
SQL VERSUS MONGODB FROM AN APPLICATION DEVELOPMENT

POINT OF VIEW

by

Ankit Bajpai

B.S, Jawaharlal Nehru Technological University, India, 2010

A REPORT

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2015

Approved by:

Major Professor
Doina Caragea

Copyright

Ankit Bajpai

2015

Abstract

There are many formats in which digital information is stored in order to share and re-use it

by different applications. The web can hardly be called old and already there is huge research

going on to come up with better formats and strategies to share information. Ten years ago

formats such as XML, CSV were the primary data interchange formats. And these formats

were huge improvements over SGML (Standard Generalized Markup Language). It’s no

secret that in last few years there has been a huge transformation in the world of data

interchange. More lightweight, bandwidth-non-intensive JSON has taken over traditional

formats such as XML and CSV.

BigData is the next big thing in computer sciences and JSON has emerged as a key

player in BigData database technologies. JSON is the preferred format for web-centric,

“NoSQL” databases. These databases are intended to accommodate massive scalability and

designed to store data which does not follow any columnar or relational model. Almost all

modern programming languages support object oriented concepts, and most of the entity

modeling is done in the form of objects. JSON stands for Java Script object notation and as

the name suggests this object oriented nature helps modeling entities very naturally. And

hence the exchange of data between the application logic and database is seamless.

The aim of this report is to develop two similar applications, one with traditional SQL as

the backend, and the other with a JSON supporting MongoDB. I am going to build real life

functionalities and test the performance of various queries. I will also discuss other aspects

of databases such as building a Full Text Index (FTI) and search optimization. Finally I

will plot graphs to study the trend in execution time of insertion, deletion, joins and co-

relational queries with and without indexes for SQL database, and compare them with the

execution trend of MongoDB queries.

Table of Contents

Table of Contents v

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Model View Controller (MVC) . 2

2 Background 4

2.1 Relational Databases . 4

2.1.1 Database Transaction (ACID Properties) 5

2.1.2 Normalization . 5

2.2 NoSQL Databases . 6

2.2.1 BASE Properties . 7

2.2.2 Classification of NoSQL Databases 7

3 Datasets 10

3.1 Yelp Datasets . 10

3.2 Normalization of Datasets . 12

4 Building the Applications 15

4.1 Setting up Databases . 15

4.1.1 Setting up the SQL Database . 15

v

4.1.2 Setting up the MongoDB Database 16

4.2 Loading data . 18

4.2.1 Loading Data on SQL Database . 18

4.2.2 Loading Data on MongoDB Database 19

4.3 Queries . 21

4.3.1 CRUD Queries . 21

4.3.2 Join Queries . 36

4.4 Full Text Index (FTI) . 38

4.4.1 Creating an FTI for a SQL Table . 38

4.4.2 Creating an FTI on MongoDB Collection 40

5 Using the Application 43

6 Testing 53

6.1 Web Performance Testing . 53

6.2 Load Testing . 55

7 Technologies Used 59

8 Lessons Learned and Conclusions 62

Bibliography 64

vi

List of Figures

1.1 MVC Architecture . 2

1.2 MVC Architecture: Login View . 3

1.3 MVC Architecture: Login Controller . 3

4.1 Loading Data on MongoDB . 20

4.2 Inserting a row in a SQL table . 21

4.3 Inserting a document in a MonogoDB collection 22

4.4 Deleting a row from a SQL table . 22

4.5 Deleting a document from a MongoDB collection 22

4.6 Graph to show time taken by an insert query in SQL and MongoDB 23

4.7 Graph to show time taken by a delete query in SQL and MongoDB 24

4.8 Reading a row from a SQL table . 25

4.9 Reading a document from a MongoDB collection 25

4.10 Graph to show time taken by a update query in SQL and MongoDB 26

4.11 Update a row in a SQL table . 27

4.12 Updating a document in a MongoDB collection 27

4.13 Graph to show time taken by a update query in SQL and MongoDB 28

4.14 SQL query to find MIN/MAX of a field . 29

4.15 MongoDB query to find MIN/MAX of a field 29

4.16 Graph to show the time taken by a aggregation query in SQL (Indexed and

Non Indexed) and MongoDB . 30

4.17 SQL query to find all the row with in a range 31

vii

4.18 MongoDB query to find all the documents with in a range 31

4.19 Graph to show the time taken by a range query in SQL (Indexed and Non

Indexed) and MongoDB . 32

4.20 Nested SQL query . 32

4.21 Nested MongoDB query . 32

4.22 Graph to show the time taken by a nested query in SQL (Indexed and Non

Indexed) and MongoDB . 33

4.23 GROUP BY and HAVING SQL query . 34

4.24 GROUP BY and HAVING MongoDB query 34

4.25 Graph to show the time taken by a group by query in SQL (Indexed and Non

Indexed) and MongoDB . 35

4.26 Join clause in SQL: Finding a business based on location, rating and category

in a normalized table . 36

4.27 MongoDB Query: Finding a business based on location rating and category . 36

4.28 SQL Query: Finding a business based on location rating and category on a

non-normalized table . 37

4.29 Searching for a keyword in an FTI created on review JSONs 41

4.30 Finding unique businesses from the output of FTI search 41

4.31 Searching for a keyword in an FTI created on reviews embedded business

JSONs . 41

5.1 Using the Application: Homepage . 44

5.2 Using the Application: Login page . 45

5.3 Using the Application: User homepage . 46

5.4 Using the Application: Search page . 47

5.5 Using the Application: Output of the search 48

viii

5.6 Using the Application: Admin homepage . 49

5.7 Using the Application: Business homepage 50

5.8 Using the Application: Create a business page 51

5.9 Using the Application: Edit a business page 52

6.1 Performance testing (user web): Webpages related to the user role and their

average response times . 54

6.2 Performance testing (admin web): Webpages related to the admin role and

their average response times . 54

6.3 Load test (user admin): Including web performance tests 55

6.4 Load test (user admin): Connection speeds included 56

6.5 Load test (user admin): Browsers included in the load test 57

6.6 Load test (user admin): The result of the load test 58

ix

List of Tables

4.1 Summarization of Query Performances on SQL and MongoDB 38

7.1 Project Metrics . 61

x

Chapter 1

Introduction

For this report, we are going to build two applications, one with SQL as backend and the

other with MongoDB. Both applications are built on MVC (Model View Controller) pattern

architecture. The application with SQL as backend will be developed using ASP.Net MVC 4

and the NoSQL application will be built on Java Spring MVC. The reason for choosing two

different frameworks is to make sure I am using the most suitable programming language

and framework for the respective databases. ASP.Net MVC 4 is very convenient to use for

SQL databases as most of the basic controller logic and front-end pages are created once the

database model is created. Similarly, Java Spring has proven to be very convenient to use

with MongoDB, as the helper library for MongoDB in Java is well tested and optimized.

