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Robust Mixture Regression Model Fitting By Laplace Distribution

WEIXING SONG, WEIXIN YAO, YANRU XING

KANSAS STATE UNIVERSITY

Abstract

A robust estimation procedure for mixture linear regression models is proposed by assuming
that the error terms follow a Laplace distribution. The estimation procedure is implemented by
an EM algorithm based on the fact that the Laplace distribution is a scale mixture of a normal
distribution. Finite sample performance of the proposed algorithm is evaluated by numerical
simulation studies. The superiority of the proposed method is illustrated by some comparison
studies with other existing procedures in the literature. A real data example is also included to

illustrate the application of the proposed method.
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1 Introduction

Least absolute deviation (LAD) regression has been widely used in practice if robust estimates are
desired. The research on its computation and theoretical properties is abundant in the literature.
A detailed survey on this topic can be found in Deilman (1984, 2005). In this paper, LAD will be
applied to a class of mixture linear regression models to obtain robust estimates for the regression
coefficients.

To be specific, let X be a p-dimensional vector of explanatory variables, Y be a scalar response
variable. The relationship between Y and X is often investigated through a linear regression model.
In the mixture linear regression setup, we assume that with probability m;, i =1,2,...,¢g, (X',Y)

comes from one of the following g > 2 linear regression models
Y:X/ﬂi—i-aifi, 1=1,2,...,9, (1.1)

where 7 m = 1, 8;’s are unknown p-dimensional vectors of regression coefficients, o;’s are
unknown positive scalars. The random error ¢;’s are assumed to be independent of X;’s. It is
commonly assumed that the density functions of ¢;’s are members in a location-scale family with
mean 0 and variances 1. In this paper the design variable X is assumed to be random, but the

proposed estimation procedure also works for the fixed design.



If g = 1, LAD estimate of § is the minimizer of the target function Q(8) = Z?Zl Y; — X]’ﬂ|,
where (X ]’-, Y;)7_; is a sample from model (1.1). However, if g > 1 the formulation of LAD target
function is not straightforward since for a sample, we simply do not know which regression model
an observation is from. Our formulation of the LAD target function is motivated by the fact
that the maximum likelihood estimate of the regression coefficients given double exponentially
distributed random error is indeed the LAD estimator for ¢ = 1. Therefore, for ¢ > 2 case,
we assume that ¢; follows a double exponential distribution with location 0 and scale parameter
1/v/2, which makes the variance of ¢; being 1, i = 1,2,...,g. Then it is easily seen that for a
sample S = {(X;-,Y-),j = 1,2,...,n} from the model (1.1), the log-likelihood function of 0 =
(B1,0%, 71, Ba, 03, T2, . ... ,,69,03,779) can be written as

v2|Y; — X;@!)

n g
.
L(6;S) = Zlogz " exp (—
=1 =1 V20 i

and thus the maximum likelihood estimate of # can be obtained by maximizing L(6; S) with respect

(1.2)

to 8. Usually no explicit solution can be obtained, and some numerical method will be needed.

If ¢ = 1, many algorithms are developed in the literature to tackle the minimization problem
3 = argminﬁQ(B), such as the linear programming, least angle regression, the modified maximum
likelihood method by Li and Arce (2004), among others. An often adopted but ad-hoc scheme for
finding the solution f is to formally take the derivative of Q(/3) with respect to (3, and set it equal

to 0. Here o2 is treated as a nuisance parameter. By doing this, we obtain

B " ,
YO — > X, senly — X) =0 (13)

j=1

where sgn(-) is the sign function which takes —1,0,1 if the argument is negative, 0, and positive,
respectively. Let w; = 1/]Y; — X7, and rewrite the equation (1.3) as > 27, w; X;(¥; — X]B) = 0.
Thus by supplying an initial value Sy for 5, the updated value 8 can be found by the weighted

least square solution
n -1 n
Bi= DY wX;Xj| D wX;V;. (1.4)
j=1 J=1

By iterating the above procedure, one can eventually find an approximate solution to argmingQ(f).
A very interesting connection between the iterated weighted least square procedure stated above
and an EM algorithm in conjunction with the Laplace distribution is found in Phillips (2002). For
the sake of completeness, we briefly describe here Phillips (2002)’ procedure.
Andrews and Mallows (1974) showed that a Laplace distribution in fact can be expressed as
a mixture of a normal distribution and another distribution related to exponential distribution.

To be specific, let Z and V' be two random variables, V has a distribution with density function



v=3exp(—(2v%)71), v > 0, and given V = v, the conditional distribution of Z is normal with mean

0 and variance 02/(2v?). Denote f(z,v) the joint density function of Z and V, that is

v v22?\ 1 1
Vo CP\T o2 ) 3P\ T2 )
Then the marginal distribution of Z will be a Laplace distribution with density function h.(z) =

exp(—v/2|z|/0)/(v/20). Based on this finding, Phillips (2002) developed an EM algorithm to search
for the minimizer of Q(f5).

f(Z,’U) =

Consider V as a latent variable. If V' could be observed, then it is easy to see that the complete

log-likelihood function of § = (3, 0?), based on the sample P = (X}, Y}, V; )] !

L(9§P)__*10g770 —*szy Xﬁ z:logVZ——zn:L

2"
Jj=1 ]1V

Following the two steps in EM algorithm procedure, assume that () = (5(k),02(k)) is the value
in the kth iteration, then in the (k + 1)th iteration, we have to first calculate the conditional
expectation of the complete log likelihood function L(6; P), given the observed data set (Y, X j)?:l
and 0 = %) which has the following form

> i1 EVIOW, (X5, Y5)74](Y; — X;B)°
2

E[L(6;P)[S] = —%logwaZ -

n

—> ElogV7|0%), (X;,Y; ZE

j=1

g

\ (G Y

In the second step, the conditional expectation will be maximized with respect to #. Denote
w; = E[Vf|«9(’“), (X;,Y;)}-1], and notice that the third and fourth term on the right hand side do
not involve the unknown regression parameters, so to maximize the above conditional expectation

is equivalent to maximizing the following terms with respect to 6,

2 Z] 1’LU](Y X/B)

™
2 & o2

Interestingly, Phillips (2002) showed w; = E[VZ|0®, (X;,Y;)"_,] = o) /(V2]Y; — X}B%¥)]), this
implies that the solution of 3*+1) indeed is the same as the one based on (1.4). It is also easy to
see that o2(*+1) can be estimated by o2(+1) =2 > i wi(Yy — X]’ﬂ(kﬂ))Q/n. In the next section,
the above methodology will be extended to the mixture regression setting.

