
A THEORY FOR UNDERSTANDING AND QUANTIFYING MOVING

TARGET DEFENSE

by

RUI ZHUANG

B.E.(Double), HuaZhong University of Science and Technology, China, 2006

M.S., HuaZhong University of Science and Technology, China, 2009

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2015

Abstract
The static nature of cyber systems gives attackers a valuable and asymmetric advantage

- time. To eliminate this asymmetric advantage, a new approach, called Moving Target De-

fense (MTD) has emerged as a potential solution. MTD system seeks to proactively change

system configurations to invalidate the knowledge learned by the attacker and force them

to spend more effort locating and re-locating vulnerabilities. While it sounds promising,

the approach is so new that there is no standard definition of what an MTD is, what is

meant by diversification and randomization, or what metrics to define the effectiveness of

such systems. Moreover, the changing nature of MTD violates two basic assumptions about

the conventional attack surface notion. One is that the attack surface remains unchanged

during an attack and the second is that it is always reachable. Therefore, a new attack

surface definition is needed.

To address these issues, I propose that a theoretical framework for MTD be defined.

The framework should clarify the most basic questions such as what an MTD system is

and its properties such as adaptation, diversification and randomization. The framework

should reveal what is meant by gaining and losing knowledge, and what are different attack

types. To reason over the interactions between attacker and MTD system, the framework

should define key concepts such as attack surface, adaptation surface and engagement sur-

face. Based on that, this framework should allow MTD system designers to decide how to

use existing configuration choices and functionality diversification to increase security. It

should allow them to analyze the effectiveness of adapting various combinations of different

configuration aspects to thwart different types of attacks. To support analysis, the frame-

work should include an analytical model that can be used by designers to determine how

different parameter settings will impact system security.

A THEORY FOR UNDERSTANDING AND QUANTIFYING MOVING

TARGET DEFENSE

by

RUI ZHUANG

B.E.(Double), HuaZhong University of Science and Technology, 2006

M.S., HuaZhong University of Science and Technology, 2009

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2015

Approved by:

Major Professor
Dr. Scott A. DeLoach

Copyright

RUI ZHUANG

2015

Abstract
The static nature of cyber systems gives attackers a valuable and asymmetric advantage

- time. To eliminate this asymmetric advantage, a new approach, called Moving Target De-

fense (MTD) has emerged as a potential solution. MTD system seeks to proactively change

system configurations to invalidate the knowledge learned by the attacker and force them

to spend more effort locating and re-locating vulnerabilities. While it sounds promising,

the approach is so new that there is no standard definition of what an MTD is, what is

meant by diversification and randomization, or what metrics to define the effectiveness of

such systems. Moreover, the changing nature of MTD violates two basic assumptions about

the conventional attack surface notion. One is that the attack surface remains unchanged

during an attack and the second is that it is always reachable. Therefore, a new attack

surface definition is needed.

To address these issues, I propose that a theoretical framework for MTD be defined.

The framework should clarify the most basic questions such as what an MTD system is

and its properties such as adaptation, diversification and randomization. The framework

should reveal what is meant by gaining and losing knowledge, and what are different attack

types. To reason over the interactions between attacker and MTD system, the framework

should define key concepts such as attack surface, adaptation surface and engagement sur-

face. Based on that, this framework should allow MTD system designers to decide how to

use existing configuration choices and functionality diversification to increase security. It

should allow them to analyze the effectiveness of adapting various combinations of different

configuration aspects to thwart different types of attacks. To support analysis, the frame-

work should include an analytical model that can be used by designers to determine how

different parameter settings will impact system security.

Table of Contents

Table of Contents vi

List of Figures xi

List of Tables xiii

Acknowledgements xiii

Dedication xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Statement . 5

1.3 Research Approach . 6

1.4 Contributions . 7

1.5 Overview . 9

2 Background 10

2.1 Related Mathematics . 10

2.1.1 Geometric Series . 11

2.1.2 Product Rule of Probability . 11

2.1.3 Conditional Independency . 12

2.2 Related Concepts . 12

2.2.1 Enterprise Network Basics . 12

vi

2.2.2 A Glance at IT Automation . 13

2.3 Conclusion . 16

3 Related Work and A Taxonomy 18

3.1 Attack Type . 20

3.1.1 Hardware Attacks . 20

3.1.2 Software Attacks . 21

3.2 Adaptable Aspects . 26

3.2.1 Network Level . 27

3.2.2 OS Level . 28

3.2.3 Program Level . 29

3.2.4 Machine Level . 31

3.2.5 Hardware Level . 31

3.3 Tactics . 32

3.3.1 Diversification . 33

3.3.2 Randomization . 35

3.4 Strategies . 40

3.4.1 Proactive . 40

3.4.2 Reactive . 42

3.4.3 Combined . 43

3.5 Using the Taxonomy . 44

3.6 Conclusion . 46

4 Exploratory Experiments 49

4.1 High-Level System Design . 49

4.1.1 Resource Mapping System . 50

4.1.2 Adaptation Engine . 52

vii

4.1.3 Analysis Engine . 53

4.2 Simulated MTD Testbeds . 54

4.2.1 Defender Modeling . 59

4.2.2 Attacker Modeling . 61

4.2.3 Simulations and Results . 65

4.3 Conclusion . 74

5 A Scalable Analytical Model 75

5.1 Motivation . 75

5.1.1 Extended Simulation . 75

5.2 The Model . 77

5.2.1 Suitable Structure . 78

5.2.2 Model Parameters . 78

5.2.3 Challenges . 79

5.2.4 An Original Model . 81

5.2.5 An Improved Model . 87

5.2.6 General Form . 90

5.3 Conclusion . 93

6 A Theoretical Framework for Moving Target Defense 94

6.1 Overview . 94

6.1.1 General MTD Adaptation Effect . 96

6.1.2 General MTD process . 97

6.1.3 Motivation for an MTD Theory . 98

6.1.4 Approach . 100

6.1.5 Scenarios . 100

6.2 MTD System Theory . 102

viii

6.2.1 Configurable System . 102

6.2.2 System Goals . 106

6.2.3 System Policies . 108

6.2.4 Adaptation . 109

6.2.5 MTD System . 110

6.2.6 Configuration Space . 111

6.2.7 Diversification . 112

6.2.8 Randomization . 113

6.2.9 Problems . 114

6.3 Cyber Attack Theory . 116

6.3.1 Targets . 117

6.3.2 Attackers . 121

6.3.3 Attacks . 123

6.3.4 Exploration Space . 132

6.4 MTD Theory . 136

6.4.1 Attack Surface . 137

6.4.2 Adaptation Surface . 138

6.4.3 Engagement Surface . 139

6.4.4 Coverage . 140

6.4.5 Potential Effectiveness . 140

6.4.6 Success Likelihood of Intrusion . 141

6.4.7 Theorems . 143

6.4.8 Attack Effort . 146

6.4.9 Relationships between MTD system Parameters and Attack Effort . . 148

6.5 Validation . 149

6.5.1 Attack Mission Planning System . 150

ix

6.5.2 Attack ASLR-enabled Mission Planning System 163

6.5.3 Discussion . 186

6.6 Conclusion . 187

7 Conclusion 188

7.1 Current State . 188

7.2 Contributions . 190

7.3 Limitations . 192

7.4 Future Work . 193

Bibliography 195

x

List of Figures

1.1 MTD High Level Intuition . 2

2.1 IT Automation Overview - Hardware . 15

2.2 IT Automation Overview - Cloud . 16

3.1 MTD Taxonomy . 20

4.1 Moving Target Defense System Designs . 50

4.2 RMS System . 51

4.3 Conservative Attack Graph . 53

4.4 Network Topology . 55

4.5 Simplified Conservative Attack Graph for Simulation 57

4.6 Attack Success Against TargetDB (experiment 1a are shown by green while

experiment 1b are shown by gold bars) . 69

4.7 Attack Success Probabilities in Broad Attack Simulation 70

4.8 Attack Success Against TargetDB for Broad Attack Simulation Against Sim-

ple MTD . 72

4.9 Attack Success Against TargetDB for Broad Attack Simulation Against In-

telligent MTD . 73

5.1 sample conservative attack graph . 76

5.2 Original Transition Model for i→ a→ b . 81

5.3 Model vs Experiment – Compromise b . 85

xi

5.4 Original Transition Model for i→ a→ c→ e 86

5.5 Comparison of Compromise e . 88

5.6 Improved Transition Model for i→ a→ c→ e 88

5.7 Model Comparisons . 91

6.1 Adaptation Effect Intuition . 97

6.2 Overview of MTD process . 97

6.3 MTD Theory Overview . 100

6.4 Mission Planning Scenario . 101

6.5 Attacker and Target System Overview . 117

6.6 Composition of attack types, φ1 and φ2, into attack type, φ. 130

6.7 Exploration Space Overview (dots are possible values of the information pa-

rameter) . 133

6.8 Motivating Attack Scenario . 150

6.9 Value of (1− pr)
Ta1
Tr , 0 ≤ pr ≤ 1, 0 ≤ Ta1

Tr
≤ 1. 158

6.10 Value of (1− pr)
Ta1
Tr , 0 ≤ pr ≤ 1, 1 ≤ Ta1

Tr
≤ 50. 159

xii

List of Tables

5.1 Original Model versus Experiment . 85

5.2 Improved Model versus Experiment . 89

6.1 Attack Type Specification . 153

6.2 Compositional Attack Type Specification . 154

6.3 Value of (1− pr)
Ta1
Tr based on different pr and

Ta1
Tr

. 157

6.4 Attack Instances Specification . 161

6.5 Attack Type φ4 Decomposition . 168

6.6 Attack Type φ5 Decomposition . 168

6.7 Attack Type φ7 Decomposition . 169

6.8 Compositional Attack Types Specification 169

6.9 Attack Instances Specification . 178

xiii

Acknowledgments

I would like to thank my advisor, Dr.Scott DeLoach, who always provides me the guid-

ance and advice right to the point. I’m grateful for the research opportunities to explore the

beloved topics and I greatly appreciate the time Dr.DeLoach spent to help revise and improve

this dissertation. I also would like to thank my Committee members, Dr.Xinming(Simon)

Ou, Dr.William Hsu, Dr.Steve Warren and Dr.Kevin Lease for their suggestions and input

during this dissertation work and especially thank for the support and help from Dr.Simon

during my PhD study. In addition, I appreciate all other factulty members who has in-

structed me during this whole process.

I’m grateful to the help and knowledge learned from my colleagues and greatly appreciate

the encouragement and support from all my friends during this fruitful journey.

This end is another beginning. . .

xiv

Dedication

To my parents, my wife and our newborn baby.

xv

Chapter 1

Introduction

1.1 Motivation

Cyber security is currently implemented in an ad hoc and inconsistant fashion due to the

priority of business concerns over system security. Technologies used in enterprise networks

are usually implemented to satisfy the business needs such as communication, data pro-

cessing and customer support while leaving cyber security as a second priority. Enterprise

network administrators are left to patch potential vulnerabilities, scan the system to remove

potential intrusions, maintain access lists to add or remove users, and modify firewall rules

to limit communications between the internet and internal hosts. Due to the complexity

and heavy workload of modifying a system, once it is deployed, the configuration could re-

main unchanged for a long period of time. This static nature of current enterprise networks

gives attackers an asymmetric advantage – time. Attackers can spend as much time as nec-

essary to perform reconnaissance of the target network, study and determine its potential

vulnerabilities, choose the best time to launch the attack and can even maintain a backdoor

without being discovered for a long period of time.

Recently a new approach called Moving Target Defense (MTD) was proposed to elimi-

nate the attacker’s asymmetric advantage1,2. A high-level intuition that demonstrates the

1

key idea behind MTD is shown in Figure 1.1. The notion of attack surface was introduced by

Manadhata et,al 3,4 to indicate the vulnerable components in a computer system that could

be exploited. Since attackers need to perform exploration or reconnaissance to investigate

the configuration of the target system before launching an actual attack, we introduce a

concept called exploration space to represent this space. In this thesis, the attack surface

will represent a specific configuration in which a vulnerability exists. For example, if we

consider exploration space from an IP address perspective, then for a machine running in a

typical C class subnet (say 192.168.0.x) whose IP address can be changed during runtime,

the exploration space is a set {192.168.0.1, 192.168.0.2, . . . 192.168.0.254} and the size of this

space is 254. However, since a machine that runs a vulnerable service has only one active

IP address when running, the attack surface size is 1. Formal definitions of attack surface

and exploration space will be given in Chapter 6.

Current Systems Hardened Systems

Adaptive
MTD

Systems

Adaptive
Hardened

Systems
MTD

Systems

Exploration
Space

Attack
Surface

Velocity &
Direction

Figure 1.1: MTD High Level Intuition

For most critical networks and systems, the typical way to increase system security is

to reduce the attack surface, or in other words, harden the system. To reduce the attack

surface, administrators usually patch and update operating systems, remove unneccessary

software, delete obsolete user credentials, close unused service ports, set up firewalls, etc 5,6.

Nevertheless, such approaches are caused by a legacy information system design where

2

ease of use, maintainence and business needs take precedence over security. Moreover, for

complex systems such approaches could quickly lead to convoluted firewall rules, inadequate

authentication mechanisms and fragmented policies due to complex software configuration,

and significant access control and credential maintenance efforts. These traits basically

guarantee a relatively long period of static configuration, thus leaving the attacker a large

time window in which to penetrate the system.

More advanced adaptive hardening approaches capture input from intrusion detection

systems (IDS) and reactively launch automated responses to patch or block services to

thwart ongoing attacks7,8,9,10,11,12,13,14,15,16,17. These automated responses change the attack

surface at runtime, which eases the maintenance overhead of administrator. However, such

approaches require a significant effort to develop and maintain large numbers of signatures

for identifing intrusions and malware and have the potential for triggering a large number

of false-positive alarms, which could be harmful for interrupting normal operations. Also,

such reactive defenses are ineffective against new and zero-day attacks.

Instead of focusing on reducing the attack surface, MTD seeks to enlarge the exploration

space during the design phase and shifting the attack surface to force re-exploration during

the runtime phase. Intuitively, by increasing the exploration space and shifting the attack

surface, an attacker needs to spend more effort locating and re-locating vulnerabilities. Pre-

vious research, such as network18,19,20,21 and memory address space randomization22,23,24,

instruction set randomization25,26, host IP mutation27,28, and software diversification29,30,31

tried to increase the difficulty of discovering the target systems’ configuration by enlarg-

ing the exploration space or proactively shifting the attack surface. Moreover, by taking

advantage of adaptive hardening approaches, more advanced moving target defense sys-

tems can incorporate feedback from an IDS to proactively launch automated responses to

change or shift the attack surface during runtime, thus increasing penetration difficulty even

further32,33,34.

Although there are many ongoing research efforts, moving target defense is still in its

3

infancy. Most of the previous work focuses on some specific aspect of system configuration,

such as IP address18,19,20,21, memory layout22,23,24, instruction set25,26, html keyword35,29,

SQL query36, database table keywords29, etc. While recently a few comprehensive frame-

works37,38,39,40,41,42,43 have been proposed, most of these frameworks are still at the concep-

tual level and significant effort is required to bring them to fruition, from both theoretical

and practical standpoints.

A major challenge is the need for new metrics. As indicated by Huang31, existing met-

rics3,4 for attack surface areas are not suitable for evaluating a moving attack surface because

two basic assumptions of the existing metrics have been broken. One assumption is that

the attack surface remains unchanged, while the other is that the target attack surface is

always reachable by attackers. Thus, new metrics are required to take into account MTD’s

changing and unpredictable nature. Manadhata44 extended his original attack surface defi-

nitions3 to include definitions for a shifting attack surface. This extension allows modeling

the interaction between the defender and the attacker as a two player game, using game

theory to determine optimal defense strategies. However, as admitted by Manadhata, the

potential state and action space explosion are serious problems. The paper also leaves the

instantiation of the model in software as future work. Kant45 points out that the changing

of the attack surface can be done by exploiting MTD or more generally by introducing

diversity. However, quantitative models for guiding the design of good diversification tech-

niques and assessing their effectiveness remain largely unexplored. Christodorescu et,al 29

also indicate that a fundamental challenge in understanding the impact of diversification is

to introduce a precise, computationally-meaningful way to measure the increase in difficulty

for the attacker.

4

1.2 Thesis Statement

A theoretical framework for moving target defense systems will provide insights into the key

design choices for an MTD system as well as enable objective measurement and analysis of

the effectiveness of different movement mechanisms against different types of attack.

The theoretical framework should clarify the most basic questions such as “What is a

moving target defense system?”, “What can be moved?”, “How and when?”.

The framework should also provide support for making key design decisions such as:

• What features should be implemented to reduce the attacker’s intrusion success like-

lihood?

• How the diversification of functionality will impact security?

• What adaptation interval is required to maintain security at certain level with accept-

able costs?

• How much can security be increased by implementing a specific MTD defense when

compared to static systems?

To answer these questions, the theory framework should provide a set of fundamental

definitions to support the measurement and analysis involved in a MTD system.

A common paraphrase of Lord Kelvin (a.k.a William Thomson) is “If you can not mea-

sure it, you can not improve it”. However, measuring security is hard, if not impossible46.

The key reason behind this is that the attacker’s effort is often linear in terms of security

layers. The effort required to break each layer is low. Once a layer is penetrated, the next

layer is exposed and the the attacker has almost unlimited time to attack it. Thus, the

total attacker effort is a summation of the effort required for each layer. Bellovin46 claims

that what is really needed for defense systems is an exponential property where the intru-

sion effort is proportional to the product of each defense layer’s difficulty. I propose that

MTD provides a way to achieve this exponential property thus providing a way to measure

5

security. By constantly adapting configuration aspects, such as IP addresses, port numbers,

instruction sets, OS types, program keywords, etc, MTD systems can overcome the brittle-

ness of standard defenses since, once a layer is penetrated, the attackers have limited time

to reach their objective before an adaptation forces the attacker to re-penetrate previously

compromised layers.

The framework should help designers decide how to use existing configuration aspects

and functionality diversification to provide the defense strength for each layer. To support

measuring such strength, the framework should provide foundamental definitions such as

attack surface and exploration space that are appropriate for the dynamic nature of MTD

systems without making limiting assumptions.

The framework should also be general enough to be used by designers to analyse the

effectiveness of adaptating various combinations of configuration aspects to thwart different

types of attacks. To support analysis, the framework should provide an analytical model

that can be used by designers to easily determine how different parameters and settings will

impact the security provided by an MTD system.

1.3 Research Approach

To address these issues, I propose to define a taxonomy based on a survey of MTD research

and provide a basic MTD design that will separate what the system should do from how

the system will implement it. This taxonomy and design will show that the MTD system

could use diversification at the Service layer (running software configurations), OS layer

(operating system settings such as type, version, memory size, etc), and Network layer (such

as IP address, port number) within a random adaptation process that proactively changes

the mapping from the required functionality (the what) to the system implementation (the

how). This framework will support integrating existing low-level MTD techniques to thwart

a broad range of attack types.

6

Based on this taxonomy and design, I present a concrete simulated MTD system and

how to model an automated pivoting attack component to penetrate this MTD system.

Simulation results show that increased adaptation speed reduces the number of success-

ful attacks, and an intrusion detection enabled MTD system could reduce the number of

successful attacks even further.

Next, I extend the simulator and present an efficient and scalable analytical model that

reveals and captures the relationships between the key elements involved in a MTD system.

The model will provide insight to MTD designers so that better decisions can be made

when employing an MTD system. Simulation results show the analytical model can be

effectively used to estimate the success likelihood of intrusion and significantly simplify the

measurement of the increase in system security.

Based on the insights gained from the survey, simulations and analytical model, I propose

a complete MTD theory that can be used to understand key parameters and interactions

between attacker and MTD system, evaluate the potential effectiveness of an MTD system

from attack surface, adaptation surface, engagement surface, and quantifing the effectiveness

in terms of success likelihood of intrusion.

This thesis uses simulated multi-hop remote exploit attacks (or pivoting attacks) in an

enterprise network context as a specific example to show how this framework can be used

to guide the MTD design and implementation as well as to analyze how different MTD

parameter settings can impact security. To validate the MTD theory, this thesis uses the

return-to-libc attack, which is a concrete remote exploit attack. However, the framework is

general and similar methods can be used to determine what features to implement to defend

against other types of attack.

1.4 Contributions

In this moving target defense research, I make the following contributions:

7

1. A taxonomy that categorizes current moving target defense techniques to help better

understand the state-of-the-art MTD research. The taxonomy categorizes related

work by Adaptable Aspects, Tactics, Strategies, and the Attack Type it is intended

to thwart. It also helps to point out the potential MTD research areas.

2. A theoretical framework for moving target defense that supports understanding and

quantifing the effectiveness of such defenses.

• A MTD system theory that defines the key concept of a moving target defense

system.

• A cyber attack theory that defines key concepts of attack such as attacker knowl-

edge, attack type, attack instances and exploration space.

• A MTD theory that defines key concepts to capture the interactions between at-

tacker and MTD system, such as attack surface, adaptation surface, engagement

surface, coverage and success likelihood of intrusion.

3. An evaluation of the framework and analytic model in a simulated MTD testbed.

• A MTD defense component that performs random adaptations as well as event

triggered adaptations.

• An offensive component that features modeling the automated pivoting attacks to

emulate multi-hop remote exploit attacks against simulated enterprise networks.

• A probabilistic analytical model that explicitly illustrates how to measure MTD

system security in terms of intrusion success likelihood to individual targets.

• A set of experimental simulations to validate the proposed analytical model and

typical examples to demonstrate that the theoretical framework can guide the

design and development of an MTD system that protects enterprise network

systems better than static defenses.

8

1.5 Overview

This thesis is organized as follows. Chapter 2 describes the related mathematical, infor-

mation theoretic and cloud computing background necessary to understand the rest of the

thesis. Chapter 3 presents a taxonomy for categorizing the state-of-the-art MTD research.

Chapter 4 discusses the work on a high-level MTD architecture design, a simulator based

on this design32,33,34, and initial experiments to study the effectiveness of MTD. Chapter 5

extends the simulator presented in Chapter 4 to investigate a scalable analytical model that

can be used to analyze multi-hop attacks to a group of hosts. Simulation results to eval-

uate the accuracy of this model will also be presented. Chapter 6 proposes a theoretical

framework that comprises MTD System Theory, Cyber Attack Theory and MTD Theory

in order to understand the interactions between attackers and MTD systems, evaluating

the potential effectiveness from attack surface, adatation surface, engagement surface and

coverage, and quantifing the effectiveness of MTD in terms of success likelihood of intrusion.

Chapter 7 ends with a conclusion and potential areas of future work.

9

Chapter 2

Background

This chapter presents background information that would be beneficial for understanding

the following chapters’ contents. Related mathematics, such as geometric series, product

rule of probability and conditional independence are introduced first, then related concepts,

such as enterprise network, cloud computing and IT automation are presented. Based on

the discussion of state-of-the-art IT automation technology, we will gain a high level under-

standing of how enterprise networks that are comprised of a cluster of physical machines

can be configured and deployed remotely and scaled easily. We will also see how it enables

a cloud to become an example of such enterprise networks comprised of clustered virtual

machines instead of bare metal hosts.

2.1 Related Mathematics

As a reference, this section shows related mathematic concepts, definitions and theorems. As

most of the involved theorems are common and well known, they are provided directly with-

out proofs. Interested readers who want to know more about the proofs of these theorems

may find these resources helpful47,48.

10

2.1.1 Geometric Series

In mathematics, geometric series often refers to a series with constant ratio of successive

terms.

Definition 2.1. A geometric series is a series whose ratio of successive terms is constant.

Let a represent the first term of the series and q represent the common ratio, then the

geometric series can be represented as:

a+ aq + aq2 + aq3 + . . . =
∞∑
k=0

aqk

A geometric series with infinite elements could be converge or diverge. The condition

for a geometric series to converge and the final converged value stated in this theorem will

be used in Chapter 5 to derive a scalable analytical model of MTD.

Theorem 2.1. For the geometric series to converge, the absolute value of q must less than

1 and when | q |< 1:

a+ aq + aq2 + aq3 + . . . =
∞∑
k=0

aqk =
a

1− q

2.1.2 Product Rule of Probability

We will use the product rule of probability in Chapter 6 when quantifing the success likeli-

hood of intrusion under a concrete MTD scenairo.

Theorem 2.2. Let A, B represent events, if P (B) > 0, then P (A,B) = P (A|B)P (B). If

P (A) > 0, then P (A,B) = P (B|A)P (A).

This rule can be extended to more general case.

Theorem 2.3. Let A1, A2, . . . , An ,where n ≥ 2, represents n events, then P (A1, A2, . . . , An) =

P (A1, A2, . . . , An−1)P (An|A1, A2, . . . , An−1).

11

2.1.3 Conditional Independency

Conditional independency also plays an important role when we analyze the effectivenss in

terms of success likelihood of intrusion.

Theorem 2.4. Let A, B, C represent three events, if A and B are independent with each

other, then P (A|C) = P (A|B,C), P (B|C) = P (B|A,C).

2.2 Related Concepts

As indicated in Chapter 1, this thesis considers moving target defense in cyber security

context, more specifically, it focuses on the security of enterprise network environment.

Thus, it’s necessary to provide a basic introduction to what is an enterprise network.

2.2.1 Enterprise Network Basics

An enterprise network is an enterprise’s communications backbone that helps connect com-

puters and related devices across departments and workgroup networks, facilitating insight

and data accessibility49. An enterprise network also eliminates isolated users and work-

groups, facilitates system and device interoperability, effectively combines different commu-

nication protocols and improves internal and external enterprise data management. It can

integrate all kinds of computer operating systems such as Windows, Linux and Mac comput-

ers and mobile devices, such as smart phones and tablets. In addition, enterprise networks

can be combined with local and wide area networks according to operational requirements.

The key component that comprises an enterprise network is machine, which is a host

or node that resides in an enterprise network environment, which can either be physical or

virtual.

Typical examples of machines in an enterprise network environment are physical devices,

such as servers or workstation computers, routers, cellphones, etc. or virtualized devices such

12

as virtual machine, virtual switch or virtual router created by virtualization techniques such

as VirtualBox50, VmwareWorkstation51, KVM52, Xen53, LXC54, etc. A machine will be

the main unit that will be considered to adapt in this thesis.

2.2.2 A Glance at IT Automation

IT automation has been around for decades as computers and softwares have filled the

world. Companies often own hundreds or thousands of physical servers, which are burdens

for system administrators to manually setup servers, script operating system and appli-

caton installations, maintain user credentials and service dependencies, perform network

configuration changes, configure storage repositories and deliver security settings. Ideally,

all these processes should be automated to make them repeatable, robust and consistent.

Enabled by today’s virtualization and cloud computing technology, companies are able to

easily create and configure tens of thousands or even more of virtual machines. For example,

Xen53, KVM52, LXC54, VirtualBox50, etc. all provide API for creating and destroying vir-

tual machines. Openvswitch55 provides a programmable virtual switch as an alternative to

traditional virtual network interface. Puppet56, Chef57, Ansible58, Salt59 provides software

automation tools. Enabled by these techniques, cloud computing platforms such as Amazon

Web Service (AWS)60, Windows Azure61, Google Cloud Platform (GCP)62, OpenStack63,

etc. allow the company to build up their whole infrastructure totally based on virtualized

devices. Companies like Netflix64 and Adobe65 are concrete examples that use Amazon Web

Services as their enterprise network infrastructure.

Figure 2.1 shows an example network environment. Traditionally, to reduce the workload

of configuring each server/workstation manually, different operating system templates and

software packages are stored in the network file servers. Administrators can use automated

procedure such as contained in bootable disks to retrieve required operating system and soft-

ware packages from file servers or network repositories to manage each server/workstation.

However, this method still needs administrators to configure each machine locally and in-

13

dividually. To reduce the workload even further, tools like Cobbler66 use Preboot Execution

Environment (PXE) booting67 and a kickstart technique to remotely provision operating

systems on hardware servers. By taking advantage of this technique and Wake-on-Lan

(WOL)68, Metal as a Service (MAAS)69 from Ubunt enables administrators to treat phys-

ical servers like virtual machines in the cloud. Administrators will be able to easily power

up, tear down, provision the OS, check or redeploy hardware nodes at will over the network.

Juju70, which is an cloud automation tool that enables administrators to configure, man-

age, maintain, deploy and scale the services running in each machine efficiently. With pre-

defined charm files, which are essentially configuration commands for different applications,

users can easily build up infrastructure with provided services as defined in these files. In

addition, users can also easily create their own charm files using configuration management

assets such as Puppet56 or Chef57 to bring up their customized infrastructure. When MAAS

and Juju are paired, it turns physical machines into an elastic cloud-like resource. From

this perspective, the cloud is just an example where all physical machines are virtualized.

Consider Figure 2.1. The following describes the typical process when use MAAS and

Juju together to deploy and configure services on bare-metal servers.

1. Install MAAS in Controller. This includes downloading Operating System Images

from Ubuntu and these images could be saved in the File Server.

2. Use PXE to remotely signal and recognize machines A, B, C (mainly through MAC

address of the network interface on that machine). Then register and enlist machine

A, B, C in MAAS.

3. MAAS uses WOL to remotely power up machine A, B, C and then uses PXE boot to

retrieve the Operating System Images from MAAS and install Operating System to

A, B, C.

4. Install Juju in Controller.

14

5. Use Juju to deploy and configure services to machine A, B, C using charm files.

Example services could be web server services such as Apache and Tomcat, database

services such as MySQL and PostgreSQLs. Juju also supports to easily establish and

maintain relationships between services.

Controller

A

B

C

File Server

Figure 2.1: IT Automation Overview - Hardware

In a cloud environment, as shown in Figure 2.2, virtualization techniques such as Xen,

KVM, LXC, Virtualbox, can be used to replace MAAS and easily bring up, tear down

and deploy virtual machines (VMs). When these machines are initially created, the cloud

platform can use stored images (which are actually OS templates) and user data (which are

scripts that run after the OS is installed to set up user accounts or install basic software)

to configure the provisioned VM. Such software could be Puppet or Chef configuration

automation tools whose daemon processes run in the background and wait for configuration

commands. After the VMs are up and running, the master controller node can push further

configuration settings remotely to these provisioned VMs to setup various services.

Instead of simplify maintaining, configuring and remotely deploying various services to

15

Controller

VMVMVM

VMVMVM

Cloud

Figure 2.2: IT Automation Overview - Cloud

different hosts, new techniques, such as Software-defined Networking (SDN)71 and Open-

Flow72 provide the administrators a programmable and flexible way to make traffic flow

decisions and manage network communications. Enabled by these techonologies, one could

imagine the potential of creating and maintaining versatile and dynamic network topologies

for moving target defenses.

2.3 Conclusion

This chapter introduces important background information that will be helpful to com-

prehend this thesis. Firstly, it presents some mathematical definitions and theorems as a

reference. Secondly, it discusses the main application context, which is enterprise network

systems, that we focus our MTD theory towards. Last but not least, it provides a brief

overview of cloud computing and state-of-the-art configuration management techniques,

that will help in understanding some of the key definitions involved in Chapter 6’s MTD

16

theory. This introduction to IT automation will also help the reader understand why these

definitions are practical and applicable in enterprise network environment.

17

Chapter 3

Related Work and A Taxonomy

The initial concept of moving target defense was proposed in the 2009 National Cyber Leap

Year Summit1,2. Since then, a lot of research devoted to this area has been published.

Although moving target defense as a concept is new, the ideas behind it have emerged from

previous work.

A formal classification and well-defined taxonomy will not only help better understanding

related work from several different dimensions, such as how, when, what to move, and which

attack to thwart, but it will also support the potential of combining different techniques to

foster a holistic approach to MTD. Based on a survey of related work, Figure 3.1 presents a

diagram that categorizes previous and ongoing research. To the best of our knowledge, this

taxonomy is the first to try to categorize and organize state-of-the-art research in MTD.

When talking about moving target defense systems, key questions include:

• “What is a moving target defense system?”

• “What can be moved?”

• “How can it be moved?”

• “What are the security benefits of such a system?”

18

To help answer these questions and better understand moving target defense, a taxonomy

for MTD research is proposed. This review and taxonomy also supports the theoretical

framework proposed in Chapter 6, which includes a formal definition for moving target

defense systems.

In the first level of the taxonomy, moving target defense research has been classified into

four categories according to the Attack Type, Adaptable Aspects, Tactics, and Strategies.

The classification is driven by the above list of key questions and refined by adopting some

military terminologies, such as tactics and strategies. In the Attack Type category, the

related work that claims to use moving target defense ideas to thwart different types of

attacks is summarized. This category helps to clarify the security benefit of an MTD system.

Similarly, the Adaptable Aspects category groups research by the configuration aspects or

parameters that can be changed to achieve the defensive objectives. The Tactics category

categorizes the different techniques used to achieve different moving mechanisms. This

category groups these techniques into two sub categories: diversification and randomization.

These two terms are widely used in the literature but without a clear definition or distinction

of their relationships. For example, diversification actually provides space for randomization.

This category will clearly reflect this relationship. The Strategies category categorizes work

by when a move should be launched. Entities in this diagram are then grouped according

to the different characteristics of the four categories.

19

Attack Type TacticsAdaptable Aspects Strategies

Hardware

Cache Side Channel

Software

DDOS

Buffer Overflow

Scanning/Recon

SQL Injection/XSS

Web Bot

Worm

Zero Day Exploit
Shuffling

Machine Learning

Bio Inspired

Game Theory

Control Theory

Genetic AlgorithmHardware Level

Memory to Cache Mapping

Newtwork Level

IP Address

Network Protocol

OS Level

Instruction Set

Memory Layout

Function Signature

Program Level

HTML Elements

Event-based

Time-based

MTD Taxonomy

Diversification

Randomization

Existing

Artificial

Uniform distributed

Proactive

Reactive

Combined

Time + Event

Machine Level

Virtual Machine

Program functionality

Port Number

Cryptography

Spam

DNS/DHCP attack

Figure 3.1: MTD Taxonomy

3.1 Attack Type

Cyber attacks target both hardware and software. Various techniques have been created and

utilized to either steal, alter, or ruin a specific target by hacking into a vulnerable system.

Although MTD research is at an early stage, researchers have already considered adopting

this concept to protect the system, which includes both hardware and software aspects.

3.1.1 Hardware Attacks

From the hardware perspective, a well known type of attack is side channel attack. Side

channel attacks73 are a form of reverse engineering by which an attacker can infer how the

electronic circuits works and what data it is processing by analyzing the information leakage

such as heat, electromagnetic emissions or even sound, without direct access to the circuits

itself. Lee74 presents a moving target defense approach for secure hardware design. The

motivation is that despite strong cryptography and software isolation mechanisms, cache

side-channels can still leak critical information. Lee proposes a novel cache design in which

20

a redesigned address decoder circuit and a longer cache index, coupled with a random

replacement algorithm, allow it to perform dynamic memory to cache mapping. As a built-

in hardware component, there is no software modification required. However, despite the

benefits, the accurate performance comparison with conventional caches and verification of

security enhancements are challenging.

3.1.2 Software Attacks

From a software perspective, the moving target approach has also been adopted to thwart

some of the most typical cyber attacks.

3.1.2.1 Scanning/reconnaissance

Scanning/reconnaissance is a critical step for information gathering before an actual in-

trusion is launched. Attackers usually use existing or customized tools to scan the target

network and system in order to figure out host information, such as OS type, IP address,

open ports, running services and potential vulnerabilities. Thus, one way to effectively

enhance system security is to invalidate the scanning results. Al-Shaer et al.27 presents

an architecture called Mutable Networks or MUTE for moving target defense. The main

goal is to restrain an attacker’s capability in scanning or discovering network targets by

dynamically changing network configurations, such as IP addresses and routes. It uses a

formal approach based on BDD (binary decision diagrams)75 to model network behavior as

well as create randomized and constrained network configuration mutations. However, in

its current form, the work is purely theoretical. To make it practical and effective, MUTE

must be fast, unpredictable, operationally safe, deployable, and scalable.

Jariath et al.28 uses OpenFlow to develop an MTD architecture that transparently mu-

tates IP addresses with high unpredictability while maintaining configuration integrity and

minimizing operation overhead. The key idea is to not touch the real IP address, which

can only be reached by authorized entities, but instead mutate a host’s virtual IP address,

21

which can be acquired by the DNS. The benefit of this technique is that it thwarts network

scanning, which is the key step in network intrusion. The emulation results are impressive

as they claim to invalidate 99 percent of external scanners and saves up to 90 percent of

the hosts from zero-day unknown worms. However, the cost to user’s normal operation is

unknown. Also, the author indicates that more investigations need to be performed for

other types of attacks, such as DDoS and application-layer attacks.

Research18 has shown that scanning an IPv6 subnet takes around 8.77 ∗ 1010s. MT6D20

provides an effective way to thwart scanning attacks in the IPv6 environment by dynamically

changing IP addresses to invalidate scan results. MT6D20 can also be used to prevent

attacks where scanning/reconnaissance are used to obtain privacy and anonymity, as IPv6’s

StateLess Address AutoConfiguration (SLACC) track protocol potentially exposes hosts

information, which could potentially be used to map human users to network traffic if

the network remains static. Another scanning/reconnaissance-based attack, the man-in-

the-middle (MITM) attack, can also be thwarted as MT6D rotates the addresses of the

attacker’s intended victim.

3.1.2.2 Buffer overflow

Buffer overflow usually happens due to the lack of buffer boundary checking. Manipulated

input can overwrite the adjacent memory and alter the original way the program performs.

Many software vulnerabilities exist because of such flaws. Popular attacks such as remote

exploits and worms work over the network to take advantage of such vulnerabilities to obtain

control of systems or to cause denial of service without prior access to the vulnerable sys-

tem. Existing techniques such as StackGuard76 and ProPolice77 help to mitigate the buffer

overflow attack. From a moving target defense perspective, address space layout random-

ization (ASLR)22 and address space layout permutation (ASLP)23– which randomizes the

memory positions of the stack, heap and libraries of running programs–provides orthogonal

enhancements24 to help further invalidate the buffer overflow related attacks.

22

3.1.2.3 SQL injection/XSS

SQL injection/XSS is a technique that tries to insert malicious SQL statements into a web

application’s entry field for execution, so that database contents can be revealed to the

attacker. Usually the vulnerabilities used by SQL injection are due to incorrectly filtered

string literal escape characters and weakly typed user inputs. It can be thwarted by applying

instruction set randomization to SQL language keyword38. Cross-Site Scipting(XSS) takes

advantage of known vulnerabilities in web applications and injects malicious scripts into a

compromised sites’ web pages that deliver modified contents to client-side web browsers from

trusted sources so that sensitive credential or session information are gained by the attacker.

Gundy et al.78 presents Noncespaces, which utilizes HTML source randomization to enable

web clients to easily identify untrusted content to prevent XSS vulnerability exploitation.

By randomizing various database aspects, such as table and column names and javascript

runtime APIs, end-to-end software diversification29 techniques can be used to mitigate SQL

injection and XSS attack.

3.1.2.4 Zero day exploit

Zero day exploits are software bugs or holes that are found by hackers and can be used to gain

privilege or corrupt the vulnerable system that all previously unknown to the software vendor

or developers. Although it is usually first known only to a small group of hackers due to the

significant effort required to discover and develop effective exploit, today’s ability to quickly

share information can lead to severe problems. SCIT-MTD41,42,79,80 proposes to utilize

virtual machine rotation to reduce the intrusion time window and increase attack difficulty.

Here rotation means bringing online servers offline and launch a cleansing procedure, which

will remove potential malware and thus mitigate the impact of zero-day vulnerabilities.

Then, offline servers that are already in a pristine state are used to replace these servers

to keep providing services for clients. However31, SCIT uses an open source version of

Terracotta81 to share information among servers, which means it’s not a completely stateless

23

solution and poisoned states can still be disseminated.

In addition, OpenFlow random host mutation28 results show it can save up to 90 percent

of network hosts from zero-day worms. Although zero-day vulnerabilities can bypass IDS

systems, Chapter 4 shows that, an MTD system that randomly refreshes various hosts helps

mitigate this type of attack, since all nodes will eventually be removed from the system.

3.1.2.5 Web bot attack

Web bot attacks use automated programs to perform large amounts of web browsing be-

havior attacks, such as account registration/login, comment form/email spamming, online

game/vote cheating, etc. Fifty one percent of web site traffic is non-human and is often

malicious as the result of various automated hacking tools and web bots35. NOMAD, a

novel approach that randomizes key HTML elements, is proposed to prevent the automated

web-bot based resource access, form or comment submitting attacks while not affecting

legitimate users’ access35.

3.1.2.6 DDos attack

DDoS attack represents the distributed denial of service attack, which uses a large number

of compromised systems (botnets) to attack a single target by flooding traffic messages from

multiple sources to force it shutdown or to deny services to legitimate users. Jia et al.82

developed MOTAG, which employs dynamic, hidden proxies as moving targets to secure

service access for authenticated clients against flooding DDoS attacks. To reach protected

services, the authenticated clients are assigned to individual proxy nodes that will redirect

packets and enforce session policy checking. When the proxy is under DDoS attack, the

client will be re-assigned to an alternative proxy to evade the ongoing attack and maintain

legitimate access. Also, since DDoS attackers assume end-hosts or targets use fixed IP-

address or routes, the proposed MUTE27,28 and MT6D20, which proactively change the IP

addresses and routes, can also be used to protect network infrastructures against this type

24

of attack.

3.1.2.7 Worm attack

A worm is usually a stand-alone piece of malware that employs the network to replicate and

spread itself to other machines by relying on existing software bugs or holes in the target

system. The damage caused by a worm can be as simple as just consuming bandwidth or as

complex as turning worm infected machines into botnets that can be used by its owner to

profit from spams or DDoS attacks. Portokalidis et al.38 shows the potential of instruction

set randomization to contain some extremely elaborate worms like Conficker and Stuxnet.

A hitlist worm, which takes advantage of a precalculated lists of vulnerable targets, can

spread extremely fast and infect a million hosts in less than two seconds83,84. Antonatos

et al.19 proposed a defense mechanism called network address space randomization (NASR)

to intentionally accelerate hitlist decay to contain the spread speed. There are limitations

to the applicability of NASR, such as services that require static addresses, applications

that do not tolerate address changes, and ineffective against DNS hitlist worms. However,

results showed that it is effective in restricting and slowing down the infection of IP hitlist

worms and forcing these worms to exhibit scan-like behavior, which makes them more easily

detected.

3.1.2.8 Spam

Spam is usually thought of as unsolicited emails or news postings. Spam filter designers

try to train good filters by using recently received emails. On the other hand, spammers

try to reverse engineer the existing filters to generate messages that can circumvent these

filters. Colbaugh85,86 proposed to introduce movement into the classifier-based defense. The

key strategy is first to divide the original feature set F for each activity behavior into K

randomly selected subsets. Next, they train one classifier for each subset of features to get

K classifiers. Then specify a scheduling policy to select these classifiers to minimize the

25

effectiveness of adversary adaptation. Results based on empirical study showed that this

strategy outperforms static filters.