In this application we have two types of user roles “User” and “Admin”. The admin

can create, edit and delete a user or a business (e.g., Chipotle, J’s saloon, etc.) from the

database. The User can search and write reviews on a business. The User can also search

for a business based on different criteria such as location, rating and categories (e.g., bar,

indian, haircut, etc.) of the business, or search for a keyword on a full text index generated

on the reviews.

1

1.1 Model View Controller (MVC)

As stated before, both applications are built on the MVC pattern architecture. MVC stands

for Model-View-Controller. Here the Model represents the application core (for instance a

list of database records). The View displays the data (the database records). The Controller

handles the business logic. Below is a brief description of how the MVC pattern works. To

explain the working of MVC we take an example of login functionality [1].

Figure 1.1: MVC Architecture

• In Figure 1.1 Step 1, the browser communicates with the IIS (Internet Information

Services) server by means of the HTTP protocol which runs on TCP/IP. All the

information is passed in the form of URLs. For example, in the current application,

when a user is attempting to login, the user first enters the credentials in a view

(Figure 1.2). A post request is generated by the browser and is sent to IIS with the

help of the HTTP protocol.

• In Figure 1.1, Steps 2.1 and 2.2, the IIS will contact the routes and find out the place

(controller) to process this request. For the above example the request is processed at

AccountController. Figure 1.3 shows the code of the function which will be called in

AccountController (You can see that this function handles POST request).

2

Figure 1.2: MVC Architecture: Login View

Figure 1.3: MVC Architecture: Login Controller

• In Figure 1.1, Step 3 you can see that the controller accesses the login database and

validates the input data.

• In Figure 1.1, Steps 4 and 5, based on the sanity of the username and the password,

the appropriate view is sent to the IIS server, which in turn sends it back to the

browser for user to view it.

3

Chapter 2

Background

2.1 Relational Databases

A database is defined as a collection of persistent data that is used by the application

systems of a given enterprise. More often than not, the term Database has been misused to

refer the Database Management Systems (DBMS). DBMS is a systems which provides user

with features such as programming interface and transaction management. It was not until

1960s when the DBMS was available for businesses to store their data electronically. Before

that data was stored in books or punch cards [2].

These days two most widely used types of database are relational databases and NoSQL

databases. Although NoSQL is relatively new (introduced in year 2000) compared to other

databases, it has gained popularity because of its ability to handle unrelated and unstruc-

tured data. Relational databases need a fixed schema to store data, as opposed to NoSQL

which does not impose any such constraints. Although the two types of databases differ

in many aspects, with little change in the implementation of an application both these

databases can be used to perform similar functionalities. In this report I will contrast

and compare the two types of databases. I will be using Microsoft SQLlite as a relational

4

database and MongoDB as a NoSQL database.

2.1.1 Database Transaction (ACID Properties)

An important aspect of a relational database is to guarantee that database transactions are

processed reliably. This requirement led to ACID properties. Below is a short description

of these properties [3].

• Atomicity: A transaction is made up of one or more tasks. The atomicity property

makes sure that either all the tasks in the transactions get executed or non of them.

• Consistency: The consistency property ensures that the database remains in a consis-

tent state before the start of the transaction and after the transaction is over (whether

successful or not).

• Isolation: This property makes sure that no task gets access to the data which is

already involved in other transaction. This is carried out with the help of locks, if a

data is being used in update or write operation of a transaction then that transaction

holds a lock on that data. Only the transaction which holds the lock can access the

data.

• Durability: Durability refers to the property which guaranties that database remains

in a stable state before and after a system failure. Usually this is achieved by main-

taining logs.

2.1.2 Normalization

An important design aspect of relational databases is the normalization of the schema. Nor-

malization process eliminates redundancy and makes sure that the data remains consistent.

Any database needs to be in BCNF (Boyce Codd normal form) in order to avoid duplication

5

and maintain consistent data [2]. But sometimes its not possible to normalize database to

BCNF, in that situation we can settle for lower normalized form such as third normal form

(3NF). To full understand the BCNF we first need to look at the 3NF. A relation is in 3NF

if the following conditions satisfy.

• All the fields contain atomic value only.

• Every non key attribute should be dependent on the super key.

BCNF is slightly stronger rule than the 3NF, for a relationship to be BCNF every attribute

of the relationship should be dependent on the super key.

2.2 NoSQL Databases

NoSQL stands for “Not Only SQL”. The NoSQL databases do not impose any constraints on

storing data (schema-less). This also means that unlike relational databases the data need

not be normalized. NoSQL databases have become more popular in recent years due to the

introduction of Web 2.0 [4]. The applications these days need to handle a lot of unstructured

data, this includes images and videos. Since such web applications are very agile, underlying

databases have to be flexible as well in order to support the unstructured data. Adding or

removing a feature to a blog is not possible without system un-availability if a relational

database is being used. But NoSQL databases can enable such user concurrency.

Due to the flexible nature of NoSQL it is very difficult to ensure stringent ACID prop-

erties over the data stored in NoSQL databases. So engineers for NoSQL came up with

BASE properties. BASE stands for BasicallyAvailable, Soft state and Eventual consistency.

This was based on CAP theorem, CAP stands for Consistency, Availability and Partition

tolerance. This theorem states that a distributed system can hold only two of the following

three properties [5].

6

• Consistency : All the nodes in the distributed system see the same data.

• Availability : All the nodes send a response to every request indicating success or

failure.

• Partition Tolerance : Even if one or more nodes fail within the distributed system,

the rest of the system should function properly.

2.2.1 BASE Properties

• Basically Available: This property corresponds to the availability property of the

CAP theorem. If there is a request to access certain data, irrespective of the availability

of the data a response has to be sent to the requesting node. The response can be

either “success” or “failure” [5].

• Soft state: As NoSQL databases have distributed architecture, there is propagation

of updates to a node even when there is no explicit input from a user to that node.

This propagation of updates correspond to the ”Eventual Consistency” property of

NoSQL databases. So data in particular node needs to be regularly refreshed in order

to reflect all the changes. This property is referred as “Soft State” [5].

• Eventual consistency: In NoSQL databases when there is an update in data, the

update might not be propagated to all the nodes immediately. But eventually these

updates are reflected on all the nodes. This property of NoSQL databases is referred

as “Eventual Consistency” [5].

2.2.2 Classification of NoSQL Databases

NoSQL databases can be broken down into four major categories and in this section I will

briefly discuss them.

