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Abstract 

Extrusion is a popular technology for production of expanded products. However, 

variability in multiple input parameters can lead to significant variations in the end product 

which becomes a concern for process control and efficiency in industries. This study was 

focused on understanding the uncertainty in input parameters during extrusion and their impact 

on variability in output.  

A mechanistic model was developed for bubble growth dynamics in starch based melts at 

microscopic and macroscopic levels using heat, mass and momentum transfer equations. This 

model was used for uncertainty simulations using the Monte-Carlo method by integrating it with 

a stochastic interface for input of randomly generated process data based on experimentally 

obtained distributions and output of simulated distributions of end-product properties such as 

expansion ratio (ER). 

A pilot-scale twin screw extruder was used for processing of corn-based expanded 

products, which was used as a model system for experimental validation of the mathematical 

model. A 4x2 factorial design was used with different in-barrel moisture contents (19, 23, 28 and 

33% dry basis) and extruder screw speeds (250 and 350 rpm) to measure process data (such as 

moisture injection rate and Tdie) and product characteristics (such as ER). Average experimental 

ER ranged from 2.33-10.88 and simulated ER ranged from 1.16-12.86,  where both had similar 

trends with respect to in-barrel moisture (MC) and die temperature (Tdie = 108.8-145.4˚C) 

although conditions for optimum expansion differed possibly due to non-correspondence of 

material properties. Experimental coefficient of variation (CV) for MC (0.6-1.6%) and Tdie (0.29-

0.91%) and an assumed CV of 2% for a material constant (kf) that controls the consistency index 

of  starch-based melt were used for simulations. The stochastic model was used to carry out 



  

sensitivity analysis for CV of ER with respect to CV of MC, Tdie and kf. Variability in ER was 

impacted the most by variation in Tdie, followed by MC with kf having relatively lower impact on 

it. Since there are fundamental flaws in modeling approach as reflected by the 

thermodynamically infeasible parameter dynamics, the results from these mechanistic or 

stochastic simulations cannot be used as a basis for scientific analysis. 
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Chapter 1 - Introduction 

 1.1 Extrusion cooking 

Extrusion cooking is extensively used in the production of varieties of foods and 

especially expanded products such as breakfast cereal, snack food, pet food etc. Due to its 

versatility in production of different food categories, it has become increasing popular as a 

processing technique for product development. Extrusion cooking holds a great potential in 

overcoming the production challenges while using difficult biomaterials (in terms of processing) 

such as fiber and also maintaining the organoleptic properties of the food product. 

An extruder can be seen as a compilation of different units such as pump, heat exchanger, 

bio-reactor for transporting, mixing, heating, shearing and transformation of raw materials that 

are input in the extruder using a feeder (Chiruvella et al., 1996). The high temperature and high 

pressure conditions inside the extruder result in several phase transitions such as starch 

gelatinization, melting and defragmentation. Also other changes such as protein denaturation, 

complex formation between amylose and lipids take place (Lai and Kokini, 1991). The extruded 

products are referred to as cooked (in case of snacks, ready-to-eat foods) or partially cooked (in 

case of pasta, 3G snacks etc.) based on the level of starch gelatinization taking place inside the 

cooking zone of the barrel. Gelatinization is generally characterized as swelling of starch 

granules, loss of crystalline structure and thereby loss of birefringence. There are several tests for 

determining the level of gelatinization of starch in a processed food, most common being iodine 

complexing method (Gomez and Aguilera, 1983). 

The single screw extruder has a simpler geometry as compared to a twin screw extruder. 

However, the twin screw extruders because of their complex geometry are more versatile in their 
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usage as compared to a single screw extruder. The screw profile of a twin screw extruder can 

generally be divided into different zones such as feeding, melting, mixing, reaction development, 

devolatilization, pumping and shaping (Vergnes et al., 2006) similar to a single screw extruder 

but the shear generated is more in case of a twin screw extruder. Also, a twin screw extruder 

exhibits self-cleaning characteristic if the screws have intermeshing profile. 

In the competitive sector of food products, it is of immense importance to keep 

innovating and providing new options which are healthier, tastier and value for money. The 

physical as well as the sensory properties of a food commodity largely depend on the processing 

conditions as well as the ingredients used for production.  Extrusion is a complex process and it 

is essential to understand the dynamics of the process at the fundamental level and to investigate 

the optimum conditions of operation. Generally trial and error method is used for trying out 

different processing conditions to find the best one. This leads to unnecessary consumption of 

time and resources. However, much help can be obtained in this regard from mathematical tools 

such as modeling (or computer simulation) of extrusion process.  

 1.2 Mathematical modeling 

A mathematical model is a theoretical tool for simulating the outcome of a process 

without actually performing the experiment (Vergnes, 2006 et al.). It is also an effective tool for 

obtaining the fundamental understanding of the process. A model for extrusion can take up 

independent variables as input such as feed rate, screw speed, water and steam input in the 

extruder and pre-conditioner etc. and utilize fundamental mechanistic equations of heat and mass 

transfer taking place during the process to predict/estimate the physical characteristics of the 

extruded product such as expansion ratio, open cell fraction etc.  
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 1.2.1 Modeling of extrusion cooking 

The concept of modeling extrusion process dates back to the beginning of 1940s when it 

was used for analyzing flow of polymers. It is easier to understand the behavior of plastics and 

other polymers because of the homogeneity in their structure and well characterized physical and 

rheological properties (Tadmor and Klein, 1978; Tadmor and Gogos, 1979; Karwe and Jaluria, 

1990; Gopalakrishna et al., 1992). These polymers have predictable behavior upon carrying out 

mechanical interactions and thermo-mechanical processing. 

However, the modeling of food extrusion is a relatively new concept. It is more 

complicated than modeling polymers because food materials have heterogeneous properties and 

their phase transitions are not well defined. The changes upon interactions between bio-

molecules and extruder are very complex (Chiruvella et al., 1996). Hence, there is a need for 

further studies on modeling of extrusion cooking for food products to develop a better 

understanding of the process and production of healthier and better food items. 