3.1.2.9 DNS/DHCP attack

The Domain Name System (DNS) provides the mapping from easily remembered host names

to IP addresses. Attacks targeting DNS usually try to modify the domain name server’s

database to divert the traffic to other malicious addresses. The SCIT-DNS87 approach–

where a cluster of servers constantly rotate between primary DNS, secondary DNS, Offline

for Cleaning and Cleaned for rebooting states to confine the damage of successful attack to a

limited time–digitally sign dynamic DNS updates using a private key while keeping the key

offline at all times. The authors claim SCIT-DNS ensures high availability and master file

data integrity even in the face of unknown or undetected attacks. However, as indicated in

the paper, extending the current cluster model to an arbitrary number of servers instead of

three and utilizing rotation schemes other than pure round robin requires additional work.

The Dynamic Host Configuration Protocol (DHCP) works to automatically provide basic

parameters for network interface configuration. However, the weakness of this protocol is

that it provides the attacker a possibility to masquerade as either valid DHCP clients or

servers. Rowe et al.88 suggests introducing diversity to the DHCP protocol by inserting

more states and transitions to the protocol’s finite state machine to thwart such attacks.

More discussion for this work will be given in Section 3.2.1.3 and 3.3.2.6.

3.2 Adaptable Aspects

Deciding what to move, or the adaptable aspects to use, is a key step in developing moving

target defense systems. This decision has a direct impact on what kinds of attacks the

MTD system will be able to constrain. It turns out that classifying research according to

the different levels of a machine’s functioning environment is very natural. The levels used

26

in this classification include the the network level, OS level, the program level, the machine

level and the hardware level.

Network level configurations range from physical network to logical network. Elements

include physical devices, such as routers, switches and firewalls, policies, such as router

configuration and firewall rules, protocols, such as TCP/UDP/IP/NAT, logically separated

networks, such as VPN, and network location identifiers, such as IP/MAC addresses.

OS level configurations abstract the operating system installed on top of either a physical

or virtualized hardware and provides the context for applications run at program level.

Program level configurations include all the applications or programs that can be in-

stalled and run in an operating system. Applications or programs run at this level needs

the environment provided at OS level as well as network level to communicate with remote

machines.

Machine level configurations are composed of the adaptable aspects range over the above

three levels. This level mainly represents that a machine (either physical or virtual) itself,

as a configuration unit, can be adapted.

A machine can be either physical or virtual. The Hardware level abstracts the underline

environment a machine runs in and mainly refers to the physical configurations, such as

CPU, memory, cache, circuits, disks, etc.

3.2.1 Network Level

At the network level, to increase the difficulty of identifying the target, the adaptable aspects

can be divided into three subcategories: IP address, port number and network protocol.

3.2.1.1 IP Address

IP addresses have been considered an adaptable aspects in previous work20,27,28,32,33,34 to

increase the intrusion difficulty and thwart different types of attacks, such as scan/mapping,

27

worms, DDOS, etc. Dynamically changing IP addresses can effectively invalidate the ad-

dresses discovered by attackers that they use to target the victim machines.

3.2.1.2 Port Number

Port number also has been proposed as an adaptable aspect27,32,33,34 that could benefit

moving target defense. Dynamically changing port numbers could make it more difficult for

the attacker to locate the target service. It provides a similar effect as IP address changing

(see section 3.2.1.1) and can be used together with IP address changing to support the

exponential property for layered security, as discussed in Chapter 1.

3.2.1.3 Network Protocol

Network Protocols have also been thought of as adaptable aspects to thwart network based

attacks. Rowe et al.88 propose to insert artificial states and transitions into existing network

protocol state machines to counter network-based attacks. The authors used a modified

DHCP protocol to demonstrate how this idea can be used to thwart the DHCP attack. By

inserting a new state into both DHCP server and client, forged DHCP messages sent by the

attacker will move the victim client or server to a state that is unknown to the attacker.

However, valid clients or servers will have the modified protocol specification and will be

able to complete the state transition. As pointed out by the author, this approach may

introduce increased costs due to service interruption when switching to the new and shared

secret states.

3.2.2 OS Level

In OS Level, existing research has focused on randomizing the memory layout and diversi-

fying the instruction set.

28

3.2.2.1 Memory Layout

Memory layout mainly refers to the segments of an executable file such as stack, heap, data

and linked libraries’ addresses or positions in the memory. Previous attacks such as remote

exploits and worms take advantage of the standard layout of compiled programs and relies

on smashing the memory through malicious code injection to alter the ordinary execution.

Randomizing the actual memory addresses of executable segments or data has been shown

to noticeably reduce such attacks22,89,23.

3.2.2.2 Instruction Set

The Instruction set represents the machine language or commands that can be understood

by a specific type of processor. Guanav, Boyd et al.25 proposed instruction set randomiza-

tion (ISR) as an approach to counter code-injection attacks. By creating process-specific

randomized instruction sets, an attacker who doesn’t know the key of the randomization

algorithm will fail to inject code that can be recognized by the processor, thus leading to a

runtime exception. Later26, to counter the attacks that attempt to circumvent the low-level

machine language ISR, Boyd et al. demonstrates that this approach can also be applied to

high-level scripting or interpreted languages, such as Perl and SQL. In Global ISR38, they

propose the holistic adoption of ISR across all system layers, which requires all binaries in

the system to be pre-randomized with different secret keys. New installations require user

authorization to continue and finish this randomization process, which makes unauthorized

injection of binary code unable to execute as they are unrecognized.

3.2.3 Program Level

Many applications are built on top of OS. A modern software system’s complexity almost

guarantees that vulnerabilities will exist, resulting in an imperfect security system. Adapt-

able aspects, at this level, include three areas: program functionality, function signatures

and HTML elements.

29

3.2.3.1 Program Functionality

Due to the high cost of developing software systems to fulfill a wide range of user needs,

continued feature augmentation, backward compatibility and reusability, many software sys-

tems are complex and provide more functionality than users require, desire or are even aware

of. Rinard et al.90 views security vulnerabilities as undesirable functionality present in a

system. They discuss several low-level techniques, such as input rectification, functionality

replacement, loop perforation, cyclic memory allocation, etc. to help either excise or change

system functionality that may help eliminate security vulnerabilities while still leaving the

program able to provide acceptable functionality. From MTD perspective, eliminating se-

curity vulnerabilities can be viewed as reducing the attack surface.

3.2.3.2 Function Signature

Function signatures refer to the names, key words and static identifiers used in a software sys-

tem to communicate between system components. Concrete examples include database table

or column names, application programming interface (API) function names, etc. Christodor-

escu et al.29 shows how to apply transformations to subprograms and execution environ-

ments so that each program instance actually uses syntactically and semantically distinct

subprograms to diversify the function signatures. For example, they demonstrate that by

randomizing the identifiers associated with various aspects of database interface, such as the

table name and column name of a table, the difficulty of SQL Injection is increased. Also

diversifying the JavaScript runtime environment, such as randomize the Document Object

Model API method names, XSS attacks can be mitigated.

3.2.3.3 HTML Elements/Programming Language

HTML elements usually refer to the specific source component of a web page that have

attributes and contents. Critical HTML elements include registration forms, submission and

file upload buttons, etc. These are usually used by servers to collect or update information

30

stored in a remote database. NOMAD35 focuses on how to randomize key HTML elements

to prevent widely used web bot attacks with a relatively low overhead. This work can

also be viewed as a specific example of end-to-end software diversification as defined by

Christodorescu et al.29. Programming languages can be viewed as specific instruction sets at

the application level. As discussed in Section 3.2.2.2, concrete examples include techniques

that randomize SQL and Perl language keywords.

3.2.4 Machine Level

A Machine as a unit to provide redundancy, improve fault tolerance and ensure high

availability has been wildly used for decades. From a moving target defense perspective,

SCIT79,87,42, TALENT40, ChameleonSoft43, MEERKATS39 and this thesis32,33,34 all con-

sider virtual machines as a unit of replacement. Combining machine replacement with other

adaptable aspects from network, OS or program level will provide more flexible adaptation

choices and defeat a broad range of attack types as shown in Chapter 6.

3.2.5 Hardware Level

Adaptable aspects from the hardware/physical level in current research has only one sub-

category, which is memory to cache mapping.

3.2.5.1 Memory to cache mapping

As discussed in Section 3.1.1, side channels can leak secret information despite strong cryp-

tography and software isolation mechanisms. These hardware problems are difficult to solve

using only software solutions. Lee74 proposed to design new hardware circuits for caching

that enables dynamic and random mapping of memory addresses to cache instead of a direct

and static mapping to foil the cache side-channel attack. The benefit of such design is that

it has no impact to the software. However, there are challenges as already indicated in

Section 3.1.1.

31

3.3 Tactics

After determining which adaptable aspects to move, the next step is to consider how to move.

From a military perspective, the techniques used to achieve this movement are called tactics.

In this section, the most popular techniques used in current MTD research are summarized

and categorized into two sub categories: diversification and randomization. These two terms

are popular in related literatures but with some key distinctions and relationships missing.

The first distinction is about diversification. Generally, diversification introduces func-

tionally equivalent but internally unique variants of a piece of software. These variants

form a space for selection. Some spaces, such as IP address space, memory space and port

number space, are introduced by existing diversification. While other spaces, such as in-

struction set space and function signature space, are created by artificial diversification to

relatively fixed configuration aspects, such as instruction set and function signature. This

is why diversification category has two sub-categories: existing and artificial.

Randomization is closely related to diversification, as diversity provides the space for

randomization. In the physical world, for military units to perform tactic maneuvre, space

is clearly indispensable. This is also true for moving in the cyber world. The difference is

that space in the physical world is three dimensional, while in the cyber world the moving

space is created by diversification.

In addition, randomization usually refers to randomly choosing a variant from current

space. Random choice is usually understood as making selections such that the probability of

each selection forms a uniform distribution. However, if we view randomization as a decision

making process to make selections based on a specific probability distribution applied to

the variants in current space, then it turns out randomization can generalize to all AI

techniques, such as genetic algorithms, machine learning, game theory, etc. Indeed, saying

that a specific variant will always be chosen given corresponding environmental information

is nothing more than saying that the probability of choosing this variant is 1 with the

probability of all other variants at 0. This way, it captures another key missing relationship

32

between randomization and all other AI techniques which is also why these AI techniques

are put as sub-categories of randomization. The formal definition of diversification and

randomization is given in Chapter 6.

3.3.1 Diversification

Cloud or enterprise configurations typically prefer identical or homogeneous settings for a

large number of servers due to the ease of maintenance. However, this leaves the potential of

a single vulnerability being exploited by an attacker to compromise many similarly config-

ured machines. Diversification was proposed to mitigate such situations as an attacker may

compromise one variant but will probably not have the knowledge of all different variants.

Alternatively, forcing the attacker to learn all variants will consume significant attacker

resources and time.

Evans et al.91 presents a model for thinking about dynamic diversity defenses. The

authors analyze a few example defenses and attacks using the model and show scenarios

where MTDs are and are not effective. The authors present several of the most commonly

used low-level automatic diversity techniques, such as address space randomization and

instruction set randomization, which range over both existing and artificial diversification

space. Results show that these low-level diversity techniques have limited effectiveness to

high-level attacks and the authors suggests using composition and N-variant systems to

improve the effectiveness of diversify defenses. Composition strategies require the attacker

to break multiple different diverse defenses simultaneously, whereas N-variant systems re-

quire an attacker to break multiple variants of the same diversity defenses simultaneously.

ChamelenonSoft43, MEERKATS39 and N-Variant37 all use these strategies in their system

design. Similar principles have also been proposed by Jackson et al.30 in their compiler-

generated software diversity work where two orthogonal techniques have been suggested.

One is multi-variant execution, where a monitoring layer can monitor and execute diversi-

fied variants and examine difference in behavior to indicate possible attacks. The other is

33

to use large-scale software diversity where all users get their own unique variant. Since the

attackers have no knowledge of the internal structure of each variant, they cannot construct

an attack. In short, MTD systems should make proper use of existing as well as artificial

diversification space to improve their effectiveness.

3.3.1.1 Existing

As discussed in adaptable aspects , there are MTD work tries to randomize the selec-

tion of several configuration aspects by taking advantage of existing configuration space,

such as IP address space18,19,20,21,27,28,32,33,34, port number space27,32,33,34, and address layout

space22,89,23. All these are related to the available choices that already exists in the system.

3.3.1.2 Artificial

Diversification also refers to proactively diversifying relatively fixed configuration aspects

such as instruction sets, HTML elements, etc. to provide new space for randomization.

There are mainly four artificial diversity techniques.

One is to use cryptography algorithms. Perhaps the most obvious example is our daily

usage of password to log into various systems. Christodorescu29 suggests diversifying iden-

tifiers, such as database tables or column names and javascript runtime APIs, to thwart

SQL injection/XSS attacks. Global ISR38 seeks to diversify the instruction set from all

levels such as machine/assemble language, SQL and Perl language keywords, to thwart code

injection and SQL Injection attacks. NOMAD35 and Noncespaces78 both try to diversify

HTML sources to thwart web bot and XSS attacks. All these work make use of cryptography

techniques to enlarge the fixed configuration factor’s space.

Another artificial diversity technique takes advantage of compiler techniques. Instead

of generating fixed machine code for a given program, compilers techniques30 allows us to

generate functionally equivalent but internally unique variants of the program. Adopting

compiler-generated software diversity makes it less likely that a single attack (such as worms)

34

could affect large numbers of targets. In addition, it will be no longer possible for an attacker

to analyze their own copy of software to find exploitable vulnerabilities.

The third diversity technique takes advantage of cloud computing and IT automation.

As discussed in Chapter 2, virtualization platform and configuration management tools

can be used to easily create, configure and deploy services to machines, which potentially

provides a powerful way to compose different machine, OS, service implementations, etc. to

provide the same functionality to the user. Huang31 proposes to introduce such diversity

for web services to better protect web servers.

The fourth diversity technique is to artificially manipulate data files, protocols, network

topologies, etc. Intended users can copy, slice or regroup data files at will to fill their pur-

poses. For example, in Section 3.1.2.8, Colbaugh et al.85,86 proposed to diversify classifiers

by dividing the original feature set into K randomly selected subsets to train and get K clas-

sifiers instead of one. Rowe et al.88 suggests generating a diverse set of DHCP protocols by

artificially injecting intermediate states. Chapter 2 also discussed the potential to diversify

network topologies through Software-defined Networking (SDN)71 and OpenFlow72.

In general, these four artificial diversity techniques together with existing diversification

can be used to achieve the suggested Composition and N-variant principles for MTD system.

3.3.2 Randomization

Randomization has been used in existing MTD research to make intrusion more diffi-

cult27,28,20,38,22,23,18. The key idea in randomization is to take advantage of existing or

artificially introduced configuration space to randomly pick the next system configuration

variants in these spaces to add more uncertainty to the attacker, which in turn increases the

difficulty of intrusion. As indicated, randomization is usually understood as making selec-

tions by assuming the probability of each selection forms a uniform distribution. However,

this concept generalizes if we view it as a decision making process that makes selections

based on a specific probability distribution. This allows AI techniques to be viewed as

35

producing different probability distributions of variants in the current space and uniform

distribution becomes a specific instance of randomization.

3.3.2.1 Uniform Distributed

Several existing approaches27,28,20,18 try to randomize the machine’s IP address in existing

IPv4 or IPv6 configuration space to increase the difficulty of locating the target. Memory

layout randomization22,23 uses existing memory address space to randomize memory posi-

tions of the stack, heap and libraries of running programs to add difficulty to buffer overflow

attacks. Global ISR38 diversifies instruction sets for an OS or programing language, which

can be considered as an artificial instruction set space. During runtime the actual working

instruction set can be randomly selected from this artificial space, which will significantly

increase the difficulty in correctly identifying the real instructions. Although not explicitly

indicated, these approaches all make selections based on uniform distribution which applies

the maximum uncertainty to attacker. This thesis32,33,34 investigates the effectiveness of

randomly picking virtual machines according to uniform distribution from a group of VMs

to change IP address to prevent remote exploit attacks.

3.3.2.2 Shuffling

As discussed in Section 3.1.2.6, MOTAG82 hides the proxy nodes from the public forcing

attackers to use insiders to locate proxy nodes and attack them. To quarantine insider-

assisted attacks, MOTAG employs a shuffling mechanism to randomly pick proxy nodes

to defeat them. The author gives a detailed analysis for shuffling optimization and then

presents a greedy shuffling algorithm. The experiment results show that MOTAG can

protect a majority of innocent clients from DDoS attacks assisted by hundreds of insiders

within a small number of shuffles.

36

3.3.2.3 Machine Learning

In Section 3.1.2.8, a machine learning based approach, which diversifies classifiers to add

difficulty for spam adversaries to reverse engineer spam filters, was proposed by Colbaugh

and Glass86. The approach decreases the adversarie’s ability to generate junk email with

enough difference from the training data to bypass machine learning-based filters. The

authors present a scheduling policy (see Section 3.3.2.5) to select these classifiers and claims

the strategy is simple, flexible and near optimal for a broad range of security problems. Case

studies show that the proposed algorithm outperforms standard static methods. However,

the data set used for network intrusion detection analysis is specific –KDD Cup9992 and

there are harsh criticisms on these datasets93,94.

3.3.2.4 Bio Inspired

Cui95 proposed a new host-based defense mechanism that they call Symbiotic Embedded

Machines (SEM) or Symbiotic. It is based on perpetual mutation and diversity that is

inspired by a natural phenomenon known as Symbiotic Defensive Mutualism. This phe-

nomenon generally refers to any association between different species where the survival or

evolutionary fitness of one or more partners is enhanced by the association. The key idea

in this approach is that defenses are provided by defensive mutualism. First, each Sym-

biote and host program is created uniquely by rewriting using advanced polymorphic code

engines. This diversity provides inherent protection against attackers. Second, Symbiote

treats the entire host program as an external and untrusted entity, which eliminates the

traditional trust relationship between anti-virus software and the underlying OS. This way,

Symbiote has full visibility into the code and execution state of its host program, which can

passively monitor or actively react to the exploitation and incorrect behavior at runtime. At

the same time, host program requires Symbiote to successfully execute (which costs compu-

tation resources) in order to operate. Any successful attempts to disable, modify or remove

the Symbiote will render the host program inoperable. The author describes the Symbiote

37

code structure and argues it can reside within any level of the software stack due to the

fact that it makes no assumption about the functionality of the host program. The idea

sounds promising, but the author does not provide a prototype system. In addition, the

impact on system performance and functionality are not addressed. Azab et al.43 propose

a biologically-inspired defense framework called ChameleonSoft, which builds over a novel

cell oriented architecture. More discussion about this will be given in Section 3.5.

3.3.2.5 Game theory

Colbaugh86 investigated MTD in the framework of a repeated two-player games with in-

complete information. The defense system and adaptive adversaries were modeled as a

hidden mode hybrid dynamical system (HM-HDS) to specify a scheduling policy for select-

ing classifiers during each time period to minimize the effectiveness of adversary adaptation.

However, key assumptions are made regarding HM-HDS that only hold under some condi-

tions or applications in which empirical data assessment are allowed. Manadhata44 modeled

the interaction between defender and attacker as a two player stochastic extensive game96

and used game theory to determine optimal defense strategies. However, as admitted by the

author, the potential state space explosion and action space explosion are disadvantages of

this model.

3.3.2.6 Control theory

Rowe et al.88 view MTD as an optimal secure reconfiguration problem. The goal is to

develop novel control theoretic approaches such that, based on a range of cyber maneuver

techniques, a most cost-effective technique can be selected to counter a detected ongoing

attack. The authors model the defense as a closed control loop where state transitions occur

due to contingencies as well as selected cyber maneuvers. The paper proposed a maneuver

to thwart the DHCP attack. By generating a diverse collection of DHCP protocols through

artificially injected intermediate states and altered state transition paths and messages,

38

attackers who make use of the standard DHCP state machine will fail. However, as revealed

by the authors, other maneuvers could also be considered. In addition, estimating the

security state and selecting the most cost-effective maneuvers between different states are

primary research challenges.

3.3.2.7 Genetic algorithm

Crouse97 proposes an interesting approach to model a computer’s configuration as a chromo-

some where an individual configuration setting is a trait or allele. Then the author employs a

Genetic Algorithm to find temporally and spatially diverse secure computer configurations.

The paper presents the experimental results based on a simulated environment composed

of 256 computers, each with 80 parameters. However the author does not show what these

parameters are. The paper shows results from temporal and spatial diversity, configuration

vulnerabilities and perceived configuration vulnerabilities aspects. The experiments start

with vulnerable configurations and eventually find more secure and diverse configurations.

However, the impact of the evolving genetic algorithms to system operations is unknown. In

addition, it is also unknown how the author deals with system configuration dependencies

and constrains.

3.3.2.8 Cryptography

Yackoski et al.98,21 designed the SDNA architecture to work on top of IPv6. A hypervisor

within each network node transparently rewrites packets entering and exiting the OS to

conceal real addresses from OS. Each SDNA entity operates independently to process packets

and directly coordinates with other relevant SDNA entities to facilitate communication,

achieve scalability and avoid single point of failure. During transmission, packets generated

from the OS will be intercepted by SDNA, who uses packet metadata and a cryptographic

key to rewrite the IP addresses before sending it to the network. When receiving packets

from the network, SDNA verifies the packets using a shared key and then rewrites the

39

IP addresses in the packets before offering the packets to the OS. Using this approach,

various dynamics can be imposed at the network layer. Packets that failed verification

can be dropped or redirected to a honeypot. However, SDNA interferes with network

security components such as IDS, logging, etc. To accommodate SDNA dynamics without

modifying these security components, one could have intermediate nodes reconstruct the

original packets based on SDNA mechanisms. To deploy SDNA on existing systems, it

requires enabling IPv6 and modifying the network configuration. Also, an SDNA entity and

hypervisor must be added to each host.

3.4 Strategies

Another category is Strategy. In military terms, strategies can be understood as a high

level plan to achieve military objectives or win the war. Similarly, here Strategy is used

to summarize high level plan that can be adopted to win the cyber war. As discussed in

Chapter 1, MTD systems seek to proactively enlarge the exploration space during design and

either proactively or reactively shift the attack surface during runtime. In proactive mode,

these changes occur at random times, thus a proactive strategy is based on time. In reactive

mode, when incorporating detectors, such as IDS and system monitors, a reactive strategy

becomes event-based. These events could be related to intrusions, operational errors, system

failures, etc. Obviously, as captured by Figure 1.1, proactive and reactive strategies could

coexist in MTD system, which was titled as the third strategy type: combined.

3.4.1 Proactive

With a proactive strategy, MTD systems launch adaptations at will, which is summarized

as a time-based sub-category.

40

3.4.1.1 Time-based

SCIT87,42,79 uses a fixed time interval to constantly rotate and replace virtual machines to

restrict the damage of successful attacks to a limited time. Each virtual machine loops and

rotates through three phases: online working, offline for cleansing potential compromise,

and rebooting to replace current online functioning VMs. More discussion about SCIT

can be found in Section 3.1.2.4 and Section 3.1.2.9. Later, Huang31 suggests to introduce

diversity by combining different OS, web server programs and web applications to create

a moving attack surface for web service. It takes a similar routine as SCIT to rotate the

virtual machines. Rowe88 suggests to proactively launch cyber maneuvre where a specific

maneuvre that artificially injects intermediate states and alter DHCP protocol state ma-

chine’s transition path has been proposed. Section 3.3.2.6 gives more discussion about this

work. In MT6D20, Jariath28 proposes to proactively change the IP address at specified time

and frequency. Chapter 4 also presents a pure random MTD system design that seeks to

proactively change different adaptable aspects , such as VM, IP address, port number during

runtime at specified time interval. Chapter 5 provides additional insight by investigating key

relationships between adaptation time interval and attack time interval. Crouse and Fulp97

introduce genetic algorithms to proactively evolve vulnerable configurations to eventually

find more secure and diverse configurations. Cui and Stolfo95 propose to proactively inject

diverse Symbiotes into existing host programs. ChameleonSoft43 and TALENT40 both sug-

gests creating a checkpoint strategy such that poisoned state can easily removed through

roll back. TALENT also dynamically changes the live-migration destination platform at

randomly chosen time intervals to create a moving target for attackers. Note here live-

migration is not the same as VM migration, which can only be done with a homegeneous

OS and hardware. TALENT uses OS-level virtualization to sandbox an application and

migrate the environment. MEERKATS39 proposes a high level vision for a Cloud Security

Architecture. The proposed Evade component periodically moves data from one location

to another randomly to impede the targeted attack. This move is lightweight as it uses

41

pre-established ciphertext replicas and data is migrated by simply transferring small key

shares instead of the actual data. The other proposed components – CSSH (Collaborative

Self-healing and Service Hardening), CSIFT (Cross-System Information Flow Tracking),

DIGIT (Deceptive Information Generation, Injection and Tracking) and DREME (Diver-

sified Replica Execution and Monitoring Environment) – all reflect the idea of proactive

defense. ChameleonSoft and TALENT both introduce proactive diversity to increase sys-

tem resillience as well as the difficulty of intrusion. More discussion about ChameleonSoft,

TALENT and MEERKATS is given in Section 3.5. In addition, related work that has been

discussed in Section 3.3.1.2 that refers to proactively diversify corresponding adaptable as-

pects through artificial diversification all belong to this category. From the time-based

perspective, the differences between all these approaches lie in the fact that some proac-

tive strategies are applied at design and implementation phase while others are applied at

runtime. In addition, some are only applied once while others repeat many times.

3.4.2 Reactive

Reactive strategies mainly refers to launch adaptations based on environmental information

changes, such as exploitation detected, system crash or operation error happens, etc. All

these situations can be summarized as event-based.

3.4.2.1 Event-based

Instead of simply rotating VMs at fixed time interval as in SCIT, MAS31 installs anomaly

detection engines in each VM to enable event-driven rotation. Rowe et al.88 model cyber-

defense as a control system where the system has Secure Normal, Insecure Normal, Emer-

gency and Restorative states. A system is in an Insecure Normal state if it’s operating

normally but with indications of attack from IDS or runtime monitors. Such a system needs

a preventative control action to pull it back to Secure Normal state, otherwise if the sys-

tem is partially compromised it will go into an Emergency state and then to a Restorative

42

state to interrupt services and block malicious activity and use new secure resources to help

the system transition back to Secure Normal state. As introduced before, a diverse DHCP

protocol example where protocol’s state machine has been injected by artificial states to

thwart DHCP attack has been demonstrated. Biologically inspired Symbiotic Embedded

Machines (SEM)95 can monitor and react to observed events, such as malware that attempts

to hijack the host’s execution environment, to prevent it. Colbaugh and Glass85,86 model

an attacker’s adaptive learning ability to reverse engineer machine learning enabled spam

filters and defenses as repeated, incomplete information games. MEERKATS39’s proposed

components, such as DMCC (Distributed Monitoring and Crosschecking), are also exam-

ples of reactive strategy. ChameleonSoft’s43 failure recovery mechanism also dealing with

malicious induced failures by adversaries. TALENT40’s live-migration can be triggered not

only periodical but also by malicious activities. In addition to a pure random MTD design,

Chapter 4 also presents an intelligent MTD design that includes an analysis engine that

produces adaptation triggers, based on detected intrusions and failures.

3.4.3 Combined

Based on the previous two categories, it’s not hard to see that recent MTD research tends to

embrace both proactive and reactive strategies. The following sub category simply includes

the research that adopt both strategies.

3.4.3.1 Time + Event

From the time-based and event-based discussion, we see that MAS31, Rowe et al.88, MEERKATS39,

ChameleonSoft43, TALENT40 and the work in this thesis32,34 all use both proactive and re-

active strategies in their overall approach. Although there may be other work also considered

both strategies, these examples should be enough to demonstrate the ideas.

43

3.5 Using the Taxonomy

This taxonomy starts with the attack type and then discusses adaptable aspects, tactics and

strategies. Different configuration factors that can be adapted have been introduced from

several dimensions, such as network level, OS level, program level, etc. Adaptable aspects

provide input to tactics, tactics classify all different kinds of techniques that can be adopted

to fulfill the strategy, and the strategy captures the high-level plan to achieve the goal of

MTD. These three categories together determine what kinds of attack the MTD system can

thwart, which in turn increases system security.

From this taxonomy, we can see that, from network dimension, adaptation applied

to IP address, DHCP protocol can be used to constrain attacks, such as worms, scan-

ning/reconnaisance, DDos or DHCP attack. Randomization of OS level aspects, such as

memory layout, can be used to defeat buffer overflow attacks. Program level aspects can

be used to defeat attacks, such as SQL injection/XSS and web bot intrusion. Machine level

aspects, such as VMs, can be used to mitigate the impact of zero day vulnerabilities. Obvi-

ously, to thwart as many different attacks as possible, future MTD systems should consider

techniques from all of these categories. Based on this observation, this taxonomy can be

used to help evaluate the strengths and weakness of an MTD system based on the types of

attack that can be prevented. For example, MT6D20 provides a practical MTD solution at

the network level, but it is not effective for attack types at the program level, such as SQL

injection/XSS, etc.

Based on this review, most of the existing MTD research has focused on low-level con-

figuration units. However, recent efforts are starting to focus on extending or combining

these low-level aspects to provide a more comprehensive MTD solution. These again reflect

the trend that future MTD system should properly incorporate the configuration units from

different levels as discussed in the taxonomy to provide a holistic solution. The following will

summarize several typical research efforts towards this trend; most have already been refer-

enced in previous sections. Nevertheless, MTD research is still in its infancy and significant

44

effort is required, both theoretically and practically.

Portokalidis38 proposes a holistic adoption of ISR (instruction-set randomization) across

the software stack to prevent the execution of unauthorized binaries and scripts regard-

less of their origin. This approach requires the programs be randomized with different

keys during a user-controlled installation, which effectively combines the benefits of code

whitelisting/signing and runtime program integrity. The paper discusses how ISR can be

implemented in hardware as well as entirely in software.

Keromytis39 proposes a novel architecture, MEERKATS, for the cloud environment that

enables an environment to constantly change along several dimensions to create an unpre-

dictable target for an adversary. MEERKATS focuses on both software and data, not just

protecting, but leveraging them to improve mission resilience. MEERKATS includes many

subcomponents. Existing techniques, like instruction set randomization, migration, and N-

schedule, have been leveraged and integrated into different subcomponents. While the main

goal of the paper was to give the vision of MEERKATS and describe the ways to prototype

it, such a system has not been built yet.

Okhravi et al.40 proposes the TALENT (Trusted dynAmic Logical hEterogeNeity sys-

Tem) framework. By using two key ideas, containers and a portable checkpoint compiler,

TALENT can create an OS level virtualization environment and migrate running, mission-

critical applications across heterogeneous platforms while preserving the state (execution

state of the process, open files and sockets) of the application. It is designed to work with

general purpose system languages (such as C). In this paper, the threat model assumes that

the hypervisor, hardware and OS-level virtualization logic are trusted. The paper shows that

after optimization, the environment migration time has been reduced to one second. How-

ever, the current prototype is still focused on providing high availability and no guarantees

are made about the migrated state not being corrupted.

Azab et al.43 proposes a biologically-inspired defense framework that builds over a novel

cell oriented architecture to achieve moving target defense. The key principles are:

45

1. employ multidimensional software diversities such as functionally-equivalent, behaviorally-

different code variants

2. decouple functional roles and runtime role players

3. separate logic, state, and physical resources to induce a spatio-temporal software be-

havior encryption

It presents a prototype of Behavior Encryption and recovery mechanisms and also studies

the provisioned level of security. Although this design seems promising, the key assumption

made in the design prototype, to create a checkpoint at each stage of the program, ignores

the potential performance impact on complex software systems. In addition, how to correctly

implement the rollback to a clean checkpoint and the costs of hot cell shuffling to normal

user’s access are all unknown.

Carvalho et al.99 describes a human-agent teamwork command and control framework

for moving target defenses. The author argues that the reason behind this work is the fact

that there are important interdependencies between different defense tools and functionality

of critical applications and services. In addition, different operational contexts will require

different configurations of these different tools. Thus, it’s important to provide a framework

that can enhance human system interactions to better support the coordination of different

MTD tools.

This taxonomy mainly reviews MTD work in enterprise network context, there may be

MTD work from other context that is not covered in this taxonomy.

3.6 Conclusion

This chapter presents a review of related MTD work as well as a taxonomy for these works.

From the taxonomy, we see that many different MTD mechanisms have been tried to defeat

different attack types. These mechanisms include different combinations of strategies and

46

tactics that applied to various adaptable aspects . It not only helps one understand the

state-of-the-art research in MTD, but also helps point out future research directions. It

also underscores the need for a comprehensive theoretical framework for MTD, which is

presented in Chapter 6.

Based on the review, almost all of the work that provides analysis of MTD security ben-

efits are qualitative. As discussed in Chapter 1, developing new metrics for moving target

defense is a major challenge. Operation and security are both important concerns today.

Unfortunately, these two aspects are usually irreconcilable in MTD. Increased security usu-

ally brings increased costs. New metrics for MTD should not only help measure and analyze

the different mechanism’s impact on security, but it should also help MTD designers to make

better decisions about system parameter settings such that reasonable trade offs between

security and operation can be achieved.

The tension between operation and security in MTD brings another major challenge.

This challenge is engineering based and lies in how to sanitize potentially compromised

machines while not interrupting normal operations significantly. MT6D does a good job at

network-level although IP collisions are still possible. But at the machine-level, ensuring

a potentially compromised VM is cleaned is still a major challenge. Although ideas like

checkpointing have been proposed in Chameleonsoft43, no concrete system that evaluates

the performance or validates such an approach’s applicability is presented. Also as discussed

in Section 3.1.2.4, SCIT is not a completely stateless solution and poisoned states can still

be disseminated. TALENT40 also provides a checkpoint mechanism, but leaves how to

ensure the migrated virtual machines are not corrupted as future work. Rowe et al. points

out that selecting the most cost-effective maneuvers between different states, especially the

transition from a Restorative state to a Secure Normal state (which essentially represents

how to ensure compromised state to be cleaned), are important research challenges.

This thesis focuses on tackling the first major challenge. The next chapter presents a

more comprehensive high-level MTD system design that supports this taxonomy. A set of

47

exploratory simulation and related experiment results will also be discussed to show our

first step of investigating the effectiveness of MTD system.

48

Chapter 4

Exploratory Experiments

In this chapter, a high-level MTD system design framework is presented. Then a simulation,

based on this design, is used to investigate the degree to which proactive and random adap-

tations can decrease an adversary’s chance of success. A set of experiments are conducted to

examine both a purely random MTD system, as well as an intelligent MTD system, which

uses attack indicators to augment adaptation selection. The results show that the attacker’s

success likelihood can be reduced under such MTD system.

4.1 High-Level System Design

The high-level architecture of a proposed MTD system33,32,34 that adapts in a purely ran-

dom fashion, is shown inside the dashed box in Figure 4.1. This system produces random

adaptations that do not inhibit correct system operation. The key to making these random

adaptations is that they are based on a Logical Mission Model, which captures an abstract

view of the Physical Network’s current configuration along with the functional requirements

of the network. The driver is the Adaption Engine, which orders random adaptations to

the network configuration at random intervals. These adaptations are implemented by the

Configuration Manager, which controls the configuration of the Physical Network. The ar-

49

Logical Security
Model

security state

Logical Mission
Model

. vulnerabilities .

. adaptations .

current statenew state

real time
events

configuration

Analysis Engine

Adaption
Engine

Configuration
Manager

. reflection .Physical Network

Figure 4.1: Moving Target Defense System Designs

chitecture of an intelligent MTD system is the complete system shown in Figure 4.1. The

basic operation of the random adaptation remains the same; however, an Analysis Engine

has been added to take real-time events from the Physical Network and the current config-

uration from the Configuration Manager to determine possible vulnerabilities and on-going

attacks. The Adaptation Engine is extended to look at the network’s current state along

with its security status, as captured in the Logical Security Model. The Logical Security

Model also consists of two runtime models: a goal model and a model of system vulnerabili-

ties. The goal model captures the system’s security goals while the vulnerability model is in

the form of a novel Conservative Attack Graph (CAG)33,32,34, which captures both known

and unknown system vulnerabilities and how an attacker might move through the system

to gain specific privileges.

4.1.1 Resource Mapping System

Chapter 3 discussed the tension between operation and security in MTD systems. An

MTD system proactively launches adaptations to increase system security, which at the

same time breaks the common operation patterns as appeared in static system. One key

problem caused by this is how to ensure each component can still correctly locate and

communicate with other components it depends on. Thus, a resource mapping system

50

Host 4

Host 1 Host 3Host 2

Configuration
Manager

VM
 GeoDB

RMS

VM
 Planner

VM
 AssetDB

Configuration Commands
Application Communications

RMS RMS

VM
 Email

RMS

VM
 TargetDB

RMS

adaptations

Figure 4.2: RMS System

has been proposed. Ideally, an RMS can be implemented as communication enforcement

component that knows the location of all related components in the system. The RMS

interacts with the Configuration Manager, to get the up-to-date location information of the

various resources.

One possible design of the RMS’s use in MTDs is shown in Figure 4.2. Assume the over-

all mission is executed in a cloud computing environment, then each VM could be configured

to have a RMS component to support communications with other roles. Such RMS compo-

nent can be implemented by making use of existing OS firewalls or, more rigorously, as a

dedicated operating system layer. The limitation of this design becomes evident if attackers

compromise a critical role or VM. In this case, roles with which the compromised role initi-

ates communications can be easily located and attacked since the compromised role’s RMS

knows their location. However, the attacker must follow the exact communication pattern

defined by the Logical Mission Model; communication outside the pre-defined paths can be

easily detected. In addition, adaptation can come to the rescue as, eventually, the VM of

the compromised role will be refreshed and the attacker will lose any gained privilege.

Other possible solutions include using an existing cloud-computing platform, such as

OpenStack’s APIs, or Software Defined Network (SDN), such as Openflow, protocol to set

51

up and update the corresponding communication rules at network-level between various

component. These rules could be understood as routing tables maintained by the Configu-

ration Manager.

No matter which solution is being selected, the purpose of RMS is to ensure the overall

system functionality given a constantly adapting MTD environment. This purpose obviously

increases the complexity of normal operational requirements, however, it also restricts the

possible intrusion paths used by the attacker, which makes any violations more easily to be

detected.

4.1.2 Adaptation Engine

In traditional adaptive systems, the adaptation algorithm would attempt to provide optimal

or near optimal configurations100. The objective of this component is to produce effective

configurations that are significantly different in some aspect while limiting the costs of adap-

tation, or essentially maximizing the entropy of the configurations. Effective configurations

must be functionally correct and consistent, and have a tolerable impact on network perfor-

mance; the physical network and logical mission models are designed to allow the adaptation

engine to predict these impacts based on the capabilities of the machines assigned to the

system roles.

While the use of intelligent adaptations allows the MTD to react to suspected intru-

sions instead of simply adapting randomly, using intelligent adaptations in conjunction with

purely random adaptations allows the MTD to effectively mitigate unpredicted attacks as

well as mask the actions of the intelligent control of system. While the use of random

adaptations may not keep an attacker from learning all aspects of how the MTD system

responds, it will make the learning process more difficult and time consuming. Addition-

ally, by incorporating responses to suspected intrusions into adaptations, the system can

react to suspected intrusions much sooner than a normal intrusion response system since

even responses to false positives will leave the system in an operational state with no more

52

Internet
Access

Planner
Compromised

Authorizer
Compromised

- ID IP and Port
- ID Vulnerabilities
- Exploit
 Vulnerabilities

- ID IP and Port
- ID Vulnerabilities
- Exploit
 Vulnerabilities

p
ro

b
ab

ility
o

f su
ccess

t - time

GeoDB
Compromised

TargetDB
Compromised

AssetDB
Compromised

- ID Vulnerabilities
- Exploit
 Vulnerabilities

- ID Vulnerabilities
- Exploit
 Vulnerabilities

- ID Vulnerabilities
- Exploit
 Vulnerabilities

Figure 4.3: Conservative Attack Graph

overhead expended than for a random adaptation.

Since the Adaptation Engine is the main decision making facility for the MTD, it must

be able to control the various adaptable configuration unit of the system that range from

Network Level, OS Level, Service Level to Machine Level as categorized in Chapter 3.

4.1.3 Analysis Engine

The purpose of the Analysis Engine is to infer the most critical vulnerabilities and most

likely attack activities so the Adaptation Engine can make intelligent adaptation choices.

To analyze the effect of an MTD on computer networks, a conservative attack graph (CAG)

has been proposed32,33,34. The key output of the Analysis Engine is the CAG that captures

known and unknown vulnerabilities and indicates paths the attacker might take in attacking

the system.

Assuming unknown vulnerabilities in CAG actually reduces the size of the state model

53

and makes it easier to apply stochastic analysis. Modeling an attacker both gaining and

losing knowledge and privileges in CAG invalidates the typical monotonicity assumption101

of most attack-graph work and requires a state-machine model, rather than traditional

dependency attack graphs102,103,104. Previous state-enumeration attack graphs105,106 have

encountered scalability challenges when applied to large networks104; however, Chapter 5

shows an analytical model that is efficient and scalable to tackle this non-monotonicity

challenge of MTD.

As an example, Figure 4.3 shows the CAG for the mission planning scenario used in

this thesis. The topology of the conservative attack graph is partially derived from the

logical mission model, where dependencies between roles are explicitly captured. In normal

operation, valid users log in from the internet through the Authorizer node and interact

with the Planner node. The Planner node interacts with the user by using data from the

three database nodes, GeoDB, TargetDB, and AssetDB. The only legitimate access paths

in the system are (1) from the Internet to the Authorizer, (2) from the Authorizer to the

Planner and (3) from the Planner to the three database servers (AssetDB, TargetDB, and

GeoDB). The conservative attack graph captures these logical access paths.

The conservative attack graph can also be viewed as a state-transition system. Each

arrow is annotated with a label describing the activities involved to move from one state

to the next. The effort involved in the activities can be measured in various ways. For

example, one can ascribe a success-likelihood to time diagram to indicate how much time it

will take the attacker to reach a certain success likelihood for a specific action.