7

• Key-Value Stores: The Key-Value type of NoSql databases has a very simple data

model. As the name suggests the data is stored in the form of key-value pairs. The

information is searched against a key with the help of basic get functions which take

“key” as argument and returns the corresponding value. For example, if I have a key-

value entry in my NoSQL database < “name′′, “Ankit′′ > then get (“name”) would

return “Ankit”. This data model is wrapped with mechanism to accommodate BASE

properties [6].

• Document Stores: The Document based NoSQL databases are very interesting be-

cause instead of rows and columns your data is stored in documents. These documents

are simply stored in the form of JSON files. Here each record is treated as a docu-

ment, and all the documents are independent to one another. That means that one

document might have entirely different set of fields when compared to any other docu-

ment stored in database. Document based NoSQL databases such as MongoDB have

very powerful query engines and indexing features that make it easy and fast to exe-

cute many different optimized queries. Also, the application logic is easier to write as

queries return the results in the form of JSON and these can be easily converted to

objects. This way we don‘t have to translate between objects in our application and

queries [8].

• Wide Column Stores: These types of NoSql databases make use of a hybrid ap-

proach by mixing the declarative characteristics of a relational database with key-value

pairs of NoSql databases. Wide Column database store data as sections of columns of

data rather than as rows of data. The way this hybrid works is, we need to declare a

group of column as part of reliable schema. And this column group in turn can have

different columns for each row.

• Graph Databases: This kind of NoSQL databases are the most specialized kinds of

8

databases. They are focused on the relationship between entities rather than entities

themselves. These types of databases use nodes, edges and properties to represent

data. The nodes represent entities such as business or users. Properties are attributes

that are related to nodes. For example, if you have a business node then name of

the business, type of business are the properties of that node. Edges are the lines

which connects one node to another. Meaningful patterns emerge when we examine

the connection of nodes, properties and edges.

9

Chapter 3

Datasets

3.1 Yelp Datasets

The datasets used in this project were provided by “Yelp.com”. These datasets are available

for any academic project and can be downloaded from this link, https://www.yelp.com/

academic_dataset. These datasets are in the form of three JSON files. The first is the

business JSON. Business objects contain basic information about local businesses. There

are 13690 different businesses listed in business dataset. The fields are as follows:

{ b u s i n e s s i d : (b u s i n e s s i d does not i d e n t i f y

a l l the bus in e s s un ique ly) ,

name : (the f u l l bu s in e s s name) ,

f u l l a d d r e s s : (address) ,

c i t y : (c i t y) ,

s t a t e : (s t a t e) ,

l a t i t u d e : (l a t i t u d e) ,

l ong i tude : (l ong i tude) ,

10

https://www.yelp.com/academic_dataset
https://www.yelp.com/academic_dataset

s t a r s : (average r a t i n g g iven by the user) ,

r ev i ew count : (rev iew count) ,

photo ur l : (photo u r l) ,

c a t e g o r i e s : (category names) ,

u r l : (ye lp u r l)

}

The review JSON contains information about the reviews such as the review text and

the rating. The user id can be used to associate reviews on different businesses by the same

user. There are 330071 reviews in the review dataset.

{ b u s i n e s s i d : (b u s i n e s s i d) ,

l o c a t i o n i d : (I d e n t i f i e r f o r bus ine s s l o c a t i o n

[long i tude , l a t i t u d e]) ,

r e v i e w i d : (the i d e n t i f i e r f o r rev iew)

u s e r i d : (the i d e n t i f i e r o f the author ing user) ,

s t a r s : (s t a r rat ing , i n t e g e r 1−5) ,

t ex t : (rev iew text) ,

date : (date , formatted l i k e 2011−04−19) ,

}

Lastly, we have the customer JSON. There are 56640 customers in this JSON file.

{ u s e r i d : (unique user i d e n t i f i e r) ,

name : (f i r s t name , l a s t i n i t i a l , l i k e Matt J .) ,

address : (customer address) ,

s t a t e : (customer s t a t e) ,

r ev i ew count : (rev iew count) ,

a v e r a g e s t a r s : (f l o a t i n g po int average , l i k e 4 . 31)

11

}

3.2 Normalization of Datasets

I will try to normalize earlier discussed datasets to BCNF. Let us consider the business

JSON, this holds information about the businesses. But an important point to notice here

is that the business id is not the primary key. You can have a business franchises with same

business id but different locations. For example, “Chipotle Mexican Grill” business has the

same business id for all of its restaurants at different locations. Here the “name”, “cate-

gories”, “photo url”,“url” depends on the “business id”, but rest of the fields are dependent

on the location. So we will split this JSON into two tables, one with all the attributes which

are dependent on “business id” and the “business id” (primary key for this table). And the

other table with the rest of the fields. Also, the categories field in the business dataset is

an array. So in order to make the field values atomic I have concatenated all the values to

form a single string. We will also include a new field “location id” in the second table. The

second table will have the combination of “location id” and “business id” as the primary

key. Even though the current table structure is not in BCNF (stars and review count fields

does not depend on the primary key business id and location id), I have not further nor-

malized the database. This reason to stop the normalization was to make sure that I do not

increase the number of tables and in turn increase the query execution time (Join clause

cause huge decrease in query performance). And, as the insertion and updation of a business

will happen far lesser time then searching a business in this application, this decision seems

reasonable. Below are the model classes after normalizing the business JSON.

pub l i c c l a s s Bus iness

{

pub l i c s t r i n g b u s i n e s s i d \\ Primary key

12

pub l i c s t r i n g c a t e g o r i e s

pub l i c s t r i n g photo ur l

pub l i c s t r i n g name

pub l i c s t r i n g u r l

}

pub l i c c l a s s Locat ion

{

pub l i c s t r i n g b u s i n e s s i d \\Primary key

pub l i c s t r i n g l o c a t i o n i d \\Primary key

pub l i c s t r i n g f u l l a d d r e s s

pub l i c s t r i n g c i t y

pub l i c double l ong i tude

pub l i c double l a t i t u d e

pub l i c s t r i n g s t a t e

pub l i c double s t a r s

pub l i c i n t rev iew count

}

Review JSON contains non atomic values for “location id” field. This is a combination of

latitude and longitude. In order to normalize, we will replace this with the “location id”

from the location table. The “User” JSON is already in 3NF. Below are the normalized

model classes for review and user JSONs.