Although it is a good practice to obtain the optimum processing conditions with the help 

of modeling and simulation without actually performing experiments but it should be noted that 

modeling method is based on several approximations and assumptions. During modeling, for 

simplicity, the extrusion conditions are generally assumed to be static and isothermal, raw 

material is assumed to be homogeneous which might result in deviations from the actual result 

(Vergnes et al., 2006). Hence, it is very important to validate the modeling results 

experimentally. 

 1.2.2 Modeling approaches 

Vergnes et al. (2006) defined different approaches to modeling based on chemical 

engineering and continuum mechanics. The first approach based on chemical engineering 
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estimated the approximate flow conditions by considering the screw profile as a series of 

chemical reactor units having forward and backward flow. Similarly, energy balance and kinetic 

equations were calculated. This approach did not lead to accurate results because of 

oversimplification of the extrusion process while modeling. Also, the parameters such as number 

and type of chemical reactors had to be adjusted for every process before predicting the flow 

conditions. Therefore, this approach is not very useful for scaling up either and is not used 

commonly. 

The second approach based on continuum mechanics utilized mass, momentum and 

energy balance equations to estimate the flow conditions and considered local geometry, 

kinematics and boundary conditions. This type of approach was based on real conditions, was 

more flexible and accurate and could be used as a better predictive model. Therefore, generally 

models are based on continuum mechanics approach. Alavi et al. (2003) modeled the process 

dynamics of starch based products during supercritical fluid extrusion (with CO2 as the 

nucleating agent) using heat, mass and momentum transfer equations which helped in 

understanding the mechanism of bubble growth and shrinkage process taking place during 

expansion as the melt exits the extruder die. 

Cheng et al. (2010) used Buckingham’s pi dimensional analysis method to model the 

extrudate expansion upon changing the extruder operation parameters. In Buckingham pi 

dimensional analysis method, the key process parameters are identified and dimensionless 

groups are formed using them. Then these dimensionless groups are related by a physical 

equation which can be rearranged to find the dependence of a specific property on other process 

parameters. Cheng et al. (2010) found a satisfactory correlation between the extrudate expansion 
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values obtained from the model and the actual experiments. Fan et al. (1994) also used 

dimensional analysis method and used Runge-Kutta method to solve the equations. 

Response surface modeling is another common method to obtain the optimum parameters 

for processing. A 3- dimensional response surface is created by inserting the experimental values 

in the model and the tip of the surface represents the maximum or the minimum of the parameter 

that is being modeled and is usually the optimum point for operation. The response surface is 

mostly analyzed graphically. Vainionpaa, J. (1993) studied the potential of canonical analysis in 

solving the response surface equations instead of solving them graphically. In canonical analysis 

method, a canonical equation is derived from the fitted second-order polynomial curves and the 

center- point for the equation is determined, also called stationary point, which has the possibility 

of being the optimum point of operation for the process. Vainionpaa, J. (1993) computed the 

second order polynomials using statgraphics statistical package (STSC, inc., Rockville, MD) and 

mathematica 386 program was used for matrix calculations. This method is advantageous, 

especially in case of large number of independent variables, when it is difficult to represent the 

data graphically and solve it. 

Li (1999) suggested that though 3-D CFD is a powerful modeling tool but considering the 

complex geometry of an extruder, it can get very complicated and time consuming to use it for 

finding optimum processing parameters. Instead of 3-D CFD, a 1-D model was used in their 

study to simulate various characteristics like temperature and pressure profile, shaft power input, 

fill factor and residence time distribution for different processing parameters. 

 1.2.3 Modeling parameters 

Modeling approaches mentioned in the previous section were selected based on the 

modeling parameters to be studied. Several studies are available on the modeling of flow 
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dynamics, rheology of the melt during the extrusion process, residence time distribution, 

expansion of the extrudate upon exit etc. 

Ficarella et al. (2004) modeled the flow dynamics of the material inside the extruder 

considering the cereal compound to be an isotropic, time-independent, inelastic and 

incompressible and shear-thinning non-Newtonian liquid. Since, the fluid considered was non-

Newtonian, the shear viscosity used in the model was taken from a study by Harper (1978) and it 

was dependent on the local shear rate, moisture contents, temperature and pressure. The equation 

was given as follows: 

 
          (

  

 
)            (1-1) 

In equation (1-1) K, T and C represent the consistency, temperature and moisture content 

of the fluid. Kn and Km are constants and m represents the power law index. 

Cindio et al. (2001) modeled the rheology of two immiscible non Newtonian fluids for 

the production of filled snacks by co-extrusion cooking. The behavior of dough was considered 

as viscoelastic and the filler was represented using a nonlinear viscous model. The rheological 

properties and the mathematical model were used to design the experiments in a more scientific 

way. Engmann et al. (2006) also modeled the rheology and microstructural changes in chocolate 

upon extrusion considering rheological behavior of the chocolate same as those of perfect plastic. 

Residence time distribution is another useful factor to be modeled since it is a cumulative 

result of processing parameters as well as flow and mixing conditions (Kumar et al., 2007). It 

can be easily measured using tracers and monitoring their concentration in the extrudates at 

different time intervals. Kumar et al. (2007) modeled the residence time distribution using 

conceptual flow modeling based on plug flow with finite number of continuously stirred tank 

reactors which have a dead volume fractions lined in series. 



7 

 

Fan et al. (1994) modeled the expansion of extrudates by studying the growth and 

shrinkage dynamics of bubbles inside the extrudate. Bubble growth modeling was also carried 

out by Alavi et al. (2003) in case of supercritical fluid extrusion. In their study, CO2 was used as 

the nucleating agent and was majorly responsible for expansion as the melt came out of the die. 

The impact of extrudate moisture on expansion in their study was observed only when the 

extrudate was dried in the oven. 

 1.2.4 Modeling softwares 

There are several softwares commercially available for finite element modeling method. 

