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An Online Bayesian Mixture Labeling Method by

Minimizing Deviance of Classification Probabilities to

Reference Labels

Weixin Yao and Longhai Li

Abstract

Solving label switching is crucial for interpreting the results of fitting Bayesian mixture

models. The label switching originates from the invariance of posterior distribution to

permutation of component labels. As a result, the component labels in Markov chain

simulation may switch to another equivalent permutation, and the marginal posterior

distribution associated with all labels may be similar and useless for inferring quantities

relating to each individual component. In this article, we propose a new simple labeling

method by minimizing the deviance of the class probabilities to a fixed reference labels.

The reference labels can be chosen before running MCMC using optimization methods,

such as EM algorithms, and therefore the new labeling method can be implemented

by an online algorithm, which can reduce the storage requirements and save much

computation time. Using the Acid data set and Galaxy data set, we demonstrate the

success of the proposed labeling method for removing the labeling switching in the raw

MCMC samples.
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longhai@math.usask.ca. The research of Longhai Li is supported by fundings from Natural Sciences and
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1 Introduction

Label switching is one of the fundamental issues for Bayesian mixtures if our interests are

quantities relating to each individual component. It occurs due to the invariance of the

posterior distribution to the permuation of the component labels. Many methods have been

proposed to solve the label switching problem. One simple way is to use an explicit parameter

identifiability constraint so that only one permutation can satisfy it. See Diebolt and Robert

(1994); Dellaportas et al. (1996); Richardson and Green (1997). One problem with the

identifiability constraint labeling is that the results are sensitive to the choice of constraint,

especially for multivariate problems. Celeux et al. (2000) demonstrated that different order

constraints may generate markedly different results; it is difficult to anticipate the overall

effect. Moreover, many choices of identifiability constraint do not completely remove the

symmetry of the posterior distribution. As a result, label switching problem may remain

after imposing an identifiability constraint, see the example by Stephens (2000). Celeux

(1998) and Stephens (2000) proposed a relabeling algorithm, which is based on minimizing

a Monte Carlo risk. Yao and Lindsay (2009) proposed to label the samples based on the

posterior modes and an ascent algorithm (PM(ALG)). PM(ALG) uses each Markov chain

Monte Carlo (MCMC) sample as the starting point in an ascending algorithm, and labels the

sample based on the mode of the posterior to which it converges. Then PM(ALG) assumes

that the samples converged to the same mode have the same labels. Sperrin, Jaki, and Wit

(2010) developed several probabilistic relabeling algorithms by extending the probabilistic

relabeling of Jasra (2005).

Papastamoulis and Iliopoulos (2010) proposed an artificial allocations based solution

to the label switching problem. Yao (2012a) proposed to assign the probabilities for each
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possible labels by fitting a mixture model to the permutation symmetric posterior. Other

labeling methods include, for example, Celeux et al. (2000); Fruhwirth (2001); Hurn et al.

(2003); Chung et al. (2004); Marin et al. (2005); Geweke (2007); Grun and Leisch (2009);

Cron and West (2011); Yao (2012b). Jasra et al. (2005) provided a good review about the

existing methods to solve the label switching problem in Bayesian mixture modeling.

In this article, we propose a new alternative labeling method by minimizing the deviance

of the class probabilities to a fixed reference labels. The reference labels may be chosen

before running MCMC using optimization methods, such as EM algorithms, and there-

fore the new labeling method can be implemented by an online algorithm, i.e., the output

of MCMC samples will have been automatically relabeled along with simulating MCMC

samples. Such online algorithms have advantages in storage and computation time. More

specifically, our method can be implemented during MCMC simulation by making use of

the classification probability matrices that are needed for MCMC simulation itself. As con-

sequence, our method neither requires storing the classification probability matrices, nor

requires recomputing them after MCMC simulation. The reference labels can also be chosen

after MCMC sampling by alternating two steps of finding the reference labels and relabeling

MCMC samples, as in method proposed by Stephens (2000).