4.2 Simulated MTD Testbeds

To determine if this approach has merit, simulated MTD testbeds were developed to reflect

the MTD approach discussed above. The simulated MTD testbeds have three components,

the Defense component, the Attack component and the Ground Truth component. In gen-

54

CoreRouter10

CoreRouter11

AccessRouter13

AccessRouter0

FireWall

HostA

HostB HostC

Configuration
Manager

Attacker

Figure 4.4: Network Topology

eral, Defense Component combines the functionality of Configuration Manager, Adaptation

Engine and Analysis Engine as described from Figure 4.1. As time elapses, at each adapta-

tion time interval, the Defense component will select a valid state from current configuration

space through appropriate decision making option and perform an adequate adaptation to

transform the system to the selected configuration state. The updated configuration state

will be sent to the Ground Truth component. The Attack component simulates the attacker

and uses the CAG to allow it to know where to attack next to achieve its goal. The nodes of

CAG represents active VMs running in the system and the edges represents the communica-

tion enforcement between nodes. Values in the CAG edges denote the attacker’s probability

of intrusion success between nodes assuming both nodes remain static. The Ground Truth

component maintains the up-to-date ground truth system configuration information. The

Ground Truth component not only receives updated configuration state informaiton from

Defense component after new adaptation has been launched, but also feed these information

to Attack component when requested.

55

To make it clear, lets again use the mission planning scenario example to explain the

overall idea. Figure 4.4 shows the network topology of this scenario. The Defense compo-

nent contains three physical machines (hosts) and five active VMs. These five VMs can

being assigned to any host to play any of the five roles: Authorizer, Planner, TargetDB, As-

setDB, or GeoDB. The Attack component simulates the attacker and uses the CAG shown

in Figure 4.5 to allow it to know where to attack next to achieve its goal, which is the

TargetDB. The edges in the graph (with the exception of the Internet to Authorizer edge)

show the valid paths supported by the RMS. In normal operation, valid users log in through

the Authorizer node and interact with the Planner node. The Planner node interacts with

the user by using data from the three database nodes, GeoDB, TargetDB, and AssetDB.

The attacker is assumed to locate at the Internet node and wishes to attack the TargetDB.

Since the only available attack path is to penetrate from Internet to the Authorizer,

the Authorizer to the Planner, and then from Planner to TargetDB. The edge values in

the CAG denote the attacker’s probability of intrusion success between nodes assuming

both nodes remain static. As shown, the attacker has a 40% chance of compromising

the TargetDB if (1) it has already compromised the Planner and (2) the Configuration

Manager does not adapt to either the Planner or the TargetDB during the time step. In a

real system, these probabilities would be based on the current probability of unknown and

known vulnerabilities of the roles.

Each simulated attack has several steps. First the current configuration state is retrieved

from the Ground Truth component to simulate that the attacker somehow obtained the sys-

tem configuration after conducting reconnaissance. Next, the attack waits ∆t time intervals,

which simulates the time required to actually launch and finish an attack, then an updated

configuration state is retrieved and used to determine whether the attack has succeeded or

not. To determine attack success, first a random probability value is generated to check

whether it’s less than the CAG edge value for the current attack. If it does, the simulation

determines if the VMs on either the attacker’s current node or the attacked node have been

56

Internet Planner

0.4

0.4

0.4

0.6
Authorizer

0.6

GeoDB

TargetDB

AssetDB

Figure 4.5: Simplified Conservative Attack Graph for Simulation

refreshed; if either of them has been refreshed, the attack fails. If the attacker’s current

node was the VM that was refreshed, the attacker is pushed back to its previous node. If

neither were refreshed, the attack succeeds.

Both the Attacker and the GroundTruth owns a conservative attack graph (CAG). The

key difference between this two conservative attack graphs lies in the authenticity about the

MTD system configuration. The Attacker’s CAG reflects the attacker’s belief of the system

configuration, which is not necessarily true when facing a constantly changing environment.

While the CAG contained in the GroundTruth component reflects the actual and up-to-

date system configuration. Comparing the difference between the attacker’s belief and the

genuine MTD configuration is the key for judging whether the current intrusion is a success

or not and update the VM instances the Attacker currently obtained, detailed algorithms

will show this in a moment.

In this chapter, several assumptions has been made to simplify the simulations and

focus on investigating the key effect of MTD to attack. The next chapter presents a scalable

analytical model, which enables the capability to predict these simulation results. In the

next step, after a more comprehensive MTD theory has been developed as discussed in

Chapter 6, current simulation and analytical model can be extended to investigate more

broad attack scenarios with unnecessary assumptions relaxed.

1. Adaptations are applied at a specified time interval and are random in nature (which

57

is extended in the third simulation to include intelligent adaptation).

2. Adaptations are limited to VM refreshing.

3. All VMs assigned to play a given role have the same configuration except for its ID

and IP address.

4. The attacker has the full knowledge of the logical system configuration and once a

node is compromised, the attacker can immediately know where the the next node is

located to attack.

5. Attacks are restricted to the VMs playing the five roles.

6. The attacker knows immediately when a VM it has compromised has been refreshed.

While these assumptions make the simulation easier, they are also tilted toward the

attacker since only the IP address from the network level is used, and each VM assigned to

play a given role has the same configuration, advanced diversification techniques at OS level

and service level is not considered, which would make compromises more difficult. Also the

attacker is assumed to know immediately where the next node is located to attack and when

a compromised VM has been refreshed, which typically both costs more time to realize in

practice.

In addition, the simulation also reserves important characteristics of intrusion in reality.

Although assumed the attacker knows the logical system configuration, that doesn’t neces-

sarily mean the attacker knows the exact vulnerability of each machine and how to make

use of them, which still requires the attacker’s effort to learn and explore, and is indirectly

incorporated into the attack time interval. This assumption only means the attacker is

aware that there are four VMs, and the Planner is directly reachable from the internet and

also can communicate with the other three VMs.

58

4.2.1 Defender Modeling

In this section, several algorithms will be presented to show how the MTD simulator Defense

component performs the moving target defense.

The Defense component in the simulator will maintain the set of roles, R, the current

available IP addresses set, I for allocation, the set of physical hosts, H, which can be used

to launch new VM instances and current set of tasks, T . A task, t = 〈r, h, vmid, ip〉, is

composed by a role, r, a host, h, an IP address, ip, a VM instance with vmid. It represents

that a VM instance that has vmid will be launched on host, h, with IP address, ip, to play

the role, r. As stated in above assumptions, all VMs assigned to play a given role have

the same configuration except its ID and IP address, thus a task is a flat combination of

r, vmid, ip and h, without the need to create more complex role specification and machine

implementation.

Algorithm 1 adaptation(R, I, H, T, n)
Require: Parameters R: set of roles, I: ip table, H: set of physical hosts, T: set of tasks, n: number of nodes to refresh
1: Tnew = generateTask(R, I,H, T, n)

2: for each tnew in Tnew do

3: told = 〈r, i′, h′, v′〉 = getTaskFromRole(T, tnew.r)
4: inform h′ to shutdown v′

5: inform h to start v

6: T ← T − {told}
7: T ← T

⋃
tnew

8: inform GroundTruth to remove told
9: inform GroundTruth to add tnew
10: end for

The moving mechanism adopted in the MTD simulator is as follows: for the node set,

V , at each time interval, Tr, named as adaptationInterval, the simulator randomly pick,

n, nodes in V , n ≤ |V |, shutdown the old VM instances, which assigned to play the corre-

sponding roles, and start new VM instances to replace them. Algorithm 1 shows the overall

process of the adaptation. It first calls algorithm 2 which will return a new set of tasks,

Tnew, according to the number of nodes that chosen to refresh in one adaptation. Then in

lines 2-10 it iterates through all the new tasks in Tnew to inform corresponding hosts to shut

down old VM instances and launch new VM instances, it will also notify the GroundTruth

59

component to update these changes. Notice that Algorithm 1 and 2 follow the assumption

that adaptations are limited to VM refreshing. As already discussed in Chapter 3, direct

machine modification is not suggested as it can not guarantee the potential compromise to

this node is totally sanitized.

Algorithm 2 generateTask(R, I, H, T, n)
Require: R: roles, I: IP table, H: physical hosts, T: tasks

1: Tnew ← ∅
2: count← 0

3: while count < n do
4: r ← randomly pick a role r from R

5: i← randomly pick an unassigned IP address i from I

6: h← randomly pick a host h in H
7: v ← generate a new ID v for new VM

8: Tnew ← Tnew ∪ 〈r, i, h, v〉
9: count+ +
10: end while

11: return Tnew

When the GroundTruth component receives the notification from the Defense compo-

nent, it will update the mapping information between the role and the actual VM instance’s

IP and VMID information. Algorithm 3 shows this process. Lines 1-5 of Algorithm 3

correspond to line 9 of Algorithm 1, which informs the GroundTruth component to add a

new task, lines 7-11 of Algorithm 3 correspond to line 8 of Algorithm 1, which informs the

GroundTruth component to remove the old task.

Algorithm 3 groundTruthProcessMesssage(m)

1: if m contains new task information then

2: tnew ← m.getTask()
3: node← groundTruth.cag.getNode(tnew.r.id)

4: node.ip← tnew.i

5: node.vmid← tnew.v
6: . . .

7: else if m contains old task information then
8: told ← m.getTask()
9: node← groundTruth.cag.getNode(told.r.id)
10: node.ip← null
11: node.vmid← null

12: . . .

13: end if

This section models the defense of a moving target system, the next section will show

how to model the intrusion.

60

4.2.2 Attacker Modeling

There are various different kinds of attacks existing today. In this offense modeling section, I

will mainly focus on the typical multi-hop remote attack launched from external sites. In this

attack type, the attacker attempts to compromise, or make use of, intermediate machines

while jumping board to pivoting attack machines that hide deeper. Here we assume each VM

instance that plays a role in the defense component has a remote exploitable vulnerability.

The RMS enforces the communication paths for the VM instances inside the MTD system.

Thus the attacker needs to follow the paths defined in CAG to perform the multi-hop attack.

One complete attack will start from node i, and keep penetration until either the attacker

compromises the target node or the attacker totally lost any compromised node other than

i due to VM refresh. During this process, the attacker will gain and lose node privileges.

Before given the algorithms, two notions called single step attack and complete attack are

introduced to help understand the simulations.

Definition 4.1. A single step attack represents the intrusion effort involved in compromising

a node b, through a directly connected node a. Each single step attack has an associated time

interval, Ta, termed as attack interval to represent the time cost of this attack.

Definition 4.2. A complete attack represents the overall intrusion that the attacker either

compromises the target node or totally loses any compromised nodes and gets pushed back

to the origin.

Definition 4.3. A frontier edge, f = 〈p, c, t〉, represents a single step attack that will be

launched from parent node, p, to compromise child node, c, and finishes at time tick, t. Let

E represent all the edges in CAG, then obviously, 〈p, c〉 ∈ E.

Algorithm 4 shows the main attack simulation flow. Since the Defender will change

the system configuration during runtime, the Attacker is also assumed to be diligent and

will keep trying every possible intrusion frontier edge available in the time until it either

compromises the target node, or totally gets pushed back to the starting node.

61

Let N represent the set of nodes currently obtained by the attacker. Let mn represent the

most recently acquired node. Let F represent the current frontier edges that the Attackers

plan to penetrate based on N . In practice, F is a priority queue of f , f ∈ F , ordered by t.

Not every attack will be successful, thus there will be a success probability, pr, associated

with each edge. This probability depends on the vulnerability the child node has.

As shown in algorithm 4, there will be maxTimesOfAttack number of complete attacks

performed. In each complete attack, the GroundTruth history CAG list, G = {g1, g2, . . . , gtmax},

will be regenerated. Here tmax is the maximum time ticks the simulator needs to run, tmax

should be sufficiently large, such that it is enough for a complete attack to finish (either

compromise the target node or totally get pushed back to origin). Notice that for two

complete attacks, the overall time spent on each complete attack might vary due to the

uncertainty involved in adaptation as well as each single step attack’s success likelihood. In

time range [1, tmax], every adaptation interval, Tr, there will be an adaptation occurred.

Thus in {g1, g2, . . . , gtmax}, the CAG in {g1, g2, . . . , gTr−1} will be the same. Similarly, the

CAGs in {gTr , gTr+1, . . . , g2∗Tr−1} are also the same, and the rest can be analysed in the

same manner.

In Algorithm 4, Lines 3-19 will initialize the acquired nodes set, N , and corresponding

frontier edge set, F . Notice in line 5, the algorithm randomly picks a start attack time

tick between [0, Tr], this actually reflects the real world situation that, when the intrusion

is being launched, the attacker does not necessarily know how long there will be another

adaptation happens. Lines 20-48 perform the main loop in one complete attack as previously

described. Line 23 calls Algorithm 5 to judge whether the current frontier edge can be

successfully penetrated or not. Algorithm 5 first calls Algorithm 6 to compare the node

in N with the corresponding node in GroundTruth to check whether they have the same

VM instance’s identifier vmid. If not then it means the acquired node has been refreshed,

thus the attacker loses the privilege and this node needs to be removed from N , also all

corresponding frontier edges that start from this node need to be removed from F . Then

62

Algorithm 4 attackSimulation
1: for i = 0→ maxTimesOfAttack do

2: regenerate the groundtruth

3: N ← ∅
4: F ← ∅
5: ct← randomly pick an integer in [0, reorganizationInterval] . Simulate the start time of attack

6: mn← node i in attacker’s cag
7: N ← N ∪ {mn}
8: E′ ← get all edges start from mn

9: for each 〈p, c〉 in E′ do
10: if c /∈ N then

11: ctcag ← get cag at ct from ground truth

12: ip← ctcag.getNode(c.getID()).ip
13: vmid← ctcag.getNode(c.getID()).vmid

14: c.ip← ip
15: c.vmid← vmid

16: f ← 〈mn, c, ct+ attackInterval〉
17: F ← F ∪ {f}
18: end if

19: end for

20: while mn.id 6= targetID or (|N | > 1 and |F | > 0) do
21: f ← poll a ticked edge from priority queue F

22: ct← f.t

23: b← singleStepAttack(f) . Call Algorithm 5
24: if b then

25: N ← N ∪ {f.c}
26: mn← f.c
27: end if

28: for each n in N do
29: if n is not start node i then

30: E′′ ← get edges start from n

31: for each e in E′′ do
32: if e.c /∈ N then

33: for each f in F do

34: if not e ⊂ f then
35: cag ← get cag at ct from ground truth

36: ip← cag.getNode(c.getID()).ip

37: id← cag.getNode(c.getID()).vmid
38: c.ip← ip

39: c.id← id
40: f ← 〈mn, c, ct+ attackInterval〉
41: F ← F ∪ {f}
42: end if
43: end for

44: end if

45: end for
46: end if

47: end for
48: end while
49: end for

63

Algorithm 5 singleStepAttack(f)

1: refreshPushBackCheck(f.t) . Call Algorithm 6

2: cag ← get cag at f.t from ground truth
3: d← randomly generate a double value between [0,1]

4: e← get edge from f.p to f.c in attackerCag
5: if d > e.prob then

6: return false

7: end if
8: beliefIp← f.c.ip

9: beliefV mid← f.c.vmid

10: trueIp← cag.getNode(f.c.id).ip
11: trueV mid← cag.getNode(f.c.id).vmid

12: if beliefV mid 6= trueV mid then

13: return false
14: else if beliefV mid == trueV mid and beliefIp 6= trueIp then

15: if 〈f.p, f.c〉 ∈ cag.E and f.p ∈ N then

16: return true
17: else

18: return false
19: end if

20: else

21: if f.p ∈ N then
22: return true

23: else

24: return false
25: end if

26: end if

Algorithm 6 refreshPushBackCheck(t)
Require: Parameter t: the time tick to check

1: cag ← get cag at tick t from ground truth
2: for each n in N do

3: if n is not start node i then

4: vmid← cag.getNode(n.id).vmid
5: if vmid 6= n.vmid then
6: N ← N − {n}
7: E′ ← get all edges start from n in attackerCag
8: for each 〈p, c〉 in E′ do
9: for each f in F do

10: if 〈p, c〉 ⊂ f and t == f.t then
11: F ← F − {f}
12: end if

13: end for
14: end for

15: end if
16: end if

17: end for

64

Lines 3-7 of Algorithm 5 mimic the real world situation that not every exploit will be success.

If lines 3-7 of Algorithm 5 pass the probability check, then lines 8-25 perform a last check to

judge whether the current single step attack was a success or not. The main idea is that at

the finish time f.t of current single step attack, only when node f.p is still in acquired node

set N and the belief IP and VMID in node f.c are the same as the one in GroundTruth,

this single step can be considered as success.

The algorithms in offense and defense modeling are general in terms that they can be

applied to different graph structures, such as trees, directed and undirected graphs.

4.2.3 Simulations and Results

Three high-level simulations were developed to reflect the MTD approach discussed above.

The first simulation, which we call the RMS-only Simulation, was developed to evaluate the

effectiveness of our MTD approach using an existing network simulator called NeSSi2, an

open-source, distributed and discrete-event based network security simulator with support

for complex application-level scenarios based on a simulated TCP/IP protocol stack107. In

this simulation, we assumed the attacker had full knowledge of the logical system config-

uration and only attacked through the restricted communication path. In the second and

third simulations (which are termed as broad attack simulations), while the attacker still

has full knowledge of the logical system configuration, the attacker also attempts attacks

between nodes not directly connected via enforced communication path. For these broad

attack simulations, we developed a unique event-driven simulator based on the experience of

building our first NeSSi2-based simulator. In the first two simulations, a basic MTD system

that adapted randomly at a specified time interval was implemented. However, in the last

simulation, we upgraded the MTD to an intelligent MTD system that could detect on-going

intrusions when attacks were attempted outside the RMS system.

65

4.2.3.1 RMS-only Attack Simulation System

The three main components of the RMS-only testbed include the Defense component, the

Attack component and the Ground Truth component. The Defense component contains

the Configuration Manager, three physical machines (hosts) and five active VMs. These

five VMs can be assigned to any hosts to play any of the five roles: Authorizer, Planner,

TargetDB, AssetDB, or GeoDB. The Configuration Manager is the core of the Defense

component and combines the functionality of the Configuration Manager and the Adaptation

Engine from Figure 4.1. At each adaptation time interval, the Configuration Manager selects

an adaptation by creating a new task, tnew = {role, host, vmid, ip}, by (1) randomly picking

a role, (2) randomly picking a host, (3) generating a new unique VM ID, and (4) randomly

picking an unassigned IP address. The Configuration Manager finds the associated old task,

told = {role, host′, vmid′, ip′}, within its set of existing tasks, T , by matching role names. It

then informs the old task’s current host, host′, to shut down the vmid′ VM and tells the new

host, host, to start up a new VM at address ip to play the role. Finally, the Configuration

Manager updates the Ground Truth component with the current configuration.

The Attack component simulates the attacker and uses the CAG shown in Figure 4.5 to

allow it to know exactly where to attack to achieve its goal, the TargetDB. Since the only

available attack path is to penetrate from the Internet to the Authorizer, the Authorizer

to the Planner, and then from Planner to TargetDB. The edge values in the CAG denote

the attacker’s probability of intrusion success between nodes assuming both nodes remain

static. As shown, the attacker has a 40% chance of compromising the TargetDB if (1) it has

already compromised the Planner and (2) the Configuration Manager does not adapt either

the Planner or the TargetDB during the time step. In a real system, these probabilities

would be based on the current probability of unknown and known vulnerabilities of the

roles.

Each simulated attack has several steps. First the current CAG is retrieved from the

Ground Truth component. Next, after waiting ∆t time intervals (which simulates the time

66

required to launch an attack), an updated version of the CAG is retrieved and used to

determine whether the attack has succeeded or not. To determine attack success, we first

generate a random value and check to see if it’s less than the CAG edge value for the current

attack. If it does, the simulation determines if the VMs on either the attacker’s current node

or the attacked node have been refreshed; if either of them has been refreshed, the attack

fails. If the attacker’s current node was the VM that was refreshed, the attacker is pushed

back to its previous node. If neither were refreshed, the attack succeeds.

The Ground Truth component maintains the current CAG. The Ground Truth compo-

nent receives adaptation information from Configuration Manager and updates the CAG as

required. It also supplies the current CAG to the Attack component when requested. The

Attack component, Defense component, and Ground Truth component are implemented as

NeSSi2 components along with the three host resources: hostA, hostB, and hostC. These

six components are loaded onto the corresponding nodes as shown in Figure 4.4.

4.2.3.2 RMS-only Attack Simulation Results

We conducted two different experiments (denoted 1a and 1b) to see how the frequency of

system adaptation would impact attack success. Within each experiment, we included a

control scenario where no adaptation occurred. Attacks were launched from the Internet

towards the TargetDB. Each attack consisted of single step attacks from the Internet to the

Authorizer, the Authorizer to the Planner, and from the Planner to the TargetDB. Once the

TargetDB was compromised, the attack was counted as successful. If a single step attack

failed, the attacker remained at its current VM and retried the attack until successful or the

MTD system refreshed the VM. In each experiment, we performed 1000 single step attacks

with a fixed ∆t between each single step attack of 100 time intervals. We ran the 1000 single

step attacks against an MTD system using 5 different time intervals (20, 50, 100, 200 and

∞) between each adaptation. Note that an ∞ adaptation interval corresponds to a static

system.

67

In the experiment 1a, we assumed that in order to stop a single step attack from suc-

ceeding, either a randomly generated probability value is greater than the single step edge

associated probability in CAG, or the MTD must refresh either the node under attack or the

node from which the attack was launched during the attack (100 time intervals). Therefore,

if there was a single step attack occurring from the Planner to the TargetDB, it could be

stopped if either a randomly generated probability value is greater than 0.4, or the Plan-

ner, or TargetDB roles were refreshed by the MTD system during the attack. However,

the attacker would remain on the network unless the actual VM it was residing on was

refreshed. The green bars in Figure 4.6 show the ability of the MTD to deter a successful

attack from the Internet through the Authorizer and the Planner to the TargetDB. When

the configuration is static, the number of successful attacks (of each round of 1000 single

step attacks) is 183. Essentially, since no refreshing was going on, this is the maximum

number of successful attacks given the probabilities of single step attack success. Once the

MTD system is activated, the number of successful attacks decreases. With an adaptation

interval of 200, the number of successful attacks is reduced to 123, while an interval of 100

reduces it to 57, and an interval of 20 eliminates all successful attacks against the TargetDB.

Figure 4.6 clearly shows that as the adaptation interval is reduced, the effect of the MTD

defense is clearly visible.

In the experiment 1b, we assumed that in order to stop an attack from succeeding, the

MTD could refresh any node on the path to the node being attacked during the attack (100

time intervals). Thus in this version, if there was a single step attack occurring from the

Planner to the TargetDB, it could be stopped if either the Authorizer, Planner, or TargetDB

roles were refreshed during the attack. The gold bars in Figure 4.6 shows the ability of the

MTD to deter a completed attack from the Internet through the Authorizer and the Planner

to the TargetDB. When the configuration is static, the number of completed attacks (out of

1000) is 168, while an adaptation interval of 200 reduces that number to 107, 100 reduces

it to 41, and an adaptation interval of 20 again eliminates all successful attacks against

68

0

27

57

123

183

0
11

41

107

168

0
20
40
60
80

100
120
140
160
180
200

20 50 100 200 Static

Su
cc
es
sf
ul
 a
tt
ac
ks
 (p

er
 1
00
0
st
ep

s)

Adaptation Interval

Figure 4.6: Attack Success Against TargetDB (experiment 1a are shown by green while
experiment 1b are shown by gold bars)

the TargetDB. Again, Figure 4.6 clearly shows that as the adaptation interval is reduced,

the effect of the MTD defense is obvious. Experiment 1a and 1b actually represents two

different types of attacks. For 1a, the attack can be considered as worms, which can infect

machines by the program itself, while for 1b, it’s corresponding to the situation where the

attacker tries to compromise the target machine through the intermediate nodes that are

compromised as springboard.

4.2.3.3 Broad Attack Simulation System

In the broad attack simulation, the TargetDB is again the attacker’s goal. However, we

assume a more aggressive attacker who automatically attacks each available node in the

network from each compromised VM using either the RMS or by guessing an address and

port of an available node. Thus, the attacker is not limited to the RMS routes and the

attack routes form a completely bidirectionally connected graph (except for the Internet

node) as shown in Figure 4.7. However, since we assume that the RMS is designed to not

respond to standard requests for mapping information, this eliminates the attacker’s ability

to automatically map the address space.

The probabilities associated with each attack depend on the node from which the attack

69

Internet Planner

0.4

0.4

0.4

0.6
Authorizer

0.6

GeoDB

TargetDB

AssetDB

RMS attack route
Non-RMS attach route

Figure 4.7: Attack Success Probabilities in Broad Attack Simulation

originates and the node being attacked. All attacks along the RMS maintain their prob-

abilities as shown in Figure 4.7. However, the dashed lines, which denote attacks outside

the RMS, have a much lower probability due to the fact that the attacker must guess the

appropriate port for the attack to even have a chance to succeed. Therefore, each dashed

line has an attack success probability of p/65, 536 where p is the probability of successfully

attacking that node through the RMS and 65536 is the port number space. Thus, all attacks

against the TargetDB from any node but the Planner would have a 0.4/65, 536 probability

of success. While this might seem like a very low probability, we believe that it is actually

the upper bound for such an attack. Since the VMs addresses are being modified over time,

the attacker will also have to guess the VM address. However, since it is hard to determine

the specific range over which the addresses be assigned, we assume the attacker can guess

that in some way (again giving the benefit to the attacker as opposed to the MTD system).

The simulation starts with the attacker at the Internet node. From the Internet node,

the attacker attempts to attack each node in the network. The success of each attack is

determined based on the probability of success of the attack and whether either the node

being attacked or the node from which the attack originated was refreshed during the attack.

If any of the attacks were successful, the newly compromised nodes are used to mount new

attacks. Again, we assume we try to attack all uncompromised nodes from each newly

70

compromised node. This process continues until the TargetDB becomes compromised, or

the attacker has no compromised nodes in the network (other than the Internet).

4.2.3.4 Broad Attack Simulation Results

We conducted 1000 runs (as opposed to 1000 single step attacks used in the RMS only

experiments) of the broad attack simulation against various frequencies of MTD adaptation

to determine its impact against attack success. Each run consisted of a sequence of attacks

starting with the initial attack from the Internet to the Authorizer node and continuing

until either (1) the attacker did not have access to a compromised node in the network or

(2) the attacker successfully compromised the TargetDB. As with the previous experiments,

we included a static control scenario where no adaptation occurred. In each experiment, we

again assumed a fixed time interval ∆t = 100 between each single step attack, and we ran

the 1000 runs using 5 different adaptation intervals (20, 50, 100, 200 and ∞).

Figure 4.8 shows the ability of the MTD to deter an attack from the Internet through

the network to the TargetDB. When the configuration is static, the number of completed

attacks (out of 1000) is 588, which is close the expected 60% rate given that the probability

of compromising the Authorizer node from the Internet is 0.6. This is due to the fact

that if the attacker compromised the Authorizer node on the first attack, with a static

network, the attacker will remain on the Authorizer node attacking various network nodes

until the TargetDB is eventually compromised. We also noted that no attacks outside the

RMS actually succeeded, which was expected given the extremely low probability of success.

When we introduced our random adaptations, we found that an adaptation interval of 200

reduced the number of successful attacks against the TargetDB to 421, an adaptation interval

of 100 reduced that number to 57, an adaptation interval of 50 allowed only 24 successful

attacks, and an adaptation interval of 20 totally eliminated the ability of the attacker to

compromise the TargetDB. Once again, Figure 4.8 clearly shows that as the adaptation

interval is reduced, the effect of the MTD defense is clearly visible.

71

0	
 24	

216	

421	

588	

0	

100	

200	

300	

400	

500	

600	

700	

20	
 50	
 100	
 200	
 Sta-c	

Su
cc
es
s	
 a

/
ac
ks
	
 e
ac
h	

10
00
	
 ru

ns
	

Adapta8on	
 Interval	

Figure 4.8: Attack Success Against TargetDB for Broad Attack Simulation Against Simple
MTD

4.2.3.5 Intelligent MTD Simulation System

To help determine the effect of an intelligent MTD system, we again used our broad attack

simulation where the attacker attempts to compromise the TargetDB. In fact, the exper-

imental setup was the same as for the broad attack simulation presented above with one

exception. To simulate an intelligent MTD system, we assumed that whenever the attacker

attempted an attack outside the RMS, that such an attack could trigger an alert based on

some probability of detection, pd. Since the RMS is set up to allow only communication from

known nodes on exactly one port, we believe the implementation of such detectors would be

both practical and efficient. When detected, alerts would be sent directly to the Adaptation

Engine, which would request that Configuration Manager immediately refresh the VM from

which the detected attack originated. In addition, random adaptations continued to occur

at the same predetermined intervals ∆t as used in the previous experiments.

4.2.3.6 Intelligent MTD Simulation Results

The result of the intelligent MTD simulation is shown in Figure 4.9; note that the graph

is logarithmic to show proper detail. Since the attacker indiscriminately attacks all nodes

in the network without necessarily attempting to go through the RMS system, thus raising

many alerts, the success rate of the attacker is reduced significantly. At a 100% probability

72

0 0 0 0 00

1 1

3
2

0

2

5

17

32

1

8

38

69
166

1

16

72

166 276

0

40

181

399 616

0

1

10

100

1000

Su
cc
e
ss
fu
l A

tt
ac
ks
 p
e
r
1
00
0

20 50 100 200 Static
Interval for Random Adaptations

pd
0%

15%

25%

50%

75%

100%

Figure 4.9: Attack Success Against TargetDB for Broad Attack Simulation Against Intelli-
gent MTD

of detection, the attacker is always immediately detected and removed from the system, thus

the attack success rate is 0%. However, even with lower pd values, the reduction in attack

success is significant. Even in the static case, with a pd of 50%, the number of successful

attacks is reduced from 616 (61.2%) to 32 (3.2%). We believe this shows the power of using

an RMS with an intelligent MTD system. The RMS minimizes the attack surface to such

a degree that attacks outside the RMS are easily detected and significantly decreases the

attacker’s likelihood of success.

When compared to the attack success rate of the simple MTD (shown by the pd = 0%

line in Figure 4.9), the intelligent MTD performs significantly better. A slight data anomaly

is evident at adaptation interval 20 when pd is 15% and 25%; there is one successful attack

while there are none when pd = 0%. With more runs, we believe the data would normalized.

This does show that while the probability is extremely low, the attacker can succeed. While

not conclusive, this clearly shows the need for further research into the costs and benefits

of intelligent MTD systems.

73

4.3 Conclusion

This chapter presents a high-level moving target defense system design. Based on this

design, simulated MTD testbeds are developed with the core algorithms given. Then several

simulation experiments are conducted to study the effects of randomly adapting one aspect

of the system (role to VM mapping) in reducing attacker’s success likelihood. The results

show a reduction in attack success as the rate of adaptation increased. In addition, more

simulations also have been conducted by incorporating the knowledge of when and where to

adapt based on detecting attacks outside the RMS. Even with less than perfect detectors,

significant improvements in network security can be made.

Simulations help us understand the effect of MTDs with intuitive results, however, sim-

ulations cost time and does not mathematically reveal the hidden relationships between

key involved parameters, such as Ta and Tr. If we could have a model that captures these

relationships clearly, then based on that, more useful predictions can be made to help the

settings of various MTD system operational parameters. Targeted at this goal, the next

chapter will present an scalable analytical model.

74

Chapter 5

A Scalable Analytical Model

5.1 Motivation

As shown in Chapter 4, more frequent system adaptation and more accurate intrusion

detection leads to a reduced likelihood of intrusion. This brings up the question of whether

an underlying model exists that can be used to predict the intrusion success likelihood.

Models like this will be invaluable for MTD systems because they can explicitly reveal

the key relationships between the important parameters involved and is the key to help

understanding why and how adaptation can improve security.

In this chapter, offensive and defensive modeling is used along with simulations to create

an analytical model that can answer these questions. The event-driven simulation from the

last chapter was extended and used to investigate how well the results predicted by this

proposed analytical model match the simulation results.

5.1.1 Extended Simulation

The extended event-driven simulator used in this chapter still has three components : the

Attack component, the Defense component and the GroundTruth component. In this ex-

tended event-driven simulator, a more complex scenario is considered and can be represented

75

by the conservative attack graph as shown in Figure 5.1. As we see, there are eight roles and

each is assigned to a VM to play it. The intrusion path could be from as long as four hops

from the original attack node to the target node, such as the path i→ a→ c→ f → h, to

as short as only one hop, such as the path i→ a. With this setting, experiments can be set

up to evaluate the different impact of MTD adaptation to these varied length attacks.

ai c

b e

d g

f h
pcf

pdg

pac
pad

pab

pia

pce

pfh

Figure 5.1: sample conservative attack graph

The CAG is a graph, g = (V,E), where V is the set of vertices and E is the set of

edges in this graph. Figure 5.1 shows a sample conservative attack graph. In this CAG,

node set, V = {a, b, c, d, e, f, g}, are roles that are defined in the Defender. Each role

specifies the configuration. During runtime, when a role is played by a VM instance, the

VM instance implements these specified configurations, such as a unique ID and IP address.

The configurations are not necessarily restricted to just VMID and IP address, they can

be extended to all the identified adaptable configuration units discussed in Chapter 3. The

edge set E = {i → a, a → b, a → c, a → d, c → e, c → f, d → g, f → h}, represents the

communication rules between different roles defined by the RMS and contains the success

likelihood of intrusion when both nodes connected by this edge are static. The intrusion

starts from node i where the attacker is located.

The GroundTruth component maintains a list of CAGs, G = {g1, g2, g3, . . . , gt}, where

t represents the time tick. These graphs contain key configuration information that is used

to compare the attacker’s belief to judge whether the intrusion is successful or not.

The first set of experiments, which focused on investigating the impact of pure random

adaptation to the intrusion success likelihood, is based on the broad attack simulation as

76

discussed in chapter 4. This means that the Attacker owned CAG not only contains the

topology as the GroundTruth CAG defined it, but it also adds all the potential intrusion

paths from the current compromised node to all other nodes (except i). These added

paths could deviate the path enforced by RMS. However, based on the experience of the

broad attack simulation experiments conducted in Chapter 4, the probability of succesfully

following these deviated edges is extremely low and can be neglected. Thus, in this set of

experiments, we drop these deviated edges in the Attacker’s CAG, which gives the Attacker’s

CAG the same topology as the GroundTruth’s CAG. The attacker will keep attacking until

it either compromises the target or it gets totally pushed back to the original node i.

5.2 The Model

Based on the algorithms and MTD simulation presented in Chapter 4, one straightforward

way to estimate the success likelihood of an intrusion to a target node is to use Monte Carlo

simulation. One can run multiple complete attacks and count the fraction of times that the

Attacker successfully acquires the target node. However, simulation takes time, especially

when the size of CAG becomes large and the target node is deep in the system. This method

is good for offline precalculation if we know all the possible network configurations, but it’s

not suitable for online estimation of success likelihood when new network configurations are

deployed.

In this section, an analytical model is presented based on the attacker and defender

modeling and can be used to estimate the intrusion success likelihood. This model not only

has important characteristics, such as efficiency and scalability, but also helps to clearly

reveal the relationships between the key parameters involved in an MTD system. Ideally,

this model will provide deeper understanding about the key MTD settings, such as diver-

sification, randomization and time as discussed in Chapter 3, that impact various types of

attacks against an MTD system. As we will see, the insights gained facilitates the develop-

77

ment of a theory of MTD in Chapter 6, which will greatly benefit and guide MTD system

design and development.

5.2.1 Suitable Structure

The analytical model presented in this section is suitable for graph structures where no

cycles exist. However, for cyclic graphs, we can take advantage of techniques for unfolding

cyclical graphs into non-cyclical graphs108 that allow this analytical model to still apply.

Thus it can be easily applied to large number (hundreds or thousands) of computing nodes

that are common in today’s enterprise network environment.

5.2.2 Model Parameters

This section defines the input and output parameters as well as the assumptions that are

used in our mathematical analysis model.

Input parameters:

• A conservative attack graph

The conservative attack graph not only reflects the role relationships in the system,

but also contains security information such as vulnerability and success likelihood

for static intrusion. This graph should follow the structure discussed in the previous

section. Figure 5.1 shows the sample CAG that used to conduct the simulations. Note

that the Attacker will launch intrusion from node i, and this node doesn’t belong to

the Defender. The edges in this CAG define the communication rules between the roles

(except i → a). When the system runs, each role will be played by a VM instance.

The actual movement happens when we change the mapping between the roles and

VMs.

• Ta : attack interval

The time required for an attack along an edge from one node to an adjacent node. For

78

now, we assume each edge in a CAG has the same attack interval. This assumption

is relaxed later.

• Tr : adaptation interval

The time interval between each system adaptation. For now, we assume this value

will not change once system starts running. This assumption is relaxed later.

• n : number of active V Ms in the system

Each virtual machine is assigned to a specific role and is involved in sytem adaptation.

• k : number of VMs refreshed in each adaptation

Each adaptation randomly picks k out of n VMs for refreshing.

• pij : success likelihood of intrusion

pij reflects the success likelihood of intrusion from node i to node j assuming no

adaptation occurs on both nodes, which is a typical static situation. For example,

in Figure 5.1, pia represents the success likelihood of intrusion from node i to the

node a when neither node gets refreshed. And pab represents the success likelihood of

intrusion from node a to node b when neither a and b gets refreshed.

Output parameters:

• Psuccess x

Using the input parameters, the model predicts the success likelihood of intrusion from

node i to each other node x in the given CAG. For example, in Figure 5.1, Psuccess a

represents the success likelihood of intrusion from node i to node a. And Psuccess c

represents the success likelihood of intrusion from the node i to node c.

5.2.3 Challenges

The key challenge in defining an analytical model for MTD systems lies in its nonmono-

tonicity. In the MTD context, the typical asymmetrical time advantage of the attacker

79

(such as having enough time to perform reconnaissance, choosing the best time to launch

an intrusion and maintaining obtained privileges for a long time without being discovered)

is eliminated. In an MTD system, the attacker might constantly lose any privileges gained

during an attack due to adaptation and be required to regain them to achieve the final

target. MTD systems not only add time pressure for an attacker but also can reduce the

impact of a compromise by proactively adapting to eliminate the compromise. Thus, when

facing an MTD system, an attacker will have to be diligent if they want to succeed. How-

ever, the defender’s consistent adaptation will frustrate them again and again and hopefully

force them give up. Thus, modeling a diligent attacker that works inexhaustibly until either

compromise or elimination from the system is required. Inspired by this, the analytical

model captures the extreme situation where the attacker keeps attacking the next node as

long as he/she can stay in the system. The intrusion success likelihood estimated under

such situation should capture the upper bound of Psuccess.

The first attempt to get the output parameters was to create a Markov Chain and derive

the success likelihood when this Markov Chain converges. One way to model the Markov

Chain is to consider the set of nodes currently obtained by the attacker as a Markov Chain

state. Unfortunately, it turns out that in this approach, the state space is exponential when

the CAG size becomes large due to the nonmonotonicity of MTD system. In addition,

the state transition probabilities become extremely difficult to derive (if not impossible) as

the transition possibility can be from one state that contains several compromised nodes

(for example, 5) to another state that can contain any number of compromised nodes (for

example, 0-8). An alternative approach is to consider each node as a state. The forward

transition from one state to a deeper node represents the probability that the attacker can

successfully obtain the next node. The self transition represents the probability the attacker

can stay at current node. The backward transition from a deeper node state to a previously

obtained node represents the probability the attacker gets pushed back to previous node due

to adaptation. However, this approach also turns out to be poor because as the CAG size

80

becomes large, the backward transition becomes extremely hard to derive due to adaptation.

The attacker can be pushed back to any previously obtained node in one or more adaptation.

Also the nonmonotonicity totally breaks the important assumption that exists in Markov

Chain model that state Xi only depends on Xi−1 and is independent of all previous states

of Xi−1.

Nevertheless, these attempts proved to be benefitial in that they provided the key insight

that the analytical model should only consider forward and self transitions, with backward

transitions being ignored. Although we do not directly consider backward transitions, they

can be modeled indirectly by using forward and self transitions as described below.

5.2.4 An Original Model

In this section, the original analytical model is presented. As an example, we use the system

in Figure 5.1 and assume that the attacker is trying to compromise node b from node a.

The following analysis for b can be applied to node c and d similarly. The key idea of this

original model is illustrated by Figure 5.2. The values of p1, p2, p3 represent the transition

probabilities from i to a, from a to a and from a to b under the condition that adaptations

may occur during the attack.

ai b
p1

p2

p3

Figure 5.2: Original Transition Model for i→ a→ b

The forward transition probability from node i to node a is obtained as follows. The

probability that node a gets refreshed in one adaptation is k
n
, thus the probability of it not

being refreshed in one adaptation is 1− k
n
. The intrusion from i to a takes time interval Ta

and during this time period, Ta
Tr

adaptations occur. Each adaptation is independent of each

other and during Ta, the probability that node a does not get refreshed is (1− k
n
)
Ta
Tr . In the

81

static situation, the transition probability from i to a is pia, thus the final success likelihood

from i to a (which is p1) can be derived as shown in Equation (5.1).

For the self transition from a to a, there are two possible ways for an attacker to remain

at the node a during a time period Ta. First, the attacker may fail to penetrate from

a to b with probability (1 − pab) assuming node a doesn’t get refreshed during this time

period, which gives us the probability (1 − pab) × (1 − k
n
)
Ta
Tr . The second probability is

that node a does not get refreshed, the attacker successfully follows the edge from a to b

with probability pab, but node b does get refreshed during time period Ta. This has the

probability of (1 − k
n
)
Ta
Tr × pab × (1 − (1 − k

n
)
Ta
Tr). Summing these two possible transition

probabilities, the final probability of remaining at a is p2 as shown in Equation (5.2).

Similarly the attacker can successfully compromise b from a when both a and b do not

get refreshed and the attacker can follow the edge from a to b with probability pab. This

gives us the probability p3, which is shown in Equation (5.3).

p1 = pia × (1− k

n
)
Ta
Tr (5.1)

p2 = pab × (1− k

n
)
Ta
Tr × (1− (1− k

n
)
Ta
Tr)+

(1− pab)× (1− k

n
)
Ta
Tr

= (1− k

n
)
Ta
Tr − pab × (1− k

n
)
2Ta
Tr (5.2)

p3 = pab × (1− k

n
)
2Ta
Tr (5.3)

Based on p1, p2, p3, the following equations define the final probability of compromising

b from i. As shown in Equation (5.2), p2 can be simplified as (1− k
n
)
Ta
Tr − pab × (1− k

n
)
2Ta
Tr .