13

pub l i c c l a s s Review text

{

pub l i c s t r i n g r e v i e w i d \\ Primary Key

pub l i c s t r i n g b u s i n e s s i d

pub l i c s t r i n g l o c a t i o n i d

pub l i c s t r i n g u s e r i d

pub l i c i n t s t a r s

pub l i c s t r i n g text

pub l i c s t r i n g date

pub l i c s t r i n g type

}

pub l i c c l a s s User

{

pub l i c s t r i n g u s e r i d \\ Primary Key

pub l i c s t r i n g name

pub l i c s t r i n g address

pub l i c s t r i n g s t a t e

pub l i c s t r i n g rev iew count

pub l i c s t r i n g a v e r a g e s t a r s

}

14

Chapter 4

Building the Applications

The first step for building the application was to set up the database servers. The .Net

MVC 4 application comes with Microsoft SQL compact installed. Also, the connection

string to SQL is set up by the MVC 4.0 framework by default. In the case of MongoDB

the database had to be installed and connection string to be made. In this chapter, I will

compare installation, querying and efficiency of both the databases. The efficiency will be

measured in terms of the query execution time.

4.1 Setting up Databases

4.1.1 Setting up the SQL Database

As discussed before, I have used an inbuilt Microsoft SQL compact as my relational database.

The connection is made to the database through a connection string which is defined in the

web.config file of .Net MVC 4.0 application folder. Below is the connection string used in

this application.

<connec t i onS t r i ng s>

<add name=” DefaultConnect ion ”

15

connec t i onSt r ing=”Data Source= (LocalDb)\ v11 . 0 ;

I n i t i a l Catalog=aspnet−Pro j ec t \ 20140413003109 ; In t eg ra t ed

Secur i ty=SSPI ;

AttachDBFilename=|DataDirectory |

\aspnet−Project 20140413003109 . mdf”

providerName=”System . Data . SQLClient” />

</ connec t i onS t r i ng s>

The connectionString tag defines critical properties for the connection to be established, and

defines the location for the .mdf file. The providerName holds the name of the database

to connect to. You can have multiple .mdf files on multiple servers, in which case multiple

connectionString tags should be defined.

4.1.2 Setting up the MongoDB Database

For setting up the MongoDB datadase, I needed to install the MongoDB database and then

set up a connection string to make sure the application can access the database. I used

Homebrew (a software which downloads and installs the latest version of all the open source

softwares) to install MongoDB and set up the database. Below are the steps I followed:

• Install MongoDB database using the following command.

Ankits−MacBook−Pro: ˜ ank i tba jpa i $brew i n s t a l l MongoDB

• Once MongoDB was installed, a database and collections were created so that data

can be loaded. In order to create a database we need to logon to MongoDB prompt

first. The command to do that is “mongo”.

Ankits−MacBook−Pro: ˜ ank i tba jpa i $ mongo

MongoDB s h e l l v e r s i o n : 2 . 6 . 4

16

Server has s ta r tup warn ings :

2014−10−04 T17:32:05 .269−0500 [i n i t a n d l i s t e n]

Creates a new database and makes i t ready to use

>use ye lp

switched to db ye lp

>

• Once the server was set up, now the next step is to create a connection string. I used

the helper libraries listed below in order to connect the Java Spring application to the

database and perform operations.

#Helps with database l e v e l ope ra t i on s

import com .MongoDB.DB;

Helps with c o l l e c t i o n l e v e l ope ra t i on s

import com .MongoDB. DBCollect ion ;

#Helps in handl ing query r e s u l t

import com .MongoDB. DBCursor ;

Helps e s t a b l i s h i n g connect ion to the database s e r v e r

import com .MongoDB. MongoClient ;

Connects to MongoDB

MongoClient mClient = new MongoClient (” l o c a l h o s t ” , 27017) ;

#Sets the database to ye lp .

DB db=mClient . getDB (” ye lp ”) ;

17

4.2 Loading data

In this section, we will discuss the process to load the datasets into SQL and MongoDB

databases.

4.2.1 Loading Data on SQL Database

As our data is in the form of JSON, we needed to parse the JSON and load the data one

tuple at a time. Most of the time when we need to load data in the SQL database, we

need to parse and clean the data, even if the dataset is in the form of XML or plain text.

Following were the steps and time taken in order to load the data.

• Create a temporary class which can hold the data from the JSON. This class will only

be used during parsing and loading the data.

• Now, we need to read one JSON at a time, parse and load it into the database.

Reads and c o p i e s a l l JSON from input f i l e s

StreamReader r = newStreamReader (” . . / Desktop/ bus in e s s da ta . txt ”) ;

// Reading One JSON at a time

while ((JSONline = r . ReadLine ()) != null){

#Pars ing JSON into bus in e s s o b j e c t s

bus in e s s bus = JSONConvert . De s e r i a l i z eOb j e c t<bus iness >(JSONline) ;

#Loading Data

context . r e s t au ran t . AddOrUpdate (x =>x . b u s i n e s s i d ,new Restaurant)]

{

b u s i n e s s i d = bus . b u s i n e s s i d ,

f u l l a d d r e s s = bus . f u l l a d d r e s s

}

18

It took about 22 minutes to perform the above steps. Following is the output from the

program which parsed and loaded the JSON file onto the SQL database.

Seed method has s t a r t e d 11 : 2 6 : 4 9 PM

Total number o f t u p l e s i n s e r t e d = 13483

Seed method has ended 11 : 4 8 : 5 1 PM

4.2.2 Loading Data on MongoDB Database

MongoDB is a document database, it stores data in the form of JSON documents. As

discussed before, JSON provides a rich data model that seamlessly maps to native program-

ming language types, and the dynamic schema makes it easier to evolve our data model as

compared to a system with enforced schemas such as RDBMS. Thus, in order to load the

dataset into MongoDB we need not parse anything. Following are the commands used to

load into MongoDB

• Start the MongoDB Server using the“Mongod” command.

• MongoImport is the utility which is used to load data into MongoDB.

Ankits−MacBook−Pro: ˜ ank i tba jpa i $

S e l e c t s the database

mongoimport −−db ye lp

#Creates a c o l l e c t i o n to load data

−−c o l l e c t i o n bus ine s s

#Spec i f y the l o c a t i o n o f data

−− f i l e / Users / ank i tba jpa i /Desktop/ bus in e s s .JSON

−−JSONArray

19

Figure 4.1: Loading Data on MongoDB

In Figure 4.1 you can see that the import took place in 3 operations and the summation

of these operations comes to 564ms (305ms+120ms+139ms). As expected MongoDB was

way faster when compared to SQL interms of loading data, as MongoDB directly stores each

JSON as a document, while in SQL we needed to parse each JSON and load the data one

row at a time.

20

4.3 Queries

In this section, we will discuss various queries which were written in the development of

this application. The queries can be mainly categorized as follows: CRUD (Create, Read,

Update and Delete) queries and Join queries. We will also compare the execution time

for each of these queries in MongoDB and SQL. We should note that each query which is

presented is executed 100 times and an average is taken to get an accurate execution time.

