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Abstract 

Dense Plasma Focus (DPF) devices are multi-radiation sources of X rays, neutrons (when 

working with deuterium), ions, and electrons in pulses typically of a few tens of nanoseconds. The 

Kansas State University device (KSU-DPF) was commissioned to be used as a radiation source 

with the Mechanical and Nuclear Engineering Department. The device is operated by a 12.5 µF 

capacitor which can be charged up to 40 kV storing an energy of 10 kJ. The static inductance and 

resistance of the device 𝐿0 and 𝑟0 were measured to be 91±2 nH and 13±3 mΩ.  

 Experiments have shown that the KSU-DPF device produces 2.45 MeV neutrons with a 

neutron yield of ~2 × 107 and 1.05 × 107 n/shots in both axial and radial directions. Ions up to 

130 keV were measured using a Faraday Cup. The measured hard X-ray spectrum shows an X-ray 

emission in the range from 20 to 120 keV with a peak at 50 keV while the average effective energy 

was estimated, using a step filter method, to be 59 ± 3 keV.  

The KSU-DPF device was used as a pulsed hard X-ray source for material interrogation 

studies using the signature-based radiation-scanning (SBRS) technique. The SBRS technique uses 

template matching to differentiate targets that contain certain types of materials, such as chemical 

explosives or drugs, from those that do not. Experiments were performed with different materials 

in cans of three sizes. Nitrogen-rich fertilizers and ammonium nitrate were used as explosive sur-

rogates. Experiments showed 100% sensitivity for all sizes of used samples while 50% specificity 

for 5 and 1- gallon and 28.57% for quart samples. 

Simulations using MCNP-5 gave results in good agreement with the experimental results. 

In the simulations, a larger number of materials, including real explosives were tested. To ensure 

the feasibility of using the DPF devices for this purpose a second device was simulated and the 

results were encouraging. 

Experimental and simulation results indicate that use of DPF devices with simple, room-

temperature detectors may provide a way to perform rapid screening for threat materials, espe-

cially for places where large number of packages need to be investigated. 
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Chapter 1- Introduction 

1.1  Overview 

Advances in transportation and communication have changed the world into a more acces-

sible place.  It is now very easy to transfer goods between countries and between different locations 

within a country. Millions of packages are shipped daily all over the world, and it is important, for 

homeland security purposes, to check packages for threat materials that might cause problems or 

even disasters. Threat materials include chemical explosives, special nuclear material, biological 

agents, and narcotics.  In recent decades terrorist attacks using hidden explosives have become all 

too common. An example of this is the bombing that happened at the Boston Marathon in April 

2013. Many researchers have been trying to find ways to rapidly detect threat materials, especially 

explosives, to avoid damage to victims and property. Various techniques have been introduced 

that depend on different characteristics of explosive materials, including chemical composition, 

geometry, smell and density. In this work we investigate a rapid way to detect explosives at stand-

off using X rays emitted from a dense plasma focus (DPF) device. 

1.2  Dense plasma focus 

The DPF device is a coaxial plasma accelerator that generates, accelerates and pinches a 

plasma by self-generated electromagnetic forces. The rapidly formed plasma pinch is hot and 

dense enough to produce fusion reactions when the working gas is deuterium or a mixture of deu-

terium and tritium. DPF devices produce different types of radiations, such as neutrons, hard and 

soft X rays, high energy ions and electrons, over short times, typically tens of nanoseconds. The 

Kansas State University DPF (KSU-DPF) device was commissioned in 2010 in the Mechanical 

and Nuclear Engineering department to be used as a radiation source for a variety of applications. 

The KSU-DPF stores energy up to 10 kJ in a 12.5 µF capacitor and has a total inductance of 91 ± 2 

nH and a resistance of 13 ± 3 mΩ. The device produces a hard X-ray emission in pulses of 

~200 ns each. The emission spectrum ranges from 20 to 120 keV with a most probable value of 

50 keV and an average effective energy of 59 ± 3 keV. 

1.3  Signature-based radiation scanning method 

The method used in this work is called signature-based radiation scanning (SBRS). SBRS 

is an active interrogation method developed by Dunn et al. at Kansas State University. Photons, 
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neutrons or both can be used as interrogating radiation in this technique. This method is not limited 

to explosive detection but also can be used to detect drugs, nuclear materials, and so forth. How-

ever, this work focuses on detecting only nitrogen-rich explosive materials.  The main idea of 

SBRS is to compare the scattered or generated radiation responses (signatures) from an unknown 

sample with the signatures of one or more templates. A template is a set of signatures from a target 

known to contain a material of interest.   By doing this template matching, the user obtains an 

indication of whether a sample under investigation is an explosive, an inert or a suspect. The de-

cision here is made automatically, which means it doesn’t rely on operator opinion or experience. 

This fact gives this method an advantage over other methods that depend on the ability of a human 

operator to remain focused. Another important advantage of SBRS is that it is capable of working 

at standoff. This means that the operator is not in direct contact with the sample under investiga-

tion, which lowers the risks to humans. 

Experimental and simulation work are described in this dissertation. Experiments have 

been performed with different samples in different sizes by using a nitrogen-rich fertilizer to con-

struct a template. On the other hand, simulations using the MCNP-5 code allows us to study more 

samples, including real explosives. The X-ray spectrum from the KSU-DPF was used as the source 

in the simulations.  Results were compared to results using the spectrum from another DPF device 

called GN1 to see if the results were strongly spectrum dependent. 

1.4  Dissertation outline 

Chapter 2 presents some theory and history about dense plasma focus devices. In addition, 

general information about their construction, theory of operation and emission types is given there. 

In Chapter 3 the KSU-DPF will be introduced in detail. The device hardware will be explained in 

addition to all electrical and radiation diagnostic tools involved in this work. The radiation emis-

sion from the device will be characterized in Chapter 4 through different experiments that have 

been performed with some emphasis on the hard X-ray production that will be used in the explo-

sive detection process. Chapter 5 will present a background describing different explosive detec-

tion techniques. At the end of the chapter the SBRS technique and its theory will be explained in 

detail. The experimental work, including procedures and devices in addition to the experimental 

results will be presented in Chapters 6 and 7.  Finally, the simulations will be discussed in Chapter 
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8, which begins with a brief description of the MCNP-5 code used in the simulation and then 

discusses the problem simulated and the results obtained.  
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Chapter 2-  Dense Plasma Focus Devices  

2.1   Introduction and brief history 

Plasma accelerators have been studied from the beginning of research on controlled fusion.  

In the United States, John Marshal [1] studied coaxial gun systems and, guided by John E. Osher 

[2], explored the fast coaxial gun mode, which led to the high pressure mode operation. Dense 

plasma focus (DPF) devices were developed in the early 1960s independently by J. W. Mather [3] 

in the United States of America and N. V. Filippov [4] in the former Soviet Union. In these devices, 

a plasma sheath is accelerated and then magnetically compressed to a short-lived (50-200 ns) and 

dense plasma pinch (~1019 cm−3 ). 

2.2   Device configuration  

The main difference between Mather and Filippov types is in geometry as shown in Fig-

ure 2-1. They have different inner electrode aspect ratios. The aspect ratio is the ratio of axial to 

transverse dimensions, 𝐴 =
𝑍𝟎

2𝑎
,  of the inner electrode. For Mather type [3], A  >1 (5-10) while in 

Filippov type, A<1 (~0.2). Although Mather and Filippov have different configurations, both con-

sist of two coaxial electrodes, an anode and a cathode, separated by an insulator. In addition, both 

devices are subject to current sheath dynamics, a neutron emission scaling law, and characteristic 

emission of ions and electrons. Mather type is simpler in design and has an easy access to various 

diagnostic tools. The Kansas State University dense plasma focus (KSU-DPF) device is a Mather 

type. As a result, the following discussion will be limited to this type only. 

In general, any DPF device is composed of three principal parts: electrical parts which 

initiate and drive the plasma discharge, mechanical and vacuum hardware, and finally the diag-

nostic system. A brief description for each part will be given in following sections. 

2.2.1 Electrical circuit 

The electrical circuit of the DPF is composed of a power supply that delivers energy at 

high voltage to a capacitor/capacitor bank. The capacitor energy is then discharged between the  
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Figure 2-1. Mather and Filippov configurations. 

 

two electrodes by means of an electrical fast switch that is triggered by a separate circuit. The 

connecting wires and switches have a resistance and an inductance of 𝑟0 and 𝐿0, respectively. The 

plasma is represented also by a variable resistance and inductance  𝑟𝑝 𝑎𝑛𝑑 𝐿𝑝. The wiring diagram 

of the DPF and its equivalent electrical circuit at the time of discharge is shown in Figure 2-2.  

The dense plasma focus is a rich source of multiple energetic radiations such as: 

 Fast electrons (0.01-1 MeV). 

 Fast ions (0.01-100 MeV). 

 Soft (0.1-10 keV) and hard (10-1000 keV) X rays. 

 Fusion neutrons, which can be monoenergetic (2.45 and 14.1 for D-D and D-T reac-

tions, respectively) or over a broad range (2 - 11.3 MeV). 
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Figure 2-2. Wiring diagram of the DPF device (a) and its equivalent electrical circuit at the time 

of discharge (b). 

 

Since 1960, much research has been conducted  to understand the physics of DPF devices over a 

wide range of stored energy, from a few hundred Joules, like the FMPF-1 device [5], up to mega 

joules, like the PF1000 [6]. 

2.2.2 Mechanical and vacuum hardware 

The device coaxial electrodes are enclosed inside a vacuum chamber, which is connected 

to the pumping station to evacuate the chamber a pressure in the range of 10-5 mbar before feeding 

gas. The pumping station is composed of one or more vacuum pumps to evacuate the chamber to 

the desired pressure in addition to some vacuum valves to control the evacuating process. The 

pressure inside is monitored by a pressure gauge.   

2.2.3 Diagnostic system 

Diagnostic tools in the dense plasma focus field can be divided into two main categories. 

The first category is used to measure electrical parameters such as current and voltage, which are 
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very important to monitor the device operation, while the second category is used to measure the 

emitted radiations from the device. The basic diagnostics should be measuring the current flowing 

at the plasma and the voltage drop at the discharging moment. The most commonly used tool for 

measuring discharge current is a Rogowski coil to measure the total current and a magnetic probe 

to measure the localized current distribution. Voltage probes are used to measure the transient 

voltage during the plasma discharge. In the second category, Faraday cups are often used for ion 

measurements in addition to X-ray and neutron detectors. Signals are typically collected and reg-

istered using an oscilloscope and then processed and saved.         

2.3  Operation and device dynamics  

Running a DPF device is started by charging the capacitor (C0) using a high voltage power 

supply through a charging resistor (R), as shown in Figure 2-2 (a). Once the capacitor is charged, 

it is rapidly discharged by triggering the switch, which directly applies the capacitor high voltage 

between the two electrodes. The application of that high voltage starts the plasma production as is 

explained in more detail in the next section. At the time of discharge, the device can be modeled 

as a simple RLC circuit, shown in Figure 2-2(b). Any DPF operation can be divided into three 

distinct phases: the breakdown phase, the axial acceleration (axial rundown) phase, and the radial 

phase. Figure 2-3 (a) shows the three phases while Figure 2-3(b) shows typical corresponding 

signals for current, voltage, and the time derivative of the current.  

2.3.1 Breakdown phase   

Once the high voltage pulse is applied between the two electrodes, an azimuthally sym-

metric electrical discharge starts in the working gas under a suitable pressure. According to 

Paschen’s law [7], for deuterium as a working gas in the range from 1 to 10 mbar, the breakdown 

voltage is less than 1 kV. This value is about an order of magnitude less than the voltage used in 

most DPF devices, from 10 to 60 kV. Therefore, the breakdown phase in a DPF is always an over-

voltage phenomenon. The production of a high current discharge in a DPF device depends on 

many factors including initial gas condition [8, 9], electrodes, insulator parameters [10, 11] and 

polarity [12]. 
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Figure 2-3. Current sheath dynamics in DPF (a) and the corresponding current and voltage sig-
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Many experimental observations were performed to investigate the breakdown phase using 

different diagnostics such as an image converter camera, magnetic probes, and a Rogowski coil. 

Sliding discharge can be developed at the insulator surface at the optimum gas pressure. In the 

case of a pressure lower or greater than the optimum, either the discharge can be developed in the 

entire volume or accompanied by filamentary discharge between the two electrodes [10]. The ini-

tial discharge starts at the outer electrode edge where the highest electric field exists. Depending 

on the gas and surface conditions, the ionization propagates to the end of the insulator surface. 

Once the discharge reaches the insulator end it connects the two electrodes together. The full 

breakdown happens when the sliding discharge conductance becomes high enough to convert the 

discharge into a plasma sheath.  

Discharging time is independent, within certain limits, of the applied voltage but mainly 

depends on the gas pressure [13]. The operational pressure range is that range at which initial 

sliding discharge can be developed properly. Other parameters that affect the discharge develop-

ments are insulator material and dimensions [13]. Once the current sheath is formed, current flows 

symmetrically from the anode to the cathode through the insulator surface. The sheath will be then 

lifted off outward from the insulator surface by the effect of the Lorentz force, 𝐽⃑⃑ × 𝐵⃑ , in an inverse 

pinch manner to reach the inner surface of the outer electrode in a process that takes from 50 to 

500 ns [14] which prepares for the next stage as shown in Figure 2-3(a). Many investigations have 

been conducted to simulate the ignition/breakdown phase using one or two dimensional models 

[15-18].    

2.3.2 Axial acceleration phase 

When the plasma sheath reaches the inner surface of the outer electrode, it starts to accel-

erate axially to the open end of the coaxial electrodes by the effect of a Lorenz force,  𝐽⃑⃑ × 𝐵⃑ .  The 

radial component of this force pushes the sheath to the outer electrode while the axial component 

drives it to the coaxial electrode open end. Due to the 1 𝑟⁄  dependency of the current density 𝐽𝑟 and 

magnetic field 𝐵𝜃, the Lorenz force value will be higher near the inner electrode, which leads to 

higher velocity for the sheath around it than anywhere else. Therefore, while it is moving, the 

sheath will form a parabolic shape while maintaining its axial symmetric character [19], as shown 

in Figure 2-3(a). K. H. Kwek, T. Y. Tou and S. Lee [20] described the current sheath in the axial 
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phase as a strong shock wave, driven by a magnetic piston, which ionizes the swept up gas while 

moving. Between the shock wave and magnetic piston a finite volume of plasma is compressed. 

 Dense plasma focus devices are designed such that the current sheath reaches the coaxial 

electrodes open end at a moment close to the first maximum of the charging current, preferably 

immediately after this moment. This condition is common for all pinch devices and represents the 

optimization of the energy transfer from the capacitor bank to the plasma pinch. The difference 

between the current maximum and the end of the axial phase was provided by optimization studies 

for an optimum energy transfer under given conditions for each device. During the axial accelera-

tion phase the plasma temperatures range from 30 to 60 eV. 

Many diagnostic tools have been used to investigate the axial accelerating phase. These 

tools include magnetic probes [21] and optical detection systems that use Schlieren imaging [20], 

shadowgraphy, interferometry or image converting cameras. For a wide range of dense plasma 

focus devices, the measured axial speed ranges from 1.5 to 15 cm/μs and the sheath thickness 

ranges from 1 to 4 cm [22]. Experimental observations showed that only 60 to 70% of the total 

discharge current contributes in the final focus phase [19, 23, 24].   

Axial acceleration phase dynamics has been modeled by the snowplow model [25], which 

estimated reasonably both the current sheath velocity and the phase duration [26, 27] in addition 

to the 2D sheath profile [28]. Two loss factors were taken into account while fitting the experi-

mental data to the computational model. The first one is the current shedding loss or leakage (fc), 

which occurred because of the slow moving diffuse current layer behind the main current sheath 

or the current retained at the insulator surface. The second factor is the mass loss (fm) which occurs 

because of the pressure gradient in the slanted current sheath [20, 29].  

2.3.3 Radial phase 

    After arriving at the inner electrode (usually anode) end, the current sheath sweeps around 

this end and finally collapses under the effect of the radially inward force 𝐽⃑⃑ × 𝐵⃑ . For medium to 

high energy DPF devices and depending on the device characteristics, this collapse takes from 50 

to 200 ns [30]. Current sheath velocity in the radial collapse phase ranges from 7 to 60 cm/μs 

depending on many factors such as the electrode geometry, initial gas pressure, current sheath 

structure and the electrical characteristics of the device. 
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 The plasma inductance rapidly changes during the radial phase and produces an induced 

electric field in the plasma column. For a constant charging current during this phase, the induced 

voltage can be expressed as: 

𝑉𝑖 = 𝐼
𝑑𝐿

𝑑𝑡
 , 2-1 

where I is the discharging current and 
𝑑𝐿

𝑑𝑡
 is the plasma inductance rate of change. 

 The importance of the radial phase is due to its extremely high energy density, transient 

character, intense radiation emissions, high-energy particles and copious nuclear fusion products 

(for deuterium or deuterium-tritium mixture working gas). The radial phase is subdivided into four 

sub-phases, namely, compression phase, quiescent phase, unstable phase and decay phase. This 

classification is based on the reported experimental data. In the following sections these phases 

will be explained in more detail.   

2.3.3.1 Compression phase 

The radial phase starts with a rapid collapse of azimuthally symmetric but non cylindrical 

funnel shape plasma sheath inward toward the axis under the influence of the  𝐽⃑⃑ × 𝐵⃑  force and ends 

when the plasma column reaches a minimum radius (𝑟𝑚𝑖𝑛) and maximum density (~1019 cm−3). 

This instant, when 𝑟 = 𝑟𝑚𝑖𝑛, is conventionally considered as a time reference (t=0). 

Two heating mechanisms have been observed during this phase. First is the shock heating 

which is responsible of heating the plasma before the current sheath fronts meet together at the Z-

axis. The second mechanism is Joule heating, which becomes the main heating mechanism after 

the transformation of the plasma structure into a plasma column and the shock wave (reflected on 

itself at the axis) meets the magnetic piston [31]. The Joule heating mechanism works at the central 

part of the plasma column which is not being affected yet by the piston. The plasma column will 

be adiabatically compressed to form the final focus [32]. 

By the end of this phase a rapid penetration of the magnetic field to the plasma column 

happens associated with a sharp increase in the plasma anomalous resistivity which produces an 

increase in the total system resistance [33]. The observed large voltage spike and the dip in the 

current shown in Figure 2-3(b) are related to that increase in the plasma column impedance and 

enhanced due to the anomalous resistive effect [31].   

Many diagnostic tools were used to determine the electron density maximum value in ad-

dition to the electron and ion temperatures. These tools include spectroscopy, interferometry and 
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laser scattering. The final electron temperature was estimated to range from 1 to 2 keV. The final 

temperature depends only on the current I and the linear density N based on the Bennett rela-

tion, 𝑇~
 𝐼2

𝑁
, [34], which means the lower the linear density the higher the temperature, while it is 

independent of the minimum radius of the pinched plasma column.  

The pinch column is formed at the end of the compression phase with an approximate 

diameter on the order of 1 mm and a length of a few centimeters, while the plasma density at this 

phase is ~1019   cm-3 [35]. 

Using the snowplow equation to model the pinch at this phase produces a zero radius col-

umn. Many attempts have been made to overcome this, for instance by devising a retarding kinetic 

pressure term or using a criterion for the minim radius such as the Larmour radius. S. Lee [36] 

indicated that these methods were not energy-consistent and hence he developed an energy balance 

model which provides the correct end point for implosion trajectory and estimated the correct 

quasi-equilibrium radius. Moreover, S. Lee [37] developed a complete energy-consistent trajectory 

when he combined the energy-balance criterion with the slug model. Computed pinch length and 

minimum radius agreed with the experimental measurements [35].  

2.3.3.2 The quiescent phase         

This phase starts with the expansion of the pinch plasma column. The expansion occurs in 

both radial and axial directions but the rate of radial expansion is resisted by the confining mag-

netic pressure. On the other hand, the axial rate of expansion forms an axial shock front due to the 

fountain-like geometry of the current sheath.  

A sudden and sharp change in the plasma inductance starts in the compression phase, which 

induces an electric field in the plasma column. Under the influence of this electric field, ions and 

electrons are accelerated in two different directions. Micro-instabilities, such as electron-cyclotron 

and various forms of beam plasma instabilities, will start at the time when the relative drift velocity 

between ions and electrons reaches the increasing electron thermal velocities. The plasma temper-

ature continues increasing by Ohmic heating. Moreover, the magnetically confined plasma column 

becomes hydro magnetically unstable under the sausage (m=0) and kink (m=1) instability modes, 

will be discussed later in this chapter. The lifetime of the pinch (𝑡𝑝) can be defined as the time 

interval between the first compression and the instant of the m=0 instability [38].  
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2.3.3.3 Unstable phase 

The induced electric field is enhanced by the growing of the m=0 instabilities.  This accel-

erates the electrons to the inner electrode and the ions in the opposite direction. An axial ionization 

wave front was reported by J. W. Mather and P. J Bottoms [39] at which the measured peak ve-

locity for deuterium is 120 cm/μs as estimated by using time-resolved interferometry. This con-

firms that the ionization is formed by the fast deuterons [31, 39]. The hard X rays and neutron 

pulses start with the beginning of this ionizing front, which will be developed later into a bubble-

like structure with several density gradients [40]. The first gradient is due to the separation of the 

ambient gas from the ionized structure which is caused by the ionization front.    

A significant number of impurities are produced due to the bombardment of the fast elec-

trons with the anode, especially the solid anode. Such impurities cause the plasma column to im-

plode near the central electrode [41]. This implosion proceeds gradually through the plasma col-

umn which represents the second density gradient as observed by interferometric holograms [31]. 

This density gradients moves in opposite direction to the anode at a speed much slower than the 

ionization front until this disruption is broken completely. The estimated electron drift velocity 

calculated from both the current and the plasma density is on the order of 107 m/s, which is greater 

than the electron thermal velocity (~106) m/s as estimated from the electron temperature. This is 

considered as a strong plasma heating mechanism. As indicated by the large amount of Brems-

strahlung radiation [38], the electron temperature then reaches about 4-5 keV.  

2.3.3.4 Decay phase 

The decay phase is the last phase of the radial collapse in addition to being the last stage in 

the plasma focus dynamics at which the plasma density drops below 2 × 1017cm-3. After the com-

plete breaking up of the plasma column, a large, thin and hot plasma cloud is formed emitting a 

large amount of Bremsstrahlung radiation. The soft X-ray emission starts suddenly during the 

pinch decay. Its first peak is reached after the break-up of the pinch and continues at a high and 

almost constant level for over 300 ns [42]. The neutron pulse, which started at the beginning of 

the unstable phase, reaches its peak during this phase as well. The implosion time is ~100 ns while 

the plasma column lifetime is ~20 ns for a Mather type device with a 1 cm anode radius [35]. 

During this phase strong emissions of X ray and neutrons also occur. 
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2.4  Plasma instabilities  

Instabilities are one of the major obstacles for the plasma to be confined for controlled 

thermonuclear fusion. These instabilities create limitations on the amount of current and pressure 

that can be confined by the magnetic field. As described by the magneto-hydro-dynamic (MHD) 

equations, cylindrical plasma confined by a magnetic field produced by a current at the pinch 

plasma surface will produce a radial perturbation 𝛿𝑟 in the form of [43]:  

𝛿𝑟 = 𝜉0𝑒
𝑖(𝑚𝜃+𝑘𝑧−𝜔𝑡),  2-2 

where 𝜉0 is the displacement amplitude and 𝑘 is the wave number. The coefficient m is the poloidal 

mode number which determines the azimuthal periodicity of 𝛿𝑟. For example when m=0 the per-

turbations independent of the azimuthal coordinates (sausage instability) while for m=1 helical 

perturbations exist (Kink instability), as will be explained in the following sub-sections. 

2.4.1 Rayleigh-Taylor instability       

Rayleigh-Taylor instability happens in the situation when there is a dense and incompress-

ible fluid supported by another fluid of a lower density and both fluids exist in an accelerating 

field. In the case of dense plasma focus the heavy fluid is the plasma which is supported by the 

magnetic field, which acts as the light fluid.   

During the radial compression, the interface between the plasma and the magnetic field, in 

a magnetically confined plasma, is found to be unstable [44] which causes the boundary of the 

plasma column to be fluted. 

2.4.2 Sausage (m=0) instability  

In early fusion experiments, the plasma column would spontaneously pinch itself off due 

to magneto-hydro-dynamic instabilities, especially the sausage instability (m=0).  The growth of 

this instability is due to a poloidal symmetric radial perturbation, which constricts the plasma col-

umn slightly in some places. The constricted places are those at which the magnetic pressure is 

larger than the plasma kinetic pressure (∇𝑝) [45] as shown Figure 2-4. At the constricted areas, 

the flowing current density (𝐽𝑧) is producing a stronger magnetic field (𝐵𝜃) than the other areas. 

The stronger the magnetic field the greater the generated force which act inwards to these areas 

producing more constrictions. As a result a strong longitudinal electric field will be induced due 

to these rapidly changes in the magnetic fields. This induced electric field will accelerate the  
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Figure 2-4. A Schematic of the sausage instability. 