82

Thus, the final probability of compromising b can be derived as Equation (5.5):

Psuccess b = p1 × [p0
2 + p1

2 + . . .+ p∞2]× p3 (5.4)

= pia × (1− k

n
)
Ta
Tr × [p0

2 + p1
2 + . . .+ p∞2]

×pab × (1− k

n
)
2Ta
Tr (5.5)

As 0 < p2 < 1, then p0
2 + p1

2 + p2
2 + . . .+ p∞2 = 1

1−p2 , thus:

Psuccess b = pia × (1− k

n
)
Ta
Tr × 1

1− p2

× pab × (1− k

n
)
2Ta
Tr

=
1

1− p2

× pia × pab × (1− k

n
)
3Ta
Tr (5.6)

This derivation actually shows that the probability of compromising the ultimate target

node is the summation of the probabilities associated with all possible intrusion paths the

attacker could take that lead to the target. This illustrates the key idea of the analytical

model. As long as the attacker can stay on a system node, new attacks will be launched as

long as the target has not been obtained.

For example, consider a deeper penetration path, such as attempting to compromise node

h from i in Figure 5.1. The attacker might first compromise a, then c and later f , but then

lose the privilege of f . In this situation, as the attacker still has c, thus they must restart from

c again to regain f . Now assume that the attacker successfully obtains f again and then h. In

this case, the overall intrusion path is i→ a→ c→ f → c→ f → h, where f → c actually

represents a backward transition. However, as discussed, the analysis model does not model

backward transition directly but uses forward and self transitions to indirectly model it.

Thus, the overall intrusion path can be indirectly captured as i→ a→ c→ c→ c→ f → h.

The key point here is that in the process of a complete attack to target node h, the

attacker can gain and loose intermediate nodes such as c and f multiple times. However,

how often and with what probability the attacker moves forward and gets pushed back is

83

not important any more, as it can be either pushed back to c from f or pushed back directly

to a from f . As long as the attacker can stay at a or c or f , he/she will keep attacking the

next node, trying to get to h. Obviously, if the attacker loses access to a, c and f , a whole

new attack will need to be started. This way, one can avoid modeling the huge number

of backward transition probabilities when CAG size becomes large and focus only on the

analysis of forward and self transitions.

To verify whether this analytical model can be used to estimate the success likelihood,

the values predicted by this model are compared to the success likelihood calculated through

Monte Carlo simulations. The CAG used in these experiments is as shown in Figure 5.1.

In these experiments, the attack interval Ta is set as 100, the adaptation interval Tr has

17 different values, they are 20, 30, 50, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800,

1,200,000. In these values, 1,200,000 represents the static situation where no adaptation

occurs. In addition, every edge x→ y is assumed to be associated with the static transition

probability pxy = 0.6. In each Tr setting, 20,000 complete attacks have been executed. In

these experiments, the attacker tried to compromise b, e, g and h. For example, in each

complete attack where the attacker tried to compromise b, the attacker tried all edges in

the CAG until either the attacker obtained b or got totally pushed back to i. In each of

the 20,000 complete attacks attempting to compromising b under a specific Ta and Tr, the

success likelihood of compromising b can be calculated by dividing 20,000 by the number of

times that b is successfully compromised. Similarly, experimental results can also be used

to calculate the success likelihood of compromising e, g and h.

Figure 5.3 shows the comparison between the model probabilities calculated by Equa-

tion (5.5) and the success likelihood values obtained from the experiments.

As Figure 5.3 shows, the model matches the trend of the experimental results. However,

the left part of the red curve that represents the model’s prediction overestimates the results

from the Monte Carlo simulations. The first row of Table 5.1 shows that the maximum

deviation between the model and experiments is about 8% and standard deviation between

84

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800 900

S
uc

ce
ss

fu
l R

at
io

Adaptation Interval

Successful Ratio Comparison in 20000 Attempts -- B

 Original Model
 Experiment

Figure 5.3: Model vs Experiment – Compromise b

the model and experiments is around 4.6%.

To further investigate this, consider node e (Figure 5.1) as the target. Again, all the

backward transitions are discarded and only forward and self transitions are considered as

shown in Figure 5.4. The following analysis also applies to node f and g. Notice this time,

p1 is still the same, but p2 represents the self transition probability from a to a when trying

to compromise c instead of b. Likewise, p3 represents the forward transition from a to c,

instead of a to b.

Table 5.1: Original Model versus Experiment

max deviation variance std deviation
b 0.082141 0.0021680 0.046562
e 0.074130 0.0015741 0.039675
g 0.073930 0.0016396 0.040493
h 0.065965 0.0016256 0.040319

The probabilities p4 and p5 represent the transition probabilities from c→ c and c→ e

85

ai ec
p5p1

p2

p3

p4

Figure 5.4: Original Transition Model for i→ a→ c→ e

and can be calculated as follows:

p2 = pac × (1− k

n
)
Ta
Tr × (1− (1− k

n
)
Ta
Tr)+

(1− pac)× (1− k

n
)
Ta
Tr

= (1− k

n
)
Ta
Tr − pab × (1− k

n
)
2Ta
Tr (5.7)

p3 = pac × (1− k

n
)
2Ta
Tr (5.8)

p4 = pce × (1− k

n
)
Ta
Tr × (1− (1− k

n
)
Ta
Tr)+

(1− pce)× (1− k

n
)
Ta
Tr (5.9)

= (1− k

n
)
Ta
Tr − pce × (1− k

n
)
2Ta
Tr (5.10)

p5 = pce × (1− k

n
)
2Ta
Tr (5.11)

Thus, the final success likelihood of compromising e is shown in Equation 5.12,

Psuccess e = pia × (1− k

n
)
Ta
Tr × [p0

2 + p1
2 + . . .+ p∞2]

×pac × (1− k

n
)
2Ta
Tr × [p0

4 + p1
4 + p2

4 . . .+ p∞4]

×pce × (1− k

n
)
2Ta
Tr (5.12)

86

which can be simplified to:

Psuccess e =
1

1− p2

× 1

1− p4

×pia × pac × pce × (1− k

n
)
5Ta
Tr (5.13)

Figure 5.5a shows the comparison between the probability values calculated through

Equation 5.13 and the values computed from experiment results. As shown, the two curves

doesn’t match exactly. The second row of Table 5.1 shows that for node e, the model

predicted results have a maximum deviation around 7.4% and a standard deviation around

4% as compared to the Monte Carlo simulation results. A careful comparison shows us

that the model underestimates the experimental results when Tr > Ta, but overestimates

the experimental results when Tr < Ta. This observation reveals a missing aspect of this

original model. When we derive the probability formula for each transition, the original

model tries to model each transition edge as a single step attack with time interval Ta.

However, when Ta < Tr, a diligent attacker can actually launch multiple single step intrusion

attempts in time period Tr if the first one fails, thus increasing the possibility of success.

Also when Ta > Tr the attacker could be kicked out without even being able to finish a

single step attack, thus reducing the probability of success. However, the original model

does not consider this and treats it as a single step intrusion, which is why it overestimates

the success likelihood when Ta > Tr. Based on this analysis, the next section presents

an improved model that takes into consideration these missing aspects and shows that it

improves the accuracy of the analytical model.

5.2.5 An Improved Model

In this section, an improved model is proposed to better estimate the success likelihood of

compromising each node. As analyzed above, the main problem with the original model

is that when Tr becomes larger than Ta, we ignore the fact that the attacker can actually

87

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800 900

S
uc

ce
ss

fu
l R

at
io

Adaptation Interval

Successful Ratio Comparison in 20000 Attempts -- E

 Original Model
 Experiment

(a) Original Model vs Experiment

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800 900

S
uc

ce
ss

fu
l R

at
io

Adaptation Interval

Successful Ratio Comparison in 20000 Attempts -- E

 Improved Model
 Experiment

(b) Improved Model vs Experiment

Figure 5.5: Comparison of Compromise e

launch multiple attacks during Tr. When Tr becomes smaller than Ta we ignore the fact that

the attacker can be kicked out and can not spend the whole Ta attack interval. The model

proposed in this section is enhanced to compensate for these situations in both forward and

self transitions.

Using Figure 5.4 as an example, the static probability associated with the edge from a

to c is not pac any more, but 1 − (1 − pac)
Tr
Ta . In time period Tr, attacker can launch Tr

Ta

intrusions. The probability that all these attacks are fail is (1− pac)
Tr
Ta , thus the probability

that the attacker can succeed in this attack is 1 − (1 − pac)
Tr
Ta . In the improved model,

this probability is used to replace all the pac probabilities in the original model. Similarly,

1− (1− pce)
Tr
Ta is used to replace all the pce probabilities in the original model.

Thus the improved transition model for i→ a→ c→ e is shown in Figure 5.6 where p′1,

p′2, p′3, p′4 and p′5 represent the new transition probability.

ai ec
p′5p′1

p′2

p′3

p′4

Figure 5.6: Improved Transition Model for i→ a→ c→ e

88

Table 5.2: Improved Model versus Experiment

max deviation variance std deviation
b 0.039401 5.6117e-04 0.023689
e 0.025617 1.8209e-04 0.013494
g 0.025922 1.7676e-04 0.013295
h 0.027851 1.5973e-04 0.012639

p′1 = pia × (1− k

n
)
Ta
Tr (5.14)

p′2 = (1− k

n
)
Ta
Tr − (1− (1− pac)

Tr
Ta)× (1− k

n
)
2Ta
Tr (5.15)

p′3 = (1− (1− pac)
Tr
Ta)× (1− k

n
)
2Ta
Tr (5.16)

p′4 = (1− k

n
)
Ta
Tr − (1− (1− pce)

Tr
Ta)× (1− k

n
)
2Ta
Tr (5.17)

p′5 = (1− (1− pce)
Tr
Ta)× (1− k

n
)
2Ta
Tr (5.18)

Equation 5.19 gives the final improved model for calculating the probability of compro-

mising e in the CAG of Figure 5.1. The derivation process is similar as the one used in

Equation (5.12). The formula used to compute the success likelihood of compromising f

and g can be derived similarly as e.

Psuccsess e =
1

1− p′2
× 1

1− p′4
× pia × (1− (1− pac)

Tr
Ta)×

(1− (1− pce)
Tr
Ta)× (1− k

n
)
5Ta
Tr (5.19)

Figure 5.5b shows the comparison between the probability values calculated from Equa-

tion 5.19 and the experimental results. As we can see, the improved model now has a better

match with the simulation results than the original model. The second row of Table 5.2

89

also clearly indicates that the maximum deviation has been reduced from 7.4% to 2.56%

and the standard deviation has been reduced from 0.039675 to 0.013494.

Figure 5.7 shows the comparison of original model versus the experiments as well as a

comparison of the improved model versus the experiments when the target node is b, g and

h. All the figures and statistical data collected in Table 5.2 demonstrates that the improved

model more closely matches the Monte Carlo simulation results.

Another finding is that as the target hides deeper, the success likelihood becomes smaller.

For example, in Figure 5.7, at adaptation interval Tr = 100, the success ratio for compro-

mising b is around 0.4, for compromising g is reduced to around 0.3, and for h is further

decreased to around 0.27.

5.2.6 General Form

In the previous section, a model is derived based on the assumption that the attack interval

Ta associated with each edge is the same. This assumption directly follows the assumption

made in the simulator that all VMs assigned to play the given role has the same configuration

except ID and IP address. However, in reality, different VM will be assigned to play different

roles and will have different configuration. Thus, the time spend on compromising different

nodes will usually not the same.

Based on the knowledge of our previous analysis and the simulation results, this section

proposes a new model to relax this assumption. The following defines several notations used

in the model.

• i – the node where the attacker launches the intrusion.

• t – the target node.

• x→ y – an edge from node x to y.

• i→ a→ b→ . . .→ t –the path the attacker must follow to compromise t.

90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800 900

S
uc

ce
ss

fu
l R

at
io

Adaptation Interval

Successful Ratio Comparison in 20000 Attempts -- B

 Original Model
 Experiment

(a) Original vs Experiment – b

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800 900

S
uc

ce
ss

fu
l R

at
io

Adaptation Interval

Successful Ratio Comparison in 20000 Attempts -- B

 Improved Model
 Experiment

(b) Improved vs Experiment – b

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800 900

S
uc

ce
ss

fu
l R

at
io

Adaptation Interval

Successful Ratio Comparison in 20000 Attempts -- G

 Original Model
 Experiment

(c) Original vs Experiment – g

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800 900

S
uc

ce
ss

fu
l R

at
io

Adaptation Interval

Successful Ratio Comparison in 20000 Attempts -- G

 Improved Model
 Experiment

(d) Improved vs Experiment – g

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800 900

S
uc

ce
ss

fu
l R

at
io

Adaptation Interval

Successful Ratio Comparison in 20000 Attempts -- H

 Original Model
 Experiment

(e) Original vs Experiment – h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800 900

S
uc

ce
ss

fu
l R

at
io

Adaptation Interval

Successful Ratio Comparison in 20000 Attempts -- H

 Improved Model
 Experiment

(f) Improved vs Experiment – h

Figure 5.7: Model Comparisons

91

• Vp – nodes in the intrusion path.

• Ep – edges in the intrusion path.

• prxy – forward transition probability of x→ y where adaptation might occur.

• psxy – static transition probability from x to y.

• T xya – attack time interval associated with edge x→ y.

• Tr – adaptation time interval.

The improved model with the time assumption relaxed can be summarized as follows

where Equation (5.20) represents the forward transition probability, Equation (5.21) repre-

sents the self transition probability and Equation (5.22) represents the more success likeli-

hood from i to target t.

prxy =


psxy × (1− k

n
)
T
xy
a
Tr if x = i;x, y ∈ Vp;x→ y ∈ Ep

(1− (1− psxy)
Tr
T
xy
a)× (1− k

n
)
2T
xy
a
Tr if x 6= i;x, y ∈ Vp;x→ y ∈ Ep

(5.20)

prxx = (1− k

n
)
T
xy
a
Tr − (1− (1− psxy)

Tr
T
xy
a)× (1− k

n
)
2T
xy
a
Tr if x 6= i;x→ y ∈ Ep (5.21)

Psuccesss t =
∏
x∈Vp
x 6=i,t

1

1− prxx
×

∏
x→y∈Ep

prxy

=
∏
x∈Vp
x 6=i,t

1

1− prxx
×

∏
x→y∈Ep
x6=i

(1− (1− psxy)
Tr
T
xy
a)× psiy × (1− k

n
)

Tixa +
∑

x→y∈Ep
x 6=i

2T
xy
a

Tr (5.22)

Here, Ta has been replaced with T xya to relax the assumption that all values of Ta are

identical. Thus, attack time associated with different edge could be different. Another

92

important assumption is that all VMs assigned to play the given role has the same configu-

ration as well as a vulnerability. Here this assumption is relaxed such that VMs assigned to

play different role could have different configuration, but all VMs assigned to play the same

role still have same configuration, this is captured by psxy. However, in reality, MTD could

adopt different movement mechanisms, thus VMs assigned to play the same role would have

different configuration states with different – or no – vulnerabilities.

Relaxing this limitation requires the MTD theory in Chapter 6 that helps understanding

the interactions between attacker and MTD system. In fact, as will see in the Cyber Attack

Theory, T xya and P s
xy are important characteristics of an attack instance. Definitions in

MTD System Theory, such as diversification and randomization, also play a key role as they

formally describe the configuration state space and the probability that each configuration

state shows up. Clearly, whether a vulnerability exists or not is closely related with a

configuration state. We will see in Chapter 6 that once the theory is in place, solve this

limitation is straightforward.

5.3 Conclusion

In this chapter, an efficient and scalable analytical model that can be used to analyze and

estimate the success likelihood of multi-hop remote attacks in an MTD context has been pre-

sented. This chapter motivates the need for an analytical model and describes the challenges

of such a model. By focusing on forward and self transitions (thus indirectly capturing back-

ward transitions), an analytical model suitable for non-cyclic network topology structures

is presented.

93

Chapter 6

A Theoretical Framework for Moving

Target Defense

If you know the enemy and know yourself, you need not fear the result of a hundred battles.

If you know yourself but not the enemy, for every victory gained you will also suffer a defeat.

If you know neither the enemy nor yourself, you will succumb in every battle.

-Sun Tzu, The Art of War.

6.1 Overview

Security is a critical concern that exists in computer systems as well as in the physical world.

Chapter 3 presented a taxonomy of the state-of-the-art moving target defense research in

a cyber-security context. However, as with security in general, many intuitive examples of

MTDs are found in physical world as well.

Example 6.1. In an air battle, two opposing aircraft often end up in a one-on-one situation,

which is typically called a dogfight. In dogfights, one aircraft is the attacker while the other

becomes the defender. It is up to the pilot of the defending aircraft to maneuver his or her

94

aircraft to avoid being shot down by the attacker. In this way, a dogfight is similar to cyber-

security.

In a dogfight, performing tactical maneuvers gives the defender a greater chance to

avoid being shot down as opposed to simply doing nothing. If we think of the defender as

an MTD system, the target is the defender that is trying to maneuver the aircraft to dodge

an incoming missile. In this case, the pilot may maneuver in three dimensional physical

space using tactics of defensive aircraft maneuvers (such as a high yo-yo defense, unloaded

extension, high-g barrel roll, defensive spiral, etc.) in order to change the state of the two

aircraft (location, speed, yaw, pitch, roll, etc.) while not exceeding the physical limitations

of the pilot.

This movement can increase the attacker’s uncertainty regarding the defender’s location

and direction. The pilot chooses the time to trigger a maneuver either proactively, based

on pilot’s training and intuition, or reactivity after detecting an incoming missile. Other

examples in the physical world are animals running fast and zig-zagging to avoid being shot

by a hunter or soldiers moving quickly to find the cover to evade gunfire. These are simple

yet intuitive real world examples where targets use movement to protect themselves. More

complex examples include transportation surveillance, airport security patrolling, etc.

Example 6.2. The ARMOR system109,110,111 (Assistant for Randomized Monitoring over

Routes) has been successfully deployed at Los Angeles International Airport (LAX) since

2007. ARMOR uses a game-theoretic approach to randomly place vehicle checkpoints on

roads entering airport terminals and to schedule canine patrol routes inside terminals for

sniffing for bombs. Both applications are constrained by available resources such as police

units, canine units and inspection devices, etc. The challenge is to optimally allocate lim-

ited resources to increase the effectiveness of airport security, all while avoiding patterns

that may be discovered by persons intent on evading security. ARMOR considers different

characteristics of airport terminals such as physical size, passenger loads, flight schedules in

the risk assessment of the eight LAX terminals. ARMOR models different types of attacks

95

using different payoff functions and optimizes the allocation of limited security resources

using a Bayesian Stackelberg game solver112.

In this example, ARMOR can be viewed as using an real-world MTD approach to increase

security by randomizing the allocation of limited defensive resources. The adaptable aspects

are the resources, such as police units and canine units, while the tactic used is a Bayesian

Stackelberg game solver that determine the optimal movement and time to trigger that

movement. Here the movement is not directly applied to the potential targets themselves

(e.g., flights), but instead is applied to defensive elements of the system to obscure them

from potential attackers. By doing so, it increases the difficulty of locating and successfully

compromising the targets by increasing the possibility of detection along the routes required

to reach the targets.

From these real world examples, we see that MTD systems can increase the security

through movement by either increasing the attacker’s uncertainty of locating the target

or by increasing the attacker’s probability of detection along the intrusion path, all while

minimizing the cost to normal system operations. The movement does not necessarily need

to be directly applied to the target, but also can be applied to the path that leads to the

target. These ideas apply to cyber world as well. In either case, solving these problems

using an MTD approach requires us to first identify the attack type to defeat, and then

consider a suitable combination of adaptable aspects with strategies and tactics.

6.1.1 General MTD Adaptation Effect

Figure 6.1 illustrates the effect of adaptation on the attacker. At time t1, an adaptation just

finishes and the system has configuration, sg. Suppose now an attacker starts to investi-

gate the system configuration, as time elapses, the attacker knows more information about

the system, thus the system configuration uncertainty for attaker decreases. As shown at

time, t2, the exploration space shrinks and the attacker gets closer to reaching the potential

vulnerability. However, if at t2 another adaptation launches and produces a new configu-

96

Figure 6.1: Adapatation Effect Intuition – Attacker Uncertainty

ration, s′g, which should invalidate the attacker’s previous penetration effort and pull the

configuration uncertainty level back.

6.1.2 General MTD process

Valid?
Initial

Deployment

Choose
Adaptation

(Environment
Information)

Implement
Adaptation

Y

N

Delay

Figure 6.2: Overview of MTD process

The general workflow of an MTD system is shown in Figure 6.2. An MTD is first de-

signed, implemented and deployed in its initial configuration. Once the system is executing,

an MTD system will choose one or more adaptations to apply to its configuration. As dis-

cussed above, the adaptation can be triggered either proactively based on fixed or random

time point or reactively by environment information, such as IDS alerts or operation failures.

All operational systems have a set of constraints and resource limitations as demonstrated

97

in Example 6.2. The configuration resulting from the chosen adaptation must be checked

against these constraints to ensure that the new configuration will be valid. If it is not valid,

a new adaptation will have to be chosen. Once an adaptation has passed the validity test,

it can be implemented. As will be discussed later, there are several key problems that must

be solved in order to make an MTD system work.

6.1.3 Motivation for an MTD Theory

In the scientific world, a theory is generally something that defines a set of concepts, their

relationships and principles to help shape the view of a field and clarify the essential prob-

lems. Theories are typically used to understand and explain things we observe and to predict

things that have not been proven.

The past few years has seen a growing need within the research community to develop

a science of security113. The motivation is to develop a systematic body of knowledge with

strong theoretical and empirical underpinnings to inform the engineering of systems that

can better resist known and unanticipated attack types. A theory for moving target defense

will not only create a set of common and well defined terms, but also provide a framework

and systematic way to think and analyze MTD problems and solutions.

Concretely, the theory should define key concepts such as adaptation, diversification,

randomization, attack surface, and exploration space in a way that is both formal and

appropriate to the dynamic nature of MTD system. To support the understanding and

analysis of the interaction between MTD systems and the attacks to thwart, the theory

should also define key concepts that support precise discussion of attacker knowledge, attack

types, and attack instances. Because the implementation of an effective MTD mechanism

only makes sense in the context of a specific threat model114,115.

98

6.1.3.1 Motivation Questions to be answered in General

Pragmatically, the theory should be practical enough to inform design decisions during the

design of MTD systems and should be able to answer general questions like these:

• Given an attack type or a sequence of attack types, what can an MTD system do to

defeat it?

• Given an attack type and the MTD system setting, how to analyze whether this MTD

system is potentially effective to thwart this given attack type?

• What are the conditions of, or what constitutes the success likelihood of intrusion

under MTD?

• How does MTD impact attacker’s intrusion?

6.1.3.2 Motivation Questions to be answered in Concrete Scenario

Ideally, the theory should also be straightforward enough to allow MTD system designers

to decide how to use existing configuration choices and diversification to increase security.

Given a concrete MTD system, it should allow MTD designers to analyze the effectiveness of

adapting various combinations of configuration aspects to thwart different types of attacks.

More specifically, it should be able to answer these questions in a concrete MTD system.

• If a given MTD system is potentially effective to thwart an attack type, how can we

quantify this effectiveness in terms of success likelihood of intrusion?

• How are these important parameters, such as Ta, Pstatic, adaptation interval, diversi-

fication, randomization and configuration space, interrelated and impact the success

likelihood of intrusion?

• Fixing Ta, Pstatic, can we change MTD settings, such as adaptation interval, configu-

ration space, etc to see the effectiveness of MTD with different settings?

99

• Fixing MTD settings, can we tweak Ta, Pstatic to see when this setting will be effective

or ineffective?

6.1.4 Approach

MTD Systems
Theory

Attacker
Theory

MTD Theory

Figure 6.3: MTD Theory Overview

The high level approach to developing a theory for MTD is shown in Figure 6.3. The

first step is to develop a theory of MTD Systems. This theory focuses only on the system

itself and how it adapts over time to achieve its overall goals. The second step is to develop

an Attacker Theory, which will describe an attacker’s goals and actions they can take to

reach their goals. The final step will be to combine the two into an overall MTD Theory.

The objective of MTD Theory will be to define how elements of the MTD and Attacker

theories interact. This is especially important in being able to understand the true effect of

an MTD system as its effectiveness only makes sense in light of actions from an attacker for

a specific type of attack.

6.1.5 Scenarios

This section presents two scenarios that will be used through out. Examples provided below

to help understand definitions and theorems will be based on these two scenarios.

6.1.5.1 K-state Web Authentication

Kansas State University’s web authentication requires each student to register an ID and

password to login to use the university’s online service and resources. Every six month each

student is asked to update their password to a different one to keep their account active.

100

6.1.5.2 Mission Planning System

Another scenario is a simple military mission planning system. An overview of this system

is shown in Figure 6.4. An authorized user can remotely access the mission planner to

construct a specific mission. Through the Planner (a web server), which provides the web

UI, authorized actions such as adding new military strategy, establishing plans or tactics,

allocating owned resources, etc. could be performed. To support these actions, related

information are stored in three different databases. An asset database provides the avail-

able resources information such as tanks, troops, aircraft, etc. A geographical database

provides map and geographical information such as coordinates, satellite images, etc. A

target database stores information about targets of interest such as name, location, fea-

tures, etc. Such distributed information storage also enhances security in that one database

compromise does not lose all sensitive data.

In this system, the data stored in the three databases – the AssetDB, the GeoDB and

the TargetDB are most likely targets of interest for a serious attacker.

Planner
TargetDB

AssetDB

GeoDB

FirewallUsers

Figure 6.4: Mission Planning Scenario

101

6.2 MTD System Theory

This section defines the key concepts required to formally talk about MTD systems and

their basic properties. The focus is on formally defining an MTD system, although more

definitions about adaptation, configuration space, diversification, and randomization in light

of the MTD system definition are given as well. Since the essence of an MTD system is

adapting the configuration of the system over time, this section starts by defining what a

configurable system is, borrowing key terms and concepts from configuration management

theory116.

6.2.1 Configurable System

When talking about configuring a system, we generally refer to the physical devices that

are part of a system, the software installed on those devices, and the settings of that soft-

ware. In the context of MTD, these configuration elements are defined as a configuration

parameter (borrowing from116) that can take on various values to specify the specifics of the

configuration.

6.2.1.1 Configuration Parameter

The definition of a configurable system starts from defining a configuration parameter as a

variable with an associated type.

Definition 6.1. A configuration parameter, π, is a unit of configuration information that

can take on a value based on its type.

Definition 6.2. A configuration parameter type, Π, is a label identifiable with the domain of

possible values that the parameter can assume116. The associated domain of a configuration

parameter πi is denoted as Πi.

In essence, a configuration parameter can be viewed as a variable to which we can assign

values. These values can be used to describe a piece of hardware, the software installed on

102

that hardware, or the settings of the software itself, etc. Examples of configuration units

can be a specific physical or virtual machine host, the amount of memory installed, the

speed of the processor, the operating system installed, the IP address of the host, the ports

that are open, the password of a user account, etc. While some configuration parameters

are basically fixed (e.g., the size of memory in a physical host), MTD systems obviously are

more interested in the configuration parameters that can be modified during execution (the

size of memory in a virtual host or the IP address of a host). The configuration parameter

that can be modified by MTD system is referred to as an adaptable configuration unit.

To capture the configuration of an entire system or a complex component of that system,

we introduce the notion of a composite configuration parameters.

Definition 6.3. A composite configuration parameter, π, is a configuration parameter that

is composed of a set of sub configuration parameters, π = 〈π1, π2, . . . , πn〉. The domain

of a composite configuration parameter π is derived from the sub configuration parameter

domains, Π = Π1 × Π2 × . . .× Πn.

Thus, a configuration unit can be either large or small. In the K-State authentica-

tion scenario, a configuration parameter, πaccount can be used to capture a student’s K-

State account. This parameter, πaccount, can be further divide to a set of sub config-

uration parameters, 〈πeid, πpassword〉. For the mission planning scenario, one can use a

composite configuration parameter πplanner to describe planner’s corresponding (virtual)

machine’s overall configuration. Appropriate sub configuration parameters could include

〈πmemory size, πdisk size, πcpu type, πoperating system, πweb application server, πservice implementation,

πip address, πservice port〉. Here sub configuration parameter could be a composite configura-

tion parameter too. For example, πoperating system, πweb application server, πservice implementation are

possible composite configuration parameters.

103

6.2.1.2 Configuration State

The process of reconfiguration, which is at the heart of MTD systems, is the process of

moving from one configuration to another. To capture the notion of a specific configuration,

a configuration state is introduced. Typically, a configuration state, by default, refers to the

overall configuration of a system; however, it can also be used to refer part of that system

as well.

Definition 6.4. A configuration state, s, is a unique assignment of value(s) from Π to a

configuration parameter π. An assignment of some value z in Π to π is denoted as π ← z. If

π is a composite configuration parameter and π = 〈π1, π2, . . . , πn〉, then s is a configuration

state of π if s = 〈s1, s2, . . . , sn〉 where ∀i ∈ [1, n], si ∈ Πi ∧ πi ← si.

Based on this, the current configuration of a system becomes clear. Using the exam-

ple of the K-State account configuration parameter above, a tuple that combines a stu-

dent’s eid and password such as 〈john,Abc1234〉 is a configuration state of πaccount. An

assignment of valid values to each of the sub configuration parameters of πplanner, for

instance, 〈πmemory size = 4GB, πdisk size = 100GB, πcpu type = intel i7, πoperating system =

Ubuntu 14.04 LTS 64bit, πweb application server = apache, πservice implementation = PHP,

πip address = 192.168.10.18, πservice port = 80〉 is an example configuration state of πplanner.

Notice here, πoperating system, πweb applicationserver, πservice implementation are composite parame-

ters, and the assigned value for these composite parameters can be understood as the tag or

key of a concrete state. For example, by assign πoperating system = Ubuntu 14.04 LTS 64bit

, then use this tag the program will be able to find the linked OS installation templates.

6.2.1.3 Action

To change one configuration into another configuration requires actions to be taken on

the part of the system administrator. Traditionally, these actions are performed manually.

Although recently new configuration management tools have automated much of the tedious

104

nature of these actions, however, ultimate control of what to change still resides with the

administrators.

Definition 6.5. A configuration action, α, is an operation that can modify a value of an

existing configuration parameter, π, or add/delete a configuration sub parameter from a

composite configuration parameter. When adding a sub parameter, we assume the param-

eter is initialized with a valid value. An action can also be composed of a sequence of sub

configuration actions.

Operations such as powering machines on and off, assigning IP addresses, installing

Operating systems, deploying services, etc. are all typical actions. In addition, operations

such as adding/removing computers to a system, adding/removing deployed services to a

computer, etc. are also actions.

6.2.1.4 Configurable System

The configuration of a system is defined as a set of configuration parameters that can be

modified by a set of configuration actions. By combining these concepts with configuration

states, configurable systems can be defined, upon which the definition of an MTD system is

built.

Definition 6.6. A configurable system is a labeled transition system, Γ = (S,Λ, τ), where

S = {s1, s2, . . .} is a finite or recursively enumerable set of configuration states the system

can be in, Λ = {α1, α2, . . .} is a finite or recursively enumerable set of actions, and τ :

S × Λ→ S is the state transition function.

This configurable system definition is based on labeled transition systems as the essence

of configuration management is change. Here the set of allowable changes is captured in the

state transition function, τ .

For the K-State account scenario, the account authentication can be viewed as a con-

figurable system. Usually, the eid is not changed once it is set, so an eid generally has one

105

state. For passwords, however, state, S, is the set of all possible combinations of characters

that a user with eid could choose. Actions consists of editing the account information to

set the password. Transition functions capture the transition from old password to a new

password after the action applied.

The airbattle example can also be considered a configurable system where the state, S,

is the physical locations of the aircraft, actions are the manuevers that the plane could take,

and the state transition function captures the location transition from old position to new

based on the action performed. Similarly, the mission planning scenario can also be thought

as a configurable system. More details that show how this theory maps to the mission

planning scenario will be provided in the validation section after Cyber Attack Theory and

MTD Theory is developed.

Until now, the notion of configuration consistency and validity have been ignored. These

are addressed in the next section using system goals and constraints.

6.2.2 System Goals

The heart of the MTD paradigm is adapting the system to keep an attacker from taking the

time required to successfully attack and compromise the system. However, major problems

associated with this constant adaptation is that this could keep the system from achieving

its intended mission. It has recently been recognized by several in the adaptive systems

community that the key to effective adaptive systems is explicitly modeling the requirements

or objectives of the system117,118. Understanding the objectives of the system is critical in

making the determination of what is a valid adaptation and what will simply lead to chaos.

Thus, the notion of system goals is introduced here, which will be used later to define the

notion of valid adaptations.

Definition 6.7. A goal, g, captures an intended function of a computer system. There are

two types of goals of interest: operational goals and security goals. Each system has a set

of goals, G that is captured by a tuple 〈Go, Gs〉, where Go = {go1, go2, . . . goj} represents the

106

operational goals of the system and Gs = {gs1, gs2, gsk} represents the security goals of

the system.

Operational goals capture the mission the system was built to support. An operational

goal is a high-level business goal (e.g., K-State login system, blog website, mission planning

website, etc.) whose purpose is to organize the IT elements of the system around business

objectives. The operational goals are guideposts used to ensure that any adaptations to the

system configuration still support the overall mission. Security Goals, on the other hand,

define the critical parts of the system that should be protected. If an mission plan website

relies on a database of commander’s information, then protecting that database becomes an

important security goal.

While a system can be in a variety of configuration states, only some of those states

actually provide the capabilities required to achieve the operational goals of the system.

For instance, a mission planning system may be in a configuration that does not include a

database server that stores commander’s information (thus ensuring the security goal not

to allow the database to be compromised). However, this configuration is not really helpful

since one of the key goals of the system is to allow commanders to log in and plan missions

through the website. Therefore, a relation needs to be defined between configurations of the

system and the goals that those configurations achieve. This relation is used later to ensure

that as system adapts, it is capable of achieving the overall operational goals.

Definition 6.8. If a goal, g, can be realized in a system in configuration state, s, we say

that s achieves g and define a relation achieves: G × S to capture this relationship. If

∀g ∈ G, 〈s, g〉 ∈ achieves, we say s achieves a set of goals, G, denoted as s ` G.

As discussed in Section 6.1.4, the objective is to define an Cyber Attack Theory as well

as an MTD Systems Theory and then show they are related. Attacker is envisioned to have

their own set of goals and thus it seems obvious that when the goals of the attacker and the

MTD system conflict, then the MTD system must be able to take steps to counterattack

that attack.

107

6.2.3 System Policies

To ensure the parts of a system can function together efficiently and effectively, every system

has a set of policies that define how the system can and cannot be structured. For example,

the K-state authentication scenario requires students to change their password every 180

days. To set up a new one, the password chosen needs to fullfil some requirements such

as: 10-30 characters (5 must be different), contains characters from 3 of these categories:

uppercase letters, lowercase letters, numbers and special characters. These are all typcial

policy examples that one would encounter.

Usually, these policies are implicit, which leads to significant problems when changes

are made to the system without understanding all the pertinent policies. Ideally, an MTD

system will require system designers to explicitly state these policies so that the MTD system

can reason over them before making adaptions.

Definition 6.9. A policy, p, defines a restriction on the configuration state of a system.

Each system has a finite or recursively enumerable set of policies, P = {p1, p2, . . . pl}. The

aggregated restrictions of system policies, P , on system configuration states, S, define a

relation satisfies: S × P . We say a state, s, satisfies a set of policies, P , denoted as s � P ,

if ∀p ∈ P, 〈s, p〉 ∈ satisfies.

If a configuration policy is violated, the system will not operate as intended. Thus, as the

system adapts, it is critical that it does not fall into an inconsistent state where it violates

any policies. Next we define a consistent configuration state.

Definition 6.10. A system is said to be in a consistent state, s, if s � P , where P

represents the current system policies. The set of all consistent states of a system is denoted

as Sc = {s|∀s ∈ S∧s � P}. Any state that is not a consistent state is an inconsistent state.

While being in a consistent state is necessary, the system still needs to ensure it is in a

state so that it can achieve its intended goals. Thus we use the definition of achieves from

Definition 6.8 to define a valid state.

108

Definition 6.11. A valid state s is a consistent state that is capable of achieving all of the

existing system operational goals, G, i.e., s ` G. We define the set of all valid states of a

given system, Sv, as Sv = {s|∀s ∈ S, s � P ∧ s ` G}.

Knowing a state is consistent and valid is very useful. However, when dealing with an

entire system, MTD needs to be able to reason about the configurations that are really of

interest – those that define a complete system for the purposes of achieving the operational

goals of the system. Thus, we define a complete configuration as one that has all the

configuration parameters required to configure a system that is actually capable of achieving

the goals of the system.

Definition 6.12. A complete configuration is a configuration parameter whose value can

be a valid state. Formally, this is stated as ∃s ∈ Sv, π ← s.

Since a complete configuration might also contain unnecessary configuration parameters,

to restrict it to the configuration information that contains only necessary parameters to

achieve the overall goals of the system, we define a minimum complete configuration. Again,

it should be noted that this is a minimum complete configuration whose valid states can

achieve the system goals G.

Definition 6.13. A minimum complete configuration is a complete configuration parameter

that has the minimal required parameters. Formally, this is stated as @πi ∈ π, such that

∃s ∈ Sv, π − {πi} ← s.

6.2.4 Adaptation

While actions have been defined above as operations that take a system from one configu-

ration state to another, what MTD is really interested in is transforming a system from one

configuration state to a valid configuration state. This will be the basis of defining the kind

of MTD systems of interest and will be discussed further in the next section. To handle this

109

specific type of transformation operation, an adaptation is now defined as a restriction on

the set of actions to capture this.

Definition 6.14. An adaptation is a sequence of actions A = {a1, a2, . . . , ak} that trans-

forms a system from a state, s, to a valid state, sv.

Now we have all the definitions to define an MTD system, which is done in the next

section.

6.2.5 MTD System

An MTD system is a configurable system that can adapt its configuration during execution.

As discussed in the previous section, an MTD system should also be able to configure itself

so that it is always in a consistent state that can achieve the overall goals of the system.

Definition 6.15. A moving target defense (MTD) system, Σ, is a tuple 〈Γ, G, P 〉, where

Γ is a configurable system, G is the set of goals which includes both operational goals and

security goals and P is the set of polices.

Notice that although S in Γ will be restricted to Sv by G and P , an MTD system is

still defined using S, the set of all configuration states of Σ, instead of Sv. The reason is

that an MTD system does not always have to be in a valid state. Operational failures or

system errors could lead the MTD system to an invalid state. However, as defined above,

when applying an adaptation to MTD system, it needs to result in a valid state.

In order to reason and discuss the configuration of an MTD system, one must be able to

refer to the current configuration of a system at any given point in time. Since it is necessary

to reason about the entire configuration, the configuration must be complete as defined in

Definition 6.12. Since no extraneous configuration information should be included, it must

be minimum as defined in Definition 6.13. As configuration actions may add or remove

configuration parameters from a composite configuration parameter, the configuration state

110

of an MTD system can change in terms of the configuration parameters as well as their

values. The current configuration of an MTD system is defined as its configuration state.

Definition 6.16. At any point in time, each MTD system, Σ, has a minimum complete con-

figuration denoted Σπ. Σπ also has a unique value, s ∈ S, which is called the configuration

state of Σ.

6.2.6 Configuration Space

The set of all valid states, Sv, captures the overall configuration space of an MTD system’s

valid configuration. This can also be derived from the domain of Σπ, which has been defined

in Definition 6.3.

Definition 6.17. The configuration space of an MTD system, Σ, with configuration pa-

rameter Σπ is the domain of Σπ, which is Sv. Sv can be computed as Sv =
∏

Πi, where the

cross product operation should obey constraints such that ∀s ∈ Sv, s � P ∧ s ` G.

As defined above, Sv can be computed as the cross product from Πi of each configuration

parameter, πi, where the cross product operation should obey the constrains such that the

result is a valid state. Each Πi actually captures the configuration space of the configuration

parameter, πi.

As discussed earlier, a critical part of a cyber attack is the reconnaissance or exploration

of the target system’s configuration. To understand the effect of an MTD system, we must

be able to characterize the space, or exploration space that the attacker must explore before

attacking. Clearly, the exploration space is related to the configuration space of the MTD

system. If we assume the attacker knows the exact domain of the configuration parameter,

Σπ, in a MTD system, then the exploration space equals the configuration space. But

obviously, this assumption is often not the case. For instance, if an attacker is looking

for a specific target host in an IPv4 system, the attacker must check each possible IP

address, or 256 different addresses (assume a /24 network). However, if the configuration

111

constraints of the MTD limit the possible IP address of the host to a range of 100 . . . 255,

the configuration space as defined above does not truly reflect the exploration space of the

attacker. As the exploration space is associated with ongoing attacks, we leave its definition

until after defining the Cyber Attack Theory.

6.2.7 Diversification

As summarized in Chapter 3, diversification typically has two related concepts. The first

refers to the configuration choices already available in the system, while the second refers to

techniques used to increase the number of configurations available to the MTD system to use

to confuse attackers. Based on the definitions above, we can see that these both refer to the

configuration space. The first definition relates to the size of the configuration space while

the second concern a variety of techniques to increase the size of the configuration space.

To eliminate this confusion of terms, we propose to use the term artificial diversification to

refer to the second definition.

Definition 6.18. The diversification of an MTD system is the cardinality of its configura-

tion space, or |Sv|. And the diversification of any configuration parameter, π, is simply the

cardinality of its domain |Π|.

Definition 6.19. Artificial Diversification is a function to increase the configuration space,

Sv, of an MTD system. Formally, it is denoted as, fd : Sv → S ′v, where |Sv| < |S ′v|.

The four artificial diversity techniques summarized in Section 3.3.1.2 of Chapter 3 can

be viewed as examples of this diversification function. As presented in Chapter 1, Kant45

points out that attack surface modification can be aided by introducing diversity. However,

quantitative models for guiding the design of good diversification techniques and assessing

their effectiveness remain largely unexplored. Christodorescu et,al 29 also indicated that a

fundamental challenge in understanding the impact of diversification is to introduce a pre-

cise, computationally-meaningful way to measure the increase in difficulty for the attacker.

112

As shown in the definitions, diversification provides the potential to measure security of an

MTD system through configuration space. In an MTD system, a system with a higher diver-

sification is likely to be more difficult to compromise than one of lower diversification, given

that all else is equivalent. Artificial diversification seeks to enhance the security provided by

an MTD system by introducing functionality equivalent alternatives for a configuration pa-

rameter. Diversification determines the size of configuration space, which then provides the

space for adaptation. Again, measure and assess the effectiveness of diversification requires

Cyber Attacker Theory, which will be presented in the next section.

6.2.8 Randomization

Randomization is another term often used in MTD literature as shown in Chapter 3. Of

course, there is nothing in the general understanding of MTD systems that requires random

choices, although there are good arguments for this use. The overall goal of randomization

is to make full use of the available configuration space introduced by diversification, where

a larger configuration space provides more space for adaptation.

In MTD systems, randomization typically refers to choosing random configurations in

order to make full use of configuration space while adding the notion of non-predictability.