I also made sure that I change the query selection criteria for every execution to get the

most optimal result. For example, if I am executing a ready query, then ever time I run the

query I would read a different row. In the same way for creating trend graph I have run the

queries on SQL and MongoDB databases for 100 times, 500 times, 1000 times, 5000 times

and 10000 times, and recorded respective execution time.

4.3.1 CRUD Queries

CRUD queries are used in various places and they form the backbone of this application.

For example, an Admin can add a business (create query), delete a business (delete query),

update business information (update) or retrieve information about a business (read query).

Figure 4.2 shows a query to insert a new business into the business table and its average

execution time on SQL server. Here “business” is the table name and business id, categories

etc. are the fields. Figure 4.3 shows a query to insert a new business in MongoDB database

and its respective average execution time. The average execution time for insert query in

SQL is 23.1 ms (Milliseconds), and in MongoDB it is 1.6 ms.

Figure 4.2: Inserting a row in a SQL table

21

Figure 4.3: Inserting a document in a MonogoDB collection

Figure 4.4 shows a query to delete an existing business from the business table and its

average execution time on SQL server, while Figure 4.5 shows a query to delete an existing

business from the business collection and its average execution time in MongoDB database.

The SQL query takes 14 ms to execute, whereas the MongoDB query takes .39 ms.

Figure 4.4: Deleting a row from a SQL table

Figure 4.5: Deleting a document from a MongoDB collection

Figure 4.6 represents a graph which shows performance of SQL insert query against

MongoDB insert query. While Figure 4.7 represents a graph which shows performance of

SQL delete query against MongoDB delete query. You can see that as the number of records

deleted or inserted increases the execution time increases exponentially for the SQL queries.

One reason for such a huge difference in the execution time between the SQL and MongoDB

queries is the indexes created on the SQL table. Earlier in this report we created an index to

enhance the performance of a query, but creating indexes on a non unique column (In this

22

case review count and average stars) decreases the performance of the inserts and deletions.

Now we will look at some aggregation queries, and there execution trends.

Figure 4.6: Graph to show time taken by an insert query in SQL and MongoDB (X-axis
represents number of times query was executed and Y-axis represents time in milliseconds)

Figure 4.8 shows a simple query to read a business based on business id and its execution

time on SQL server, while Figure 4.9 shows a query to read a query on MonogoDB server.

You can see that the SQL query takes 1.26 ms to execute, whereas the MongoDB query

takes 6.7 ms. Figure 4.10 represents a graph which shows performance of SQL read query

against MongoDB read query. You can see that reading a row in SQL is faster than reading

a row in MongoDB database. As the above SQL read query uses primary key to find the

23

Figure 4.7: Graph to show time taken by a delete query in SQL and MongoDB (X-axis
represents number of times query was executed and Y-axis represents time in milliseconds)

row to read, it is faster than MongoDB read query.

24

Figure 4.8: Reading a row from a SQL table

Figure 4.9: Reading a document from a MongoDB collection

25

Figure 4.10: Graph to show time taken by a read query in SQL and MongoDB (X-axis
represents number of times query was executed and Y-axis represents time in milliseconds)

26

Figure 4.11 shows an SQL query to update review count busing business id and loca-

tion id, and its execution time, while Figure 4.12 shows similar MongoDB update query

and its average executing time. Here SQL query takes 1.35 ms where as MongoDB update

query takes only 2.492 ms.

Figure 4.11: Update a row in a SQL table

Figure 4.12: Updating a document in a MongoDB collection

Figure 4.13 represents a graph which shows performance of SQL update query against

MongoDB update query. You can see that updating a row in SQL is faster than updating

a row in MongoDB database. As the above SQL update query uses primary key to find the

row to be updated, it is faster than MongoDB update query.

27

Figure 4.13: Graph to show time taken by a update query in SQL and MongoDB (X-axis
represents number of times query was executed and Y-axis represents time in milliseconds)

28

Finding maximum/minimum review count from the user table. For SQL query we are

going to use the aggregation function ”MAX/MIN”, but in MongoDB we do not have any

such aggregation functions. We need to sort all the documents based on review count field

and then return the first/last document. Figure 4.14 shows an SQL aggregation query and

its execution time. While Figure 4.15 shows similar MongoDB aggregation query and its

average executing time. Here SQL query takes 17.06 ms where as MongoDB update query

takes only 36.76 ms.Figure 4.16 represents a graph which shows the performance of SQL

aggregation query against similar MongoDB query. You can see that SQL performs better

than MongoDB query as review count is indexed.

Figure 4.14: SQL query to find MIN/MAX of a field

Figure 4.15: MongoDB query to find MIN/MAX of a field

29

Figure 4.16: Graph to show the time taken by a aggregation query in SQL (Indexed and
Non Indexed) and MongoDB (X-axis represents number of times query was executed and
Y-axis represents time in milliseconds)

30

Finding all the users with average stars between 3 and 4. Figure 4.17 shows an SQL

range query and its execution time. While Figure 4.18 shows similar MongoDB range query

and its average executing time.Figure 4.19 represents a graph which shows the performance

of SQL range query against similar MongoDB query. You can see that SQL performs better

than MongoDB query as average stars is indexed.

Figure 4.17: SQL query to find all the row with in a range

Figure 4.18: MongoDB query to find all the documents with in a range

Finding all the user id with there average stars greater than or equal to the average of

average stars of all the users (Nested query). Figure 4.20 shows an SQL nested query and

its execution time. While Figure 4.21 shows similar MongoDB nested query and its average

executing time.Figure 4.22 represents a graph which shows the performance of SQL range

query against similar MongoDB query. Here MongoDB query is faster than that of SQL

query because for calculating the average of a field, entire table needs to be read. Creating

an index would not enhance the performance of SQL query in this case.

31

Figure 4.19: Graph to show the time taken by a range query in SQL (Indexed and Non
Indexed) and MongoDB (X-axis represents number of times query was executed and Y-axis
represents time in milliseconds)

Figure 4.20: Nested SQL query

Figure 4.21: Nested MongoDB query

32

Figure 4.22: Graph to show the time taken by a nested query in SQL (Indexed and Non
Indexed) and MongoDB (X-axis represents number of times query was executed and Y-axis
represents time in milliseconds)

33

Finding all the states where the sum of the review count for the business is more than

10000. Figure 4.23 shows an SQL group by query and its execution time. While Figure 4.24

shows similar MongoDB group by query and its average executing time. Figure 4.25 repre-

sents a graph which shows the performance of SQL range query against similar MongoDB

query. In this case as well MongoDB query is faster than that of SQL query because having

and group by also require entire table to be read. As in the case of nested query, indexing

a column would not enhance the SQL query in this case as well.

