approximate values of B are known only for points at intersecting grid lines, areas used for computing force values along all boundaries on the lattice should only be one-half of those for the inside points and areas used for the corners should be only one-fourth of the inside areas. (See Fig. 19.)

Cards (MG91466 - MG91480) select the correct formula for computing force depending on values of I and J; (i.e., replace A by A/2 on all boundaries and A by A/4 for all corners). A flow chart of the subroutine is given in Fig. 21.

4.5 Subprogram FLUX

Subroutine FLUX evaluates total flux by forming the product B^2A . Operations performed closely resemble those of subroutine FORCX except only total flux is computed and the flux for each point in the lattice is not. Once B is determined and subroutine FLUX is called, B is multiplied by the appropriate area and added to the existing value of total flux. When all points

Fig. 21. Flow chart of FORCX.

nave been summed, the total flux is known; however, no matrix print-out of the individual flux values can occur since the individual values are not stored. A flow diagram would be a duplication of that for subroutine FORCX with a change of variables.

A listing of the main program and associated subprograms with four sample data sets is given in Appendix C. Further information concerning their use will be considered next.

5.0 USING THE PROGRAM ON A SAMPLE PROBLEM

5.1 Preparing the Input Data

Perhaps the best method of discussing the use of the program is to consider a sample problem of the type outlined in section 2.0. Formulation of an input data set specifying all input parameters discussed in section 4.2B must be obtained before execution. Let us assume we are given a rectangular toroid of ferromagnetic material as illustrated by Fig. 7, with an initial field intensity of HO. We then reverse the applied field such that the boundary at time = 0^+ is at -H0. If H0 is sufficient to saturate the core a flux reversal will occur and a flux distribution will exist in the core during the transient state. We can determine the distribution pattern as a function of time by solving for H(I,J), B(I,J), and FORCE(I,J) as a function of time. Let us assume that we desire to investigate the time dependence of the distribution pattern and the relationship between total flux (FLUXT), total force (FORCT), and time. Typical numerical values may be as given below.

Given:	Α.	Material is 2.5 per cent sil esis loop given by Fig. 22.	icon iron	with a hyster-
	В.	Material conductivity (COND)	- COND =	2.5×10^{-7} mhos
	С.	Material dimensions (see Fig. 12)	- AX = BY =	0.004 meter 0.008 meter
	D.	Initial conditions	- HO = TO =	250 amp-t/m

G.	Maximum	field	intensity	-	HMAX	=	250	amp-t/m
	(300 300	tion 3	.4)					

H. Boundary conditions 1. HO(I,NX), I = 2, NY - HO = -250 amp-t/m2. HO(NY,J), J = 2, NX

The above information is sufficient to calculate numerical values for the remaining input data variables. (See section 4.2B.) We will use the mks system of units; thus the constant $\mu_{o} = 4\pi \times 10^{-7}$ webers/amp-t/m = 4π CUO; hence

$$CUO = 1.0 \times 10^{-7}$$
 weber/amp-t/meter.

We obtain BR, B2, H2, B3, and H3 from the hysteresis loop for the given material. An approximation to this loop is shown by Fig. 22. Typical values for 2.5 per cent silicon iron are given below.

> BR = 0.71 weber/m² H2 = 11.94 amp-t/m B2 = 0.80 weber/m² H3 = 103.50 amp-t/m B3 = 1.20 webers/m²

Values of HIO, DHX, and I3 to yield a symmetrical hysteresis loop approximation with a range of H from +400 amp-t/m to -400 amp-t/m are

HIO	Ξ	400	Note:	Morimum	volue	of	т? :	= 10	0
DHX	=	10	NO CO .	Maximum	varuo	01		- 10	
I 3	=	81		For symmetry $I3 = 1 + 1$	etrica - 2(HIC	al] D/DH	Loop {X)		

Grid size is selected by specifying NI, the number of divisions desired in the X-direction. (See Fig. 12.) This also specifies the quantity NJ since the grid is square and NJ = (BY)(AX)/4NI; hence we shall use NI = 4 and NJ = 8. The quantity CDT must be less than 0.5 to insure convergence, hence CDT = 0.2. Remaining variables of the first five cards control the program as discussed in section 4.2B. We desire to begin at T(K) = 0, hence let K = 0; to print-out all data available in both formats, hence $I_{4} = 1$; to investigate a flux decay, hence I5 = 2; to plot every value of FORCT and FLUXT versus time T(K), hence KI = 1; to print-out the distribution pattern for all variables H(I,J), B(I,J), and FORCE(I,J) for every fifth value of T(K), hence KG = 5; and to execute this input data set third from the last, hence KZ = 3. Collecting the above quantities in a list we have

CDT	=	0.2	K	=	0	KI	=	1
NI	=	4	I4	=	l	KG	=	5
NJ	=	8	I5	=	2	ΚZ	=	3

Variable EO is the maximum error norm E, thus if we wish the total error norm for one-fourth of the lattice to be less than or equal to 1.0, we require EO < 1.0. Variables HSO, TKM, and KO halt execution. (See section 4.2B.) Let us halt when T(K) becomes ≥ 20.0 milliseconds, or when $K \geq 100$, and not stop for the condition HS \leq HSO, hence we have E0 = 1.0 HS0 = -1.0 x 10⁻⁷ TKM = 20.0 K0 = 100 Note: 1. T(K) = K Δt 2. $\Delta t = CDT \frac{\sigma c_1 c_2 h^2}{(c_2 + HMAX)^2}$

This completes formulation of a typical input data set.

If we collect these values, sequence them according to the "read" instructions (see section 4.2B) and express the numbers in accordance with the format specifications, we have a data set as given by Table 3.

5.2 Output Data

Output data are available on Tapes 6, 9, and 15. The output data set included was generated by execution of the program with input data set 3. I4 = 1 was used to print-out all available data. Due to the voluminous amount of data available only a small number of distribution patterns are included; however, patterns for all increments of time considered may be obtained by specifying KG = 1. Duplications of page headings, etc., were deleted. When the execution is stopped, the halt condition is indicated (see page 101) and all data for the last value of time are printed-out on all tapes.

5.2A Output Tape 6 (Pages 71 - 82)

Tape 6 lists values for the approximate hysteresis loop (pages 71 - 74) and provides a graphical representation of the

•

DATA SET NO 3 (5 X 9 MATRIX)

•1000000E-06 •80000000E-02	25500000 255000000 2550000000 2550000000 2550000000 2550000000 2550000000 2550000000 2550000000 2550000000 2550000000 2550000000 2550000000 2550000000 2550000000 2550000000 25500000000 2550000000 2550000000 2550000000 2550000000 25500000000 2550000000 2550000000 2550000000 2550000000 25500000000 2550000000 2550000000 2550000000 2550000000 2550000000 2550000000 2550000000 2550000000 25500000000 25500000000 25500000000 255000000000 2550000000000
<pre>- 25300000E+03 - 403030000E-02 5 - 10350000E+03</pre>	255000000 E + + + + + + + + + + + + + + + + + + +
• 71000000E-00 • 25000000E+07 0 100 • 1200000E+07 • 1200000E+07	25500000000000000000000000000000000000
100000000E+08 .200000000E-01 3.11940000E+02 .11940000E+02	о
.1000000000000000000000000000000000000	×25000000000000000000000000000000000000

approximation (page 75). A listing of the total force, total flux, and the corresponding time then follows, (pages 78 and 79). Next is a graphical output illustrating the time dependence of total force and total flux, (pages 80 and 81, respectively). At completion of the run, a print-out of the continuation data available as a punched card output of Tape 16 occurs.

5.2B Output Tape 9 (Pages 83 - 92)

The first five pages of print-out for this tape duplicate pages 71 - 74 and 76 of Tape 6 output and are not included; however, the following page lists initial and boundary conditions at time $T(K) = 0^+$, (page 83). A listing of corresponding values of flux density, force, and time are also given at $T(K) = 0^+$. As time increases in increments of Δt , a complete list specifying distribution patterns at T(K) (K = 0, KG, 2KG, 3KG, . . .) is listed according to format specifications as shown by pages 83 - 92. This tape also contains a listing of iterations and their associated error norm E (pages 84 and 86).

5.2C Output Tape 15 (Pages 93 - 100)

Tape 15 gives a more convenient output format since data are given in a matrix format which eases interpretation by locating values calculated for specific points in the same physical location as they would occupy in the matrix of Fig. 12. All
data available on Tape 9 except error norm values are available on Tape 15. Total values of force and flux are listed following each matrix output. Duplicates of pages 71-74 and 76 of Tape 9 precede the output and are not included.

03			
0.10349999E			
0.12000000E 01			
H2 0.11939999E 02	13 14 81 1	0.14268442E 03	ーーくらんののしくらんなくしんなくしんなくのないしん そのしのなくのないので、 ののしのなくない、 のでのしのなくない、 のでのして、 のでのして、 のでのして、 のでのして、 のでのして、 のでのして、 のでのして、 のでのして、 のでのして、 のでのして、 のでのして、 のでのして、 のでのして、 のでのして、 のでのして、 のでので、 のでのして、 のでので、 のでので、 のでので、 のでので、 のでので、 ので、 のでので、 ので、
0.80000000E 00	0.09999999E 02	7E 01 C2 =	H(1) 0.330000000 0.3300000000 0.3400000000 0.32000000000 0.32000000000 0.32000000000 0.32000000000 0.32000000000 0.27099999999 0.270999999999 0.270909090000 0.27099999999 0.270909090000 0.27099999999 0.27090900000 0.27099999999 0.27090000000 0.27099999999 0.27090000000 0.27099999999 0.27090000000 0.27099999999 0.27090000000 0.27099999999 0.27090000000 0.27099999999 0.27090000000 0.27099999999 0.27090000000 0.27099999999 0.27090000000 0.27099999999 0.27090000000 0.27099999999 0.27090000000 0.27099999999 0.27090000000 0.27099999999 0.27090000000 0.27099999999 0.27090000000 0.27099999999 0.27090000000 0.27099999999 0.27090000000 0.27099999999 0.270900000000 0.27099999999 0.27090000000000000000000000000000000000
0.709999999 00	0.4000000E 03	C1 = 0.1165510	0.155734506 01 0.155734506 01 0.155734506 01 0.155133797166 01 0.155734596 01 0.155734596 01 0.1557369596 01 0.15523639996 01 0.1572538896 01 0.14499884756 01 0.1576359596 01 0.144998846 01 0.15763598876 01 0.14409988776 01 0.14409988776 01 0.157553396 01 0.157553889 01 0.157553396 01 0.1287253886 01 0.1287253889 01 0.1287253889 01 0.1287253899 01 0.128725389 01 0.128725399 01 0.128725389 01 0.1288722548 01 0.1288725589 01 0.1288725589 01 0.1288725789 01 0.1288725589 01 0.1288725788 01 0.1288725588 01 0.1288725588 01 0.1288725788 01 0.1288725788 01 0.1288725788 01 0.1288725788 01 0.1288725788 01 0.1288725788 01 0.1288725788 01 0.128878 01 0.128878 01 0.128878 01 0.128878 01 0.128878 00 0.128878 00 0.1288788 00 0.1288788 00 0.1288788 00 0.128878 00 0.12887

0.51999857 0.51999857864 0.55999857864 0.55999857864 0.55998355864886 0.55998355864886 0.559895598355864886 0.55698555983559886 0.5569855598355988 0.556985559886 0.12595986 0.125955986 0.12595586 0.125955986 0.125955986 0.125955986 0.125955986 0.125955986 0.125955986 0.125955986 0.125955986 0.12595586 0.12595586 0.12595586 0.12595586 0.12595586 0.12595586 0.12595586 0.12595586 0.12595586 0.125955586 0.125955586 0.12595586 0.125955586 0.12595586 0.125955586 0.125955586 0.12595586 0.12595586 0.12595586 0.12595586 0.125955586 0.125955586 0.12595586 0.125955586 0.12595586 0.12595586 0.125955586 0.12595586 0.125955586 0.125955586 0.125955586 0.125955586 0.125955586 0.125955586 0.125955586 0.125955586 0.125955586 0.125955586 0.125955586 0.125955586 0.125955586 0.12555556 0.12555556 0.125555586 0.125555586 0.125555586 0.125555586 0.12555556 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.1255555586 0.1255555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.1255555586 0.1255555586 0.1255555586 0.1255555586 0.1255555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.125555586 0.1255555586 0.1255555586 0.1255555586 0.1255555586 0.125555586 0.125555586 0.12555556 0.125555586 0.125555586 0.12555556 0.125555586 0.12555556 0.12555556 0.12555556 0.12555556 0.12555556 0.12555556 0.12555556 0.12555556 0.12555556 0.12555556 0.12555556 0.12555556 0.125555556 0.125555556 0.12555556 0.125555556 0.12555556 0.12555556 0.125555556 0.12555556 0.125555556 0.12555556 0.12555556 0.125555556 0.125555556 0.125555556 0.125555556 0.125555556 0.1255555555555555556 0.1255555555

 0
 2
 2
 0
 0
 2
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1 1 1

NNNNNNNNNNmmmmmmmmmmmmm

0.12700212E 0.13111195E 0.13296451E 0.13296451E 0.137859932E 0.13785791E 0.13785791E 0.147966126E 0.14744531E 0.14744531E 0.14744531E 0.14929072E 0.14744531E 0.15015116E