Random choices are usually understood as making selections assuming that the probability of

each choice forms a uniform distribution. In this thesis work32,34, Chapter 4 proposed both a

purely random MTD system, which selects the next configuration via a uniform distribution,

as well as an intelligent MTD system, which also considers potential vulnerabilities and

attack alerts when choosing configurations.

In Chapter 3, I suggest to view randomization as a decision making process that chooses

the next valid state based on a specific probability distribution over states in Sv. This way,

choosing the next configuration from a uniform distribution of states as well as considering

alerts become specific instances of randomization. Indeed, given Sv and a specific set of

environmental information, if one want to ensure that state si ∈ Sv is chosen, it is simply

113

define a probability distribution that says the probability of picking si is 1. This way,

randomization as a decision making process generalizes so that all kinds of AI techniques,

such as genetic algorithms, machine learning, game theory, etc. all are just different ways

to select the appropriate probability distributions over states Sv. Thus, randomization is

defined as follows.

Definition 6.20. Configuration randomization is a decision making process of selecting the

next valid system configuration value s ∈ Sv for Σπ. If Pj represents the probability that sj

is chosen and pj represents a specific probability value assigned to Pj through randomization,

then ∀sj ∈ Sv, 1 ≤ j ≤ |Sv|, we have Pj = pj ∧ 0 ≤ pj ≤ 1 ∧
∑
j

pj = 1.

6.2.9 Problems

Using the terminology and concepts developed in Section 6.2, this section discusses the

implications of these concepts in the MTD process as shown in Figure 6.2. First this section

extracts and summarizes several problems which are common to any MTD system that

follows from MTD Systems Theory. Then it indicates the next steps towards a theory for

moving target defense.

To carry out a process similar to the one described in Figure 6.2, there are three essential

problems:

1. How to select the next configuration state of the MTD system.

2. How to select the adaptations to take to get to the next configuration state.

3. When to carry out the adaptations to actually change the state of the system.

Each of these interrelated problems are discussed below.

6.2.9.1 MTD Problem

The essential problem of an MTD system is to move the system from current state to a valid

state in such a way as to make an attackers job of compromising the system more difficult.

114

Thus, the key problem will be deciding what state to move to.

Definition 6.21. Given the current state, s, of an MTD system, the MTD problem is how

to choose the next configuration state of the system, s′, subject to s′ ∈ Sv, to increase the

effectiveness of the MTD system.

The definition makes it clear that only a valid configuration state will be chosen. In

addition, measuring effectiveness requires additional theory to define the attacker as well as

the relationships as discussed in Section 6.1.4. As seen from the taxonomy, there are several

approaches that could be taken including random selection, intelligent selection based on

environmental information such as IDS alerts, or cost-based strategies. I believe this to be

a prime area of future MTD research.

6.2.9.2 Adaptation Selection Problem

The solution to the MTD problem will lead to a valid next state s′ being chosen. However,

moving the system to this state requires solving the adaptation selection problem, which can

be stated informally as finding an adaptation that can transition the system from s to s′.

Definition 6.22. Given current state of an MTD system, s and a valid next state, s′, the

adaptation selection problem is how to synthesize a sequence of actions A = {a1, a2, . . . , ak}

such that τ : s×A→ s′. This problem may also consider constraints such as time and costs.

This problem is analogous to a planning problem and thus future research will likely lead

in that direction for the general case. The complexity lies in that there could be multiple

sequence of actions that could result in the same configuration state, the optimal solution

would require to take constraints such as time and costs into consideration.

6.2.9.3 Timing Problem

The final problem to consider is the MTD Timing Problem, or “when to adapt”. Timing is

a critical factor in the success of an MTD system. Chapter 6 provides some insight into the

115

relationship between several key MTD system factors which include the adaptation time

interval Tr and attack time interval Ta
119.

Definition 6.23. In an MTD system, the Timing Problem is at what point should the

MTD system launch an adaptation to increase the effectiveness of the MTD system, while

maintaining a reasonable cost, c.

Here, reasonable means that the decision of when to launch the adaptation should be

made based on the trade off between operation and security. After the Cyber Attack Theory

is in place, we will be able to reason over the interactions between an MTD system and an

attacker to make such decisions.

6.3 Cyber Attack Theory

Cyber attack success relies on information possessed by an attacker when the attack is

launched and is often measured by the information gained or modified as a result of the

attack. Thus, information must be an essential element of any theory of cyber attacks. MTD

Systems Theory included the notion of a configuration parameter that captures information

about the configuration of a computer system, or more generally a target device. This

configuration information is clearly part of the information of interest in an attack. However,

the information of interest to an attacker goes beyond simple configuration information. For

example, a target system’s execution status and data are not configuration information, but

are critical to many types of attacks. To capture all information of interest, we introduce a

new concept called an information parameter, where the system’s configuration parameters

is a subset of the system’s information parameters. Thus, a target device is described

by a set of information parameters and an attacker expends effort to gain or modify a

target device’s information parameters. Figure 6.5 highlights this relationship. In addition,

an attacker generally has a lot of information that is not necessarily related to the target,

which consists of knowledge about other target systems, specialized skills, or general purpose

116

knowledge.

Attacker’s
knowledge

Target device and its
information parameters

Attacker’s
knowledge of target

Configuration parameter

Information parameter

Figure 6.5: Attacker and Target System Overview

In Cyber Attack Theory, we formally define attacks and attacker’s knowledge in terms

of information parameters. By reasoning over the relationship between an MTD system’s

configuration parameters and an attack’s information parameters, we can formally describe

and analyze interactions between attackers and MTD systems. We use the mission planning

scenario to help motivate and explain Cyber Attack Theory. In this scenario, attackers try

to exploit a vulnerability in the Planner. The vulnerability details are unimportant, but

we assume that if the vulnerability exists, the attacker can exploit it. A second scenario,

featuring a more concrete code reuse attack and an address space layout randomization

(ASLR) MTD, is provided in Section 6.5.2.

6.3.1 Targets

We start our presentation of Cyber Attack Theory by defining the concept of a target,

which is based on the concept of information parameters introduced above. We formally

define a target and a target system from the attacker’s perspective and then build on them

by defining concepts associated with attackers and cyber attacks. When we talk about

a target, we view it as a device or system of devices that can be described by all kinds of

information, such as configuration parameters, execution state and various other information

117

types. Thus, we start by formally defining an information parameter.

6.3.1.1 Information Parameter

We define an information parameter as a name value pair with an associated type, which

defines the domain of possible values an information parameter can assume.

Definition 6.24. An information parameter, ψ = 〈n, v〉, is a unit of information that can

take on a value based on its type, where n is the name and v is a value.

Definition 6.25. An information parameter type, Ψ, represents the domain of possible val-

ues that an information parameter value can assume. We denote the domain of information

parameter ψj as Ψj. An assignment of some value z in Ψ to ψ is denoted as ψ.v ← z.

An information parameter is basically a variable to which we can assign values from its

domain. This is essentially the same definition as that of a configuration parameter. The

difference is that a configuration parameter captures information only about the configura-

tion of a device, types of software on that device, specific software settings, etc. Note also

that a device’s the configuration parameters are a subset of its information parameters. In

order to aggregate all the information parameters of a device or system, we define the notion

of a composite information parameter.

Definition 6.26. A composite information parameter, ψ, is an information parameter that

is composed of a set of sub information parameters, ψ = 〈n, {ψ1, ψ2, . . . , ψn}〉, where n is

the name, and ψ1, ψ2, . . . , ψn are sub information parameters. The domain of a composite

information parameter, ψ, is derived from the sub information parameter domains, Ψ =

Ψ1 ×Ψ2 × . . .×Ψn.

For example, the Planner in Figure 6.8 has a set of information parameters that might

include ψ1 = 〈pageviews, 15/d〉, ψ2 = 〈visitors, 250〉, ψ3 = 〈memory, 8GB〉, ψ4 = 〈cpu,

intel i5〉, ψ5 = 〈eax, 0x65442224〉, ψ6 = 〈os, Ubuntu 14.04〉, and ψ7 = 〈ip, 222.20.22.22〉.

118

Here, ψ1 and ψ2 are information parameters but not configuration parameters because they

are statistically determined by visitors. ψ5 is an information parameter but not a config-

uration parameter because the content of EAX reflects the execution status of a program.

The remaining information parameters are also configuration parameters.

6.3.1.2 Target

Targets are generally thought of as devices on a computer network that an attacker may

compromise, modify or gain information from. However, we also include humans as potential

targets because users such as administrators, developers, and clients are also prime targets

of attackers.

Definition 6.27. A target, d, is any device an attacker may try to obtain information from,

break into, alter or destroy. In cyber space, the targets are computer network devices and

communication channels, such as machines (either physical or virtual), humans, routers,

switches, cellphones, cables, optical fiber, etc.

In our example system, the Planner, AssetDB, GeoDB, TargetDB and all users of the

mission planning system are potential targets for an attacker. To link the information

parameters to the target they represent, we define the predicate describes.

Definition 6.28. If an information parameter, ψ, represents some aspects of the configu-

ration, data or execution state of a device, d, we say ψ describes d, which we denote as the

predicate describes(ψ, d).

In the mission planning example ψ1 through ψ7 can all be used to describe the Planner.

If we have a composite information parameter that captures all the relevant information

that describes a specific device, we say that composite information parameter is complete

as defined below.

119

Definition 6.29. Each device d has a unique complete information parameter ψd whose

value captures all the information that describes d and only information that describes d.

Formally, this is stated as

∀d,∃ψd, describes(ψd, d)∧ (∀ψ, ψ ∈ ψd ⇒ describes(ψ, d))∧ (¬∃ψ, ψ /∈ ψd ∧ describes(ψ, d))

It should be noted that complete information parameters refer to the information pa-

rameters defined for that device. Obviously, the set of information parameters for a device

could be very large, of which only a subset are of practical use as we will see later. Using

the notion of a complete information parameter, we define the state of a particular target

device or system as the current values associated with each information parameter in the

device’s complete information parameter.

Definition 6.30. The state, sd, of target d, is current value of the complete information

parameter of d, ψd. We can also refer to the state of d at time t.

Obviously, the state of a target captures the value of ψd at a given point in time. This

fact will become important when we discuss the effect of attacks in Section 6.3.3.

To judge whether an information parameter exists in a target, a predicate called exists

is defined. This definition will be used to capture the precondition of an attack type in

Section 3.1.

Definition 6.31. If an information parameter,ψ, can be used to describe a target, d, such

that describes(ψ, d) is true, then we say exists(ψ).

For example, ψ1 through ψ7 all can be used to describe the Planner, thus, exists(ψ1),

exists(ψ2),. . . exists(ψ7) are all evaluated as true.

6.3.1.3 Target System

Now that we have defined a target, a target system simply becomes the composition of a

set of targets. This essentially allows us to capture the large, complex computer systems

that are the target of many attackers today.

120

Definition 6.32. A target system, D, consists of a set of targets, D = {d1, d2, . . . , dk}.

Definition 6.33. Each target system, D, has a system information parameter, ψD, which

is the set of each target device’s complete information parameter, which is defined as ψD =

{ψdi |di ∈ D} and assumes each target’s complete information parameter name is unique.

Combining the Definitions 6.33 and 6.28 allows us to define describes for a target system

as describes(ψD, D) ⇔ ∀ d ∈ D, describes(ψd, d). The mission planning system (MP) can

be viewed as the target D = {dPlanner, dAssetDB, dTargetDB, dGeoDB} with a system informa-

tion parameter ψMP where describes(ψMP , MP) is true. In addition, since each target

device has a complete information parameter ψdi , each device also has a complete informa-

tion parameter such as ψPlanner where describes(ψPlanner, Planner). Like the information

parameter, the state of the target system is simply a combination of each target device’s

state.

Definition 6.34. The target system state SD of target system D is the current value of the

system information parameter ψD. We also refer to the state of D at time t.

At this point, we have defined key concepts related to targets and target systems, which

in some ways overlaps the definitions in MTD Systems Theory. (MTD systems are also

target systems, etc.) However, it is important to note that targets are defined from the

attacker’s perspective, which captures the fact that the attacker may not know the poli-

cies and constraints associated with the system. These details are often the objective of

preliminary attacks on the system. As we define attackers and attacks, we show how this

information can be gained via attacks.

6.3.2 Attackers

To begin to understand attacks, including how and why they are launched, we must start

with the attacker. While an attacker is usually interpreted as an individual person, we

extend that notion slightly.

121

Definition 6.35. An attacker, x, represents a single intruder or team of intruders, where

an intruder can be either a human or an automated program.

Thus, an attacker is not limited to an individual person. Attackers may be groups of

people where each is responsible for a part of a coordinated attack. Attackers may also be

software programs that automate the intrusion process. As discussed above, for an intrusion

to be successful, an attacker must make an effort to investigate the target, which leads to the

attacker possessing additional or updated knowledge about the target. We also represent

this knowledge as information parameters.

Definition 6.36. A knowledge unit is an information parameter possessed by an attacker.

We say attacker x possesses knowledge ψx, which includes all the attacker’s knowledge units

x. If ψ1, ψ2 . . . ψn are the knowledge units x possesses, then ψx = {ψ1, ψ2 . . . ψn}. Note:

attacker’s knowledge may not be true; it only represents what the attacker believes to be

true.

Here, we see ψx represents all the knowledge an attacker can use to attack a target. If

the attacker’s knowledge is not sufficient to attack a specific target to achieve the attacker’s

objective, the attacker will be forced to perform preliminary attacks to gain that knowledge.

To specifically talk about an attacker’s knowledge about a given target, d, or target system,

D, we define ψxd and ψxD.

Definition 6.37. Attacker, x, has knowledge, ψxd , about target, d, where

ψxd = {ψ|ψ ∈ ψx ∧ ψ
n
∈ ψd}

Similarly, attacker, x, has knowledge, ψxD, about target system, D, where

ψxD = {ψ|ψ ∈ ψx ∧ ψ
n
∈ ψD} =

⋃
d∈D

ψxd

The operator, n
∈, is used to capture the fact that an attacker’s knowledge ψxd and ψxD

includes the information parameters that have the same name as those in the target’s com-

plete information parameter, although their values associated may be different. Formally,

122

we recursively define
n
∈ as

ψ
n
∈ ψ′ ⇔ ∃ψi ∈ ψ′.v s.t.(ψ.n = ψi.n ∨ ψ

n
∈ ψi)

Capturing attacker knowledge supports reasoning about what an attacker knows, what

information is gained during an attack, etc. This reasoning will be the key to understanding

the affect of MTD adaptation on an attacker’s attempt to penetrate or compromise specific

targets since MTD adaptation works by invalidating attackers’ knowledge of their targets.

To know when an attacker’s knowledge of a target is valid, we define the predicate holds.

Definition 6.38. If during a time period, [t1, t2], a logical statement, l, defined over ψx and

ψD is true, we say holds(l, [t1, t2]). If t1 = t2 = t, it simplifies as holds(l, t).

For example, an attacker might have these knowledge about the Planner: 〈memory, 8GB〉,

〈cpu, intel i5〉, 〈os,Windows 8.1〉, and 〈ip, 222.20.22.22〉. However, as defined in Sec-

tion 6.3.1.1, the true value of the operating system for the Planner is 〈os, Ubuntu 14.04〉 and

thus the attacker’s knowledge does not hold. Obviously, any attacks against the Planner

that assumes a Windows OS will fail.

6.3.3 Attacks

Now that we have defined the concepts of attackers and targets, we turn to defining the

attacks themselves. Attacks are a key aspect of our theory as they define the effect of an

attacker’s interaction with the target system. We define attacks in terms of their affect on

system information parameters or attacker knowledge. To help us capture the modifica-

tion of information, we start by defining an assignment of values between two information

parameters.

Definition 6.39. An assignment, o, is a tuple of information parameters 〈ψ1, ψ2〉, that

123

when executed, copies the value of ψ2 into ψ1, which is denoted as ψ1.v ← ψ2.v. Formally,

we define the execute operation as execute(o)⇔ o.ψ1.v ← o.ψ2.v.

Essentially, the execution of an assignment affects only the value associated with the

first information parameter. The information parameters themselves do not need to have

the same name, even though it is often used to denote the copying of information from a

target to an attacker’s knowledge or vice versa. From the atttacker’s perspective, when an

assignment o = 〈ψ1, ψ2〉, where ψ2 is a target system information parameter and ψ1 belongs

to attacker’s knowledge, it is called a gain assignment. In contrast, when ψ2 belongs to an

attacker’s knowledge and ψ1 is a target system information parameter, it is called a modify

assignment, which implies that the attacker has successfully modified the target system,

and the attacker’s knowledge of the target system is updated accordingly. For example,

a successful intrusion that obtains the IP address of the Planner can be captured by an

assignment 〈ψxP lanner.ip, ψPlanner.ip〉1, which sets the Planner’s IP address to the address the

attacker’s has in its IP address information parameter for the Planner. We can also define an

intrusion that modifies the system time of the Planner via two assignments 〈ψPlanner.time,

ψxt 〉, and 〈ψxP lanner.time, ψx.t〉, where the first assignment sets the Planner’s system time to

ψx.t (some time the attacker wants to set the system time to) while the second assignment

updates the attacker’s own knowledge of the Planner’s system time.

6.3.3.1 Attack Goals

Based on the previous discussion, we see the gain assignment or modify assignment actually

capture what an attack tries to achieve or the intention behind an attack. In other words,

we could use gain assignment or modify assignment to define the attack goal.

Definition 6.40. An attack goal, ga, captures the attacker’s intention to gain or modify

1Here we use the ‘.’ notation to refer to the ip information parameter in the attackers knowledge about
the Planner.

124

the target system information parameter, ψD. It can be represented by the gain or modify

assignments.

6.3.3.2 Attack Types

Next, we use assignments to define the post-conditions of attacks, which are defined over

ψD and ψx. These post-conditions can be viewed as the attack goal of corresponding attack.

We start by defining an attack type, which is a template for actual attack instance, which

we define later.

Definition 6.41. An attack type, φ, is a tuple 〈Ωpre, Ωpost〉 where Ωpre is a logical statement

defined over the target system’s information parameter ψD and the attacker’s knowledge ψx,

and Ωpost is a set of assignments over ψD and ψx.

To simplify our discussion, we assume that the logical statements are valid and that the

names of the information parameters in ψx and ψD are unique. In the mission planning

system example, assume the attacker, x, has the goal to exploit the Planner to obtain

root privileges. To achieve this objective, x considers a sequence of attack types, φ =

{φ1, φ2, . . . , φ6}, where the effects of the attacks are as follows:

• φ1 - gains the IP address of the Planner

• φ2 - gains the port number of a specific app

• φ3 - gains the operating system type

• φ4 - obtains an exploitable vulnerability of the app

• φ5 - deploys an exploit agent on the Planner

• φ6 - connects to the agent (e.g., via reverse shell) and gain the root privilege

125

Table 6.1 shows the specification of these attack types. Each attack type’s precondition

is a logic statement that explicitly reflects the relationship between an attacker’s knowledge

of the target and the target’s true information. Also, notice that each attack type’s precon-

dition depends on the previous attack type’s post-condition. For example, φ3 requires that

the attacker’s knowledge about the target’s IP address and the port number is correct. This

means the attacker must have a way to gain prior knowledge before the actual attack, which

is done via the post-conditions of φ1 and φ2. Also note that the post-condition of φ5 can

be viewed as a modify assignment while φ1, φ2, φ3, φ4 and φ6 are all gain assignments. This

approach not only allows us to explicitly define an attack type based on the relationship

between an attacker’s knowledge and target system, but it also provides insight into the

key information parameters associated with specific attacks and targets. This relationship

will be instrumental when we tie Cyber Attack Theory to existing MTD System Theory in

order to analyze which configuration parameters can be modified to thwart different types

of attacks and to formally define the attack surface for specific types of attacks. We also

note that a precondition’s logical statement only captures necessary information-based con-

ditions for an attack to succeed. It does not include all the sufficient conditions. We discuss

this in more details in Section 6.3.3.3. While the attack specifications in Table 6.1 provide a

precise description of individual attacks, attackers generally combine a sequence of low-level

attacks to achieve some higher-level objective. To capture this reality, we need to provide

the ability to analyze the composition of a set of low-level attack types. However, before

defining attack type composition, we define three helper functions: transform, union replace,

and substitution.

Definition 6.42. We define two transform functions, ξx and ξd, that compute a set of

information parameters from the assignments in Ωpost. ξx() extracts information parameters

belonging to ψx while ξd() extracts information parameters that describe target d as defined

below

126

ξx(φ.Ωpost) = {〈n, v〉|〈ψ1, ψ2〉 ∈ φ.Ωpost ∧ ψ1 ∈ ψx ∧ n = ψ1.n ∧ v = ψ2.v}

ξd(φ.Ωpost) = {〈n, v〉|〈ψ1, ψ2〉 ∈ φ.Ωpost ∧ ψ1 ∈ ψD ∧ n = ψ1.n ∧ v = ψ2.v}

The purpose of the transform function is to extract information parameters contained in

Ωpost. For example, if we take Ωpost from φ1, ξx(φ1.Ωpost) = {〈ip, ψd1 .ip.v〉}, and ξd(φ1.Ωpost)

= ∅. Similarly, for φ5, ξx(φ5.Ωpost) = {〈Exa, ψx.Exa.v〉}, and ξd(φ5.Ωpost) = {〈Exa,

ψx.Exa.v〉}. To define the union replace function, we first define an operator to deter-

mine that an information parameter name does not exist in a set of information parameters

or assignments. If ψ̂ is a set of information parameters, then we recursively define the

operator
n

/∈ as

ψ
n

/∈ ψ̂ ⇔ @ψi ∈ ψ̂, s.t.(ψ.n = ψi.n ∨ ψ
n
∈ ψi.v)

And when ô is a set of assignments,
n

/∈ becomes

o
n

/∈ ô⇔ @oi ∈ ô, s.t.(oi.ψ1.n = o.ψ1.n ∨ o.ψ1

n
∈ oi.ψ1.v).

Using the
n

/∈ operator, we now define the union replace function, which updates one set

of information parameters based on a second set of information parameters. Essentially,

the union replace function replaces the information parameter values in the first set with

those of the second set if the names match. Additionally, if information parameters exist in

the second set but not the first, these new information parameters from the second set are

added to the first set. We also overloaded the union replace operator to work on two sets

of assignments as well.

Definition 6.43. To update one set of information parameters, ψ̂1, based on a second set,

ψ̂2, we define a union replace function, ψ̂1]ψ̂2 = {ψ|(ψ ∈ ψ̂1 ∧ ψ n
/∈ ψ̂2) ∨ ψ ∈ ψ̂2}. Likewise,

union replace over assignments is defined as ô1] ô2 = {o|(o ∈ ô1 ∧ o n
/∈ ô2) ∨ o ∈ ô2}

Next, we define a substitution function, σ, that substitutes the values from a set of

127

information parameters into a logical statement. We use σ to substitute the information pa-

rameters values from an attacker’s knowledge into the corresponding information parameter

in the precondition of a given attack type, φ.

Definition 6.44. Given a logical statement, l, and a set of information parameters, ψ̂,

we define the substitution function, σ(l, ψ̂), as a mapping from names in l to values of

information parameters in ψ̂ such that the name in l matches the name of the information

parameter in ψ̂.

In general, we use the σ function to substitute the values of information parameters in

the attacker’s knowledge to variable names in Ωpre. This mapping allows us to evaluate the

precondition, Ωpre. Using these helper functions, we now formally define a composite attack

type. Intuitively, a composite attack type is a sequence of sub attack types. The precondi-

tions of the composite attack type is the conjunction of all the preconditions from the sub

attack types that are not satisfied by previous sub attacks. Likewise, the post-condition

is the union of the sub attack post- conditions where an assignment to an information pa-

rameter later in the sequence takes precedence over assignments to the same information

parameter earlier in the sequence.

Definition 6.45. A composite attack type, φ, is a sequence of attack types, φ = [φ1, φ2, . . . , φn],

where each sub attack type’s pre and post-conditions (φi.Ωpre and φi.Ωpost) are defined over a

target system’s complete information parameter, ψD(i), and the attacker’s knowledge, ψx(i).

The composite attack type’s pre and post-conditions are defined as

φ.Ωpre = ∧
1≤i≤n

σ(φi.Ωpre, ψ
x(i−1))

φ.Ωpost =]
1≤i≤n

φi.Ωpost

where : ψD(0) = {}, ψx(0) = {}

ψx(i) = ψx(i−1)] ξx(φi.Ωpost)

ψD(i) = ψD(i−1)] ξx(φi.Ωpost)

128

Note, we use a sequence above to reflect the relationship that the subsequent attack

types depend on previous attack types. If two attack types are independent with each

other, they should be analyzed individually and no composition is required. While not

specifically defined, there is nothing in our theory to limit the analysis of parallel attacks.

To simply the discussion, we also define the concept of minimal composite attack type. A

composite attack type is minimal if it only contains the minimum number of necessary sub

attack types to achieve the post-conditions defined by an attack goal. Thus, from now on,

when talk about the composite attack type, we assume it’s minimal and don’t consider the

situation where redundant attack types being involved and make no contribution to the

attack goal defined post-conditions.

For completeness, we define an atomic attack type as an attack type that cannot be

further decomposed into sub attack types. To demonstrate how pre and post-conditions for

composite attack types are computed, we show how are φ1 and φ2 are composed into φ in

Figure 6.6. Generally speaking, an attack type acts as a template for an actual attack. This

relationship is similar to that of an object-oriented class and an object or instance of that

class. One attack type can be implemented by many different attacks. For example, attack

type φ1 attempts to gain the IP address of the Planner. To implement φ1, an attacker

might use automated IP scanning tools, guess the IP address, or obtain it through social

engineering. Although these are different attacks, they all implement a same attack type.

6.3.3.3 Attack Instances

Definition 6.46. An attack is a process performed by attacker, x, against target, d, im-

plementing attack type, φ, during time period, [ts, tf]. We denote this attack as
∮ tf
ts

(x, d, φ).

Each attack, has a success likelihood against static systems of Pstatic and a duration of

Ta = tf − ts.

The development of an Cyber Attack Theory will greatly benefit our understanding of

129

Initialization:
ψx(0){}, ψD(0) = {},Ωpre = {},Ωpost = {}

compose φ1 :

ψx(1) = ψx(0)] ξx(φ1.Ωpost)

= {}] {〈ip, ψd1 .ip〉}
= {〈ip, ψd1 .ip〉}

ψD(1) = ψD(0)] ξD(φ1.Ωpost)

= {}] {}
= {}

Ωpre = σ(φ1.Ωpre, ψ
x(0))

= σ(φ1.Ωpre, {})
= exists(ψd1 .ip)

Ωpost = {}] φ1.Ωpost

= {〈ψxd1 .ip, ψd1 .ip〉}

compose φ2 :

ψx(2) = ψx(1)] ξx(φ2.Ωpost)

= {〈ip, ψd1 .ip〉}] {〈port, ψd1 .port〉})
= {〈ip, ψd1 .ip〉, 〈port, ψd1 .port〉}

ψD(2) = ψD(1)] ξD(φ2.Ωpost)

= {}] {}
= {}

Ωpre = σ(φ2.Ωpre, ψ
x(1)) ∧ Ωpre

= σ((ψxd1 .ip = ψd1 .ip ∧ exists(ψd1 .port)),
{〈ip, ψd1 .ip〉}) ∧ Ωpre

= exists(ψd1 .port) ∧ exists(ψd1 .ip)
Ωpost = Ωpost] φ2.Ωpost

= {〈ψxd1 .ip, ψd1 .ip〉, 〈ψ
x
d1 .port, ψd1 .port〉}

Figure 6.6: Composition of attack types, φ1 and φ2, into attack type, φ.

the interaction between the attacker and MTD system. This will include an understanding

of the cost factors related to the attacker and MTD actions, which we believe are closely tied

to the duration of the attacks and the impact on the attacker’s intrusion success likelihood.

Other cost factors, such as attacker effort, are directly related to the time and intrusion

success likelihood. However, explicitly including Ta and Pstatic in the definition of the attack

does not necessarily mean that we will assign specific values to them. Coming up with real

numbers for these factors is hard46, although there has been work trying to estimate the

130

mean time-to-compromise120 and to measure Pstatic
121. Quantifying Ta and Pstatic is out

of the scope of our work. However, we do believe that Ta and Pstatic can be impacted by

MTD designers by manipulating MTD system parameters such as the diversification of the

configuration space and the adaptation interval. One of our future goals is the development

of an analytical model that can inform designers as to how particular parameter settings

will impact the effectiveness given attack parameters, such as Ta and Pstatic. Conversely,

MTD designers will also be able to judge how effective a given MTD system will be based

on various values of Ta and Pstatic.

Definition 6.47. An atomic attack is an attack that implements an atomic attack type

and cannot be decomposed into sub attacks. An atomic attack,
∮ tf
ts

(x, d, φ), is successful with

probability Pstatic, if and only if its precondition, Ωpre, is true from ts to tf . If successful∮ tf
ts

(x, d, φ) ensures execute(Ωpost) is true precisely at tf .

If Pstatic is true, that indicates that all the sufficient conditions for the attack to be

successful in a static system, with the exception of those specified in Ωpre are true. However,

Ωpre captures those necessary conditions that can be impacted by the MTD system. As long

as Ωpre remains true from ts to tf and Pstatic is true, the attack will be successful and the

attack’s post-conditions will be executed at tf . Like attack types, attacks themselves are

generally composed of a sequence of smaller attacks to achieve a larger purpose. We now

formally define a composite attack.

Definition 6.48. An composite attack is an attack that implements a composite attack type.

Given composite attack type, φ, that is composed of a sequence of attack types [φ1, φ2, . . . , φn],

a composite attack,
∮ tf
ts

(x, d, φ), that implements φ is composed of a sequence of attacks where

each attack,
∮ ti
ti−1

(x, d, φi), implements φi and t0 = ts ∧ tn = tf . Formally, this is captured

as: ∮ tf

ts

(x, d, φ) = [

∮ t1

ts

(x, d, φ1),

∮ t2

t1

(x, d, φ2), . . . ,

∮ tf

tn−1

(x, d, φn)]

131

Thus, a composite attack is simply implemented by a sequence of attacks where each

attack implements a corresponding sub attack type. Using the attacks defined in Table 6.1,

an attack,
∮ tf
ts

(x, d1, φ), that implements the composite attack type, φ = [φ1, φ2], requires

the composition of two sub attacks,
∮ t1
ts

(x, d1, φ1), that implements φ1 and,
∮ tf
t1

(x, d1, φ2),

that implements φ2.

6.3.4 Exploration Space

So far, we have introduced two properties of attacks, beside the attack type definition itself,

that are critical to analyzing attacks, the attack interval, Ta, and the static likelihood of

success, Pstatic. Next, we introduce a third concept that is important to the analysis of

attacks and their interactions with MTD systems called the exploration space. Essentially,

the exploration space captures the set of possible values an attacker must search in order to

find the correct value of a specific information parameter or parameters in order to carry out

specific attacks. Figure 6.7 shows an overview of the relationships between an information

parameter, ψ’s, exploration space, its configuration space (as discussed in Section 6.2.6), and

the attacker’s effort to ascertain ψ’s actual value 2. The effort spent on gaining knowledge

through preliminary attacks can be viewed as actions that reduce the attacker’s uncertainty

about ψ’s value from the exploration space down to a single value. For a static system, this

uncertainty can be safely assumed to monotonically decreasing with each additional attack.

However, with MTD systems, this assumption is invalid. Instead, MTD systems make the

attacker’s uncertainty non-monotonic. An exhaustive search of the entire exploration space

Ψ to identify the correct value of ψ is not the preferred approach. However, there are times

when an exhaustive approach are applicable. For example, in the mission planning example,

an attack implementing φ1 may scan all possible IP addresses in an IPv4 subnet to obtain

2If the information parameter in question is a target’s complete information parameter or any other set of
information parameters the values are simply tuples of values corresponding to the information parameters
in the set.

132

the correct IP address of the Planner. However, attackers can also use a priori knowledge

to reduce the search space as well. For example, while knowing that port numbers must be

in the range of 0-65535 is of some use in searching ψPlanner for the website port number,

knowledge that public facing websites usually use port number 80 may immediately reveal

the correct value of ψPlanner.port. An attacker can use social engineering to gain required

knowledge. For example, an administrator might be fooled into leaking important system

information such as IP addresses, operating systems, passwords, etc. No matter which

approach is leveraged by attackers, gaining knowledge definitely requires effort on their part

to reduce the size of the exploration space. If an information parameter ψ is a configuration

Attacker Effort

Exploration space Configuration space

Figure 6.7: Exploration Space Overview (dots are possible values of the information param-
eter)

parameter of the MTD system as well, the exploration space of ψ may actually be larger than

configuration space of ψ. Although a configuration parameter’s valid values are typically

limited based on system constraints and policies, attackers usually have no way of knowing

what these constraints are. For example, constraints internal to the system may require

ψAssetDB.port to be either 43, 53, or 63. However, since attackers would not typically know

this information, they would likely be forced to scan the entire range from 0 to 65535. Thus,

in general, the exploration space of information parameter ψ equals its domain ψ.

Definition 6.49. Given information parameter ψ with domain Ψ, the exploration space of

133

ψ is

ESpaψ = Ψ

and the size of the exploration space is |Ψ|.

Generally speaking, the exploration space is the maximum set of potential values attack-

ers need to investigate in order to obtain the correct value. This concept itself is objective

and comes with no specific assumptions about an attacker’s capability, skill level, or knowl-

edge about the related target system. Similarly, the exploration space of a target system,

D, is simply the domain of ΨD, which is the cross product of all ψD’s sub information

parameter domains.

Definition 6.50. Given a target system D, with its complete information parameter ψD

with domain of ΨD, the exploration space of D is defined as:

ESpaD = ΨD

Similarly, the size of this exploration space is |ΨD|.

Although theoretically, this definition gives us an intuition about the exploration space

of a target system, it provides little insight to help us understand the exploration space

for each individual attack. To do that, we need to define the exploration space of both

atomic and composed attack types. To facilitate these definitions, we first define a function

to extract the information parameters in an attack type whose value must be gained by an

attacker.

Definition 6.51. Given atomic attack type, φ = 〈ΩPre, ΩPost〉, the function δ extracts all

information parameters from ΩPost whose value the attacker must gain. Formally, this is

134

defined as

δ(ΩPost) = {ψ|∀o ∈ ΩPost, o.ψ1 ∈ ψx ∧ o.ψ2 ∈ ψD ∧ ψ ← o.ψ1}

Based on this function, we define the exploration space of an attack type.

Definition 6.52. The exploration space of attack type, φ = 〈ΩPre, ΩPost〉, is the cross

product of the domain of each information parameter, ψ ∈ δ(φ.ΩPost).

ESpaφ =
∏

ψ∈δ(φ.ΩPost)

Ψ

The size of this exploration space is
∏

ψ∈δ(φ.ΩPost) |Ψ|.

This definition requires that for an atomic attack type, φ, if there are multiple infor-

mation parameters in δ(φ.ΩPost), attacks implementing φ must attempt to gain the value

of each of those information parameter simultaneously. Thus, the exploration space is the

cross product of its information parameter domains. However, atomic attack types tend

to be very simple and usually only attempt to gain the value of a single information pa-

rameter. Because a composite attack is made of a set of sub attacks, one might think that

the exploration space of the composite attack would not be as large as the cross product

of all the information parameters for which it attempts to gain a value. However, this is

untrue. Although the exploration space shrinks as sub attacks are successfully completed,

as shown in Figure 6.7 as attacker effort, the overall exploration space remains the same.

Actually, the concept of sub attacks clearly demonstrates the argument that an attacker’s

effort is actually linear46 instead of exponential as would be suggested by the cross product

operation. Instead of finding all information parameter values simultaneously, a composite

attack breaks that down into a series of steps, whose effort is generally small. Thus, if no

changes occur to the system configuration, each atomic attack type can be viewed as an

attempt to break into a single layer of defense. And, because the effort required to break

135

into each layer is relatively low, once a layer is penetrated, the next layer is exposed and

the attacker has almost unlimited time to attack it. Bellovin46 claims that what is really

needed for system security is an approach that makes the effort expended by the attacker

exponential as opposed to linear. Clearly, by constantly adapting the values of the appro-

priate information parameters, MTD systems could eliminate that brittleness. Attackers

can no longer assume that they can ascertain the value of each information parameter one

at a time, but will effectively need to learn, and potentially relearn them all in a very short

time frame, which pushes the attackers effort towards the exponential.

6.4 MTD Theory

Enabled by MTD System Theory and Cyber Attack Theory, we are able to start formally

defining the MTD Theory. The objective of MTD Theory is to define how elements of the

MTD Systems and Cyber Attacks theories interact. This step is especially important in

being able to understand the true effect of an MTD system as its effectiveness only makes

sense in light of actions from an attacker for a specific attack type122,115.

Recall from Chapter 1 that a major challenge to understand moving target defenses is the

need for new metrics. Existing metrics for attack surface areas are not suitable for evaluating

a moving attack surface because two basic assumptions of the existing metrics have been

broken. One is that the attack surface remains unchanged, while the other is that the target

attack surface is always reachable by attackers. Thanks to the MTD System Theory and

Cyber Attack Theory, we are able to relax these two assumptions by introducing a new

definition of attack surface based on a specific attack type. In addition, this section also

introduces two new concepts, the adaptation surface, which captures all of the information

parameters adapted by an MTD system, and the engagement surface, which captures the

information parameters adapted by an MTD system that can be potentially effective to

136

thwart an attack type. Based on these new concepts, several metrics, such as coverage,

potential effectiveness and success likelihood of intrusion, will be introduced. These metrics

will greatly benefit the interaction analysis between the attacker and MTD System, and

help quantify the effectiveness of MTD. Based on these new definitions, serveral theorems

can be derived. These theorems provides fundamental guidelines for MTD system design,

analysis and parameter setting. Lastly, this section discusses attack effort indicators and

how different MTD system parameter settings would impact the attack effort.

6.4.1 Attack Surface

Previous definitions of attack surface3,4,31 suffer from its inability to capture the dynamic and

changing nature of MTD, plus the potential state and action space explosion when trying to

capture it from the whole system perspective. To solve these problems, a new attack surface

definition is proposed in this section. As it defined based on information parameters, we

can formally talk about the different state of an attack surface at different time point. As

it only talks about the attack surface in terms of a set of information parameters related to

a specific attack, it avoids the explosion issue and encourages the MTD designers to focus

on the most critical information that could be used to thwart an attack type.

The δ function introduced in Definition 6.51 can be used to extract target system in-

formation parameters from Ωpost, we overload the δ function and define it to also extract

system information parameters from ΩPre to help define the attack surface.

Definition 6.53. Given atomic attack type, φ = 〈ΩPre, ΩPost〉, the function δ also extracts

all system information parameters from ΩPre. Formally, this is defined as

δ(ΩPre) = {ψ|∀ψ ∈ ΩPre, ψ ∈ ψD}

Once how to extract system information parameters from an attack type is in place, the

137

attack surface for an attack type is simply the set of these system information parameters.

Definition 6.54. Given an attack type φ, the attack surface of φ, Sattack(φ), equals the

union of δ(φ.ΩPre) and δ(φ.ΩPost). Formally, this is defined as

Sattack(φ) = δ(φ.ΩPre) ∪ δ(φ.ΩPost)

As an information parameter ψ is a name value pair, that can take on various values

at different times. This enables us to formally talk about the state of an attack surface at

different times. In addition, as the attack surface is defined in terms of a set of information

parameters related to a specific attack, it avoids the explosion issue and encourages the

MTD designers to focus on the most critical information that could be used to thwart an

attack type. Concrete examples of attack surfaces are given in Section 6.5.

6.4.2 Adaptation Surface

From attacker’s perspective, the attack surface describes the system information parame-

ters involved in an attack that an attacker needs to gain or modify. While knowing this

information is very helpful, from defender’s perspective, it doesn’t mean all the information

parameters can be adapted due to various constraints, such as the balance between security

and operation, the labor of development or the cost of maintenance. Thus a new concept,

called adaptation surface, is introduced to capture only those system information parameters

that actually adapted. Thus, we eliminate information parameters whose domain contains

only one value.

Definition 6.55. Given an MTD system, Σ, and its minimum complete configuration pa-

rameter, Σπ, the adaptation surface of Σ, Sadapt(Σ), is a set of configuration parameters

138

whose domain contain more than one value. Formally, this is defined as

Sadapt(Σ) =
⋃

πi
n
∈Σπ

πi, where |Πi| > 1

The adaptation surface clearly captures which configuration parameters are being adapted

by an MTD system and which are not. We provide concrete examples of adaptation surface

in Section 6.5.

6.4.3 Engagement Surface

Once the attack surface of an specific attack type and the adaptation surface of an MTD

system are defined, we can derive which information parameter adapted by an MTD system

can be used to thwart the specific attack type. We call these information parameters the

engagement surface, inspired by military terminology where the engagement of attacker and

a defender occurs.

Definition 6.56. The engagement surface between the attack surface of an attack type, φ,

and adaptation surface of an MTD system, Σ, contains all the configuration parameters an

MTD system uses to thwart that attack type. Formally, this is defined as

Sengage(φ,Σ) = Sattack(φ) ∩ Sadapt(Σ)

Clearly an empty engagement surface, Sengage(φ,Σ), indicates there is no MTD-enabled

protection against φ. An MTD system, Σ, can only impact φ when the engagement surface

is not empty. Based on these concepts, we develop metrics which can quantify the effective-

ness of MTD in the following. Concrete examples of engagement surfaces are provided in

Section 6.5.

139

6.4.4 Coverage

Concepts like attack surface, adaptation surface and engagement surface enable us to for-

mally talk about the interaction between a specific attack type and an MTD system. How-

ever, the ultimate goal of having these formal definitions is to formally define useful metrics

that can measure the effectiveness of an MTD as well as to derive useful theorems that guide

the design and implementation of an MTD system.

Starting from this section, several metrics will be introduced. The first one describes

the coverage of an MTD system, Σ, against an attack type, φ, which measures the per-

centage of information parameters that are part of the attack surface of φ but also belong

to the adaptation surface of Σ. Again, concrete examples of these metrics are provided in

Section 6.5.

Definition 6.57. The coverage of an MTD system, Σ, verses an attack type, φ, is the

number of information parameters contained in Sengage(φ,Σ) divided by the number of in-

formation parameters contained in Sattack(φ). Formally, this is defined as

Coverage(φ,Σ) =
|Sengage(φ,Σ)|
|Sattack(φ)|

6.4.5 Potential Effectiveness

Coverage, as a quantified value based on the engagement and attack surfaces, provides a

preliminary measurement of an MTD system’s effectiveness, which we call the potential

effectiveness.