Yao and Wei (2012) proposed a robust estimation procedure for the mixture linear regression
models based on t distribution by extending Peel and McLachlan (2000)’s work. The research
conducted in this paper deals with the same questions as in Yao and Wei (2012), but the LAD
technique, or the Laplace distribution, instead of the less commonly used ¢-distribution, is used for

achieving robustness. In addition, the implementation of Yao and Wei (2012)’s procedure needs



to specify the degrees of freedom in the ¢-distribution, our method does not need such tuning
parameters.

The paper is organized as follows. The EM algorithm is developed in Section 2, together with
some discussion on how to control the outliers in z-direction. Section 3 conducts some numerical
simulations to evaluate the finite performance of the proposed method, comparison with some other
existing methods will be also made. Finally, the proposed method will be applied on a real data

example in Section 3.

2 EM Algorithm for Robust Mixture Regression

Assume that &;’s follow a Laplace distribution with mean 0 and scale parameter o;/ V2. For

1=1,2,...,9,5=1,2,...,n, denote G;; as latent Bernoulli variables such that

o 1, if jth observation (X}, Y}) is from ith component;
ij = .
0, otherwise.

Arguing as above, if the full data set T = {(X;,Y}, Gij)}i=1,2,...g:j=1,2,...n are observable, then the

77777

full log likelihood function of § = (B, 0%, 71, B2, 05,72, . . ., By, 03, mg) can be written as
" V2|Y; — X!;
Z Z Gij log exp < M) . (2.1)
j=11=1 Ti

From Andrews and Mallows (1974), we know that a Laplace distributed random variable is a scale
mixture of a normal random variable and another variable related to exponential distribution.
Also see Section 1 for the detail. Denote Vj, coupled with (Xj;,Y;), as the latent scale variable, j =
1,2,..., then the full log-likelihood function of #, based on D = {X;,Y;,V;, Gjj}iz12,...g:5=1,2,...n5

zg:G lo e ij(y} ~ KB 1 e !
i T X —= ex -
1i=1 78 \F gi P Uz‘z v} P 2V7

has the form

n

||M

n g n g )
:Z ka’gm_*ZZGulogﬂo - ZG”VJ (Yj — Xﬁz)
7j=11i=1 j=11i=1 j=1i=1 o;
n g n g Gl
_ZZszlogi—%ZZ V?]' (2.2)
J=1 i=1 j=1i=1 "J

Based on EM algorithm principle, in E-step, we have to calculate the condition expectation
E[L(6;D)[S,60)], where S = {(X;,Y;)}7_, and 6© = (87,67 2" ... 50 070 7") is a
proper initial value for 6. Since the last two terms in (2.2) do not involve the unknown regression

parameters, we can simply drop them from the analysis. Thus, to find E[L(8; D)|S, ()], we only



have to calculate the following three terms
7i; = B[Gy18,0Y)], 6y = E[V}S,00,G;; =1].

One can show that

e G B 1 V0 W (2.3)
1) — 3 1] — . .
9 mom Y exp(—|Y; — X650 /o) va2ly; - x789|

The calculation for ¢;; follows the same thread as in Phillips (2002). In M-step, the following

expression will be maximized with respect to m;’s, 5;’s and 01-2’5

T’Lj z] Y X! ﬂz)

ZZTMO% ZZ% log 7 —ZZ : (2.4)

Jj=11i=1 ]111 7j=11i=1

and the maximizer will be used for the next iteration.

In summary, we propose the following EM algorithm to maximize (1.2).

EM Algorithm:
(1). Choose an initial value for § = (81,07, 71,..., By, 03,779),

(2). E-Step: at the (k 4 1)-th iteration, calculate Ti(fﬂ) and 58»6“) from equation
(2.3) with (0) replaced by (k).

(3). M-Step: at the (k4 1)-th iteration, use the following formulas to calculate the

maximizer of (2.4):

k) _ 1~ ()
T —gZTz‘j ’

j=1
-1
k k k k k
51'( = ZTZ(] +1)6i(j H)XJ‘XJ/‘ ZTZ(] +1)6i(j H)ijj )
J=1 J=1
k+1 k+1 (k+1
2(k+1) 22] 1745 z(j )(Y X 5 ))
o; 0 ==y .
J=1"4j

(4). Repeat steps (2), (3) until the convergence is obtained.

If we further assume that all a? are equal, then in the above EM algorithm, a common initial

value for 02-2 should be used, and 2 can be updated in M-step by

Z]
n

(k k (k
6’2(k+1) 22] 127, 1 2] ) (+1)(Y XB +1))

The robustness of the above EM procedure is resulted from the adoption of LAD regression, it

is also obvious from the formulae of the updated 5;’s in each iteration. Note that the factor 5%“



is reversely related to the term |Y; — X J’ ﬁi(k)|, meaning that larger residuals give smaller values of
55-“, hence downweight the corresponding observations when calculating the estimates.