0.99999999E-07 BY 0.79999999E-02 0.2000000E-00 -E-03 03 0.39999999E-02 KG 5 m 0 0.13480794E-HMAX 0.25000000E AX W •10349999 BY 48) CDT = 9 NO FORCE) S 01 ω 4 0 DATA)
 OF THE CROSS SECTION AREA

 NJ =
 4 BY 8
 (MAX =

 8
 ANJ =
 0.80000006 01
 Ξ ____ au EMENT 00 шS 03) B3 VALUE / FOR B VS URVE minimum sum of Hi(I;) minimum sum of Hi(I;) maximum field maximum field maximum field margerifies maximum time fons frad value of time innifiad value of time fons frad value margerifies maximum time cone with to cone with the cone with the constant would the constant for constant for constant for constant for constant for constant for constant con R P C 0 OUN W W шХ W 0.14268442E 0.70999999E 0.2500000E K K0 K0 0 100 0.120000E 0001 4 1 0.1200 13 81 02 10 ω 02 078 - Z O 0.11655107E -0.09999999E 0.2000000E-KZ 0.11939999E 0.0999999E 4 37 14 37 <u>3</u>200 NUN = NJ = 0.4999999995-03 0.099999995 01 10 A DECAY COVERS SIZE = NJ SUU THIS IS LATTICE LATTICE NI = 11 TUTTOTION CARACTICHBHE 0 0-0 5

USE 0 OR 1 FOR BUILDUP USE 2 FOR DECAY = DIVISION WIDTHS = CCNSTANT IN MODIFIED FROELICH APPROXIMATION = CGNSTANT IN MODIFIED FROELICH APPROXIMATION = TIME INCREMENT IN SECONDS

> DCCC CCCC

YO-1010+10-0000	~~~
	かんち

c. 01.4L 6.65 LL. 0

<u>ن</u>

Y ME

0.7279520376-02 0.727952746-02 0.727952746-02 0.7549253565896-02 0.755925356-02 0.755925356-02 0.755925356-02 0.855955152596-02 0.8552555566-02 0.855255556-02 0.9155555566-02 0.92571555556-02 0.925555566-02 0.925555566-02 0.925555566-02 0.925555566-02 0.1155555566-01 0.115555566-01 0.115555566-01 0.115555566-01 0.115555566-01 0.115555566-01 0.115555566-01 0.11555566-01 0.11555566-01 0.11555566-01 0.11555666-01 0.1155566-01 0.1155566-01 0.1155566-01 0.1155566-01 0.1155566-01 0.1155666-01 0.1155666-01 0.1155666-01 0.1155666-01 0.1155666-01 0.1155666-01 0.1155666-01 0.1155666-01 0.1155666-01 0.1155666-01 0.1155666-01 0.1155666-01 0.1155666-01 0.1155660-01 0.1155666-01 0.1155666-01 0.1155666-01 0.1155666-01 0.1155666-01 0.115666-01 0.115666-01 0.115666-01 0.115666-01 0.115666-01 0.115666-01 0.1156660-01 0.115666-01 0.115666-01 0.115666-01 0.115666-01 0.115666-01 0.1156660-01 0.1156660-01 0.1156660-01 0.115660-01 0.115660-01 0.115660-01 0.115660-01 0.115660-01 0.115660-01 0.115660-01 0.115660-01 0.115660-01 0.115600-01 0.115600-01 0.115600-01 0.115600-01 0.115600-01 0.115600-01 0.115600-01 0.115600-01 0.115600-01 0.1

E-07 E-02	E 03			:ШШ 000	
9999 9999	0000			00000	
K = 9999 7999	2500	22200 22200 22200 2200 2200 2200 2200	25000	2500	
10.0	•0 -			00	
7 00 X 00 Y	03	202	2000	03	
АNG 996-	99E 25E	101 101 101 101 101 101 101 101 101 101		45 00 00	
CH 0000 0000	499 543	225	324	933	
250 399	.103 .887	888 800 700 700 700 700 700 700 700 700	006 008 006 006	116	
2000	0 0	000	000	00	
1 00 0 7 0 7	201 02	200	0000	030	31
800 00 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0	00E 22E	о 356 ПШС ПШС	12 12 12 12 12 12 12 12 12 12 12 12 12 1	78E 00E	•
11N 0000 000	113	922 696 079	293	118	NO
709	120 1228	2400	1000 1000 1000	992	SET
100-100-1				00	ATA
0 80 -03 -00 -00 -00 -00 -00 -00 -00 -00 -0	2000	200	1000	030	R D.
999 000 00 00	9 9 9 9 9 9 9 9 П 1 9 9 0 1 9 0	2 4 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	530 130 130	74E 00E	FO
8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5699 5699	020	785	529	ATA
1000 1000	110099	100 8995 733	6404	937	J. SL
017 -00	000	000	000	00	101
1000	0000	2000	1000	0303	PREV
1900 000 000 000	0000 0000 0000	90E 02E 69E	92E	000	
000000000000000000000000000000000000000	0000	6691 6633	9878 1255 698	392	3
100000000000000000000000000000000000000	217	1931	328	923	н
IHI IHI		000	000	00	:: ::

	• • • •
►	11 11
	60
00000000000000000000000000000000000000	
COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	I M M M M M M M M M M M M M M M M M M M
ならのないないないないないないないないないないないないないないないないないない	-05
	68E 36E
	889261
$\label{eq:structure} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	645
	00
	11 11
	CT) XT)
	(FLU
	ORGE
	TOTA

 $\$

TIME(1) = 0.13480794E-03 E = 0.51259772E 03 E = 0.17505107E 03 E = 0.65356948E 02 E = 0.25517551E 02 E = 0.10395429E 02 E = 0.44650878E 01 E = 0.49566707E 01 E = 0.88535690E 00	TIME $(2) = 0.26961589E-03$ E = 0.14928652E 03 E = 0.39733071E 02 E = 0.12150040E 02 E = 0.38595571E 01 E = 0.13126096E 01 E = 0.51683140E 00	TIME $(3) = 0.4042384E-03$ E = 0.67984150E 02 E = 0.14060203E 02 E = 0.32708525E 01 E = 0.84317970E 00	TIME(4) = 0.53923178E-03 E = 0.44885638E 02 E = 0.44885638E 02 E = 0.60331847E 01 E = 0.12207507E 01 E = 0.26661849E-00	$ \begin{array}{rcl} \text{TIME} (& 5) & = & 0.67403973E-03 \\ \text{E} & = & 0.31600174E & 02 \\ \text{E} & = & 0.32818570E & 01 \\ \text{E} & = & 0.51847541E & 00 \\ \end{array} $
-00400-00	-004000	-0m40	-004v	-NW4

,

1.1

FURCER(1, 1) 5188584655566-01 5188584655566-01 5188584655566-01 5188584655566-01 5188584655566-01 5188584666-01 518858566-01 518858566600 5188686666 5188686666 5188686666 5188686666 5188686666 5188686666 51886866666 5188666666 51886866666 518866666 5188666666 5188666666 5188666666 5188666666 5188666666 5188666666 5188666666 5188666666 5188666666 5188666666 5188666666 5188666666 5188666666 5188666666 5188666666 5188666666 51886666666 518866	11ME 0.674,03973 <t< th=""><th>0.61403913E-03 $51 = 0.67403973E$ $51 = 0.67403973E$</th></t<>	0.61403913E-03 $51 = 0.67403973E$ $51 = 0.67403973E$
FDRKER(1, J) BILL BILL <td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td></td>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
FORCE (1, J) 0.518888695-00 0.518868695-00 0.6255595665-00 0.6255595665-00 0.1037356665-00 0.1037356665-00 0.1037356665-00 0.1037356665-00 0.125505559615-00 0.125505556965-00 0.125505556965-00 0.125505556965-00 0.12752555966 0.125505556965-00 0.12752555966 0.12752555966 0.12752555966 0.12752555966 0.12752555966 0.12752555566 0.12752555966 0.1275255596 0.12756555566 0.1275655566 0.1275655566 0.1275655566 0.12756555566 0.12756555566 0.12756555566 0.12756555566 0.12756555566 0.12756555566 0.12756555566 0.12756555566 0.12756555566 0.12756555566 0.12756555566 0.12756555566 0.12756555566 0.12756555566 0.1275655555566 0.1275655555566 0.1275655555566 0.1275655555566 0.12756555555566 0.1275655555555555555555555555555555555555	 Верески собрание и предавание и предавание	000000E TIME TIME
FORCE(1, J) 5186886956-01 0.9476594166-01 0.9476594166-01 0.9476594166-01 0.9476594166-01 0.1380351966 0.1380351966-01 0.12595599166-00 0.12595599166-00 0.12595599166-00 0.12595599166-00 0.12595599160 0.12595599160 0.12595599160 0.12595599160 0.1259559166-01 0.1251226776 0.1259559166-01 0.12512267769 0.1259559166-01 0.12512267769 0.1259559166-01 0.12512267769 0.1259559166-01 0.1579122759 0.1259559166-01 0.1579122759 0.1259559166-01 0.1579122759 0.1259559166-01 0.1579122759 0.1259559166-01 0.15791227895 0.125955666-01 0.15791227895 0.125955666-01 0.15791227895 0.1251227899 0.125927866-00 0.157957595 0.1251227899 0.1251227795 0.1251227795 0.1251227795 0.1251227795 0.1251227795 0.1251227795 0.1251227795 0.1251227795 0.1251227795 0.1251227795 0.1251227795 0.1145505566-00 0.15757575795 0.1251227789 0.11133079576 0.1114500556 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.1251227295 0.1251227786 0.1251227295 0.1251227785 0.1251227785 0.1251227785 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.11145505566-00 0.1114550556600 0.1114550556600 0.1114550556600 0.111455056600 0.1114550556600 0.1114550556600 0.1114550556600 0.1114550556600 0.1114550556600 0.1114550556600 0.111455055600 0.111455055600 0.111455055600 0.111455055600 0.111455055600 0.111455055600 0.111455055600 0.111455055600 0.111455055600 0.111455055600 0.11111232052600 0.111455055600 0.11111232052600 0.111455055600 0.11111232052600 0.11145505600 0.11145505600 0.11111232052600 0.11111232052600 0.11145505600 0.11145505600 0.11111232052600 0.11145505600 0.111112912505600 0.111112912505600 0.115512505600 0.115512000 0.115512050		22.0-1 2276-01
<pre>FORCE(1, J) 0.5186.88695-00 0.9472524755-00 0.9472524755-00 0.9472524755-00 0.103736065-00 0.112103736055-00 0.103736055-00 0.103736055-00 0.11212056534 0.1250559915-00 0.1250559915-00 0.1250559915-00 0.12250559915-00 0.12250559915-00 0.12250555695-00 0.122525555696-00 0.1221224759 0.1225325555696-00 0.1221224759 0.1224811435-00 0.1221224759 0.1224811435-00 0.1224811435-00 0.1224811435-00 0.1221224759 0.1224811435-00 0.1221224759 0.1224811435-00 0.1221224759 0.1224811435-00 0.1221224759 0.1224811435-00 0.122525555696-00 0.122724759 0.1224811435-00 0.122724759 0.1224811435-00 0.122724759 0.1223252556-00 0.12272475 0.122325255 0.122325255 0.12232555696-00 0.12272475 0.1223292075 0.122729277 0.11133475665345 0.122729277 0.11133473665835 0.122729277 0.11133473665835 0.122729277 0.11133473665835 0.122729277 0.1113347307556554 101AL FURC 1 </pre>	000000000000000000000000000000000000000	10/10/2
FORCE(1, J) 0.5186838695-00 0.1022254755-00 0.1022254755-00 0.1125555957585-00 0.125555951565-00 0.1255559015-00 0.1255559915-00 0.1255559915-00 0.1255559915-00 0.1255559915-00 0.1255559915-00 0.12555599575565-00 0.12555595900 0.125555595765-00 0.12555559576500 0.125555595700 0.125555595700 0.125555595700 0.125555595765-00 0.125555595700 0.125555595700 0.125555595765-00 0.1255555957000 0.12555555957000 0.12555555957000 0.12555555957000 0.12555555957000 0.12555555957000 0.1255555957000 0.1255555597000 0.12555555957000 0.1255555597000 0.12555555957000 0.12555555957000 0.12555555957000 0.12555555957000 0.12555555957000 0.12555555957000 0.125555555957000 0.12555555575000 0.1255555550000 0.12555555500000000000000000000000000000		0.529 0.529
FORCE(1, J) 0.518688695-01 0.9476554115-01 0.62559656116-01 0.1255596561-01 0.12555596655-00 0.12555596655-00 0.12555596655-00 0.1255559665-00 0.1255559665-00 0.1255559665-00 0.125555696-00 0.125555696-00 0.125555696-00 0.125555696-00 0.125555696-00 0.125555696-00 0.12555566-00 0.12555566-00 0.12555566-00 0.12555566-00 0.12555566-00 0.12555566-00 0.12555566-00 0.12555566-00 0.12555566-00 0.12555566-00 0.12555566-00 0.12555566-00 0.12555566-00 0.12555566-00 0.12555566-00 0.12555566-00 0.125555566-00 0.125555566-00 0.125555566-00 0.125555566-00 0.125555566-00 0.125555566-00 0.125555566-00 0.125555566-00 0.125555566-00 0.125555566-00 0.125555566-00 0.125555566-00 0.125555566-00 0.125555566-00 0.1255555566-00 0.1255055566-00 0.1255055566-00 0.1255055566-00 0.1255055566-00 0.1255055566-00 0.1255055566-00 0.1255055566-00 0.1255055566-00 0.1255055566-00 0.1255055566-00 0.1255055566-00 0.1255055566-00 0.1255055566-00 0.1255055566-00 0.1255055566-00 0.12550555566-00 0.12550555566-00 0.12550555566-00 0.12550555566-00 0.12550555566-00 0.12550555566-00 0.12550555566-00 0.12550555566-00 0.12550555566-00 0.12550555566-00 0.12550555566-00 0.12550555566-00 0.12550555500 0.12550555566-00 0.12550555500 0.12550555500 0.12550555500 0.12550555500 0.125600 0.125600 0.125600 0.125600 0.125600 0.125600 0.125600 0.125600 0.125600 0.125600 0.125600 0.125600 0.125600 0.125600 0.125600 0.125600 0.125600 0.1256000 0.125600 0.125000 0.1256000 0.12500000		-0.1
	-086 E (1, J) 5186 8869 E () 52 24 75 F () 52 25 75 86 9 F () 52 52 95 75 F () 52 52 95 75 F () 52 52 95 75 F () 52 53 95 75 56 F () 52 53 55 55 96 F () 52 53 55 55 56 F () 52 53 57 56 F () 53 51 51 56 F () 54 50 50 55 8 F () 54 50 50 50 50 F () 54 50 50 50 50 50 F () 54 50 50 50 50 F () 54 50 50 50 50 F () 54 50 50 50 50 50 F () 54 50 50 50 50 50 50 F () 54 50 50 50 50 50 50 F () 54 50 50 50 50 50 F () 54 50 50 50 50 50 50 F () 54 50 50 50 50 50 50 50 50 F () 54 50 50 50 50 50 50 50 50 50 50 50 50 50	L FORCE (FORC
	000000000000000000000000000000000000000	TOTAL