In these softwares, the user has the flexibility of defining the geometry, initial and boundary 

conditions, processing conditions, material properties etc. and the results can be simulated along 

with visual graphics in some softwares for better understanding. Engmann et al. (2006) used 

finite element software known as Forge2 (Transvalor S.A., Sophia Antipolis, France) for solving 

two dimensional elastic-plastic and rigid-plastic deformation problems. Ficarella et al. (2004) 

used the POLYFLOW software (Fluent Inc., Lebanon, NH) for performing numerical 

simulations. A simulation code was written using the already existing theoretical models 

describing the fluid-dynamics and rheology of the fluid. The model was based on finite element 

velocity-pressure formulation (Forting, 1987). COMSOL Multiphysics is another efficient tool 

for development of mathematical models based on fundamental equations of heat, mass and 

momentum transfer to describe the process. 

However, in some studies, the mathematical model was developed based on mechanistic 

equation by writing a code in a particular programing language. Kumar et al. (2007) used 

MATLAB 7.0 (The Mathworks Inc., Natick, MA, USA) for programming, SAS 8.2 (SAS 

Institute Inc., Cary, NC, USA) for statistical analysis & development of predictive quadratic 
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models and Neuroshell 2 (Release 4.0, Ward Systems Groups, Inc., Frederick, MD, USA) to 

build the neural network model for prediction of parameters. Alavi et al. (2003) used visual basic 

with EXCEL 
TM

 as interface for modeling process dynamics during expansion of extrudates and 

product characteristics such as bubble radius, expansion ratio and open cell fraction etc. 

In the current study, Visual Basic was used for developing the mechanistic model as well 

as the stochastic interface for the deterministic model. MS Excel was used as the user interface 

i.e. for obtaining input from the user and for displaying the output.  

 1.3 Objectives 

The main objective of this study was to develop a mathematical model in context of 

extrusion processing of directly expanded snacks using a combined approach of deterministic 

and stochastic model. This model used a distribution of the input parameters in the practically 

operational range and utilized each set of input parameters to provide the output parameters as a 

distribution as well. The stochastic component, thus, helped in predicting the impact of 

variability associated with input parameters and thereby assessing the significance level of 

different input parameters which can help in making cost efficient changes during the 

production. The specific objectives of the study were to: 

1) Develop a mechanistic model for bubble growth and shrinkage process taking place in starch-

based melts during extrusion processing; 

2) Characterize and quantify variability in process parameters (moisture injection in the extruder, 

die temperature, etc.) using data acquisition system and pilot-scale processing trials; 

3) Develop a stochastic input interface for the mechanistic model developed in Objective 1, and 

utilize the data collected in Objective 2 as input parameters to the model. 
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4) Develop a stochastic output interface for the model, and utilize the integrated stochastic/ 

mechanistic model to generate outputs related to product characteristics such as expansion ratio;  

5) Compare the results obtained from the integrated stochastic/ mechanistic model with 

experimental results for product characteristics obtained from pilot-scale extrusion trials; and 

6) Utilize the model to identify the relative contributions of different processing factors to the 

end-product variability. 
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Chapter 2 -  Stochastic modeling of expansion and shrinkage 

phenomena during extrusion for starch-based melts: I Development 

of the mechanistic model and stochastic interface 

 Abstract 

Expanded products such as snacks, breakfast cereal etc. are commonly manufactured 

using extrusion processing. The current study focuses on the fundamental understanding of 

expansion and shrinkage dynamics taking place during extrusion of starch-based foams at both 

microscopic level (an individual bubble) as well as macroscopic level (extrudate). The code for 

the model was written in Microsoft Visual Basic with Excel as interface for input and output of 

parameters. Mechanistic equations involving heat, mass transfer were incorporated at both 

microscopic and macroscopic level for simulating the growth dynamics. The mechanistic model 

developed was later integrated with the stochastic interface for understanding the variability in 

output parameter such as expansion ratio as a result of variability in input parameters such as in-

barrel moisture content, die temperature etc. The results for mechanistic and stochastic model 

were validated with literature and experimental values and are provided in chapter-3 of this 

thesis.  

 2.1 Introduction 

Extrusion cooking is extensively used for production of different categories of food 

including expanded foods such as breakfast cereals, pet food, snacks; semi-cooked foods such as 

pasta etc. Due to possibility of high temperature and shear conditions inside the extruder, several 

changes like starch gelatinization, protein denaturation, amylose lipid complex formation etc. 

take place (Lai and Kokini, 1991). The heat and moisture treatment resulting in gelatinization of 
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starch leads to cooking of the melt and the product coming out of the die is usually expanded for 

high starch compositions (Moraru & Kokini, 2003). 

Such expanded extruded products have a characteristic cellular architecture depending on 

the raw material formulation and processing conditions. This microstructure in-turn impacts the 

sensory attributes of the product. Several studies have been conducted on investigation of the 

texture and microstructure relationship. Agbisit et al. (2007) studied the microstructure of 

extrudates formed by corn starch using X-ray microtomography (XMT) which was later related 

to textural properties of the extrudate (determined using texture analyzer). Cheng et al. (2007) 

studied the sensory attributes of the extrudates associated with the acoustics upon crushing. They 

also studied the microstructure of these extrudates formed by corn starch and whey protein 

isolates in different percentages. Karkle et al. (2012) examined the relationship of mechanical 

properties with the microstructure of the extrudates formed by using corn flour and apple pomace 

in different percentages in the formulation. Hence, it is established that the microstructure 

formed during extrusion is extremely important in terms of the textural and sensory properties of 

the product. Thereby, a greater understanding of expansion and shrinkage process taking place 

during extrusion which results in the formation of microstructure is extremely beneficial. This 

can be done by using imaging techniques or theoretical tools such as a mathematical model.  

Mathematical modeling of a processing technique is useful not only for estimating the 

optimized operating conditions but also for obtaining the fundamental understanding of the entire 

process. Vergnes et al. (2006) suggested two different approaches towards modeling a process. 