 

ions/deuterons within the plasma up to hundreds of keV energies leading to a burst of radiation 

emission. Sausage instabilities were reported in dense plasma focus by many researchers [45-47]. 

To stabilize the sausage instability, the plasma column is penetrated by a longitudinal magnetic 

field comparable in strength to the poloidal field around the column. 

2.4.3 Kink Instability (m=1) 

In the kink type of instability the plasma column twists into a helical shape like a corkscrew 

as shown in Figure 2-5. If any part of the plasma column is bent, the inner edge poloidal magnetic 

field will be stronger than the outer edge magnetic field which pushes the plasma for further bend-

ing. Kink (m=1) instability was observed by Rawat et al. [46] using X-ray pin hole imaging.  

To stabilize the Kink instability a strong enough longitudinal magnetic fields is used in 

addition to a wide enough plasma column to prevent any part of the magnetic field between the 

plasma and the wall to be closed upon itself once along the length of the plasma column. This 

method is known as Kruskal-Shafranov criterion [44].   

 

 

Figure 2-5. Schematic for the Kink (m=1) instability in plasma. 
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2.4.4 Micro-instabilities and turbulence 

Bernard et al. [31, 47] studied the magnitude of density fluctuations as a function of direc-

tion by using of the light scattering diagnostic technique. They reported that the excitation of waves 

along the current direction is 1.5 times more intense than that is perpendicular to it which indicated 

the existence of micro-instabilities. It was also an indication about the correlation of these micro-

instabilities with the drift velocity between electrons and ions due to the current flow along the 

electrode axis. More observations indicated the presence of micro-instabilities and turbulences in 

the dense plasma focus such as the observation of the anomalous resistivity of the pinched plasma 

[48], the non-thermal radiation in the microwave range [49] in addition to the high energy ions and 

electrons bursts. 

The rapid change in the plasma inductance, during the radial phase, produces an induced 

electric field along the pinch. This electric field is enhanced by the growth of the m=0 instability 

at the end of the quiescent phase. The electron emission starts when the electric field reaches an 

amount greater than 300 kV/cm, the estimated values for the critical field strength [38].  

By measuring the hard X-ray emission from dense plasma focus devices, electron energy 

was estimated to be in the range from 50 to 500 keV [50], which exceeds the plasma thermal 

velocity exerted from the electron temperature. Taking these facts into consideration, it was shown 

theoretically that number of instabilities occurs due to various types of beam-plasma interaction 

[51]. As indicated by infrared absorption experiments, these beam plasma instabilities will grow 

rapidly [52, 53]. 

2.5  Radiation emission from dense plasma focus 

Dense plasma focus is a powerful source of radiations, as mentioned before, including 

energetic ions and electrons, intense X rays and fast neutrons. In this section, each type of radia-

tion will be discussed in detail with the assumed mechanisms for each one. 

2.5.1 Electron emission                               

A strong electron emission coming from the pinch was observed in the early experiments 

performed on dense plasma focus devices. It was proposed that the interaction of the electron beam 

with the metallic anode is the source of hard X-ray emission [54, 55]. Electron emission from DPF 

devices was studied in a wide range of devices with stored energy from 1 kJ to 1 MJ, a charging 

voltage from 10 to 200 kV and a maximum current from 100 kA to 3 MA. Accelerating the electron 
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beam up to energies more than 100 times higher than the applied voltage was explained by several 

proposals. One of the proposals relates the electron production in the DPF devices to the m=0 

instabilities [45, 56]. As explained before, the growth of the sausage instability (m=0) during the 

unstable phase enhances the induced electric field which accelerates the electrons towards the an-

ode. Another proposed reason for the high electric fields induced in the plasma is the rapid change 

of the magnetic flux which occurs at the moment of the plasma compression due to the Lorenz 

force [57]. One more important mechanism is a sudden increase in the plasma resistivity (anoma-

lous resistivity) while the pinch current remains constant, which causes the pinch column voltage 

to increase and so the electric field.  

Extracting the electron beam is not a simple issue, which makes its measurements difficult. 

The very low energy electrons are trapped by the strong magnetic field produced by the pinch, 

which makes them undetectable. The slightly higher energy electrons will also be undetected be-

cause they will interact with the filling gas. Only very high energy electrons will [58] be detectable 

as they will not strongly interact with the plasma, filling gas or electrode system although they 

might interact among themselves. 

The direct coupling to the oscilloscope is difficult because of the high voltage involved in 

the pinch. Hence, indirect measurements for the electron beam were performed by measuring the 

X-ray emission from a target, such as the anode. Direct measurements were done also by using 

Faraday cups [58, 59]. Time resolved spectra were obtained by using a filter method in addition to 

a 𝛽 − ray spectrometer. For time-integrated energy spectra, magnetic spectrometers with photo-

graphic recording media were used [58, 59]. Around one ns resolution is required to perform time-

resolved measurements [60, 61]. 

The ion and electron peak energy is not related to the capacitor charging voltage nor to the 

energy stored in the capacitive pulser, as shown by the experimental measurements. High energy 

electrons, greater than 1 MeV, were reported from some small machines. As indicated in different 

investigations, the energy distribution seems to be extremely influenced by the electron detector 

[62]. As a result, it was very difficult to make a comparison among various experiments, which 

report one order of magnitude different results for the peak of energy distribution. 

Electrons are emitted into low and high energy components. Each one has different char-

acteristics [63]. The low energy component, less than 150 keV, starts when the shockwave reaches 

the electrode axis and reflects on itself. The time of this emission takes the whole dense plasma 
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lifetime, long after the pinch disruption [63]. The high energy component, more than 150 keV, 

takes a short period of time, 10-30 ns FWHM, during the first compression [60, 64] and after the 

disruption of the plasma pinch column [65, 66].  

Direct measurements for the time-integrated electron energy were performed using the nu-

clear emulsion technique at which a power law was found to fit the experimental data: 

𝐼(𝐸) = 𝐴 𝐸−𝛼,  2-3 

where the value of 𝛼, ranges from 2.5 to 5, depending on the measuring angle with the anode axis, 

and decreases with the increase of the operating voltage [59, 61, 67, 68].  

 The pressure of the operating gas is the most important factor that affects the electron emis-

sion in the DPF devices. The amount of hard X-rays emitted due to anode bombardment increases 

with decreasing gas pressure [69]. The energy of the emitted electrons increases with decreasing 

pressure. The increase in the amount of hard X-rays and the electrons’ energies are only noticed 

with the pressure decrease up to a certain point beyond which the pinch will be weak and poorly 

formed, which decreases the emission intensity. Moreover, at low pressure the fraction of the cur-

rent flowing through the main pinch column decreases with the gas pressure. T. Oppenlander et 

al. [70] indicated that this fraction falls from 80 to 60% with the pressure decrease from 2 to 0.2 

torr. With increasing pressure, the beam-plasma interaction will be more effective. As a result, the 

electron emission from the pinch will decrease and so the bombardment with the anode causing 

the X-ray emission related to these phenomena will also be reduced [65, 71].  

By observing the X-ray emitted [72], Harries et al. showed that the beam energy for elec-

trons over 50 keV is of the order 1 J and current is of the order 200 A. Observing X-rays with 

energies more than 50 keV from the anode surface on axis implies that electrons are travelling in 

a beam towards the anode. Therefore, there is a strong electric field between the anode and the 

dense focus which accelerates the electrons over a distance on the order of 1 cm to energies of the 

order of 100 keV. Stygar et al. [59] measured a total electron beam current of 17 kA for a 12.5 kJ 

DPF device.  

Emitted electrons from the DPF devices were used in material synthesis applications. 

Zhang et al. [73] used a DPF device for thin film deposition. They reported that using hydrogen 

produces the highest electron beam charge and high higher energy electrons (from 50 to 200 keV). 

Neon also is considered as the next best choice since it produces the next highest electron beam 

current and mid-energy electrons (from 30 to 70 keV). 



  

19 

2.5.2 X-ray emission 

The dense plasma focus is a potential source for a wide range of electromagnetic radiations 

ranging from radio waves to hard X rays. It was developed in the beginning as a fusion device at 

various isotopes of hydrogen. X-ray emission was not a focus at the beginning but with time, its 

potential as an intense (soft) X-ray source [63, 74] led to further investigation. Higher-Z gases 

were used, such as neon (Z=10), krypton (Z=36) and xenon (Z=54), whether in pure form or mixed 

with light gases.  Also, different electrode designs, materials and shapes were used to enhance the 

X-ray emission in certain energy ranges.  

For a focused plasma column with 𝑇𝑒 = 1 eV, the X-ray continuum is expected to peak in 

the soft X-ray region at 𝜆𝑜 = 6.2 Ao. In the case of the high-Z plasma focus, characteristic line 

emissions fall in the soft X-ray region as well. For instance, the 𝐾𝛼 line radiation for nearly fully 

ionized argon plasma, at a suitably high temperature, is located at 4.2 Ao. For the 𝐾𝛼 line for neon, 

it is at 12.132 Ao. This radiation emission is very useful not only as a probe for plasma diagnostics 

but also in many applications. Lithography (~0.9 − 1.5 keV) [75-78], microscopy (~0.25 −

2.5 keV) [79] and micromachining (~4 keV) [80] are some applications for the X-ray emission 

from dense plasma focus devises. 

In the plasma focus the electromagnetic radiative processes are quasi-equilibrium thermal 

radiation from macroscopic plasma structures and radiation due to electrons interacting with non-

plasma targets, like the electrodes and/or with periodic electron density structures [81]. The spec-

trum of emitted radiation in the X-ray region covers the range from 0.3 keV to over 500 keV in a 

time span from a few to a few hundred of nanoseconds. The emitted X rays can be classified based 

on energy to soft and hard X-rays. Three main processes for X-ray emission are discussed below.   

i. Bremsstrahlung radiation (free-free transitions) 

Bremsstrahlung radiation happens when a charged particle is accelerated or retarded in the 

electric field of other charges. It mostly happens in the DPF because of the acceleration of electrons 

in the Coulomb field of the ions. Bremsstrahlung radiation is emitted over a continuous spectrum.  

For a Maxwellian electron velocity distribution, the free-free emission depends on fre-

quency as (𝑒
−

ℎ𝜈

𝑘𝑇𝑒) and the emission intensity is proportional to 𝑁𝑒𝑁𝑖𝑍𝑖
2𝑇𝑒

−1
2⁄ , where 𝑁𝑒 is the 

electron density, 𝑁𝑖 is the ion density, which has an effective charge 𝑍𝑖, and 𝑇𝑒 is the electron 
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temperature. Bremsstrahlung radiation can be a dominant radiation process in the case of highly 

ionized high-Z plasmas. Its spectral emission coefficient per unit wavelength peaks at: 

𝜆𝑚𝑎𝑥 =
2500

𝑘𝑇𝑒
 Å,  2-4 

where 𝑘𝑇𝑒  is in eV. 

Which is known as the Wien displacement law.   

ii. Recombination radiation (free-bound transitions)  

In the recombination radiation, a free electron is captured by a bound state of an ion to 

form a neutral atom or an ion in a lower ionization state. The excess energy of the electron is 

emitted as a free-bound radiation with energy of:  

ℎ𝜈 = 1
2⁄  𝑚𝑣2 + 𝜒𝑛, 2-5 

which produces a continuous spectrum of radiation for ℎ𝜈 > 𝜒𝑛, where 𝜒𝑛 is the ionization poten-

tial of the nth state of the atom or ion.  

 Another possibility may happen when two free electrons hit simultaneously an ion, which 

is called three-body recombination. One of the electrons will be captured by the ion while the other 

will carry the excess energy. In this case no radiation will be emitted. The probability of this pro-

cess is high in the case of higher densities. This process should be minimized in the DPF devices 

when used as a continuum X-ray source which is difficult in practice because producing X-rays 

needs high electron density.  

iii. Line radiation (bound-bound) 

Line radiation happens when an ion, atom or molecule in an excited state undergoes a 

transition to the ground state by spontaneous or stimulated emission. The emitted radiation will 

have energy equal to the difference between the energies of the initial and final states, 𝐸𝑖  and  𝐸𝑓,  

respectively. This can be written as: 

ℎ𝜈 = 𝐸𝑖 − 𝐸𝑓 2-6 

This emission appears as a discrete packet of energy because the atomic energy levels are quan-

tized. It is known as characteristic radiation because it shows the characteristic properties of the 

emitting ions, atoms or molecules.  

There are a certain series of line associated with the characteristic X-ray spectra, namely 

K, L, M, etc. series. The K series arises from the transition from higher energy levels (n=2, 3,…) 
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to the K shell and similarly the other series involve transitions to other shells. These lines associ-

ated with transitions from various higher energy levels are known as 𝛼, 𝛽, 𝛾, etc.; for instance, the 

𝛼 line is associated with the transition when Δ𝑛 = 1 and usually is the most intense and hence the 

intensity decreases with the lines 𝛽, 𝛾, etc., which are associated with Δ𝑛 = 2,3 , … .   

2.5.2.1 Hard X-rays   

Hard X-ray emission (𝐸 > 10 keV) from dense plasma focus devices is mainly due to the 

non-thermal high-energy electron beam bombardment of the anode surface [81]. These electrons 

are accelerated by the intense electric field produced by the rapid change in the plasma inductance 

during the pinch compression. If any resistance effect is neglected and only the inductance is taken 

into account, the pinch voltage (𝑉𝑝) can be written as [82]: 

𝑉𝑝 =
𝑑(𝐿𝑝 𝐼)

𝑑𝑡
, 2-7 

where 𝐿𝑝 and  𝐼  are the pinch inductance and current.  The inductance is given by  

  𝐿𝑝 =
𝜇𝑜

2𝜋
ℎ(𝑡)ln (

𝑟𝑒

𝑟(𝑡)
),    2-8 

where 𝜇𝑜 is the permeability of free space, h(t) and r(t) are the pinch height and radius and 𝑟𝑒 is 

the anode radius. 

If the pinch current, I, and height, h(t), are considered constants through the pinching pro-

cess, then the pinch voltage equation can be written as: 

𝑉𝑝 ≈ −
𝐼 𝜇𝑜ℎ

2𝜋
 
1

𝑟

𝑑𝑟

𝑑𝑡
 .  2-9 

 By using deuterium as a working gas it was shown that there is a correlation between neu-

tron yield and hard X-ray emission at which the total neutron yield is high when the hard X-ray 

emission is large [3].  

2.5.2.2 X-ray emission studies  

Time-integrated images showed that the soft X-ray (E<10 keV) source has a roughly cy-

lindrical shape and is located on the electrode axis at the electrode system open end. Its dimensions 

are related to the anode radius. The diameter ranges from less than 1 mm up to over 10 mm while 

the axial length ranges from a few mm to a few cm [35].  
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X-ray hot spots were reported by Choi et al. [83, 84] with typical dimensions of about 

100 𝜇m and occur within 5 ns from the first compression. They concluded that these hot spots are 

not a sign of the m=0 instabilities that disrupt the pinch column.    

Many techniques were used for soft X-ray emission diagnostics at DPF devices such as: 

i. Pinhole cameras, with one or more pinholes with suitable filters to record the time 

integrated spatial/spectral of the X-ray emitting region.  

ii. Microchannel plates, used for time-resolved spatial distribution of soft X-rays in con-

junction with pinhole cameras. 

iii. Semiconductor detectors, with suitable filters for space integrated temporal distribu-

tion of the soft X-ray emission. 

iv. Crystal X-ray spectrographs, for space-resolved line spectrum analysis. 

v. X-ray streak photography, for temporal distribution for the X-rays in one dimension 

(radial or axial). 

vi. X-ray films, X-ray resists and X-ray pulse calorimeters, for absolute soft X-ray yield 

measurements. 

K. Hirano et al. [62] reported an emission time of the soft X-rays, for low energy deuter-

ium- filled plasma focus device, ranging from 60 to 70 ns and has three peaks. The first peak is 

located at the end of the compression phase, the second by the unstable plasma column and the 

third (corresponding to the disruption phase) is due to emission from the inner electrode face.         

On a 28 kJ/60 kV device, Zoita et al. [85] studied the effects of radiation processes on the 

pinch column during the pinch and post-pinch phases. They found dramatic changes in the radia-

tion characteristics of the discharge and in the pinch configuration as well. High aspect ratio 

pinches emit large amounts of soft X rays in conjunction with a modest number of neutrons and 

hard X rays in the absence of macroscopic instabilities, which confirmed results obtained from 

lower energy plasma focus experiments [86]. Moreover, they also reported that the line and the 

main continuum radiation in the spectral range from 3 to 4 keV are mainly emitted from an intense 

bright spot of dimension around 50 μm.  

Many factors affect the characteristics of the X-ray emission. These include working gas 

composition and pressure, stored energy, discharge current, material of the electrode and its shape, 

polarity of the inner electrode and the insulator. Among these factors, gas composition and pres-

sure have the strongest effect. For deuterium DPF the working pressures for the highest X-ray 
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yield don’t coincide [61] with the optimum neutron yield. The insulator influence on the soft X-

ray production was studied by Rawat et al. [46]. They discovered that the insulator sleeve length 

has a strong effect on the average soft X-ray yield. The yield increases with the increase of the 

insulator sleeve length up to certain optimum length. Increasing the insulator beyond this optimum 

length causes a decrease in the soft X-ray yield.    

The X-ray output 𝑌𝑋 for an X-ray optimized plasma focus device is a function of both the 

peak discharge current 𝐼𝑚𝑎𝑥 and the pinch radius r as in the following empirical formula [87], 

which is similar to the Z-pinches scaling law: 

𝑌𝑋 =
𝐼𝑚𝑎𝑥
4

𝑟2 .   2-10 

2.5.3 Neutron emission  

Neutron production was noticed since the operation of the first DPF devices in both Mather 

and Filippov types when the filling gas is deuterium or deuterium-tritium mixture. The neutron 

production was noticed for all DPF sizes starting from the sub-kilo to the mega-joule energy de-

vices. In high energy devices, two distinct phases were observed for neutron emission [88]. One 

of them happens during the compression phase and the other one after the pinch break-up. On the 

other hand, for small and medium scale devices the neutron emission starts by the end of the col-

lapse phase and reaches a peak during the turbulent phase. 

2.5.3.1 Mechanisms of neutron production  

DPF is an intensive source of high energy neutrons with energies of 2.45 and 14.1 MeV 

when the filling gas is deuterium and deuterium-tritium mixture, respectively. D-D and D-T fusion 

happens according to the following equations:  

                 𝐷 + 𝐷 →  𝑇 (1.01 MeV) + 𝐻 (3.03 MeV)              (50%),       2-11 

                𝐷 + 𝐷 → 𝐻𝑒3  (0.82 MeV) + 𝑛 (2.45 MeV)         (50%),  2-12 

 𝐷 + 𝑇 → 𝛼 (3.5 MeV) + 𝑛 (14.1 MeV),  2-13 

unless there is a need for the 14.1 MeV neutrons, most of the DPF devices use D-D reactions as a 

source for neutrons. Therefore, the discussion here will be limited to using only the D-D fusion 

reaction. 
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Two main mechanisms were proposed for neutron productions in DPF devices; thermonu-

clear and non-thermonuclear. At the beginning, neutron production was assumed to be thermonu-

clear [3, 4] at which thermal collisions between deuterons in the plasma bulk produce the D-D 

fusion reactions and isotropic 2.45 MeV neutrons are expected. More research in this field indi-

cated that there is anisotropy in the neutron production. More neutrons were found in the axial 

direction than the radial direction [56, 89]. Moreover, the average energy of the axial neutrons was 

found to be greater than the average energy of isotropic thermonuclear neutrons (2.45 MeV), which 

led to suggesting other neutron emission mechanisms.  

A non-thermal neutron emission mechanism was proposed by Forrest and Peacock [90] 

when they were measuring the ion temperature in a DPF device using ruby laser light. They re-

ferred to a non-thermal mechanism in addition to the thermal one in which the production of neu-

trons is due to accelerated deuteron collisions with the thermal deuterons in the plasma bulk and 

the neutral gas atoms outside the pinch (beam target effect). 

F. Castillo et al. [91]confirmed the existence of both mechanisms, thermonuclear and beam 

target. They found a correlation between the X-ray (soft/hard) emission and the neutron emission.  

They concluded that both mechanisms coexist but each one works separately. In some cases the 

beam target neutron mechanism is dominating when there is a high hard X ray and low soft X ray 

emission. In other cases the thermal mechanism is dominating when there is a high soft X-ray and 

low hard X-ray emission. A third situation arises when there is high emission for both hard and 

soft X rays which produces high neutron yield.  

The neutron anisotropy in DPF devices is the expressed by the ratio of the axial (𝜃 = 0𝑜) to 

the radial (𝜃 = 90𝑜) neutron yields (
𝑌0𝑜

𝑌90𝑜
). For a wide energy range of PDF devices in the kJ 

scale, anisotropy ratios range from 1.2 to 3.0 [91-93].  Ions are accelerated by the strong electric 

field produced by magneto-hydrodynamic effects that evolve after the pinch column breakdown, 

especially the sausage (m=0) instability [45, 94, 95] as explained before. As shown from the ex-

perimental work, the major contribution to the neutron production is due to the medium (50-100 

MeV) and low energy deuterium (<50 keV) [96, 97].  

Many models were developed to predict the deuteron velocity and neutron production, in-

cluding the covering ion model [56], crossed field acceleration model [98], and the gyrating parti-

cle model [99]. Despite much experimental work and many modelling attempts, ion acceleration 

and neutron production mechanisms are still not fully understood.  
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Figure 2-6. Empirical scaling law relates neutron yield to both capacitor bank energy and peak 

current [100]. 

2.5.3.2 Scaling of neutron yield  

Neutron yield emitted from DPF devices is empirically related, separately, to the capacitor 

bank energy (EC), peak discharge current (Imax), and the plasma current during the focus (Ip). These 

relations were developed after more than forty years of tests and work in a wide range of DPF 

devices. Experimental data for many worldwide DPF devices are shown in Figure 2-6.   

The scaling law that relates the neutron yield (Yn) to the capacitor bank energy is [100, 101] 

𝑌𝑛 = 106 × 𝐸(1.5−2.5) 𝑛/𝑠ℎ𝑜𝑡        (𝐸 in kJ) 2-14 

This relation approximately works for the range of energy from 1 kJ to 1 MJ. The value of the 

exponent, from 1.5 to 2.5, is mainly based on the device operating parameters which should be 

optimized in terms of external inductances, charging voltage, gas pressure, gas purity and other 

factors.      

Based on the pressure balance pinch relation [100]  
𝐵2

8𝜋
= 𝑛𝑘𝑇, where B is the magnetic 

field, n is the plasma density k is the Boltzmann constant and T is the plasma temperature, and the 

Bennett relation [102], which states that the plasma temperature depends on both current I and 

plasma density n, the maximum peak current appears to be the most important parameter that in-

fluences the total neutron yield according to the following equation [22, 100-103]: 
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𝑌𝑛 = 10 𝐼𝑚𝑎𝑥
𝑛   𝑛/𝑠ℎ𝑜𝑡, 2-15 

where n is between 3 and 4.  The uncertainty in the exponent of the current is due to the variability 

in the amount of current that goes to the pinch plasma even for similar DPF devices delivering 

similar amounts of peak of discharging current. S. Lee et al. [104] attributed this to the variation 

in the snowplow efficiency and electro-dynamical process of the machines. The current and energy 

scaling law is shown in Figure 2-6. 

 S. Lee et al. [105] stated that the neutron yield should be scaled to the pinch current (Ipinch) 

rather than the total current (Itotal) or the maximum current, since the pinch current is the 

one which is involved directly in the pinch formation and responsible for the emission 

process. The reason that most researchers used the total current for neutron scaling is be-

cause it is easy to measure using a Rogowski coil. On the other hand, it is difficult to meas-

ure the pinch current even in the large scale devices at which there is enough space to place 

a magnetic probe.  Measurements had high errors and the existence of the probe perturbs 

the plasma. S. Lee et al. [105] developed a more accurate and convenient way to estimate the 

pinch current (Ipinch) [29]. Based on the Lee Model, numerical experiments were performed 

using data from the universal plasma focus laboratory [106] which gave the following scal-

ing laws for neutron yield (Yn) using both peak and pinch currents [106]: 

𝑌𝑛 = 3.2 × 1011 𝐼𝑝𝑖𝑛𝑐ℎ
4.5   𝑛/𝑠ℎ𝑜𝑡, 2-16 

        𝑌𝑛 = 1.8 × 1010𝐼𝑝𝑒𝑎𝑘
3.8   𝑛/𝑠ℎ𝑜𝑡, 2-17 

for Ipinch = 0.2 to 2.4 and Ipeak = 0.3 to 5.7 MeV. 

Using the bank energy, the neutron yield will be:  

                  𝑌𝑛~𝐸0
2 𝑛/𝑠ℎ𝑜𝑡             ( 𝐸 tens of kJ),  2-18 

                                𝑌𝑛~𝐸0
0.84  𝑛/𝑠ℎ𝑜𝑡   ( at MJ level  up to 25 MJ)  2-19 

Operating the DPF device with a mixture of deuterium and tritium (D-T), instead of only 

deuterium, will produce approximately two orders of magnitude higher neutron yield be-

cause of it has a higher cross section. 