The rest of the paper is organized as follows. Section 2 introduces our new labeling

method. In Section 3, we use a simulation study and two real data applications to demon-

strate the success of the proposed labeling method. We summarize our proposed labeling

method in Section 4.

2 New Method

Generally, the mixture model has the density

p(x; θ) = π1f(x; λ1) + π2f(x; λ2) + · · ·+ πmf(x; λm), (2.1)
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where θ = (π1, . . . , πm, λ1, . . . , λm), f(·) is the component density, λj is the component spe-

cific parameter, which can be scalar or vector and πj is the proportion of the jth component

in the whole population with
∑m

i=1 πi = 1. If x = (x1, . . . , xn) are independent observations

from the m−component mixture model (2.1), the likelihood of θ given x is

L(θ;x) =
n∏

i=1

{π1f(xi; λ1) + π2f(xi; λ2) + · · ·+ πmf(xi; λm)} . (2.2)

A permutation ω = (ω(1), . . . ,ω(m)) of the component labels {1, . . . ,m} defines a corre-

sponding permutation of the parameter vector θ by

θω = (πω, λω) = (πω(1), . . . , πω(m), λω(1), . . . , λω(m)).

A special feature of mixture model is that the likelihood function L(θω;x) is exactly the

same as L(θ;x) for any permutation ω.

For Bayesian mixtures, if the prior distributions for model parameters are symmetric for

all components then the posterior distribution for the parameters will be also symmetric and

thus invariant to permutations in the labeling of the component parameters. The marginal

posterior distributions for the parameters will be identical for all mixture components. Then

the posterior means of each component are the same and are thus poor estimates of these pa-

rameters. Similar problem will occur when we try to estimate quantities relating to individual

components of the mixture such as predictive component densities, marginal classification

probabilities. So in Bayesian analysis, after we get a sequence of simulated values θ1, . . . ,θN

from the posterior distribution of θ given Y = y using MCMC sampling methods, we must

first find permuations {ω1, . . . ,ωN} such that θω1
1 , . . . ,θωN

N have the same label meaning,

then we can use the labeled samples to do Bayesian analysis. Many methods (as reviewed in

Section 1) have been proposed to find {ω1, . . . ,ωN} for relabeling MCMC samples. In this

article, we introduce a new method. Note that, even though we introduce and demonstrate

our method in the post-MCMC context, the striking feature of our new method is that it
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can be implemented during MCMC simulation for fitting Bayesian mixture model.

Given observations x = (x1, . . . , xn), suppose we have found a set of reference component

labels for each observation xi represented by Z = {Zij, i = 1, . . . , n, j = 1, . . . ,m}, where

Zij =

 1, if the ith observation xi is from the jth component ;

0, otherwise.

We will talk about how to find the reference label Z later. Let θ = (λ1, . . . , λm, π1, . . . , πm).

Our new method for finding a permutation ω for relabeling a Markov chain sample θ (note

that we drop MCMC index since our method will be implemented during MCMC simulation

for each sample of parameters) is to minimize the sum of minus log classification probabilities

of Z given by θω with respect to ω:

`(ω;Z, θ) = −
n∑

i=1

m∑
j=1

Zij log pij(θ
ω), (2.3)

where pij(θ
ω) is the classification probability that the ith observation belongs to jth com-

ponent based on relabeled parameter θω:

pij(θ
ω) =

πω(j)f(xi; λω(j))

p(xi; θω)
= pi,ω(j)(θ). (2.4)

The objective function `(ω;Z,x) in (2.3) can be also considered as the Kullback-Leibler

divergence if we consider Zij as the true classification probability and pij(θ) as the estimated

classification. One may notice that the loss function in (2.3) has some similarity to Kullback-

Leibler divergence algorithm proposed by Stephens (2000), which basically switches the

position of Zij and pij and thus considers pij(θ) as the true classification probability, in

addition, Stephens (2000) used soft reference classification probabilities to replace Zij. The

performance of using (2.3) or Kullback-Leibler divergence is therefore expected to be similar.