It is easy to see that when estimating Bf“, the weight d;; can be simplified to d§;; = 1/|Y; —
X]’-Bi(k) |. After estimating Bf“’s in the k+1-th iteration, similar to Philips (2002) in one population

case, we can estimate af using formula

k+1) ¢(k+1) (k+1)
ey _ V2 8T — x|

v n _(k+1)
Zj:l Tij
Accordingly, when all o?’s are assumed to be equal, then one can estimate the common variance

by

(k1) (k1) y - (k+1)
6_2(k+1) ij 12] 1 Tij 6ij ’Y? _Xj//Bz ‘
n

The EM algorithm proposed above for calculating B indeed is an iterated reweighted least square

(IRLS) procedure, as the one proposed in Schlossmacher (1973) for one population case and the

(k+1)5(k+1)
j

programming the proposed EM algorithm. In the case of g = 1, Schlossmacher (1973) warned that

weights are given by in the k£ + 1-th iteration. Extra attention should be paid when

if a perfect LAD fit occurs, ie., ¥; — X ;BZ = 0 for some i, 7, then the algorithm will eventually

gives Y; — X ]’sz ~ 0 when iteration proceeds. As a result, 5?*1

Y; — X ]’Bﬂ will be very large, and numerical instability would follow. Although Philips (2002)

which is reciprocally related to

noticed that this problem rarely arises in the case of g = 1, this does occur often in our case, which
is not out of expectation, simply because more than one regression models provide more chance
for a perfect LAD fitting. But simply adopting Schlossmacher (1973)’s weight scheme by setting
(5@*1 = 0 whenever |Y; — X J’Bﬂ < e for a pre-assigned e > 0 is not quite reasonable. It makes
much sense to allocate big weights for small residuals and small weights for big residuals. A cogent
arguments on this issue is provided in Philips (2002). In our simulation study, we simply adopt a
hard threshold rule to control the extremely small LAD residuals in each iteration steps. Under this
rule, 5(k+1) will be assigned a value of 10° for any perfect LAD fit. We also tried other threshold
values, such as 10%,10' in the simulation, all these choices generate almost identical results. For
the sake of brevity, we only report the simulation results by using 10° as the threshold value.

It is well known that in IRLS procedure, numerical instability could occur if the Weights are
very small. A common way to deal with this issue is to impose a hard threshold on ’I' j ! obtained
in the k + 1-th iteration. Namely, for a pre-specified value e say, if Tk'H > e, then T’;—H itself will
be used for the next iteration; otherwise, e will be used as the weight for the next iteration. Same
technique is used in Yao and Wei (2012). In our simulation study, e = 10e — 6 is adopted.

Similar to the traditional M-estimate for linear regression and Yao and Wei (2012)’s mixture

regression by ¢-distribution, the above EM algorithm based on Laplace distribution is robust against



outliers along y-direction, but not in z-direction, which is also confirmed by our real data analysis
conducted in Section 3. As a consequence, if there are any high leverage points in the data sets
potentially being not from the model under discussion, which we intend to throw away from further
analysis, or simply we do not want these observation exerting too much influence on the estimation,
then the proposed EM algorithm might fail our expectation, and certain modification would be
necessary. An obvious modification is first to identify these high leverage points, then just exclude
them from further analysis. A commonly used method is to calculate the leverage value for each
observation using formula hj; =n~' + (n — 1)"'MD;, where MD; = (X; — X)'S7}(X; — X), X,
S are the sample mean and sample covariance matrix of X;’s, respectively. The j-th observation
will be identified as a high leverage point if hj; > 2p/n, where p is the dimension of X. To avoid
the masking effect caused by using X and S in detecting the high leverage points, some robust
estimation of the population mean and covariance matrix of X can be used instead of the sample
mean and sample covariance. Yao and Wei (2012) adopted the minimum covariance determinant
(MCD) estimators for the population mean and covariance matrix, which is implemented by the
Fast MCD algorithm developed in Rousseeuw and Van Driessen (1999). Certainly, other robust
estimates of the population mean and covariance matrix could be also used for this purpose, for
example, the Stahel-Donoho (SD) estimator from Stahel (1981) and Donoho (1982). The j-th
observation will be considered as a high leverage point if the resulting M D; exceeds the threshold
X12971,o_975- This threshold is proposed by Pison et al. (2002). In this paper, we propose to implement
the proposed EM algorithm based on Laplace distribution after removing the observations with

MDj; > X%—1,0.975 using both MCD estimator and SD estimator to calculate M D;.

3 Numerical Studies

To see the finite sample performance of the proposed robust estimation procedure, an extensive
simulation study is conducted in this section. It is well known that the label switching issue is
always an issue when evaluating different estimation methods in mixture models, and there are no
widely accepted labeling standard. In our simulation, similar to Yao and Wei (2012), we simply
choose the labels by minimizing the distance to the true parameter values. The effects of labeling
schemes on comparison different estimation procedures deserves an independent research in the

future.

3.1 Simulation Studies

In the simulation study, we choose equal variance for all components. The reason for doing this

has two folds. Firstly, the log-likelihood function (2.1) is unbounded and goes to infinity if one



observation exactly lies on one component line and the corresponding variance goes to 0, which
makes the simulation very unstable. Secondly, choosing the same variances for all components can
shorten the computation time, in particular, when the number of components is big.

To compare our method with some existing estimation procedures, we generate sample data
(X1, X5, Y-)?:1 from the following two-component mixture regression models which are also used
in Yao and Wei (2012):

04+ X1+ Xo+e, ifZ=1,
0—X1 —Xo+eo, if Z=2,

where Z is the component indicator. That is, the data are generated from a two-component
mixture linear regression models with 81 = (510, f11, 512) = (0,1,1), and By = (B2, Bo1, B22) =
(0,—1,—1)". The predictors X; ~ N(0,1) and Xy ~ N(0,1) are independent. The random error
€1 and eo are independent and has the same distribution as €. To see the effects of different
distributions of £ and the high leverage outliers in z-direction on various estimation methods, we
consider the following six cases: (1), € ~ N(0,1); (2), ¢ ~Laplace distribution with mean 0 and
variance 1; (3). € ~ t;, t-distribution with degrees of freedom 1 or the Cauchy distribution; (4).
e ~ t3, t-distribution with degrees of freedom 3. (5). € ~ 0.95N(0,1) + 0.056N(0, 25), a mixture of
two normal distributions; (6), € ~ N(0,1) with 5% high leverage outliers being X; = X3 = 20 and
Y = 100.