2.5.3.3  Neutron yield enhancement 

An increase in the neutron emission from DPF devices was achieved experimentally in 

different ways. J. M. Koh et al. [92] recorded a six-fold increase, compared to same size devices, 
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in the average maximum total neutron yield from the NX2 DPF by using deuterium at relatively 

much higher pressure of 20 mbar with tapered anode geometry. The electrode material also has a 

significant effect on neutron emission [107]. The erosion resistance of the material was found to 

be one of the major factors that affects neutron yield. Using electrodes from different materials 

(Al, Ti and Cu, stainless steel and Cu-W alloy), the Cu-W produced higher neutron emission be-

cause it has high erosion resistance.  

A five-fold increase was achieved in neutron emission by D. A. Freiwald et al. [108] by 

injecting a pulsed relativistic electron beam into the plasma focus at the time of the pinch. M. 

Zakaullah et al. [109] achieved a 25 % increase in the neutron emission of two low-energy (1.15 

and 0.58 kJ) DPF devices when they used a mesh type 𝛽-source (28Ni63) to make a pre-ionization 

region around the insulator sleeve. S. L. Yap et al. [110] enhanced the neutron emission from a 3.3 

kJ DPF device using a deuterium-argon mixture. The maximum neutron yield obtained in their 

work occurred when using optimum argon doping of 30 % by mass. They inferred that the presence 

of the small amount of high Z gas in the deuterium will induce the radiative collapse phenomena 

due to a stronger pinching action. In addition to adding a high Z gas to deuterium, A. R. Babazadeh 

et al. [111] studied the influence of the anode shape on neutron yield. They achieved an enhance-

ment in the neutron yield by a factor of 3.5 for a flat anode and 1.5 for a conic insert anode by 

adding krypton with a pressure of 0.1 Torr to the deuterium. 

2.5.4 Ion emission  

Because the DPF device is a source of energetic ions, it has been used for many applications 

such as ion implantation [112], thin film deposition [113, 114], surface modification [115], short-

lived isotope production [116] and semiconductor doping [117]. Understanding the ion emission 

process in DPF devices is important not only from the application point of view but also to under-

stand the devices physics.   

High energy deuteron beams emitted from the DPFs were studied in many laboratories. By 

using deuteron reactions with lithium and the time-of-flight method, H. Conrads et al. [118] re-

ported more than 1015 cm-3 deuterons with an average energy of 1 MeV in a hybrid Filippov-Mather 

device. I.F. Belyaeva and N.V. Filippov [119] measured 1013 deuterons per shot in a Filippov type 

device using nuclear emulsions. In a small DPF device (1 kJ) and using magnetic spectrometer 
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and time-off-light calculations, H. Krompholz et al. [120] reported a neutron energy spectrum ex-

tended to above 400 keV which can be approximated by an exponential function. The estimated 

total ion flux was about 1014 cm-2s-1. The fluence of high energy deuterons was also measured by 

many nuclear activation techniques such as activation measurements with carbon targets [121] 

using the foil stack technique [122].  

Ion emission was observed at pressures lower than the neutron emission pressure in many 

experiments [59, 95, 118, 123] and the maximum ion emission occurs at a lower pressure than the 

pressure at which the highest neutron yield is obtained. In addition to that, the angular distribution 

of the neutron beam usually peaks along the z-axis [14].  

Sadowski et al. [124] reported that the DPF devices can emit high energy fast deuterons 

(>100 keV) in addition to impurity and admixture ions in a wide solid angle (60𝑜 −

 80𝑜 relative to the z-axis) with energy spectra ranging up to several MeV. The ion emission in-

tensity depends on many factors such as electrode geometry, the supplied energy, working gas, 

and initial pressure.   

Many models in the past were developed to explain the ion production and acceleration 

[56, 98, 125, 126] but none of them have shown a satisfactory agreement with the experimental 

measurements over the wide range of devices [127].  Maximum ion emission was observed along 

the Z-axis at an angle 0o and decreases gradually with angle inside a conic geometry [128]. On the 

other hand, [129] reported a drop at angle 0o of ion fluence for a 3.6 kJ device. The detected 

number of ions at 90𝑜 was found to be 50% of the number at 0𝑜 as reported by H. Kelly and A. 

Marquez in their work using a 5 kJ device [130].  
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Chapter 3- KSU-DPF Specifications 

The KSU-DPF is a Mather type device. It was designed to be used as a multi-radiation 

source for a variety of applications in engineering and sciences at the Mechanical and Nuclear 

Engineering Department at Kansas State University [132]. This chapter has two parts, one to de-

scribe the device hardware and one to discuss the diagnostic tools used to measure the DPF elec-

trical parameters and characterize its radiation emissions. 

3.1  Hardware 

The device is composed of the tube, an energy storage unit, a switch and triggering sys-

tem, a charging unit, a vacuum system, and connectors. The diagnostic tools will be described 

separately in section 3.2.  

3.1.1 Plasma focus tube 

The plasma focus tube is composed of a coaxial electrode system, insulator and vacuum 

chamber. The anode has 7.5 mm radius and is 115 mm in total length from the cathode base. The 

active length of the anode above insulator is 100 mm. The top part of the anode in some cases used 

to be hollow, has a hole 20 mm deep, when it is new then it grows deeper with time due to the 

bombardment of the high energy electrons. Different anode geometries and materials were used in 

different experiments. Examples of the anodes used are shown in Figure 3-1. 

  

Figure 3-1. Different types and geometries of the anodes used. 
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The anode is surrounded by a squirrel cage cathode of 27.5 mm radius mounted on a brass 

disc. The cathode consists of six equally spaced brass bars each of a 120 mm length and 4 mm 

radius. The anode and cathode are electrically insulated by a Pyrex glass tube 68 mm high and 

having a wall thickness 1.6 mm. The active part of the insulator is 15 mm, as shown in Figure 3-2. 

A front and plan view of the device head is shown in Figure 3-3. The electrode system is enclosed 

in a vacuum steel cylindrical chamber of 290 mm length, 60 mm radius. The chamber has two 

glass rectangular windows, 55 × 120 mm, and different openings for diagnostic instruments and 

feeding the gas as shown in Figure 3-4. 

3.1.2 Vacuum system 

The vacuum chamber is connected though a stainless steel tube to a pumping station. The 

pumping station consists of two stages of vacuum pumps. The first stage is a rotary pump, called  

 

 

Figure 3-2. Electrodes assembly on the brass base. 
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Figure 3-3. Device head- Plan view (left) and front view (right). 

 

 

Figure 3-4. The vacuum chamber. 
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Figure 3-5. The Pumping station and the wide range pressure gauge (a), the MKS Baratron pressure 

gauge and its controller (b), mechanical gauge (c). 

 

a backing/roughing pump, which works initially to evacuate the system up to the range of 

~10−2 Torr. The backing pump used in the KSU-DPF device is an EDWARDS E1M1.5 model 

which has a pumping speed displacement of 1.2 ft3/min and an ultimate pressure of  1.1 ×

10−3 Torr. After reaching values of ~10−2 Torr inside the chamber, the next pump stage is placed 

into operation to reduce the pressure inside to a value in the order of ~10−6 Torr. The second 

pump stage used in the device is an Edwards EXT75DX model turbo-molecular high vacuum 

pump which h has a pumping speed of 66 L/s. The ultimate pressure of this model can reach a 

value of the order of  ~10−10 Torr depending on the backing pump and the pumped gas. A picture 

of the pumping station is shown in Figure 3-5(a). 

Three pressure gauges were used including a wide range gauge EDWARDS WRG-S-

NW25, a MKS Baratron capacitance manometer and a mechanical pressure gauge. The wide range 
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pressure gauge, Figure 3-5(a), is a combined inverted magnetron and Pirani gauge in a single com-

pact unit and works at the pressure range from 100 to 10-9 mbar. It is connected to a meter at the 

pumping station control unit. The MKS Baratron, type 627B, is an absolute pressure transducer 

designed to provide an accurate, reliable and repeatable pressure measurements in the range from 

1 kTorr to as low as 0.02 Torr full scale. It is connected to a MKS controller, Model PDR200 Dual 

Capacitance Diaphragm Gauge, which supplies 615 V at up to 0.75 A to the MKS Baratron in 

addition to displaying the pressure. The MKS Baratron and its controller are shown in Fig-

ure 3-5(b). The mechanical gauge, an Edwards CG16K, shown in Figure 3-5(c), is capsule dial 

gauge barometrically compensated with a NW flange fitting. It covers a range from 0 to 50 mbar 

and is used to monitor the pressure during the device operation. 

3.1.3 Energy storage unit 

The energy storage unit in the experiment is the capacitor bank, shown in Figure 3-6(a). 

The capacitor bank consists of a single General Atomics capacitor of 12.5 μF ± 10% with a total 

inductance is ~40 nH. The capacitor can be charged up to 40 kV voltage storing an energy up to 

10 kJ.  

 

Figure 3-6. A picture of the capacitor unit (a) and connecting cables (b). 

(a) Capacitor  

 (b) Connecting cables  
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Figure 3-7. Thyratron (a) and its circuit diagram (b) 

1- Anode, 2- cathode, 3- Injection hole, 4- trigger unit, 

5- Insulator, Ia-thyratron current direction in case of  

 one-side switching, FL- Lorenz force direction [131]. 

3.1.4 Switch and triggering system 

A fast way is needed to rapidly switch the energy stored in the capacitor bank to the elec-

trode system. This process is implemented by using a low pressure switching device with a cold 

cathode, called a Pseudosparkgap (PSG) switch. The model is a hydrogen-filled thyratron TDI1-

200 kA/25 kV with 10 ns time jitter. It is a gas-filled tube used as a high power electrical switch. 

The PGS switches have stacked ceramic metal construction using hydrogen as a filling gas in a 

pressure range from 0.2 to 0.6 mbar (in operational mode). The appearance and construction details 

for the TDI1-200 kA/25 kV are shown in Figure 3-7. The thyratron is connected to a heating and 

triggering circuit to be triggered remotely. It is connected to the electrode system by a set of 12 

parallel coaxial cables RG58 C/U, 50 Ω impedance. Connecting cables are shown in Figure 3-6(b).   

3.1.5 Charging unit 

To be charged, the capacitor is connected to a power supply. The power supply that was 

used is a General Atomics Electronic Systems Inc. (GA-ESI) CCS power supply. The GA-ESI 

CCS series is a modular design, high efficiency capacitor charging power supply line. It is designed  

Trigger 

Heater 

Ceramic  

Envelope  
Anode 

Cathode  

a b 
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Figure 3-8. The power supply (left-top), its remote control (right-bottom) and the cabinet (right). 

 

for constant current capacitor charging. The power supply can be controlled locally using the front 

panel controls or remotely by a 25-pin remote control interface which was used in our device. The 

power supply is mounted in a cabinet with another unit to control its power input in addition to the 

power input to the dump switch. This dump switch is used to ground the capacitor after pulse or 

in the case of an emergency. The power supply, its remote control and the whole cabinet are shown 

in Figure 3-8.   

3.2  Diagnostics 

Diagnostics in the DPF devices can be divided into two main categories. The first is the 

electrical diagnostics which are used to investigate the performance of the pulsed power system 

that generates and drives the plasma. The second category is the radiation diagnostics, which are 

used to obtain information about the emitted radiation from the DPF device.   
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Figure 3-9. Schematic of the Rogowski coil (a) and its equivalent circuit (b). 

3.2.1 Electrical diagnostics 

Rogowski coils and voltage probes are among the most widely used electrical diagnostic 

tools for testing DPF devices. 

3.2.1.1 Rogowski coil   

Current signals are one of the main features used to characterize DPF devices. Many device 

characteristics can be investigated using the current signal, such as the axial and radial phase dy-

namics and the energy transferred to the plasma pinch. The most common way to record the current 

trace is to use a Rogowski coil. The Rogowski coil is a multi-turn solenoid bent to form a torus, 

see Figure 3-9 (a). It works as a secondary for a primary coil which is the current to be measured. 

The equivalent circuit of the Rogowski coil is shown in Figure 3-9(b) in which Lc and rc represent 

Current 

r 
To  

oscilloscope 

r 
rc 

Lc 
(a) 

(b) 
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its inductance and resistance, respectively, i is the induced current in the coil and r is the terminat-

ing resistance. Changing the current (I) with time in the primary coil will produce an induced emf 

equal to V= 𝑘1
𝑑𝐼

𝑑𝑡
  in the coil. The equivalent circuit equation then is  

𝐿𝑐

𝑑𝑖

𝑑𝑡
+ (𝑟 + 𝑟𝑐)𝑖 =  𝑘1

𝑑𝐼

𝑑𝑡
 3-1 

The coil can work in integrating or differentiating modes. In the integrating mode the in-

ductance is much greater than the resistance ie.  𝐿𝑐
𝑑𝑖

𝑑𝑡
≫ (𝑟 + 𝑟𝑐)𝑖. Solving equation 3-1 based on 

this condition will produce the following equation for the voltage output on the coil terminals: 

𝑉0 = 𝑟𝑖 = (𝑟
𝑘1

𝐿𝑐
) × 𝐼 = 𝑘2𝐼  3-2 

Equation 3-2 indicates that the voltage output of the coil is proportional to the transient discharge 

current going through it. On the other hand, in the differential mode the resistive part is much 

greater that the inductive one ie., (𝑟 + 𝑟𝑐)𝑖 ≫ 𝐿𝑐
𝑑𝑖

𝑑𝑡
. Solving equation 3-1 based on this condition 

will produce the following output voltage 

𝑉0 = 𝑟𝑖 = (
𝑟𝑘1

𝑟𝑐 + 𝑟
)
𝑑𝐼

𝑑𝑡
= 𝑘3

𝑑𝐼

𝑑𝑡
 3-3 

Therefore, the output voltage is proportional to the derivative of the discharge current.  

The Rogowski coil used at the KSU-DPF, shown in Figure 3-10(a), was designed to work 

in the differentiating mode, in order to observe the fast dynamic changes in the device impedance.  

 

 

Figure 3-10. Pictures for the Rogowski coil (a) and the voltage probe (b). 
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Voltage probe 
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The terminating resistor used was a 50 Ω current viewing resistor.  

A calibration factor should be calculated for the Rogowski coil to be used to measure the 

absolute value of the peak discharge current. To obtain the calibration factor, the output signal of 

the coil, the current derivative (dI/dt), was numerically integrated to obtain the current signal (I). 

A sample of the numerically integrated signal at 17 kV discharging voltage is shown in Fig-

ure 3-11. The DPF is a low impedance device that can be represented by an RLC circuit. As a 

result, a discharge current trace will be in the form of a damped sinusoid [132], as shown in Fig-

ure 3-11. For an RLC circuit, the relation between the current and other circuit parameters will be 

[133]:  

𝐼1(𝑘𝐴) =
𝜋𝐶0𝑉0(1 + 𝑘)

𝑇
, 3-4 

 

Figure 3-11. Numerically integrated signal for the Rogowski Coil output. 

 

where I1 is the peak discharge current, C0 is the capacitance, T is the signal time period, 1.7 µs, 

and k is the reversal ratio identified below. The value of k can be calculated as follows:  

𝑘 =
1

𝑛 − 1
(
𝑉2

𝑉1
+

𝑉3

𝑉2
+ ⋯+

𝑉𝑛
𝑉𝑛−1

), 3-5 
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where Vn (n = 1, 2, 3,….) are the amplitudes of the consecutive half cycles, as shown in Figure 3-

11.  By knowing the C0, V0 and calculating k and T using the current, the calibration factor of the 

coil (𝑓) can be estimated by the equation: 

𝑓 =
𝐼1

𝑉1
    kA/V, 3-6 

where I1 is the calculated value from equation 3-4 and V1 is the first peak value obtained from the 

oscilloscope trace in volts. Using the previous equations, the calibration factor for the used 

Rogowski coil was estimated to be 5.1 × 106 kA/V. 

3.2.1.2 Voltage probe 

It is not possible to take the pinch voltage signal directly to the oscilloscope because of its 

high voltage, which in some shots goes beyond 100 kV for the KSU-DPF. A voltage probe is used 

for this purpose since it works as a voltage divider that allows the oscilloscope to be exposed to 

part of the voltage. The voltage probe used is a North Star Probe, Model PVM-5, which is designed 

for exceptional high frequency response [134]. Its maximum DC/Pulsed V (kV) is 60/100 and the 

maximum frequency is 80 MHz. A picture of the probe is shown in Figure 3-10(b).   

3.2.2 Radiation diagnostics 

Many diagnostic techniques were used to measure the radiation output, neutrons, hard/soft 

X rays and ions, of the KSU-DPF. These techniques and tools will be discussed in more details in 

the following subsections.    

3.2.2.1 Scintillation-photomultiplier detectors 

Two types of scintillation-photomultiplier detectors were used: 

i. A Canberra, 33 in, sodium-iodide-thallium-activated NaI(Tl) scintillation detector, 

model 3M3/3-X to measure hard X-rays emission in the material detection experi-

ments. 

ii. A BC-418 plastic scintillator, 2 × 1 in, coupled with a HAMAMATSU PMT, model 

H7195, which is used for time resolved neutrons and hard X-ray diagnostics.  

The characteristics of each type of scintillator is now explained. 
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3.2.2.1.1 Sodium-iodide-thallium-activated scintillators (NaI(Tl)) 

NaI(Tl) is a type of inorganic scintillators used for gamma ray detections. Inorganic scin-

tillators are mainly crystals of alkali iodides, like sodium iodide, which contain a small percent of 

an impurity such as thallium (Tl). Depositing energy in the crystal will cause electrons to move 

from the valence gap to the conduction gap. In a pure crystal of NaI, the electron returns to the 

valence band producing photons with energy higher than visible light which are quickly reabsorbed 

in the crystal. A small amount of Tl, added to the crystal, creates extra energy level inside the 

crystal’s forbidden gab. The transition of an electron to one of these additional energy levels will 

produce photons in the visible range of light as the electrons return to the valence band, as shown 

in Figure 3-12. Passage of an ionizing particle through the crystal will deposit energy, which is 

converted to visible light that is not reabsorbed. The visible light eventually hits a photocathode 

and is converted into electrons, which produce a small voltage pulse [135], see section 3.2.2.1.3 .  

NaI(Tl) scintillators are widely used for 𝛾 rays detection because they have a relatively 

high density, 3.67 g/cm3, they have high light-conversion (38,000 photons/MeV) and their emis-

sion spectra peaks at 415 nm as shown in Figure 3-13. They can be fabricated in large volumes 

which gives them superiority over other scintillation materials even those with better energy reso-

lution. Some of their disadvantages include that NaI(Tl) is brittle and sensitive to temperature 

gradient and thermal shocks. They have a relatively long time decay of 230 ns. In addition, they 

must be kept encapsulated because it is so hygroscopic. 

 

Figure 3-12. Energy band structure of an activated crystalline scintillator.  

 

        

  

 

Conduction band 

Exciton band 

Scintillation 

(Luminescence) 

Impurities 

(Activator Center) 

Valence band 

(Normally full) Hole 



  

41 

 

Figure 3-13. Emission spectra for some common inorganic scintillators [136]. 

(primarily from Harshaw Research Laboratory Report, Harshaw Chemical Company, 1978) 

3.2.2.1.2 Plastic scintillators 

Plastic scintillators are solid organic scintillators which belong in the aromatic compounds 

categories. They consist of planar molecules made up of benzenoid rings. They are composed of a 

mixture of a solvent with one or more solutes. They are classified as unitary, binary, ternary etc. 

based on the number of the components involved [135]. Light production in organic scintillators 

is mainly due to molecular transitions. Figure 3-14 shows that the change of the molecule potential 

energy with the interatomic distance. If an ionizing radiation passes through the crystal, it might 

take the molecule from the ground state at A0 (a minimum energy point) to an excited state A1. 

Since A1 is not the minimum energy at that excited state, the molecule will lose part of that energy 

by lattice vibration to fall down to lowest energy at that level B1. Another transition might happen 

after that from the point B1, still an excited state, to the point B0 which accompanied by a photon 

emission with an energy equal to  𝐸𝐵1
− 𝐸𝐵0

 which takes a time in the range of 10-8 s if happened. 

The difference between the emitted photon energy (𝐸𝐵1
− 𝐸𝐵0

) and the excitation energy 

(𝐸𝐴1
− 𝐸𝐴0

) make it possible to have a scintillation otherwise the emission spectrum will coincide 

with its absorption spectrum and no scintillation will be produced [135]. 
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Figure 3-14. A Simplified energy diagram of a molecule [135]. 

 

Plastic scintillators have a fast response, less than 10 ns, compared to NaI(Tl) detectors 

which has a decay time of 230 ns. They are easy to fabricate into any shape and size. They can be 

used in contact with the radioactive samples because they are inert to water, air and many chemi-

cals. On the other hand plastic scintillators have lower light yield than do inorganic scintillators. 

The emission spectrum of plastic scintillators peaks in the range from 350 to 450 nm. 

Organic scintillators also work well as fast neutron detectors. They are characterized by 

their high efficiency and good energy resolution. Their efficiency is high because they are hydro-

gen-rich materials, having 1.1 hydrogen atoms for each carbon atom, and the hydrogen has a rel-

atively high cross section, 2.5 b, for the 2.5 MeV neutrons. Moreover, they can be fabricated in 

large sizes. Fast neutrons interact with the hydrogen atoms (protons) in the organic scintillators by 

elastic and inelastic scattering. As a result, the neutron energy is (partially) transferred to the pro-

tons which will have the role to produce the scintillation light. 
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The plastic scintillators used in the experimental work reported here were BC-418 scintil-

lators manufactured by SAINT-GOBAIN CRYSTALS Company. The decay time of this scintil-

lator is 1.4 ns, which makes it suitable for ultra-fast timing applications. The wave length of max-

imum emission is 391 nm as shown in Figure 3-15.  

 

Figure 3-15. Emission spectra for BC-418 plastic scintillator [135]. 

 

Figure 3-16. Schematic diagram for the photomultiplier tube [137]. 
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3.2.2.1.3 Photomultiplier tubes (PMTs) 

The light output of most scintillators is very weak. Typically a transducer, such as a pho-

tomultiplier (PMT) or avalanche photodiode (APD), is used to convert the light into a voltage 

pulse. In a PMT the light is converted into a small electrical signal through photoelectric interac-

tions. PMTs then amplified the pulse though many stages to form current pulses that can be read 

by an oscilloscope. The PMT, as shown in Figure 3-16, is composed of three main parts: a photo-

cathode, dynodes and an anode, see. The photocathode converts the incident light coming out from 

the scintillator into low energy electrons. After being accelerated by an electric field the electrons 

go directly to hit the first dynode at the beginning of electron multiplication process. The dynodes 

are made out of materials that produce secondary electrons when being impinged by electrons. The 

secondary electrons produced by the first dynode will be guided to hit the second one and so on 

until being collected at the end by the anode. An external voltage is applied to the PMT to provide 

the required electric field among dynodes.  

The output voltage pulse for a typical scintillator-photomultiplier can be estimated from 

the equation, letting e be the charge of the electron,   

𝑉 =
𝑑𝑁

𝑑𝑡
𝑔𝜀𝐺𝑒𝑅, 3-7 

where N is the number of scintillation photons, g is the light collection efficiency, 𝜀 is the quantum 

efficiency of the photocathode, G is the photomultiplier tube gain and R is the terminating resistor.   

  

 

Figure 3-17. BPX-65 PIN diode sensitivity curve below 20 Ao and its specifications [127]. 
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Figure 3-18. Electric circuit for connecting the photodiode and its coupling circuit. 

3.2.2.2 Photodiode 

A photodiode was used to measure the soft X rays. The model used was a BPX-65 PIN 

diode, which is normally used in the optical range. The glass window of the diode was removed 

for the X-ray measurements. Sensitivity curve and the specifications of the used BPX-65 PIN diode 

are shown in Figure 3-17. The electric circuit of the diode is shown in Figure 3-18. The diode was 

reverse biased with -45 V and connected to an RC circuit to be connected to the oscilloscope via 

a tri-axial cable.  

The soft X-ray yield per shot can be estimated from the formula [138]:   

𝐸4𝜋 =
4𝜋𝑅2𝐴

𝑅0𝐴𝐷𝑆
 ,  3-8 

where R is the source-detector distance, A is the area under the X-ray signal, R0 is the termination 

resistor (50 Ω), AD is the sensitive area of the detector and S is the overall sensitivity at in the 

wavelength range taking into account any attenuation for the X-ray due to using any filters. 

3.2.2.3 3He neutron detector 

3He proportional counters are widely used in detecting thermal neutrons because of their 

high neutron detection efficiency and extremely low gamma ray sensitivity [139]. Detecting neu-

trons by using 3He is based on the following reaction: 

𝐻𝑒 + 𝑛 → 𝐻 +33 𝐻 +1  765 keV 3-9 
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In this reaction the absorption of a neutron produces a tritium nucleus (3H) and a proton in addition 

to an amount of energy equal to 765 keV that will be shared between the two components. The gas 

will be ionized by the charged particles, which will produce electrons that can be collected by the 

anode. Since the ionization potential for helium is 25 eV, it is expected for each neutron absorption 

to produce thousands of ions and electrons.    