However, we notice some advantages of using (2.3). First, computing (2.3) is faster than
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KL divergence, since we can save computing the product of Zij and pij once we know Zij =

0. When m is large, the saving of computing time of using (2.3) compared to using KL

divergence is substantial. Note, however, similar to the general relabeling algorithm (Celeux,

1998; Stephens, 2000), when m is large, we need to compare m! permutations in order to

minimize (2.3) for each MCMC sample.

Next, we will discuss some other interpretations of (2.3), which will make this loss func-

tion more easily understood. Note that 2`(ω;Z,x) is often called deviance of classification

probabilities pij(θ
ω), i = 1, . . . , n, j = 1, . . . ,m to the reference labels Z in the literature

of generalized linear models, if Z is the true response values and pij(θ
ω) is the predictive

probabilities based on a generalized linear model. In words, by minimizing `(ω;Z,x) with

respect to ω we will find the optimal permuation ω for a Markov chain sample θ such that

the corresponding classification probabilities can best explain the reference label Z. It is cru-

cial to note that our method uses the differences of the whole probability density functions

f(x; λj) and mixture proportion πj of all mixture components j = 1, . . . ,m in relabeling θ

rather than the values of a single or an arbitrarily chosen subset of parameters in θ. Our

method therefore works well in the situations where any single parameter in θ cannot clearly

distinguish all components but the density functions given the whole set of parameters are

clearly different for components.

The proposed objective function (2.3) has another nice interpretation based on complete

posterior distribution. Let π(θ) be the prior for θ. Then the posterior for complete data

(x,Z) is

pc(θ;x,Z) = π(θ)p(x,Z | θ) = π(θ)
n∏

i=1

m∏
j=1

{πjf(xi; λj)}Zij .

Note that the above complete posterior is not invariant to the component labels and thus

can be used to do labeling. Given the reference label Z, it is natural to do labeling for θ by
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maximizing the log complete posterior

log pc(θ
ω;x,Z) = log π(θω) +

n∑
i=1

m∑
j=1

[
Zij log(πω

j f(xi; λ
ω
j ))

]
(2.5)

with respect to (Z, ω), where πω
j = πω(j), and λω

j = λω(j).

Note that

log pc(θ
ω;x,Z)

= log π(θω) +
n∑

i=1

m∑
j=1

[
Zij log{πω

j f(xi; λ
ω
j )/p(xi; θ

ω)}
]
+

n∑
i=1

m∑
j=1

Zij log p(xi; θ
ω)

= log π(θω) +
n∑

i=1

m∑
j=1

Zij log pij(θ
ω) +

n∑
i=1

log p(xi; θ
ω), (2.6)

where p(xi; θ
ω) =

∑m
j=1 πω

j f(xi; λ
ω
j ). Notice that the first and third terms of (2.6) are

invariant to the permutation of ω. Therefore, maximizing (2.6) is equivalent to maximizing

the second term of (2.6), which is equivalent to minimizing (2.3).

There are many methods for finding reference labels Z = (Zij, i = 1, . . . , n, j = 1, . . . ,m).

One simple method is to find the posterior mode, say θ̂, and the corresponding classification

probabilities, say pij(θ̂). Then the hard labels Zij can be estimated by maximizing the

classification probabilities over all components, i.e.,

Zij =

 1, if pij(θ̂) ≥ pil(θ̂) for all l = 1, . . . ,m;

0, otherwise.
. (2.7)

In addition, one might also directly use the soft labels pij(θ̂) for Zij in (2.3). Based on our

experience, the soft labels and the hard labels usually provide similar labeling results.