Case 1 is often used to evaluate the efficiency of different estimation methods compared to the
traditional MLE when the error is exactly normally distributed and there are no outliers. For Case 2,
the estimation methods proposed in the paper will provide the MLE of unknown parameters, which,
as in the first case, would serve a reference line to evaluate the performance of other estimation
procedures. Both Case 3 and 4 are heavy tailed distributions and often used in literature to mimic
the outlier situations. Case 5 would produce 5% data likely to be low leverage outliers, and in Case
6, 5% observations are replicated serving as the high leverage outliers, which will be used to check
the robustness of estimation procedures against the high leverage outliers.

Nine estimation methods will be compared in the simulation study: (1), maximum likelihood
method based on normality assumption (MLE); (2), Trimmed likelihood estimator (TLE) proposed
by Neykov et al. (2007); (3), the robust modified EM algorithm based on bisquare (Bisquare)
proposed by Bai et al. (2012); (4), the robust mixture regression based on t-distribution (Mixregt)
proposed by Yao and Wei (2012); (5), the trimmed mixture regression based on t-distribution
(MixregtTrim), with MCD trimming method; (6), the trimmed mixture regression based on t-
distribution (MixregtTrim), with SD trimming method; (7), the proposed robust EM mixture
regression based on Laplace-distribution (MixregL); (8), the trimed mixture regression based on

Laplace-distribution (MixregLTrim), with MCD trimming method, and (9), the trimed mixture



regression based on Laplace-distribution (MixregLTrim), with SD trimming method.

From the simulation studies, we can see that if the true distribution of ¢ is normal, the MSEs
of MLE procedure are slightly bigger than our proposed method for the first regression when the
sample size is 100, but the superiority of MLE over all other methods becomes clear when the sample
size gets bigger. But for other cases when the distribution of € has a heavier tail, contaminated
by some outliers, or there are high leverage outliers in the data set, then MLE fails to provide
reasonable estimates.

The performance of TLE and Bisquare is satisfying when ¢ has a lighter tail, see the simulation
results for all cases except Case III, where ¢ has a t-distribution with degrees of freedom 1. The
overall performance of the Mixregt proposed by Yao and Wei (2012) is also satisfying when sample
size gets bigger except for the Case VI when high leverage points present in the data set, but this
disadvantage is remedied by the modified procedure Mixregt-MCD.

The simulation results clearly show that the proposed method in the paper outperforms or
at least is comparable to any other methods. It is rather unexpected that our proposed method
performs better than the Mixregt and Mixregt-MCD procedures even when ¢ has a ¢-distribution.
The bigger MSEs in the later two procedures might be resulted from the extra step involved in the
algorithm, the selection of v, which is the degrees of freedom of the ¢-distribution.

MCD estimator is used in Mixregt-MCD and Mixregl.-MCD to remove the high leverage outliers.
In the simulation study, the SD estimator is also used to remove the high leverage outliers. The
simulation results are similar to those from MIxregt-MCD and Mixregl.-MCD, hence omitted here

for the sake of brevity.

3.2 Real Data Example

A typical real data set suitable for mixture regression modeling is the tone data collected in a
tone perception experiment of Cohen (1984). In the experiment, a pure fundamental tone was
played to a trained musician and electronically generated overtones were added, determined by a
stretching ratio (stretchratio). A value of 2 for the stretch ratio corresponds to the harmonic pattern
usually heard in traditional definite pitched instruments. Then the musician was asked to tune an
adjustable tone to the octave above the fundamental tone, and a measurement called “tuned” gives
the ratio of the adjusted tone to the fundamental. 150 pairs of (tuned, stretchratio) values are
obtained with the same musician. The variable “strechratio” is treated as response variable and
“tuned” as predictor. To see the impact of different types of outliers on various procedures, we
first add 5 identical pairs, (3,4.5), to the original data set as outliers in y-direction. Here and after,
the circles in the plots denote the original data points, and the star denotes the outliers. The right

plots in all the figures below have the same y-scales as in the left plots.



MLE | TLE | Bisquare | Mixregt |Mixregt-MCD| MixregL | MixregL-MCD

Case I: e ~ N(0,1)
Bio| 0.130( 0.011) [0.139( 0.033) [0.143( 0.011) [0.124( 0.021) | 0.163( 0.029) [0.093( 0.079)] 0.090( 0.069)
B11| 0.160(-0.025) [0.212(-0.195) [0.157(-0.022) | 0.130(-0.032) | 0.175(-0.115) |0.094(-0.015) | 0.113(-0.103)
Biz| 0.135(-0.034) |0.248(-0.195) [0.171(-0.048) [0.123(-0.004) | 0.247(-0.031) | 0.088( 0.008)| 0.165(-0.039)
Bao| 0.018(-0.003) |0.038(-0.004) [0.021(-0.001) [0.022(-0.012) | 0.022( 0.008) |0.028(-0.026)| 0.027(-0.001)
Bo1| 0.021(-0.016) [0.030( 0.011) [0.023(-0.017) [0.021(-0.006) | 0.029(-0.011) |0.027(-0.001)| 0.035(-0.021)
Baz| 0.018( 0.009) |0.024( 0.034) [0.019( 0.014) [0.021(-0.010) | 0.030(-0.020) |0.026(-0.010)| 0.042(-0.017)
7 | 0.005( 0.003) [0.007( 0.025) [0.005( 0.005) [0.005( 0.013) | 0.007( 0.016) |0.005( 0.017)| 0.007( 0.022)

Case II: € ~ Laplace(1)