For thermal neutrons, the previous reaction’s cross section is very high (5400 b at 0.025eV) 

and inversely proportional to 𝑣 from 0.001 to 0.04 eV. Typically the 3He efficiency is 77% for 

thermal neutrons (~0.025 eV), 2% at 100 eV, 0.2% at 10 keV and roughly 0.002% at 1 MeV [139]. 

Due to this strong energy dependency the 3He gas filled detectors often are surrounded by a mod-

erator which is usually made out of a hydrocarbon material to thermalize the neutrons before reach-

ing the detector tube. 

The 3He detector used in the experiment is a Ludlum, model 42-30H, neutron detector 

[140]. It contains a 2 atm 3He tube and is designed to measure thermal and fast neutrons (0.025 eV 

to approximately 12 MeV). The tube is surrounded by 10 in diameter polyethylene sphere to work 

as a moderator. The tube is connected a Ludlum scaler, model 2200 Scaler/Ratemeter. Figure 3-19 

shows the detector used and the 3He tube operation. 

 

 

 

Figure 3-19. A picture of the 3He detector used (a) and a schematic for the detection mechanism 

in the tube (b) 

3H 1H 

Anode 

3He gas 

Neutrons Cathode 

a b 



  

47 

3.2.2.4 Bubble detector  

Bubble detectors are sensitive and accurate neutron dosimeters that have been used for 

more than 15 years for applications in nuclear facilities, research institutes and medical communi-

ties. They provide instant visible measurements of the neutron dose. The theory of operation of 

the bubble detector is based on the existence of tiny droplets of superheated liquid distributed 

throughout a clear polymer. The droplet will immediately vaporize when it is hit by a neutron 

which forms a visible gas bubble in the gel, as shown in Figure 3-20. The number of droplets is a 

direct measurement for the tissue equivalent neutron dose. Bubble detectors have zero sensitivity 

for gamma rays. Their response is independent of the dose rate of energy. They are only used as 

neutron dosimeters. Two bubble detectors, model BD-PND manufactured by BT Bubble, were 

used for neutron measurements. Each had a conversion ratio of 6.7 b/mrem. They work in the 

energy range from less than 200 keV to more than 15 MeV. 

 

 

Figure 3-20. A picture for the used neutron bubble detectors. 

3.2.2.5 6LiI Neutron detector 

Another detector used for neutron detection is the Lithium Iodide scintillator (6LiI). The 

6LiI scintillator is based on the reaction: 

𝐿𝑖3
6 + 𝑛 → 𝐻 + 𝐻𝑒2

4
1
3 + 4.78 𝑀𝑒𝑉0

1  3-10 
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The thermal neutron cross section for this reaction is 940 barns. 

The detector used is a Ludlum, Model 42-5, which consists of 4 × 4 mm 6LiI crystal cou-

pled to a 3.8 cm a photomultiplier tube. It was designed for the crystal to be at the center of the 

moderator spheres. Moderator spheres made out of high density polyethylene with different diam-

eters were supplied with the detector. A photograph of the detector is shown in Figure 3-21. 

 

 

Figure 3-21. 6LiI neutron detector. 

3.2.2.6 Faraday cup 

In deuterium operated plasma devices, Faraday cup used to be used to measure the velocity 

and energy distribution of deuterons. A schematic of Faraday cup is shown in Figure 3-22. It con-

sists of a deep collecting cavity (cup), made out of copper, biased with negative potential (–V). 

The cup is located few millimeters away from an aperture around 0.5 mm diameter. Each Faraday 

cup has characteristic impedance which can be estimated form the equation [127]:  
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Figure 3-22. A schematic for Faraday cup and its connections. 

 

𝑍 =
138.2

√𝜀𝑟

𝑙𝑜𝑔10 (
𝐷

𝑑
)   Ω, 

3-11 

 

where D is the inside diameter of the outer electrode, d is the outside diameter of inner electrode, 

and 𝜀𝑟 is the dielectric contestant of the spacer material. Parameters in equation3-11 were adjusted 

to produce a Faraday cup impedance that matches the coaxial cable impedance (50 Ω). Negative 

biasing voltage was used to prevent electrons from reaching the cup. This biasing voltage is applied 

such that [127] :  

|𝑉𝑏𝑖𝑎𝑠| > 𝑉𝑐 + 𝑉 + 𝑉𝑒 =
1

𝐶
∫𝐼𝑑𝑡 + 𝐼𝑅 + 𝑉𝑒,   

3-12 

where Vc is the change in the capacitor voltage caused by the ion current source that is charging 

the capacitor and Ve the required potential to repel electrons. Applying this negative voltage to the 

collector causes deceleration and deflection for the stray electrons and hence reduces their effect 

on the ion current. The minimum negative voltage bias applied to a Faraday cup, for ion current 

measurements in dense plasma focus devices, working with different gases, can be estimated from 

the equation [127] 

|𝑉𝑏𝑖𝑎𝑠| > (
𝑚𝑒

𝑚𝑖
)𝐸𝑏 + 𝑉,  3-13 

where me, mi are the electron and ion mass, 𝐸𝑏 is the maximum expected beam energy and V is the 

voltage measured without biasing the collector.   

The output signal from Faraday cup can be calculated form the equation: 
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𝑉 = 𝐼𝑅, 3-14 

where I is the ion current and V is the voltage measured across the resistance R. 

By placing the Faraday cup at a known distance from the source (pinch), the ion velocity 

can be estimated from time of flight measurements. Assuming that the ions are created and accel-

erated in a very short time compared to the flight time, the ion speed (vi) can be estimated by the 

equation: 

𝑣𝑖 = √
2𝐸𝑖

𝑚𝑖
=

𝑑

𝑡
 , 

3-15 

where Ei and mi are the ion energy and mass, respectively, d is the distance of the Faraday cup 

from the pinch and t is the time.  

 

 

Figure 3-23. A picture of the used oscilloscopes. 
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Figure 3-24. The Faraday cage that contains the oscilloscopes. 

 

Signals from different diagnostic tools were collected by two Tektronix Digital Phosphor 

Oscilloscopes, model DPO7104, 1 GHz bandwidth with a sampling rate up to 40 GS/s on one 

channel [141]. The DPO7000 series has an exceptional signal acquisition performance. To avoid 

signal noise, all signals were transferred from the diagnostic tools to the oscilloscopes by means 

of tri-axial cables. The cables used were manufactured by Belden, Model TRIAX 2479, with an 

impedance of 50 Ω. The fast high voltage signal, generated by the DPF device at the time of the 

pinch, produces a very strong electromagnetic field that affects the surrounding electrical devices 

including the oscilloscope. To avoid electromagnetic interference, the oscilloscopes were placed 

inside a Faraday cage with a switch to charge and discharge the capacitor. The used oscilloscopes 

and Faraday cage are shown in Figure 3-23 and Figure 3-24, respectively. 

  

Faraday cage  
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Chapter 4- Characterizing the Device 

 After discussing the diagnostics used in the KSU-DPF, some experiments will be discussed 

in the following section to characterize the performance of the device.  

4.1  Measurements of the device static parameters (short circuit test) 

First, it is important to know the static parameters of a DPF device.  These include the static 

inductance (L0), resistance (r0) and capacitance (C0); they represent the total inductance, resistance 

and capacitance of the device, excluding the plasma. The capacitance is already known from the 

capacitor bank. The static parameters are measured by performing a short circuit test for the device 

in which both anode and cathode are electrically connected together. In some cases this is difficult 

to do, especially when it is hard to access the device head or in the case of the high power devices 

in which the short circuit will produce a huge amount of current. Operating the device in a high 

pressure mode, > 20 Torr of neon, may be an alternative way to measure the static parameters. In 

the high pressure mode, the plasma sheath will not move that much distance in the axial phase 

which gives a quite good estimation about the static parameters. 

In the short circuit test the device circuit is represented by a pure RLC circuit as shown in 

Figure 4-1 in which L0 and r0 represent the net inductance and resistance in the circuit including 

the capacitor bank, switches, transmission plates and connections. As explained in section 3.2.1 

the resulting current will be in the form of an underdamped sinusoid with period T, i.e., 𝑟0 ≪

2√𝐿0/𝐶0 , for which the following approximate equations apply [132]: 

𝐿0 =
𝑇2

4𝜋2𝐶0
, 

and 

4-1 

 

 

𝑟0 =
2

𝜋
(𝑙𝑛𝑘) (

𝐿0

𝐶0
),  4-2 

where T is the time period and k is the average reversal ratio obtained from the successive peaks, 

V1, V2, V3, V4, etc., using equation 3-5,  as explained in section 03.2.1.1  

To do the short circuit test in the KSU-DPF, both anode and cathode were completely 

removed and the circuit was shorted by a metal disc as shown in Figure 4-2. The test was performed 
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Figure 4-1. Device electric circuit for the short circuit test. 

 

 

 

Figure 4-2. Short circuit test. 
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at different voltages; 5, 8, 10, 12, 14 and 17 kV to obtain the best estimation for the device static 

parameters. A sample of the damped current signals at these voltages are shown in Figure 4-3. As 

expected, the maximum peak current value is proportional to the charging voltage which varies 

from 57 kA at 5 kV charging voltage to 182 kA when the charging voltage is 17 kV. For each 

charging voltage, the first current peak I1 was estimated using equation 3-4 by substituting the 

average reversal ratio (k) and the time period (T). The maximum peak current and stored energy 

changes with the charging voltage are shown in Figure 4-4. Using equations 4-1and 4-2 the values 

of 𝐿0 and 𝑟0 were also calculated for each charging voltage and the averages are then calculated. 

The calculated value for the average 𝐿0 and 𝑟0 over the 6 short circuit shots with different voltages 

were 91±2 nH and 13±3 mΩ. It is known that the device inductance is 12.5 𝜇𝐹 which is mainly 

the capacitance of the capacitor.  

One of the problems faced while doing the short circuit test was that the discharge current 

signal obtained using a Rogowski coil has a baseline shift as shown by the dotted line curve in 

Figure 4-5. This base-line shift is due to the electromagnetic pick up and the interference with the 

 

Figure 4-3. Samples of the short circuit current at different voltages. 

I1 
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Figure 4-4. The maximum peak currents and stored energy at different charging voltages. 

 

Figure 4-5. Rogowski coil before and after compensation. 

Time (µs) 
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regular power line [142]. Grounding problems or nonsymmetrical topology, which makes the coil 

not only monitor the current inside but also the current outside, cause the offset shown in the figure 

[143]. This problem has been solved by three different methods. The first method applies some 

digital filters on di/dt using suitable software. The second method is to find the average of the 

wave envelope. The positive peaks were connected together in curve and so for the negative peaks 

then an average of the two curves was calculated which is then subtracted from the original current 

signal. Finally, connecting a line between the first few nanoseconds from the curve and the last 

few nanoseconds and then subtracting this straight line from the original signals was used in this 

work as shown in Figure 3-11. The difference between the original current signal and the corrected 

one is shown in Figure 4-5. 

4.2  Characteristic curve of the KSU-DPF 

As seen from the short circuit test, the current signal is an under damped sinusoid without any 

deformation. In a typical plasma focus discharge, a dip in the current trace is observed as an indi-

cation of the pinch occurrence. It appears as a sharp spike in the voltage and current derivative 

signals. A large spike and dip are signs of an efficient focus. All low inductance devices have a 

large dip, called a regular dip (RD) and followed by a small extended dip (ED) in its current trace. 

It was thought that high inductance devices such as UNU/ICTP PFF [132] would act the same. S. 

Lee [29] succeeded to fit almost all devices to his 5-phase model, except the UNU/ICTP PFF 

mentioned before, which has relatively high inductance. The current dip for this device was usually 

loaded by large oscillation which has been treated always as noise. For the KSU-DPF device, 

which also has a relatively high inductance, a clean current wave form is obtained by using the 

high resolution DPO7104 oscilloscopes. The oscilloscopes allow one to make numerical integra-

tion for the di/dt signal, picked up the Rogowski coil. By doing a frequency response analysis for 

the coil system, Lee et al. [144] showed that this integrated signal by the oscilloscope is free of 

any noise below 200 MHz. The dI/dt wave form is clean and showed a large extended dip beyond 

the regular one with a significant depth and duration. More than 95% of the KSU-DPF shots have 

more than one dip [144]. Typical signals for current, current derivative and voltage of the KSU-

DPF are shown in Figure 4-6 in which multi dips are shown in the current (red) signal. Each dip 

is related to one of the spikes in the current derivative (black) signal, and the voltage (blue) signal. 

The KSU-DPF current signals didn’t fit to the Lee model very well.  
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Figure 4-6. Typical signals for current, current derivative and voltage for 7 mbar of deuterium. 

 

Based on the previous discussion, DPF devices were classified into two types, T1 and T2. 

The T1 category includes the devices with low static inductance L0 which usually has one large 

RD, in the current trace followed by small ED. This type can easily modeled with the 5-phase Lee 

Model. On the other hand T2 type generally has high static inductance L0, which usually has a 

large ED and some times more than one ED, such as KSU-DPF. A modification has been made to 

Lee model by adding an instability phase before the last phase using anomalous resistance terms, 

which make it possible to fit the current trace from the T2 type DPF like the KSU-DPF device. 

This model was developed after a workshop at Kansas State University, in 2010, with Professor 

Lee and the dense plasma focus group at which current traces of the device and its characteristics 

were studied and compared with other devices. Based on the work done at this workshop, Lee has 

modified his code to the 6-phase code which can fit both types.     

4.3  Time of flight measurements  

Time-of-flight (TOF) measurements have been performed to measure neutron energy. A 

scintillator-photomultiplier (PMT) detector located far enough from the source to distinguish the 
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hard X-ray and neutron signals was used. After a shot, the PMT registers the arrival times of the 

hard X-ray and neutron signals. It is assumed that the X-ray signal arrives at the PMT instantane-

ously, as it travels at the speed of light, while the neutron signal lags because the neutrons take 

more time to arrive depending on their energy. Based on this principle, the neutron energy can be 

estimated. 

 

Figure 4-7. Current derivative trace with hard X-ray and neutron signals. 

 

The TOF measurements were performed at KSU-DPF laboratory using a BC-418 scintil-

lator coupled with Hamamatsu H7195 photomultiplier tube. The detector was located 2.3 m away 

from the device. The current derivative (di/dt) was register simultaneously with the detector signal 

using an oscilloscope for which both channels are triggered at the same time. The same type of 

cables with the same length were used. A typical signal for current derivative (di/dt) and photo-

multiplier is shown in Figure 4-7. In the PMT signal, the blue trace, the first peak is due to the hard 

X rays, which are produced by collisions of fast electrons with the anode, and is followed by the 

second peak, which is due to neutrons. The hard X-ray (HXR) peak should coincide with the cur-

rent derivative spike, which is at the pinch moment, but due to an inherent delay the photomulti-

plier tube signal came around 40 ns later. The time difference between the HXR peak and the 

HXR peak 

Neutron peak 
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neutron peak is ~104 ns. If the neutrons take 104 ns to travel 230 cm distance, the neutron velocity 

can be estimated to be  𝑣 = 22 × 108 cm/s. Calculating the neutron energy based on this velocity 

produces an energy of 2.5 MeV.  

4.4  Neutron measurements 

An efficient and consistent pinching was observed through a pressure range from 0.5 mbar 

up to 9 mbar for deuterium gas. An experiment was performed to estimate the neutron yield emitted 

from the device in this pressure range and to investigate the optimum pressure for neutron produc-

tion. In this experiment the gas was pure deuterium. The anode was made of tapered stainless steel 

and the capacitor was charged to 17 kV. Two neutron detectors were used including a 3He and a 

6LiI, each surrounded by a 10 in. polyethylene sphere as a moderator. The 3He was fixed axially 

on the top of the device while the 6LiI was mounted radially at the same distance from the anode 

tip, 94 cm. A schematic of the experiment is shown in Figure 4-8. Ten shots were taken at each 

pressure starting from 0.5 mbar up to 9 mbar of deuterium. The deuterium gas was purged every 

10 shots to avoid the contaminations resulting from the bombardment of high velocity electrons 

with the anode. After each shot, the detector counts were registered and after ten shots at a given 

pressure the average calculated. The number of counts was transformed to number of neutrons 

using the calibration curve for each detector shown in Figure 3-9.  

 

   

Figure 4-8. Schematic for the neutron measurement experiment. 

 

 

3He detector 

 

6LiI detector 
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Figure 4-9. Calibration curves for the 3He and 6LiI neutron detectors. 
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The time-to-pinch (tp) is the time period from the first breakdown to the pinch; this time in-

cludes both the axial and compression phases. This time (tp) depends strongly on the gas pressure. 

Increasing the pressure slows down the current sheath in the axial phase and hence the time-to-

pinch increases as the pressure increases. The dependency of tp on the gas pressure for the neutron 

measurements experiment is shown in Figure 4-10. 

The variation of the axial and radial neutron yield with the gas pressure is shown Figure 4-11 

for the tapered stainless steel anode. Maximum neutron yields were obtained at 6 mbar of deuter-

ium in both the axial and radial directions. In the axial direction, the maximum neutron yield 

was 1.9 × 107 n/shot, and in the radial direction the maximum neutron yield was 1.05 ×

107 n/shot. It is clear from Figure 4-10 that the time to pinch at 6 mbar pressure is 1.7 µs, which 

is the time of the first peak of the current signal as shown from the short circuit test in section 4.1 

Hence, the neutron yield is maximized at the highest amplitude of the discharging current. The 

neutron yield starts from a low value at 0.5 mbar increasing to a maximum at 6 mbar and then 

decreasing again up to 9 mbar. After 9 mbar it was difficult to have a pinch.   

 

Figure 4-11. Variation of axial and radial neutron yield with pressure. 
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Figure 4-12. Variation of neutron anisotropy with gas pressure. 

  

  It was concluded that that optimum pressure at which the maximum number of neutrons 

are emitted from the device is 6 mbar. The effect of the gas pressure on the thermonuclear and 

beam target mechanisms for neutron production can be used to explain why the neutron production 

varies with the gas pressure. Moreno et al. [145] showed, for the thermonuclear mechanism, the 

optimum pressure for neutron production would be when the pinch happened at the first maximum 

of the discharging current. For constant charging voltage and anode length, increasing the gas 

pressure will increase the plasma density in the pinch, which will increase the reaction rate and 

hence the neutron yield up to a certain pressure. Beyond this pressure the time to pinch will in-

crease and the pinch no longer happens at the peak current but at lower currents, which means 

lower heating for the pinch plasma and lower neutron yield. Yamamoto et al. [146] explained this 

from the beam target mechanism point of view. To produce a higher neutron yield, a strong for-

mation of the Rayleigh Taylor (RT) instability is needed, which produces the accelerated deuterons 
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as explained in Chapter 1- The TR instability growing time is related to the current sheath accel-

eration 𝑔 and perturbation wave length 𝜆𝑝 as 𝑡𝑖 = √2𝜋𝜆𝑝/𝑔 [147]. At low pressures the current 

sheath acceleration 𝑔 will be high, thus producing a very high growth rate of the TR instability, 

which doesn’t form a well-defined pinch plasma column. As a result the neutron yield will be poor. 

Raising the pressure to a value near the optimum makes it likely that the current sheath acceleration 

is sufficient to produce an efficient RT instability, which leads to the formation of efficient deu-

terons. As result a good neutron yield will be produced. At pressures higher than the optimum, the 

value of 𝑔 will be large, which will produce a slow TR instability resulting in a less efficient beam 

target. Therefore, the neutron yield again will be small. The anisotropy of the measured neutron 

yield as indicated by the ratio of the axial to the radial neutron yields, is shown in Figure 4-12 as 

a function of gas pressure. 

4.5   Ion measurements 

Due to a sudden change in the plasma inductance during the radial phase, an extensive elec-

tric field is produced that accelerates both electrons and ions in opposite directions. As mentioned 

before, one of the characteristics of high inductance DPF devices is their relatively long radial 

phase, which leads to more than one current dip in most of the shots producing multiple neutron 

emissions. Two experiments were performed to figure out the characteristics of the deuteron beam 

at KSU-DPF. The time-of-flight technique was used to estimate the ion energy. Three ion collec-

tors were mounted axially in a tube on the top of the anode at distances of 28, 56 and 70 cm. The 

setup of the experiment is shown in Figure 4-13. The three collectors were made of 100 μm copper. 

The first two, from the bottom, were cylinders of diameters 15 and 10 mm and the third one was a 

disk of 10 mm diameter. Each collector is connected to an RC circuit, 50 Ω and 100 nF, and biased 

by -50 V through 1 MΩ resistor. To collimate the deuteron beam, a pinhole of 2 mm radius was 

mounted at the beginning of the drift tube. The electric configuration of the ion collector was 

shown before in Figure 3-22. One of the used ion collectors is shown in Figure 4-14. A photodiode, 

BPX-65, was used to measure the soft X-rays to correlate it with the ion production. The photodi-

ode was mounted at the pinch level as shown in Figure 4-13. The photodiode circuit was shown 

before also in Figure 3-18.    
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Figure 4-13. A schematic for ion time of flight measurements. 

 

 

 

Figure 4-14. A view of the ion collector. 
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Figure 4-15 [148] shows typical signals for the ion collectors in addition to the SXR signal, 

for 5 mbar deuterium. Many peaks were reported for the ion collectors. Each peak is related to one 

of the peaks in the SXR detector. By using the TOF measurements the energies of the two observed 

bursts of ions was estimated to be 130 and 72 keV. Measurements for the main peak at different 

deuterium pressures showed that the deuteron energy increases from 80 keV at 0.5 mbar pressure 

to a maximum value  > 100 keV at 1.5 m bar and then decreases to a value of 30 keV at a pressure 

of 10 mbar.  

 

 

Figure 4-15. Ion detectors and SXR signals. 
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Figure 4-16. Deuteron energy variation with pressure. 

 

The deuteron intensity spatial distribution was measured using a set of Faraday cups dis-

tributed at different angles of 0, 10, 20, 30o, as shown in Figure 4-17(a). Faraday cups in this 

experiment were made out of SMA female connectors, each of which has a resistance of 50 Ω to 

match the cable. Each Faraday cup was connected to an RC circuit similar to the one used before 

in the ion collectors and biased by -50 V as well. This set up was mounted inside the chamber 14 

cm away from the anode tip.  

The deuteron intensity spatial distribution, Figure 4-17(b), shows a maximum value at the 

top of the anode, 0o, and then the intensity deceases gradually with increasing angle up to 30o. 

Taking errors into consideration, the deuteron intensity is almost constant in the pressure range 

from 0.5 to 5 mbar for all angles and then decreases when the pressure decreases beyond 5 to 8 

mbar as shown in Figure 4-17. 
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Figure 4-17. Faraday cups set used in deuteron intensity spatial distribution measurements (top), 

spatial distribution of deuteron intensity at different pressure (bottom). 
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4.6  Hard X-ray measurements 

In order to to measure the hard X-ray (HXR) emission from the machine, the device was 

charged to 17 kV, which gives a peak current around 150 kA [149]. The gas was neon in the 

presence of a composite copper anode. A Rogowski coil and a voltage probe were used to measure 

the pinch current and voltage, respectivly. Two H7195 Hamamatsu photomultiplier tubes, coupled 

with a BC-418 plastic scintillator (2 × 1 in), were used as X-ray detectors.The PMT’s were placed 

90 cm away from the anode tip in both axial and radial directions. Figure 4-18 shows the 

configuratoin of the device and the measuring system. All signals are recorded by two Tektronix 

7000 series DPO oscilloscopes through triaxial cables. 

4.6.1 Hard X-ray emission with pressure 

Different neon fill pressures were used in a range from 0.5 to 5 mbar. Ten shots were rec-

orded at each pressure.  The gas was purged after 10 shots to avoid contamination. An MKS Bar-

atron pressure gauge, of 627B type, was used to measure the absolute pressure with an accuracy 

of ±12%. Typical signals for the current derivative along with the axial and radial PMT traces at 4 

mbar gas pressure are shown in Figure 4-19. It has been shown that the high inductance dense 

plasma focus device, categorized as T2 like KSU-DPF, has more than one dip in more than 95% 

of its shots [144].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-18. Schematic diagram of the device and the measuring system. 
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Figure 4-19. Typical signals for the current derivative and both axial and radial PMT's. 