Figure 4.23: GROUP BY and HAVING SQL query

Figure 4.24: GROUP BY and HAVING MongoDB query

34

Figure 4.25: Graph to show the time taken by a group by query in SQL (Indexed and Non
Indexed) and MongoDB (X-axis represents number of times query was executed and Y-axis
represents time in milliseconds)

35

4.3.2 Join Queries

SQL join clause is used to combine data from two or more tables in a relational database.

Joins combine rows from different tables with the help of a common field. In this application

user can search for a business based on minimum rating, state and the category of business.

We need to gather information from two different tables in order to come up with results.

In this application the “Restaurant” table holds the details about a business, “Location”

table holds information about the location and rating of a business. As in MongoDB we do

not have joins, all the information related to a business such as location and rating is stored

in a single document.

Figure 4.26: Join clause in SQL: Finding a business based on location, rating and category
in a normalized table

Figure 4.27: MongoDB Query: Finding a business based on location rating and category

36

Figure 4.26 shows a SQL query which uses join clause, here data is collected from two

different tables. The average execution time for this query was 648.3 ms. It is important

to keep in mind that the SQL queries perform better when the fields in where clause are

indexed. Without creating index on the stars and state fields of the location table, the

same query took 2861 ms for execution. In Figure 4.27 you can see the MongoDB query to

perform the same task. As mentioned earlier MongoDB does not support joins, hence you

can see that search is on a single document collection “business”. The average execution

time for MongoDB query is 60 ms.

Figure 4.28: SQL Query: Finding a business based on location rating and category on a
non-normalized table

Figure 4.28 shows a SQL query to find business based on category and rating. Important

thing to notice here that this query is run on a non-normalized table. Hence, there is no

joins which brings down the execution time. You can see that the average execution time

of the query shown in Figure 4.28 is 48.14 ms.

Table 4.1 shows a summary of all the queries run on SQL and MongoDB for this report.

It records execution time for SQL query with index on field other than primary key, SQL

query with index only on primary key and execution time on MongoDB.

37

Query Type Execution Time
on SQL

Execution Time
on SQL

Execution Time
on MongoDB

(with indexing
on fields other
than primary
key)

(Indexing on pri-
mary key only)

Insert Query N\A 23.1 ms 1.68 ms
Delete Query N\A 14 ms .39 ms
Read Query N\A 1.26 ms 6.7 ms
Update Query N\A 1.35 ms 2.49 ms
MIN\MAX
Query

17.03 ms 25.90 ms 36.78 ms

Range Query 30.36 ms 55 ms 36.76 ms
Nested Query 22.11 ms 31.71 ms 17.61 ms
GROUP BY
Query

29.24 ms 34.58 ms 19.97 ms

Join 648 ms 2861 ms 60.018 ms

Table 4.1: Summarization of Query Performances on SQL and MongoDB

4.4 Full Text Index (FTI)

As discussed earlier, one of the features of this application is to enable a user to search for a

business based on a keyword. For this functionality, we will create an FTI (Full Text Index)

on the reviews. To create an FTI in SQL I have used Lucene search engine library, while

for MongoDB I used an inbuilt utility.

4.4.1 Creating an FTI for a SQL Table

Following are the steps to create an FTI on a table using Lucene search engine library.

• Create a directory which will be used by the Lucene search engine to create and store

the index. The FTI which is created is stored externally in a folder.

s t r i n g indexF i l eLoca t i on =

@”C:\User\ ank i t \document\ p r o j e c t \ luceneIndex ” ;

38

Lucene . Net . Store . D i r ec to ry d i r =

Lucene . Net . Store . FSDirectory . GetDirectory (indexFi l eLocat ion , t rue) ;

• Create an analyzer to process the data from your table. “Lucene.Net.Analysis.Analyzer”

class is used to create the analyzer object.

• Create IndexWriter object to write the index to the earlier specified directory. This

object takes the directory location and the analyzer object as arguments.

Lucene . Net . Index . IndexWriter w r i t e r = new

Lucene . Net . Index . IndexWriter (d i r , ana lyze r) ;

• The “writer.AddDocument(reviewData)” (reviewData is one record from the “Re-

view text” table) command is used to update the FTI in earlier defined directory.

The writer.AddDocument method needs to be called for all the records in the table.

Once the index is built, object of “Lucene.Net.Search.Query” class needs to be created with

user input “keyword” as argument. This class has a search function which will return all

the records in which the keyword was found in the FTI. The average time taken to search

for a keyword in Lucene search engine was 1643 ms. As the FTI was created on the review

table, we needed to find out distinct pairs of business id and location id (to uniquely identify

location of a business). This duplicate removal and finding information (e.g., name, address,

etc,.) for all the unique businesses took 7648 ms on the average. The whole process took

9291 ms. Every time a new review is written, we need to add that review to the FTI. This

process involves analyzing the new review and then, with the help of IndexWriter (discussed

earlier) updating the FTI. On the average updating the FTI with Lucene search engine takes

about 274 ms. We should also note that MongoDB does not update the FTI if we insert a

new document in the collection. In order to include the newly added document we need to

39

drop the index and build it again. On the average it takes 136 seconds to create an FTI on

the review collection.

4.4.2 Creating an FTI on MongoDB Collection

MongoDB has an inbuilt command to create a text index on one or more fields of a collection.

The “ensureIndex” command takes the fields as arguments and then creates an FTI on it.

//The f i r s t argument in BasicDBObject i s the f i e l d name and the second argument

// i n d i c a t e s the FTI that has to be c rea ted .

db . rev iew . ensureIndex (new BasicDBObject (” tex t ” , ” t ex t ”))) ;

Once the FTI is created you can query the index using “$search” and “$text” (predefined

MongoDB attributes). “$search” should hold the keyword to be searched and this in turn is

to be assigned to the “$text” attribute. These two attributes should be passed as arguments

to the “find” function. This function will return all the documents where the keyword was

found. Below is the code to search for a keyword in FTI.

DBCollect ion c o l l = db . g e t C o l l e c t i o n (” review ”) ;

BasicDBObject search = new BasicDBObject (”$ search ” , ”Keyword”) ;

BasicDBObject textSearch = new BasicDBObject (”$ text ” , s earch) ;

DBCursor cur so r= c o l l . f i n d (textSearch) ;

Figure 4.29 shows that the time taken to search for a keyword on the FTI took 7.754

ms. But this search results in duplicate businesses. Hence, to remove duplicates we need to

spend another 4176 ms (figure 4.30 shows time taken to remove duplicate business). This

problem can be solved if I can embed all the review JSONs related to a particular business

within that business JSON.