- Controlmenter and the controlmenter and th

-03

1 TIME(6) = 0.80884767E-03 2 E = 0.22873706E 02 3 E = 0.21933233E 01 4 E = 0.23584962E-00	1 TIME(7) = 0.94365562E-03 2 E = 0.17104258E 02 3 E = 0.15590467E 01 4 E = 0.13956106E-00	1 TIME(8) = 0.10784635E-02 2 E = 0.13121015E 02 3 E = 0.11226968E 01 4 E = 0.95485449E-01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.0.0.0		0 U U U	11 11 11	11 II II
ZZZZ	ZZZZ	ZZZZ	ZZZZ	ZZZ

,

	794E-02
	13480
000000000000000000000000000000000000000	10)
00000000000000000000000000000000000000	<u> </u>
Construction of the second of the secon	NIT NIT
	90E 01 62E-05
	377
11 12 12 14 14 15 15 15 15 15 15 15 15 15 15	0.457
ANDNONSHONSHONNSHOUNDNONNSHONNSHONNSHONNSHONNSHONNSHONNSHON	0-0
	CL) XL)
	(FLU
	FURCE
->>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	TOTAL

- Nutronationationationationationationation

-UNNNNWWWWWA4444NNNNNAAAAANNNNNNWWWWWWWWWW	587E-02 587E-02
00000000000000000000000000000000000000	.26961
3.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	
	20)
) BM I
00000000000000000000000000000000000000	<u>}</u>
	4E 01 9E-05
	7966
	0.363
	FURCT
	FOPCE
	TOTAL

unanonwanonwanonwanonwanonwanonwano

.

	69169
	0.539231
	= (0%)
00000000000000000000000000000000000000	TIME (
	09E 01 84E-05
B1(1, J) 11392383E 11392383E 11392383E 113925358E 115602358E 115602358E 11563571E 129153538E 119153598E 119153598E 119153598E 119153598E 1191535565 1191535565 1191535565 1191535565 1191535565 119535565 1103355565 1103355565 1103355565 1103355565 1103355565 1103355565 1103355565 1103355565 110335556 1103355565 1103355565 1103555565 1103555565 110355565 1103555565 1103555565 110355565 110355565 110355565 110355565 110355565 110355565 110355565 110355565 110355565 110355565 1115555565 1115555565 1115555565 1115555565 1115555565 1115555565 1115555565 1115555565 1115555565 1115555565 1115555565 1115555565 1115555565 1115555565 1115555556 1115555565 111555556 111555556 111555556 111555556 111555556 111555556 111555556 111555556 111555556 1115555556 1115555556 11155556 111555556 111555556 111555556 111555556 11155	0.268571
	FORCT) -
	FORCE
000000000000000000000000000000000000000	TOTAL

 	47E-02
34 34 35 35 36 37 37 38 <td>0.808847 0.808847</td>	0.808847 0.808847
	= (09)
00000000000000000000000000000000000000	<u> </u>
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	TIMIT
00000000000000000000000000000000000000	22E 01 14E-06
	292813
○ 2022 2022 2022 2022 2022 2022 2022 20	0.6
	CT JXT
	(FUR
01110100000000000000000000000000000000	FORCE
23032232/0-00000000000000000000000000000	TOTAL

Sumanoumanoumanoumanoumanoumanoumano

•	
	2E-01
11866326 107866326	= 0.1078463 = 0.1078463
000000000000000000000000000000000000000	80 80
0 0 0 0 0 0 0 0 0 0 0 0 0 0	TIME (
00000000000000000000000000000000000000	8E 01 0E-06
	0.2051395
	CT) = (TX XT) = -0
	E (FOR
10000000000000000000000000000000000000	FORG
00000000000000000000000000000000000000	TOTAL

 $\hat{\mathbf{a}}$

	7906-01
TIME (100) 134807906-01	= 0.13480
000000000000000000000000000000000000000	1001
00000000000000000000000000000000000000	<u> </u>
HI	30E_01 TIM
31(1, J) 33892759 33892759 33892759 33892759 33892759 33892759 33892759 3395959268 335595886 335595886 33559588 33559588 33559588 33559588 33559588 33559588 33559588 000 335595888 000 33559588 000 33559588 000 33559588 000 33559588 000 33559588 000 33559588 000 33559588 000 33559588 000 33559588 000 33559588 000 000 335595888 000 000 000 000 000 000 000	0.188384
	= (1)
F0PCF(I, J) 0.313456868686901 0.313456868686901 0.313456868686901 0.35339345468686901 0.3533935668686901 0.2233935568686901 0.2233935566901 0.2233935566901 0.2233935566901 0.2233935566901 0.2233935566901 0.2233935566901 0.2233935566901 0.2233935566901 0.2233935566901 0.2233935566901 0.2233935566901 0.2233935566901 0.2233935566901 0.2233935566901 0.2233935566901 0.223395566901 0.223395566901 0.223395566901 0.2233955566901 0.223395566901 0.2233955556901 0.2233955566901 0.223395556901 0.223395556901 0.22335566901 0.2233955556901 0.223395556901 0.22335556901 0.22335556901 0.22335556901 0.225556901 0.225556901 0.225556901 0.225556901 0.225556901 0.225556901 0.225556901 0.225556901 0.225556901 0.225556901 0.225556901 0.225556901 0.225556901 0.22555601 0.22555601 0.22555601 0.22555601 0.22555601 0.22555601 0.22555601 0.22555601 0.22555601 0.22555601 0.22555601 0.22555601 0.22555601 0.22555601 0.22555601 0.22555601 0.225555601 0.22555601 0.225555601 0.225555601 0.225555601 0.225555601 0.225555601 0.225555601 0.225555601 0.225555601 0.225555601 0.225555601 0.225555601 0.225555601 0.225555601 0.225555601 0.225555601 0.225555601 0.255555601 0.255555601 0.25555601	FOTAL FORCE (FOR

- Cumanoumanoumanoumanoumanoumanoumano

,

I. П (0 -AT TIME INTENSITY HO(1, J) FIFLD MAGNETIC

٠

0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			000000000			11111
6 0 0 0 0 0 0 0 0 0 0 0 0 0			-0.129129226 -0.129129226 -0.129129226 -0.129129226 -0.129129226 -0.129129226			0.414657586- 0.829315166- 0.829315166- 0.829315166- 0.829315166- 0.829315166- 0.829315166-
COCOOOOOOOOOOOO			1100000000			C00000 0CC0C0
0.25000006 0.250000006 0.250000006 0.2500000006 0.250000006 0.250000006 0.250000006 0.250000006	••••		0.14520148E 0.14520148E 0.14520148E 0.14520148E 0.14520148E 0.14520148E 0.14520148E 0.14520148E	••••••		0.104860675 0.209721345 0.209721345 0.209721345 0.209721345
Constant of the second se	= (0) = 11 = (0) = 11	• 0-	4 14520148E 14520148E 14520148E 14520148E 14520148E 14520148E 14520148E 14520148E 14520148E 14520148E 14520148E 12912922E 129129222E 129129222E	TIME( 0) =		4 10486067E-00 20972134E-00 20972134E-00 20972134E-00 20972134E-00 20972134E-00
000000000		( )	C00000000	25	T	000000
	0.64588968E 01 0.76726136E-05	I(I,J) AT TIME(	0.14520148E 01 0.14520148E 01 0.14520148E 01 0.14520148E 01 0.14520148E 01 0.14520148E 01 0.14520148E 01 0.14520148E 01 14520148E 01	0.64588968E0 0.76726136E-0	) AT TIME( 0) =	3 0.104860675-00 0.209721345-00 0.209721345-00 0.209721345-00 0.209721345-00 0.209721345-00
	FORCE (FORCI) = FLUX (FLUXI) =	ENSITY MATRIX BI	0.14520149E 01 0.14520149E 01 0.14520148E 01 0.14520148E 01 0.14520148E 01 0.14520148E 01 0.14520148E 01 0.14520148E 01 0.14520148E 01	FLUX (FLUXI) =	TICAL FORCE(I, J)	0.10486067E-00 0.10486067E-00 0.10486067E-00 0.10486067E-00 0.10486067E-00 0.10486067E-00 0.10486067E-00
00001025mv	TOTAL	FLUX D	093435440	TOTAL	THEORE	えるようらて

0.82931516F-01 0.82931516F-01 0.41465758E-01 0.20972134F-00 0.20972134E-00 0.82931516E-01 • 0 - -11 11 0.20972134F-00 0.20972134F-00 0.82931516E-01 <u>.</u> TIME ( 0.64588969E 01 0.76726136E-05 0.209721345-00 0.209721345-00 0.829315165-01 0.10486067E-00 0.10486967E-00 0.41465758E-01 11 11 FUX (FUXCT) TOTAL 1000

0.674039736-II. 3 -AT TIME (L + I ) TH FICLD INTENSITY MAGNET IC

6 0

0.12912922E 01 0.12912922E 01			0.41465758E-01 0.82931516E-01 0.82931516E-01 0.82931516E-01 0.82931516E-01 0.82931516E-01 0.82931516E-01 0.82931516E-01 0.82931516E-01	
0.80455644E 00 - 0.12912922E 01 -	0.67403973E-03 0.67403973E-03		0.62529676E-01 0.12505569E-00 0.12505569E-00 0.12502786E-00 0.124311436-00 0.12331796E-00 0.11450005E-00 0.64406833E-01 0.64406833E-01	0.67403973E-03 0.67403973E-03
Ī	п. п.	-03		н П
22E 01	5)	3973E-	1111 20000000 20000000 20000000 10000000 10000000 100000000 100000000	5)
0.129129	TIME( TIME(	0.6740	0.867554 0.1895295 0.1895295 0.189422 0.186873 0.186873 0.186077 0.173660 0.829315	TIME (
22E 01 -	427E 01 440E-05	= (9	33 633 735 735 732 772 772 772 772 772 772 772 772 772	427E 01 440E-05
129129	. 52970	TIME (	102224 2044266 2044266 2044284 204284 2053532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 205532 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 20552 2055	. 52970
	00	A T	000000000	00
12927E 01	(FORCT) = (FLUXT) =	FORCE(I,J)	J=2 658869E-01 72317E-00 654556E-00 236926-00 40003E-00 83787E-00 83787E-00 83787E-00	(FOPCT) = (FLUXT) =
-0.129	FORCE	ETICAL	00000000000000000000000000000000000000	FUPCE
10	TOTAL	THEOR	0.000-000+000 1	TOTAL

	000000000	
1	-0.12912928 -0.12912928 -0.12912928 -0.12912928 -0.12912928 -0.12912928 -0.12912928 -0.12912928 -0.12912928 -0.12912928 -0.12912928	03
I	100011000	
73E-03	0.11212639E 0.11212639E 0.112126236 0.112126776 0.112112676 0.112112776 0.112112776 0.112363356 0.107288356 0.107288356	0.67403973 0.67403973
339		11 11
74(		50
5) = 0.6	4 0.13803514 0.13803454 0.13795531 0.13779548 0.13677137 0.13677137 0.13677137 0.13677137 0.12912968	TIME ( TIME (
L(I,J) AT TIME(	9.143354886 01 0.1433559488 01 0.143355946 01 0.143307096 01 0.143043016 01 0.141819106 01 0.135741776 01 0.135741776 01 0.135741776 01	0.52970427E01 0.65340440E-05
DENSITY MATRIX B1	<pre> 0.14442076E 01 0.14442076E 01 0.14442076E 01 0.14435775E 01 0.144707289E 01 0.13756534E 01 0.13756534E 01 0.11190571E 01 -0.129129227E 01 </pre>	FORCE (FORCT) = FLUX (FLUXT) =
FLUX	00000000000000000000000000000000000000	TOTAL

•

.