To find the posterior mode, one might simply calculate the posterior for each MCMC

sample θt, t = 1, . . . , N and then use the sample that has the largest posterior to approximate

the posterior mode. Note, however, this method can only be performed offline. In addition,
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Yao and Lindsay (2009) also proposed the ECM algorithm for Bayesian mixtures to find

the posterior mode. Suppose that there exists a partition of θ = (θ(1), . . . ,θ(p)) such that

all the conditional complete posterior distributions {p(θ(i) | ...), 1 ≤ i ≤ p} can be easily

found, where θ(i) can be scalar or vector and |... denotes conditioning on all other parameters

and the latent variable Z. In the E step, the ECM algorithm calculates the classification

probabilities, pij, for each observation. In the M step, the ECM algorithm maximizes the

conditional complete posterior distribution p(θ(i) | ...), 1 ≤ i ≤ p, sequentially with the latent

variable Zij replaced by the classification probability pij. The ECM iterates the above E

step and M step until convergence. Similar to the general optimization algorithm, ECM

algorithm might find different modes from different starting values. Therefore, it is prudent

to run the ECM algorithm from several starting values (say ten) and use the converged

mode that has the largest posterior. One advantage of the ECM algorithm is that it can

be implemented before the sampling process of MCMC algorithm. To report the results on

the examples in Section 3, we used this ECM algorithm to find the posterior mode and the

corresponding reference labels Z.

Therefore, the above proposed labeling procedure can be summarized as follows.

Algorithm 2.1. Step 1: Find the posterior mode and the corresponding reference labels

Z = (Zij, i = 1, . . . , n, j = 1, . . . ,m).

Step 2: For each MCMC sample θt, choose ωt to minimize `(ωt;Z, θt) of (2.3).

One main advantage of the above algorithm is that it can be implemented along with

MCMC simulation. The reference label Z is first found before the MCMC simulation and

will then be used along with simulating MCMC, which saves storage. Therefore the above al-

gorithm is an online algorithm — the output of MCMC samples will have been automatically

relabeled. We will use the above online algorithm in Section 3, although the computation is

implemented in the post-MCMC context

Following Stephens (2000), we can also find the reference label Z after simulating MCMC,
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by simultaneously finding Z and Ω = (ω1, . . . ,ωN) that minimize a Monte Carlo risk:

R (Z, ω1, . . . ,ωN) =
N∑

t=1

`(ωt;Z, θ), (2.8)

where ` is given by (2.3). We propose the following algorithm to minimize (2.8):

Algorithm 2.2. Starting with some initial values for ω1, . . . ,ωN (set by order constraint

labels for example), iterate the following two steps until a fixed point is reached.

Step 1: Given Z, for each t, choose ωt to minimize `(ωt;Z, θt). In other words, relabel all

Markov chain iterations such that the relabeled samples have the same label meaning as Z.

Step 2: Estimate Z by

Zij =

 1, if
∑N

t=1 log pij(θ
ωt
t ) >

∑N
t=1 log pil(θ

ωt
t ) for all l 6= j;

0, o.w.
,

where i = 1, . . . , n, j = 1, . . . ,m.

Note that, similar to Stephens (2000), the Algorithm 2.2 can only be implemented after

saving all MCMC samples and thus is not an online algorithm. However, one advantage of

Algorithm 2.2, compared to Algorithm 2.1, is that it doesn’t require to find the posterior

mode. Based on empirical experience, Algorithm 2.1 and 2.2 usually provide similar labeling

results.

Theorem 2.1. The Algorithm 2.2 must converge and monotonically decrease the objective

function (2.8).

Based on Theorem 2.1, the objective function (2.8) will decrease after each iteration of

Algorithm 2.2. Therefore, the Algorithm 2.2 will converge. Note, however, the Algorithm

2.2 depends on the initial labels and is only guaranteed to converge locally. Therefore, it

is prudent to run the Algorithm 2.2 from several choices of initial labels and to choose the
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labeling results that correspond to the best local optimum found. One way to choose the

initial labels is to set the permutations at random for each sample.