The first approach was based on chemical engineering and it estimated the flow conditions by 

considering the screw profile as a series of chemical reactor units having forward and backward 

flow. Since for predicting the flow conditions, the number and type of reactors had to be adjusted 
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for every process, this approach was not useful in generalizing the model. The second approach 

was based on continuum mechanics and utilized mass, momentum and energy balance equations 

to estimate the flow conditions and considered local geometry, kinematics and boundary 

conditions for development of the model. This approach is more generalized and hence most 

models are based on this approach. Chin Hsien Li (1999) used a 1-D computational fluid 

dynamics (CFD) method for simulating characteristics like temperature and pressure profile, 

shaft power input; fill factor and residence time distribution etc. for different processing 

parameters. They suggested that 3-D CFD is a powerful tool for modeling a process like 

extrusion; however, due to computational complexity and consumption of time, they used 1-D 

CFD in their study.  

In the current study, initially a mathematical model was developed to understand the 

process of expansion and shrinkage at the most fundamental level with the help of mechanistic 

equations. Later, this deterministic model was integrated with a stochastic interface. Hence, the 

objectives of this part of the study were to (1) develop microscopic level of the model for heat 

and mass transfer taking place in an individual bubble resulting in its growth and shrinkage. (2) 

develop macroscopic level of the model for the extrudate using heat and mass transfer equations 

for the bulk. (3) integrate the microscopic and macroscopic models and develop an algorithm for 

the simultaneous simulation of both the levels (4) introduce the concept of stochastic modeling 

and develop the algorithm for stochastic interface and integrating it with the mechanistic model 

developed in objectives (1)-(3).  
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 2.2 Mathematical modeling of expansion and shrinkage phenomena during 

extrusion 

The expansion and shrinkage phenomena observed in an extrudate can be investigated at 

two levels. The microscopic level accounts for the growth and collapse taking place in an 

individual bubble. The bubble is assumed to be spherical and is divided into finite number of 

spherical shells (N) as shown in figure 2-1a. R and L represent the bubble radius and domain 

radius respectively for an individual bubble. The width of the bubble (W) is given by (L-R). 

                      

Figure 2-1 a. Spherical shells for the microscopic model. b. Cylindrical shells for the 

macroscopic model.  

 

                        

Figure 2-2 Pressure components acting on the individual bubble wall during expansion and 

shrinkage 
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 The different pressure components (yield stress, elastic stress, surface tension, vapor 

pressure and atmospheric pressure) act on the wall of an individual bubble and are responsible 

for the resulting expansion and shrinkage depending on the direction of the resultant pressure 

(figure 2-2). The macroscopic level accounts for overall expansion that is observed in the 

extrudate coming out of the die. In the mechanistic model, the extrudate is assumed to have a 

cylindrical geometry and is also divided into finite number of cylindrical shells (Nb) (figure 2-

1b). Heat and mass transfer taking place within the cylindrical shells of the extrudate as well as 

with the atmosphere is studied at this level.  

 2.2 Bubble growth dynamics during extrusion 

For production of expanded products using an extruder, the flour is fed into the extruder. 

A more expanded product is obtained usually at a lower moisture content range. This is because 

lower moisture content increases the viscosity resulting in greater shear in the extruder which 

leads to higher expansion. At very low moisture content, the starch degrades due to extremely 

high shear and as a result not enough expansion is obtained (Chinnaswamy et al., 1988). Cheng 

et al. (2010) modeled the expansion of the extrudate at different operating parameters using 

Buckingham’s pi dimensional analysis method. In this method, dimensionless groups were 

formed using the key process parameters. Later, these dimensionless groups were related by 

physical equation which could be rearranged to find the dependence of a specific property on 

other process parameters. Cheng et al. (2010) found satisfactory correlation between the 

expansion values obtained by simulation and experimentally.  

Due to high pressure present inside the heads of the extruder, the steam formed from the 

in-barrel moisture content remains in the superheated state inside the extruder and the die. As the 

material flows out of the die, due to sudden change of pressure, the instability is created and the 
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steam formation inside these bubbles lead to expansion (Wang et al., 2005). The moisture 

migrates from the matrix to the inside of the bubble which represents the microscopic level of the 

model. At the macroscopic level moisture is lost due to evaporation as the product cools down as 

well as due to convective transfer with the atmosphere. However, in the current study, 

temperature loss due to evaporation is not considered and for heat transfer at the macroscopic 

level, conduction between cylindrical shells and convective transfer between outermost layer and 

the atmosphere is considered. 

There are several studies on bubble growth dynamics during extrusion processing 

conducted both at the microscopic and macroscopic levels. One of the most comprehensive 

literatures include the puffing process studied by Alavi et al. (2003) for super critical fluid 

extrusion using carbon-di-oxide as the nucleating agent. They used the popcorn puffing model of 

Schwartzberg et al. (1995) for modeling the bubble growth at the microscopic level and coupled 

it with macroscopic level model for extrudate formation. The flow inside the die, moisture loss 

and temperature reduction in the extrudate were controlled by mass and momentum equations 

from the literature. The consistency index which affected the viscosity was temperature and 

moisture dependent and played a significant role in expansion and shrinkage of the extrudate. 

The expansion of the extruded product largely depended on the magnitude and direction of the 

difference in pressure (ΔP) acting on the bubble wall. The dynamics of difference in pressure 

components is explained further in chapter 3. 

It is interesting to note that during the puffing process, the bubbles expand and if the cell 

wall becomes extremely thin, it might lead to coalescence of cell walls or might lead to bursting 

of bubbles which increases the open cell fraction. Once the cell is open, it loses its ability to 

expand (Schwartzberg et al., 1995). The entire process of expansion and shrinkage stops as the 
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temperature drops down below its glass transition temperature range (Tg +30) (Fan et al., 1994; 

Wang et al., 2005). The glass transition temperature of the extrudate changes depending on the 

moisture content of the extrudate. The equation used for calculating glass transition temperature 

(Tg) is given by equation 2-1 (Wang et al., 2005) 

 

    
                   

             
 (2-1) 

where  

           M1 : mass fractions of moisture, M2 : mass fraction of solid starch.  