	00000000000000000000000000000000000000	
1	6 0 0 0 0 0 0 0 0 0 0 0 0 0	03
	00000000000000000000000000000000000000	
7403973E-03	0.77800727E 0.77800281E 0.77795920E 0.77759462E 0.774759462E 0.7747534226 0.755342226 0.755342226 0.755342226	0.67403973 0.67403973
0.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	н
		5)
н (с ) н	0.19316754 0.193163518 0.193129538 0.192901028 0.191549338 0.184812318 0.157380618 0.157380618 0.250000000	TIME ( TIME (
E I	1	-15
HI(1, 1) AI I	23367802E 233692E 23366942E 23366942E 233186446E 03 23095658E 03 184661831E 03 2500906E 03 2500906E 03 2500000E 03	0.52970427E 0 0.65340440E-0
-	00000000	00
HIC FIELU INTENSI	J=2 0.242902226 03 0.242891796 03 0.242891796 03 0.24232931616 03 0.2242329316 03 0.2242329316 03 0.2242329316 03 0.2242329305056 03 0.22500017676 03 0.190017676 03 0.250000006 03	FORCE (FORCT) = FLUX (FLUXT) =
NOVE	00010010000 1	TOTAL

94

	00000000000000000000000000000000000000			000000000			00000000	
	uuuuuuuuu			www.u.u.u.u.u.u				
	00000000			NUNUNUN			30000000	
	000000000			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			2111111111110	
	000000000							
	000000000						Suunuuus	
	000000000			000000000			*0000000*	
				~~~~~~~~~~			-0000000-	
							•••••••	
	000000000			0000000000			0000000000	
		22			25			22
	00000000	00		8000000-	00			00
	000000000	uu		0000000000	ůů.		000000000	ill.
		55			44			4.4
2		56			50			50
Ĭ	50000000000	00		1004000000	CO		N202W2020-	CC
ů.	040400000	83		-mociniona	aa		000-00-05	$\infty \infty$
1	000000000000000000000000000000000000000	22		6000000 0000000	2.2			100
20	20004000000		N	7770000			050-00-000	
0	2022001111		C	NNNN-SNCN	• •		NYSONS IN	• •
8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00	1	0000000m-	00			CC
ñ	00000000		5	00000000			000000000	
-			6			\sim	000000000	
•		11 11	7		1F 11	0	000000	II II
C			80		~~	111		
	000000000	00	5	000000000	00	4		CO
	dud aluututu		~	Աստարտար		5		
- 11	04504443		-	N-+2322203			00-00-00-	
~	2000001-000	~~	0	0004-000		8	NNC-00-000	
0	0-010100100	لنانيا	-	NGDUPNO	u u	~	-Ocasuanes	1.1 L.
-	0-0-1-000	22			d	~	+200-00mm	
			11	0000577606		-		
-						0	80	
	• • • • • • • • •		-	• • • • • • • • •			• • • • • • • • • •	
4	000000000		10	00000000			000000000	
the second		~5		1	-5	П		~5
-	manananon Manananon	00			00		-000000	00
-	000000000		W	00000000	ww	0		uu
<	WEBEEBEE	ON		WHE WWWEL W	50	_		02
		60.		~~~~~~~	60		02000022	00
5	2020-CB1000	37	-		20	_	200000vb	20
	000000000	8-	-	00-+000ccv	8	113	-unitoums	8-
-	~~~~~~~~~	281	<		281		852-202m	28.
~	00000000	5.0	~	0.000.001/C0C	5.0	-	200000000	50
-	~~~~~~~~~~~						8	
		00			00	T		CC
1×	00000000		Ξ.	0000000000		~	0000000000	
band			-			-		
IS	mmmmmmvm	11 11			II II -	2		B I
1	000000000000000000000000000000000000000		×	00000000000		-		
-		han jan	-	แแกกการ		-	wa wall a day	\vdash
2	-0000-000	CX	a	22-202-20C	UX		220000000	UX -
		80	T V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	27	2		8-1
C	00000000000	لماليا	0.0	200-00-00V	u.u.	õ	2-000-00-0	LL IL
_	-20032040	~~		554-04-01	~	L	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~
1		111	1	2-2-2-0-0-0	144		000000000	14
L.	~~~~~~~~~	ŨX			UX	~	*******	UX
		KD.	S	•••••	AD.	0		40
10	000000000		Ť.	00000000		-	000000000	
-	1		C			4		
L.			~	0.0.+10.00-000		25	0.0.00000000	
5	interior avo	V I	ŝ		TY	L		11
<		00	_		00	-		CC
R.0			-		FF	-		

0.269615878 02 2 O J = MAGNETIC FIELD INTENSITY HICL, J) AT TIME (

	6 0.41465758E-01 0.82931516E-01 0.82931516E-01 0.82931516E-01 0.82931516E-01 0.82931516E-01 0.82931516E-01 0.82931516E-01 0.82931516E-01 0.82931516E-01	2
2	0.18530010E-01 0.37026459E-01 0.368685459E-01 0.36339643E-01 0.34705687E-01 0.16887335E-01 0.16887335E-01 0.448887335E-01 0.44887335E-01	0.26961587E-00 0.26961587E-00
6961587E-03	4 918196-01 661696-00 147078-00 671538-00 793448-00 719816-00 748078-01 492856-01 492856-01	ME(20) = ME(20) =
= 0.2	00000000000000000000000000000000000000	1 11
AT TIME(20)	0.85440540E-01 0.17070544F-00 0.16999342E-00 0.16806377E-00 0.15164423E-00 0.12185185E-00 0.29524913E-00 0.29524913E-00 0.82931516F-01	0.36379664E0 0.42601639E-0
TICAL FORCE(I, J)	J=Z 0.44763909E-01 0.89430710E-01 0.88003264E-01 0.85464005E-01 0.79392660E-01 0.64003878E-01 0.16349057E-01 0.16349057E-01	FOPCE (FORCT) = FLUX (FLUXT) =
THEORE	000000000000000000000000000000000000000	TUTAL

	5			50	0			0	01		
K	-0.12912922F	-0.12912925	-0.12912925	-0.12912925	-0.12912922F	-0.129129226	-0.12912925	-0.129129226	-0.12912922E	2	02
ſ	0.61038322E 00	0.61010677F 00	0.60880501E 00	0.60442174E 00	0.59067702F 00	0.54877533E 00	0.41203140E-00	-0.22169189E-00	-0.12912922E 01	= 0.26961587E-0	= 0.26961587E-0
4	0.118118765 01	0.11806685E 01	0.11784755E 01	0.11721651E 01	0.115541525 01	0.111116311F 01	0.93533994E 00	0.41156694E-00	-0.12912922E 01	TIME(20)	TIME(20)
ſſ	0.13105801E 01	0.131000646 01	0.130727156 01	0.12998307F 01	0.128115485.01	0.12347035E 01	0.11067915E 01	0.544308745 00	-0.12912922E 01	0.36379664E 01	0.42601639E-05
7=C	0.13416639E 01	0.13409360E 01	0.13380148E 01	0.13301913E 01	0.13108601E 01	0.12634408E 01	0.11344043E 01	0.57333851E 00	-0.12912922E 01	FOPCE (FORCT) =	FLUX (FLUXT) =
	2	3	4	5	9	~	0	6.	10	DIAL	OTAL

0.26961587E-02

11

20)

FLUX DENSITY MATRIX BI(I, J) AT TIME(

	022 022 022 022 022 000000 022 0000000 022 000000	E-02 E-02
).26961587E-02		= 0.26961587 = 0.26961587
E (20) = C	4 0.95829750E 02 0.95897850E 02 0.937572555E 02 0.882574773555E 02 0.750203366 02 0.250087000E 02 0.2500000E 02	TIME(20) TIME(20)
TY HI(I,J) AT TIM	9.15174057E 03 0.15138979E 03 0.15138979E 03 0.14997443E 03 0.14619173E 03 0.13711461E 03 0.13649745E 03 0.17712619E 03 -0.17712619E 03 -0.25000000E 03 -	0.36379664E 01 0.42601639E-05
IC FIELD INTENSI	J=2 0.168823860E 03 0.16840447E 03 0.16840447E 03 0.15183441E 03 0.125183441E 03 0.125183441E 03 0.125183441E 03 0.12500596E 03 0.12974566E 03 0.25000000E 03	FORCE (FORCT) = FLUX (FLUXT) =
MAGNET	00000000000000000000000000000000000000	TOTAL

00000000000

 \sim 539231696-0 .0 11 (0) -1 I ME -< H1(1,J) INTENSITY FIELD MAGNET IC

NIU

		00000000	
		0000000000	
		320020200	
		00	
		NIGIO, OLOUOLON	
		o u u u u u u o	
		20000000V	
		-000000-	