Bio| 0.177(-0.006) [0.075(-0.007) [0.137(-0.016) | 0.085( 0.012) | 0.123(-0.001) |0.058( 0.022)| 0.060( 0.020)
B11| 0.145(-0.040) [0.097(-0.107) [0.142(-0.054) | 0.084(-0.029) | 0.150(-0.033) |0.050(-0.024) | 0.080(-0.033)
Bi2| 0.152( 0.009) |0.084(-0.077)|0.126( 0.000) |0.080(-0.021) | 0.150(-0.026) | 0.055(-0.006) | 0.063(-0.020)
B20| 0.016(-0.002) [0.013( 0.004) [0.013( 0.002) |0.011(-0.007) | 0.016(-0.019) |0.010(-0.010) | 0.015(-0.026)
B21| 0.021(-0.017) [0.013( 0.007) [0.014(-0.019) | 0.012(-0.008) | 0.018(-0.030) |0.011(-0.004) | 0.019(-0.020)
Ba22| 0.016(-0.006) [0.013( 0.019)|0.013(-0.002) |0.012(-0.002) | 0.020( 0.009) | 0.012( 0.003) | 0.026( 0.018)
w1 | 0.004(-0.004) [0.004( 0.019) [0.004( 0.016) |0.004( 0.015) | 0.005( 0.012) |[0.003( 0.013)| 0.005( 0.009)

Case III: € ~ 1
Bio | 242.992(-0.120) [ 3.200(-0.150) | 1.683(-0.116) | 1.708(-0.026) | 0.945(-0.075) [0.163( 0.061)] 0.122( 0.034)
B11 | 174.666(-1.568) | 1.886(-0.170) | 1.571(-0.347) | 1.990(-0.252) | 1.621(-0.535) |0.521(-0.377)| 0.561(-0.430)
Bz | 148.108(-1.770) | 1.797(-0.033) | 1.642(-0.306) | 2.410(-0.447) | 1.538(-0.360) | 0.548(-0.412) | 0.418(-0.405)
Bao | 244.822( 0.172) | 1.526( 0.065) [0.910( 0.024) [0.113(-0.020) | 3.237(-0.173) | 0.032(-0.024) | 0.025(-0.038)
B | 175.583(-1.080) | 0.774(-0.129) | 0.489(-0.088) [0.079(-0.041) | 0.949(-0.102) |0.032( 0.052)| 0.047( 0.081)
Bz | 142.861(-0.454) |0.773(-0.065) | 0.580(-0.116) |0.112(-0.049) | 0.968(-0.028) |0.037( 0.052)| 0.048( 0.054)
7 | 0.084( 0.213) |0.039( 0.060) |0.047( 0.105) |0.023( 0.093) | 0.028( 0.108) [0.022( 0.070)| 0.023( 0.083)

Case IV: e ~ t3
Bio| 1.568(-0.129) [0.238( 0.007) [0.460( 0.006) [0.529( 0.031) | 0.475( 0.126) [0.131( 0.065)] 0.130( 0.108)
Bur| 0.997(-0.234) |0.264(-0.135) |0.341(-0.041) | 0.361( 0.010) | 0.772(-0.109) | 0.176(-0.021) | 0.183(-0.041)
Biz| 1.240(-0.024) |0.239(-0.096) |0.375(-0.058) |0.394(-0.010) | 0.804(-0.040) |0.132( 0.013)| 0.186(-0.046)
Bao| 0.723(-0.029) |0.038(-0.008) [0.063( 0.013) |0.034( 0.002) | 0.077(-0.018) | 0.032(-0.005) | 0.030(-0.009)
Bar| 0.188( 0.028) |0.034( 0.010) |0.085(-0.034) | 0.037(-0.005) | 0.062(-0.014) | 0.042( 0.004) | 0.052(-0.018)
Baz| 0.115( 0.031) [0.026( 0.010) [0.041(-0.013) [0.029(-0.018) | 0.166(-0.027) |0.035(-0.015)| 0.048( 0.003)
m | 0.028( 0.025) |0.007( 0.037)|0.009( 0.030) |0.006( 0.011) | 0.014( 0.035) |0.007( 0.012)| 0.007( 0.021)

Case V: € ~ 0.95N(0,1) + 0.05N/(0, 25)
Bio| 2.243(-0.020) [0.124( 0.046) [0.202( 0.042) [0.152( 0.015) | 0.350( 0.037) [0.097( 0.034)| 0.098( 0.042)
Bui| 1.366( 0.054) |0.282(-0.209) [0.225(-0.037) [0.153(-0.029) | 0.528(-0.106) |0.100(-0.008) | 0.160(-0.056)
Biz| 2.117(-0.113) [0.221(-0.190) |0.217(-0.056) |0.163(-0.050) | 0.705( 0.094) |0.099(-0.030) | 0.175( 0.023)
Bao| 1.767( 0.159) [0.030( 0.013) [0.021( 0.011) [0.026( 0.020) | 0.028(-0.004) |0.029( 0.008)| 0.035(-0.003)
Bor| 1.277(-0.122) |0.034( 0.001) |0.028(-0.023) [0.022(-0.009) | 0.035( 0.010) |0.026(-0.005)| 0.040( 0.008)
Baz| 0.284( 0.006) [0.027( 0.011) [0.029(-0.009) [0.120(-0.036) | 0.038(-0.017) |0.027(-0.006) | 0.044(-0.020)
71 | 0.040( 0.015) |0.010( 0.034) |0.008( 0.020) |0.007( 0.015) | 0.009( 0.012) |0.005( 0.006)| 0.009( 0.013)
Case VI: ¢ ~ N (0, 1) with 5% high leverage outliers

Bio| 18.364(-2.878) [0.173( 0.002) |0.152( 0.015) | 2.456( 0.169) | 0.175(-0.032) | 0.036( 0.080) | 0.111( 0.092)
B11| 5.876( 1.422) [0.248(-0.209) [ 0.200(-0.068) |3.444( 1.473) | 0.219(-0.055) |0.056(-0.037) | 0.133(-0.012)
Biz| 6.520( 1.641) |0.219(-0.168) [0.227(-0.091) |3.589( 1.517) | 0.262( 0.006) |0.042(-0.014) | 0.153(-0.046)
B20| 11.938( 2.451) |0.036(-0.002) |0.023(-0.011) | 0.023( 0.002) | 0.027( 0.019) | 0.015(-0.058) | 0.032( 0.011)
Ba1 | 12.578( 3.316) |0.028( 0.000) |0.025(-0.014) [0.053( 0.139) | 0.027( 0.010) |0.013( 0.033)| 0.042( 0.000)
B2z | 12.561( 3.315) |0.022( 0.025) [0.020( 0.019) |0.053( 0.136) | 0.023(-0.017) |0.012( 0.021)| 0.046( 0.004)
7 | 0.113( 0.165) [0.007( 0.017) [0.007( 0.003) [0.007(-0.074) | 0.006( 0.005) |0.005( 0.030)| 0.006( 0.011)