Definition 6.58. We define the potential effectiveness of an MTD system, Σ, against an

attack type, φ, in terms of coverage. Clearly, the potential effectiveness has a value range

[0, 1]. A zero value means Σ has no impact to φ, a one value only means Σ is potentially

effective for thwarting φ.

140

According to the definition, a zero potential effectiveness of φ means there is no engage-

ment surface between an MTD system, Σ and a specific attack type, φ. Thus, for attack

type, φ, Σ provides no extra protection benefit when compare to a static system. On the

other hand, a higher coverage value indicates a higher potential effectiveness, but does not

mean that the actual effectiveness is also better. For example, a potential effectiveness of

one means the MTD system, Σ, covers all of the information parameters contained in the

attack surface of φ. However, if Σ takes an extremely long time to actually adapt, then

the actual effectiveness is no better than an static system. After all, the effectiveness of an

MTD system depends on many factors, while the coverage is only one of these factors. But

a coverage of zero indeed provides a clear indication of the non effectiveness of an MTD

against a particular attack type.

To analyze and quantify the MTD effectiveness when its coverage is greater than zero,

we introduce the success likelihood of intrusion.

6.4.6 Success Likelihood of Intrusion

Success likelihood reflects uncertainty, which is a good fit in a cyber security context where

the success of intrusion depends on many factors. However, as discussed in Chapter 1,

measuring security is hard, if not impossible46. Although we start to define the success

likelihood of intrusion in this section, the goal is not to quantify and obtain the absolute

value, as this is still a major challenge. Instead, we show that the success likelihood of

intrusion under MTD depends on several conditions, and part of these conditions can be

quantified nicely. This quantification allows us to analyze relative success likelihood of

intrusion as compared to static systems.

Recall from section 6.3.3.3, that the Ωpre of an attack type captures the necessary condi-

tions of an attack that can be impacted by the MTD system. While Pstatic captures all the

sufficient conditions for the attack to be successful in a static system, with the exception of

141

those specified in Ωpre. In this section, we show how the uncertainty impacted by Ωpre can

be quantified, while leaving the quantification of Pstatic as future work.

Before giving the formal definition of success likelihood of intrusion, we first define a

predicate, unchanged(ψ̂, [t1, t2]), which captures the fact that the value of an information

parameter does not change.

Definition 6.59. If during a time period, [t1, t2], for a set of information parameter, ψ̂ =

{ψ|ψ
n
∈ ψD}, the value of each ψ ∈ ψ̂ keep unchanged, we say unchanged(ψ̂, [t1, t2]).

Together with holds as given in Definition 6.38, we define the success likelihood of an

attack instance.

Definition 6.60. Given an attack,
∮ tf
ts

(x, d, φ), that implements an attack type, φ = 〈Ωpre,Ωpost〉,

the success likelihood of intrusion of this attack under MTD can be defined as:

Psuccess(

∮
) = P (holds(Ωpre, [ts, tf]))× Pstatic

where :

P (holds(Ωpre, [ts, tf])) = P (unchanged(δ(φ.Ωpre), [ts, tf]))× P (holds(Ωpre, ts))

Thus, for an attack instance to be successful in attacking an MTD system, not only

does Ωpre need to hold during the attack interval, but all the other conditions captured

by Pstatic also needs to be true. In addition, it turns out P (holds(Ωpre, [ts, tf])) can be

further decomposed into two parts, P (unchanged(δ(φ.Ωpre), [ts, tf])) and P (holds(Ωpre, ts)),

which means for Ωpre to be hold during the whole attack interval, [ts, tf], we only need

to analyze whether Ωpre is true at the begining of intrusion, plus whether all the system

information parameters involved in Ωpre is changed or not during the attack interval, [ts, tf].

The failure of either part will lead to an unsuccessfull intrusion. Conversely, if both parts are

142

fulfilled, Pstatic also needs to be true for Psuccess(
∮

) to be true. Concrete examples that show

how to quantify P (unchanged(δ(φ.Ωpre), [ts, tf])) and P (holds(Ωpre, ts)) will be provided in

Section 6.5.

6.4.7 Theorems

As discussed, the ultimate goal of having an MTD theory is to formally define useful metrics

that help analyze and quantify the effectiveness of an MTD, and to derive useful theorems

that could guide the design and implementation of an MTD system. Theorems provide

intuitive conclusions that can be used by MTD system designers to decide how to use

existing configuration choices and diversification to increase security.

Before presenting theorems, we first introduce what constitutes the characteristics of

an MTD system and an attack. These characteristics represent the key factors that im-

pact the effectiveness of an MTD system against a specific attack type. We will use these

characteristics when describing the conditions under which the theorems are satisfied.

Definition 6.61. Given an attack,
∮ tf
ts

(x, d, φ), that implements an attack type, φ = 〈Ωpre,

Ωpost〉, and an MTD system, Σ, the characteristics of Σ and φ include Sattack(φ), Sengage(φ,Σ),

Coverage(φ,Σ), the attack interval Ta, the adaptation interval Tr, and an algorithm that

controls how each configuration parameter in Sengage(φ,Σ) is adapted.

These characteristics captures the most important factors involved in analyzing the effec-

tiveness of an MTD system against a specific attack type. These factors are closely related

and in the following theorems, we will see how each factor will impact the effectiveness in

terms of Psuccess(
∮

) when fixing other characteristics.

Theorem 6.1. Given an attack,
∮ tf
ts

(x, d, φ), against an MTD system, Σ, if all other char-

acteristics in Definition 6.61 hold during the attack from ts to tf , a smaller Tr leads to a

lower Psuccess(
∮ tf
ts

(x, d, φ)). Conversely, a larger Tr leads to higher Psuccess(
∮ tf
ts

(x, d, φ)).

143

Proof. For a given Tr and attack interval, Ta = [ts, tf], where ts could be any time point,

there are Ta
Tr

times of MTD adaptation could occur. A reduction in Tr will increase Ta
Tr

, which

means more times of MTD adaptation could occur during [ts, tf], thus unchanged(δ(φ.Ωpre),

[ts, tf]) is less likely to be hold, which means the probability P (unchanged(δ(φ.Ωpre), [ts, tf]))

is decreased. According to Definition 6.60, the success likelihood of intrusion is proportional

to P (unchanged(δ(φ.Ωpre), [ts, tf])), thus a decreased P (unchanged(δ(φ.Ωpre), [ts, tf])) leads

to a lower Psuccess(
∮ tf
ts

(x, d, φ)). Using a similar argument, we can prove that a larger Tr

leads to a higher Psuccess(
∮ tf
ts

(x, d, φ)).

Theorem 6.2. Given an attack,
∮ tf
ts

(x, d, φ), against an MTD system, Σ, if all other char-

acteristics in Definition 6.61 hold during the attack from ts to tf , a smaller Ta leads to a

higher Psuccess(
∮ tf
ts

(x, d, φ)). Conversely, a larger Ta leads to a lower Psuccess(
∮ tf
ts

(x, d, φ)).

Proof. For a given Tr and attack interval, Ta = [ts, tf], where ts could be any time point,

there are Ta
Tr

times of MTD adaptation could occur. A reduction in Ta will decrease Ta
Tr

, which

means less times of MTD adaptation could occur during [ts, tf], thus unchanged(δ(φ.Ωpre),

[ts, tf]) is more likely to be hold, which means the probability P (unchanged(δ(φ.Ωpre), [ts, tf]))

is increased. According to Definition 6.60, the success likelihood of intrusion is proportional

to P (unchanged(δ(φ.Ωpre), [ts, tf])), thus an increased P (unchanged(δ(φ.Ωpre), [ts, tf])) leads

to a higher Psuccess(
∮ tf
ts

(x, d, φ)). Using a similar argument, we can prove that a larger Ta

leads to a lower Psuccess(
∮ tf
ts

(x, d, φ)).

Theorem 6.3. Given an attack,
∮ tf
ts

(x, d, φ), against an MTD system, Σ, if all other

characteristics in Definition 6.61 hold during the attack from ts to tf , adding more con-

figuration parameters into Sengage(φ,Σ), increases Coverage(φ,Σ) and will not increase

Psuccess(
∮ tf
ts

(x, d, φ)).

Proof. According to Definition 6.57, Coverage(φ,Σ) = |Sengage(φ,Σ)|
|Sattack(φ)| , thus adding more con-

figuration parameters into Sengage(φ,Σ) increases |Sengage(φ,Σ)| which in turn increases

144

Coverage(φ,Σ). If there are more configuration parameters contained in Coverage(φ,Σ),

it means more configuration parameters could be changed during ts to tf , thus the proba-

bility of P (unchanged(δ(φ.Ωpre), [ts, tf])) is going to decrease or remain unchanged, as such,

Psuccess(
∮ tf
ts

(x, d, φ)) will not increase.

Lemma 6.1. Given a configuraton parameter, π, a larger configuration space of π, CSpaπ,

leads to non smaller exploration space of π, ESpaπ.

Proof. Because CSpaπ = Ππ, where ∀s ∈ Ππ, s is valid. On the other hand, ESpaπ = Ψπ,

where Ψπ is the domain of π and ∀s ∈ Ψπ, s can be either valid or invalid, then |ESpaπ| ≥

|CSpaπ|. Thus increasing configuration space of π leads to a non-smaller exploration space.

Lemma 6.2. Given an information parameter, ψ, if an attacker needs to spend a finite

amount of time, ti, on each value of ψ in order to determine the true value, a larger explo-

ration space of ψ leads to a longer mean time of compromise, Ta.

Proof. As the size of the exploration space of ψ is |ESpaψ|, if an attacker needs to spend

time ti on each value, then the total time spend on investigating all the values is
i=|Espaψ |∑

i=1

ti,

then the mean time of compromise will be Ta = 1
2
×

i=|Espaψ |∑
i=1

ti. Thus Ta is monotonically

increasing when the size of the exploration space of ψ increases, hence increasing exploration

space of ψ will increase the mean time of compromise, Ta.

Note, the lemma doesn’t apply to situations where attacker don’t need to try all possible

values because of the behavior of the user. There are situations where a larger exploration

space could result in less time of compromise when the attacker doesn’t needs to try each

possible value. Examples include social engineering attacks and man-made errors. In our

analysis of MTD systems, we assume people behave properly.

145

Theorem 6.4. Given an attack,
∮ tf
ts

(x, d, φ), against an MTD system, Σ, then if all other

characteristics in Definition 6.61 holds, if ∀ψi ∈ Sengage(φ,Σ), the attacker spends a finite

amount of time tij on each state of ψi, then increasing the configuration space of each

ψi ∈ Sengage(φ,Σ) leads to non-increased Psuccess(
∮ tf
ts

(x, d, φ)).

Proof. If ∀ψi ∈ Sengage(φ,Σ), the attacker spends a finite amount of time, tij, on each state of

ψi, then the mean time of compromise Ta =
i=|Sengage(φ,Σ)|∑

i=1

(1
2
×
j=|ESpaψi |∑

j=1

tij). Based on lemma

1, increasing configuration space of each ψi ∈ Sengage(φ,Σ) leads to non-smaller exploration

space of ψi, |ESpaψi |. As Ta =
i=|Sengage(φ,Σ)|∑

i=1

(1
2
×

j=|ESpaψi |∑
j=1

tij), thus a non-smaller |ESpaψi|

will leads to a non-smaller overall Ta. Then according to Theorem 6.2, a larger Ta reduces

Psuccess(
∮ tf
ts

(x, d, φ)), thus a non-smaller Ta leads to a non-increased Psuccess(
∮ tf
ts

(x, d, φ)).

Theorem 6.5. Given an attack,
∮ tf
ts

(x, d, φ), against an MTD system, Σ, then if all other

characteristics in Definition 6.61 holds, if ∀ψi ∈ Sengage(φ,Σ), the attacker spends a finite

amount of time tij on each state of ψi, then increasing the exploration space of each ψi ∈

Sengage(φ,Σ) will reduce Psuccess(
∮ tf
ts

(x, d, φ)).

Proof. Based on lemma 6.2, a larger exploration space of ψi leads to a longer mean time

compromise of each ψi, thus the overall Ta will be increased. Then according to Theorem 6.2,

a larger Ta reduces Psuccess(
∮ tf
ts

(x, d, φ)), thus increasing the exploration space of each ψi ∈

Sengage(φ,Σ) will reduce Psuccess(
∮ tf
ts

(x, d, φ)).

6.4.8 Attack Effort

Generally speaking, attack effort is hard to define and quantify. There are many factors,

such as attacker skill level, attack time, available resources, or network bandwidth, which

can be used to indicate the attack effort. Unfortunately, these factors are also usually hard

to know. As such, the goal of this section is not to define and quantify attack effort, but

146

instead to propose a potential attack effort indicator based on the expected number of attack

trials to first achieve a certain success likelihood of intrusion.

Before defining attack effort indicator, we first present an theorem about the number

of trials until first success. Interested users could find more information about the proof of

theorem in123,124.

Theorem 6.6. Let V be an event that occurs in a trial with probability, p. Mathematical

expectation, E, of the number of trials to first occurrence of V in a sequence of trials is

E = 1/p.

As discussed, it’s hard to define attack effort as there are many unknown factors. How-

ever, we do believe the number of attack trials can be part of all possible attack effort

indicators and we define the attack effort indicator as follows.

Definition 6.62. Given an attack,
∮ tf
ts

(x, d, φ), against an MTD system, Σ, an attack effort

indicator can qualitatively indicate the relative amount of effort spent on conducting this

attack until success. In this thesis, we focus on the number of attack trials until the first

success of
∮ tf
ts

(x, d, φ), and a larger number of attack trials leads to a higher attack effort.

Based on Theorem 6.6 and Definition 6.62, we derive another theorem that states the

relationship between success likelihood of intrusion and attack effort.

Theorem 6.7. Given an attack,
∮ tf
ts

(x, d, φ), against an MTD system, Σ, a lower success

likelihood of intrusion, Psuccess(
∮

), leads to a higher effort of the first success of
∮ tf
ts

(x, d, φ).

Proof. According to Theorem 6.6, the lower success likelihood of intrusion, Psuccess(
∮

) leads

to larger number of trials to first occurance of successful
∮ tf
ts

(x, d, φ). Based on Defini-

tion 6.62, a larger number of attack trials leads to a higher attack effort.

147

6.4.9 Relationships between MTD system Parameters and Attack

Effort

Based the theorems proved in Section 6.4.7, we know larger Ta, less Tr, and a larger ex-

ploration space Espaφ can reduce the success likelihood of intrusion. In addition, a larger

Coverage(φ,Σ) and larger configuration space of Sengage(φ,Σ) will not increase the success

likelihood of intrusion. Then from the previous section we know that larger Ta, less Tr and

larger exploration space Espaφ lead to a higher attack effort, and that larger Coverage(φ,Σ)

and larger configuration space of Sengage(φ,Σ) will not reduce attack effort.

In short, we can define the following relationships between MTD system parameter

settings and attack effort.

• Larger Ta, higher attack effort.

• Less Tr, higher attack effort.

• Larger Coverage(φ,Σ), non-decreased attack effort.

• Larger configuration space of Sengage(φ,Σ), non-decreased attack effort.

• Larger exploration space of Espaφ, higher attack effort.

By introducing attack effort indicator, we connect the success likelihood of intrusion

with attack effort, which provides further insight into how various MTD parameters impact

attack effort. These relationships provide MTD designers a clear understanding about the

effect of moving target defense and gives them powerful theoretical insights about how MTD

will impact the success likelihood of intrusion as well as attack effort. Armed with these

guidelines, MTD designers will be able to make more confident trade-off decisions when

designing and implementing MTD systems.

148

6.5 Validation

Until now, we have developed a theory of moving target defenses. However, no complete

examples have been provided to show how things work together and why this theory would

benefit design and analysis when implementing an MTD system. While a formal and full

validation of the theory is out of the scope for this thesis, this section starts the validation

process by introducing concrete scenarios and showing examples of how the concepts defined

in the theory are instantiated and how this theory can be used to analyze and quantify the

effectiveness of an MTD system.

Specifically, there will be two examples provided. The first example describes an attack

that targets a mission planning system. It provides concrete specifications for the attack as

well as MTD system. These specifications are based on the definitions in Cyber Attack The-

ory and the MTD System Theory. Then, by taking advantage of MTD Theory, we show how

to analyze the potential effectiveness of this MTD system against the given attack as well as

quantify the success likelihood of intrusion. A concrete discussion of how various parameter

settings would impact the effectiveness of MTD system in terms of success likelihood is also

given.

The first example focuses on analyzing an MTD system that only adapts one configu-

ration parameter (IP address) invovled in the attack surface. To see how more than one

configuration parameters being adapted impacts the given attack type, the second example

extends the first MTD system to enable address space layout randomization (ASLR) where

the memory address is also adapted. Again the second example provides concrete specifi-

cations for the attack as well as the MTD system based on the definitions in Cyber Attack

Theory and MTD System Theory. We also analyze the coverage as well as its potential ef-

fectiveness based on MTD Theory. In addition, by adopting two adaptation mechanisms, we

show how different adaptations will impact the success likelihood of intrusion. By enabling

149

more than one configuration parameter in the second example, we provide a more complete

example to show how to analyze and quantify MTD system’s potential effectiveness and

success likelihood of intrusion. It also provides a more complete view and understanding

about what an MTD system can do to thwart a given attack type.

6.5.1 Attack Mission Planning System

We start with the simple military mission planning system, which is shown in Figure 6.8.

Authorized users can remotely access the mission planner to construct military type mis-

sions. The Planner (a web server with a user interface) allows users to carry out authorized

actions, such as adding new strategies, establishing plans/tactics or allocating resources.

To support these actions, the Planner accesses three associated databases – the AssetDB,

GeoDB and TargetDB. In this scenario, attackers try to exploit a vulnerability in the Plan-

Attacker Planner

TargetDB

GeoDB

AssetDB

Figure 6.8: Motivating Attack Scenario

ner. The vulnerability details are unimportant here, but we assume that if the vulnerability

exists, the attacker can exploit it. A more detailed vulnerability and realistic attack will be

provided in the next example.

150

6.5.1.1 MTD System Specification

The mission planning system has the following settings:

The Planner:

• Runs a C++ web application based on Apache and Ubuntu.

• Web application has port number 80.

• Adaptation contains actions to replace the old Planner machine with a new machine

and notify the changes to the AssetDB, GeoDB and TargetDB.

• New Planner is configured with the same C++ web app, port and OS.

• New Planner’s IP address is picked from 192.168.10.100–192.168.10.199.

• Adaptation occurs in every time interval Tr.

• Every Tr, the Planner gets refreshed in a probability of pr.

As an example, here we assume pr = 1/4. The AssetDB, GeoDB and TargetDB remain

unchanged and only update related configuration when the Planner is refreshed.

Configuration Space Because IP address is the only configuration parameter that is

changed in this system, the configuration space has the size of 100. Later, when discuss

the ASLR attack example, we will show that this configutaton space can be enlarged by

enabling the address space layout randomization.

Diversification The adaptation in this mission planning system takes advantage of the IP

address space. No artificial diversification technique is used in this example.

Randomization When adaptation occurs, the new machine’s IP address is randomly picked

from the IP pool, except for the previous IP address, thus each IP address has the probabiliy

of ps = 1/99 to show up and the old IP address has probability of ps = 0 to be choosen.

In addition, for every Tr, there is a probability of pr = 1/4 the Planner actually gets

151

refreshed. Thus, the current selected IP address has the probability of (1 − pr) = 3
4

to

remain unchanged.

MTD Problem In this concrete example, the solution to the MTD problem is to replace

the Planner in every Tr with a probability of pr = 1/4. After refreshing, the new Planner

will have the same configuration as before except for the IP address, which is randomly

picked from the IP pool.

Adaptation Problem In this concrete example, the solution to the adaptation problem

is to synthesize a sequence of configuration actions to shutdown the old Planner machine,

start and configure a new Planner, and then notify the IP address change of the Planner to

the AssetDB, GeoDB and TargetDB machines.

Timing Problem In this example, the solution to the timing problem is to simply schedule

the adaptation in every time interval, Tr. Notice here Tr does not need to be a constant.

6.5.1.2 Attack Specification

6.5.1.2.1 Attack Goal In this example, an attacker, x, has the goal to exploit the

Planner to obtain root privileges. We will extend and analyze a more realistic attack that

will try to steal data from a database server in the next example.

6.5.1.2.2 Target System The mission planning system in this example is the tar-

get system, D, with a complete information parameter, ψMissionP lanning, and the Planner,

dPlanner (or dP for short), as the specific target of interest, which has its complete informa-

tion parameter, ψPlanner. Concrete information parameters that will be used in this example

include ψdP .ip, ψdP .apache port, ψdP .os, ψdP .vul

6.5.1.2.3 Attacker To carry out this attack successfully, the attacker, x, must have

correct knowledge of the Planner, ψxdP , including the Planner’s IP address, Apache web

server port number, operating system, and the vulnerability of the web server. Formally,

152

these are captured via attacker knowledge in the form of information parameters, such as

ψxdP .ip.

6.5.1.2.4 Attack Type To achieve the objective, x considers a sequence of attack types,

φ = [φ1, φ2, . . . , φ6], where the effects of the attacks are as follows:

• φ1 - gains the IP address of the Planner, ψdP .ip

• φ2 - gains the port number of a specific app, ψdP .apache port

• φ3 - gains the operating system type, ψdP .os

• φ4 - obtains an exploitable vulnerability of the app, ψdP .vul

• φ5 - deploys an exploit agent on the Planner, ψdP .exa

• φ6 - connects to the agent (e.g., via reverse shell) and gains the root privilege, ψdP .root.

Table 6.1 shows the specification of these attack types.

Table 6.1: Attack Type Specification

Type Ωpre Ωpost

φ1 exists(ψdP .ip) 〈ψxdP .ip, ψdP .ip〉
φ2 ψxdP .ip = ψdP .ip ∧ exists(ψdP .apache port) 〈ψxdP .apache port〉,

〈ψdP .apache port〉
φ3 ψxdP .ip = ψdP .ip ∧ ψxdP .apache port = ψdP .apache port ∧

exists(ψdP .os)
〈ψxdP .os, ψdP .os〉

φ4 ψxdP .ip = ψdP .ip∧ψxdP .apache port = ψdP .apache port∧ψxdP .os =
ψdP .os ∧ exists(ψdP .vul)

〈ψxdP .vul, ψdP .vul〉

φ5 ψxdP .ip = ψdP .ip∧ψxdP .apache port = ψdP .apache port∧ψxdP .os =
ψdP .os ∧ ψxdP .vul = ψdP .vul

〈ψdP .exa, ψx.exa〉,
〈ψxdP .exa, ψ

x.exa〉
φ6 ψxdP .ip = ψdP .ip∧ψxdP .apache port = ψdP .apache port∧ψxdP .exa =

ψdP .exa ∧ exists(ψdP .root)
〈ψxdP .root, ψdP .root〉

6.5.1.2.5 Attack Instances Concrete attacks that implements attack type φ1−φ6 are

attack instances.

153

6.5.1.3 Interaction Analysis

In this section, we analyze the interactions between φ1, φ2, φ3, φ4 and the mission planning

MTD system. With a concrete MTD system setting, We show the attack surface, adapta-

tion surface and engagement surface, we also show how to quantify coverage and success

likelihood of intrusion. In the next example, We will extend this analysis to φ5, φ6.

6.5.1.3.1 Attack Surface Each attack type has its own attack surface.

• Sattack(φ1) = {ψdP .ip}

• Sattack(φ2) = {ψdP .ip, ψdP .apache port}

• Sattack(φ3) = {ψdP .ip, ψdP .apache port, ψdP .os, }

• Sattack(φ4) = {ψdP .ip, ψdP .apache port, ψdP .os, ψdP .vul}

If we compose φ1, φ2, φ3, φ4, we get compositional attack type, φ = [φ1, φ2, φ3, φ4], as

specified in Table 6.2,

Table 6.2: Compositional Attack Type Specification

Type Ωpre Ωpost

φ = [φ1, φ2, φ3, φ4] exists(ψdP .ip) ∧ exists(ψdP .apache port) ∧
exists(ψdP .os) ∧ exists(ψdP .vul)

〈ψxdP .ip, ψdP .ip〉,
〈ψxdP .apache port,
ψdP .apache port〉,
〈ψxdP .os, ψdP .os〉,
〈ψxdP .vul, ψdP .vul〉

The compositional attack type, φ = [φ1, φ2, φ3, φ4], also has its own attack surface, which

can be viewed as the overall attack surface of [φ1, φ2, φ3, φ4].

• Sattack(φ) = {ψdP .ip, ψdP .apache port, ψdP .os, ψdP .vul}

6.5.1.3.2 Adaptation Surface Sadapt(Σ) = {ψdP .ip}. Although refreshing the Planner

means we remove the complete configuration parameter, πdP , and recreate it, our analysis

focuses on concrete sub configuration parameters of πdP that change during runtime.

154

6.5.1.3.3 Engagement Surface Base on the definition, engagement surafce between

the mission planning system and each attack type are,

• Sengage(φ1,Σ) = Sattack(φ1) ∩ Sadapt(Σ) = {ψdP .ip}

• Sengage(φ2,Σ) = Sattack(φ2) ∩ Sadapt(Σ) = {ψdP .ip}

• Sengage(φ3,Σ) = Sattack(φ3) ∩ Sadapt(Σ) = {ψdP .ip}

• Sengage(φ4,Σ) = Sattack(φ4) ∩ Sadapt(Σ) = {ψdP .ip}

The engagement surface between Σ and compositional attack type, φ = [φ1, φ2, φ3, φ4],

is,

• Sengage(φ,Σ) = Sattack(φ) ∩ Sadapt(Σ) = {ψdP .ip}

6.5.1.3.4 Coverage Based on the definition, coverage between the mission planning

system and each attack type are,

• Coverage(φ1,Σ) = |Sengage(φ1,Σ)|
|Sattack(φ1)

= 1

• Coverage(φ2,Σ) = |Sengage(φ2,Σ)|
|Sattack(φ2)

= 1/2

• Coverage(φ3,Σ) = |Sengage(φ3,Σ)|
|Sattack(φ3)

= 1/3

• Coverage(φ4,Σ) = |Sengage(φ4,Σ)|
|Sattack(φ4)

= 1/4

The coverage between Σ and compositional attack type, φ = [φ1, φ2, φ3, φ4], is,

• Coverage(φ,Σ) = |Sengage(φ,Σ)|
|Sattack(φ)

= 1/4

155

6.5.1.3.5 Potential Effectiveness Clearly, as all the values of coverage are greater

than 0, the mission planning MTD system is potentially effective to the given attack types

φ1 - φ4. Notice, we emphasize it is only potentially effective. Whether this MTD system

is really effective and how, depends on extra factors that we will proceed to the Psuccess

analysis in the next section.

On the other hand, if this value is zero against an attack type, φ, then according to

Definition 6.58, this MTD system has no impact to φ at all. In this situation, it implies that

MTD system designer should consider increasing the adaptation surface of Σ to improve its

effectiveness against φ.

6.5.1.3.6 Success Likelihood of Intrusion We first analyze the attack instances that

implement attack type, φ1, and then extend the analysis to φ2, φ3 and φ4.

Let an attack instance,
∮

(x, dP , φ1), which implements φ1, have a mean time of compro-

mise, Ta1 , and success likelihood of intrusion Pstatic1 . According to Definition 6.60

Psuccess(

∮
(x, dP , φ1)) = P (holds(φ1.Ωpre, [ts, tf]))× Pstatic1

where :

P (holds(φ1.Ωpre, [ts, tf])) = P (unchanged(δ(φ1.Ωpre), [ts, tf])× P (holds(Ωpre, ts))

For this concrete example,

Psuccess(

∮
(x, dP , φ1)) = P (unchanged(ψdP .ip, [ts, tf]))× P (holds(exists(ψdP .ip), ts))× Pstatic1

= (1− pr)
Ta1
Tr × Pstatic1

Note, here P (holds(exists(ψdP .ip), ts)) = 1, because we assume that there is an IP address

156

exists in the Planner at the beginning of this attack. In addition, P (unchanged(ψdP .ip, [ts, tf])

equals (1−pr)
Ta1
Tr because during attack interval Ta, adaptation could occur Ta

Tr
times. While

for each adaptation, the probability of the Planner’s IP address does not change is (1− pr).

Table 6.3 shows the value of (1− pr)
Ta1
Tr based on different values of pr and

Ta1
Tr

. As we

can see, given a fixed pr, higher
Ta1
Tr

leads to less success likelihood. Given a fixed
Ta1
Tr

, higher

pr leads to the less success likelihood. When pr = 0, (1− pr)
Ta1
Tr becomes 1 and this means

when pr = 0, a MTD system is degraded to a static system. When pr = 1 and
Ta1
Tr

> 0,

(1−pr)
Ta1
Tr becomes 0. This special condition captures the fact that as long as MTD system

ensures that the configuration parameter being adapted, the attack will eventually fail when

adaptation happens.

Table 6.3: Value of (1− pr)
Ta1
Tr based on different pr and

Ta1
Tr

pr \
Ta1
Tr

0 0.1 0.3 0.7 1.0 3.0 6.0 9.0

0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.1 1.0 0.9895 0.9689 0.9289 0.9 0.729 0.5314 0.3874
0.3 1.0 0.9650 0.8985 0.7791 0.70 0.343 0.1176 0.0404
0.6 1.0 0.9124 0.7597 0.5266 0.40 0.064 0.0041 0.0003
0.9 1.0 0.7943 0.5012 0.1995 0.10 0.001 1e-6 1e-9
1.0 1.0 0.0 0.0 0.0 0 0 0 0

To have a more complete understanding about (1 − pr)
Ta1
Tr , we plot its value based on

different pr and
Ta1
Tr

values. Let x = pr, y =
Ta1
Tr

, Figure 6.9 plots the value of (1 − pr)
Ta1
Tr

when 0 ≤ pr ≤ 1, 0 ≤ Ta1
Tr
≤ 1. As we can see from Figure 6.9b, there is a large area that has

(1− pr)
Ta1
Tr ≥ 0.5, which means adapting the IP address does not provide much help under

these situations. More specifically, when pr → 0, then for 0 ≤ Ta1
Tr
≤ 1, (1 − pr)

Ta1
Tr → 1,

which means when pr → 0 and 0 ≤ Ta1
Tr
≤ 1, this mission planning MTD system is like a

static system because Psuccess(
∮

(x, dP , φ1)) almost equals Pstatic1 . On the other hand, when

pr → 1,
Ta1
Tr

needs to be small, for example
Ta1
Tr
≤ 0.1, to make (1 − pr)

Ta1
Tr → 1, otherwise,

(1−pr)
Ta1
Tr → 0. This tells us that when the mission planning system has a high pr, in order

157

to maintain Psuccess(
∮

(x, dP , φ1)) as high as Pstatic1 , the attacker needs to shorten its mean

time of compromise, Ta1 , to maintain the
Ta1
Tr

as low as 0.1. Conversely, it clearly indicates

that the mission planning MTD system should set a high adaptation probability, pr, and

maintain the ratio of
Ta1
Tr

larger than 0.1, in order to effectively reduce Psuccess(
∮

(x, dP , φ1)).

When it comes the situation where Tr has to be configured relatively large, then the MTD

designer should consider approaches that could increase the attack time, Ta1 .

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

x

(1−x)y

y 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) 3d view. The color represents different values

of (1− pr)
Ta1
Tr based on different (1− pr) and

Ta1
Tr

values. Red: (1−pr)
Ta1
Tr → 1. Blue: (1−pr)

Ta1
Tr →

0.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(1−x)y

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) 2d top down view of (a). The color represents

differnt values of (1−pr)
Ta1
Tr based on different pr

and
Ta1
Tr

values. Red: (1 − pr)
Ta1
Tr → 1. Blue:

(1− pr)
Ta1
Tr → 0.

Figure 6.9: Value of (1− pr)
Ta1
Tr , 0 ≤ pr ≤ 1, 0 ≤ Ta1

Tr
≤ 1.

An interesting point to note here is that lim
pr→1,

Ta1
Tr
→0

(1 − pr)
Ta1
Tr = 1, which means even

when the system has a very high adaptation probability, pr → 1, but as long as the attack

instance is fast enough to make
Ta1
Tr
→ 0, the MTD system for this particular attack instance

looks like a static system. This actually shows that intrusion speed divided by adaptation

speed,
Ta1
Tr

, dominate the adaptation probability, pr, which perfectly matches a proverb –

“There is no martial art is indefectible, while the speed defines the winner”.

From a defensive perspective, the MTD designer should try to keep
Ta1
Tr

as large as

possible. Figure 6.10 shows the value of (1− pr)
Ta1
Tr when 0 ≤ pr ≤ 1, 1 ≤ Ta1

Tr
≤ 50. As we

158

see, MTD becomes more effective under this situation. For example, in Figure 6.10b, when

0 ≤ pr ≤ 1, 1 ≤ Ta1
Tr
≤ 50, there is a large portion that (1 − pr)

Ta1
Tr ≤ 0.2, which means the

MTD system under this situation, could reduce the success likelihood of intrusion around

80% when compared to the static system. However, we should also notice that when pr is

small, such as pr ≤ 0.05, the MTD system doesn’t help much even when
Ta1
Tr

is relatively

high, for example
Ta1
Tr

= 50. Actually, Figure 6.10b suggests that pr should be at least 0.5

to effectively invalidate attack instances when Ta1 ≥ Tr. This forces the attacker to finish

the attack no longer than Tr to achieve a relatively high Psuccess(
∮

(x, dP , φ1)).

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50
0

0.2

0.4

0.6

0.8

(1−x)y

x

 y 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) 3d view. The color represents different values

of (1− pr)
Ta1
Tr based on different (1− pr) and

Ta1
Tr

values. Red: (1−pr)
Ta1
Tr → 1. Blue: (1−pr)

Ta1
Tr →

0.

0 0.2 0.4 0.6 0.8 1

5

10

15

20

25

30

35

40

45

50
(1−x)y

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) 2d top down view of (a). The color represents

differnt values of (1−pr)
Ta1
Tr based on different pr

and
Ta1
Tr

values. Red: (1 − pr)
Ta1
Tr → 1. Blue:

(1− pr)
Ta1
Tr → 0.

Figure 6.10: Value of (1− pr)
Ta1
Tr , 0 ≤ pr ≤ 1, 1 ≤ Ta1

Tr
≤ 50.

If we want to consider the success likelihood of gaining a specific IP address, say

192.168.10.100, in the range of configuration space: 192.168.10.100 – 192.168.10.200, then

ψdP .ip = 192.168.10.100 should be part of φ1.ΩPre. Thus according to the success likelihood

159

definition,

Psuccess(

∮
(x, dP , φ1)) = P (holds(φ1.Ωpre, [ts, tf]))× Pstatic1

= P (unchanged(δ(φ1.Ωpre), [ts, tf]))× P (holds(φ1.Ωpre, ts))× Pstatic1

= P (unchanged(ψdP .ip, [ts, tf]))

× P (holds(ψdP .ip == 192.168.10.100), ts)× Pstatic1

= (1− pr)
Ta
Tr × 1

100
× Pstatic1

Here, P (holds(ψdP .ip == 192.168.10.100), ts) = 1
100

because based on the randomization

adopted in this mission planning system, each IP address has the probability of 1
99

to be

selected, and 1 time of 0 probability being selected, thus each IP address in general has

a 1
100

chance of being selected. It seems this analysis only helps when we consider the

situation where an attacker tries to attack a specific state. However, it actually provides

very useful information for the MTD designer. If each state in the configuration space has

an equal probability to be selected, then a larger configuration space leads to a smaller

P (ψdP .ip = 192.168.10.100). In addition, a larger configuration space could reflect an even

larger exploration space that costs the attacker more time to identify the true value. Thus,

when the MTD system can not afford to change fast, which means keeping Tr relatively

short or pr relatively high, then the MTD designer should consider putting in more effort to

diversify the configuration space to increase Ta. Approaches to diversifying IP address space

that making gaining IP address harder, which could be adopted in this MTD example, are to

consider switching from IPv4 to IPv620, or to take advantage of the spatio-temporal address

mutation technique125. Chapter 5 discussed that the model presented has a limitation that

VMs assigned to play the same role are assumed to have the same vulnerability. With MTD

theory, this limitation can be eliminated by knowing the probability of each configuration

state being selected.

160

Until now, we only analyzed the attack instance that implement φ1 and discussed what

an MTD system could do to thwart φ1. Next, we analyze a sequence of attack instances

that implement φ2, φ3 and φ4.

Let’s start by assuming when no adaptation happens, attack instances that implement

φ1 to φ4 have the time interval, Ta and Pstatic as specified in Table 6.4.

Table 6.4: Attack Instances Specification

Attack Instances Ta Pstatic∮ t1
t0

(x, dP , φ1) Ta1 Pstatic1∮ t2
t1

(x, dP , φ2) Ta2 Pstatic2∮ t3
t2

(x, dP , φ3) Ta3 Pstatic3∮ t4
t3

(x, dP , φ4) Ta4 Pstatic4

Then for attack instance,
∮

(x, dP , φ2), which implements attack type φ2, we can derive

its success likelihood based on the condition that
∮

(x, dP , φ1) is success. According to the

definition,

Psuccess(

∮
(x, dP , φ2)|

∮
(x, dP , φ1)) = P (holds(φ2.Ωpre, [t1, t2]))× Pstatic2

= P (unchanged(δ(φ2.Ωpre), [t1, t2]))

× P (holds(φ2.Ωpre, t1))× Pstatic2

= P (unchanged({ψdP .ip, ψdP .apache port}, [t1, t2])

× 1× Pstatic2

= (1− pr)
Ta2
Tr × Pstatic2

Here, P (holds(φ2.Ωpre, t1)) is set to 1 because we analyze it based on the condition

that
∮

(x, dP , φ1) is successful and also assume that exists(ψdP .ip) is true. Notice the

caveat that exists(ψdP .ip) is true, otherwise the attack will fail for sure. In addition,

P (unchanged({ψdP .ip, ψdP .apache port}, [t1, t2]) is set to (1 − pr)
Ta2
Tr , because only the IP ad-

161

dress is changed and the port number remains unchanged, thus the result is similar as

P (unchanged(ψdP .ip, [t0, t1])) in φ1 except the time interval switches from Ta1 to Ta2 . Us-

ing the Bayesian rule, we can derive the success likelihood when two attack instances,∮
(x, dP , φ1) and

∮
(x, dP , φ2) are both successful.

Psuccess(

∮
(x, dP , φ1),

∮
(x, dP , φ2)) = Psuccess(

∮
(x, dP , φ1))

× Psuccess(
∮

(x, dP , φ2)|
∮

(x, dP , φ1))

= (1− pr)
Ta1
Tr × Pstatic1 × (1− pr)

Ta2
Tr × Pstatic2

= (1− pr)
Ta1+Ta2

Tr × Pstatic1 × Pstatic2

This formula actually provides another way to understand the intrusion. Attack in-

stances
∮

(x, dP , φ1) and
∮

(x, dP , φ2) can be viewed as a single attack instance φ′, which has

time interval T ′a = Ta1 + Ta2 and P ′static = Pstatic1 × Pstatic2 .

This process can be extended to φ3 and φ4 as well to get the following results.

Psuccess(

∮
(x, dP , φ1),

∮
(x, dP , φ2),

∮
(x, dP , φ3)) =(1− pr)

Ta1+Ta2+Ta3
Tr × Pstatic1

× Pstatic2 × Pstatic3

Psuccess(

∮
(x, dP , φ1),

∮
(x, dP , φ2),

∮
(x, dP , φ3),

∮
(x, dP , φ4)) =(1− pr)

Ta1+Ta2+Ta3+Ta4
Tr

× Pstatic1 × Pstatic2

× Pstatic3 × Pstatic4

Thus, this sequence of four attack instances can be viewed as a single attack instance,
∮ ′

,

which has a time interval T ′a = Ta1 +Ta2 +Ta3 +Ta4 and P ′static = Pstatic1×Pstatic2×Pstatic3×

Pstatic4 . And this attack instance,
∮ ′

can be viewed as an instance which implements the

162

compositional attack type φ = [φ1, φ2, φ3, φ4].

This also tells us that the success likelihood of intrusion analysis needs to be tied to

concrete attacks and what the attacker tries to gain or modify. For example, when we

consider attack instance,
∮

(x, dP , φ1), we only focus on the IP address. However, the IP

address itself is usually just a tiny step towards obtaining more valuable information from

the target system, thus, if the MTD system cannot change as fast as Ta1 , it doesn’t have to.

If all an MTD system cares is that φ4 is not successfully implemented, then it only needs to

be change as fast as Ta1 +Ta2 +Ta3 +Ta4 to decrease the Psuccess. However, as port number,

OS and web application in this example all remain unchanged, Ta2 +Ta3 +Ta4 could be very

small. Imagine the case where attacker purchases a same system and studies it offline, then

once the system is broken, the attacker could simply reuse exactly the same knowledge about

port, OS and web application vulnerability and apply it to the target. Although adapting

IP address will force the attacker to regain the IP address in each attack, but clearly we

can diversify and change other configuration parameters as well to increase or maintain the

overall attack time to avoid the situation mentioned.

In the next section, we show an MTD system where more than one configuration param-

eters are changed, instead of only the IP address, and analyze its effectiveness. We also show

that different adaptation mechanisms will have notable varying impact to the intrusion.

6.5.2 Attack ASLR-enabled Mission Planning System

In this example, an attacker needs to correctly gain some memory locations in order to take

adavantage of exploitable vulnerabilities. Thus, instead of only changing the IP address, the

designer decides to enable the PaX address space layout randomization (ASLR) to add more

protection. ASLR is a security technique that guards against code reuse attacks, which work

by overwriting memory locations to point to potentially malicious code. By randomizing

memory locations, ASLR makes it difficult to correctly guess the memory locations of specific

163

processes. More specifically, a processs address space contains three areas: the executable

area, the mapped area and the stack area. Instead of fixing each areas base address, ASLR

randomizes it by adding an extra variable to the base address when the process is created.

For the Intel x86 architecture, PaX ASLR randomizes 16 or 24 bits for these areas.

For instance, the mapped data area variable delta mmap has 16 bits of randomness,

which means the attacker only needs to iterate from 0 to 65535 to determine its value. PaX

ASLR has two properties. First, PaX ASLR randomizes only the base addresses of the three

memory areas but not the layout within each area. Second, the layout is fixed throughout

a process and all its children’s lifetime.

Next, we provide more details to the attack types given in the previous example and con-

sider a concrete return-to-libc attack instance that implements these attack types. The im-

plementation of the return-to-libc attack first creates a memory hole in the Oracle 9 PL/SQL

Apache module by creating an overflow buffer in the ap getline() function in http protocol.c.

To conduct the attack, the base of the mapped area mmap base and the offset of the usleep()

function usleep offset in libc are precomputed.(libc is the standard C-language library that

is loaded into all Unix programs.). Then the value of delta mmap is found by repeatedly

overflowing the stack buffer with guesses for the absolute address of the usleep() function.