3 Examples

In this section, we use both simulation study and real data applications to demonstrate

the success of the proposed labeling method for removing the labeling switching in the raw

MCMC samples. In addition, we also add Stephens (2000)’s KL algorithm and Yao and

Lindsay (2009)’s PM(ECM) and NORMLH for comparison. Note that the runtime for the

NORMLH and KL algorithm depends on the number of starting points (i.e. the initial labels

for all samples), we only report the runtime of NORMLH and KL when using the PM(ECM)

labels as the initial labels. All the computations were done in Matlab 7.0 using a personal

desktop with Intel Core 2 Quad CPU 2.40GHz.

Example 1: We generated 400 data points from 0.3N(0,1)+0.7N(2,1). Based on this data

set, we generated 20,000 MCMC samples, after initial burn-in, of component means, com-

ponent proportions, and the equal component variance. The MCMC samples are generated

by Gibbs sampler with the priors given by Phillips and Smith (1996) and Richardson and

Green (1997). That is to assume

π ∼ D(δ, δ, δ), µj ∼ N(ξ, κ−1), σ−2
j ∼ Γ(α, β), j = 1, 2, 3 ,

where D(·) is Dirichlet distribution and Γ(α, β) is gamma distribution with mean α/β and

variance α/β2, δ = 1, ξ equal the sample mean of the observations, κ equal 1/R2, α = 2,

and β = R2/200, where R is the range of the observations. Similar priors are used for other

examples.

We post processed the 20,000 Gibbs samples by Stephens (2000)’s KL algorithm, Yao

and Lindsay (2009)’s PM(ECM) and NORMLH, and the proposed new labeling method.
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The runtime for KL, NORMLH, PM(ECM), and the new method were 43, 1, 53, and 29

seconds, respectively. Therefore, NORMLH is computationally much faster than the other

three methods. In addition, the proposed new method is also faster than KL and PM(ECM).

Since there are only two components, similar to Yao and Lindsay (2009), we can use the

parameter plots to check where the labeling differences occurred. Figure 1 gives the plots of

µ1 − µ2 vs. π1 for different labeling methods. The grey and black points represent the two

permuted images of the labeled parameter values. The star points are the posterior modes.

From these plots, we can see that all four methods correctly recover the two symmetric modal

regions that are around two symmetric posterior modes. The labeling difference for the four

methods only occurred to the samples corresponding to the near degenerate mixture models

which have close component means. Note that when the mixture components are close, the

component labels are not well defined and thus the found labels will be very sensitive to the

labeling methods.

Example 2 (Galaxy Data): The galaxy data (Roeder, 1990) consists of the velocities (in

thousands of kilometers per second) of 82 distant galaxies diverging from our own galaxy.

They are sampled from six well-separated conic sections of the corona borealis. A histogram

of the 82 data points is shown in Figure 2. This data set has been analyzed by many

researchers, for example, Crawford (1994); Chib (1995); Carlin and Chib (1995); Escobar

(1995); Phillips and Smith (1996); Richardson and Green (1997). Stephens (2000) also used

this data set to explain the label switching problem. We fit this data by six-component

normal mixture. The MCMC samples are generated by Gibbs sampler with the same priors

used in Example 1.

We post processed the 20,000 Gibbs samples by Stephens (2000)’s KL algorithm, Yao and

Lindsay (2009)’s PM(ECM) and NORMLH, and the proposed new labeling method. The

runtime for KL, NORMLH, PM(ECM), and the new method were 2486, 1094, 48, and 186

seconds, respectively. Therefore, PM(ECM) is the fastest since it doesn’t require to compare

m! permutations. In addition, the new method is also faster than KL and NORMLH since
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our online algorithm avoids the iteration of two steps of relabeling MCMC samples and

finding reference.