 

The relative HXR yield in both axial and radial directions was estimated by integrating the 

area under the peaks for both PMT's and calculating the average over the 10 shots for each pres-

sure. Figure 4-20 shows the variation of HXR yield with gas pressure in both the axial and radial 

directions. It was found that a maximum yield of 727.7 and 570.2 Vns happened at 0.5 mbar for 

both axial and radial directions, respectively. Increasing the gas pressure produces a decrease in 

the HXR yield. It is known that the HXRs are produced due to the collision of the high energetic 

electron beam produced from the pinch with the anode material. Increasing the gas pressure causes 

the pinch formation to be weaker; furthermore, the electron energy will decrease producing less 

HXR yield [150]. HXR yield measurements in both radial and axial directions show higher axial 

yield producing anisotropy for all pressure values. The ratio of HXR yield in axial and radial di-

rection (anisotropy) is shown in Figure 4-21. The HXR anisotropy is almost constant at 1.3 in the 

range from 0.5 to 3 mbar and then starts to increase up to 4 at 5 mbar. In the case of neon gas, the 

pinch starts to become unstable after 4 mbar, as evidenced by the errors at 4 and 5 mbar pressure.  
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Figure 4-20. Comparison between the HXR in Radial and axial direction. 

 

Figure 4-21. Anisotropy for HXR axial and radial measurements. 
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The anisotropy occurs mainly because of the anode configuration. Because the HXR is produced 

inside the hollow part of the cathode, the radial HXRs are attenuated through the thicker part of 

the cathode [5].  

4.6.2 Average effective energy  

Studying the hard X-rays radiated from the DPF device is important for the development 

of applications and for better understanding of the device physics. The hard X-ray spectrum radi-

ated from the dense plasma focus machine is quite broad and fast, lasting only nanoseconds, which 

makes it is difficult to study using conventional spectrometry or single event spectroscopy [151]. 

Efforts were done before to estimate the hard X-ray spectrum emitted from dense plasma focus 

devices. H. Van Paassen et al. and N. Flippov et al. indirectly estimated hard X-ray spectra up to 

about 100 keV using K-5 nuclear emulsions [67] and differential absorption spectrometry with 

thermoluminescent dosimeters (TLDs) [152]. In both cases the spectrum was obtained after esti-

mating the electron spectrum. Ross filters coupled with photo-detectors [67, 68, 153] were also 

used to estimate the spectrum but it worked only up the K-shell absorption edge of tantalum, 67.4 

keV. Tartari et al. [154] estimated the spectrum for a 7 kJ plasma focus device using a multichannel 

differential absorption spectrometer based in TLDs). They used 40 shots to get a good signal-to-

noise ratio. V. Raspa et al. [155-158] measured average effective energy and spectrum of HXR 

emission from a DPF using a method based on the differential absorption of radiation when passing 

through metallic plates with different thicknesses, called step filters. The same method was used 

to estimate both average effective energy and spectrum of the KSU-DPF hard X-ray emission.  

When a beam of photons with a spectrum S(E) passes through a sample of thickness 𝑥, it 

will be attenuated according to the relation [159]:  

𝐼(𝑥)

𝐼0
=

∫ 𝑆(𝐸)𝑒−𝝁(𝑬)𝑥𝑑𝐸
∞

0

∫ 𝑆(𝐸)
∞

0
𝑑𝐸

, 
4-3 

 

where 𝜇(𝐸)  is the linear attenuation coefficient of the sample material at photon energy E,  𝑥 is 

the penetration depth of the photon inside the material, 𝐼0 and 𝐼(𝑥)  are the photon intensities be-

fore entering the sample and at distance x inside the sample, respectively. The quantity 
𝐼(𝑥)

𝐼0
 is called 

the transmission ratio. For average effective energy estimation equation 4-3 can be written as [155]  
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Figure 4-22. Schematic for photon attenuation through a material with thickness x. 

𝐼(𝑥)

𝐼0
= 𝑒−𝜇∗𝑥 , 4-4  

where 𝜇∗ ≡ 𝜇(𝐸∗) is the effective attenuation coefficient which is the linear attenuation coefficient 

at the average effective energy. The average effective energy can be defined as the energy of the 

monochromatic beam which produces the same effect. By calculating the value of  
𝐼(𝑥)

𝐼0
  for the X 

rays through a material of thickness x, as shown in Figure 4-22 , 𝜇∗ can be estimated using equa-

tion 4-4. Once 𝜇∗ is known, 𝐸∗ can be found from the tables [160]. 

An experiment was performed to estimate the effective energy and the spectrum of the hard 

X rays of the device. The filling gas in the experiment was neon at constant pressure of 1 mbar in 

the presence of a copper anode. The capacitor was charged up to 17 kV. X-ray films were used as 

X-ray detectors in addition to a Rogowski coil, voltage probe and photomultiplier tube coupled 

with BC-418, 2 × 1 in, plastic scintillator to monitor the device operation. Super HR-T green Fuji 

X-Ray Films, 8 × 10  in, were used. These were manually processed with the recommended de-

veloper and fixer from Fujifilm. The film was placed in a light tight aluminum X-ray cassette along 

with a terbium-doped gadolinium oxysulphide (Gd2O2S:Tb) intensifying screen. The intensifying 

screen works as a transducer from the hard X-rays to visible light, which can be detected by the 

X-ray film because the film itself is insensitive to any light with wavelengths more than 650 nm. 

Emission light from the intensifying screen has a dominant peak at 540 nm, green, in addition to 

two other peaks at 480 and 580 nm [161]. This light output matches the spectral sensitivity of the 

X-ray film which spans from 300 to 580 nm. The normalized conversion efficiency of the intensi-

fying screen as a function of the photon energy, 𝜂(𝐸), is shown in Figure 4-23.  

Io 
I(x)= 𝐼0𝑒

−𝜇(𝐸)𝑥 

X-rays 

x 
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Figure 4-23. Normalized conversion efficiency of the intensified screen [157]. 

 

Filters from different materials and thicknesses were prepared as step filters. Information 

about material and thicknesses used are shown in  

Table 4-1. A lead sample, Pb ref., was used to determine the fog level reference. The step 

filters were mounted on the cassette surface that faced the X-ray source. As result, the X-rays 

coming from the device, after being attenuated by the filters, pass through the intensifying screen 

inside the cassette producing visible light, which is detected by the X-ray film. The detecting sys-

tem, cassette and filters, were placed 40 cm from the source. A schematic of the experiment con-

figuration is shown in Figure 4-24. Only one shot was taken at a neon pressure of 1 mbar. A 

photograph of the step filters used and the resulting radiograph is shown in Figure 4-25. Black and 

white film density was measured using an X-rite 301 densitometer, shown in Figure 4-26(a). Since 

the densitometer gives information about the optical density of the film rather than the transmission 

ratio (I(x)/I0), a certified denstep was used. The denstep is a film strip with a calibrated grey scale, 
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provided by the film manufacturer, used to make a calibration between the densitometer reading, 

optical density (OD), and the transmission ratio (I(x)/I0). 

 

Table 4-1. Different materials used as step filters.  

 

 

 

 

 

Figure 4-24. Schematic of HXR experiment.  

 

Material Z Thickness (cm) 

Cu1 29 0.013 0.026 0.039 0.052 0.065 0.078 0.091 0.104 0.117 0.13 

0.143   0.156 0.169 0.182 0.195 0.208 0.221 0.234 0.247 0.26 

0.273 

Cu2 29 0.033 0.066 0.099 0.132 0.165 0.198 

Pb 82 0.0074   0.0148   0.0222  0.0296  0.037  0.0444  0.0518  0.0592 0.0666  0.074 

0.0814   0.0888 

Al1 13 0.16 0.32 0.48 0.64 0.8 0.96 1.12 

Cd 48 0.06 0.12 0.18 0.24 
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Figure 4-25. A photo for the step filters used (top) and their radiographs (bottom). 

 

 

Figure 4-26. X-RITE 301 densitometer used to measure the optical density (a), calibrated trans-

mission set (b). 

b a 
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The one used in this study was a certified density step wedge film that covers densities from 0.195 

to 4.17 in 14 steps, as shown in Figure 4-26(b). The denstep was placed inside the cassette, between 

the intensifying screen and the film, to produce a radiograph of it at the same time as the step filters 

radiograph.  

A calibration curve, Figure 4-27, was produced by doing densitometric analysis of the den-

step radiograph and calibrated transmission values supplied by the denstep manufacturer. To avoid 

the inhomogeneity of the film, normalized optical density was used according to the following 

equation:   

𝑁𝑂𝐷(𝑥) =
𝑂𝐷(𝑥)−𝑂𝐷𝑚𝑖𝑛

𝑂𝐷𝑚𝑎𝑥−𝑂𝐷𝑚𝑖𝑛
, 4-5 

 

where  𝑁𝑂𝐷(𝑥) is the normalized optical density at any point on the film, 𝑂𝐷(𝑥) is the optical 

density at that point measured by the densitometer, 𝑂𝐷𝑚𝑎𝑥   and   𝑂𝐷𝑚𝑖𝑛 are the maximum and 

minimum black level on the film, respectively. The normalized optical density for different sam-

ples as a function of sample thickness is shown in Figure 4-28. All curves displayed exponential 

decay, which indicated that the films were not saturated.  

 

 

Figure 4-27. Calibration curve obtained from the densitometric analysis of denstep radiograph. 
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Figure 4-28. Normalized optical density for different filters used as a function of filter thickness 

 

 By interpolating the normalized optical densities, NOD, the calibrating curve, Figure 4-27  

was used to estimate the transmission ratio (𝐼(𝑥)/𝐼0). Once the transmission ratio was known, the 

effective attenuation coefficient, 𝜇∗ ≡ 𝜇(𝐸∗) can be determined.  This is then used to find the av-

erage effective energy, 𝐸∗, as explained before. The average linear attenuation coefficient (𝜇∗) and 

its corresponding average effective energy (𝐸∗) for the different materials are shown in Table 4-2. 

All of the filters showed good agreement in calculating the average effective energy. The average 

effective energy obtained was 59±3 keV.  

 To verify the calculated value for HXR average effective energy, the pinch voltage, Vp, 

was estimated theoretically using the Lee model [29]. The pinch voltage is the voltage drop that 

happened at the moment of the pinch due to the rapid change of plasma inductance. This voltage 
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Table 4-2. Measured Attenuation coefficient and its corresponding average effective energy 

Material Density 𝜇* E* 

Cu1 8.96 14.98±1.82 60±3 

Cu2 8.96 17.87±2.34 56±3 

Al 2.7 0.79±0.16 61±10 

Pb 11.34 60.51±8.77 59±4 

Average    59±3 

 

 

is responsible for accelerating the ions and electrons. By neglecting any resistive contribution to 

the pinch, the pinch voltage can be estimated from [82]: 

  𝑉𝑝 =
𝑑(𝐿𝑝 𝐼)

𝑑𝑡
, 4-6 

where 𝐿𝑝 and  𝐼 are the pinch inductance and current . The inductance is given by: 

 𝐿𝑝 =
𝜇𝑜

2𝜋
ℎ(𝑡) ln (

𝑟𝑒
𝑟(𝑡)

), 4-7 

where 𝜇𝑜 is the permeability of free space, h(t) and r(t) are the pinch height and radius, respec-

tively, and 𝑟𝑒  is the anode radius. 

Assume the pinch current, I, and height, h(t), are constants through the pinching process. 

Then, the pinch voltage equation can be written as: 

𝑉𝑝 ≈ −
𝐼 𝜇𝑜ℎ

2𝜋
 
1

𝑟

𝑑𝑟

𝑑𝑡
 , 4-8 

where dr/dt is the convergent radial velocity. 

For the KSU-DPF, the pinch current is I = 150 kA, the pinch height is h ≈ 6 mm, the radius is r ≈

0.6 mm and convergence radial velocity is 23 cm/µs as estimated from the Lee model and meas-

ured for similar devices. Thus, the pinch voltage is estimated to be 70 kV. Hence the electrons 

accelerated through this voltage will have energy of 70 keV. Therefore, it is reasonable to get 

59±3 keV hard X-rays. 

4.6.3 Spectrum measurements 

 To estimate the hard X-ray spectrum using an X-ray film the conversion efficiency 𝜂(𝐸) 

of the intensifying screen should be taken into account. Hence, equation 4-3 will be written as: 
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𝐼(𝑥)

𝐼0
=

∫ 𝜂(𝐸)𝑆(𝐸)𝑒−𝜇(𝐸)𝑥𝑑𝐸
∞

0

∫ 𝜂(𝐸)𝑆(𝐸)
∞

0
𝑑𝐸

 , 4-9 

where 𝜂(𝐸)is the conversion efficiency of the intensifying screen, shown in Figure 4-23. Because 

the transmission ratio (
𝐼(𝑥)

𝐼0
) is experimentally measured and 𝜂(𝐸)is known, the hard X-ray spec-

trum S(E) can be obtained by using equation 4-9. The MATLAB code used is shown in Appendix 

(i). The resulting spectrum is shown in Figure 4-29. Photons with energies less than 20 keV are 

attenuated by the 1 cm glass window. The spectral amplitude then rapidly increases to reach its 

maximum at 53 keV. It is then goes down again with increasing energy and becomes negligible 

beyond 120 keV. From the spectrum we can figure out that the value obtained experimentally for 

the average effective energy, 59 ± 3 𝑘𝑒𝑉, is consistent. 

 

Figure 4-29. Measured X-ray continuum spectrum. 
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4.6.4 Radiography using dense plasma focus 

Dense plasma focus devices have been used in radiographic imaging since 1976 [162]. In-

teresting results were achieved in this field using the soft region of the emitted X-ray spectra to 

produce radiographs for either small biological specimens or low absorption coefficient samples 

[79, 163]. The high energy part of the X-ray emissions was used in radiography since 2000 [164-

[164-166]. C. Moreno et al. [164] used the DPF to produce non-conventional ultrafast introspective 

imaging for metallic objects. Such work demonstrates that DPF devices offer opportunities for 

many applications. V. Raspa et al. [155] used a 4.7 keV plasma focus device operated with a mix-

ture of deuterium and argon to produce images for fast moving metallic objects. They produced 

images for a stainless steel ball bearing and aluminum turbine blade rotating at 2820 and 6120 

rpm, respectively. The same device was used later by C. Moreno et al. [167] to produce fast radi-

ography for metallic objects through metallic walls of several millimeters thickness. X-ray radio-

graphic images were produced by the HXR emission of KSU-DPF using the same X-ray film used 

before. The cassette, containing the film and intensifying screen, was placed 60 cm away from the 

anode tip in the axial direction. Many metallic objects were mounted in front of the cassette to be 

imaged. Many trials were performed with different numbers of shots for various objects. It was 

found that the best resolution for radiographic images can be obtained within 3 to 5 shots. One 

shot can still give an image but not as clear as when 3 were used. 

 Figure 4-30 shows radiograph images for different metallic objects at 1 mbar neon pressure. 

As shown in the figure, the images have good resolution, showing most of the details even for 

closely spaced objects, such as in the case of the integrated circuit. Good spatial resolution and 

contrast by using multi-shots, 3 shots in this case, gives evidence that the radiation source almost 

happened each time at the same spot which means the KSU-DPF is a stable machine. An interest-

ing application of HXR emission from DPF devices is to test metal objects for cracks that cannot 

be seen. Figure 4-31 shows a radiograph of aluminum phantom (1" cube), which has a crack and 

a hole in one side, imaged from two different sides. The cube was supplied by the Mechanical 

Testing and Evaluation Laboratory (MTEL) at Kansas State University. As seen from the image 

one can easily detect the crack from both sides which might be useful in the field of material 

testing. 
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Figure 4-30. Radiograph for different objects at 17 kV, 1 mbar with 3 shots, A- BN connector, 

B- BNC male to dual binding post adapter, C- Resistor and D- Integrated circuit. 

 

Figure 4-31. Radiograph of aluminum phantom (1" cube) has a crack and a hole in one side.  
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Chapter 5- Explosive Detection 

5.1  Introduction 

Explosives are compounds that contain potential energy, which can be released to create 

blasts. These blasts can be used constructively or destructively. Most chemical explosives have 

some common characteristics. Many traditional explosives contain metal components, such as cas-

ings and detonators. For these explosives, X-ray inspection by trained experts can be useful for 

explosive detection [168]. However, many new explosives don’t have metal components or spe-

cific shapes to make them appear suspicious under the X-ray investigation. There is a class of 

nitrogen-rich explosives that have similar compositions and densities.  The National Research 

Council has identified 26 nitrogen-rich explosives that contain only hydrogen (H), carbon (c), ni-

trogen (N) and oxygen(O), all of which have combined N and O weight fractions above 0.55 [169].  

In addition, most of these explosives have higher densities than inert HCNO materials but lower 

densities than most metals. Thus, nitrogen-rich explosives can, in principle, be detected on the 

basis of their density and chemical composition. The nitrogen-rich characteristic of these explo-

sives has been used by some investigators to detect explosives. However, some explosive materi-

als, for example gasoline, black powder or peroxide-based liquid explosives, do not have any ni-

trogen. Plastic explosives, like C4 and its Czechoslovakian counterpart and semtex, are very dan-

gerous because of their flexibility which makes them easy to hide and smuggle.  

5.2  Explosive detection methods  

There is no single way to detect all type of explosives because of their variability, so it is 

necessary to use different techniques to detect different explosives. Explosive detection methods 

can be divided into two many categories: those that detect chemical traces of the explosive residues 

and those that look for characteristics of the bulk explosive material. 

5.2.1 Trace-based explosive detections 

5.2.1.1 Ion mobility spectrometer (IMS) 

IMS is widely used in the airports to check carryon bags by wiping surfaces by a cloth 

strip to collect any explosive material residues. These samples are then warmed up rapidly to 
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around 200 Co to produce vapor. The vapor is injected inside the mobility spectrometer at which it 

will mix with a gas phase producing ions. The resulting ions are then accelerated through an elec-

tric field, around 200 V/cm, [170] gaining a characteristic drift velocity. The drift velocity can be 

estimated by measuring the time taken by the ions from the entrance to the exit of the spectrometer. 

The ions are then collected by a detector producing a current flow. The resulting signal is called a 

mobility spectrum and depends on the ion molecular mass and ion charges [171]. 

5.2.1.2 Gas chromatography 

Gas chromatography can be used to separate molecules of different chemical compounds 

from each other by injecting them into a chromatographic column. A chromatographic column is 

a hollow tube equipped with beads covered with a substance which interacts at different rates with 

different compounds. Therefore this interaction produces different molecules at different times. 

This method is used to separate the negative ions in explosive materials which can be detected 

using other methods like electron capture, mass spectroscopy, flame ionization, chemilumines-

cence, or surface acoustic waves [168]. 

5.2.1.3 Antibodies 

A vapor detection technique in which the vapor flow is allowed to pass through a vessel 

that contains immobilized antibodies and florescent labelled analogs of explosive molecules is also 

used. At the vessel the antibodies interact, with high precision, with only one specific explosive 

[172]. If that explosive exists in the air flow it will replace the labelled analog and is detected 

downstream. This method is fairly inexpensive, fast and fully automated but antibodies of all ex-

plosive materials are needed. 

5.2.2 Human and biological based methods 

5.2.2.1 Animals 

            Dogs are widely used for detection purposes [173]. They can be excellently sensitive and 

specific. Many federal agencies, such as the Transportation Security Administration, the United 

States Secret Service and Department of Defense as well as state and local agencies are using dogs 

in explosive detections. Using dogs has the advantages that it is relatively easy and inexpensive 

and dogs are mobile. The disadvantages of using dogs include the facts that this process depends 
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on the dog handler skills at interpreting dog responses, dogs can only detect scents that were in-

cluded in their training and dogs require care and feeding. Recently, some investigations have been 

done to use other animals such as rats [174] and bees [175].  

5.2.2.2 Manual inspection 

Although it is time-consuming and has some risk, manual inspections by well-trained 

people are still being used. An example is by using metal detector and probing rods [168]. 

5.2.3 Nonionizing radiation-based methods 

5.2.3.1 Electromagnetic induction 

Electromagnetic induction is mainly used for detecting metal objects. The idea is based on 

sending electromagnetic pulses which will produce an induced oscillating electromagnetic field 

within any metallic object. The resulting electromagnetic field is then detected through the detector 

coil by producing an electric current passing in the coil [172]. Because most explosives don’t have 

a significant amount of metal, it is recommended to use this with other bulk detection methods. 

5.2.3.2 Radar interrogation 

The use of radar is considered an efficient way for detecting buried explosives specially 

when used with another bulk detection method. Radar interrogations are based on sending high 

energy radio waves into the ground and filtering out the reflected wave. The reflected wave de-

pends on the reflecting material density and the wave interaction with its boundary [176]. 

5.2.3.3 Nuclear magnetic resonance (NMR) 

The nuclear magnetic resonance technique is based on the fact that protons inside nuclei 

will align themselves with an applied external magnetic field. Magnetic resonance is then meas-

ured by using a specific radio-frequency pulse to perturb the aligned nuclei and measuring the 

return rate to alignment. In this technique the resonance frequency depends on the external mag-

netic field strength and how much hydrogen is in the material [168]. 

5.2.3.4 Nuclear quadrupole resonance (NQR) 

Unlike NMR, NQR doesn’t need application of a magnetic field. It is based on the idea that 

electromagnetic radiation interaction with the nuclear charge density, in the interrogated material, 

splits the nuclear spin states. The NQR signal is determined by the coupling between existing 
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nuclear quadrupole moments and the gradient of the electric field which flips nuclear spin. Once 

the nucleus relaxes it emits a unique signal. This technique of detection works for crystalline solids 

and amorphous materials but doesn’t work for liquids [170]. It has the ability to detect small 

amounts of some threat materials but it has some disadvantages. First, the lack of NQR signal on 

some explosive materials (those that are in a position where there is no electric field gradient). 

Second, the presence of a thick metallic container can shield the radiofrequency signals. Third, the 

AM radio-frequency signal can interfere with the original signals. Finally, thermally generated 

internal noise can increase the time required to get the signal. 

5.2.3.5 Terahertz imaging and spectroscopy 

Terahertz (THz) radiation is electromagnetic radiation in the range spectral region between 

high-energy microwaves and the far infrared. An ultra-short pulsed near-infrared laser, such as 

titanium-sapphire (Ti:Al2O3) is used to activate an ultrafast semiconductor, such as gallium arse-

nide (GaAs), to produce terahertz radiation, which is detected using a similar laser semiconductor 

combination [177]. A resonant absorption occurs when there is a match between the energy of the 

incident THz radiation and the rotational motions of dipoles in the interrogated material or the 

vibrations of atoms within the molecular lattice. This resonant absorption forms a unique finger-

print for each material [168]. One of the advantages of this technique is its high penetrability, since 

non-metallic and non-polar materials are transparent to this range of electromagnetic waves. More-

over, THz radiation is nonionizing, so exposure to it does not create electron-ion pairs, which can 

be harmful to people. However, the presence of metallic shielding can prevent this device from 

interrogating threat materials because THz radiation can’t penetrate metals. 

5.2.3.6 Millimeter-wave interrogation 

Millimeter waves have frequencies between 30 and 300 GHz, with wavelengths from 1 to 

10 mm. A wave with this length can penetrate many materials that are opaque to visible light.  

Millimeter waves can penetrate cloth and be reflected by the human body and metals [178]. Other 

materials such as plastic, ceramics and organic materials will partially reflect this type of wave. 

Millimeter-wave imaging provides an alternative to X-ray imaging at several airports. Recent in-

vestigations attempted to form three-dimensional images by use of two antennas to circle the target 

[179]. Although this method has excellent spatial resolution and doesn’t produce ionizing radia-

tion, it is not used on a large scale because of privacy concerns.   
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5.2.4 Nuclear-based explosive detection methods  

5.2.4.1   Neutron interrogation methods 

Neutrons are useful for material interrogation because of their penetration ability and be-

cause they interact with nuclei, providing information on composition. Both thermal and fast neu-

trons have been used. The collisions between neutrons and the nuclei in an interrogated object 

cause the nuclei to emit characteristic 𝛾-rays or to change in the neutron energy in a way charac-

teristic of the mass of the nucleus [180].  

5.2.4.1.1 Thermal neutron activation (TNA) 

Thermal neutron activation is based on the fact that different isotopes emit prompt-capture 

gamma rays of characteristic energies following (𝑛, 𝛾) or capture interactions. Capture cross sec-

tions are large at thermal energies and small above the thermal range. Hence, the source must 

provide thermal neutrons or the sample must be able to thermalize a fast neutron beam. The capture 

gamma rays mainly used in this technique are 2.223 MeV from 1H, 3.684 and 4.945 MeV from 

12C and 10.83 MeV 14N [180]. Generally, the capture gamma rays are analyzed to produce infor-

mation about the density distribution of various elements in the target. Using TNA provides a 

nitrogen map which is considered an advantage for this technique because many explosives are 

nitrogen-rich materials. Thermal neutrons also can easily penetrate thin metal screens that can 

shield X rays. The main disadvantages of TNA are that it is expensive, most neutron sources are 

either radioactive or bulky and neutrons produce activation products in the interrogated object.  

However, DPF neutron sources are less bulky than most other machine sources and produce neu-

trons in short pulses. Thus, the KSU-DPF device is investigated in this research in order to inves-

tigate the feasibility of DPF-based TNA for rapid screening of packages for explosive materials. 

Coupling this technique with the conventional X-ray scanning technique provides additional in-

formation and can improve performance [170]. 