Table 1: MSE(Bias) of Point Estimates for n = 100
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MLE | Bisquare | Mixregt |Mixregt-MCD|  MixregL | MixregL-MCD

Case I: e ~ N(0,1)
Bio| 0.043(-0.010) 0.044(-0.010) [ 0.047(-0.022) | 0.052(-0.030)
Bi1| 0.041(-0.007) 0.044(-0.007) | 0.035( 0.008) | 0.064(-0.005)
Bi2| 0.040(-0.020) 0.044(-0.018) | 0.044(-0.007) | 0.057(-0.030)
Bao| 0.009(-0.006) 0.009(-0.007) |0.008(-0.010) | 0.009( 0.015)
Ba1| 0.008(-0.006) 0.008(-0.007) [0.009(-0.001) | 0.013(-0.009)
Baz| 0.010(-0.014) 0.012(-0.015) | 0.008(-0.006) | 0.013(-0.011)
71 | 0.002( 0.010) 0.003( 0.012) [0.002( 0.007) | 0.002( 0.005)

Case II: € ~ Laplace(1)

Bio| 0.046( 0.006) 0.033( 0.015) [0.027(-0.002) | 0.030(-0.005)
Bi1| 0.048( 0.039) 0.034( 0.017) [0.026(-0.021) | 0.032( 0.000)
Bi2| 0.043( 0.009) 0.030(-0.004) | 0.033( 0.018) | 0.036(-0.012)
Bao| 0.009(-0.007) 0.007(-0.010) |0.006(-0.004) | 0.005(-0.001)
Ba1| 0.008(-0.020) 0.007(-0.019) | 0.005(-0.005) | 0.007(-0.010)
Ba22| 0.009(-0.006) 0.006(-0.009) | 0.005( 0.006) | 0.009(-0.009)
w1 | 0.002( 0.004) 0.002( 0.023) | 0.002( 0.006) | 0.002( 0.005)

Case I1I: € ~ ¢;
Bro | 286.806( 1.711) 1.256(-0.042) [0.326( 0.029) | 0.411( 0.049)
Bi1| 36.053(-0.902) 0.981(-0.222) | 0.612(-0.362) | 0.808(-0.471)
Bz | 85.816(-0.726) 1.031(-0.222) |0.807(-0.392) | 0.810(-0.485)
Bao | 283.651( 1.486) 0.587(-0.018) | 0.036(-0.006) | 0.060(-0.065)
B | 30.042( 1.056) 0.273( 0.012) |0.030( 0.004) | 0.063(-0.009)
Baz | 49.441( 0.368) 0.281( 0.019) [0.039(-0.011) | 0.047(-0.004)
m | 0.067( 0.240) 0.033( 0.094) [0.013( 0.057) | 0.025( 0.087)

Case IV: e ~ t3
Bio| 0.600(-0.069) 0.121(-0.030) [ 0.084(-0.015) | 0.155( 0.036)
Bi1| 0.486(-0.167) 0.096( 0.019) [0.101( 0.021) | 0.181(-0.041)
Biz| 0.778(-0.050) 0.078(-0.005) |0.098(-0.040) | 0.194(-0.020)
Bao| 3.107(-0.153) 0.016( 0.002) | 0.015(-0.006) | 0.015(-0.007)
Ba1| 0.459(-0.026) 0.016(-0.021) |0.012(-0.004) | 0.020(-0.014)
Baz| 0.227( 0.046) 0.016(-0.043) |0.016(-0.003) | 0.018(-0.020)
m | 0.029( 0.018) 0.004( 0.031) |0.003( 0.007) | 0.004( 0.012)
Case V: € ~ 0.95N(0,1) + 0.05N/(0, 25)
Bio| 1.077(-0.002) 0.051( 0.006) |0.074(-0.028) | 0.100( 0.024)
Bi1| 0.834( 0.031) 0.046( 0.014) [0.059(-0.021) | 0.113( 0.000)
Biz| 0.675(-0.121) 0.055( 0.006) |0.062( 0.004) | 0.096( 0.007)
Bao| 0.348( 0.062) 0.010( 0.012) |0.012(-0.007) | 0.013(-0.019)
Bar| 0.042( 0.072) 0.009( 0.001) [0.012( 0.002) | 0.014( 0.010)
Baz| 0.036( 0.067) 0.010(-0.005) [0.012( 0.005) | 0.015(-0.023)
m | 0.016(-0.023) 0.003( 0.014) |0.002( 0.002) | 0.003( 0.003)

Case VI: ¢ ~ N(0, 1) with 5% high leverage outliers
Bio| 12.459(-2.191) [0.061( 0.006) [0.044(-0.008) [ 1.773(-0.009) | 0.054(-0.015) [0.021( 0.057)] 0.050(-0.004)
Bi1| 4.875( 1.543) |0.078(-0.093) [0.060(-0.021) |3.168( 1.552) | 0.065(-0.031) | 0.025(-0.041) | 0.064(-0.043)
Bia| 4.678( 1.468) |0.087(-0.132) [0.056(-0.033) | 2.853( 1.447) | 0.067( 0.013) |0.031(-0.037)| 0.067(-0.028)
Bao | 15.169( 2.671) [0.012(-0.013) [0.010(-0.007) [0.010(-0.009) | 0.010( 0.000) |0.009(-0.063)| 0.016(-0.023)
Bor | 12.212( 3.243) 0.010( 0.015) [0.008( 0.007) |0.031( 0.134) | 0.013( 0.006) |0.009( 0.037)| 0.015(-0.006)
Baz| 13.057( 3.364) |0.016(-0.004) [0.012(-0.002) | 0.027( 0.133) | 0.014(-0.022) |0.007( 0.027)| 0.017(-0.006)
m | 0.147( 0.221) |0.003( 0.013) [0.003( 0.004) |0.008(-0.085) | 0.002( 0.007) |0.005( 0.027)| 0.003( 0.003)