As Yao and Lindsay (2009) argued it is difficult to use the similar parameter plots in

Example 1 to compare different labeling methods when the number of components is larger

than two. Here, we provide the trace plots and the marginal density plots to illustrate the

success of the new labeling method. Figure 3 and 4 are the trace plots and the estimated

marginal posterior density plots, respectively, for the original samples and the labeled samples

by new method. In this example, Stephens (2000)’s KL algorithm, Yao and Lindsay (2009)’s

PM(ECM) and NORMLH provided similar visual results for those two plots. From Figure

3 and 4, we can see that the new labeling method successfully removed the label switching

in the raw output of the Gibbs sampler.

Example 3 (Acidity Data): We consider the acidity data set (Crawford et al., 1992;

Crawford, 1994). The observations are the logarithms of an acidity index measured in a

sample of 155 lakes in north-central Wisconsin. The data are shown in Figure 5. Crawford

et al. (1992), Crawford (1994), and Richardson and Green (1997) have used a mixture

of Gaussian distributions to analyze this data set. Here, we fit this data set by a three-

component normal mixture based on the result of Richardson and Green (1997). The MCMC

samples are generated by Gibbs sampler with the same priors used in Example 1.

We post processed the 20,000 Gibbs samples by Stephens (2000)’s KL algorithm, Yao and

Lindsay (2009)’s PM(ECM) and NORMLH, and the proposed new labeling method. The

runtime for KL, NORMLH, PM(ECM), and new method were 58, 8, 49, and 13 seconds,

respectively. Therefore, NORMLH and the new method are faster than KL and PM(ECM).

Figure 6 and 7 are the trace plots and the estimated marginal posterior density plots,

respectively, for the original samples and the labeled samples by new method. Stephens

(2000)’s KL algorithm, Yao and Lindsay (2009)’s PM(ECM) and NORMLH had similar

visual results for those plots. From Figures 6(a) and 7(a), we can see that the label switch-

ing occurred in the raw samples and the marginal density plots display the multi-modality.
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Based on Figures 6(b) and 7(b), we can see that the new labeling method successfully re-

moved the label switching in the raw output of the Gibbs sampler.

Remarks: Note that KL algorithm and NORMLH are not online algorithms and require

the iterations to minimize the corresponding criteria after all the samples are collected. In

addition, in order to find the global minimum, KL algorithm and NORMLH require to start

from different initial values, which also increase the computation time. The new method

based on Algorithm 2.1 and PM(ECM) are online algorithms, which can reduce the storage

space. In addition, neither the new method nor PM(ECM) require the iterations or starting

from several initial labels, which can save much computation time. Note however PM(ECM)

requires to run the ECM algorithm N times with each of the MCMC sample as the initial

value. Based on three examples considered in this section, we can see that the proposed new

method is always computationally faster than KL; and is faster than PM(ECM) when m is

not large. However when m is large PM(ECM) is much faster than the other three methods,

since it doesn’t require to compare m! permutations while all other three methods do.

4 Summary

Label switching has been a long standing problem for Bayesian mixtures. In this paper, we

proposed a new alternative labeling method by minimizing deviance of classification prob-

abilities to reference labels. The new labeling method also has a nice interpretation based

on the complete posterior likelihood. After finding the reference labels, the new method

can be implemented without saving all MCMC samples and classification probabilities, i.e,

the output of MCMC samples will have been automatically relabeled along with simulating

MCMC samples. Therefore, the new method is an on online algorithm, which can reduce

much storage requirements and speed the computation. The examples in Section 3 demon-

strate the success of the new method in removing the label switching in the raw MCMC
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samples. Based on our empirical studies, the new method has similar labeling results to

Stephens(2000)’s KL algorithm but run faster than KL. Note, however, given Z, the Algo-

rithm 2.1 and 2.2 require to compare m! permutations in order to minimize (2.8). Therefore,

similar to the relabeling algorithm (Celeux 1998 and Stephens 2000), the computation of

the new method is expensive when m is very large. However, note that one may find a

much faster optimization algorithm that avoids comparing all of these m! permutations with

risk of finding a local mode of the objective function (2.3). This is an area worth further

research. In addition, note that in order to use the online Algorithm 2.1, we need to first

find the posterior mode and the reference labels Z in advance. In some complicated models,

it might be difficult to find the posterior mode. One way to solve such problem is to use the

maximum likelihood estimate (MLE) to approximate the posterior mode, which is sensible

when a relative noninformative priors are used.
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Frühwirth-Schnatter, S. (2001). Markov chain Monte Carlo estimation of classical and dy-

namic switching and mixture models. Journal of the American Statistical Association, 96,

194-209.