           ΔCp1: change in specific heat of water at Tg1, ΔCp2: change in specific heat of starch at Tg2 

             Tg1: Glass transition temperature of water, Tg2: glass transition temperature of solid starch 

Hence, the expansion at the microscopic level steers the expansion observed in the 

extrudate at the macroscopic level as the product comes out of the die. The supercritical fluid 

extrusion carried out by Alavi et al. (2003) was done at high moisture and low temperature 

because in their study, carbon-di-oxide was majorly responsible for expansion. The water had a 

dual role of plasticizer and expansion driver but its role in expansion during extrusion was 

relatively not significant due to low temperature used during extrusion (mostly below 100°C). 

In another study conducted by Wang et al. (2005) bubble growth dynamics was 

investigated during steam extrusion. They also used the heat, mass and momentum transfer 

equation to study the puffing process during extrusion with steam playing the major role in 

expansion. In their study, the microscopic and macroscopic models were coupled by reducing the 

loss in moisture content from the cylindrical macroscopic shells proportionately from the 

spherical microscopic shells. Lach, L. (2006) developed the model for steam expansion based on 

the supercritical fluid extrusion model by Alavi et al. (2003) using fluent. In their study, the input 
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parameters and certain equations such as equation for viscosity was changed to adapt for higher 

temperature process. The material properties they used were not tested for a material but the 

values used were to obtain results close to realistic values of bubble growth etc. Fan et al. (2012) 

developed a bubble growth model for expansion in cornstarch using computation fluid dynamics 

method. They used William-Landel-Ferry equation (WLF formula) for capturing the impact of 

moisture as well as temperature (in the range where extrusion is carried out for expanded snacks) 

on starch viscosity.  

These models available in the literature have been validated using experimental results 

and most of them have shown quantitative coherence with the real time data. However, the input 

parameters for these models were point estimates. In real-time production, there is a variability 

associated with these input parameters which could be inherent in the raw material used for 

extrusion or could be due to minor fluctuations in the processing conditions. Hence, there is a 

need for a new approach to study the expansion and shrinkage mechanism which can consider 

more realistic values of input parameters and give a more accurate picture of the output from the 

simulated results. In the current study, this issue was addressed using an integrated stochastic and 

mechanistic approach.  

 2.3 Stochastic modeling 

In practical situations, the input parameters such as moisture content, screw speed, 

temperature and other properties of the material such as viscosity, diffusivity etc., are not fixed 

values, instead they generally have a probability distribution with a standard deviation. The 

variability in processing conditions and raw material leads to the variability in product 

characteristics. These inherent complexities and variability in food materials and their processing 

conditions can be accounted for using a stochastic model. 



21 

 

Sin et al. (2009) used the example of cultivation of  S. coelicolor for antibiotic production 

to explain the uncertainties associated with the biological process and methods to perform the 

uncertainty and sensitivity analysis on them for development of more reliable models. They 

classified the uncertainty associated with biological processes into three categories: 1) Stochastic 

uncertainty which is due to randomness associated with a process such as failure of aeration 

system in the middle etc. 2) Subjective (or input) uncertainty which addresses the issue of 

variability associated with the input parameters and their impact on the end results. For example, 

this could also be a result of variability carried forward from parameter estimation and errors 

associated with them. Dolan and Mishra (2013) suggested methods for parameter estimation for 

food processes which could address the issue of uncertainty to an extent.  3) Structural 

uncertainty which comes from the assumptions made while defining the physical system/process 

for the purpose of removing complications while model development. 

In the past, little work has been done on the uncertainty and sensitivity analysis of the 

processes involving food materials. Feyissa et al. (2012) studied the uncertainty involved during 

a contact baking process. They used the Monte Carlo technique for this analysis and the 

uncertainty in the output was represented using the mean, the 10
th

 and the 90
th

 percentile of the 

output distribution. For carrying out the sensitivity analysis, they utilized both the scatter plot as 

well as the standardized regression coefficient method. Taking lead from this model, the 

stochastic model for extrusion processing was developed in the current study. 

In this study, the variation in the input parameters such as moisture injection in the 

extruder, temperature etc. was recorded using a data acquisition system (DAQ) during the actual 

extrusion run. This distribution curve was plotted and each value of the distribution was fed into 

the mechanistic model which resulted in output for the product characteristics in the form of a 
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distribution as well. Hence a Monte-Carlo simulation approach was utilized to study the 

sensitivity of different input parameters and their impact on the product characteristics.  

 2.4 Assumptions of the model 

The current model was built based on the fundamental equations of mass and momentum 

transfer, also considering temperature, moisture dependence of several parameters such as 

diffusivity, viscosity etc. However, as mentioned before, modeling of biopolymers is a complex 

process due to their unpredictable behavior. Hence there were several assumptions and 

approximations included in the model. 1) The material flowing inside the extruder was 

considered to be homogenous. 2) The die swell is also responsible for expansion which is mostly 

significant at lower temperatures (Fan et al., 1994). However, in the current model die swell was 

neglected and the expansion considered was only caused by vapor generated. 3) The complex 

chemical reactions and degradation of components during the severe extrusion conditions was 

not considered as it was difficult to account for such reactions for modeling purposes. 4) All the 

bubbles were considered uniform and spherical for simplification 5) The material was considered 

incompressible fluid following the power law (k, n) 6) Temperature drop due to evaporation was 

not considered. 7) The axial expansion of the extrudate was not taken into account and sectional 

expansion ratio was calculated by taking (2/3) power of the volumetric expansion ratio predicted 

by the model.  