		000000000	
22			NN
00			00
		~~~~~	
		00000000	
- w		0000000000	
ac			Cr Cr
00			00
		いくはくのうかく	
$\sim$		-+200-02000	~~
010		0.0000000000	00
~~~		000	00
0.0.			0.0.
നന		Point agen & Phi	e lei
SS		+nocuranc	S C
		0,~v~~~~~	
00		-00200-0-ma	CC
00			00
		000000000	
	\sim		
11 11	0		11 11
	1		
	111	00000000	
~~~	~		22
00	0.		00
25	0		44
		のほうつうらしほう	
	$\sim$	+0000000-	
	0		
uu	6		يا لد
1	<b></b>	2-0240334	2.2
-	5	021-0000	
		NUNCOUNT	-
	0		
	0		
		000000000	
	11		-5
00		-00000	00
00	~	00000000	00
	-		
	$\cup$		ww.
54	1	hat he has he had he had he	04
$\odot \infty$		0122002200	00
-0		MOUDE-CUD-	-0
20	-	SENIONC DOID	20
	1.1.1		
1 mm	-		
$\approx \approx$	er in	Su-occurr.	$\infty \infty$
50	(manual	3m=2-5	00
an'		STANACCON	20
		2000-0-0	
		Quinter , sew	
CC	-	* * * * * * * * *	00
	4	00000000	
	~		
11 11	-		11 11
11 11		0000000000	11 11
		000000000	
~~			~~
	-	لت الله الله الله الله الله الله الله	
UX	22	022-42-00	UX
~ m	()	Astronic Domestic	Cr =
0.	~	11.0 2010 0 0000	5-
00	-		
Los Los	-	Menace and a	Le La
~~	L.	000-00-00	
11		v-020~20-	11
112	1	022.0000	1.12
~ ~	13		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
40	0		
0-	and a	00000000	51
L.L.	-		Lill
	4		
1 1	~		1 1
2000	0	interneting a cro	
Jaco Lana	<u> </u>	-	
CC	-		CO
	-		-

003			10000	
3 -0.25000000E 3 -0.25000000E	-02 -02		0 -0.12912926 0 -0.12912926 0 -0.129129226 0 -0.129129226 0 -0.129129226 0 -0.129129226 0 -0.129129226 0 -0.129129226 1 -0.129129226	-02
00 00	147E			47E
0500200	.808847 .808847	-02	594451 66058381 66058381 66058381 6681148 6633239 66535298 663333394 6812147 6812147	.808847 .808847
-0-1	00	476-		00
00%		847		II II 
шШ 00 00	6 0 6 0	.808	400×2×2000 2000×20×2000 0000000000000000	60
0000	ME ( ME (	0	129200012	ME ME
0.819		= (0)	0.794 0.794 0.784 0.7865 0.7865 0.7865 0.7865 0.7865 0.7865 0.12987 0.12987	
1 1	-06	)	11	-06
82.8E	8122E 4814E	TIME	4 3 3 9 3 8 3 9 3 8 3 9 3 8 3 9 4 7 6 2 9 3 7 7 9 5 6 7 9 6 7 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8122E 4814E
8200	292	ΑT	912700000 913700 913700 913700 913700 913700 913700 913700 913700 913700 913700 913700 913700 913700 913700 913700 9137000 9137000 9137000 9137000 9137000000000000000000000000000000000000	292
-0.25	0.66	([,1])	000000	00
200	ни	81	11110000	11 11
00000E	(FUXT)	MATRIX	<b>J</b> =2 500266 265326 558536 558536 558556 791076 791076 129226	(FORCT) (FLUXT)
-0.250	FD RCE	ENSITY	0.107 0.107 0.106 0.106 0.106 0.106 0.106 0.125	LUX
10	TOTAL	FLUX DI	003402400 	TOTAL

	032500000000000000000000000000000000000	E-02 E-02
<ul> <li>80884747E-02</li> </ul>	-0.68250201E -0.68322758E -0.683293042E -0.69249194E -0.70727625E -0.74027571E -0.81852385E -0.81852385E -0.25000000E	= 0.80884747 $= 0.80884747$
0 =	4 95 95 95 95 95 95 95 00 00 00 00 00 00 00 00 00 00 00 00 00	60)
4E ( 60)	0.110968 0.968004 0.718301 0.718301 0.718301 0.198862 0.198862 0.854811 0.854811 0.854811 0.854811 0.854811	TIME (
TTTT	3020000000 00000000	E-06
Y HI(I,J) A	0.521453345 0.516207465 0.497807785 0.375268016 0.375268016 0.2145288260 0.25000008	0.229281220.62974814
NSIT	1     MA-000000000000000000000000000000000000	ни
FIELD INTE	<b>650589246</b> 644510016 623270006 576721726 483558286 429321236 726175246	RCE (FORCT) UX (FLUXT)
MAGNET IC	10000000000000000000000000000000000000	TOTAL FU

_____

	0.414657586-01 0.829315166-01 0.829315166-01 0.829315166-01 0.829315166-01 0.829315166-01 0.829315166-01 0.829315166-01 0.829315166-01 0.414657586-01	
	0.33478174E-02 0.67545367E-02 0.697545367E-02 0.752163802F-02 0.880017882E-02 0.19975237E-01 0.19975237E-01 0.46720230E-01	0.80884747E-02 0.80884747E-02
0.80884747E-02	<pre>4 0.31363516600 0.62381281600 0.61148413600 0.53344700800 0.52432254600 0.4008435354600 0.400843535400 0.200422553600 0.82931516600 </pre>	TIME( 60) = TIME( 60) =
AT TIME( 60) =	$\begin{array}{c} 0.5194273\\ 0.103417676-01\\ 0.101764326-00\\ 0.980520406-01\\ 0.902850406-01\\ 0.739473296-01\\ 0.383361796-01\\ 0.123514476-01\\ 0.829315166-01\\ 0.829315166-01\\ \end{array}$	0.22928122601 0.62974814E-06
DRETICAL FORCE(I, J)	0.572255447E-01 0.572255447E-01 0.55341376E-01 0.54363807E-01 0.41581303E-01 0.572519847E-01 0.57611569E-02 0.57581303E-01	AL FUPCE (FUXT) =
HE	-	110

	100000000			10000000	2		00000000000000000000000000000000000000
	200000000 200000000			ほんちたちたちのた			00000000000000000000000000000000000000
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			2000000000			
	600000000 600000000			000000000			000000000
	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		•	~~~~~~~~~~			
-	00000000			00000000			00000000
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00		0000000-	00		NNNNNNNM
		326			328	-	
	1922995203	46		22295950109	46	0 -	040000000000000000000000000000000000000
	212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 212222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 2122 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21222 21	820 820		100001000000000000000000000000000000000	078 078	326	128428428 2010200000000000000000000000000000000
	2555000885		10.	24407-0400 246064422	.10	346	5021252200 5125222000
	000000000	00	2		00	078	N-72220000
01	0000000000	lt tt	63		11 11		
	000000	<u> </u>	184			С	000000000
63		800	10	ちてくの いのちょう	808	11	て ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち
181	5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5-50 5		•	987080549		î	
0	5022500 5022500 5022500	IME		010108040		80	800000000
	00000000000	Ĭ	11	101-502000		_	222672058
	000000000		801	00000000		11	000000000
11		010-090-		00000000-	90		NNNNNONN
000			HE (		100	ΛT	
	100000000 1000000000	12	T	2822220 2802220 2802220	710	-	
	122222222	513	T T	21292233	513	L • I	000000000000000000000000000000000000000
-	040588455	20	-	25522	20	11	5055-500
-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 	٢, ١		00		00000000000000000000000000000000000000
~	000000000		1 (		1	1	
	1000000	11 11	8	000000000	пп	SILS	0000000000
-	8-525200	11X	13	あり-05キメジン	XLI	IN	
JKC	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-0R LU	IVI	22269-122 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 22269-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1222 2226-1220-1222 2226-1220-1220-1220-1220-1220-1220-1220-	UU.	1 (	11 10 10 10 10 10 10 10 10 10
-	44200000 4421000000		~	9-25-1-25-25	5	ELG	02255000
11.	いいい ちょうちょう	JXCE	119	12220900	XCE	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	000000000	FLU	513	000000000	FOR LU	IC	000000000
			0			IE I	0100 010 00 00 00
	101101010000	VI0	LUX	0000000000	DIA	AGN	
-			لت		L L	5.	

F

___ е 03 326-01 326-01 -0.855850436 -0.855519406 -0.921303066 -0.112188796 -0.250000006 0.10784632 I I I I I NNNNM 60 -00 -0.170602755 -00 -0.265944595 02 -0.464755455 02 -0.464755455 02 -0.921887145 03 -0.250000006 20 I AE ( ----0 00 3958E 0 5710E-0 0.14838172F 0.35128806E-0 -0.27970458E -0.35914662E -0.2500000E 34619 . . cc 1 | 1 20000 1 11 0.25553000 0.831666306 -0.227806586 -0.842878936 (FORC) FORCE TOTAL 02020 ----

99

> 10 34807906-1 - 0 I (001) TIME < VIISN JINI O 1.1.1 -1 C -NOVI

000000000 0000000000000000000000000000			10000000			10000000					
6 5 5 5 5 5 5 5 5 5 5 5 5 5	:		-0.129129226 -0.129129226 -0.129129226 -0.129129226 -0.129129226 -0.129129226 -0.129129226 -0.129129226			6 • • • • • • • • • • • • • • • • • • •	1				
00000000000000000000000000000000000000	0-1		100000000			100000	С – U				
-0.887543256 -0.888225916 -0.890669536 -0.896258386 -0.908117016 -0.933324116 -0.933324116 -0.116933456	0.13480790	0.13480790	0.13480790	0.13480790	790E-01	-0.52795187E -0.528696887E -0.531356998E -0.53740162E -0.550049006 -0.57615411E -0.57845405E -0.12912922E	• 0.13480790 • 0.13480790	11	0.13863061E 0.27804430E 0.28084927E 0.39095617E 0.3302055617E 0.33822282E 0.82279057E	• 0.13480790 • 0.13480790	
00000000000000000000000000000000000000		+801	000000000		)E-(						
4 222665 96356 96356 01126 01126 001126 001126 0000 0000	E( 100 E( 100	0.134	08444 94940 52046 52046 76356 76356 22226 22226 22226	E( 100	480790	44418 34618 10178 23188 30078 94966 75128 75128 15168	E 100	3)			
	T I M T I M	= (00)	0.4882 0.47349 0.47349 0.3927 0.3927 0.2683 -0.6704 -0.62083 -0.1291	TIN.	0.13	0.1185 0.22330 0.15340 0.1534 0.1534 0.82938 0.82938 0.82938	T I M	T NO.			
0022011022 0020000000000000000000000000	-05		60000000000000000000000000000000000000	-01	=		-05	SE			
0041204000 0041204000 00412040000 00412040000000000	3430E 9690E	TIME	020048400 020048400 0200484000 02004840000 02004840000	3430E	100	55001000000000000000000000000000000000	3430E	DATA			
000000000000000000000000000000000000000	1199	AΤ	000000000000000000000000000000000000000	1199	LIME		1199	FOR			
	00.	(		0.0		20000000000000000000000000000000000000	0.1	TA			
		31(1			()			0/			
000000000		×	000000000		Ι,	0000000000		00 S			
<b>J</b> =2 05081 69190 69190 665369 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87871 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 87771 877771 87771 87771 87771 87771 87771 8777	(FUXT	MATRI	8837599 8837599 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 3315998 33159988 3315998 3315998 3315998 3315998 3315998 3315998 3315998 332558 332558 332558 332558 332558 332558 332558 332558 332558 332558 332558 332558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 33558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 3558 35566 35566 35566 35566 35566 35566 35566 3	(FURCI FLUXI	FORCE	<b>J=2</b> 55 25 55 55 57 56 55 57 56 55 57 56 55 57 56 55 57 56 55 57 56 55 57 56 55 57 56 55 57 56 55 57 56 56 56 56 56 56 56 56 56 56 56 56 56	(FURCT	PREVI			
222239317	ω U ×	ΥT	12620-488603 12620-488603	ш ОУ	Ţ	1149937885	LL C	~			
C00000000	FOR	DENS	000000000	FOR	ETIC	00000000	FURG	,			
0031001400	TOTAL	FLUX	000010000000	TOTAL	THEOR	00000000000000000000000000000000000000	TOTAL	(K2 =			

/

•

0.13480790E-01

MAGNETIC FIELD INTENSITY HI(I, J) AT TIME ( 100) =

100

STOP BECAUSE K IS GREATER THAN OR = TU KO

٩

THIS IS A DECAY RUN

## 5.3 Discussion of Output Data and Results

For the sample problem considered, a magnetic field intensity of 250 amp-t/m was sufficient to saturate the core. Assuming uniform flux density, initial values of total force and flux can be calculated using equations (2-2) and (2-4); hence

(2-2) 
$$\emptyset = BA = (1.452)(0.004)(0.008)$$
  
= 46.464 x 10⁻⁶ webers

(2-4) 
$$F = \frac{B^2 A}{2\mu_0} = \frac{(1.452)^2 (0.004) (0.008)}{(2) (4\pi \times 10^{-7})} = 26.843 \text{ newtons}$$

Total values computed by summing B(I,J)h² and FORCE(I,J) compare closely with those given above; thus one may conclude computations of total force and flux specified by subroutines FORCX and FLUX are valid approximations.

Distribution patterns are indicated by the print-out of Tapes 9 and 15. Tape 15 Output Data indicates values of field intensity and flux density for each point in the lattice of Fig. 12 in a convenient format. (Note physical position of H(I,J) in Fig. 12 and matrix output.) Examining these values as time increases, i.e., for TIME(0), TIME(5), TIME(10), . ., TIME(100), we note that points near the boundary approach boundary conditions much more rapidly than those at the center of the core. Given sufficient time, all points will reach the same values as that on the outer boundary. Let us think of the field intensity at each grid point as a vector pointing in the z direction (see Fig. 7), whose magnitude represents the magnitude of field intensity at that point. If a membrane was stretched over the tips of the vectors, the surface generated as time increases represents the distribution pattern. We may visualize this distribution pattern by citing the following example. Suppose a scap bubble has been partially formed by exerting pressure behind a membrane across a tube of rectangular cross section. If we release the pressure sustaining the bubble, the membrane will return to its initial state. The changing shape of the bubble during the period of time in which it is decaying to its initial state, is analogous to the shape of the surface representing the flux decay distribution patterns. We should also note that force depends only on the magnitude of flux density, thus force is always positive. Furthermore, it will return to a value corresponding to H = -250 amp-t/m when all transients have decayed.

It is hoped that the solution given for the sample problem was useful in illustrating how one might obtain a solution for other equations of this type. An explicit expression for H and B was not found; however, the thesis does present details of how the Modified Euler Method of numerical integration may be used to establish a numerical solution which approximates the actual solution.

## ACKNOWLEDGMENTS

The author wishes to express his thanks to Dr. Charles A Halijak for assistance given in preparation of this thesis.

The author is also grateful to Dr. J. A. Carlson and Dr. R. W. Kulterman, of IBM, and to IBM Corporation for providing computational facilities.