An unsuccessful guess causes the child process to crash and be replaced by a new process

with the same randomization offsets. A successful guess calls the usleep() function and

hangs the connection for 16 seconds, which helps determine the value of delta mmap. Once

the value of delta mmap is gained, the absolute locations of all functions in libc can be

calculated. The final step is to smash the stack to point to another libc function, system(),

which executes user supplied commands through the command shell. Shell commands are

sent to system() as an argument.

164

6.5.2.1 MTD System Specification

In this new example, the mission planning system remains mostly the same as previous

settings. The planner has all the prevous settings that are reproduced here as a reference.

The Planner:

• Runs a C++ web application based on Apache and Ubuntu.

• Web application has port number 80.

• Adaptation contains actions to replace the old Planner machine with a new machine

and notify the changes to the AssetDB, GeoDB and TargetDB.

• New Planner is configured with the same C++ web app, port and OS.

• New Planner’s IP address is picked from 192.168.10.100–192.168.10.200.

• Adaptation occurs once during each time interval Tr.

• Every Tr, the Planner get refreshed in a probability of pr.

However, the Planner has one more configuration parameter being changed, which is

delta mmap.

• New Planner’s delta mmap is randomly picked from 0 - 65535

In addition, instead of analyzing the adaptation mechanism that the Planner gets re-

freshed (where both IP and delta mmap changes) every Tr with a probability of pr, we

analyze a more general adaptation approach where every Tr, the IP address has a probabil-

ity pr1 to change and delta mmap has a probability of pr2 to change.

• Every Tr, the Planner’s IP address is adapted with probablity pr1 and delta mmap is

adapted with probability pr2 .

165

6.5.2.1.1 Configuration Space The configuration space in this example has been

greatly enlarged and has the size of 100 x 65536. The reason is that we can set the value of

IP address and delta mmap independently in each adaptation.

6.5.2.1.2 Diversification The adaptation in this mission planning system takes ad-

vantage of the IP address space as well as the memory space. No artificial diversification

technique is used in this example.

6.5.2.1.3 Randomization For first adaptation option: new Planner machine’s IP ad-

dress is randomly picked from the IP pool except the previous IP address, thus each IP ad-

dress has the probabiliy of psip = 1/99 to be selected and the old IP address has probability

of psip = 0 to be chosen. Similarly, each delta mmap has probability psdelta mmap = 1/65535

to be selected and the old delta mmap has probability of zero to be chosen. In addition, for

every Tr, there is a probability of pr = 1/4 the Planner actually gets refreshed. Thus, the

current IP and delta mmap has the probability of (1− pr) = 3
4

to remain unchanged.

For second adaptation option: new Planner machine’s IP address is randomly picked

from the IP pool except the previous IP address, thus each IP address has the probabiliy of

psip = 1/99 to be selected and the old IP address has probability of psip = 0 to be chosen.

Similarly, each delta mmap has probability psdelta mmap = 1/65535 to be selected and the old

delta mmap has probability of zero to be chosen. However, the difference is that there is a

probability of pr1 that the IP address get changed and pr2 that delta mmap get changed.

Thus, the current IP has probability (1 − pr1) and current delta mmap has probability of

(1− pr2) to remain unchanged. As an example, one may set pr1 = 0.5 and pr2 = 0.6.

6.5.2.1.4 MTD Problem The two adaptation mechanisms described above are the

solutions to MTD problem in this concrete example. When adaptation occurs, the new

Planner will have the same configuration as before except the IP address is randomly picked

166

from an IP pool and the web application’s memory variable delta mmap is randomly picked

from its available memory address space.

6.5.2.1.5 Adaptation Problem The solution to the adaptation problem in this con-

crete example is to synthesize a sequence of configuration actions to shutdown the old

Planner, start and configure the new Planner, and then notify and update the AssetDB,

GeoDB and TargetDB. When PaX ASLR is enabled, each new machine’s web application

will have its randomly selected delta mmap value.

6.5.2.1.6 Timing Problem The solution to the timing problem is simply to schedule

an adaptation in every time interval, Tr, where Tr can take different value.

6.5.2.2 Attack Type Specification

6.5.2.2.1 Attack Goal An attacker, x, has the goal to first exploit the Planner to

obtain root privileges and then access TargetDB to steal sensitive data.

6.5.2.2.2 Target System In this example, the mission planning system is the target

system, D, with its complete information parameter ψMissionP lanning. The Planner, dPlanner

(or dP for short), and the TargetDB, dTargetDB (or dT for short) are the specific targets

of interest, which have complete information parameter, ψPlanner and ψTargetDB. Concrete

information parameters that will be used in this example include: ψdP .ip, ψdP .apache port,

ψdP .os, ψdP .mmap base, ψdP .usleep offset, ψdP .delta mmap, ψdT .ip, ψdT .db port, ψdT .data

Notice we use ψdT .data to refer any sensitive data the attacker might obtain from the

TargetDB.

6.5.2.2.3 Attacker To carry out the intrusion successfully, the attacker, x, must have

correct knowledge of the Planner, ψxdP , including the Planner’s IP address, Apache web

167

server port number, operating system, the vulnerability of the web server, and tables of

database. Formally, these are captured via attacker knowledge in the form of information

parameters such as ψxdP .ip. In addition, the attacker should have general knowledge in ψx

that captures special skills, such as how to scan the IP address, port number, how to find

out mmap base, delta mmap and how to query data from a database.

6.5.2.2.4 Attack Type In this scenario, the attacker will face an MTD system that

changes both IP address as well as the mapped data area location delta mmap. The attack

type φ1, φ2, φ3, φ6 remain unchanged from the previous example, but the φ4 and φ5 are

actually decomposed into sub attack types. Table 6.5 and Table 6.6 show the decomposition.

Note, we omit part of the preconditions in the table, ψxdP .ip = ψdP .ip ∧ ψxdP .apache port =

ψdP .apache port ∧ ψxdP .os = ψdP .os, from φ4 and φ5 to save space.

Table 6.5: Attack Type φ4 Decomposition

Type Ωpre Ωpost

φ4.1 exists(ψdP .mmap base) 〈ψxdP .mmap base, ψdP .mmap base〉
φ4.2 ψxdP .mmap base = ψdP .mmap base∧ exists(ψdP .usleep offset) 〈ψxdP .usleep offset, ψdP .usleep offset〉
φ4.3 ψxdP .mmap base = ψdP .mmap base ∧ ψxdP .usleep offset =

ψdP .usleep offset ∧ exists(ψdP .delta mmap)
〈ψxdP .delta mmap, ψdP .delta mmap〉

Table 6.6: Attack Type φ5 Decomposition

Type Ωpre Ωpost

φ5.1 ψxdP .mmap base = ψdP .mmap base ∧
exists(ψdP .system offset)

〈ψxdP .system offset, ψdP .system offset〉

φ5.2 ψxdP .mmap base = ψdP .mmap base ∧ ψxdP .system offset =
ψdP .system offset ∧ ψxdP .delta mmap = ψdP .delta mmap

〈ψdP .exa, ψ
x.exa〉, 〈ψxdP .exa, ψ

x.exa〉

In addition, we add another attack type φ7, which obtains data from database, Table 6.7

shows the decomposition of φ7. Note, we omit part of the preconditions in the table, ψxdP .ip

= ψdP .ip ∧ ψxdP .apache port = ψdP .apache port for φ7.1, φ7.2 and φ7.3 to save space. In addition, we

assume the TargetDB database can be connected using the Planner machine’s root privilege,

168

otherwise the attacker needs to gain correct credentials before connecting TargetDB and

retrieving the data.

Table 6.7: Attack Type φ7 Decomposition

Type Ωpre Ωpost

φ7.1 ψdP .exa = ψxdP .exa ∧ ψdP .root = ψxdP .root ∧ exists(ψdT .ip) 〈ψxdT .ip, ψdT .ip〉
φ7.2 ψdP .exa = ψxdP .exa ∧ψ

x
dP
.root = ψdP .root ∧ψxdT .ip = ψdT .ip ∧

exists(ψdT .db port)
〈ψxdT .db port, ψdT .db port〉

φ7.3 ψdP .exa = ψxdP .exa ∧ψ
x
dP
.root = ψdP .root ∧ψxdT .ip = ψdT .ip ∧

ψxdT .db port = ψdT .db port ∧ exists(ψdT .data)
〈ψxdT .data, ψdT .data〉

Table 6.8 shows the compositional attack types which are minmal. Later we will compare

the analysis applied to each individual attack types and the overall compositional attack

type.

Table 6.8: Compositional Attack Types Specification

Type Ωpre Ωpost

φ′′4.1 =

[φ1, φ2, φ3, φ4.1]

exists(ψdP .ip) ∧ exists(ψdP .apache port) ∧

exists(ψdP .os) ∧ exists(ψdP .mmap base)

〈ψxdP .ip, ψdP .ip〉,

〈ψxdP .apache port, ψdP .apache port〉,

〈ψxdP .os, ψdP .os〉,

〈ψxdP .mmap base, ψdP .mmap base〉

φ′′4.2 =

[φ1, φ2, φ3, φ4.1,

φ4.2]

exists(ψdP .ip) ∧ exists(ψdP .apache port) ∧

exists(ψdP .os) ∧ exists(ψdP .mmap base) ∧

exists(ψdP .usleep offset)

〈ψxdP .ip, ψdP .ip〉,

〈ψxdP .apache port, ψdP .apache port〉,

〈ψxdP .os, ψdP .os〉,

〈ψxdP .mmap base, ψdP .mmap base〉,

〈ψxdP .usleep offset, ψdP .usleep offset〉

169

φ′′4.3 =

[φ1, φ2, φ3, φ4.1,

φ4.2, φ4.3]

exists(ψdP .ip) ∧ exists(ψdP .apache port) ∧

exists(ψdP .os) ∧ exists(ψdP .mmap base) ∧

exists(ψdP .usleep offset) ∧

exists(ψdP .delta mmap)

〈ψxdP .ip, ψdP .ip〉,

〈ψxdP .apache port, ψdP .apache port〉,

〈ψxdP .os, ψdP .os〉,

〈ψxdP .mmap base, ψdP .mmap base〉,

〈ψxdP .usleep offset, ψdP .usleep offset〉,

ψxdP .delta mmap, ψdP .delta mmap〉

φ′′5.1 =

[φ1, φ2, φ3, φ4.1,

φ5.1]

exists(ψdP .ip) ∧ exists(ψdP .apache port) ∧

exists(ψdP .os) ∧ exists(ψdP .mmap base) ∧

exists(ψdP .system offset)

〈ψxdP .ip, ψdP .ip〉,

〈ψxdP .apache port, ψdP .apache port〉,

〈ψxdP .os, ψdP .os〉,

〈ψxdP .mmap base, ψdP .mmap base〉,

〈ψxdP .system offset, ψdP .system offset〉

φ′′5.2 =

[φ1, φ2, φ3, φ4.1,

φ4.2, φ4.3, φ5.1,

φ5.2]

exists(ψdP .ip) ∧ exists(ψdP .apache port) ∧

exists(ψdP .os) ∧ exists(ψdP .mmap base) ∧

exists(ψdP .usleep offset) ∧

exists(ψdP .delta mmap) ∧

exists(ψdP .system offset)

〈ψxdP .ip, ψdP .ip〉,

〈ψxdP .apache port, ψdP .apache port〉,

〈ψxdP .os, ψdP .os〉,

〈ψxdP .mmap base, ψdP .mmap base〉,

〈ψxdP .usleep offset, ψdP .usleep offset〉,

〈ψxdP .delta mmap, ψdP .delta mmap〉,

〈ψxdP .system offset, ψdP .system offset〉,

〈ψdP .exa, ψx.exa〉,

〈ψxdP .exa, ψ
x.exa〉

170

φ′′6 =

[φ1, φ2, φ3, φ4.1,

φ4.2, φ4.3, φ5.1,

φ5.2, φ6]

exists(ψdP .ip) ∧ exists(ψdP .apache port) ∧

exists(ψdP .os) ∧ exists(ψdP .mmap base) ∧

exists(ψdP .usleep offset) ∧

exists(ψdP .delta mmap) ∧

exists(ψdP .system offset) ∧ exists(ψdP .root)

〈ψxdP .ip, ψdP .ip〉,

〈ψxdP .apache port, ψdP .apache port〉,

〈ψxdP .os, ψdP .os〉,

〈ψxdP .mmap base, ψdP .mmap base〉,

〈ψxdP .usleep offset, ψdP .usleep offset〉,

〈ψxdP .delta mmap, ψdP .delta mmap〉,

〈ψxdP .system offset, ψdP .system offset〉,

〈ψdP .exa, ψx.exa〉,

〈ψxdP .exa, ψ
x.exa〉,

〈ψxdP .root, ψdP .root〉

φ′′7.1 =

[φ1, φ2, φ3,

φ4.1, φ4.2, φ4.3,

φ5.1, φ5.2, φ6,

φ7.1]

exists(ψdP .ip) ∧ exists(ψdP .apache port) ∧

exists(ψdP .os) ∧ exists(ψdP .mmap base) ∧

exists(ψdP .usleep offset) ∧

exists(ψdP .delta mmap) ∧

exists(ψdP .system offset)∧exists(ψdP .root)∧

exists(ψdT .ip)

〈ψxdP .ip, ψdP .ip〉,

〈ψxdP .apache port, ψdP .apache port〉,

〈ψxdP .os, ψdP .os〉,

〈ψxdP .mmap base, ψdP .mmap base〉,

〈ψxdP .usleep offset, ψdP .usleep offset〉,

〈ψxdP .delta mmap, ψdP .delta mmap〉,

〈ψxdP .system offset, ψdP .system offset〉,

〈ψdP .exa, ψx.exa〉,

〈ψxdP .exa, ψ
x.exa〉,

〈ψxdP .root, ψdP .root〉,

〈ψxdT .ip, ψdT .ip〉

171

φ′′7.2 =

[φ1, φ2, φ3,

φ4.1, φ4.2, φ4.3,

φ5.1, φ5.2, φ6,

φ7.1, φ7.2]

exists(ψdP .ip) ∧ exists(ψdP .apache port) ∧

exists(ψdP .os) ∧ exists(ψdP .mmap base) ∧

exists(ψdP .usleep offset) ∧

exists(ψdP .delta mmap) ∧

exists(ψdP .system offset)∧exists(ψdP .root)∧

exists(ψdT .ip) ∧ exists(ψdT .db port)

〈ψxdP .ip, ψdP .ip〉,

〈ψxdP .apache port, ψdP .apache port〉,

〈ψxdP .os, ψdP .os〉,

〈ψxdP .mmap base, ψdP .mmap base〉,

〈ψxdP .usleep offset, ψdP .usleep offset〉,

〈ψxdP .delta mmap, ψdP .delta mmap〉,

〈ψxdP .system offset, ψdP .system offset〉,

〈ψdP .exa, ψx.exa〉,

〈ψxdP .exa, ψ
x.exa〉,

〈ψxdP .root, ψdP .root〉,

〈ψxdT .ip, ψdT .ip〉,

〈ψxdT .db port, ψdT .db port〉

φ′′7.3 =

[φ1, φ2, φ3,

φ4.1, φ4.2, φ4.3,

φ5.1, φ5.2, φ6,

φ7.1, φ7.2, φ7.3]

exists(ψdP .ip) ∧ exists(ψdP .apache port) ∧

exists(ψdP .os) ∧ exists(ψdP .mmap base) ∧

exists(ψdP .usleep offset) ∧

exists(ψdP .delta mmap) ∧

exists(ψdP .system offset)∧exists(ψdP .root)∧

exists(ψdT .ip) ∧ exists(ψdT .db port) ∧

exists(ψdT .data)

〈ψxdP .ip, ψdP .ip〉,

〈ψxdP .apache port, ψdP .apache port〉,

〈ψxdP .os, ψdP .os〉,

〈ψxdP .mmap base, ψdP .mmap base〉,

〈ψxdP .usleep offset, ψdP .usleep offset〉,

〈ψxdP .delta mmap, ψdP .delta mmap〉,

〈ψxdP .system offset, ψdP .system offset〉,

〈ψdP .exa, ψx.exa〉,

〈ψxdP .exa, ψ
x.exa〉,

〈ψxdP .root, ψdP .root〉,

〈ψxdT .ip, ψdT .ip〉,

〈ψxdT .db port, ψdT .db port〉,

〈ψxdT .data, ψdT .data〉

172

6.5.2.2.5 Attack Instances The return-to-libc attack can be viewed as a concrete im-

plementation of attack type φ1 to φ6. Once the attacker has the root privilege of Planner,

the attacker can learn the TargetDB address and db port through network connections,

and then connect to the database with a db client to query data. We will analyze attack

instances that implement φ1 to φ7 one by one.

6.5.2.3 Interaction Analysis

6.5.2.3.1 Attack Surface Each attack type has their attack surface.

• Sattack(φ1) = {ψdP .ip}

• Sattack(φ2) = {ψdP .ip, ψdP .apache port}

• Sattack(φ3) = {ψdP .ip, ψdP .apache port, ψdP .os, }

• Sattack(φ4.1) = {ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base}

• Sattack(φ4.2) = {ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base, ψdP .usleep offset}

• Sattack(φ4.3) = {ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base, ψdP .usleep offset, ψdP .delta mmap}

• Sattack(φ5.1) = {ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base, ψdP .system offset}

• Sattack(φ5.2) = {ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base, ψdP .system offset, ψdP .delta mmap, ψdP .exa}

• Sattack(φ6) = {ψdP .ip, ψdP .apache port, ψdP .exa, ψdP .root}

• Sattack(φ7.1) = {ψdP .ip, ψdP .apache port, ψdP .exa, ψdP .root, ψdT .ip}

• Sattack(φ7.2) = {ψdP .ip, ψdP .apache port, ψdP .exa, ψdP .root, ψdT .ip, ψdT .db port}

• Sattack(φ7.3) = {ψdP .ip, ψdP .apache port, ψdP .exa, ψdP .root, ψdT .ip, ψdT .db port, ψdT .data}

Each compositional attack type also has their own attack surface,

173

• Sattack(φ′′4.1) = {ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base}

• Sattack(φ′′4.2) = {ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base, ψdP .usleep offset}

• Sattack(φ′′4.3) = {ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base, ψdP .usleep offset, ψdP .delta mmap}

• Sattack(φ′′5.1) = {ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base, ψdP .system offset}

• Sattack(φ′′5.2) = {ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base, ψdP .system offset, ψdP .delta mmap,

ψdP .exa}

• Sattack(φ′′6) = {ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base, ψdP .system offset, ψdP .delta mmap,

ψdP .exa, ψdP .root}

• Sattack(φ′′7.1) = {ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base, ψdP .system offset, ψdP .delta mmap,

ψdP .exa, ψdP .root, ψdT .ip}

• Sattack(φ′′7.2) = {ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base, ψdP .system offset, ψdP .delta mmap,

ψdP .exa, ψdP .root, ψdT .ip, ψdT .db port}

• Sattack(φ′′7.3) = {ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base, ψdP .system offset, ψdP .delta mmap,

ψdP .exa, ψdP .root, ψdT .ip, ψdT .db port, ψdT .data}

6.5.2.3.2 Adaptation Surface Sadapt(Σ) = {ψdP .ip, ψdP .delta mmap}. Although refresh-

ing the Planner means we remove the complete configuration parameter, πdP , and recreate

it, our analysis does not remain at this level but only focus on concrete configuration pa-

rameters that will be changed to a different state. However, it does impact the coverage

analysis to attack types φ5.2, φ6, φ7.1, φ7.2, φ7.3.

6.5.2.3.3 Engagement Surface The engagement surface between the PaX ASLR en-

abled mission planning system and each attack type are,

174

• Sengage(φ1,Σ) = Sattack(φ1) ∩ Sadapt(Σ) = {ψdP .ip}

• Sengage(φ2,Σ) = Sattack(φ2) ∩ Sadapt(Σ) = {ψdP .ip}

• Sengage(φ3,Σ) = Sattack(φ3) ∩ Sadapt(Σ) = {ψdP .ip}

• Sengage(φ4.1,Σ) = Sattack(φ4.1) ∩ Sadapt(Σ) = {ψdP .ip}

• Sengage(φ4.2,Σ) = Sattack(φ4.2) ∩ Sadapt(Σ) = {ψdP .ip}

• Sengage(φ4.3,Σ) = Sattack(φ4.3) ∩ Sadapt(Σ) = {ψdP .ip, ψdP .delta mmap}

• Sengage(φ5.1,Σ) = Sattack(φ5.1) ∩ Sadapt(Σ) = {ψdP .ip}

• Sengage(φ5.2,Σ) = Sattack(φ5.2) ∩ Sadapt(Σ) = {ψdP .ip, ψdP .delta mmap, ψdP .exa}

• Sengage(φ6,Σ) = Sattack(φ6) ∩ Sadapt(Σ) = {ψdP .ip, ψdP .exa}

• Sengage(φ7.1,Σ) = Sattack(φ7.1) ∩ Sadapt(Σ) = {ψdP .ip, ψdP .exa}

• Sengage(φ7.2,Σ) = Sattack(φ7.2) ∩ Sadapt(Σ) = {ψdP .ip, ψdP .exa}

• Sengage(φ7.3,Σ) = Sattack(φ7.3) ∩ Sadapt(Σ) = {ψdP .ip, ψdP .exa}

The engagement surface between the PaX ASLR enabled mission planning system and

each compositional attack type are:

• Sengage(φ′′4.1,Σ) = Sattack(φ
′′
4.1) ∩ Sadapt(Σ) = {ψdP .ip}

• Sengage(φ′′4.2,Σ) = Sattack(φ
′′
4.2) ∩ Sadapt(Σ) = {ψdP .ip}

• Sengage(φ′′4.3,Σ) = Sattack(φ
′′
4.3) ∩ Sadapt(Σ) = {ψdP .ip, ψdP .delta mmap}

• Sengage(φ′′5.1,Σ) = Sattack(φ
′′
5.1) ∩ Sadapt(Σ) = {ψdP .ip}

• Sengage(φ′′5.2,Σ) = Sattack(φ
′′
5.2) ∩ Sadapt(Σ) = {ψdP .ip, ψdP .delta mmap, ψdP .exa}

175

• Sengage(φ′′6,Σ) = Sattack(φ
′′
6) ∩ Sadapt(Σ) = {ψdP .ip, ψdP .delta mmap, ψdP .exa}

• Sengage(φ′′7.1,Σ) = Sattack(φ
′′
7.1) ∩ Sadapt(Σ) = {ψdP .ip, ψdP .delta mmap, ψdP .exa}

• Sengage(φ′′7.2,Σ) = Sattack(φ
′′
7.2) ∩ Sadapt(Σ) = {ψdP .ip, ψdP .delta mmap, ψdP .exa}

• Sengage(φ′′7.3,Σ) = Sattack(φ
′′
7.3) ∩ Sadapt(Σ) = {ψdP .ip, ψdP .delta mmap, ψdP .exa}

Notice the difference between Sengage(φ6,Σ) and Sengage(φ
′′
6,Σ), Sengage(φ7.1,Σ) and Sengage(φ

′′
7.1,Σ),

Sengage(φ7.2,Σ) and Sengage(φ
′′
7.2,Σ), and Sengage(φ7.3,Σ) and Sengage(φ

′′
7.3,Σ). The reason for

these differences is that compositional attack types combine all information parameters

contained in each sub attack type, while each sub attack type only contains the informa-

tion parameters required by itself. For example, ψdP .delta mmap belongs to Sengage(φ
′′
6,Σ)

because φ′′6 include the sub attack type φ4.3 that gains ψdP .delta mmap. However, ψdP .delta mmap

doesn’t belong to Sengage(φ6,Σ) because φ6 as an individual attack type does not require

ψdP .delta mmap.

6.5.2.3.4 Coverage Based on the definition, coverage between the mission planning

system and each attack type are,

• Coverage(φ1,Σ) = |Sengage(φ1,Σ)|
|Sattack(φ1)

= 1

• Coverage(φ2,Σ) = |Sengage(φ2,Σ)|
|Sattack(φ2)

= 1/2

• Coverage(φ3,Σ) = |Sengage(φ3,Σ)|
|Sattack(φ3)

= 1/3

• Coverage(φ4.1,Σ) = |Sengage(φ4.1,Σ)|
|Sattack(φ4.1)

= 1/4

• Coverage(φ4.2,Σ) = |Sengage(φ4.2,Σ)|
|Sattack(φ4.2)

= 1/5

• Coverage(φ4.3,Σ) = |Sengage(φ4.3,Σ)|
|Sattack(φ4.3)

= 2/6

• Coverage(φ5.1,Σ) = |Sengage(φ5.1,Σ)|
|Sattack(φ5.1)

= 1/5

176

• Coverage(φ5.2,Σ) = |Sengage(φ5.2,Σ)|
|Sattack(φ5.2)

= 3/7

• Coverage(φ6,Σ) = |Sengage(φ6,Σ)|
|Sattack(φ6)

= 2/4

• Coverage(φ7.1,Σ) = |Sengage(φ7.1,Σ)|
|Sattack(φ7.1)

= 2/5

• Coverage(φ7.2,Σ) = |Sengage(φ7.2,Σ)|
|Sattack(φ7.2)

= 2/6

• Coverage(φ7.3,Σ) = |Sengage(φ7.3,Σ)|
|Sattack(φ7.3)

= 2/7

Note, the coverage for attack types φ5.2, φ6, φ7.1, φ7.2 and φ7.3 take ψdP .exa (which is an

execution agent uploaded by attacker) into account because it is added to the system by

the attacker and it will be removed by refreshing the Planner. Clearly, if the MTD system

does not adopt a refreshing approach, but only changes the IP and delta mmap inside the

original Planner machine, then ψdP .exa should not be taken into consideration.

We can also derive the coverage between the mission planning system and each compo-

sitional attack type.

• Coverage(φ′′4.1,Σ) =
|Sengage(φ′′4.1,Σ)|
|Sattack(φ′′4.1)

= 1/4

• Coverage(φ′′4.2,Σ) =
|Sengage(φ′′4.2,Σ)|
|Sattack(φ′′4.2)

= 1/5

• Coverage(φ′′4.3,Σ) =
|Sengage(φ′′4.3,Σ)|
|Sattack(φ′′4.3)

= 2/6

• Coverage(φ′′5.1,Σ) =
|Sengage(φ′′5.1,Σ)|
|Sattack(φ′′5.1)

= 1/5

• Coverage(φ′′5.2,Σ) =
|Sengage(φ′′5.2,Σ)|
|Sattack(φ′′5.2)

= 3/7

• Coverage(φ′′6,Σ) =
|Sengage(φ′′6 ,Σ)|
|Sattack(φ′′6)

= 3/8

• Coverage(φ′′7.1,Σ) =
|Sengage(φ′′7.1,Σ)|
|Sattack(φ′′7.1)

= 3/9

• Coverage(φ′′7.2,Σ) =
|Sengage(φ′′7.2,Σ)|
|Sattack(φ′′7.2)

= 3/10

• Coverage(φ′′7.3,Σ) =
|Sengage(φ′′7.3,Σ)|
|Sattack(φ′′7.3)

= 3/11

177

6.5.2.3.5 Potential Effectiveness As the coverage values are all greater than zero,

the ASLR-enabled mission planning system is potentially effective against all the specified

attack types from φ1 to φ7.3. Thus, we can proceed to analyze the effectiveness further in

terms of success likelihood of intrusion.

6.5.2.3.6 Success Likelihood of Intrusion In the previous example, we analyzed the

Psuccess(
∮

) of the attack instances that implement φ1, φ2, φ3 and φ4 under a changing

IP environment. In this section, we analyze the MTD impact to Psuccess when multiple

configuration parameters are adapted simultaneously. We will show that the results of

Psuccess are different given the two adaptation options presented in the randomization section.

Let’s start by assuming attack instances that implement φ1 to φ7 have the time interval,

Ta, and Pstatic as specified in Table 6.9. To simplify the writing, we use symbols
∮

1
-
∮

7.2
to

represent the event that each attack instance is successful.

Table 6.9: Attack Instances Specification

Symbol Attack Instances Ta Pstatic∮
1

∮ t1
t0

(x, dP , φ1) Ta1 Pstatic1∮
2

∮ t2
t1

(x, dP , φ2) Ta2 Pstatic2∮
3

∮ t3
t2

(x, dP , φ3) Ta3 Pstatic3∮
4.1

∮ t4.1
t3

(x, dP , φ4.1) Ta4.1 Pstatic4.1∮
4.2

∮ t4.2
t4.1

(x, dP , φ4.2) Ta4.2 Pstatic4.2∮
4.3

∮ t4.3
t4.2

(x, dP , φ4.3) Ta4.3 Pstatic4.3∮
5.1

∮ t5.1
t4.3

(x, dP , φ5.1) Ta5.1 Pstatic5.1∮
5.2

∮ t5.2
t5.1

(x, dP , φ5.2) Ta5.2 Pstatic5.2∮
6

∮ t6
t5.2

(x, dP , φ6) Ta6 Pstatic6∮
7.1

∮ t7.1
t6

(x, dT , φ7.1) Ta7.1 Pstatic7.1∮
7.2

∮ t7.2
t7.1

(x, dT , φ7.2) Ta7.2 Pstatic7.2∮
7.3

∮ t7.3
t7.2

(x, dT , φ7.3) Ta7.3 Pstatic7.3

Based on this, we first analyze the success likelihood of intrusion based on the first

adaptation option, then extend it to a more general case, the second adaptation option.

First adapation option: For every Tr, there is a probability of pr that the Planner

178

actually gets refreshed. Thus, the current IP and delta mmap has the probability of (1−pr)

of remaining unchanged. If the Planner gets refreshed, the IP address and delta mmap will

be changed to a different value. This option is the same as the approach used in the previous

example, except that it changes both the IP address and delta mmap simultaneously. The

Psuccess for attack instances that implements φ1-φ4.2 can be derived similarly as the previous

example.

Psuccess(

∮
1

) = (1− pr)
Ta1
Tr × Pstatic1

Psuccess(

∮
1

,

∮
2

) = (1− pr)
Ta1+Ta2

Tr × Pstatic1 × Pstatic2

Psuccess(

∮
1

,

∮
2

,

∮
3

) = (1− pr)
Ta1+Ta2+Ta3

Tr × Pstatic1 × Pstatic2 × Pstatic3

Psuccess(

∮
1

,

∮
2

,

∮
3

,

∮
4.1

) = (1− pr)
Ta1+Ta2+Ta3+Ta4.1

Tr × Pstatic1 × Pstatic2 × Pstatic3 × Pstatic4.1

Psuccess(

∮
1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

) = (1− pr)
Ta1+Ta2+Ta3+Ta4.1+Ta4.2

Tr × Pstatic1 × Pstatic2 × Pstatic3

× Pstatic4.1 × Pstatic4.2

Because the attack surface of φ1−φ4.2 doesn’t include delta mmap, the success likelihood

derivation is the same as the previous mission planning system example.

However, from attack type φ4.3, the change of delta mmap should be taken into consid-

eration. We can rewrite Psuccess(
∮

1
,
∮

2
,
∮

3
,
∮

4.1
,
∮

4.2
,
∮

4.3
) according to the bayesian rule,

Psuccess(

∮
1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

,

∮
4.3

) =

Psuccess(

∮
4.3

|
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

)× Psuccess(
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

)

As Psuccess(
∮

1
,
∮

2
,
∮

3
,
∮

4.1
,
∮

4.2
) is already known, thus, we only need to derive

Psuccess(
∮

4.3
|
∮

1
,
∮

2
,
∮

3
,
∮

4.1
,
∮

4.2
).

179

Again, according to Definition 6.60

Psuccess(

∮
) = P (holds(Ωpre, [ts, tf]))× Pstatic

where :

P (holds(Ωpre, [ts, tf])) = P (unchanged(δ(φ.Ωpre, [ts, tf]))× P (holds(Ωpre, ts))

Then,

Psuccess(

∮
4.3

|
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

) =P (unchanged(δ(φ4.3.Ωpre), [t4.2, t4.3]))

× P (holds(φ4.3.Ωpre, t4.2))× Pstatic4.3

=P (unchanged({ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base,

ψdP .usleep offset, ψdP .delta mmap}, [t4.2, t4.3]))× 1× Pstatic4.3

=P (unchanged({ψdP .ip, ψdP .delta mmap}, [t4.2, t4.3]))× Pstatic4.3

=(1− pr)
Ta4.3
Tr × Pstatic4.3

Notice, P (holds(φ4.3.Ωpre, t4.2)) is set to one because we consider the success likelihood of∮
4.3

given that
∮

1
,
∮

2
,
∮

3
,
∮

4.1
,
∮

4.2
are successful. In addition, P (unchanged({ψdP .ip, ψdP .apache port,

ψdP .os, ψdP .mmap base, ψdP .usleep offset, ψdP .delta mmap}, [t4.2, t4.3])) has been simplified to

P (unchanged({ψdP .ip, ψdP .delta mmap}), [t4.2, t4.3]) because apache port, os,mmap base, and

usleep offset all remains static and are independent of ip and delta mmap. However,

P (unchanged({ψdP .ip, ψdP .delta mmap}, [t4.2, t4.3])) equals (1 − pr)
Ta4.3
Tr , which is the same as

when we only change the IP address. Notice that this fomula still applies when delta mmap

is also adapted. The reason is quite straight forward due to the adaption mechanism

adopted. The change of IP and delta mmap is controlled by a single switch, pr. Thus,

180

these two factors either change simultaneously or both remain unchanged. In the second

adaptation option, we will see that the changes of IP and delta mmap each have their own

switch, then P (unchanged({ψdP .ip, ψdP .delta mmap}, [t4.2, t4.3])) =

P (unchanged(ψdP .ip, [t4.2, t4.3]))×P (unchanged(ψdP .delta mmap, [t4.2, t4.3])), which will lead to

a different result.

However, this does not mean that using the first adaptation option that changing multiple

factors adds no benefit. The reason is the same as disscussed in the previous example.

Imagine an attacker purchased the same system and studied it offline. If delta mmap

remain unchanged, then this knowledge can be used directly to the target system, which

will greatly reduce the attack time Ta4.3 and lead to a higher success likelihood. Thus,

if PaX ASLR is enabled, the attack time used to gain delta mmap will also be forced to

remain relatively stable instead of decreasing. From this perspective, the adaptation pushes

the time cost on each intrusion to be relatively stable and makes each attack look like a

first time intrusion. Thus, in the long term, the more configuratoin parameters an MTD

system adapts, a relatively longer attack time can be forced on the attacker, which leads to

a relatively less success likelihood of intrusion.

Based on this derivation, we have

Psuccess(

∮
1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

,

∮
4.3

) =Psuccess(

∮
4.3

|
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

)× Psuccess(
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

)

=(1− pr)
Ta1+Ta2+Ta3+Ta4.1+Ta4.2+Ta4.3

Tr × Pstatic1 × Pstatic2

× Pstatic3 × Pstatic4.1 × Pstatic4.2 × Pstatic4.3

By changing IP address and delta mmap, an MTD could maintain the mean time of

compromise Ta1 and Ta4.3 relatively stable and avoid the situation discussed above. Clearly,

if the MTD system could also add difficulty to attackers each time they want to gain port,

os, mmap base and usleep offset, then the overall intrusion time Ta1 + Ta2 + Ta3 + Ta4.1 +

181

Ta4.2 + Ta4.3Tr could be remarkably increased, which leads to less success likelihood.

Next, we have:

Psuccess(

∮
1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
5.1

) = Psuccess(

∮
5.1

|
∮

1

,

∮
2

,

∮
3

,

∮
4.1

)× Psuccess(
∮

1

,

∮
2

,

∮
3

,

∮
4.1

)

= (1− pr)
Ta1+Ta2+Ta3+Ta4.1+Ta5.1

Tr × Pstatic1 × Pstatic2

× Pstatic3 × Pstatic4.1 × Pstatic5.1

Notice, the composite attack type [φ1, φ2, φ3, φ4.1, φ5.1] is minimal in terms that φ5.1 try to

gain system offset, which doesn’t depends on φ4.2 that gains usleep offset and φ4.3 that gains

delta mmap. Again, as indicated, only minimal composite attack type is considered.

Next, we consider the composite attack type [φ1, φ2, φ3, φ4.1, φ4.2, φ4.3, φ5.1, φ5.2]. This

time, all previous attack types needs to be considered because uploading the execution

agent needs all the information parameters gained in previous attack types.

Before derive Psuccess(
∮

1
,
∮

2
,
∮

3
,
∮

4.1
,
∮

4.2
,
∮

4.3
,
∮

5.1
,
∮

5.2
), we need to first derive Psuccess(

∮
1
,
∮

2
,∮

3
,
∮

4.1
,
∮

4.2
,
∮

4.3
,
∮

5.1
).

Psuccess(

∮
1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

,

∮
4.3

,

∮
5.1

) = Psuccess(

∮
5.1

|
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

,

∮
4.3

)

× Psuccess(
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

,

∮
4.3

)

= Psuccess(

∮
5.1

|
∮

1

,

∮
2

,

∮
3

,

∮
4.1

)× Psuccess(
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

,

∮
4.3

)

= (1− pr)
Ta1+Ta2+Ta3+Ta4.1+Ta4.2+Ta4.3+Ta5.1

Tr × Pstatic1 × Pstatic2

× Pstatic3 × Pstatic4.1 × Pstatic4.2 × Pstatic4.3 × Pstatic5.1

182

Then,

Psuccess(

∮
1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

,

∮
4.3

,

∮
5.1

,

∮
5.2

) = Psuccess(

∮
5.2

|
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

,

∮
4.3

,

∮
5.1

)

× Psuccess(
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

,

∮
4.3

,

∮
5.1

)

= (1− pr)
Ta1+Ta2+Ta3+Ta4.1+Ta4.2+Ta4.3+Ta5.1+Ta5.2

Tr × Pstatic1 × Pstatic2

× Pstatic3 × Pstatic4.1 × Pstatic4.2 × Pstatic4.3 × Pstatic5.1 × Pstatic5.2

Psuccess(

∮
1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

,

∮
4.3

,

∮
5.1

,

∮
5.2

,

∮
6

) =

Psuccess(

∮
6

|
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

,

∮
4.3

,

∮
5.1

,

∮
5.2

)× Psuccess(
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

,

∮
4.3

,

∮
5.1

,

∮
5.2

)

= (1− pr)
Ta1+Ta2+Ta3+Ta4.1+Ta4.2+Ta4.3+Ta5.1+Ta5.2+Ta6

Tr × Pstatic1 × Pstatic2 × Pstatic3

× Pstatic4.1 × Pstatic4.2 × Pstatic4.3 × Pstatic5.1 × Pstatic5.2 × Pstatic6

Notice, the attack instance that implements φ6 is an interesting case. By the precondition

of φ6, we see it doesn’t depend on the apache port, os, mmap base, etc. However, because

of the refreshing, once the Planner is adapted, the uploaded execution agent will be deleted

and the attacker will lose the root privilege. Thus, the attacker will be forced to perform all

the intrusion steps again. However, if in the first adaptation option, we switch to another

mechanism that only changes the IP address and delta mmap within the original Planner

machine, then once
∮

5.2
is true, the uploaded execution agent can remain inside the Planner

after adaptation. Then, obtaining the root privilege is just a matter of whether it can

successfully onnect to the uploaded agent or not. If the uploaded agent can provide a

reverse shell automatically, then Psuccess(
∮

6
) = (1−Pr)

Ta6
Tr ×Pstatic6 . This means there is no

need to perform the whole sequence of attack any more, and at this stage, the attacker has

183

successfully reduced the overall intrusion time from Ta1 + Ta2 + Ta3 + Ta4.1 + Ta4.2 + Ta4.3 +

Ta5.1 + Ta5.2 + Ta6 to Ta6 , which greatly increases the chance of success. This also shows the

benefit of including refreshing to the MTD system.

In addition,

Psuccess(

∮
1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

,

∮
4.3

,

∮
5.1

,

∮
5.2

,

∮
6

,

∮
7.1

) =

Psuccess(

∮
7

|
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

,

∮
4.3

,

∮
5.1

,

∮
5.2

,

∮
6

)

× Psuccess(
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

,

∮
4.3

,

∮
5.1

,

∮
5.2

,

∮
6

)

= (1− pr)
Ta1+Ta2+Ta3+Ta4.1+Ta4.2+Ta4.3+Ta5.1+Ta5.2+Ta6+Ta7.1

Tr × Pstatic1 × Pstatic2 × Pstatic3

× Pstatic4.1 × Pstatic4.2 × Pstatic4.3 × Pstatic5.1 × Pstatic5.2 × Pstatic6 × Pstatic7.1

Psuccess(
∮

1
,
∮

2
,
∮

3
,
∮

4.1
,
∮

4.2
,
∮

4.3
,
∮

5.1
,
∮

5.2
,
∮

6
,
∮

7.1
,
∮

7.2
) and Psuccess(

∮
1
,
∮

2
,
∮

3
,
∮

4.1
,
∮

4.2
,
∮

4.3
,
∮

5.1
,∮

5.2
,
∮

6
,
∮

7.1
,
∮

7.2
,
∮

7.3
) can be derived similarly and we omit here.

Second adaptation option: In this option, for each Tr, the Planner gets replaced.

However, the difference is that there is a probability, pr1 , that IP address gets changed and,

pr2 , that delta mmap get changed. Thus, the IP address and delta mmap each have their

own switch to decide change or not.

In this case, the probability from Psuccess(
∮

1
) to Psuccess(

∮
1
,
∮

2
,
∮

3
,
∮

4.1
,
∮

4.2
) remains the

184

same as the first adaptation option. The difference happens at
∮

4.3
,

Psuccess(

∮
4.3

|
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

) = P (unchanged(δ(φ4.3.Ωpre), [t4.2, t4.3]))

× P (holds(φ4.3.Ωpre, t4.2))× Pstatic4.3

= P (unchanged({ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base, ψdP .usleep offset, ψdP .delta mmap},

[t4.2, t4.3]))× 1× Pstatic4.3

= P (unchanged({ψdP .ip, ψdP .delta mmap}, [t4.2, t4.3]))× Pstatic4.3

= P (unchanged(ψdP .ip, [t4.2, t4.3]))× P (unchanged(ψdP .delta mmap, [t4.2, t4.3]))× Pstatic4.3

= (1− pr1)
Ta4.3
Tr × (1− pr2)

Ta4.3
Tr × Pstatic4.3

As we see, this adaptation option makes the change of IP address and delta mmap in-

dependent, thus we can decompose P (unchanged({ψdP .ip, ψdP .delta mmap}, [t4.2, t4.3])) into

P (unchanged(ψdP .ip, [t4.2, t4.3])) × P (unchanged(ψdP .delta mmap, [t4.2, t4.3])). In addition, if

we set pr1 = pr2 = pr, then Psuccess(
∮

4.3
|
∮

1
,
∮

2
,
∮

3
,
∮

4.1
,
∮

4.2
) = (1 − pr)

2×Ta4.3
Tr × Pstatic4.3 in-

stead of Psuccess(
∮

4.3
|
∮

1
,
∮

2
,
∮

3
,
∮

4.1
,
∮

4.2
) = (1−pr)

Ta4.3
Tr ×Pstatic4.3 . Thus, changing two factors

is like doubling the attack time Ta4.3 , which in turn decreased the Psuccess. On the other

hand, if set pr2 = 0, which makes the delta mmap remain unchanged, then (1 − pr2)
Ta4.3
Tr

immediately becomes one and the overall success likelihood is increased. From this aspect,

changing multiple factors will indeed help reduce the success likelihood.