 2.5 Microscopic model 

The microscopic model comprised of studying the nucleation and bubble growth 

dynamics during expansion process. During extrusion, as the material flows inside the die, the 

pressure of the fluid matrix decreases towards the exit. Nucleation of bubbles takes place when 
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the saturation vapor pressure of the steam is more than the pressure of the melt. The bubble starts 

growing as a result of pressure difference between saturation vapor pressure and opposing 

pressure components which include elastic stress, yield stress, tensile stress and fluid pressure. 

The fluid pressure is the pressure of the melt when the material is inside the die and fluid 

pressure is equal to atmospheric pressure as the extrudate comes out of the die. As the bubble 

grows due to conversion of moisture to steam, more moisture moves inside the microscopic 

shells from the matrix. For finite element modeling method incorporated in this study, each 

bubble was divided into N number of shells.  

 2.5.1 Bubble expansion and shrinkage 

Bubble expansion and shrinkage takes place depending on the pressure components 

acting on the wall of an individual bubble. These pressure components include vapor pressure, 

elastic stress, tensile stress, yield stress and fluid/atmospheric pressure (figure 2-2). If the 

resultant pressure acts in the outward direction, it leads to expansion of the bubble. However, if 

the resultant pressure acts in the inward direction, the bubble collapses. Yield stress is defined as 

the threshold stress that is required for the material to start flowing (Genovese and Rao, 2006). 

Such materials retain elasticity at low stress values and become viscous when high stress is 

applied. Genovese and Rao (2006) suggested several methods of measuring yield stress such as 

stress-relaxation, creep compliance, torsion, uniaxial compression, vane mixer method etc. 

Schwartzberg et al (1995) measured surface tension (σ) by measuring the rise of starch in a 

sealed glass tube at popping temperature for popcorn (180-200˚C). 

Hence equations for pressure components dependent on moisture content of the bubble, 

temperature, bubble radius, domain radius etc. were taken from Schwartzberg et al (1995). The 

rate of bubble growth as a function of pressure difference, material properties such as viscosity, 
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heat and mass transfer at the microscopic level (equation 2-2 to equation 2-43) were also taken 

from Schwartzberg et al. (1995) and are given as follows. 

Vapor pressure (Pw) of the moisture content in the bubble is given by equation 2-2 

 

             (2-2) 

where Pwsat is the saturation vapor pressure (equation 2-3) at a given temperature (T) of 

the bubble and aw is the water activity (equation 2-4) at the surface of the cell. Xwc in equation 2-

4 represents the moisture content at the inner most layer of the bubble. B and C are the 

coefficients in equation for aw and F is a term in the equation for aw given by equations 2-5 to 2-

7.  
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                         (2-7) 

Elastic stress (Pe) acting on the cell wall is given by equation 2-8. Ro in equation 2-8 

represents the initial bubble radius at the beginning of expansion and R represents the radius of 

bubble at any time instant. L is the domain radius of the bubble (figure 2-1a) 
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where                 (2-9) 
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  (2-11) 

 Er = 10KPa, βf = 17 (2-12) 

Equation 2-11 is an estimated function. In Schwartzberg et al. (1995), the coefficient of 

the T in the exponential function was taken as 0.1 but in equation 2-11, the coefficient of T was 

0.038. Also the constant in the exponential function was 45.32 in the equation provided by 

Schwartzberg et al. (1995). This estimated function was taken from Alavi et al. (2003). Functions 

are estimated to make the model stable and obtain values that are closer to the realistic range of 

different parameters.  

Yield stress (∆Py) acting on the cell wall is given by equation 2-13 where τo is the flow 

yield stress. 

                              (2-13) 

where                 (2-14) 

         [           ]                      (2-15) 

The value for constants taken is assumed. Schwartzberg et al. (1995) used value of  τr as 

2 kPa. Different values for τr were tried for simulation in the current study and the value for 

constant taken was to provide better stability to the model and for prediction of realistic 

dynamics of different parameters involved during expansion and shrinkage process. Using all 

these equations for different pressure components given above, the pressure difference and rate 

of change of bubble radius    ̇ is given by equation 2-16. Ps is the fluid pressure which is the 

pressure of the melt inside the extruder (Pf) and atmospheric pressure as the melt exits the die.   
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where   ∫
  

  
 
 

 
     

 

 

 (2-17) 

ξ in equation 2-17 accounts for the variability in consistency index across the different 

shells of the spherical bubble depending on the radius of the shell. The term I in equation 2-16 

represents the inertia of the bubble and it is given by equation 2-19. 

Consistency index (k) determines the viscosity of the melt and it is given by equation 2-

18. The kf in the equation is a constant which was useful in varying the value of consistency 

index in the stochastic model later. This equation is taken from Parker et al. (1989) who derived 

it for maize starch. The subscripts c and s in equation 2-16 represent the consistency index of the 

innermost core and outermost surface of the individual bubble respectively.  

                    
    

 
 

       

    
  (2-18) 

The letter I in equation 2-16 denotes the inertial terms which was neglected as its value is 

small for both small and large values of radius of bubble (Schwartzberg et al., 1995). Its 

mathematical equation is estimated as given by equation 2-19 
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In equation 2-19, ρs is the density of the material in microscopic shells,  ̇ represents the 

rate of change of bubble radius, and  ̈ represents the second derivate of radius with respect to 

time (
   

   
 . 

The radius of the outermost layer of the bubble, also referred to as domain radius (L), is 

mathematically expressed as given in equation 2-20 where R is the radius of the bubble at any 

given point of time (Schwartzberg et al., 1995).  
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     (2-20) 

ΔM in equation 2-20 represents the mass in each spherical shell of the bubble and 

depends on the total number of layers in the bubble. Hence, when number of shells in the 

microscopic model is changed, it affects ΔM which in turn affects the domain radius as well as 

the mass transfer taking place in the bubble. ρi is the density of the dry matter in i
th

 shell of the 

individual bubble. 