Geweke, J. (2007). Interpretation and inference in mixture models: Simple MCMC works.

Computational Statistics and Data Analysis, 51, 3529-3550.

Grün, B. and Leisch, F. (2009). Dealing with label switching in mixture models under genuine

multimodality. Journal of Multivariate Analysis, 100, 851-861.

15



Hurn, M., Justel, A., and Robert, C. P. (2003). Estimating mixtures of regressions. Journal

of Computational and Graphical Statistics, 12, 55-79.

Jasra, A, Holmes, C. C., and Stephens D. A. (2005). Markov chain Monte Carlo methods

and the label switching problem in Bayesian mixture modeling. Statistical Science, 20,

50-67.

Marin, J.-M., Mengersen, K. L. and Robert, C. P. (2005). Bayesian modelling and inference

on mixtures of distributions. Handbook of Statistics 25 (eds. D. Dey and C.R. Rao), North-

Holland, Amsterdam.

Phillips, D. B. and Smith, A. F. M. (1996). Bayesian model comparison via jump diffusion.

Makov Chain Monte Carlo in Practice, ch. 13, 215-239, London: Chapman and Hall.

Papastamoulis, P. and Iliopoulos, G. (2010). An artificial allocations based solution to the

label switching problem in Bayesian analysis of mixtures of distributions. Journal of Com-

putational and Graphical Statistics, 19, 313-331.

Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with an unknown

number of components (with discussion). Journal of Royal Statistical Society, Ser. B, 59,

731-792.

Roeder, K. (1990). Density estimation with confidence sets exemplified by superclusters and

voids in the galaxies. Journal of American Statistical Association, 85, 617-624.

Sperrin, M., Jaki, T., and Wit, E. (2010). Probabilistic relabeling strategies for the label

switching problem in Bayesian mixture models. Statistics and Computing, 20, 357-366.

Stephens, M. (2000). Dealing with label switching in mixture models. Journal of Royal

Statistical Society, Ser. B, 62, 795-809.

Yao, W. (2012a). Model based labeling for mixture models. Statistics and Computing, 22,

337-347.

16



Yao, W. (2012b). Bayesian mixture labeling and clustering. Communications in Statistics -

Theory and Methods, 41, 403-421.

Yao, W. and Lindsay, B. G. (2009). Bayesian mixture labeling by highest posterior density.

Journal of American Statistical Association, 104, 758-767.

17



0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3
KL

μ 1−
μ 2

π
1

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3
NORMLH

μ 1−
μ 2

π
1

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3
PM(ECM)

μ 1−
μ 2

π
1

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3
New Method

μ 1−
μ 2

π
1

Figure 1: Plots of µ1 − µ2 vs. π1 for the four labeling methods in Example 1. The black
points represent one set of labels and the gray points are the permuted samples. The star
points are the posterior modes.
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Figure 2: Histogram plot of galaxy data. The number of bins used is 30.
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Figure 3: Trace plots of the Gibbs samples of component means for galaxy data: (a) original
Gibbs samples; (b) labeled samples by the new method.
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Figure 4: Plots of estimated marginal posterior densities of component means for galaxy
data based on: (a) original Gibbs samples; (b) labeled samples by the new method.
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Figure 6: Trace plots of the Gibbs samples of component means for acidity data: (a) original
Gibbs samples; (b) labeled samples by the new method.
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Figure 7: Plots of estimated marginal posterior densities of component means for acidity
data based on: (a) original Gibbs samples; (b) labeled samples by the new method.
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