5.2.4.1.2 Neutron backscatter  

Neutron backscatter has been used to search for buried explosives [181] and to measure 

moisture content of soils. Fast neutrons sent into the ground will slow as they scatter and the ther-

mal neutron flux exiting the soil is a measure of hydrogen content, because hydrogen is the most 

efficient neutron moderator. In addition, the scattering properties of a material are dependent on 
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the composition of the material and so the backscatter spectra at various locations depends on 

sample material.   

5.2.4.1.3 Thermal neutron imaging 

Neutron radiography is based on passing a neutron beam through a target. Recent studies 

showed that structural defects and textures can be seen using energy-selective radiography per-

formed around Bragg-cut-off wavelengths [182]. Thermal neutron imaging can be used to detect 

small amounts of materials that contain hydrogen or highly neutron absorbing materials.  

5.2.4.1.4 Fast neutron activation (FNA) 

FNA technique is based on using fast neutrons to probe the target material. The incident 

fast neutrons inelastically collide with the nuclei producing unique gamma rays for each element. 

FNA used to give more information that just nitrogen content as in the thermal neutron methods. 

Typical gamma rays detected with this technique from HCNO samples are shown in Table 5-1 

[170]. Most FNA techniques use neutrons from the D-T reaction, which produces 14-MeV mono-

energetic neutrons.  The D-D reaction, which produces neutrons in the energy range from 2.45 and 

7.71 MeV, depending on the deuteron energy, is also used as a neutron source. 

At fast neutron energies, the common interaction between neutrons and target nuclei is 

elastic scattering. No photons are produced in this reaction. The scattering angles depend on the 

neutron energy and the mass of the struck nucleus. Thus, responses due to scattered neutrons con-

tain information on the composition of the sample. In well controlled experiments, this method 

can provide a clear idea about the target’s atomic mass [183]. 

 

Table 5-1. Relevant energies of inelastic scatter gamma rays. 

Isotope Characteristic gamma rays (MeV) 

O16 6.13 

12C 4.44  

14N  2.31, 5.11 
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5.2.4.1.5 Pulsed fast neutron analysis (PFNA) 

The only difference between this technique and the FNA is that a pulsed beam of neutrons is 

used. A collimated beam is used to hit the target and the resulting gamma rays are analyzed [172]. 

One of the approaches is referred to as pulsed interrogation neutron and gamma (PING) [184] 

where neutrons, 14 MeV, are produced by an accelerator in pulses. Nitrogen, sulfur (5.42 MeV 

gammas from 32S) and chlorine (6.111MeV gammas from 35Cl) have been detected with PING. 

Chlorine is useful in detecting the non-nitrogen-based explosives and in the detection of some 

drugs, such as cocaine. Although there are difficulties in putting put neutron accelerators at air-

ports, sealed tube neutron DT kHz-pulsed accelerators are used [185].  

5.2.4.2 X-ray based screening 

X-rays have been used for many years for material detections especially for luggage at 

airports. Using X-rays has many advantages such as:  

i. It gives information about material density and effective atomic number Zeff. 

ii. X-ray technology has been developed over many years and its physics is well understood. 

iii. X rays are easier to shield than are neutrons. 

iv. It is cost effective. 

When X-rays pass through a material they will be attenuated according to the relation 

𝐼

 𝐼0
= exp [−𝜇(𝐸, 𝑍, 𝜌)𝑥], 5-1 

where: 𝐼0 is the incident intensity, I is the uncollided intensity at distance x into the material,  𝜇 is 

the linear attenuation coefficient of the material, which depends on the photon energy, E and the 

material atomic number, Z, and is directly proportional to the density 𝜌.  

X-ray interactions with matter occur in four different modes as shown in Figure 5-1:  

i. Coherent X-ray scatter (CXRS), in which an X ray photon interacts with the entire atom or 

crystal lattice, losing little energy in the process.    

ii. Incoherent (Compton) scatter, which is a direct interaction between an X-ray photon and an 

electron that can be considered as a free electron. A simple formula has been developed by 

Compton [186] to relate the photon scatter angle.s,  incident energy, E, and energy after 

scatter, 𝐸′  [159]: 
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1

𝐸′
−

1

𝐸
=

1

𝑚𝑒𝑐2
( 1 − cos𝜃𝑠) 5-2 

The microscopic cross section for Compton scattering depends on the number of electrons per 

atom and thus varies as: 

𝜎𝛼𝑧 5-3 

iii. Photoelectric absorption is an interaction in which all of the photon energy is used to extract 

a bound electron from its orbit. The photoelectric cross section in the X-ray range in can be 

approximated by the equation [169]: 

               𝜏 ≈ 10 
𝑍4.5

𝐸3   (b/atom),     5-4 

 

 

Figure 5-1. Schematic diagram for X-ray interaction modes [170]. 
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where E is the photon energy (keV). Equation 5-4 shows that photoelectric absorption is signif-

icant for high Z elements but decreases rapidly with increasing photon energy for all elements.    

iv. Pair production in which X-rays with energy 1022 keV or more reacts to produce an electron/pos-

itron pair making a local deposition of at least 511 keV at least. 

Because the macroscopic Compton cross section depends on the density and the ratio of 

atomic number to mass number and most of elements have a mass number about twice its atomic 

number, Compton scatter cross section depends on the density of the scattering material. The mac-

roscopic photoelectric cross section strongly depends on the atomic number.  

5.2.4.2.1 Conventional transmission X-ray radiography 

Conventional X-ray transmission techniques are widely used at screening check points. An 

operator inspects the X-ray images looking for threat or illicit materials. It is limited to checking 

luggage and inanimate objects because of high radiation doses. This technique cannot easily dif-

ferentiate between a thin piece of a strong absorber and thick piece of a weak absorber. Examples 

of X ray transmission images are shown in Figure 5-2.   

 

 

Figure 5-2. Examples of X-ray transmission images of luggage [172].   



  

91 

5.2.4.2.2 Dual-energy X ray 

Taking the advantage of equations 5-3 and 5-4, dual energy X-ray techniques have been 

used. Two different X-ray energies or spectra are used, one high and one low. Two views of the 

inspected object are obtained in this technique, one for the high and the other for the low energy 

X rays. Heavy metal objects appear dark in both views while objects composed of only light ele-

ments will appear darker in the low-energy view than in the high-energy view [172]. Dual-energy 

X-ray techniques theoretically can provide information about material effective atomic number 

(𝑧𝑒𝑓𝑓). Many approaches have been investigated to improve the efficiency of this technique in-

cluding using both transmission scattering modes and applying cotomography (CT) [187]. Because 

single-energy computed tomography gives information about localized electron density, it cannot 

distinguish inert materials that have similar electron densities to explosives [169]. In general dual-

energy computed tomography, which includes weak information about composition, gives better 

results than single-energy computed tomography in explosive detection. 

5.2.4.2.3 Scatter imaging 

Back scatter imaging systems are based on the formation of images from the back scattered 

photons from targets. One of the problems of the back scatter method is the difficulty of differen-

tiating between explosives and other low Z materials which have the same electron density [168]. 

Several X-ray scatter methods have been studied, such as X-ray diffraction [188], which provides 

information about the crystalline structure of the target, and the coded aperture method, which is 

useful in land-mine detection [189]. Many attempts have been made to improve the images result-

ing from scattered photons, including using coded aperture masks. The masks have transparent 

and opaque sets of pixels which focus the photons in the same manner as the pinhole camera [190].  

5.2.4.2.4 Gamma-ray resonance absorption    

The gamma-ray resonance absorption method is mainly used to detect the presence of ni-

trogen atoms in the target by using one of the unique nuclear reactions with nitrogen atoms. This 

method is frequently used with one of the other photon interrogation methods that depend on the 

electron density of target materials. One of the methods uses the nuclear resonance absorption of 

the 9.17 MeV gamma rays by the 14N atoms. A high attenuation of the gamma rays of this energy 

implies a high density of 14N atoms. 
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5.3  Signature-based radiation scanning (SBRS) 

The signature-based radiation scanning (SBRS) method was developed by Dunn et al. 

[191]. It is a rapid method that uses active interrogation to detect explosives at standoff distances 

of meters. Standoff is very important in explosive detection to avoid or reduce injury to the oper-

ators. Loschke et al. [192] and Lowrey et al. [193] successfully used SBRS to detect explosive-

like substances by using active photon and neutron interrogation, respectively. In the SBRS 

method, the scattered or generated radiation from the target is collected by different detectors. 

Each detector reading is called signature. One collects different signatures for each unknown target 

and compares them to templates. A template is a collection of the same number of signatures for 

a target containing a known explosive or explosive-like material. This template-matching proce-

dure involves forming a figure of merit (FOM), whose value indicates whether the target contains 

an explosive material or not.  The interrogating radiation may be photons, neutrons or both. Radi-

ation detectors record different signatures, which may be due to back-scattered photons, back-

scattered neutrons, prompt and inelastic-scattered gamma rays, and possibly even photon-induced 

positron annihilation radiation (PIPAR) [194].  

Collected signatures from the unknown target are used to form a response vector 𝑅𝑗  , where 

the j is the number of the signature. Similar signatures collected from a target containing an explo-

sive in some configurations are used to form a template vector 𝑆𝑗𝑙. The template- matching process 

uses a chi-square-like figure-of- merit [192] in the following form:  

𝜁 = ∑𝛼𝑗

(𝛽𝑅𝑗 − 𝑆𝑗𝑙)
2

𝛽2𝜎2(𝑅𝑗) + 𝜎2(𝑆𝑗𝑙)

𝐽

𝑗=1

, 

 

5-5 

 

where 𝜎2(𝑅𝑗), 𝜎2(𝑆𝑗𝑙) are the variances of the response Rj and the template signature Sjl, respec-

tively, 𝛽 is a scaling factor that accounts for differences in the conditions (such as count time and 

source intensity) under which the unknown target responses and the template responses were taken 

and 𝛼𝑗 is a normalized positive weight factor calculated from the equation:  

𝛼𝑗 =
𝜔𝑗

∑ 𝜔𝑗
𝑗
𝑗=1

, 5-6 
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where wj is an assigned weight for signature j. The standard deviation of the figure-of-merit of 

equation 5-5 is estimated using the standard error propagation method [193]. For a function 𝑓(𝑎, 𝑏) 

the standard deviation will be: 

𝜎(𝑓) = (|
𝜕𝑓(𝑎, 𝑏)

𝜕𝑎
|
2

𝜎2(𝑎) + |
𝜕𝑓(𝑎, 𝑏)

𝜕𝑏
|
2

𝜎2(𝑏) + 2
𝜕𝑓(𝑎, 𝑏)

𝜕𝑎

𝜕𝑓(𝑎, 𝑏)

𝜕𝑎
cov(𝑎𝑏))

1
2⁄

, 
5-7 

 

where 𝜎2(𝑎)  and 𝜎2(𝑏) are the variances of parameters a and b and cov(𝑎𝑏) is the covariance 

between the two parameters. In case the variables a and b are independent of each other, 

cov(𝑎𝑏)=0. Applying equation 5-7 to equation 5-5 leads to the following:  

𝜎(𝜁) = [∑(
𝜕𝜁

𝜕𝑅𝑗
)

2𝐽

𝑗=1

𝜎2(𝑅𝑗) + ∑(
𝜕𝜁

𝜕𝑆𝑗
)

2𝐽

𝑗=1

𝜎2(𝑆𝑗) + ∑(
𝜕𝜁

𝜕𝜎2(𝑅𝑗)
)

2𝐽

𝑗=1

𝜎2 (𝜎2(𝑅𝑗))

+ ∑(
𝜕𝜁

𝜕𝜎2(𝑆𝑗)
)

2𝐽

𝑗=1

𝜎2 (𝜎2(𝑆𝑗))]

1
2⁄
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where the terms 𝜎2 (𝜎2(𝑅𝑗)) and 𝜎2 (𝜎2(𝑆𝑗)) are the variance of the variance (VOV) for response 

and target signatures, respectively. The partial derivative terms in equation 5-8 are:  

𝜕𝜁

𝜕𝑅𝑗
=

2𝛼𝑗𝛽(𝛽𝑅𝑗 − 𝑆𝑗𝑙)

𝛽2𝜎2(𝑅𝑗) + 𝜎2(𝑆𝑗𝑙)
 

5-9 

 

𝜕𝜁

𝜕𝑆𝑗𝑙
=

−2𝛼𝑗(𝛽𝑅𝑗 − 𝑆𝑗𝑙)

𝛽2𝜎2(𝑅𝑗) + 𝜎2(𝑆𝑗𝑙)
 

5-10 

 

By neglecting the VOV terms in equation 5-8 and substituting with equations 5-9 and 5-10 in to it 

equation 5-8 will be:  

𝜎(𝜁) = [∑(
2𝛼𝑗𝛽(𝛽𝑅𝑗 − 𝑆𝑗𝑙)

𝛽2𝜎2(𝑅𝑗) + 𝜎2(𝑆𝑗𝑙)
)

2𝐽

𝑗=1

𝜎2(𝑅𝑗) + ∑(
−2𝛼𝑗(𝛽𝑅𝑗 − 𝑆𝑗𝑙)

𝛽2𝜎2(𝑅𝑗) + 𝜎2(𝑆𝑗𝑙)
)

2𝐽

𝑗=1

𝜎2(𝑆𝑗)]

1
2⁄

, 

 

5-11 

which after simplifying becomes  
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𝜎(𝜁) = 2 [∑
(𝛼𝑗(𝛽𝑅𝑗 − 𝑆𝑗𝑙))

2

(𝛽2𝜎2(𝑅𝑗) + 𝜎2(𝑆𝑗𝑙))

𝐽

𝑗=1

]

1
2⁄

, 

 

5-12 

Equation 5-5 gives the value of a FOM that might vary from zero up to 106 or greater. To 

make it easier to find a suitable cutoff value the equation is normalized as follow: 

𝜁 =

∑ 𝛼𝑗

(𝛽𝑅𝑗 − 𝑆𝑗𝑙)
2

𝛽2𝜎2(𝑅𝑗) + 𝜎2(𝑆𝑗𝑙)
𝐽
𝑗=1

∑ 𝛼𝑗

(𝑆𝑗𝑙)
2

𝜎2(𝑆𝑗𝑙)
𝐽
𝑗=1

, 
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where the [∑ 𝛼𝑗
(𝑆𝑗𝑙)

2

𝜎2(𝑆𝑗𝑙)

𝐽
𝑗=1 ] term is the FOM value when the target gives zero response.  

The standard deviation of the normalized FOM is given by: 

𝜎(𝜁) =

2 [∑
(𝛼𝑗(𝑅𝑗 − 𝑆𝑗𝑙))

2

(𝜎2(𝑅𝑗) + 𝜎2(𝑆𝑗𝑙))

𝐽
𝑗=1 ]

∑ 𝛼2
𝑗

𝑆𝑗𝑙
2

𝜎2(𝑆𝑗𝑙)
𝐽
𝑗=1

1
2⁄

. 
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The normalized FOM and its standard deviation are used to define another term which is called 

the filter function, 𝑓±(𝜆). 

𝑓±(𝜆) = 𝜁 ± 𝜆𝜎(𝜁), 5-15 

where 𝜆 is a constant chosen according to the level of accuracy desired. 

If 𝑓− > 𝑓0, where f0 is a selected cut-off value, the target will be considered to be inert and will be 

labeled as a negative. If the sample is actually inert, this is identified as a true negative (TN). On 

the other hand, if 𝑓+ < 𝑓0 the target will be considered to be an explosive which will be labeled a 

positive.  If the sample is actually explosive, this is labeled as a true positive (TP). The 𝑓0 is a cut-

off value chosen by the user to adjust for sensitivity and specificity. The sensitivity and specificity 

can be defined as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
, 

5-16 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
, 

 

5-17 

 

From the last two equations one can conclude that 100% sensitivity means there are no 

false negatives while 100% specificity means that there are no false positive. The ideal case is to 

have 100% for both sensitivity and specificity, which is rarely possible in real life. A high sensi-

tivity is preferable over high specificity because missing one of the explosives through an investi-

gating process might lead to significant negative consequences. On the other hand identifying an 

inert as an explosive will waste more time but still not be dangerous. Having high levels of both 

sensitivity and specificity is the ideal goal.     
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Chapter 6- Experimental Work for Explosive Detection 

6.1  Equipment 

All experiments were conducted at the Kansas State University Dense Plasma Focus (KSU-

DPF) Laboratory, 142 Ward Hall, Mechanical and Nuclear Engineering Department.  The system 

is described in the sub-sections that follow.   

6.1.1 X-ray Source 

The KSU-DPF was used as a hard X-ray pulsed source. The device was operated for all 

experiments with a cylindrical flat end copper anode, which was 10 cm long. The anode is sur-

rounded by a squirrel cage, of 5.5 cm diameter, consisting of 6 brass rods as a cathode. Each rod 

has 12 cm length and 0.8 cm diameter. The anode and cathode are electrically insulated by a hollow 

Pyrex glass tube 6.8 cm long and 0.16 cm thickness. More details about the device construction 

were shown in Chapter 3-  The filling gas for this experimental work was neon. The gas pressure 

was kept constant at 1 mbar. The capacitor was charged with a constant charging voltage of 17 

kV. Characteristics of the X-ray pulses radiated from the device under the previous conditions 

were discussed in detail in Chapter 4-   

6.1.2 Shielding 

Lead bricks were used as shielding around the source except two square collimation win-

dows, each 5×5 cm. The overall shield thickness was 5.08 cm. Further lead shielding was added 

around the detectors, except the front end, with overall thickness of 5 cm. Because X-ray emission 

from the DPF device is isotropic, the main purpose of this shielding is to direct photons to the 

target only. Therefore, very few photons will scatter from the walls or other equipment in the 

laboratory and be reflected back the detector.  

6.1.3 Target 

Three targets were used in the experiments:  

 Experiment I: Five-gallon barrels, of 1 mm thick steel, were filled with different samples. Nine 

samples were used: Three explosive surrogates including 35% nitrogen fertilizer, denoted as 

FertC, 28% nitrogen fertilizer, denoted as FertD and 50/50 mixture of both fertilizers, denoted 
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as FertMix. The other used samples were inert materials, sand, water, chalk, rubber mulch, 

polyethylene and aluminum. 

 Experiment II: One-gallon painting cans, 0.2 mm thickness steel. Twelve cans were used. Am-

monium nitrate was used as an explosive surrogate in addition to the three types of fertilizers 

identified above. Graphite and sugar were added to the inert samples used in experiment I. 

 Experiment III: Quart painting cans, 0.2 mm thickness steel. Same samples used in experiment 

II except graphite.  

In all experiments, responses for the FertMix sample were chosen to be the template. As a result 

the main goal here was looking for nitrogen rich samples like the FertMix. All cans were placed 

40 cm away from the source (the device anode). 

6.1.4 Detection instruments 

Two types of photon detectors were used to detect X-ray signals including: 

 A Canberra, 3 × 3  in, sodium-iodide-thallium-activated scintillation detector, NaI(Tl), model 

3M3/3-X.  

 

Figure 6-1. Transmission ratio for 0.5 Cd filter placed in front of D2. 
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Figure 6-2 Schematic diagram of the experiment. 

 

 BC-418 plastic scintillator, 2 × 1  in, coupled with a Hamamatsu PMT, model H7195. 

More details about the two types of detectors were explained in Chapter 3- All detectors are con-

nected to Tektronix 7000 series DPO oscilloscopes through a set of tri-axial cables to reduce the 

noise and signal interference. 

Four specific detectors were used as follow:  

 D1: Bare Plastic scintillator. 

 D2: NaI(Tl) scintillator filtered with 0.5 mm cadmium sheet. 

 D3: Bare NaI(Tl) scintillator. 

 D4: Bare NaI(Tl) scintillator. 

Detectors D1 and D3 were set to pick up the scattered X-rays of all energies. On the other hand 

D2 will pick up only the high energy X-ray photons, more than 60 keV, as indicated in Figure 6-1, 
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which shows the transmission ratio for a 0.5 mm cadmium filter.  D1, D2 and D3 are called signa-

ture detectors. They were 18 cm away from the target at an angle of 70o to pick up the scattered X-

ray signals. Due to shot-to-shot variability of the dense plasma focus devices, a forth detector (D4) 

was used for normalization purposes. Detector D4, 100 cm away from the device, was allowed to 

looking directly at the source. A schematic diagram for the experiment configurations and a picture 

for the set up are shown in Figure 6-2 and Figure 6-3, respectively.  

 

 

 

Figure 6-3. A picture for the 1 gallon detection experiment. 

6.2  Nomenclatures 

Here, we limit our consideration to materials that are like nitrogen-rich explosives, alt-

hough the methodology applies to other threat materials. The following nomenclature will be used:   

 A target is the container with its contents. 

 A sample is the contents of a target. 

 A sample is explosive if it is like a nitrogen-rich chemical explosive. 

 A sample is inert if it is not explosive. 
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 A sample is suspect if it not clearly explosive or inert. 

 True positive (TP): When an explosive is correctly identified as explosive. 

 True negative (TN): When an inert is correctly identified as inert. 

 False positive (FP): When an inert is identified as explosive. 

 False negative (FN): When an explosive is identified as inert. 

6.3  Experimental procedures 

All experiments were performed with the configuration shown in Figure 6-2. Neon gas was 

used as a working gas. Neon pressure was kept constant at all experimental work at 1 mbar and 

the capacitor charging voltage at 17 kV as well. Targets were placed 40 cm away from the source 

in front of the 5×5 cm window to collimate the emitted X rays to the target only. Background 

measurements (measurement with no target present) were taken with the detectors placed at dif-

ferent angles to the beam.  After many trials it was found that the least background was measured 

at an angle of 70o. At this angle the reflected X-ray signals from walls and other devices in the 

room are minimal. After each shot the detector response, D1, D2 or D3, was normalized by the D4 

detector. Ten shots were taken for each sample and gas used to be purged after that to reduce the 

effect of contaminations due to anode material sputtering.  The average of the normalized ten shots 

represents the signature of each sample. Therefore, the response vector for each sample will have 

three signatures; one from each detector (D1, D2 and D3). All signals are registered by the two 

Tektronix oscilloscopes. A Rogowski coil and high voltage probe were used to measure pinch 

current and voltage signals, respectively. Using this type of advanced oscilloscope permits signal 

processing, such as integrating or differentiating the registered signals.  
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Chapter 7-  Experimental Results 

7.1  Introduction 

As discussed in the previous chapter, ten shots were taken for each target to calculate the 

sample signature. Signals from a Rogowski coil and the voltage probe were registered by an oscil-

loscope to monitor the device operation. Figure 7-1 shows typical current and voltage signals for 

the pinch at a neon pressure of 1 mbar and charging voltage 17 kV. The figure shows that the 

current and the voltage signals reach a peak of more than 150 kA and 90 kV, respectively, at the 

pinch time. Each current dip is coincident with a voltage spike. More than one current dip appeared 

in more than 95% of the shots, which is the characteristic of high inductance dense plasma focus 

devices, known as T2 type [144].  

 

Figure 7-1. Typical signals for pinch current and voltage. 
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Figure 7-2. X-ray signals for signature and direct detectors.   

 

Figure 7-2 shows typical signals for the X-ray detectors as registered by the oscilliscope 

for a quart size aluminum sample. The black, red and blue represenst the responses of signature 

detectors. Signature detectors, D1, D2 and D3, were placed at 70o from the the source-target line. 

They were directed to the target to detect the scattered X rays as explained in Chapter 6-  The pink 

signal represents the direct detector which was looking dirctly at the source for normalizing 

purpose. 

7.2  Calculating Rj and Sj vectors 

Response vector, Rj, for each material is composed of 3 componenets, R1, R2 and R3. Each 

component is related to one of the signature detectors D1, D2 and D3, respectivly. For each shot, 

the integration of the signature detector curve, as shown in Figure 7-2, was normalized to that of 

the direct detector, D4, curve. An average of 10 shots was taken for each sample to calculate its 

detectors’ responses, R1, R2 and R3. Therefore, the response is a ratio of the scattered X-ray from 

the target to the direct X-ray signal from the device averaged over 10 shots.  
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Figure 7-3. Detectors' response for 5-gallon cans. 

 

Figure 7-4. Detectors' response for 1-gallon cans. 
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Figure 7-5. Detectors' response for quart cans. 

 

Normalizaiton is improtant to avoid shot-to-shot variablity for dense plasma focus devices. 

In the same way the tempelate vector, Sj, was calculated by using the FertMix sample as a target 

and following same procedures as before. Detector responses for all samples in the three 

experiments are shown in Figure 7-3, Figure 7-4 and Figure 7-5. 

By using template response, Sj, and target response, Rj, vectors and their standard deviations 

the figure-of-merit, FOM, for each sample and its standard deviation can be calculated using equa-

tions 5-13 and 5-14 . By choosing a suitable cut-off value𝑓0, the user can decide if the sample is 

explosive, inert or suspect based on the following rule: 

For (𝑓 − 𝜎) > 𝑓0, the sample will be identified as inert (true negative) while 

for (𝑓 + 𝜎) < 𝑓0, the sample will be identified as explosive (true positive). If both conditions don’t  
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Figure 7-6. Normalized figure of merit (FOM) for the 5-gallon samples. 