Table 2: MSE(Bias) of Point Estimates for n = 200
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MLE | TLE | Bisquare | Mixregt |Mixregt-MCD| MixregL | MixregL-MCD

Case I: e ~ N(0,1)
Bio| 0.018(-0.006) |0.041( 0.012)[0.020(-0.005) [0.019( 0.004) | 0.027( 0.008) [0.025( 0.018)] 0.031( 0.014)
Bii| 0.020( 0.002) |0.108(-0.178) [0.021(-0.001) [0.018(-0.014) | 0.028(-0.014) |0.024(-0.028)| 0.034(-0.029)
Bi2| 0.018(-0.006) |0.096(-0.171) [0.020( 0.000) |0.016( 0.008) | 0.031( 0.012) |0.029(-0.001)| 0.042(-0.012)
Bao| 0.004( 0.003) [0.009( 0.002) [0.004( 0.002) [0.005(-0.006) | 0.005( 0.012) |0.008(-0.010)| 0.008( 0.014)
Ba1| 0.004( 0.004) [0.007( 0.020) [0.004( 0.002) [0.004(-0.009) | 0.006(-0.002) |0.006(-0.005)| 0.009( 0.002)
Baz| 0.004(-0.005) |0.006( 0.013) [0.004(-0.006) |0.005(-0.004) | 0.006( 0.000) |0.007( 0.003)| 0.008( 0.009)
71 | 0.001( 0.000) [0.002(-0.001) [0.001( 0.002) [0.001( 0.001) | 0.002( 0.005) |0.001( 0.000)| 0.002( 0.006)

Case II: € ~ Laplace(1)

B1o| 0.022(-0.005) [0.012( 0.012) [0.015(-0.003) |0.012(-0.004) | 0.013( 0.003) |0.010( 0.007)| 0.012( 0.010)
B11| 0.014( 0.008) [0.013(-0.041) [0.010( 0.005) |0.012( 0.003) | 0.018(-0.013) |0.011( 0.005)| 0.017(-0.007)
Bi2| 0.016(-0.006) [0.017(-0.050)|0.012(-0.004) |0.011(-0.013) | 0.016( 0.000) | 0.008(-0.007) | 0.014( 0.005)
B20| 0.004(-0.003) [0.003(-0.003) [0.003(-0.003) | 0.002( 0.001) | 0.002( 0.000) |0.002( 0.002)| 0.002(-0.001)
B21| 0.004(-0.013) [0.003( 0.005) [0.003(-0.015) | 0.003(-0.009) | 0.004(-0.003) |0.003(-0.004) | 0.004(-0.001)
Ba22| 0.004(-0.011) [0.004( 0.012) |0.003(-0.009) | 0.003(-0.003) | 0.004(-0.006) | 0.002(-0.003) | 0.003(-0.003)
m | 0.001( 0.002) [0.001( 0.016) [0.001( 0.022) |0.001( 0.004) | 0.001( 0.006) |0.001( 0.001)| 0.001( 0.004)

Case I1I: € ~ ¢;
Bio | 313.757(-0.917) [ 0.735(-0.040) [ 0.631(-0.083) [0.147( 0.019) | 0.154( 0.002) [0.016( 0.073)] 0.017( 0.076)
Bi11|278.219(-3.135) | 0.398( 0.097) [0.607(-0.187) |0.458(-0.191) | 0.485(-0.257) | 0.194(-0.352) | 0.322(-0.454)
Bz | 455.172(-1.369) [0.399( 0.059) [0.716(-0.146) |0.351(-0.177) | 0.484(-0.200) |0.197(-0.361)| 0.351(-0.462)
Bao | 313.757(-0.917) [0.021(-0.001) | 0.514(-0.052) |0.023(-0.008) | 0.021(-0.002) | 0.008(-0.061)| 0.008(-0.067)
Ba1 | 269.680(-1.135) | 0.032( 0.003) [0.047( 0.034) |0.014( 0.006) | 0.022(-0.003) |0.011( 0.092)| 0.015( 0.099)
B | 453.695( 0.630) [0.093(-0.009) |0.083( 0.014) [0.017( 0.009) | 0.020(-0.002) |0.012( 0.094) | 0.016( 0.102)
m | 0.061( 0.247) |0.008( 0.003) |0.016( 0.062) |0.009( 0.031) | 0.008( 0.037) |0.037( 0.160)| 0.038( 0.161)

Case IV: e ~ t3
Bio| 0.301( 0.020) [0.037(-0.008) [0.038(-0.010) [0.039(-0.014) | 0.059(-0.016) [0.033( 0.002)| 0.044( 0.005)
B11| 0.210(-0.046) [0.039(-0.070) |0.044( 0.049) |0.034(-0.013) | 0.071(-0.008) | 0.028(-0.019) | 0.049(-0.033)
Biz| 0.227(-0.049) |0.037(-0.081) [0.034( 0.021) [0.046( 0.000) | 0.045( 0.009) |0.031( 0.008)| 0.048(-0.043)
Bao| 0.066( 0.018) |0.008(-0.017) [0.007(-0.007) |0.006(-0.007) | 0.006( 0.011) |0.008(-0.011)| 0.006( 0.008)
Ba1| 0.069( 0.055) [0.007( 0.001) [0.006(-0.025) [0.007(-0.005) | 0.009(-0.008) |0.007( 0.003)| 0.010( 0.005)
Baz| 0.069( 0.055) |0.009( 0.006) |0.008(-0.025) |0.008( 0.009) | 0.010(-0.001) |0.008( 0.011)| 0.012( 0.003)
m | 0.010(-0.017) |0.002( 0.023) [0.002( 0.023) [0.002( 0.004) | 0.003( 0.007) |0.002(-0.001)| 0.003( 0.003)