## REF_RELCES

- Colli an, J. J., and J. E. Wallace. Fundamental Electromagnetic Design Analysis. IEM General Products Division Technical Report TR 01.756, Endicott, New York, 1963.
- Hayt, William H., Jr. Engineering Electromagnetics. New York, Toronto, London: McGraw-Hill Book Company, Inc., 1958.
- 3. Henrici, Peter. Discrete Variable Methods in Ordinary Differential Equations. New York, London: John Wiley and Sons, Inc., 1962.
- 4. Peck, R. L., Jr., and H. N. Wagar. Switching Relay Design. Princeton, Toronto, London, New York: D. Van Nostrand Company, Inc., 1955.
- Scarborough, J. B. Numerical Mathematical Analysis. Baltimore: Johns Hopkins Press, 1950.
- Spiegel, Murray R. Theory and Problems of Vector Analysis. Schaumns Outline Series. New York: Schaum Publishing Company, 1959.
- Taylor, Angus E. Advanced Calculus. New York, Boston, Chicago: Ginn and Company, 1955.
- Wylie, C. R., Jr. Advanced Engineering Mathematics. New York, Toronto, 2nd edition, Sections 9 and 11, 1960.
APPENDICES

,

### APPENDIX A

### Terminology and Formulae

### I. Terminology

Most symbols are defined in the context of the thesis. Definition of variables in the program are listed in section 4.2B and in the "comments" section of the program listing. (Appendix C, Cards MG90000 - MG90106.) Those variables not defined or frequently used are given in this section for convenience. Overbarred symbols indicate vector quantities.

1. ī, <u>j</u>, k - Unit vectors in cartesian co-ordinates 2.  $\overline{\nabla} = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$  - Del-operator¹ 3.  $\overline{E} = (E_x, E_y, E_z)$  - Electric field intensity 4.  $\overline{B} = (B_x, B_y, B_z) - Flux density$ 5.  $\overline{H} = (H_x, H_v, H_z) - Magnetic field intensity$ 6.  $\overline{D} = (D_x, D_y, D_z)$  - Displacement current density 7.  $\overline{i} = (i_x, i_y, i_z)$  - Conduction current density 8.  $\overline{dS} = (dS_x, dS_y, dS_z) - Differential surface$ 9.  $\overline{dl} = (dl_x, dl_y, dl_z) - Differential length$ 10.  $\sigma =$ - Material conductivity 11. 40 = - Permeability of free space 12. t - Time in seconds

lParentheses denote vector components, e.g.,  $\overline{H} = (H_X, H_y, H_z)$ =  $H_x \overline{i} + H_y \overline{j} + H_z \overline{k}$ .

13.	h	- Grid size in sections 3.1 and 3.2
14.	D _i	- (dH/dt) i
15.	Pi	- $(\partial H/\partial t)_i$
16.	I '	- Specifies row of matrix shown by Fig. 12
17.	J	- Specifies column of matrix shown by Fig. 12.
18.	B(I,J)	- Flux density at grid point I,J
19.	H(I,J)	- Magnetic field intensity at grid point I,J
20.	P _i (I,J)	- $\partial H/\partial t$ at grid point I,J
21.	FORCE(I,J)	- Force at each grid point
22.	FLUXT	- Total flux
23.	FORCT	- Total force.

II. Formulae

. Curl of 
$$\overline{H}$$
  
 $\overline{\nabla} \times \overline{H} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ H_X & H_y & H_z \end{vmatrix}$ 

2. Divergence of  $\overline{H}$ 

l

$$\overline{\nabla} \cdot \overline{H} = \frac{\partial H_x}{\partial x} + \frac{\partial H_y}{\partial y} + \frac{\partial H_z}{\partial z}$$

3. Gradient of  $\emptyset$ 

$$\overline{\nabla}(\phi) = \frac{\partial \phi}{\partial x} \overline{i} + \frac{\partial \phi}{\partial y} \overline{j} + \frac{\partial \phi}{\partial z} \overline{k}$$

## 4. Other useful relations

a.  $\overline{\nabla} \cdot \overline{\nabla} = \overline{\nabla}^2$ b.  $\overline{\nabla} \times (\overline{\nabla} \cdot \overline{H}) = 0$ c.  $\overline{\nabla} \cdot (\overline{\nabla} \times \overline{H}) = 0$ d.  $\overline{\nabla} \times (\overline{\nabla} \times \overline{H}) = (\overline{\nabla} \cdot \overline{H}) - \overline{\nabla}^2 \overline{H}$ e.  $\overline{A} \times (\overline{B} \times \overline{C}) - (\overline{A} \times \overline{B}) \times \overline{C}$  $= \overline{A}(\overline{B} \cdot \overline{C}) - (\overline{A} \cdot \overline{B})\overline{C}$ 

# APPENDIX B

# Units and Conversion Factors

.

Several systems of units used interchangeably are the MKS, CGS, and Mixed English. Conversion factors are given below.

			CGS	1	MIXED ENGLISH					
Length	meter	x	102	=	cm	х	0.3937	:	=	inch
Time	second	x	1.0	=	second	х	1.0	:	=	second
Force	newton	x	103	=	dyne x 2	221	48.0x10-6	ś :	=	pound
Voltage	volt	x	1.0	=	volt	х	1.0	:	=	volt
Current	ampere	x	1.0	=	ampere	х	1.0	:	=	ampere
Resistance	ohm	x	1.0	=	ohm	х	1.0	-	=	ohm
Capacitance	farad	x	1.0	=	farad	х	1.0	:	=	farad
Flux	weber	x	10 ⁸	=	maxwell	х	1.0	=	=	maxwell
Flux density	weber/m ²	x	104	=	gauss	x	6.45	=	=	lines/in ²
MMF	amp-turn	x	.4π	=	gilbert	x	1/.4π	:	=	amp-turn
Magnetic intensity	amp-t/m	x	.004π	=	oersted	x	2.02	:	=	amp-t/in

## B-H Conversion Factors

В	(lines/cm ² )	Gauss	x 6.450 = B	(lines/in ² )	Maxwells/in ²
В	(lines/in ² )		x 0.155 = B	(lines/cm ² )	Gauss
Η	(oersteds)		x 2.020 = H	(amp-t/in)	
Η	(amp-t/in)		х 0.495 = н	(oersteds)	

#### APPENDIX C

## Program Listing with Data Sets

The program is written in FORTRAN IV language for use with the IBM 7090/7094 IBSYS operating system. Processing is to be with the IBJOB FORTRAN IV compiler. All cards with a "\$" sign in column 1 are system control cards used for all programs to be executed and are not unique to this program. All cards with a "C" in columns are comment cards and are not processed.

The program consists of a main program named EMEX and six subprograms FLUX, FORCX, FLUX, PPLT, INSE, and LOGI. The subprograms PPLT, INSE, and LOGI are provided to obtain graphical results while FLUD, FORCX. and FLUX are subroutines called by EMEX to perform specific calculations. One should also note that organization of the program is sequenced by numbers in columns 76-80 of the listing. These also aided in locating various sections within the program in the discussion of section 4.0.

The data input is on tape unit 5 and data output is on tape units 6, 7, 9, 15. and 16. Definition of symbols used is given in Appendix A, in the "comments" section of the program listing and in section 4.2B. If a larger matrix than 35 x 35 is desired, additional storage is required and the dimension statement must be altered accordingly.

ш S Sa FO < 0 -PPLT PL DAI õ << 11 ED ED DAT/ DAT/ AS. ш 5 ACCE PROGRAM FOR THE 7090 TICE COVERS UNLY 1/4 OF THE CROSS SECTION TAT ALLUER UVATIVE OF HAS CRAM AND KO STATE NEXT ALLUER UVATIVE OF HAS UNTERSTITY TO ALLUE OF MASSERIC FIELD INTENSITY NEXT ALLUER UVATIVE OF HAS THE RESPECT TO TH NEXT ALLUE OF MASSERIC FIELD INTENSITY TO ALL DERIVATIVE OF HAS THE RESPECT TO TH NEXT ALLUE SUM OF THE NEXT APPLIED SUM OF THE RUNS DENCE SUM OF THE RESSOLUTE VALUE OF EACH TERM ERROR MINIMUM SUM OF THE NEXT APPLIED SUM OF THE CONDUCTIVITY SUM OF THE RUSSITY AND ALLE CONDUCTIVITY SUM OF THE RUSSITY AND ALLOUNDER OF ADD ALL NUMBER OF SUM OF THE THE IN SECONDS SUM OF THE RUNS DENCE NUMBER OF SUM OF THE THE IN SECONDS SPECIFIES THOR OF AND THE THE THE THE THE TO NUMBER OF SUM OF THE SUBSIS AND OF DIVITY OF ADD THE SUBSIS SPECIFIES THOR OF AND THE SUBSIS AND OF DIVITY OF ADD THE SUBSIS ADD TO THE SUBSIS CURVE FOR AND THE SUBSIS THAN THE SUBSIS CURVE FOR AND THE SUBSIS THE SUBSIS CURVE FOR AND THE SUBSIS THE SUBSIS CURVE FOR AND THE SUBSIS THE SUBSIS TO THE SUBSIS ADD TO THE SUBSIS TO THE SUBSIS CURVE FOR AND THE SUBSIS THE SUBSIS TO THE SUBSIS CURVE FOR AND THE SUBSIS THE SUBSIS TO THE SUBSIS CURVE FOR AND THE TO THE SUBSIS THE SUBSIS CURVE FOR AND THE TO THE SUBSIS THE SUBSIS TO THE SUBSIS TO THE SUBSIS ADD TO THE SUBSIS TO THE SUBSI EACH TERM ERROR NO NAX NLL ALL I B J O B M A P AECUTE BJOB FTC F  $\begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ ID EXE IBJ 

M6900095 M6900095 M6900095 M6900003 M6900002 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M690005 M690005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M69000005 M6900005 M6900005 M6900005 M6900005 M6900005 M6900005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M6000005 M60000000000	M690120 M690122 M690122 M690123 M6901325 M6901325 M6901325 M6901335 M6901335 M6901335 M6901335 M6901335 M6901335 M6901335	MG900155 MG900155 MG900155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG90155 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG9005 MG	MG90168 MG90176 MG90176 MG90176 MG90188 MG90188 MG90188 MG90188
FYING BUILDUP OR DECAY UP FROELICH APPROXIMATION FROELICH APPROXIMATION CONDS 35) H1(35,35),DH1(35,35),TFLUX( 800), 1),H(201),TFORG( 800),TFLUX( 800), ORCE,BR,NX,NY,I5,B1,C1,C2	.Vo , KI, KG 15 Н3) - ((B3-BR) аН2)) М0 Н3) - ((B3-BR) аН2))		
15 = VALUE USED FOR SPECT USE 0 0R 1 FUR BUILD USE 2 FUR DECAY CX = DIVISION UIDIHS C1 = CONSTANT IN MODIFIED C2 = CONSTANT IN MODIFIED DI = TIRE INCREMENT IN SC DI = TIRE I	<pre>48 REWIND16 48 READ (5,1) F0, HS0, BR, HMAX, C 8 READ (5,1) T0, TKM, COND, AX, 3 1 FUR, AT (5E16.8) 2 READ (5,2)CDT, K2, M1, NJ, K, K0 2 FUREAT (E16.8) 7(5) 13 F0, AAT (4616.8) 7(5) 13 F0, AAT (4616.8) 7(5) 79 F0, RMAT (4616.8) 719 F0, RMAT (2616.8) 315) 79 F0, RMAT (2616.8) 315) 61=(82-0R) *(C1+0R)) HC=-(C2*0R)*(C1+0R)) HC=-(C2*0R)*(C1+0R))</pre>	21 HD=ARS(H(1)-HC) 621,622,622 1F (H(1)-HC) 621,622,622 HD2=HC+HD 8(1)=-((C1+HD2/(C2+HD2))+8R 60 f0 623 1(1+1)=H(1)-0HX 24 COMTINUE 24 COMTINUE	25 10 = 2 13 16 (11)-110 627 17 (11(1)-110 625,626,626 101=-111 26 11 - (0 627 10 10 627 26 MX=M(1)-2.0 HC 27 H(1:1)=(012HX/(C2+HX))+BR 27 H(1:1)=(012HX/(C2+HX))+BR 11 1:1]=(0,215) 11 11 10 - 0,215)

H690190 H690192 H690194 N690196 H690198 H690200	M690206 M690206 M690208 M6902108 M6902108	M690216 M690218 M6902218 M6902228 M6902228 M6902228 M6902228	NG90230 NG90232 NG90232 NG90236 NG90236	MG90244 MG90244 MG90244	MG90250 MG90250 MG902550 MG902555 MG902555 MG902555	MG90260 MG90262 MG90264 MG90266 MG90266 MG90268 MG90270 MG90270	NG90275 NG90276 NG90278 NG90280 NG90280 NG90282
WRITE (15,215) FORMAT (1H1,8X,2H8R,14X,2H82,14X,2HH2,14X,2HB3,14X,2HH3) WRITE (5,216) BR,82;H2,83,H3 WRITE (9,216) BR,82;H2,83,H3 WRITE (9,216) BR,82;H2,83,H3 WRITE (15,216) BR,82;H2,53,H3 WRITE (15,216) BR,82;H2,53,H3	MRITE ( 9,230) MRITE (15,280) FORMAT (1H0,7X,3HHI0,13X,3HDHX,9X,2HI3,3X,2H14) MRITE ( 6,281) HI0,DHX,13,14 MRITE ( 9,281) HI0,DHX,13,14 MRITE ( 9,281) HI0,DHX,13,14	FORMAT (14, 25E16, 8, 215) WRITE (5, 222) (1, C2 WRITE (9, 222) (1, C2 WRITE (15, 222) (1, C2 WRITE (15, 222) (1, C2 FORMAT (1H0, 5HC1 = E16, 8, 6X, 5HC2 = E16, 8/) WRITE (6, 217) WRITE (9, 217)	MRITE (15,217)	WRITE (15,218) B(1),H(1),1 FORMAT (1H,2E16.8,3X,15) CONTINUE CALL PPLT(H,8,16)	FORMAT (1H0, 40X, 45HFLUX DENSITY VS MAGNETIC FIELD INTENSITY ) P NN=1 I1=NJ+1 I2=NI+1 NY=HJ+2	R. 10 (5,1) ((HO(1,J),J=2,NX),I=2,NY) L [4=1 PI=3.14159 UO=4.05PI=CUO X=COMD5C15C2 T=10	ÁN Í = MI CX = AX/(2.0*ANI) ANJ = 8Y/(2.0*CX) ANJ = 8Y/(2.0*CX) AN
215	230	281	217	219	610		600

NACOUNCESSON AND CONTRACTION A AREA RELOAD SECTION 3 3 CORRECT. -E16. 8Υ CROSS 11 3,411 5,4X,6HANJ 2HC1,14X,2HC2,14X,2HDT) T T NOT THE -IS 11 -10 **NJ** 111 011 Y 1/4 READ RUN ВΥ UNALTE (15,601) UNALTE (15,603) UNALTE (15,603) UNALTE (25,603) UNALTE (25,603) UNALTE (25,603) UNALTE (25,399) UNALTE (25,399) UNALTE (25,399) UNALTE (25,399) UNALTE (25,399) UNALTE (25,56) UNALTICE COVERS ONLY UNALTE (55,56) UNALTICE SIZE = NI E UNALTE (55,56) UNALTICE SIZE = NI E UNALTE (55,56) UNALTE (55,51) UNALTE (55,50) UNALTE (15,50) UNALTE (15,50) UNALTE (15,30) UNATTE (15,30) UN RUN 11 602 603 399 56 65 200 39 63 601 51

the time the s	a da da da da da	the pine the de	the state and the	a dia dia dia d	in the line that the	the the sa the s	las das das das d	la da da da e	the tracks the	to the test of the top the second	10-m
										~	
AT (1H, 4E16.8) E (6,400) E (9,400) E (15,400)	VT (1H, 7x, 2HE0,13x, 3HHS0, 15x, 2HBR, 13x, 6HHMAX, 12x, 3HCU0)         E (6,401) E0, HS0, BR, HMAX, CU0         E (9,401) E0, HS0, BR, HMAX, CU0         E (15,401) E0, HS0, BR, HMAX, CU0	(15,402) (15,402)	<pre>XT (IH , 7X, 2HT0,13X, 3HTKM,13X, 6HCOND,13X,2HAX,14X,2HBY)</pre>	E ( 9,403) E (15,403) AI (1H,27X,3HCDT,9X,2HKZ,3X,2HNI,3X,2HNJ,4X,1HK,3X,2HK0,3X,	<pre>Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants</pre>	E ( 6,405) E ( 9,405) E ( 15,405) AT ( JH ,77,2HB2,142,14X,2HB3,14X,2HH3)	E 0,400 02,005 02,03,03 E 15,406 02,02,03,43 AT (14,4616.8)	E ( 9, %07) E ( 15, %07) AT ( 14, ,6%,3HULO,13X,3ADHX,10X,2HI3,3X,2HI4,3X,2HI5)	E (9,408) HIU, UHX, 13, 14, 15 E (15,408) HIO, DHX, 13, 14, 15 AF (14, 22E16, 8, 215)	E (5,500) E (15,500) T (1H0,50HEO = MAXIMUN NATRIX ERROR E (5,501) E (5,501)	E (15,501)
2000	-2000 -2000								າຫເລະ	nnn Snr.	2
	Cocces a	Deeee	CXXXXX OXXXXX	L CO	KINK KO	HHHE		~~~~~	~~~~	***0**	
u.222	LISE	1 22 22 12	LEESE	DELC	VEREL	22211	SER.	2224	ETCL:		
<i>1</i> ^{\$} 0	00.0	10	02	03	40	05	06	1.0	03	00	
	~ `		2	5	~	10	~	10	2.	5	

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

M690478 M690480		NG90492 NG90492 NG90495	MG90500 MG90500 MG90502	NG90508 NG90510 NG90510	MG90516 MG90518 MG90520	MG 00525 MG 00528 MG 00528	AG90532 AG90534 MG90534	MG905573 MG905573 MG905573 MG905553		NG905556 NG905555 RG905553	NG90565 NG90565 NG90565 NG90565 NG905753