Figure 4.31 shows the average query execution time to search for a keyword in the new

embedded business JSON object. An interesting thing to observe here is that the execution

40

Figure 4.29: Searching for a keyword in an FTI created on review JSONs

Figure 4.30: Finding unique businesses from the output of FTI search

Figure 4.31: Searching for a keyword in an FTI created on reviews embedded business
JSONs

41

time to find a keyword in the review FTI is way higher than to find a keyword in the

reviews embedded business JSON. This is because after embedding all the reviews objects

related to a business within the respective business JSON, the number of documents has

been drastically reduced (we have 300000 review JSONs and only 13490 business JSONs),

thus reducing the search time as well.

42

Chapter 5

Using the Application

In this section we will see the working of the applications which was developed for this

report. Although we have developed two application for this report, we will only discuss one

of the application in this section (as both of these application have similar functionalities).

Following is the working of the SQL application: Once you run the application the first page

that is displayed is the homepage.

Figure 5.1 shows the homepage in the application. You can see that on the right top

corner of the home page you have links to the registration and login pages. If the user is

not already registered, the user needs to register first. The registration will require the user

to choose a username, give user details (e.g., address, ph#) and set a password. Once the

user is registered, the user can login using the login page. In Figure 5.2 you can see the

login screen, which takes username and password to authenticate the user.

43

Figure 5.1: Using the Application: Homepage

44

Figure 5.2: Using the Application: Login page - The JavaScript in this page has an An-
tiforgery token which makes sure that the user password is protected. Also, the JavaScript
does basic validations (e.g., checking the length of the password) to reduce the load on the
server.

45

Figure 5.3: Using the Application: User homepage

46

Once the user is authenticated, the user is redirected to the user homepage. As you can

see in Figure 5.3, the user has two ways to search for a business. One way is to search for a

business by “rating” and “category”, and the other is to search for a business by a keyword.

Figure 5.4: Using the Application: Search page (Search using category and rating)

Figure 5.4 shows the search page which is used to search for a business using rating and

category. Here the user has an option to either use the home address to specify the users

current location or enter an address manually. This address is used to calculate the distance

between the business and the user location.

Figure 5.5 shows the output of the search. The output has two parts: one is the graph

and other is the map. The graph has a center node which represents the user (current

location of the user) and this center node is connected to business nodes (all the other

nodes) with the help of edges. Here the size of the business nodes signifies the rating (for

example a business with rating of 5 would be represented by a bigger node than a business

with 3 rating) and the length of the edge signifies the distance between the user and the

47

Figure 5.5: Using the Application: Output of the search - The graph is generated using
d3.js and the map is generated with the help of google map API.

48

business (the longer the edge, the farther the business). Once the user hovers over a node,

the map section of the output screen shows its positions dynamically. If the user wishes to

write a review for a particular business, the user needs to click on the node. Figure 5.6 shows

the admin homepage. All the users with admin role can add, remove and edit a business or

a user. This page gives admin the access to review all the users and businesses.

Figure 5.6: Using the Application: Admin homepage

49

If admin clicks on the ”Review all business” link, the admin will be redirected to the

page shown in Figure 5.7. Here the admin can search for a business to review. Also, the

admin is given the option to create a new business, delete the searched business, edit the

searched business or see the details of the searched business (Edit, Delete and Details links

are listed just on the left side of the business which is searched). Figures 5.8 and 5.9 show

Figure 5.7: Using the Application: Business homepage

the pages to create and edit a business. Similar pages also are available to add, delete and

review all the existing users.

50

Figure 5.8: Using the Application: Create a business page

51

Figure 5.9: Using the Application: Edit a business page

52

Chapter 6

Testing

For testing this application, I am going to use web performance testing. Web performance

tests are included in load tests to measure the performance of the web application under

the stress of multiple users. The web performance test is recorded by browsing a website as

an end user. As you move through the site, requests are recorded and added to the test in

Visual Studio Ultimate. After you finish recording, you can customize the test by editing its

properties. We will create two basic web performance tests: one as admin web, which will

have requests to all admin related pages and other as user web which will have request to

all user specific pages. In the next step, we will create a load test to note the performance

of the application by simulating different factors (e.g., the number of users, using different

browsers and different connection speeds).

6.1 Web Performance Testing

As discussed before, in these application we have two user types: Admin and User. We

will create two web performance tests, one for each of these roles. In each of these web

performance tests, we will test the respective web pages. Web performance tests are very

53

effective to test a web application because it not only records requests and response times,

but also gives a detailed description of the components within the web page. This description

can be used to improve the application. For example, in this application some of the web

pages took over 3 seconds to load, as seen by inspecting the web performance test results. I

found out that the delay was due to loading JavaScript and Ajax library from the web. To

bring down the response time, I downloaded the Ajax library and made the application to

load the local copy.

Figure 6.1: Performance testing (user web): Webpages related to the user role and their
average response times

Figure 6.2: Performance testing (admin web): Webpages related to the admin role and
their average response times

In Figure 6.1, you can see the response time of all the web pages related to the user role.

The response time ranges from 51 ms to 113 ms, which is very good. We will include this

test as part of a load test and then see if this response time is maintained when the number

of users increases. Figure 6.2 shows the response time of all the web pages related to the

admin role. The response time varies from 57 ms to 349 ms.

54

6.2 Load Testing

The primary purpose of load tests is to simulate many users accessing the server at the

same time. I will create a load test to simulate 50 to 1000 users to run the above mentioned

web performance test 10 to 100 times within 10 seconds to 3 minutes. I will also add the

simulation parameters to execute the test with different user inputs.

Figure 6.3: Load test (user admin): Including web performance tests

• Figure 6.3 shows that we have included the web performance tests created earlier

(user web and admin web). Also, we set the number of users accessing the webpages

and also the distribution of these users to each of the web performance tests.

55

Figure 6.4: Load test (user admin): Connection speeds included

56

• Once we have added the web performance test and set the distribution, we set the

various types of connections we wanted to simulate the test with. Figure 6.4 shows

the various connections I have included in this test.

Figure 6.5: Load test (user admin): Browsers included in the load test

• The next step is to make sure the application performs well on different browsers.

Figure 6.5 shows the various browsers I have added in the load test.

57

Figure 6.6: Load test (user admin): The result of the load test

Figure 6.6 shows the result of the load test. You can see that on the average, every web

page was accessed about 2500 times by 1000 users in 3 minutes. There were no errors nor

denial of service. All the request were completed with a proper response. This shows that

the application works well with a variety of browsers and connection speeds.

58

Chapter 7

Technologies Used

Following are the technologies used in the development of the SQL application.