 

Figure 7-7. Normalized figure of merit (FOM) for the 1-gallon samples. 
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Figure 7-8. Normalized figure of merit (FOM) for the quart samples. 

 

Apply, the sample will be identified as suspect. The suspect sample needs more investigation with 

another method. For the three experiments conducted, the following results were obtained: 

Five- gallon samples: The normalized FOMs for the 5-gallon samples are shown in Fig-

ure 7-6. By choosing a cut-off value ( 𝑓0) equal to 5, all explosive-like samples, FertC, FertD, were 

successfully identified as true positives, producing 100% sensitivity. Three inert samples, Chalk, 

sand and aluminum, were successfully identified as true negatives, producing 50% specificity. 

Two false positives were obtained, for polyethylene and water, because they were identified as 

explosives. Finally, because the rule mentioned before didn’t apply for the rubber mulch sample, 

it was considered as subsect.  

One-gallon samples: As shown in Figure 7-7, by choosing a cut-off value ( 𝑓0) equal to 

1.7, the explosive-like samples, FertC, FertD and ammonium nitrate, were successfully identified 
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as true positives, producing 100% sensitivity. Four inert samples, chalk, sand, graphite and alumi-

num, were successfully identified as true negatives, producing 50 % specificity. Two false posi-

tives were obtained for water and sugar (not used in the 5-gallons). Finally, both rubber mulch, as 

in the 5-gallon sample experiment, and polyethylene were identified as suspect samples. 

Quart samples: By choosing a cut-off value (𝑓0) to be 4.0, all explosive-like samples, 

FertC, FertD and ammonium nitrate, were successfully identified, producing 100% sensitivity, as 

in the first two experiments.  Two inert samples, aluminum and chalk, were successfully identified 

producing 28.6 % specificity. Only one false positive was obtained here for the water sample. 

Rubber mulch is still classified as a suspect sample in addition to polyethylene, sugar and sand. 

A summary for all tested samples is shown in Table 7-1. 

Since it was hard to do the experiment on real explosives, it was decided to simulate the 

problem using MCNP-5. Initial results, shown in Figure 7-9, for detector responses for 1-gallon 

have good agreement with the experiments which encouraged making more simulations using real 

explosives and more samples. In the next chapter the MCNP-5 simulation will be discussed in 

detail. 

 

Table 7-1.  Summary of all tested materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5-gallons 1-gallon Quart 

Total # samples 8 11 10 

Inert 6 8 7 

Explosive-like 2 3 3 

True (+ve) 2 3 3 

True (-ve) 3 4 2 

False (+ve) 2 2 1 

False (-ve) 0 0 0 

Suspect 1 2 4 

Sensitivity% 100 100 100 

Specificity% 50 50 28.6 
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Figure 7-9. Comparison between experimental and simulation response for 1-gallon samples. 
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Chapter 8- Simulation 

8.1  Introduction 

Computer simulation has the advantage that cases that are difficult or expensive to consider 

experimentally can be studied.  For instance, responses from real explosives can be estimated.  

However, such simulation results should be benchmarked or verified in some way so that confi-

dence can be placed in them.  In this chapter the simulation computer code will be discussed along 

with the procedures used and the results obtained. 

8.2  MCNP simulation code 

The simulation computer code used in this study was Monte Carlo Neutral Particle 

(MCNP-5) [195]. MCNP is a general purpose code used for neutrons, photons, and electrons indi-

vidually or in combination.  It was developed by Los Alamos National Laboratory. MCNP can be 

used in many areas such as radiation protection and dosimetry, radiation shielding, radiography, 

medical physics, nuclear criticality safety and detector design and analysis [196]. It works on a 

neutron energy range from 10-11 to 20 MeV for all isotopes and up to 150 MeV from some of them.  

The photon range from 1 keV to 100 GeV and the electron energy range from 1 keV to 1 GeV 

[197] can be simulated.  

MCNP uses the Monte Carlo methodology for particle simulation by using sample means 

to estimate population means. Monte Carlo is a form of quadrature, or numerical integration, which 

is characterized by high flexibility and which works for a wide range of direct or inverse problems. 

The Monte Carlo method differs from deterministic transport methods. Deterministic transport 

methods solve the transport equation, or the diffusion equation, for the expected particle behavior 

using analytic or numeric methods that are not probabilistic. Monte Carlo, on the other hand, sim-

ulates individual particle behavior using probabilistic models to estimate tallies of the average 

behavior of an ensemble of particles. Then the average behavior of particles in the physical system 

is inferred from the average behavior of simulated particles [197].  

To simulate a problem using MCNP an input file should be prepared which includes all 

information needed to run the experiment. The input file consists of three main parts including cell 

cards (Block 1), surface cards (Block 2) and data specification cards (Block 3). More details about 

each part will be discussed in the following sections. 
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8.2.1  Cell cards (Block 1) 

Cell cards, or block1, are used to provide information about all cells used in the experiment 

geometry. Each cell is identified by intersections, unions and complements of different surfaces 

which are defined in block 2. Each cell is characterized by a number (which identifies the cell), a 

material number (which later identifies the material composition), and a material density. Material 

number and density are replaced by a single zero in the case of a void cell. Each material number 

refers to a specific material, which is described in the data specification card (block3). Moreover, 

the importance of both neutrons (n) and photons (p) is specified in the cell card. An example of 

cell card or record is the following: 

3    1     -7.86    17   -16    IMP: P, N=1   $ Cask iron shell,   

This record identifies the cell as number 3, describes the cell as filled with material number 1 

(defined later in Block 3), which has a density 7.86 g cm-3. This cell is the space inside surface 

number 16 and outside surface number 17. The IMP: P, N=1 part means both neutrons and photons 

will be transported in this cell. 

8.2.2 Surface cards (Block 2) 

Surface cards (Block 2) describe all surfaces used to build the geometry of the experiment. 

MCNP has first and second-degree surfaces in addition to forth degree elliptical tori of analytical 

geometry. The surfaces are defined by mnemonics such as C/Z for a cylinder parallel to the z-axis. 

A cylinder at an arbitrary orientation is defined by the general quadratic (GQ) mnemonic. In 

MCNP there are two ways to specify any surface parameters including using appropriate coeffi-

cients for the surface equation and using known geometrical points on a symmetric surface about 

a coordinate axis. An alternative way to describe surfaces is by using of macrobodies which can 

be mixed with the standard cells and surfaces. For example the command:  

10  RCC 0 0 0   0 0 30   10     $ Right circular cylinder, 

describes a right cylinder with a base center at the origin, its height is 30 cm, its radius is 10 cm 

and its axis is parallel to the z-axis. The number 10 at the beginning is the card number.  

8.2.3   Data specification cards (Block 3)  

Data specification cards (Block 3) contain all problem specifications other than geometry 

such as material specification, source type and description, output type (tallies) and any variance 
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reduction techniques to be used. In addition, the cross section library to be used, how many histo-

ries will be used, and the physics models involved in the experiment are identified. Material de-

scription in this card includes a unique number for each material, the elemental, or isotopic, com-

position and the cross section compilation that will be used. Source and type of radiation particles 

are specified by the SDEF command which has many variables to describe a variety of sources. 

Only one SDEF card is used to describe all sources. Different types of tallies can be used in MCNP 

according to the desired output. The most frequently used tallies are: F1 for surface current, F2 for 

average flux at a surface, F5 for the flux at a point or ring, F4 flux averaged over a cell, in addition 

to energy deposition tallies such as F6 and F7. Some optional commands can be used with the tally 

like tally energy card which arrange the tally result in energy groups or the dose energy and func-

tion cards which are used to calculate the dose. Each input file should have a mode card which 

determines the type of source particles to be tracked in addition to a time or a history card to 

determine how long or how many histories MCNP should simulate. Moreover, PHYS command 

is used to specify energy cutoffs and other physics treatments for different radiation particles. 

8.3  MCNP Simulation for our problem  

As an example, consider an MCNP-5 input file that was designed to simulate the 1-gallon 

experiment. The geometrical configuration of the simulation is shown in Figure 8-1. The dense 

plasma focus device was simulated as an X-ray isotropic point source at the origin (A). The energy 

of the source has the same X-ray spectrum estimated experimentally by the step filters method 

described in Chapter 4. Ten centimeters thick lead shielding (F) was used to prevent X-rays to 

reach detectors directly since the main purpose is to detect the scattered X-rays from the target.  

The target (B) was a 1-gallon steel can with 0.2 mm can thickness filled with the required sample 

and placed 40 cm away from the source.  

Three detectors were simulated as follows: 

i. Detector C:  A bare sodium iodide (NaI) scintillator, 3 × 3 in. 

ii. Detector D: A sodium iodide (NaI) with the same dimensions, 3 × 3 in, surrounded by 0.5 

mm cadmium filter to measure relatively higher X-ray energies. 

iii. Detector E: A bare plastic scintillator, 2𝑥1 in. 
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     Figure 8-1. Schematic diagram of the MCNP simulated experiment. 

 

Table 8-1. List of materials used in the simulation. 

1 Rubber mulch 8 Chalk 15 Sand  22 Glass 

2 Ash 9 Natural rubber 16 Soil 23 Ceramic  

3 Gasoline 10 Wax 17 TNT 24 Aluminum 

4 Ammonia 11 Polyethylene 18 Ammonium Nitrate 25 Granite 

5 FertC 12 Water 19 RDX 26 Iron  

6 FertD 13 Sugar 20 Graphite 27 copper 

7 FertMix 14 Nitroglycerin 21 HMX   

 

The three detectors were placed at an angle of  70𝑜 with the line connecting the source to the 

target center and 18 cm away from the center of the target. A schematic of the geometry is shown 

in Figure 8-1.  The F6 tally was used because the main objective was to estimate the energy de-

posited in each detector cell. The tally reading is multiplied by the number of histories to have 

total deposited energy which will represent the signature for each detector. Each experiment was 
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conducted with 108 histories. Twenty seven different samples were used; five of them are the 

following real explosives: 

i. Nitroglycerin (NG), C3H5N3O9 

ii. trinitrotoluene (TNT), C7H5N3O6 

iii. Royal Demolition Explosive (RDX), C3H6N6O6 

iv. High Melting Explosive (HMX), C4H8N8O8 

v. Ammonium nitrate, NH₄NO₃.  

All used samples are shown in Table 8-1. Figure 8-2 shows the signatures of each detector 

calculated from the simulation for the 27 samples used. These signatures were used to form the 

response, 𝑅, and target, S, vectors in equations 5-13 and 5-14 to calculate the normalized figure of 

merit (𝜁) and its standard deviation (𝜎).  In the same manner as explained in ,one can decide if the 

sample is explosive, inert or suspect. To achieve the best results, four different samples were used 

as templates, separately including RDX, HMX, TNT and Nitroglycerin. Three signatures were 

used in FOM calculations in addition to other trials to use different combinations of two signatures 

to find the best results.  

 

Figure 8-2. Simulated signatures for the three detectors. 
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Figure 8-3. Figure of merit of 3 responses versus different combinations of 2 responses using NG 

template. 

 

Figure 8-4. Figure of merit of 3 responses versus different combinations of 2 responses using               

TNT template. 
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Figure 8-5. Figure of merit of 3 responses versus different combinations of 2 responses using 

RDX template. 

 

Figure 8-6. Figure of merit of 3 responses versus different combinations of 2 responses using 

HMX template. 
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Figure 8-3 to Figure 8-6 show a comparison of the FOM calculation using three responses 

versus using different combinations of only two responses for different templates. The maximum 

number of false positives was obtained by using the two responses from detector D, the filtered 

NaI, and detector E, the bare plastic scintillator. Using two responses from detectors C and D 

produces better results but still produces false positives for ash, chalk, FertD35 and sugar. Results 

of using the three responses are close to the results of using the two responses from detectors C 

and E.   

From the previous results one can conclude that the contribution of detector D in the figure 

of merit calculations is less significant than the contributions from the other two detectors. How-

ever, in the remainder of this work the three responses will be used to calculate the figure of merit 

as it gives the best results to detect both explosive and inert samples. 

 

Figure 8-7. Comparison between the FOM for 3 responses using different templates. 
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Five real explosives were simulated in the experiment in addition to 22 inert materials. 

Four real explosive materials were used as templates including nitroglycerine, TNT, RDX and 

HMX. The FOM, for all samples, was calculated by using the signatures from one of the explosive 

samples as a template. A comparison among the FOMs calculated for the four different templates 

is shown in Figure 8-7. Quite similar results were obtained, with a slight superiority of using RDX 

and HMX in the low density samples and of using NG and TNT for the high density samples. 

Because the FOM values for high density samples are high enough for all templates to be distin-

guished, it was better to use either HMX or RDX template. Furthermore, better results were ob-

tained for HMX than for RDX as template for low density samples. As a result HMX was chosen 

as the template because it produced better results for low density samples and its results for high 

density samples are still reasonable.  

 

Figure 8-8. Figure of merit for HMX template using 1 
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Figure 8-8 shows the calculated figure of merit values (with standard deviations) from the 

simulated detector responses by using HMX as the template. To achieve good sensitivity, a cut off 

value (𝑓0) was chosen to be 2. As shown in the figure, all explosive samples, red stars, are correctly 

identified (true positives) because their figures of merit plus one standard deviation are all under 

the cut off line. Eighteen inert samples, out of 22, are correctly identified also (true negatives) 

because their figures of merit minus one standard deviation are located above the cut off line. The 

figure of merit for the sugar sample is located below the cut off line and thus sugar is the only false 

positive. The cut off line passes within one standard deviation of three inert samples (FertD35, 

FertMix and sand), so they will be considered as suspect. These results produce 100% sensitivity 

and 81.8 % specificity.   

To increase the confidence level, the errors were extended to be 2with the same cut off 

line.  As shown in Figure 8-9, one more sample, soil, is counted as suspect which reduces the 

correctly identified inert samples to 17 producing a specificity of 77.3% (the sensitivity is still 

100%).    

 

Figure 8-9. Figure of merit for HMX template using 2 
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Table 8-2. Summary of obtained results for using 1, 2 and 3 𝜎  

 1 𝝈  

(68% confidence) 

2𝝈 

(95% confidence) 

3 𝝈 

(99% confidence) 

Inert samples 22 22 22 

Explosives 5 5 5 

True positives 5 5 5 

True negatives 18 17 15 

False positives 1 1 1 

False negatives 0 0 0 

Suspect 3 4 6 

Sensitivity % 100 100 100 

Specificity % 81.8 77.3 68.2 

 

Figure 8-10. Figure of merit for HMX template using 3 
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     In the same manner, 3 error was used to increase the confidence level to 99%. As shown 

in Figure 8-10 the number of suspect samples increased to six, including chalk and FertC28 in 

addition to sand, soil, FertMix and FertD35, which lowers the specificity to 68.2% while the sen-

sitivity is still at 100%. A summary for all results of using three different errors are shown in 

Table 8-2.  

8.4  Simulation with another source 

To confirm the feasibility of using the dense plasma focus device in explosive detection, 

the emitted spectrum from another dense plasma focus device was used as a source. The used 

device is called GN1 and is located in Argentina. The device is 4.7 kJ when charged at 30 kV.  The 

hard X-ray spectrum of the device when operated at pressure of 3.5 mbar of deuterium-argon mix-

ture is shown in Figure 8-11[158]. 

 

Figure 8-11. GN1 dense plasma focus device hard X-ray spectrum. 
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Figure 8-12. Different detector responses for using GN1 hard X-ray spectrum. 

 

Figure 8-13. FOM for GN1 device by using 4 different templates. 
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Figure 8-14. FOM for GN1 device by using HMX as a template for 1 . 

 

Figure 8-15. FOM for GN1 device by using HMX as a template for 2. 
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Figure 8-16. FOM for GN1 device by using HMX as a template for 3. 

 

Table 8-3. Summary of obtained results of GN1 device for using 1, 2 and 3 σ 

 1 𝝈  

(68% confidence) 

2𝝈 

(95% confidence) 

3 𝝈 

(99% confidence) 

Inert samples 22 22 22 

Explosives 5 5 5 

True positives 5 5 5 

True negatives 17 16 14 

False positives 3 3 3 

False negatives 0 0 0 

Suspect 2 3 5 

Sensitivity % 100 100 100 

Specificity % 77.3 72.7 63.6 

 

The GN1 spectrum, shown in Figure 8-11, was used in the simulation instead of the KSU-

DPF spectrum with everything else in the simulation kept constant. The program was run for 108 



  

124 

histories as well using same samples used before for the KSU-DPF device. Responses for the three 

detectors are shown in Figure 8-12. By using these responses, FOMs for each sample were esti-

mated. Figure 8-13 show the FOM of using the four different explosives for the template. As shown 

in the figure the best results were obtained using HMX as the template, which is exactly the same 

situation when using KSU-DPF spectrum. Figure 8-14,Figure 8-15 and Figure 8-16 show the FOM 

results by using 1, 2 and 3 with the HMX as the template.  The sensitivity was 100% for all 

confidence levels; in addition, the specificity was 77.3, 72.7 and 63.6% for the three cases consid-

ered. The results for the GN1 device are shown in Table 8-3. A comparison between the GN1 and 

KSU-DPF devices is shown in Figure 8-17. The figure shows quite similar behavior for the FOM 

estimation with better results for using KSU-DPF in most of the samples. 

 

Figure 8-17.  Comparison between FOM for using KSU-DPF and GN1 DPF hard X-ray 

spectrum by using HMX as a template.  
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Chapter 9- Conclusion and Future Work 

 In this work the Kansas State University dense plasma focus (KSU-DPF) device has been 

described, characterized, and considered as an X-ray source for rapid material interrogation. 

Experimental and simulation work using the MCNP-5 code have given promising results for 

explosive detection.  

The static papameters of the KSU-DPF device have been estimated using a short circuit 

test. The calcuated static inductance L0 and resistance r0 were found to be 91 ± 2 nH and 13 ± 3 

mΩ, respectivley, while the capacitance was known from the connected capacitor to be 12.5 µF. 

The device stores energy up to 10 kJ but it was opertaed during the experimental work at 1.8 kJ 

by charging the capacitor to 17 kV. Current traces have shown that around 95% of the current 

signals of the KSU-DPF have an extra dip beyond the single dip that chracterizes most DPF 

devices. Now, DPF devices are divided into two categories; low inductance and high inductance 

devices. The high inductance devices, such as the KSU-DPF, have relatively long emission times 

which might be usefull in certain applications. 

Neutron measurements for the KSU device at different pressures showed that the optimum 

pressure for neutron production is 6 mbar of deuterium. The optimum pressure is the pressure at 

which the device produces the maximum neutron emission. The neutron yield produced at the 

optimum pressure was around 1.9 × 107 and 1.05 × 107 n/shot in both axial and radial direc-

tions, respectively. The anisotropy in the neutron emission is a measure of how the axial and radial 

components differ. In the DPF devices the neutron anisotropy is due to the beam target mechanism 

for neutron production which produces more neutron in the axial phase than the in the radial. As 

noticed from the time-to-pinch relation with the pressure, at 6 mbar the time to pinch is 1.7 µs, 

which is the time of the first peak in the current signal. Hence, the maximum compression occurs 

in the plasma pinch at this moment. The energy of neutrons emitted from the D-D reaction is 

known to be 2.45 MeV.  The emitted neutron energy from the KSU-DPF was confirmed by the 

time of flight technique to be 2.45 MeV. Ions with energies up to 130 keV were measured with a 

Faraday cup using the time of flight technique. The average ion energy increases with increasing 

the pressure up to a value greater than 100 MeV at 1.5 mbar and then decreases gradually with 

increasing pressure up to 10 mbar. The spatial distribution of the ions was measured by using a set 
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of Faraday cups distributed at angles of 0o, 10o, 20o and 30o measured from the anode axis. Meas-

urements showed that the deuteron intensity is a maximum at the top of the anode (0), where they 

are generated and accelerated due to the intensive electric field produced during the evolution of 

the sausage instabilities (m = 0). The ion intensity decreases as the angle from the anode tip in-

creases.   The ion intensity was almost constant at 0o angle over the pressure range from 0.5 to 6 

mbar and started decreasing with increasing pressure beyond that. On the other hand, increasing 

the angle decreases the intensity rapidly with increasing pressure.  

The effect of changing gas pressure in the hard X ray emission from the KSU-DPF was 

studied with a heavy gas (neon). Measurements showed that the maximum hard X ray (HXR) yield 

was obtained at a neon pressure of 0.5 mbar in both the axial and radial directions.  The yield 

gradually decreases with increasing pressure up to 3 mbar. Between 3 and 5 mbar of neon pressure, 

the HXR yield decreases rapidly. This because the electron intensity decreases with increasing 

pressure. Because the electrons are responsible for HXR production, it is logical that the HXR 

yield should decrease with increasing pressure. Anisotropy was reported with a value of 1.3 in the 

pressure range from 0.5 to 3 mbar; it then increased to a value of 4 at 5 mbar. The probable reason 

for the anisotropy is the anode geometry. The anode was a hollow cylinder with wall thickness 

about 3 mm. As a result, the radial emission will be attenuated by the anode wall thickness. The 

increase in the anisotropy at high pressure may be explained by the ion energy at these pressures. 

As shown from the ion energy relation with pressure, at high pressure the ion energy was low 

which means the electron energy will be low as well. As a result the produced HXR will be less 

energetic and hence will be more highly attenuated.      

Using radiographies of step filters from different materials, the average effective energy of 

the HXR emission was estimated by 59 ± 3 keV, which was a reasonable value for a theoretically 

estimated pinch voltage of 72 kV. The calculated HXR spectrum for the device as estimated using 

the same radiographies of the step filters and ranged from 20 to 120 keV. The spectrum increases 

from 20 keV until it reaches a maximum value at 53 keV and then decreases to zero at 120 keV. 

The HXR emission was tested by taking radiographs of different objects. The resulting radiog-

raphies were precise, clear and have good spatial resolution. The good resolution with 3 shots 

indicates that the HXR emission is relatively stable shot to shot. 

In this work, the KSU-DPF was used as an X ray source for explosive detection. In the 

experimental work, three different responses were obtained experimentally. The target samples 
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differed in density and effective atomic number. Three nitrogen rich fertilizers in addition to am-

monium nitrate were used as explosive surrogates in experiments using one gallon and quart sam-

ples. The template used was that for a 31% N fertilizer in the sample. All explosive surrogates 

were correctly identified for all sizes of samples producing 100% sensitivity within the tested sam-

ples. In the five and one-gallon experiments, half of the inert samples were correctly identified 

producing 50% specificity while only 28.6% specificity was achieved for the one quart samples.  

Water samples of all sizes were always identified as false positives. Rubber mulch also was 

always considered as a suspect. The sand sample can be correctly identified in volumes of one 

gallon or more. The sugar sample gave a false positive at the one-gallon size and improved a little 

to be suspect in the quart size.  Finally, polyethylene gave a false positive in the 5-gallon sample 

but became a suspect in both one-gallon and one-quart samples. All previous measurements were 

done at the 68% (one sigma) confidence level.  

The MCNP-5 simulations gave detector responses in good agreement with the experimental ones, 

which encouraged to simulate other problems. Computer simulations allowed us to study more 

samples including real explosive samples. Twenty seven one-gallon samples, which were filled 

with five explosives and 22 inert materials were simulated.  Responses from four out of the five 

explosives were used as templates, separately, and results were compared. Moreover, different 

combinations of two responses were used in and compared to using three responses and results 

were compared. The best results were obtained by using responses from the three detectors and 

using the HMX sample responses as a template. The first simulations were done using the HXR 

spectrum of the KSU-DPF. The simulation results were tested at 68, 95 and 99% confidence by 

extending the errors at the one, two and three sigma levels. Based on the simulation results, we 

can conclude the following: 

i. All explosive samples are correctly identified for all confidence levels. 

ii. All inert samples with density higher than explosives were correctly identified as true nega-

tives.  These included graphite, glass, ceramic, aluminum, granite and copper. 

iii. Most inert samples with density lower than explosives were also correctly identified, except 

for those that have one or more elements that exist in explosives, such as fertilizers. 

iv. Samples that have a density close to the density of an explosives were usually identified as sus-

pects, or very close to be suspects. These samples include soil and sand.  Sugar was always 

wrongly identified as explosive (false positive). This presumably is because sugar, in addition to 
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having a similar density to the explosive used for the template, is also a compound rich in carbon 

and oxygen, which are among the four main elements of the explosives (oxygen, carbon, hydro-

gen and nitrogen).    

With 68% confidence, the simulation result produced 100% sensitivity and around 82% 

specificity. Increasing the confidence level to 95% produced 100% sensitivity and 77% specificity 

while using 99% confidence level produced 100% sensitivity and 68% specificity. These percent-

ages were based on doing the simulation on 27 samples only. It cannot be generalized for all types 

of samples and materials but at least the results are encouraging for the samples considered. 

         Another simulation was performed using the HXR spectrum from another DPF device, called 

GN1. The same procedures were followed as in the first simulation with the spectrum from the 

KSU-DPF. The results obtained the same level of sensitivity, 100% for all confidence levels, with 

little decrease in the specificity levels to around 77, 73 and 64% for the one, two and three sigma 

levels, which is still good. 