1	~	ED }	1 I S S S S S S S S S S S S S S S S S S	l SOM	-	1		-	~	IME INCREMENT )	CTION )
<pre>= MIMIMUM SUM OF HI(I, )</pre>	RESIDUAL FLUX DENSITY	MAXIMUM FIELD INTENSITY APPLI	= CONSTANT USED TO ALLOW ALL UN	= INITIAL VALUE OF TIME IN SECO	= SPECIFIES MAXIMUM TIME	= MATERIAL CONDUCTIVITY	= CORE WIDTH	= CORE HEIGHT	= 110 OF SETS OF DATA	= CONSTANT NULTIPLIER FOR THE I	= NO OF DIVISIONS IN THE X DIRE
FORMAT (111 5011150 = MALTE ( 5,502)	FOR.NT (15,502) FOR.NT (14,5048R WRITE (9,503)	WRI (5 (15, 503) FORMAT (11, 5000) WRI FE ( 6, 504) WRI FE ( 9, 504)	WRITE (15,504) FORMAT (14,504CUO = WRITE ( 6,505) WRITE ( 9,505)	WRITE (15,505) FORMAT (14,50HFO WRITE (6,506) WRITE (9,506)	WRITE (15,506) FORMAT (11,5001KM = WRITE (6,507) WRITE (9,507)	WRITE (15,507) FORMAT (11,50HCOND = WRITE ( 5,508) WRITE ( 9,508)	WRITE (15,508) FORMAT (11, 50HAX WRITE ( 6,509) WRITE ( 9,509)	WRITE (15,509) FORMAT (14,5048Y WRITE (5,510) WRITE (9,510)	WRITE (15,510) FORMAT (14,50HKZ MRITE ( 6,511) WRITE ( 9,511)	WRITE (15,511) FORMVE (14,500CDT - WRITE ( 6,512) WRITE ( 9,512)	FORMT (15,512) FORMT (14,50000 WRITE (6,513) WRITE (15,513) WRITE (15,513)
105	502	503	504	505	506	507	503	509	510	511	512

MG9 MG9	NAME:	MCC00000000000000000000000000000000000	0000 WNW	ANARAN 000000 00000000000000000000000000	DOOD DOOD EVEN	NO000	NC99 NC99 NC99 NC99 NC99 NC99 NC99 NC99			600 M M 600 M	NG000
^	~	~	07	~	~	-	~	~	(	~	~
-			FLUXT P	l,FORCE		2 νλιυε		3 νλιυε	OR B VS	V S H	VE
NOI	[ b T		UND	. 8	ζ<	) 8	KVΕ	8	Ľ.	6	CUR
CL	CRJ	RUN	1	H	CU	T(	CUE	T (	11	here	H
IRE	JBS	2	080	PUT	SI	ING	SI	ING	ENS	ITΥ	٧S
0	S.	C.	Ľ,	UT	ES	OND	CE S	OND	-	NS	8
ш Ш	BHI	. IN	505	R O	TER	SPC	E E	SPC	0	111	NO
H1	1	0110	IS	F 0	HΥS	R E	ΗYS	RRE	IEL	] 0	TS
NI	0	NCR	IE N	INT	110	CO	10	CO	U.,	111	NIC
SNO	IN	Ĩ	REI	EHE	FR(	· 71	FR	17	0	<u></u>	D
SIC	EMB	0	INC	NCR	Υ	NS I	۲.	NS I	FNB	0	05
IVI	ICK	NO	S	S I	NS I	U L L	ISN	NIE	VV	NITS	ON
0		I'U'I		ů I	DE	Ι	DE	Ι	101		IUH
00	0	IX	EC1	CIP	NX.	าม	UX.	ELC	:1%	IC R B	YIX.
N	N	MA	S	SPE	L L	4	1	1-1	-1-1	1	VH
tt	tt	tt	tt	11	II	II	11	11	tt	П	11
11	~	0>	I>	()	32	12	33	3	011	XHC	5
HO	E	E	UH C	COOT	E	E	-0	HO		HO	E
50		11 00	- 60	200000 200000				14 .20	10 57 50 57	10 20	105 10 105 10 10 105 10 10 10 10 10 10 10 10 10 10 10 10 10 1
(1H 6,	12) (11)	151 (111	15;	150, 150,		500	LSI 6H	121 611	121 611 611	15. 15.	151 151
- UU		101-101 H	uw E		im≥mr	ההשהוה ר	nim Simin P				
FOR			FOR		FOR	FOX			FOR	FOR	FOR.
513	514	515	634	530	516	517	513	519	520	521	522

RG90665 AG90665 AG906668 AG9066722 AG906722 AG906722 AG90678 AG90678 AG90678 AG90678	4590682 h690685 h690688 h690688 h690688	MG90698 MG90698 MG90698	1690706	NG90715	NG90720 NG90722 NG90725 NG90725	1690730 1690732 1690735	1690755 1690755 1690755 1690755 1690755 1690755
	/8%; /8%;	~	(1.01)	(1.01)	) ] ( ) ] (	. (	
<pre>23 FORMAT (16, 523) 23 FORMAT (16, 55014) = USED TO SPECIFY OUTPUT FORMAT 1500 USE 1 FOR OUTPUT TAPE 9 000 15 (ALL DATA) 2500 USE 3 FOR OUTPUT TAPE 9 000 Y (ALL DATA) 3500 USE 3 FOR OUTPUT TAPE 15 000 Y (ALL 5500 USE 6 FOR OUTPUT TAPE 15 000 Y (ALL 5500 USE 6 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 6 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 6 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 6 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 6 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 6 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 6 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 6 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 6 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 6 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 6 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 7 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 7 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 7 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 7 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 7 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 7 FOR OUTPUT TAPE 15 000 Y (ALL 7510 USE 7 FOR OUTPUT TAPE 15 000 Y (ALL 7500 Y (AL</pre>	<pre>URITE ( 9, 577) URITE ( 15, 577) 150M VT ( 10, 45H15 = VALUE TO SPECIFY BUILDUP OR DECAY 150H USE 0 OR 1 FOR BUILDUP 250H USE 2 FOR DECAY WRITE ( 6, 524) WRITE ( 6, 524)</pre>	Z& FOR.1F (15,525) 24 FOR.1F (14,50HCX = DIVISION WIDTHS WRITE (9,525) WRITE (9,525)	Z5 FORMAT (14, 525) MRITE ( 6, 526) MRITE ( 6, 526) MRITE ( 6, 526)	26 FORMAT (14, 50HC2 = CONSTANT IN HODIFIED FROELICH APPROXIMAT WRITE ( 0, 527) WRITE ( 0, 527)	URITE (15,527) 27 FORMAT (10,50001 = TIME INCREMENT IN SECONDS WRITE(9,41) K 41 FORMAT (101,4%,100FORCE(1,3),7%,7000(1,3),9%,7000(1,3),9%,50TIM 114,101,7%,70(1,3)/)	URINE ( 6,88) 58 FORLAT (101,2X,20 K,2X,19010TAL FORCE (FORCE),11X,1000118E( K) 100,117 (11,1=2,NY 00,117 (=2,NY	<pre>CALL FLUD (110) T2=B1(1,J) CALL FORCX 0 119 1=2,NY 00 119 1=2,NY 00 119 J=2,NY 00 119 J=2,NY 00 119 J=2,NX 00 119 J=2,NY 00 J=2,NY 00</pre>
5	2	5	2	5	5		

				000 ZZ	SOOO ZZZZ	0000 ZZZZ	0000	000 MEM	000 2 2 2 2				NOCO NER
	Ψ	ш		Ш								<b>(</b> )	
	н	11		(H\$								16.8	
	4H)	(H)		I (F g								ш	
	I 43	4,4		1E <								11	
	NE (	NE ( )		TI								411	
	11H	I 1 -		ΑT								I 4 ,	
	:X,5	5 ° X 3		([, ])								IE (	
	.8,	。8 °	18.	HOU								TI	
	E16	El6	F16	77								AT	
	11	ti	AX.	ISNE								((,	(Xt
	RCT	UXTJ	. 8.9	INTE					(XN	8		CE ( ]	=2,1
	( F0	1-1 )	TXT F	LD.		= 2 <b>3</b>			= 2 2	=2, , NX		FOR	l . (
	SCE	X	FLU 12X				) ) m hi		ر، ( ل	L; (( 0=C,		CVL	L, 1)
()	X, T FO	KI	T. 7	TIC	~	( T &	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	c	(1,	([ ²	а Х. 2 Х.	ETI(	9 RCE
· [ ]	CT,	IXT2 ITAL	URC	GNE	64,6	0H)	IRCT UXT	-	(61	(B1	ISC F	EOR	[F0]
JRCE	FOR	FLU	() K	HHA	164			м (с	4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	[] []		HIH	538
NNY XNY	00)	12)	160( 1) 89)	290	271 191	27212	212	270	272	272)	212	2120	533
0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9,2 (1H	9,2 (1H	(1H 63	15; (1H	152	2000		551-50	- 5 - 5 - 1 - 1 -	100		ELS.	3) 15,
				1 21	11X-			1111-1					535 [11×-
20000000000000000000000000000000000000	2204	105	LUNCH LUNCH	FOR	HKOL:	2022	NHI NHI	2101 2101	122	222		202	I'R'I
120	200	212	600	290	-	162	295		189	1004		200	033
									-				

E16.1 X0/((l-l,1))/DX ((l-l,1))/DX Y 53) [N,K,T ,5HMM = [4,5X,5HTIME(14,4H) (FURCE(1, J), J=2,8) (FURCE(1, J), J=9, NX) 100000 100000 502 0 00--10 ------NN

MG90954 NG90956 NG90958	NG90960 NG90962 NG90966 NG90966	MG90968 NG90970 NG90972	MG90974 MG90976 MG90978 MG90930	MG90982 MG90984 MG909884 MG909884	MG90992 MG90992	M691002 M691000 M691000	M691008 M691008 M691008	M691010 M691012 M691014	MG91018 MG91018	RG91022 NG91024 NG91026	MG91028 MG91030 MG91030	NG91034 NG91036	MG91045 MG91044 MG91044 MG91044
													DATA.
													05
													SET
													THIS
													FOR
	X0/((	X0/((											CONVERGE
	1-1-	-1,1											NOT
	I) TH	I) IH-								201			DES
	÷(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	۱	/2.0							20%,			0 10
	) ] [ [ ]	1) / X	((ſ,	2					112	205,			-0- -0-
1÷1 1,1	1+1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	10×10	1)11	L.1					01:20		NY. C		
1(1;	1 (13		11 12 ) - 0+	HI)		C OH		HON	04-2	1=61	207)	() () () () () () () () () () () () () (	IS NNN NNN ( NNN ( NNNN ( NNN) ( NNNN ( NNNN ( NNNN ( NNNN ( NNNN ( NNNN ( NNNNN ( NNNN ( NNNN ( NNNNNN ( NNNNNNNN
4 1)=H	1)=H 1, 0+ 1, 0+	[∻]. ) = X 4	1=2, J=2, (I, J	, J) * [T] [T] [T] (T]	X	J=2, UD (	< ( ) <Ш +		30.2	(0.0)	06 106,	9,20 6,20	10000000000000000000000000000000000000
10 2 1-1-1-			0H0		TINU	201 31.1 1	UNITXUU			- 1 - C ( 06	202		L S S S S S S S S S S S S S S S S S S S
OTH OTH OTH					CAL						CO CO CO	1221	NARA NARA NARA NARA NARA NARA NARA NARA
22	23	32	33		34		201		202	204	205	207	203

.

239 FORMUL (11: 50000) 529 FORMUL (11: 50000) 61 FOR FORMUL (11: 50000) 61 FOR FORMUL (11: 50000) 60 63 1-3 XX 60 63 1-3 XX 60 63 1-3 XX 60 63 1-3 XX 70 FORMUL FUX 83 CAN FORCE(1.1) 12 FOR FORMUL (12) 570 FORMUL (11) 571 FORMUL (11) 571 FORMUL (11) 572 FORMUL (11) 572 FORMUL (11) 573 FORMUL (11) 573 FORMUL (11) 574 FORMUL (11) 574 FORMUL (11) 575 FORMUL (11) 575 FORMUL (11) 575 FORMUL (11) 575 FORMUL (11) 576 FORMUL (11) 577 FORMUL 31 8731 22% ထ

TIME (14,4H) ,15X,1H6 AT 311J=2,15X,1H3,15X,1H4,15X,1H5 5 B1(I, 4 -33 WR TE (15,270) Kr T 1 F (17, 271) WR 1FE (15,271) WR 1FE (15,271) F (17, 17, 114, 15, 114, 15, 114, F (17, 0, 13, 272) F (17, 0, 13, 14, 17, 7E16, 0, 1, 2, 2, 114, F (17, 0, 114, 14, 17, 7E16, 0, 1, 2, 2, 114, F (15, 272) (114, 14, 17, 7E16, 0, 1), 1, 2, 2, 10) F (17, 114, 14, 17, 7E16, 0, 1), 1, 2, 2, 10) F (17, 114, 14, 114, 14, 114, 12, 12, 12, 12) F (17, 114, 14, 114, 14, 114, 12, 12, 12, 12) F (17, 114, 114, 14, 114, 14, 114, 12, 12, 12, 12) F (17, 114, 114, 14, 114, 14, 114, 12, 12, 12) F (17, 114, 114, 15, 12) (114, 12, 12, 12, 12) F (17, 114, 12, 12, 12) (114, 12, 12, 12, 12) F (17, 114, 12, 12, 12) (114, 12, 12, 12) (114, 12, 12, 12) F (17, 114, 12, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) (15, 12) -554 549 547 547 633 mo 379 272 380 52 632 n NHOON 27] 37 Sin-5 22222 52

NG91122662200 NG9113691136672000 NG91136911366720 NG9111569111566720 NG9111900 NG90111900 NG9011190 NG901190 NG900 NG901190 NG900 N

		2001 1000	5000 1000	200 200 200 200 200 200 200 200 200 200	MG59	60011 1000	HG99		600H	ACO ACCO ACCO ACCO
$ \begin{bmatrix} I = 2 & NY \\ J = 2 & NX \\ J = 11 (1, J) \\ SSWTCH (1, KKK) \\ (46, 4) & KKK \\ (5551) & HS, HS0, F, FKH, K, K0 \\ (5551) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS, HS0, F, FKH, K, K0 \\ (15, 561) & HS0, F, FKH, K, K0 \\ (15, 561) & HS0, F, FKH, K, K0 \\ (15, 561) & HS0, F, FKH, K, K0 \\ (15, 561) & HS0, F, FKH, K, K0 \\ (15, 561) & HS0, F, FKH, K, K0 \\ (15, 561) & HS0, F, FKH, K, K0 \\ (15, 561) & HS0, F, FKH, K, K0 \\ (15, 561) & HS0, F, FKH, K, K0 \\ (15, 561) & HS0, F, FKH, K, K0 \\ (15, 561) & HS0, F, FKH, K, K, K0 \\ (15, 561) & HS0, F, FKH, K, K, K0 \\ (15, 561) & HS0, F, FKH, K, K, K0 \\ (15, 561) & HS0, F, FKH, K, K, K0 \\ (15, 561) & HS0, F, FKH, K, K, K0 \\ (15, 561) & HS0, F, FKH, K, K, K, K0 \\ (15, 561) & HS0, F, FKH, K, K, K, K, K, K, K, K, $	S-HS0       569,57575         S-HS0       569,57575         S-HS0       566,566         S-HS0       565,567         -TKN       570,567,567         -K0       565,568,568         -K0       565,568         -K0       566,568         -K0       566,568         -K0       566,568         -K0       566,568         -K0       568,568         -K0       568,568	$\Gamma(110,6001STOP$ BECAUSE HS IS GREATER THAN OR = TO HSO (BJILDUP MG9) HG9	1565 ( 6, 562) ( 9, 562) MG9	T (110,50HSTOP BECAUSE HS IS LESS THAN OR = TO HSD (DECAY) ) $\frac{1565}{1565}$	( 9, 563) ( 9, 563) ( 15, 563) MG9	T (120,5045T02 BECAUSE TIME (T) IS GREATER THAN OR = TO TKM ) MG9 1565 ( 6,554)	(15,564) 1 (15,564) 1 (140,504)STOP BECAUSE K IS GREATER THAN OR = 10 KO 1664	( 0,1566) ( 9,1566) ( 15,1566) (		( 9,607) (15,607) F (110,25HTHIS IS A BUILDUP RUN 609 ( 160,25HTHIS IS A BUILDUP RUN
		FORIAL	UR I TE	FOR TO	NR ITE					UR LTE UR LTE FO.A.A.A 60 TO
45 46 561	5555 570 570 570 570 570	576	566	562	567	563	564	565	202	109

M691316 M691318	MG91322 MG91322 MG91324	MG91328	MG91332	MG91340 MG91340 MG91342	NG91348 NG91348 NG91348 NG91348	MG91352 MG91354 MG91356	MG91358 MG91359 MG91350	MG91362 MG91363 MG91363	MG91366 MG91368 MG91368	M691372 M691374 M691374	NG91378 NG91380 NG91380	MG91384 MG91386 MG91388	M691392 M691394	M691400 M691400 M691400 M691402 M691404
	~		~	~			-	~						
							Z	<b>`</b>	*				Ē	
-							01						2 1	
							L						14	
							IU/							
													ō	
							11						Z	
							Ö						<u>}</u>	
							0						SG	
							<						$\triangleleft$	
							JR DR						-	
							Ľ.						0	
							0						~	
							SE						D L	
											_		~	
			ш				Σu				$\geq$			
			1	E E	5 2		Z G		KG K		20		Q	
			1	11	1		=2		e		2		S	
	2				×		ii -	_	$\times$				D	
	24		>~	NUS -	0		) 3 T/	NC NC	. 0		-			
	>	K2	K 2	20~	2 K	51	XN DA	0.0	× ×	ن ۲			2	
	Y.	0	~ UJ ~	XX	×	500 	~ _	XX	× ×	0 21			ŝ	
	<u> </u>	L J	1 N	DE a	5	I	15	11:1	5	-	e 11		ter an menne antre	
	0	(K		NAL	, N H3	3	TP	1- 6	N	H3	5		31	
	<	S	Ξ×.	~ C	11		50	č C		~ ~	5		3	
	S	Ö	LL	A C C C	1.0	$\sim$	. 0			ia x			3	
	I	24		LON NOT	23	- HO	I S I	S O S	15 15	21	51		23	
	S	· 64		EEF	E		=			H I	n -	22	NI	
	Ξ	-	5-	50-	550	20		2002-		NOF	- 201		- ce	
	H	~	5 × >	~U	710	31		0.0	6°.	E S S H	00	XX XX	Z 7	3
_	5	ш	XU	Xaa			025t					_	×	4
000	2		ううう	1000	.0 . m	•6 •	0202	2050	no	300	NO	00	TO	2
00v	00				2000	1610	1-10		202	2 2	10	63	100	, 65
500	E F		シード・	10 0 H	о М М М М М М М М М М М М М М М М М М М	日~ E 20分	100	SH'S	ESE	SI.	C.H.	50	10 T	11
-	-w-										-	-		- uuu
	HZI	C.	FC	H H		FF	H			-	-	*		NET
	at parts	1-1-				2HZ		•F == F	EFE		11		HT H	Non-
	1000	エー	10/0	Cox x	- - - - - - - - - - - - - -	212	220		20~0	KOX KOX	222	10~~	100	1.000
		201	1401		LELE	u Su	SEL	SELE	IL III	24.2		-0	ELS	2-011
00	00		-	2 0	0	0 0	~	-	NT		-	5	0	SN
60	60		61	61	00	13	57	00	00	-	52	63	63	23