 2.5.2. Mass transfer in the bubble 

The bubble was divided into N shells and the moisture content of different layers in the 

bubble is represented in figure 2-3. During bubble expansion, part of the moisture present in the 

spherical shells of the bubble is slowly converted into steam which is trapped inside the inner 

most layer of the bubble. As more and more moisture is converted to steam from the inner-most 

layer of the bubble, diffusion takes place in the spherical shells of the bubble in the inward 

direction. At the same time, moisture is being lost from the cylindrical macroscopic shells of the 

extrudate. 

In the current study, the average loss in moisture from the extrudate was divided by N 

spherical shells of the bubble and this moisture content was subtracted from each spherical shell 

of the bubble along with loss in moisture due to diffusion within the spherical shells. This helped 

in integrating the microscopic and macroscopic levels of the mechanistic model. Moisture 

diffusion inside the spherical bubble shells, expressed in numerical form of partial differential 

equation is given by equation 2-21. ρi and ri represent the density and radius of the ith spherical 

shell at any instant of time.   
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 Figure 2-3 Moisture content in the spherical shells of the bubble (Microscopic level) 

 

 
     

  

  
 
                         

         
 

                           

         
  (2-21) 

where        
       

 
  and                     (2-22) 

Equation 2-22 helps in calculating the value of diffusivity by taking the average of 

diffusivity value of the adjacent spherical shells. The diffusivity of moisture in these spherical 

shells depends on the moisture and temperature of the shells at any instant of time. Diffusivity 

was calculated using equation 2-23, which was taken from Van der Lijn (1976) who found this 

relationship for maltose.  
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Equation 2-24 calculates the exposed area for diffusion in ith layer. The summation j =1 

to i calculates the volume based on mass and density for all layers up to ith layer.  
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Moisture diffusion in the outermost spherical shell of the bubble and the outer surface of 

the bubble is given by equation 2-25 and equation 2-26 respectively.  

 
     

  

  
           

                 

         
     

             

      
  

 

(2-25) 

      
                

       
 (2-26) 

The mass of water vapor present in the bubble is given by equation 2-27. It can be seen 

that the mass of water vapor is dependent on radius of the bubble and the specific volume of 

water vapor which change during the bubble growth process. Hence, the change in mass of water 

vapor (ΔQ)  in small time step Δt is given by equation 2-28 where υ is the specific volume of 

vapor in the pore and is given by equation 2-31. 

 
  

    

  
 (2-27) 

 
   

    

  
                     (2-28) 

Where 
  

  

   
[   

          

  
 

 

  

   

  
] (2-29) 

And  
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For the core of the bubble, moisture diffusion (∆Xwc) is given by equation 2-33 
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 when (r1-R) > R and         when (r1-R) < R (2-35) 

Moisture diffusion in the first or the inner most layer of the bubble is expressed 

differently than other layers and is given by equation 2-36. 

 
     

 

  
 
                     

       
     (2-36) 

In the mathematical model, the change in moisture content was calculated over a small 

time step (Δt) and the values of moisture content in different layers and other parameters 

including pressure components, temperature and moisture in the cylindrical macroscopic shells 

were updated with each time step. In finite element modeling method, this time step Δt is small 

enough to prevent instability during computations in the finite element mathematical model. It is 

a function of bubble dimensions (radius of the N
th

 shell of bubble and its domain radius) as well 

as diffusivity of water on the surface of the bubble. If the time step for the process is assumed 

greater than that, it might not lead to the convergence of different partial differential equations to 

a particular solution due to their non-linearity (Lach, L., 2006). Hence the minimum time step for 

encountering instability was obtained by equation 2-37 

 
    

       

   
 (2-37) 

Based on the instabilities encountered in the model computation, the actual time step was 

taken as a fraction of Δtm. 0.7 was chosen by hit and trial as it led to stability in the model for 

processing conditions with die temperature up to 410K 

            (2-38) 

Rearranging the pressure equation given by equation 2-16, the change in radius of the 

bubble (∆R) is given by equation 2-39. 
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 2.5.3. Open cell fraction and open pore volume 

During bubble growth, if the wall stress acting upon the bubbles exceeds the maximum 

failure stress of the bubbles, they burst open. After this cell rupture, the bubbles can coalesce 

with adjacent cells and the radius of individual cell can increase. However, in this model the 

coalescence phenomenon was not considered. Typically the bubbles that rupture lose their ability 

to expand further (Schwartzberg et al., 1995). Since all the bubbles don’t have same radii in the 

beginning and the material properties are also not homogenous, not all the bubbles rupture at the 

same time. Hence the expansion of the bubbles and the extrudate continues. Schwartzberg et al. 

(1995) represented the distribution of change in number of open cells as a normal distribution 

with respect to Z where Z is a function of wall stress and failure stress (equation 2-40).  

 
   

       

   
 (2-40) 

In equation 2-40, Sw is the wall stress and Sf is the failure stress. At the beginning of 

expansion Sw  is given by equation 2-41 and towards the end of expansion when W (Cell wall 

thickness) <<R, Sw is given by equation (2-42).  
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The change in number of open cells (∆fo ) is given by equation 2-43 where ψ represents 

the spread of the distribution. In this model value of ψ was taken as 0.75. Fraction of pore 

volume that is open is given by equation 2-44.  It represents the volume of open cells divided by 
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total volume (volume of open cells + volume of closed cells). The subscripts j and k in equation 

2-44 represent the time steps j and k, with time step k being the next time step after j. 
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  (2-44) 

2.6 Macroscopic model 

As mentioned earlier, the macroscopic model accounts for the heat and mass transfer that 

takes place at the extrudate level. Alavi et al. (2003) studied the flow of the melt inside the 

extruder die and the pressure gradient associated with it. In their study, the pressure drop inside 

the die was given by the fluid flow equation for laminar flows in non-Newtonian fluids (equation 

2-45 to 2-49).  
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where          (
       

      
)    for          (2-46) 

                                    for          (2-47) 

In equation 2-46 and 2-47, den represents the diameter of the entrance of the die and dex 

represents the die diameter at the exit. Ld and Ld1 are the die dimensions as specified in the figure 

2-4. The mass flow rate of the melt in the extruder was given by mf and the bulk density and 

consistency index of the melt was given by ρ and K respectively. The change in fluid pressure at 

each time step then was given by equation 2-48 (Alavi at al., 2003). 