Experimental and simulation results showed the possibility of using the DPF device as an 

X-ray source for explosive detection with sample volumes ranging from a quarter up to 5-gallons. 

The advantages of using this method can be summarized as follows. 

i. Using the SBRS technique for explosive detection provides an automatic decision. There is 

no need for any operator experiences to judge the results. 

ii. The DPF devices provides fast HXR signals, within 200 nanoseconds, which will save a lot 

of time especially in areas when a large number of samples need to be investigated. 

iii. The DPF devices might be an alternative to radioactive sources. The radiation is emitted at 

the push of a button rather than continuously. 

iv. A Table-top DPF device can be designed and can be used as a portable system to be used 

anywhere. 

Based on the experience on the KSU-DPF device the disadvantages can be concluded in the fol-

lowing points: 

i. One shot was not enough to judge the samples. To get a good estimation at least 10 shots are 

needed, which can be resolved by operating the device in a repetitive mode. 

ii. Higher energy HXR was need for better penetration, especially for big samples. 

iii. The smaller the sample, the bigger the error. 
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iv. The DPF devices can be used at standoff but within certain limits.  Currently standoff distance 

is limited to 1 m because at larger distances solid angle considerations reduce the number of 

photons received from the sample. 

v. Good shielding should be designed for the experiment to ensure that most of the signals picked 

up by the detectors are scattered from the target.  

vi. Shot-to-shot variability in radiation production. This was accounted for in this work by nor-

malizing the scattered signal to the signal emitted directly from the device for multiple shots, 

but this is a tedious process to implement in the field.  

In conclusion, we claim that the DPF devices with simple, room-temperature detectors may pro-

vide a portable way to perform rapid screening for threat materials. 

For future work, more simulation needs to be done by using more samples to get better 

statistics. Samples with mixed materials inside also need to be investigated. The KSU-DPF device 

was not originally designed as a collimated radiation source to be used for material interrogation.  

Thus, suitable shielding had to be designed to block radiation escaping from many openings and 

tubes connected to the vacuum chamber.  Also, the KSU-DPF was designed for an operating rate 

in excess of 1 Hz.   Another device can be designed specifically for the purpose of material inter-

rogation.  This device could operate with a smaller vacuum chamber and fewer openings. The new 

device should work also in a repetitive mode by adding an external electronic circuit. 
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Appendix (i) MATLAB code used to calculate the Hard X-ray Spectrum 

clear; 

load alltables; 

% N=number of energy points, no of Energy bins are N-1 

N=100; E_min=30; E_max=140; 

Energy=zeros(N,1); 

Initial_Spectrum=zeros(N,2); 

%-----------Initial spectrum------------------------- 

Energy(1)=E_min; 

for i=2:N 

    Energy(i)=Energy(i-1)+(E_max-E_min)/(N-1); 

end 

Energy_bin=Energy(2)-Energy(1); %The energy in keV. 

phi=sin(pi*(Energy-E_min)./(E_max-E_min)).*exp(-0.030*(Energy-

E_min)); 

Initial_Spectrum(:,2)=phi; 

Initial_Spectrum(:,1)=Energy; 

% normalizing the spectrum distribution 

Initial_Spectrum(:,2)=Initial_Spectrum(:,2)/(trapz(Initial_Spec-

trum(:,1),Initial_Spectrum(:,2))); 

Initial_Spectrum(:,:)=abs(Initial_Spectrum(:,:)); 

plot(Initial_Spectrum(:,1),Initial_Spectrum(:,2)); 

figure; 

% --------------lambda is the initial factor-------------- 

lambda=ones(N,2); 

lambda(:,1)=Initial_Spectrum(:,1); 

% -----------------screen response match------------------ 

screen_response_matched=zeros(N,2); 

screen_response_matched(:,1)=Energy; 

for i=1:100 

    screen_response_matched(i,2)=interpolation_screen(En-

ergy(i)); 

  

end 

%--------------------attenuation response match (/mm not cm) 

%--this one is for cupper, if you want one elese you should go 

to the 

%attenuation function and choose the material table. 

Attenuation_tables_matched=zeros(N,2); 

Attenuation_tables_matched(:,1)=Energy; 

for i=1:100 

    Attenuation_tables_matched(i,2)=interpolation_attenua-

tion(Energy(i)); 

end 

%------------------------we need equations equal to thicknesses 

we have 
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%-------- in our case we have 100 thickness after interpolating 

data.-- 

system1=zeros(N,N); 

system2=zeros(N,N); 

for j=1:100 

    for k=1:100  

        system1(j,k)=(lambda(k,2))*(Initial_Spec-

trum(k,2))*(screen_response_matched(k,2))*exp(-(Attenuation_ta-

bles_matched(k,2))*(strip_attenuation(j,3))); 

        system2(j,k)=(lambda(k,2))*(Initial_Spec-

trum(k,2))*(screen_response_matched(k,2)); 

         

    end 

end 

  

summation1=zeros(N,1); 

summation2=zeros(N,1); 

for j=1:100 

    for k=1:100  

        summation1(j)=summation1(j)+ system1(j,k) ; 

        summation2(j)=summation2(j)+ system2(j,k) ; 

    end 

end 

summation= summation1./summation2; 

hold on; 

%figure; 

plot(strip_attenuation(:,3),strip_attenuation(:,4),strip_attenu-

ation(:,3),summation(:,1)); 

%--- starting from here we will change lambda values to match 

the responses 

%to eachother. 

% ************************************************************** 

system1=zeros(N,N); 

system2=zeros(N,N); 

trials=20; 

lambda1=ones(1,trials); 

lambda2=ones(1,N); 

B=zeros(N,trials); 

for i=1:N             % number of trials to see which is best!       

    for m=1:trials 

        lambda1(1,m)=(m/10)*lambda1(1,trials/2); 

    end 

    for l=1:trials 

    lambda2(1,i)=lambda1(1,l); 

     

        for j=1:100 

            for k=1:100 



  

148 

                system1(j,k)=(lambda2(1,k))*(Initial_Spec-

trum(k,2))*(screen_response_matched(k,2))*exp(-(Attenuation_ta-

bles_matched(k,2))*(strip_attenuation(j,3))); 

                system2(j,k)=(lambda2(1,k))*(Initial_Spec-

trum(k,2))*(screen_response_matched(k,2));         

            end     

        end 

summation1=zeros(N,1); 

summation2=zeros(N,1); 

for j=1:100 

    for k=1:100 

        summation1(j)=summation1(j)+ system1(j,k) ; 

        summation2(j)=summation2(j)+ system2(j,k) ; 

    end 

end 

summation= summation1./summation2; 

%error=strip_attenuation(:,4)-summation(:,1); 

A=cov(summation(:,1),strip_attenuation(:,4)); 

B(i,l)=A(1,2); 

  

%hold on; 

%plot(strip_attenuation(:,3),error); 

%plot(strip_attenuation(:,3),summation(:,1)); 

    end 

    lambda2=ones(1,N); 

     

end 

****************************************************************************** 

function [ g ] = interpolation_screen(xi) 

load alltables; 

A=find(screen_response(:,1)>=xi); 

b=A(1); 

x1=screen_response(b-1,1); 

x2=screen_response(b,1); 

y1=screen_response(b-1,3); 

y2=screen_response(b,3); 

g=y1+(((xi-x1)*(y2-y1))/(x2-x1)); 

  

end 

 

function [g] =interpolation_attenuation(xi) 

load alltables; 

if xi>=300 

    xi=300; 

end 

A=0;b=0;x1=0;x2=0;y1=0;y2=0; 
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A=find(Attenuation_tables(:,3)>=xi); 

b=A(1); 

x1=Attenuation_tables(b-1,3); 

x2=Attenuation_tables(b,3); 

y1=Attenuation_tables(b-1,4); 

y2=Attenuation_tables(b,4); 

g=y1+(((xi-x1)*(y2-y1))/(x2-x1)); 

end  
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Appendix (ii) An example of the input file of the MCNP-5 code 

c Material Detection with X ray scatter on Al Target 

c ********** Block 1: Cell Cards ******************   

  1 0 -11                                           IMP:P=1 IMP:N=1       $ INSIDE THE CHAMBER 

  2 2 -0.0012  11 -10                        IMP:P=1 IMP:N=1       $ THE CHAMBER THICKNESS air 

  3 2 -0.0012 10 30 -12 17 18 19   

          37  40                                    IMP:P=1 IMP:N=1       $ THE ROOM  

  4 3  -0.96  12 -13                          IMP:P=1 IMP:N=1       $ WALL THICKNESS CONCRETE wall 

  5 0  13                                           IMP:P=0 IMP:N=0       $ THE GRAVE YA4RD OUTSIDE  

  8 49 -3.667 -16                             IMP:P=1 IMP:N=1        $ Sodium Idiode PMT2 

  9 13 -2.6989 -41                           IMP:P=1 IMP:N=1        $ target Material 

  118 49 -3.667 -18                         IMP:P=1 IMP:N=1        $ Sodium Idiode PMT1 

  119 6 -1.032 -19                           IMP:P=1 IMP:N=1        $ plastic cyntillator PMT3 

  130 37   -8.65 -30 16                    IMP:P=1 IMP:N=1        $ Cd filter on PMT2 

  137 7 -11.35  -37                          IMP:P=1 IMP:N=1        $ lead shield 

  140 7 -11.35  -40                          IMP:P=1 IMP:N=1        $ lead shield 

  141 1 -7.8212 -17 41                    IMP:P=1 IMP:N=1        $ target thickness   

  

c ********** Block 2: Macrobodies ***************** 

   10  RCC 0 0 -14.5 0 0 29 6.4                                          $ THE Outer CYLINDER of the chamber 

   11  RCC 0 0 -14.5 0 0 29 6.0                                          $ THE Inner CYLINDER of the chamber 

   12  RPP -663 102 -196 597 -152 208                             $ THE Inner BOX of room 

   13  RPP -693 132 -226 627 -182 238                             $ THE Outer BOX of room 

   16  RCC -17.3 45.3 0 -7.142 2.599 0 3.8                        $ PMT2 NaI 

   17  RCC  0 40 -15 0 0 30 14.52                                       $ target outer surface 

   41  RCC  0 40 -15 0 0 30 14.5                                         $ target inner surface 

   18  RCC -14.5 53 0 -7.142 2.599 0 3.8                           $ PMT2 NaI 

   30  RCC -17.193 45.27 0 -7.3296 2.6678 0 3.9              $ 0.5 mm Cd filter at PMT2 

   19  RCC -19.8 38.8 0 -2.39 0.87 0 2.54                          $ PMT3 Plastic  

   37  box -14.8 22.7 -15 1.7365 9.8481 0 -44.3163 7.8142 0 0 0 30   $ Shield Lead 

   40  box  2.8 55 -15 3.4748 9.5472 0 -42.3 15.36 0 0 0 30                $ Shield lead 

   

c ********** Block 3: Data Cards ****************** 
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c ----- Xray source at the origin--------------------------------------------------- 

SDEF  POS 0 0 0 PAR=2   ERG=d1                             $ particle type (photons), position, Energy 

si1 A  0 0.02 0.025742 0.030199 0.031391 0.034172 0.036954  

       0.04053 0.043444 0.04649 0.049139 0.051788 0.05404  

       0.055497 0.058675 0.061457 0.063974 0.066887 0.069801 

       0.071921 0.074967 0.077881 0.08053  

       0.083444 0.086755 0.089139 0.091921 0.095232 0.098808  

      0.103576 0.108079 0.111788 0.115629  

       0.119338 0.123974 0.129007 0.133907 0.137881 

      0.142 0.142384 

sp1   0 0 0.00 0.000295 0.002295 0.006131 0.009475 0.012492   

      0.014492 0.016098 0.017016 0.017508 0.017869 0.017900 

      0.017967 0.017639 0.017246 0.016689 0.015967 0.01531  

      0.014426 0.013541  

      0.012656 0.011672 0.010623 0.00977 0.008852 0.007869 0.00682 

      0.005541 0.004459 0.003639 

      0.002885 0.002262 0.001574 0.000918 

      0.000459 0.000164  

      0.000033 0.0 

F16:p  118                                                   $ FLUENCE AVERAGE OVER CELL 8,   PMT2 

F26:p  8                                                       $ FLUENCE AVERAGE OVER CELL 118, PMT1 

F36:p  119                                                   $ FLUENCE AVERAGE OVER CELL 119, PMT3 

MODE p  

NPS 100000000 

c PRINT 110 

c ------------------------------------------------------------------ 

c  Energy groups 

c ------------------------------------------------------------------ 

  E16   0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045  0.05 

        0.055  0.06  0.065  0.07  0.075  0.08  0.085  0.09  0.095  0.100 

        0.105  0.110 0.115  0.120 0.125  0.130 0.135  0.14  0.145  0.150 

        0.155  0.16  0.165  0.17  0.175  0.18  0.185  0.19  0.195  0.200 

  E26   0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045  0.05 

        0.055  0.06  0.065  0.07  0.075  0.08  0.085  0.09  0.095  0.100 



  

152 

        0.105  0.110 0.115  0.120 0.125  0.130 0.135  0.14  0.145  0.150 

        0.155  0.16  0.165  0.17  0.175  0.18  0.185  0.19  0.195  0.200 

  E36   0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045  0.05 

        0.055  0.06  0.065  0.07  0.075  0.08  0.085  0.09  0.095  0.100 

        0.105  0.110 0.115  0.120 0.125  0.130 0.135  0.14  0.145  0.150 

        0.155  0.16  0.165  0.17  0.175  0.18  0.185  0.19  0.195  0.200 

c ************** MATERIALS ********************** 

c ----------steel------------------------------------------------------- 

c           Carbon Steel TN-68 (Table 5.3-1) 

c          Density = 7.8212 g/cm^3;  Composition by atom fraction 

c ----------------------------------------------------------------------- 

m1   26000.50c  0.95510 

      6000.60c   0.04490 

c ---------Air------------ 

m2    7014.50c  -0.7558 

      8016.50c  -0.2314 

      18000.35c -0.0128 

c --------Concrete-------- 

m3    1001.50c   -.0056 

      8016.60c   -.4983 

      11023      -.0171 

      12000      -.0024 

      13027.50c  -.0456 

      14000.50c  -.3158 

      16000      -.0012 

      19000.50c  -.0192 

      20000.50c  -.0826 

      26000.50c  -.0122 

c -------Helium----------   

m4    2003.60c 1  

c -------------------------------------------------------------------- 

c       material: borated polyethylene d=1.00 g/cm^3  CH2 + 8 wt% B4C 

c                 B-11 5.029; B-10 1.234; C 80.595; H 13.143 

c -------------------------------------------------------------------- 
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 m5   1001.50c -0.13143 

      5010.50c -0.01234 

      5011.50c -0.05029 

      6000.50c -0.80594 

c -------------------------------------------------------------------- 

c plastic cyntillator material with density 1.032 g/cm3 

c --------------------------------------------------------------------- 

m6   1001 -0.085000 

     6012 -0.915000 

c  --------------------------------------------------------- 

c  Natural LEAD (nominal density 11.35 g/cm^3 

C    [1.4% 204Pb;  24.1% 206Pb; 22.1% 207Pb; 52.4% 208Pb] 

c  --------------------------------------------------------- 

m7   82000.50c -1.00000 

c    ************************************************************* 

c     Polypropylene Disk TN-68 (Table 5.3-1) 

c        Density = 0.90 g/cm^3;   Composition by atom fraction 

c    ************************************************************* 

m8     6012.50c .33480 

       1001.50c .66520 

c ********************************************************************* 

c Cadmium, rho = 8.65 g/cc 

C ********************************************************************** 

m9 48000 -1.000000 

c *********************************************************************** 

c Material inside the target 

C Water Rho= 1g/cm3 

c ************************************************************************* 

m10     1001 -0.111894 

        8016 -0.888106 

c -------------the stinless steel  rho = 7.92 

m11         24000.50c -0.190 $ Cr 

           25055.50c -0.020 $ Mn 

           26000.50c -0.695 $ Fe 
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           28000.50c -0.095 $ Ni 

c *********************************************************** 

c ------------ Hydrogen 

m12     1001.60c   -1.00000 

c *********************************************************** 

c ------Aluminum composition   rho=2.6989 

m13     13027.50c   -1.00000 

c *********************************************************** 

c ------Tungsten  rho = 19.3 

m14     074000.50c   -1.00000 

c ********************************************************** 

c ----- copper-----  rho=8.960 

m15     29000.50c     -1.00000 

c *********************************************************** 

c ----- plate glass     rho=2.4 

m16       8016.50c -0.459800 

            11023.50c -0.096441 

            14000.50c -0.336553 

            20000.50c -0.107205 

c ********************************************************** 

c     SOIL: [Jacob, Radn. Prot. Dos. 14, 299, 1986]**** 1.625 g/cm^3 

m17     1001.60c  -0.021 

        6000.50c  -0.016 

        19000.50c  -0.013 

        26000.50c  -0.011 

        20000.50c  -0.041 

        13027.50c  -0.050 

        14000.50c -0.271 

        8016.50c  -0.577 

c *********************************************************** 

c Carbon, Graphite, rho = 1.70 g/cc 

m18  6000.60c 1.00 

c *********************************************************** 

c Explosive Compounds 
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c *********************************************************** 

c TNT, rho = 1.654 

m19 1001.60c  -0.022189 

          6000.50c -0.370160 

         7014.50c  -0.185004 

         8016.50c  -0.422648 

c *********************************************************** 

C RDX rxplosive C 3  H 6  N 6  O 6 --- rho=1.806 

m20 1001.60c  -0.027227 

          6000.50c -0.162222 

          7014.50c -0.378361 

          8016.50c -0.432190 

c *********************************************************** 

c HMX Density ( g / cm3 )= 1.902 

m21 1001.60c  -0.027227 

          6000.50c -0.162222 

          7014.50c -0.378361 

          8016.50c -0.432190 

c *********************************************************** 

c NG ( Nitroglycerin) Density ( g / cm3 )= 1.13 

m22 1001.60c  -0.022193 

          6000.50c -0.158671 

         7014.50c  -0.185040 

         8016.50c  -0.634096  

c *********************************************************** 

c PETN Density ( g / cm3 )= 1.773 

m23 1001.60c  -0.025506 

          6000.50c -0.189961 

         7014.50c  -0.177223 

         8016.50c  -0.607310 

c *********************************************************** 

c EGDN (Ethylene Glycol Dinitrate) Density ( g / cm3 )= 1.490 

m24 1001.60c  -0.026514 

          6000.50c -0.157970 
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          7014.50c -0.184222 

          8016.50c -0.631294 

c *********************************************************** 

c AN (Ammonium Nitrate) Density ( g / cm3 )= 1.730 

m25 1001.60c   -0.050370 

          7014.50c  -0.349978 

          8016.50c  -0.599652 

c *********************************************************** 

c NC (Nitrocellulose) Density ( g / cm3 )= 1.660 

m26 1001.60c -0.028320 

          6000.50c -0.289258 

          7014.50c -0.168664 

          8016.50c -0.513758 

c *********************************************************** 

c Fertilizer Density (Fert B) ( g / cm3 )= 0.990 

m27 1001.60c  -0.0000504 

         8016.50c  -0.0007176 

        11023.50c -0.0087350 

        12000.50c -0.0002058 

        16000.50c -0.0001590 

        17000 -0.4778000 

        19000.50c -0.5117000 

        20000.50c -0.0002758 

        35000.50c -0.0003303 

c *********************************************************** 

c Gasoline, rho = 0.6837 

m28 1001.60c   -0.160000 

          6000.50c  -0.840000 

c *********************************************************** 

c Oil 

c Crude Oil Density ( g / cm3 )= 0.973 

m29 1001.60c   -0.120000 

          6000.50c  -0.850000 

          7014.50c  -0.010500 
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          8016.50c  -0.007750 

         16000.50c -0.030250 

c *********************************************************** 

c Hydraulic Oil Density ( g / cm3 )= 1.28 

m30 1001.60c    -0.040509 

          6000.50c   -0.585083 

          8016.50c   -0.078042 

          15000.50c -0.037771 

          17000 -0.258941 

c *********************************************************** 

c Lard Oil  Density ( g / cm3 )= 0.915 

m31  1001.60c   -0.117673 

           6000.50c  -0.779024 

           8016.50c  -0.103657 

c *********************************************************** 

c Paraffin Wax Density ( g / cm3 )= 0.930 

m32         1001.60c -0.148605 

           6000.60c -0.851395 

c *********************************************************** 

c Polyethylene Density ( g / cm3 )                = 0.94 

m33 1001.50c -0.143716 

          6000.50c -0.856284 

c *********************************************************** 

c Polyethylene Terephthalate    Density      = 1.380 

m34 1001.50c -0.041960 

          6000.50c -0.625016 

          8016.50c -0.333024 

c *********************************************************** 

c UREA: Density (g/cm3)                          = 1.323 

m35         1001.50c    -0.067131 

            6000.50c    -0.199999 

            7014.50c    -0.466459 

            8016.50c     -0.266411 

c ************************************************************ 
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c PARAFFIN WAX: Density (g/cm3)   0.93 

m36  1001.50c    -0.148605 

           6000.50c   -0.851395 

c ************************************************************ 

c Cadmium   Density ( g / cm3 )= 8.65 

m37  48000.50c -1.000000 

c ************************************************************ 

c                 Lead (density 11.35 g/cc) 

c ------------------------- 

M38   82000.50c  -1.0   $elemental Pb and atomic abundance 

c **************************************************** 

c             Ceramic (2.403)  

c -------------------------------------------------------- 

M39   8016.50c    0.6364  $Oxygen 

      13027.50c   0.1818  $Al 

      14000.50c   0.1818  $Si 

c **************************************************** 

c    Granite (2.73 g/cc)    

c --------------------------------------------------------- 

M40   1001.50c   0.027122  $Hydrogen   

      6000.50c   0.000502  $Carbon 

      8016.50c   0.607735  $Oxygen 

     11023.50c   0.025866  $Sodium 

     12000.50c   0.018081  $Magnesium 

     13027.50c   0.062783  $Alumminum 

     14000.50c   0.205927  $Silicon 

     19000.50c   0.013939  $Potassium 

     20000.50c   0.018960  $Calcium 

     26000.50c   0.019086  $Iron  

c **************************************************** 

c    Limestone (2.35 g/cc)    

c --------------------------------------------------------- 

M41   6000.50c   0.2       $Carbon 

      8016.50c   0.6       $Oxygen 
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     20000.50c   0.2       $Calcium  

c ***************************************************** 

c      Ash (0.641 g/cc) General Wood wrong components 

c --------------------------------------------------------- 

M42    6000.50c   0.1300  $Carbon 

       8016.50c   0.4200  $Oxygen 

      12000.50c   0.0100  $Magnesium 

      13027.50c   0.0200  $Aluminum 

      19000.50c   0.0800  $Potassium 

      20000.50c   0.3400  $Calcium 

c ------------------------------------------------- 

c Acetone  C3H6O  Density (g/cm3) = 0.789900 

m43  1001.50c  -0.104122 

          6000.50c  -0.620405 

          8016.50c  -0.275473 

c ------------------------------------------------------ 

c Ammonia  NH3 Density (g/cm3) = 0.771 

m44  1001.50c  -0.177547 

          7014.50c -0.822453 

c -------------------------------------- 

c Asphalt  (the black glue only) Density (g/cm3) = 1.3 

m45  1001.50c    -0.103725 

      6000.50c    -0.848050 

        7014.50c    -0.006050 

       8016.50c    -0.004050 

       16000.50c    -0.037700 

       23000.50c   -0.000393 

        28000.50c   -0.000034 

c -------------------------------------- 

c  Asphalt Pavement, blacktop. rho=2.5784 

m46  1001.50c            -0.007781 

         6000.50c            -0.076175 

          7014.50c            -0.000363 

         8016.50c            -0.459103 
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           11023.50c          -0.011659 

        12000.50c          -0.021757 

          13027.50c          -0.051009 

            14000.50c          -0.231474 

             16000.50c          -0.002804 

            19000.50c          -0.017058 

              20000.50c          -0.084471 

            22000.50c          -0.003403 

              23000.50c          -0.000024 

              25055.50c          -0.000362 

             26000.50c          -0.031375 

            28000.50c          -0.000002 

           82000.50c          -0.001179 

c ------------------------------------------------ 

c ---------------- sand 1.7 g/c3 ----- 

m47  1001.50c   -0.007833 

          6000.50c   -0.003360 

          8016.50c   -0.536153 

         11023.50c  -0.017063 

         13027.50c  -0.034401 

         14000.50c  -0.365067 

        19000.50c   -0.011622 

        20000.50c   -0.011212 

       26000.50c    -0.013289 

c ------------------------------------------------ 

c             Sugar (1.54 g/cc 

c ------------------------------------------------ 

M48  1001.50c    -0.067134702 

          6000.50c    -0.400017318 

          8016.50c    -0.532847979 

c -------------------------------------------------------- 

c Sodium Idiode  Density (g/cm3) = 3.667000 

M49  11000 -0.153373 

     53000 -0.846627 