```
FIC FILE 16

END FILE 10

END F
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       \sim
                                                                                                                                                              C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FLUX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ROUTINE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FLUX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           SIDFTC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IBFIC
                                                                                 IBFTC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   619
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        253
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   256
                                                                                                                                                                                                         \sim
                                                                                                                                                                                                                                          615
                                                                                                                                                                                                                                                                                                                                                                                   9
                                                                                                                                                                                                                                                                                                                                                                                                                                                           NO
                                                                                                                                                                                                                                                                                                                                                                                                                                                           618
                                                                                                                                                                                                         61
                                                                                                                                                                                                                                                                                                                                                                                  61
                                                                                   42
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             5.
```

AG01502005420 AG01502005420 AG0015501500542 ABAG001552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG0011552005420 AG001155200540 AG001155200540 AG001155200540 AG001155200540 AG001155200540 AG001155200540 AG000000 AG000000 AG000000 AG000000 AG000000 AG000000 AG000000 AG000000 AG000000 AG000000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG000000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG000000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000 AG00000000		1000000       1000000       1000000         10000000       1000000       1000000         10000000000       10000000       1000000         1000000000000000000000000000000000000
, Bl, Cl, C2	(BINARY DECK)	2 10 35 2000000 = 0 3 10 35 200000 = 0 3 10 35 2000000 = 0 3 11 35 50000000 = 0 3 11 35 50000000 = 0 3 11 35 50000000 = 0 5 11 5 5 5
5,35) DRCE,BR,NX,NY,I5	N THIS POSITION	<b>71000000000000000000000000000000000000</b>
0RCE(35,35),0L(3 10,3L(),3L 63,263,3L 62,263,3L 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 62,263,263 70,7,00 61,20 61,10 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,00 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,000 70,0000 70,0000 70,0000 70,00000000	INSERT, LOGI I	1 1 1 1 1 1 1 1 1 1 1 1 1 1
DI MENS ION 20 NLON I, J 20	····· PUI PPLT,	

·U · W

e

128

00000000000000000000000000000000000000	22000000000000000000000000000000000000	00000000000000000000000000000000000000		-100000 100000 119400
	11 ****	*****	t also also also also t also also also t	1
	1			

1	als als als	ate ate ate ate ate	afe afe afe if afe are also afe	t ala ala
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	an wwww	mmmmmma-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	non ar an
0000000000	00000000	00000000	000000000000000000000000000000000000000	00000 00000
	and the state of the state	also as as as an all f	and of the of the spectrum as all as an o	· · · · · · · · · · · · · · · · · · ·
0000000000	00 00000	000000000	000000000000000000000000000000000000000	
00000000000	00.00000		100000000000000000000000000000000000000	
00000000000	00,00000	000000000	000000000000000000000000000000000000000	
00000000000	00 00000	00000000	V00000000000	67 65 6556
02222222222	00 00000	00000000	000000000000000000000000000000000000000	0000 00 00
nunuu nunu	00 ~00NN	00000000	-010000000	1000 00 -0
	ートヨーーろくく	~~~~~~		roor
	a a a a a a a	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a a a a a a a a a a a a a a a a a a a	0 0 0 0 0

5.000 		50.103
134000000000000000000000000000000000000	25000000000000000000000000000000000000	• 71000000000000000000000000000000000000
1	I also also I also also also also for also also also also also also also also	

22000000000000000000000000000000000000		************************************	.10000005-05 .673100005-02
- 1350000 E105 - 13500000 E105 - 13500000 E105 - 13500000 E105 - 22000000 E205 - 22000000 E205 - 25000000 E205 - 250000000 E205 - 25000000 E205 - 250000000 E205 - 25000000000000000000000000000000000000	5 1 1 1 1 1 1 1 1 1 1	<pre>% ************************************</pre>	.25000000E:03 .889000000E-03 .10350000E:03

.

. 25000000000000000000000000000000000000		××××××××××××××××××××××××××××××××××××××	
····259000006+03 ···2550000006+03 ···2550000006+03 ···2550000006+03		22220000000000000000000000000000000000	
255000000E+03 255000000E+03 255000000E+03 255000000E+03			- 2500000E + 03
 25000000000000000000000000000000000000		22200000000000000000000000000000000000	2500000000000000000000000000000000000

TIME DEPENDENCE OF THE MAGNETIC FIELD IN A RECTANGULAR TOROID

by

GLEN LEROY SHURTZ

B.S.M.E., Kansas State University, 1963 B.S.E.E., Kansas State University, 1964

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

•

Department of Electrical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

The purpose of this thesis was to investigate the time dependence of the magnetic field in a rectangular toroid when subjected to an applied magnetomotive force.

According to Lenz's law, eddy currents generated in the transient state induce an mmf in opposition to that applied. This results in a nonuniform time varying distribution of field intensity and flux within the core during a transition between states. An equation describing time dependence of this distribution pattern was derived by applying Maxwell's equations with the assumption that symmetrical boundary conditions were applied along the length of the toroid and no leakage could occur. Combining this equation with another which provided an approximation to the B-H relationship for a given ferromagnetic material, yielded the Hysteretic Diffusion Equation.

$$\frac{\partial H}{\partial t} = \frac{(c_2 + H)^2}{\sigma c_1 c_2} \left[\frac{\partial^2 H}{\partial x^2} + \frac{\partial^2 H}{\partial y^2} \right]$$

Its solution yields the time dependence of the field intensity as a function of position in the core.

The Modified Euler Method of numerical integration was used to evaluate time variance of the magnetic field intensity and flux distribution patterns from which the time dependence of total force and total flux was calculated.

Discussion of error criteria and selection of an appropriate time increment to insure convergence were discussed and a sample problem illustrating the method was given.