185

Accordingly,

Psuccess(

∮
1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

,

∮
4.3

) =

Psuccess(

∮
4.3

|
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

)× Psuccess(
∮

1

,

∮
2

,

∮
3

,

∮
4.1

,

∮
4.2

)

= (1− pr1)
Ta1+Ta2+Ta3+Ta4.1+Ta4.2+Ta4.3

Tr × (1− pr2)
Ta4.3
Tr × Pstatic1 × Pstatic2

× Pstatic3 × Pstatic4.1 × Pstatic4.2 × Pstatic4.3

The other success likelihood can also be updated correspondently and omitted here.

6.5.3 Discussion

In this validation section, we make a start towards validation of our theory by introducing

two concrete example scenarios and show how various definitions in the theory can be

instantiated. As we see, the theory can be successfully applied to these example scenarios.

These examples provide concrete understanding about how it can be used to analyze the

potential effectiveness of an MTD system as well as Psuccess. Moreover, they give the MTD

designer a more complete understanding of how various parameter settings will impact its

effectiveness compared to a static system, as well as what can an MTD system do to thwart

specific attack types.

Note that there are two parts that constitute Psuccess, P (holds(Ωpre, [ts, tf])) and Pstatic.

However, we only have shown how to quantify P (holds(Ωpre, [ts, tf])). Because the focus

here is to analyze and quantify the security benefit gained as compared to a static system,

which P (holds(Ωpre, [ts, tf])) illustrates nicely. More discussion about this can be found in

Section 7.3.

186

6.6 Conclusion

This chapter presents a theory of moving target defense. It starts by first introducing several

real world examples and extracts the work flow of MTD in general.

Secondly, it defines the basic concepts and problems associated with an MTD system.

The MTD system theory starts by defining a configurable system based on configuration

management theory and labeled transition systems. Then, it defines system goals and poli-

cies to help capture and determine what are valid and complete configurations. Adaptation

and MTD system definitions are given next. Finally, the configuration space is defined along

with a new concept called the exploration space. Two key tactics as discussed in Chapter 3,

diversification and randomization, are also formally defined.

Next, Cyber Attack Theory is presented, which include definitions to precisely capture

targets, target systems, attacker’s knowledge, attack types, attack instances and exploration

space. Building on top of MTD System Theory and Cyber Attack Theory, MTD Theory

captures the dynamic and changing nature of MTD by defining several new concepts – attack

surface, adaptation surface, engagement surface. These three theories together provide a

better understanding of the interactions between attackers and MTD systems, which enable

the development of a powerful and fine-grained model to analyze the success likelihood of a

multi-step intrusion.

To validate the theory, examples showing how this theory maps to a memory-based

remote exploit attack demonstrate its use in supporting intrusion analysis under typical

movement mechanisms. How this theory can be used to guide the design of an MTD system

is also shown.

187

Chapter 7

Conclusion

This chapter concludes this dissertation by first summarizing the current state of MTD

research in Section 7.1 and the contributions of this work in Section 7.2, then describing

the limitations of this work in Section 7.3 and highlighting some areas of future work in

Section 7.4.

7.1 Current State

Powered by its capability to eliminate an attacker’s asymmetric time advantage and increase

the attacker’s uncertainty, MTD is envisioned as a potential game changer in cyber warfare.

However, in its current state, there is little science behind it. In fact, the approach is so new

that there is no standard definition of what an MTD is, what is meant by attack surface or

metrics to define the effectiveness of such systems.

Although there are many ongoing research efforts, moving target defense is still in its

infancy. Most of the previous work focuses on some specific aspect of system configuration,

such as IP address, memory layout, instruction set, HTML keyword, etc. While as discussed

in Chapter 3 there are several comprehensive frameworks that have been proposed, most of

188

these frameworks are still at the conceptual level and significant effort is required to bring

them to fruition, from both theoretical and practical standpoints.

As a recall from Chapter 3, there are two major challenges in MTD research based on

the literature review. The first major challenge is the need for new metrics. Existing met-

rics for attack surface areas are not suitable for evaluating a moving attack surface because

two basic assumptions of the existing metrics have been broken. One assumption is that

the attack surface remains unchanged, while the other is that the target attack surface is

always reachable by attackers. Thus, new metrics are required to take into account MTD’s

changing and unpredictable nature. Although the changing of attack surface can be done

by introducing diversity, quantitative models for guiding the design of good diversification

techniques and assessing their effectiveness remain largely unexplored. Actually, a funda-

mental challenge in understanding the impact of diversification is to introduce a precise,

computationally-meaningful way to measure the increase in difficulty for the attacker. As

will be discussed in Section 7.2, the main contribution of this work is to tackle this challenge.

Operation and security are both important concerns today. Unfortunately, these two as-

pects could be conflicting in MTD. Increased security usually brings increased operational

costs. The work in this thesis will not only help measure and analyze the different mecha-

nism’s impact on security, but will also help MTD designers to make better decisions about

system parameter settings such that reasonable trade offs between security and operation

can be achieved.

The second major challenge is also due to the tension between operation and security in

MTD. It is engineering based and lies in how to sanitize potentially compromised machines

while not interrupting normal operations significantly. MT6D20 does a good job at the

network-level although IP collisions are still possible. But at the machine-level, ensuring

a potentially compromised VM is cleaned is still a major challenge. Although ideas like

checkpointing have been proposed, no concrete system that evaluates the performance or

189

validates such an approach’s applicability is presented. Although this challenge is out of

the scope, this work could still be beneficial in terms that it can help MTD designers make

decisions about adopting different techniques to balance operation and security.

7.2 Contributions

This thesis focuses on tackling the first major challenge for understanding and quantifying

moving target defense.

First, a taxonomy based on the review of related MTD work is presented. This taxonomy

shows that many different MTD mechanisms have been tried to defeat different attack types.

These mechanisms include different combinations of strategies and tactics that applied to

various adaptable aspects. It not only helps one understand the state-of-the-art research in

MTD, but also underscores the need for a comprehensive theoretical framework for MTD.

Because the taxonomy clearly indicates that the effectiveness of MTD only makes sense in

the context of a specific attack type, and to anlyze and quantify the effectiveness of MTD,

we must be able to reason the interactions between attacker and MTD system, which further

requires that an MTD System Theory that clarifies what constitutes an MTD system as well

as a Cyber Attack Theory that captures the characteristics of cyber attacks to be defined.

Second, a high-level MTD system design is presented. Based on this design, an MTD

simulator is developed with core algorithms given. The simulator is used to investigate

the degree to which proactive and random adaptations can decrease an adversary’s chance

of success. A set of experiments are conducted to examine both a purely random MTD

system, as well as an intelligent MTD system, which uses attack indicators to augment

adaptation selection. The results show that the attackers success likelihood can be reduced

under such MTD system. Although simulations help us understand the effect of MTDs with

intuitive results, this brings up the question of whether an underlying model exists that can

190

be used to predict the intrusion success likelihood. Models like this will be invaluable for

MTD systems because they can explicitly reveal the key relationships between the important

parameters involved and are the key to help understanding why and how adaptation can

improve security. Driven by this question, a scalable analytical model suitable for non-cyclic

network topology structure is proposed. The model is scalable because it can be used to

analyze deep multi-hop remote attacks from high-level. The original simulator is extended

to validate the accuracy of this model. The results show that the success likelihood of

intrusion estimated by this model match the simulation results.

The taxonomy, simulated experiments and analytical model provide important insight

for MTD designers. However, a systematic way to understand and quantify the effectiveness

of MTD is still missing. To address this, the third contribution is a theoretic framework.

This framework includes an MTD System Theory, a Cyber Attack Theory and the

MTD Theory. MTD System Theory defines the basic concepts and problems associated

with an MTD system and is founded on configuration management theory in order to define

a configurable system, upon which the definition of an MTD system is built. Goals and

policies are also captured as essential elements to determine what should be considered

complete and valid configurations of an MTD system. Based on that, configuration space is

formally defined. MTD system theory also formally defines the concepts of diversification

and randomization and showed how they relate to MTD systems and how their use can

increase the effectiveness of those systems. In addition, key problems of MTD system is

also formally defined. Specifically, the essential problem of an MTD system is how to select

the next valid configuration state of the system. This problem drives the solution of the

other problems, such as the Adaptation Selection Problem and the Timing Problem. Cyber

Attack Theory introduced a new concept called information parameter, which has been used

to support the information-based definitions of target systems and attacker’s knowledge. In

addition, information parameters have also been used to define the concepts of attack type,

191

attack goal, attack instance and exploration space. The Cyber Attack Theory encourages

MTD designers and researchers to formally specify and compose attack types to discover the

exact system information parameters of interest and how they interact with specific attacks,

the attacker’s knowledge, and the target system. Specification and analysis of attacks will

enable MTD designers to potentially ignore unrelated information parameters while focusing

on those most critical, dramatically limiting the scope and cost of MTD systems without

sacrificing effectiveness. Finally, MTD Theory is introduced based on MTD System Theory

and Cyber Attack Theory. It defines how elements of the MTD system and cyber attacks

interact. Specifically, concepts, such as attack surface, adaptation surface, and engagement

surface, are defined to capture the interaction between an MTD system and a specific attack

type. Metrics, such as coverage, success likelihood of intrusion, are defined to analyze the

effectiveness of an MTD system against an attack type. Built on top of the theory definitions,

several useful theorems are derived, which can be used as general guidelines for MTD system

implementation. To validate the theory, two concrete scenarios are provided and show how

the theory can be used to guide the MTD design as well as analyze what an MTD system

could do and to thwart a concrete return-to-libc attack.

7.3 Limitations

There are two limitations of this work. First, it lacks experimental validation from real world.

All the experiments conducted are based on a simulated environment. Although simulation

captures the most important factors or parameters, it also abstracts away some details. For

example, the adaptation happens every Tr time interval in the simulation, which means the

adaptation start and finish instantaneously every Tr. However, in reality, adaptation itself

takes time and could break the normal functionality of the system. Although simulation

does not precisely capture the reality, I should emphasize that the adaptation case that the

192

simulation actually gives the advantage to the attacker, because a zero time of adaptation

essentially allows the attacker to make full usage of every adaptation interval Tr.

Second, when analyzing the success likelihood of an intrusion under MTD, there are

two parts that constitute Psuccess, P (holds(Ωpre, [ts, tf])) and Pstatic. However, only how to

quantify P (holds(Ωpre, [ts, tf])) is shown. It may be unfair to claim this as a limitation

of this thesis because, in a cyber security context, to quantify Pstatic in general is hard.

However, for completeness, without quantifying Pstatic, we can never get the absolute value

of Psuccess, even though a relative analysis for MTD could be good enough. In addition,

when we analyze composite attack types, the assumption is that for each sub attack type,

Pstatic part is always satisfied, which means we only focus on the analysis of one attempt.

However, it is possible that for each sub attack, more than one intrusion needs to be made.

For example, under a static system, a sub attack with success probability Pstatic, may fail in

the first and second attack, and yet be successful on the third try, leading to a probability

of (1 − Pstatic) × (1 − Pstatic) × Pstatic. However, as this thesis focuses on analyzing and

quantifying the security benefit gained as compared to static system, the effort is spent on

understanding how an MTD system impacts P (holds(Ωpre, [ts, tf])), and we leave Pstatic as

future work.

7.4 Future Work

One area of future work would be to develop a real MTD testbed where machines that

provide the same functionality could be adapted to different configurations in specified time

intervals. As a comparison, a static system can be implemented as a control and an intrusion

testbed can be developed based on penetration tools, such as Metasploit, which launches

attacks on the MTD testbed. The results can be used to compare with the results obtained

from the theory. Conversely, the theory can be used to guide the settings of MTD testbed

193

to increase or decrease the success likelihood of intrusion, and in turn validate the theory

from newly results gained.

Another future work could be relaxing the assumption for Psuccess analysis that Pstatic

is always satisfied, as discussed in the limitation section, and extend it to a more general

case where each sub attack type could take n arbitrary times of intrusion until it is suc-

cessful. In this situation, Pstatic in the definition of Psuccess will need to be updated to

(1−Pstatic)(n−1)×Pstatic. But quantifying P (holds(Ωpre, [ts, tf])) could be more challenging,

because for each of the first n − 1 attacks, holds(Ωpre, [ts, tf]) associated with it could be

either true or false, and only the holds(Ωpre, [ts, tf]) associated with the last attack needs

to be true. In addition, during these n attacks, there could be multiple adaptations. Al-

though this direction could provides more general results, from a research perspective, this

doesn’t add too much for understanding the essence of MTD, because it mixes the analy-

sis of P (holds(Ωpre, [ts, tf])) and Pstatic. However, the way MTD invalidates the intrusion

is essentially through invalidating the attacker’s knowledge about the system, which only

requires or is captured by P (holds(Ωpre, [ts, tf])).

194

Bibliography

[1] National cyber leap year summit cochair’s report. https://www.qinetiq-na.

com/wp-content/uploads/2011/12/National_Cyber_Leap_Year_Summit_2009_

CoChairs_Report.pdf, 2009. Online, accessed Oct 09, 2013.

[2] National cyber leap year summit participants ideas report. https:

//www.qinetiq-na.com/wp-content/uploads/2011/12/National_Cyber_Leap_

Year_Summit_2009_Participants_Ideas_Report.pdf, 2009. Online, accessed Oct

09, 2013.

[3] Pratyusa K Manadhata and Jeannette M Wing. An attack surface metric. Software

Engineering, IEEE Transactions on, 37(3):371–386, 2011.

[4] Pratyusa K Manadhata and Jeannette M Wing. A formal model for a systems attack

surface. In Moving Target Defense, pages 1–28. Springer, 2011.

[5] Security awareness - hardening your computer. http://www.colorado.edu/oit/

it-security/security-awareness/hardening-your-computer, 2012. Online, ac-

cessed Oct 09, 2013.

[6] Recommended resources for system hardening. https://security.berkeley.edu/

node/143, 2013. Online, accessed Oct 09, 2013.

[7] T. Ryutov, C. Neuman, K. Dongho, and Z. Li. Integrated access control and intrusion

detection for web servers. In 23rd International Conference on Distributed Computing

Systems(ICDCS), pages 394–401, 2003.

195

https://www.qinetiq-na.com/wp-content/uploads/2011/12/National_Cyber_Leap_Year_Summit_2009_CoChairs_Report.pdf
https://www.qinetiq-na.com/wp-content/uploads/2011/12/National_Cyber_Leap_Year_Summit_2009_CoChairs_Report.pdf
https://www.qinetiq-na.com/wp-content/uploads/2011/12/National_Cyber_Leap_Year_Summit_2009_CoChairs_Report.pdf
https://www.qinetiq-na.com/wp-content/uploads/2011/12/National_Cyber_Leap_Year_Summit_2009_Participants_Ideas_Report.pdf
https://www.qinetiq-na.com/wp-content/uploads/2011/12/National_Cyber_Leap_Year_Summit_2009_Participants_Ideas_Report.pdf
https://www.qinetiq-na.com/wp-content/uploads/2011/12/National_Cyber_Leap_Year_Summit_2009_Participants_Ideas_Report.pdf
http://www.colorado.edu/oit/it-security/security-awareness/hardening-your-computer
http://www.colorado.edu/oit/it-security/security-awareness/hardening-your-computer
https://security.berkeley.edu/node/143
https://security.berkeley.edu/node/143

[8] D. Schnackenberg, K. Djahandari, and D. Sterne. Infrastructure for intrusion detection

and response. In DARPA Information Survaivability Conference and Exposition II,

page 1003, 2000.

[9] A. Somayaji and S. Forrest. Automated response using system-call delay. In Proceed-

ings of the 9th USENLX Security Symposium, 2000.

[10] S. Musman and P. Flesher. System or security managers adaptive response tool. In

DARPA Information Survivability Conference and Exposition II, 2000.

[11] P. Porras and P. Neumann. Emerald: event monitoring enabling responses to anoma-

lous live disturbances. In Proceedings of the National Information Systems Security

Conference, 1997.

[12] C. A. Carver. Adaptive agent-based intrusion response. PhD thesis, Texas A and M

University, 2001.

[13] D. Schnackenberg, H. Holiday, R. Smith, and et al. Cooperative intrusion traceback

and response architecture citra. In DARPA Information Survivability Conference and

Exposition I, 2001.

[14] W. Lee, W. Fan, M. Miller, S. Stolfo, and E. Zadok. Towards cost-sensitive modeling

for intrusion detection and response. Journal of Computer Security, 10(1-2):5–22,

2002.

[15] N. Stakhanova, S. Basu, and J. Wong. A taxonomy of intrusion response systems.

International Journal of Information and Computer Security, 1(1/2):169–184, 2007.

[16] B. Foo, Y. Wu, Y. Mao, S. Bagchi, and E. Spafford. Adepts: Adaptive intrusion

response using attack graphs in an e-commence environment. In Proceedings of the

196

International Conference on Dependable Systems and Networks, pages 508–517, Pis-

cataway, NJ, 2005.

[17] N. Stakhanova, S. Basu, and J. Wong. A cost-sensitive model for preemptive intru-

sion response systems. In The International Conference on Advanced Information

Networking and Applications, 2007.

[18] Stephen Groat, Matthew Dunlop, Randy Marchany, and Joseph Tront. Using dynamic

addressing for a moving target defense. In Proceedings of the 6th International Confer-

ence on Information Warfare and Security. Academic Conferences Limited, page 84,

2011.

[19] Spyros Antonatos, Periklis Akritidis, Evangelos P Markatos, and Kostas G Anagnos-

takis. Defending against hitlist worms using network address space randomization.

Computer Networks, 51(12):3471–3490, 2007.

[20] Matthew Dunlop, Stephen Groat, William Urbanski, Randy Marchany, and Joseph

Tront. Mt6d: a moving target ipv6 defense. In MILITARY COMMUNICATIONS

CONFERENCE, 2011-MILCOM 2011, pages 1321–1326. IEEE, 2011.

[21] Justin Yackoski, Harry Bullen, Xiang Yu, and Jason Li. Applying self-shielding dy-

namics to the network architecture. In Moving Target Defense II, pages 97–115.

Springer, 2013.

[22] PaX Team. Pax address space layout randomization (aslr), 2003.

[23] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. Address

space layout permutation (aslp): Towards fine-grained randomization of commodity

software. In Computer Security Applications Conference, 2006. ACSAC’06. 22nd An-

nual, pages 339–348. IEEE, 2006.

197

[24] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and

Dan Boneh. On the effectiveness of address-space randomization. In Proceedings of

the 11th ACM conference on Computer and communications security, pages 298–307.

ACM, 2004.

[25] Gaurav S Kc, Angelos D Keromytis, and Vassilis Prevelakis. Countering code-injection

attacks with instruction-set randomization. In Proceedings of the 10th ACM conference

on Computer and communications security, pages 272–280. ACM, 2003.

[26] Stephen W Boyd, Gaurav S Kc, Michael E Locasto, Angelos D Keromytis, and Vassilis

Prevelakis. On the general applicability of instruction-set randomization. Dependable

and Secure Computing, IEEE Transactions on, 7(3):255–270, 2010.

[27] Ehab Al-Shaer. Toward network configuration randomization for moving target de-

fense. In Moving Target Defense, pages 153–159. Springer, 2011.

[28] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. Openflow random host mutation:

transparent moving target defense using software defined networking. In Proceedings

of the first workshop on Hot topics in software defined networks, pages 127–132. ACM,

2012.

[29] Mihai Christodorescu, Matthew Fredrikson, Somesh Jha, and Jonathon Giffin. End-

to-end software diversification of internet services. In Moving Target Defense, pages

117–130. Springer, 2011.

[30] Todd Jackson, Babak Salamat, Andrei Homescu, Karthikeyan Manivannan, Gregor

Wagner, Andreas Gal, Stefan Brunthaler, Christian Wimmer, and Michael Franz.

Compiler-generated software diversity. In Moving Target Defense, pages 77–98.

Springer, 2011.

198

[31] Yih Huang and Anup K Ghosh. Introducing diversity and uncertainty to create moving

attack surfaces for web services. In Moving Target Defense, pages 131–151. Springer,

2011.

[32] Rui Zhuang, Su Zhang, Scott A DeLoach, Xinming Ou, and Anoop Singhal.

Simulation-based approaches to studying effectiveness of moving-target network de-

fense. In National Symposium on Moving Target Research, 2012.

[33] Scott DeLoach, Xinming Ou, Rui Zhuang, and Su Zhang. Model-driven, moving-target

defense for enterprise network security. In Uwe Amann, Nelly Bencomo, Gordon Blair,

Betty H. C. Cheng, Robert France (eds) State-of-the-Art Survey Volume on Models

@run.time. Springer LNCS, in press.

[34] Rui Zhuang, Su Zhang, Alex Bardas, Scott A DeLoach, Xinming Ou, and Anoop

Singhal. Investigating the application of moving target defenses to network security.

In Resilient Control Systems (ISRCS), 2013 6th International Symposium on, pages

162–169. IEEE, 2013.

[35] Shardul Vikram, Chao Yang, and Guofei Gu. Nomad: Towards non-intrusive moving-

target defense against web bots. In Communications and Network Security (CNS),

2013 IEEE Conference on, pages 55–63. IEEE, 2013.

[36] Stephen W Boyd and Angelos D Keromytis. Sqlrand: Preventing sql injection attacks.

In Applied Cryptography and Network Security, pages 292–302. Springer, 2004.

[37] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack David-

son, John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-variant systems: a secret-

less framework for security through diversity. Defense Technical Information Center,

2006.

199

[38] Georgios Portokalidis and Angelos D Keromytis. Global isr: Toward a comprehensive

defense against unauthorized code execution. In Moving Target Defense, pages 49–76.

Springer, 2011.

[39] Angelos D Keromytis, Roxana Geambasu, Simha Sethumadhavan, Salvatore J Stolfo,

Junfeng Yang, Azzedine Benameur, Marc Dacier, Matthew Elder, Darrell Kienzle, and

Angelos Stavrou. The meerkats cloud security architecture. In Distributed Computing

Systems Workshops (ICDCSW), 2012 32nd International Conference on, pages 446–

450. IEEE, 2012.

[40] Hamed Okhravi, Eric I Robinson, Stephen Yannalfo, Peter W Michaleas, Joshua

Haines, and Adam Comella. Talent: Dynamic platform heterogeneity for cyber sur-

vivability of mission critical applications. In Secure and Resilient Cyber Architecture

Conference (SRCA’10), 2010.

[41] Ltd. Coronado Group. Proactive cyber defense – a new moving target defense strategy.

http://www.coronadogroup.com/images/Moving-Target-Defense-Coronado.

pdf, 2012. Online, accessed Oct 18, 2013.

[42] Yih Huang, David Arsenault, and Arun Sood. Incorruptible system self-cleansing for

intrusion tolerance. In Performance, Computing, and Communications Conference,

2006. IPCCC 2006. 25th IEEE International, pages 4–pp. IEEE, 2006.

[43] Mohamed Azab, Riham Hassan, and Mohamed Eltoweissy. Chameleonsoft: a moving

target defense system. In Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom), 2011 7th International Conference on, pages 241–

250. IEEE, 2011.

[44] Pratyusa K Manadhata. Game theoretic approaches to attack surface shifting. In

Moving Target Defense II, pages 1–13. Springer, 2013.

200

http://www.coronadogroup.com/images/Moving-Target-Defense-Coronado.pdf
http://www.coronadogroup.com/images/Moving-Target-Defense-Coronado.pdf

[45] Krishna Kant. Configuration management security in data center environments. In

Moving Target Defense, pages 161–181. Springer, 2011.

[46] Steven M Bellovin. On the brittleness of software and the infeasibility of security

metrics. Security & Privacy, IEEE, 4(4):96–96, 2006.

[47] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley &

Sons, 2012.

[48] Eric W. Weisstein. Geometric series. From Mathworld. http://mathworld.wolfram.

com/GeometricSeries.html. Online, accessed 18, 2014.

[49] Enterprise network definition. http://www.techopedia.com/definition/7044/

enterprise-network, 2013. Online, accessed Dec 20, 2013.

[50] Virtualbox. https://www.virtualbox.org/, 2013. Online, accessed Dec 20, 2013.

[51] Vmware workstation. http://www.vmware.com/products/workstation/, 2013. On-

line, accessed Dec 20, 2013.

[52] Kernel based virtual machine. http://www.linux-kvm.org/, 2013. Online, accessed

Dec 20, 2013.

[53] Xen project. http://www.xenproject.org/, 2013. Online, accessed Dec 20, 2013.

[54] Linux containers. https://linuxcontainers.org/, 2013. Online, accessed Dec 20,

2013.

[55] An open virtual switch. http://openvswitch.org/, 2013. Online, accessed Dec 20,

2013.

[56] Puppet Labs. Puppet. http://puppetlabs.com/. Online, accessed Jan 07, 2014.

201

 http://mathworld.wolfram.com/GeometricSeries.html
 http://mathworld.wolfram.com/GeometricSeries.html
http://www.techopedia.com/definition/7044/enterprise-network
http://www.techopedia.com/definition/7044/enterprise-network
https://www.virtualbox.org/
http://www.vmware.com/products/workstation/
http://www.linux-kvm.org/
http://www.xenproject.org/
https://linuxcontainers.org/
http://openvswitch.org/
http://puppetlabs.com/

[57] Chef. Chef. http://www.getchef.com/chef/. Online, accessed Jan 07, 2014.

[58] AnsibleWorks. Ansible. http://www.ansibleworks.com/. Online, accessed Jan 07,

2014.

[59] Saltstack. Salt. http://www.saltstack.com/community/. Online, accessed Jan 07,

2014.

[60] Amazon web services. http://aws.amazon.com/, 2013. Online, accessed Dec 20,

2013.

[61] Windows azure. http://www.azure.microsoft.com/en-us/, 2013. Online, accessed

Dec 20, 2013.

[62] Google cloud platform. https://cloud.google.com/, 2013. Online, accessed Dec 20,

2013.

[63] Openstack. http://www.openstack.org/, 2013. Online, accessed Dec 20, 2013.

[64] Netflix - watch tv shows and movies anytime, anywhere. https://www.netflix.com/

?locale=en-US, 2013. Online, accessed Dec 20, 2013.

[65] Adobe. http://www.adobe.com/, 2013. Online, accessed Dec 20, 2013.

[66] Cobbler. http://www.cobblerd.org/, 2013. Online, accessed Dec 20, 2013.

[67] Understanding pxe booting and kickstart technology. http://docs.oracle.com/

cd/E24628_01/em.121/e27046/appdx_pxeboot.htm, 2013. Online, accessed Dec 20,

2013.

[68] Understanding pxe booting and kickstart technology. http://docs.oracle.com/

cd/E24628_01/em.121/e27046/appdx_pxeboot.htm, 2013. Online, accessed Dec 20,

2013.

202

http://www.getchef.com/chef/
http://www.ansibleworks.com/
http://www.saltstack.com/community/
http://aws.amazon.com/
http://www.azure.microsoft.com/en-us/
https://cloud.google.com/
http://www.openstack.org/
https://www.netflix.com/?locale=en-US
https://www.netflix.com/?locale=en-US
http://www.adobe.com/
http://www.cobblerd.org/
http://docs.oracle.com/cd/E24628_01/em.121/e27046/appdx_pxeboot.htm
http://docs.oracle.com/cd/E24628_01/em.121/e27046/appdx_pxeboot.htm
http://docs.oracle.com/cd/E24628_01/em.121/e27046/appdx_pxeboot.htm
http://docs.oracle.com/cd/E24628_01/em.121/e27046/appdx_pxeboot.htm

[69] Metal as a service (maas). https://maas.ubuntu.com/, 2013. Online, accessed Dec

20, 2013.

[70] Juju - automate your cloud infrastructure. https://juju.ubuntu.com/, 2013. Online,

accessed Dec 20, 2013.

[71] Software defined networking. http://en.wikipedia.org/wiki/Software-defined_

networking, 2013. Online, accessed Dec 20, 2013.

[72] Openflow. http://www.openflow.org, 2013. Online, accessed Dec 20, 2013.

[73] Tech Design Forum. Side channel attacks. http://www.techdesignforums.com/

practice/guides/side-channel-analysis-attacks/. Online, accessed Oct 10,

2013.

[74] Ruby Lee. Moving target defense for secure hardware design. http://www.cyber.

st.dhs.gov/oct2012pi-presentations/, 2012. Online, accessed Sep 28, 2013.

[75] Randal E Bryant. Graph-based algorithms for boolean function manipulation. Com-

puters, IEEE Transactions on, 100(8):677–691, 1986.

[76] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Jonathan Walpole, Peat

Bakke, Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, et al. Stackguard:

Automatic adaptive detection and prevention of buffer-overflow attacks. In Proceedings

of the 7th USENIX Security Symposium, volume 81, pages 346–355, 1998.

[77] Hiroaki Etoh and Kunikazu Yoda. Propolice: Improved stacksmashing attack detec-

tion. IPSJ SIG Notes, 75:181–188, 2001.

[78] Matthew Van Gundy and Hao Chen. Noncespaces: Using randomization to enforce

information flow tracking and thwart cross-site scripting attacks. In NDSS, 2009.

203

https://maas.ubuntu.com/
https://juju.ubuntu.com/
http://en.wikipedia.org/wiki/Software-defined_networking
http://en.wikipedia.org/wiki/Software-defined_networking
http://www.openflow.org
http://www.techdesignforums.com/practice/guides/side-channel-analysis-attacks/
http://www.techdesignforums.com/practice/guides/side-channel-analysis-attacks/
http://www.cyber.st.dhs.gov/oct2012pi-presentations/
http://www.cyber.st.dhs.gov/oct2012pi-presentations/

[79] Yih Huang and Arun Sood. Self-cleansing systems for intrusion containment.

In Procceedings of Workshop on Self-Healing, Adaptive, and Self-Managed Sys-

tems(SHAMAN), New York City, June 2002.

[80] Yih Huang, Arun Sood, and Ravi K. Bhaskar. Countering web defacing attacks

with system self cleansing. In Proceedings of 7th Word Multiconference on Systemics,

Cybernetics and Informatics, pages 12–16, Orlando, Florida, July 2003.

[81] Terracotta. http://terracotta.org/, 2013. Online, accessed Dec 20, 2013.

[82] Quan Jia, Kun Sun, and Angelos Stavrou. Motag: Moving target defense against

internet denial of service attacks. In Proceedings of the International Conference on

Computer Communications and Networks ICCCN, august 2013.

[83] Stuart Staniford, Vern Paxson, Nicholas Weaver, et al. How to own the internet in

your spare time. In USENIX Security Symposium, pages 149–167, 2002.

[84] Stuart Staniford, David Moore, Vern Paxson, and Nicholas Weaver. The top speed

of flash worms. In Proceedings of the 2004 ACM workshop on Rapid malcode, pages

33–42. ACM, 2004.

[85] Richard Colbaugh and Kristin Glass. Predictive moving target defense. In National

Symposium on Moving Target Research, 2012.

[86] Richard Colbaugh and Kristin Glass. Moving target defense for adaptive adversaries.

In Intelligence and Security Informatics (ISI), 2013 IEEE International Conference

on, pages 50–55. IEEE, 2013.

[87] Yih Huang, David Arsenault, and Arun Sood. Scit-dns: Critical infrastructure pro-

tection through secure dns server dynamic updates. Journal of High Speed Networks,

15(1):5–19, 2006.

204

http://terracotta.org/

[88] Jeff Rowe, Karl N. Levitt, Tufan Demir, and Robert Erbacher. Artificial diversity as

maneuvers in a control theoretical moving target defense. In National Symposium on

Moving Target Research, 2012.

[89] Sandeep Bhatkar, Ron Sekar, and Daniel C DuVarney. Efficient techniques for com-

prehensive protection from memory error exploits. In Proceedings of the 14th USENIX

Security Symposium, pages 271–286, 2005.

[90] Martin Rinard. Manipulating program functionality to eliminate security vulnerabil-

ities. In Moving Target Defense, pages 109–115. Springer, 2011.

[91] David Evans, Anh Nguyen-Tuong, and John Knight. Effectiveness of moving target

defenses. In Moving Target Defense, pages 29–48. Springer, 2011.

[92] The UCI KDD Archive. Kdd cup data. http://http://kdd.ics.uci.edu/

databases/kddcup99/kddcup99.html, 1999. Online, accessed Oct 18, 2013.

[93] John McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999

darpa intrusion detection system evaluations as performed by lincoln laboratory. ACM

transactions on Information and system Security, 3(4):262–294, 2000.

[94] Carson Brown, Alex Cowperthwaite, Abdulrahman Hijazi, and Anil Somayaji. Analy-

sis of the 1999 darpa/lincoln laboratory ids evaluation data with netadhict. In Compu-

tational Intelligence for Security and Defense Applications, 2009. CISDA 2009. IEEE

Symposium on, pages 1–7. IEEE, 2009.

[95] Ang Cui and Salvatore J Stolfo. Symbiotes and defensive mutualism: Moving target

defense. In Moving Target Defense, pages 99–108. Springer, 2011.

[96] Martin J Osborne. A course in game theory. Cambridge, Mass.: MIT Press, 1994.

205

http://http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[97] Michael Crouse and Errin W Fulp. A moving target environment for computer config-

urations using genetic algorithms. In Configuration Analytics and Automation (SAFE-

CONFIG), 2011 4th Symposium on, pages 1–7. IEEE, 2011.

[98] Justin Yackoski, Peng Xie, Harry Bullen, Jason Li, and Kun Sun. A self-shielding

dynamic network architecture. In MILITARY COMMUNICATIONS CONFERENCE,

2011-MILCOM 2011, pages 1381–1386. IEEE, 2011.

[99] Marco M Carvalho, Thomas C Eskridge, Larry Bunch, Jeffrey M Bradshaw, Adam

Dalton, Paul Feltovich, James Lott, and Daniel Kidwell. A human-agent teamwork

command and control framework for moving target defense (mtc2). In Proceedings of

the Eighth Annual Cyber Security and Information Intelligence Research Workshop,

page 38. ACM, 2013.

[100] Christopher Zhong and Scott A. DeLoach. An investigation of reorganization algo-

rithms. In the International Conference on Artificial Intelligence (IC-AI’2006)., June

2006.

[101] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-based net-

work vulnerability analysis. In Proceedings of 9th ACM Conference on Computer and

Communications Security, nov 2002.

[102] Sushil Jajodia, Steven Noel, and Brian O’Berry. Topological analysis of network attack

vulnerability. Managing Cyber Threats: Issues, Approaches and Challanges, 2003.

[103] R.P. Lippmann, K.W. Ingols, C. Scott, K. Piwowarski, K.J. Kratkiewicz, M. Artz, and

R.K.Cunningham. Evaluating and strengthening enterprise network security using

attack graphs. Technical report, MIT Lincoln Laboratory, 2005.

[104] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A scalable approach to at-

206

tack graph generation. In 13th ACM Conference on Computer and Communications

Security, Oct 2006.

[105] Cynthia Phillips and Laura Painton Swiler. Graph-based system for network-

vulnerability analysis. In NSPW 98: Proceedings of the 1998 Workshop on New

Security Paradigms, 1998.

[106] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M.

Wing. Automated generation and analysis of attack graphs. In the IEEE Symposium

on Security and Privacy, may 2002.

[107] S. Schmidt, R. Bye, J. Chinnow, K. Bsufka, A. Camtepe, and S. Albayrak.

Application-level simulation for network security. SIMULATION, 86:311–330, 2010.

[108] John Homer and Xinming Ou. Sat-solving approaches to context-aware enterprise

network security management. Selected Areas in Communications, IEEE Journal on,

27(3):315–322, 2009.

[109] Manish Jain, Bo An, and Milind Tambe. Security games applied to real-world:

Research contributions and challenges. In Moving Target Defense II, pages 15–39.

Springer, 2013.

[110] James Pita, Manish Jain, Janusz Marecki, Fernando Ordóñez, Christopher Portway,

Milind Tambe, Craig Western, Praveen Paruchuri, and Sarit Kraus. Deployed armor

protection: the application of a game theoretic model for security at the los ange-

les international airport. In Proceedings of the 7th international joint conference on

Autonomous agents and multiagent systems: industrial track, pages 125–132. Interna-

tional Foundation for Autonomous Agents and Multiagent Systems, 2008.

[111] Manish Jain, Jason Tsai, James Pita, Christopher Kiekintveld, Shyamsunder Rathi,

Milind Tambe, and Fernando Ordóñez. Software assistants for randomized patrol

207

planning for the lax airport police and the federal air marshal service. Interfaces, 40

(4):267–290, 2010.

[112] Praveen Paruchuri, Jonathan P Pearce, Janusz Marecki, Milind Tambe, Fernando

Ordonez, and Sarit Kraus. Playing games for security: an efficient exact algorithm

for solving bayesian stackelberg games. In Proceedings of the 7th international joint

conference on Autonomous agents and multiagent systems-Volume 2, pages 895–902.

International Foundation for Autonomous Agents and Multiagent Systems, 2008.

[113] Munindar P. Singh. Towards a science of security. http://www.computer.org/

portal/web/computingnow/archive/january2013, 2013. Online, accessed June 30,

2014.

[114] Rui Zhuang, Scott A DeLoach, and Xinming Ou. Towards a theory of moving target

defense. In Proceedings of the First ACM Workshop on Moving Target Defense, pages

31–40. ACM, 2014.

[115] Thomas Hobson, Hamed Okhravi, David Bigelow, Robert Rudd, and William

Streilein. On the challenges of effective movement. In Proceedings of the First ACM

Workshop on Moving Target Defense, pages 41–50. ACM, 2014.

[116] Mark Burgess and Alva L Couch. Modeling next generation configuration management

tools. In LISA, pages 131–147, 2006.

[117] Nelly Bencomo, Jon Whittle, Pete Sawyer, Anthony Finkelstein, and Emmanuel

Letier. Requirements reflection: requirements as runtime entities. In Proceedings

of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 2,

pages 199–202. ACM, 2010.

[118] Peter Sawyer, Nelly Bencomo, Jon Whittle, Emmanuel Letier, and Anthony Finkel-

stein. Requirements-aware systems: A research agenda for re for self-adaptive systems.

208

http://www.computer.org/portal/web/computingnow/archive/january2013
http://www.computer.org/portal/web/computingnow/archive/january2013

In Requirements Engineering Conference (RE), 2010 18th IEEE International, pages

95–103. IEEE, 2010.

[119] Rui Zhuang, Scott A. DeLoach, and Xinming Ou. A model for analyzing the effect of

moving target defenses on enterprise networks. In Proceedings of the 9th Cyber and

Information Security Research Conference, Oak Ridge, Tennessee, April 2013. ACM.

[120] David John Leversage and ERIC James. Estimating a system’s mean time-to-

compromise. Security & Privacy, IEEE, 6(1):52–60, 2008.

[121] John Homer, Su Zhang, Xinming Ou, David Schmidt, Yanhui Du, S Raj Rajagopalan,

and Anoop Singhal. Aggregating vulnerability metrics in enterprise networks using

attack graphs. Journal of Computer Security, 21(4):561–597, 2013.

[122] Rui Zhuang, Alexandru G Bardas, Scott A DeLoach, and Xinming Ou. A theory of

cyber attacks: A step towards analyzing mtd systems. In Proceedings of the Second

ACM Workshop on Moving Target Defense, pages 11–20. ACM, 2015.

[123] Ross Sheldon et al. A first course in probability. Pearson Education India, 2002.

[124] Alexander Bogomolny. Number of trials to first success from interactive math-

ematics miscellany and puzzles. http://www.cut-the-knot.org/Probability/

LengthToFirstSuccess.shtml, 2015. Online, accessed Aug 15, 2015.

[125] Jafar Haadi H Jafarian, Ehab Al-Shaer, and Qi Duan. Spatio-temporal address muta-

tion for proactive cyber agility against sophisticated attackers. In Proceedings of the

First ACM Workshop on Moving Target Defense, pages 69–78. ACM, 2014.

209

http://www.cut-the-knot.org/Probability/LengthToFirstSuccess.shtml
http://www.cut-the-knot.org/Probability/LengthToFirstSuccess.shtml

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Introduction
	Motivation
	Thesis Statement
	Research Approach
	Contributions
	Overview

	Background
	Related Mathematics
	Geometric Series
	Product Rule of Probability
	Conditional Independency

	Related Concepts
	Enterprise Network Basics
	A Glance at IT Automation

	Conclusion

	Related Work and A Taxonomy
	Attack Type
	Hardware Attacks
	Software Attacks

	Adaptable Aspects
	Network Level
	OS Level
	Program Level
	Machine Level
	Hardware Level

	Tactics
	Diversification
	Randomization

	Strategies
	Proactive
	Reactive
	Combined

	Using the Taxonomy
	Conclusion

	Exploratory Experiments
	High-Level System Design
	Resource Mapping System
	Adaptation Engine
	Analysis Engine

	Simulated MTD Testbeds
	Defender Modeling
	Attacker Modeling
	Simulations and Results

	Conclusion

	A Scalable Analytical Model
	Motivation
	Extended Simulation

	The Model
	Suitable Structure
	Model Parameters
	Challenges
	An Original Model
	An Improved Model
	General Form

	Conclusion

	A Theoretical Framework for Moving Target Defense
	Overview
	General MTD Adaptation Effect
	General MTD process
	Motivation for an MTD Theory
	Approach
	Scenarios

	MTD System Theory
	Configurable System
	System Goals
	System Policies
	Adaptation
	MTD System
	Configuration Space
	Diversification
	Randomization
	Problems

	Cyber Attack Theory
	Targets
	Attackers
	Attacks
	Exploration Space

	MTD Theory
	Attack Surface
	Adaptation Surface
	Engagement Surface
	Coverage
	Potential Effectiveness
	Success Likelihood of Intrusion
	Theorems
	Attack Effort
	Relationships between MTD system Parameters and Attack Effort

	Validation
	Attack Mission Planning System
	Attack ASLR-enabled Mission Planning System
	Discussion

	Conclusion

	Conclusion
	Current State
	Contributions
	Limitations
	Future Work

	Bibliography