Case V: £ ~ 0.95N(0,1) + 0.05N(0, 25)
Bio| 0.098( 0.000) |0.041( 0.005) [0.024( 0.004) |0.029(-0.007) | 0.038( 0.015) |0.034( 0.009)| 0.042( 0.028)
Bii| 0.394( 0.028) |0.048(-0.095) [0.021( 0.027) [0.022( 0.011) | 0.044(-0.012) |0.025( 0.003)| 0.040(-0.012)
Biz| 0.081(-0.050) |0.051(-0.119) [0.022( 0.014) [0.026( 0.001) | 0.045( 0.012) |0.032( 0.000)| 0.048(-0.001)
Bao| 0.041( 0.015) |0.006( 0.003) [0.005( 0.002) |0.006(-0.002) | 0.006( 0.006) |0.008(-0.006) | 0.008( 0.003)
Bo1| 0.088( 0.046) |0.006( 0.010) [0.005(-0.008) |0.006( 0.006) | 0.009( 0.004) |0.008( 0.009)| 0.011( 0.009)
Baz| 0.135( 0.041) [0.007( 0.024) [0.004( 0.000) [0.005( 0.002) | 0.008( 0.000) |0.007( 0.008)| 0.011( 0.007)
m | 0.007(-0.033) |0.001( 0.003) |0.001( 0.006) |0.001( 0.000) | 0.002(-0.002) |0.002(-0.003)| 0.002(-0.007)
Case VI: ¢ ~ N(0, 1) with 5% high leverage outliers

Bio| 9.355(-1.688) [0.033( 0.010) |0.020(-0.010) | 1.375( 0.246) | 0.021(-0.014) | 0.013( 0.065) | 0.029( 0.002)
Bui| 5.188( 1.667) |0.049(-0.102) [0.023(-0.011) |2.505( 1.479) | 0.027(-0.002) |0.014(-0.049) | 0.033(-0.037)
Brz| 4.187( 1.307) |0.039(-0.008) [0.021(-0.007) |2.594( 1.507) | 0.029( 0.007) |0.017(-0.034) | 0.031(-0.015)
Bao | 11.697( 2.305) |0.005( 0.002) [0.004( 0.003) [0.005( 0.005) | 0.005( 0.004) |0.007(-0.047)| 0.007(-0.002)
Bo1 | 11.586( 3.309) |0.006( 0.011) [0.005( 0.012) [0.021( 0.125) | 0.006( 0.004) |0.004( 0.026)| 0.009( 0.005)
Baz | 12.442( 3.437) |0.006( 0.003) [0.005( 0.003) |0.020( 0.122) | 0.006(-0.005) | 0.005( 0.028)| 0.010( 0.000)
71| 0.140( 0.204) |0.002( 0.004) [0.001(-0.006) |0.008(-0.089) | 0.001( 0.005) |0.004( 0.020)| 0.001( 0.002)

Table 3: MSE(Bias) of Point Estimates for n = 400
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The left plot in Figure 1 clearly shows that the fitting by Mixregl. and Bisquare are almost
identical, and Mixregt also provides a very good fit. For comparison, The Bisquare fit is also drawn
in the right plot in Figure 1, it is quite obvious that the TLE and MLE are affected severely by the

outliers. Then we add 10 identical pairs, (0,3), to the original data set as high leverage outliers.

] * - *

strech ratio
15 20 25 3.0 35 40 45

tuned tuned

Figure 1. Mixture Linear Fitting with Outlier (3,4.5)

Left panel: solid line — Bisquare, dashed line — MixregL, dotted line — Mixregt,
Right panel: solid line — Bisquare, dashed — TLE, dotted line — MLE

The left plot in Figure 2 shows that both Bisquare and Mixregl. gives a reasonable fit, but the
Mixregt performs less satisfying. From the right plot in Figure 2, we see that MLE has inferior

performance against the outliers, and TLE works better.

o
© * N

strech ratio

T T T T T T T
0.0 05 10 15 20 25 30

tuned tuned

Figure 2. Mixture Linear Fitting with Outlier (0, 3)

Left panel: solid line — Bisquare, dashed line — MixregL,, dotted line — Mixregt,
Right panel: solid line — Bisquare, dashed — TLE, dotted line — MLE

Finally 10 identical pairs (0,4) are added to the original data set as both outliers in = and y-
direction. The left plot in Figure 3 shows that Bisquare continues to provide a robust fit, MixregL
barely keeps a vague two-line structure, and Mixregt is affected severely by the outliers. The right

plot in Figure 3 shows that MLE is still the worst, and TLE works fine.
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Figure 3. Mixture Linear Fitting with Outlier (0, 4)

Left panel: solid line — Bisquare, dashed line — MixregL,, dotted line — Mixregt,
Right panel: solid line — Bisquare, dashed — TLE, dotted line — MLE

In all the scenarios, the Bisquare performs uniformly better than other fitting procedures,
although the simulation studies show that Bisquare is less satisfying in some cases, such as when
€ ~ t-distributions. Generally Mixregl. performs better than Mixregt, but both procedures are not
quite robust to the high leverage outliers. We also applied Mixregt-MCD and MixregL.-MCD to
the data set, both procedures can successfully remove the high leverage outliers and give similar

results to the Bisquare.

4 Conclusion

In this paper, we propose a new robust estimation procedure tailored to the mixture linear regres-
sion models by assuming the random error has a Laplace distribution. The robustness is achieved
essentially by LAD procedure, and implemented by the EM algorithm. The efficiency and effec-
tiveness of the proposed EM algorithm depends upon the fact that the Laplace distribution indeed
is a scale mixture of a normal distribution and a distribution of a function of exponentially dis-
tributed random variable. The simulation study shows that the proposed method is superior to
and comparable to existing robust estimation procedures in all simulation setups. However, the
real data example shows that when the high leverage outliers exist, then the trimmed version of

the proposed procedure should be used.
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