• ASP .NET MVC 4: It is a framework for building standard and scalable web

applications. This framework makes use of the MVC pattern (discussed in Section 1.1).

• C#: It is an object oriented programming language which was developed by Microsoft.

It is a general purpose language which has proven to be very efficient to develop web

applications.

• Java Script: Java Script is a programming language for the web, used to create

dynamic web pages. In this project most of the views are written in Java Script.

These scripts are responsible for features such as user input validation (e.g., checking

length of password).

• SQLite: “SQLite is a software library that implements a self-contained, server less,

zero-configuration, transactional SQL database engine” [9]. ASP.NET framework has

SQLite integrated with it, hence we need not install any software explicitly.

• LINQ: LINQ stands for Language-Integrated Query. Unlike traditional queries, where

query output is expressed as simple strings without any type checking at compile time,

59

LINQ queries are written against strongly typed objects which hold the output of the

query without any data loss (these objects match the table structure). It is also easier

to use these objects in our code.

• Razor View Engine: This technology comes integrated with the ASP.NET MVC

4. Razor is not a client side technology, it generates views within the application

server. Once these views are generated, they are used on client systems. The process

of converting Razor syntax to html code happens during compilation of the applica-

tion. Razor syntax is very similar to any modern day object oriented general purpose

language, which makes it very easy to learn and use.

• MiniProfiler: In this report, we need to compare query execution time for SQL and

MongoDB. For finding the execution time for SQL statements, I have used “MiniPro-

filer”. This software is exclusively developed for .NET framework and has capability

to segregate (from other controller logic) and profile only SQL statements.

Following are the technologies used in the development of the MongoDB application.

• Java Spring: The Java Spring is an open source application development framework,

built on Java platform. I have used the Java Spring web module to leverage the MVC

pattern. I have also used Java Spring Security module to implement the user role and

authentication functionality.

• Java: It is an object oriented programming language. I have used this language to

write the controller login in my application.

• MongoDB database server: It is an open source document database.

• JSP and HTML: These technologies are used to create client side web pages.

60

Technology Lines of code
C# 1568
Java 864

JavaScript 430
Razor view engine 630

HTML & CSS 760
SQL Queries 118

MongoDB Queries 76
Junit 247
XML 386

Table 7.1: Project Metrics

• JProfiler: In this report we need to compare query execution time for SQL and

MongoDB. For finding the execution time for MongoDB statements, I have used

“JProfiler”. This software is exclusively developed for Java Spring framework and

has capability to segregate (from other controller logic) and profile only MongoDB

statements.

Other than the above listed technologies, I have used the following APIs and Java Script

libraries.

• Google Maps API: To generate maps.

• Google Distance Matrix API: To calculate distance between the user and businesses.

• d3.js (Java Script Library) - Force graphs: To generate graphs for the search output.

Table 7.1 shows the project metrics. This includes the technology name and the correspond-

ing number of lines of code written using the corresponding technology.

61

Chapter 8

Lessons Learned and Conclusions

After comparing and contrasting the SQL databases with the NoSQL databases, we have

learned that both these databases have their own set of pros and cons. The decision to use

either the SQL database or the MongoDB database as a backend needs to taken based on

developer’s requirements. Following are the factors I came up with during the course of this

report, which separates SQL databases from NoSQL databases.

• Data Modeling: In SQL databases to avoid anomalies and data redundancy, we need

to normalize data before storing. Normalization would cause the data to be split into

different tables. If we need to access information from more than one table we need to

use joins. Joins are expensive operations and would make the query execution slower.

On the other hand, MongoDB does not support joins, hence we need to model our

data in such a way that all the data which needs to be read within a query is kept in

the same collection. If we need to collect information from more than one collection,

we need to write the logic to join the data on the controller, which would make the

query very slow.

• Loading Data: As MongoDB is a document based database, inserting and deleting

a document was found to be very fast when compared to inserting/deleting a row in

62

SQL. This is due to the constraints (primary key, Unique, Maintaining Indexes, etc.)

which are imposed on fields when tables are created.

• Reading Data: MongoDB was found to be very fast when we needed to read the

entire dataset. But when a single row was to be read, SQL database was faster. Also,

indexing the columns which are commonly used in group by and where clause will

further improve the SQL query performance.

• Text Indexing: I used Lucene search engine library to develop FTI in SQL database.

For MongoDB, we used a tool which was already available within the database server.

The major advantage which SQL database FTI had over the NoSQL was that the

index which was built by Lucene search engine was incremental. That means that if

we need to add a new entry into the FTI, we can add that entry to the existing index.

In MongoDB we need to rebuild the index every time we need to add a new entry.

Although the searching a keyword on MongoDB FTI is faster when compared to that

of FTI on SQL, it is not a good option to select a MongoDB database if we have too

many updations or additions to our data.

• MongoDB database is faster than SQL database for queries where entire or most part

of the database needs to be read. While SQL has proven to be faster for point queries

(refer to Table 4.1 for query comparison between SQL and MongoDB).

63

Bibliography

[1] Microsoft Msdn, http://www.microsoftvirtualacademy.com/training-

courses/introduction-to-asp-net-mvc. Aug,2014

[2] Garcia-Molina, Hector and Ullman, Jeffrey D. and Widom, Jennifer Database Systems:

The Complete Book, 2008, 9780131873254

[3] http://databases.about.com/od/specificproducts/a/acid.htm Accessed in October, 2014

[4] http://nosql-database.org/ Accessed in October, 2014

[5] http://robertgreiner.com/2014/06/cap-theorem-explained/ Robert Greiner, June 18,

2014

[6] http://www.aerospike.com/what-is-a-nosql-key-value-store/ Accessed in October, 2014

[7] http://www.mongodb.org/about/introduction/ Accessed in October, 2014

[8] http://www.mongodb.org/about/introduction/ Accessed in October, 2014

[9] http://www.sqlite.org/ Accessed in August, 2014

64

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Model View Controller (MVC)

	Background
	Relational Databases
	Database Transaction (ACID Properties)
	Normalization

	NoSQL Databases
	BASE Properties
	Classification of NoSQL Databases

	Datasets
	Yelp Datasets
	Normalization of Datasets

	Building the Applications
	Setting up Databases
	Setting up the SQL Database
	Setting up the MongoDB Database

	Loading data
	Loading Data on SQL Database
	Loading Data on MongoDB Database

	Queries
	CRUD Queries
	Join Queries

	Full Text Index (FTI)
	Creating an FTI for a SQL Table
	Creating an FTI on MongoDB Collection

	Using the Application
	Testing
	Web Performance Testing
	Load Testing

	Technologies Used
	Lessons Learned and Conclusions
	Bibliography