 
     

   

  
      (2-48) 

In the current model, these equations for studying pressure gradient of the melt inside the 

die were also incorporated. The computation of fluid pressure in each time step inside the die 

helped in understanding the melt pressure inside the die before the extrudate came out of the die. 
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It was also useful in computing the time for nucleation which occurs when the vapor pressure 

becomes greater than the melt pressure inside the die. As the extrudate exits the die, the fluid 

pressure becomes atmospheric pressure and its value becomes 101.325 KPa. 

Since mass flow rate (mf) was equal to product of density, area and velocity at a certain 

point, the velocity of the extrudate (assumed cylindrical) coming out of the die was given by 

equation 2-49 (Alavi et al., 2003). 

 
   

  

 

 

        
 (2-49) 

Where area of the die was calculated by πd
2
/4 

 

Figure 2-4 Schematic diagram of the die used in the extruder 

 2.6.1 Bulk diffusion of moisture 

For mass transfer at the macroscopic level in the current study, the extrudate was 

discretized into finite number of concentric cylindrical shells (Nb). The moisture content and 

change in moisture content for these cylindrical shells was represented by letter C whereas for 

microscopic model, the moisture was represented by Xw. This was done to distinguish between 

the dynamics of mass transfer taking place at two different levels of bubble and the extrudate. 

The outermost layer of the extrudate is exposed to the atmosphere. The numerical form of the 
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moisture diffusion in different layers was taken from Geankoplis, (1993) and is given as equation 

2-50. The mass transfer discretization step size (∆x1) for the shells changes with change in 

expansion ratio during expansion and shrinkage. The effective diffusivity of the moisture content 

(Deff) is calculated by considering porosity of the extrudate into account (equation 2-55).  
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where 
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        (2-52) 

∆Co in equation 2-52 represents the change in moisture content of the innermost 

cylindrical shell of the extrudate. At the outer most layer of the extrudate, the moisture diffusion 

takes place from the inner layers as well as convection takes place at the outermost layer. Hence, 

the moisture content of the outermost layer at any point of time is given by equation 2-53. 
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where 
   

      

    
 (2-54) 

 
     

   

  
   (2-55) 

ϵ and ζr in equation 2-55 represent the porosity and tortuosity of the extrudate 

respectively and D is the diffusivity given by equation 2-23.  Ca is the ambient moisture content 

and in the code, it was assumed to be 0 to test for the maximum possible mass transfer condition. 

kxc is the mass transfer coefficient of water in the starch matrix and its value was assumed to be 

10
-5

m/s in the code. 
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 2.6.2 Heat transfer 

The heat transfer which leads to lowering of temperature of extrudate was modeled 

similar to the bulk diffusion of moisture. In the actual process, the product cools down after it 

exits the die as a result of conductive and convective heat transfer along with the reduction in 

temperature due to evaporation as well as radiation. In this model, the heat loss due to 

evaporation and radiation was not taken into account. The heat transfer in the outermost layer 

was considered as a result of conduction in the inner layers with the adjacent layers and 

convection with the atmosphere at the outermost layer. . The numerical form of such type of heat 

transfer was taken from Geankoplis, (1993) and is given as equation 2-56.  

 
    

 

  
 
    

  
         

    

  
      (2-56) 

where 
   

     
 

    
 (2-57) 

In equation 2-57, αt is the thermal diffusivity in the starch matrix and Δx2 is the 

discretization step for heat transfer. The change in temperature in the innermost layer is given by 

equation 2-58. 

 
    

 

  

        (2-58) 

The temperature in outermost layer which is a result of thermal conduction with the 

adjacent layer as well as convective transfer with the atmosphere is given as equation 2-59.  

 
      

    
     

 
     

   
         

     

 
     

   
 (2-59) 

where 
   

    

    
 (2-60) 
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  (2-61) 

h in equation 2-60 is the convective heat transfer coefficient and its value was taken as 10 

W/m
2
K in the current model and keff  is the effective thermal conductivity of the extrudate. Its 

equation is given by 2-61 and it accounts for the porosity of the extrudate as well as the thermal 

conductivity in the solid and gas phase (Alavi et al., 2003)  

 2.6.3 Expansion ratio  

There are several indices for defining expansion ratio of the extruded product. Most 

common are longitudinal expansion index (LEI) and sectional expansion index (SEI) which are 

used to describe axial and radial expansion respectively (Horvat & Schuchmann, 2012). LEI is 

given by the ratio of velocities of extrudate (equation 2-62) and the melt inside the die whereas 

SEI is given as the ratio of sectional area of the extrudate and the die (equation 2-63). 

      
          

     
 (2-62) 

 
     

          

    
   (2-63) 

In the current study, the expansion ratio of the extrudate was calculated from the equation 

2-64. This equation was taken from Schwartzberg et al. (1995) and this expression in their study 

was used for calculation of expansion ratio for the popcorn upon puffing. The first term in the 

equation accounts for expansion due to closed cells, the second term accounts for the expansion 

due to open cells since ∆fo represents the change in number of open cells in a given time instant 

j. The constant 0.297 is the contribution of the kernel portion that does not get puffed. It should 

be noted that these constants were derived empirically for the popcorn. They might be different 

for the corn meal which was used during extrusion process which possibly contributed to the 
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shift of simulated values from the experimental values; however, different constant values will 

not change the trend of simulated values for expansion ratio. It should be noted that the 

expansion ratio calculated by equation 2-64 is a volumetric expansion ratio. However the 

experimental values for expansion ratio in chapter 3 are expressed as cross sectional expansion 

ratio which is typically obtained by dividing the cross sectional areas of the extrudate by cross 

sectional area of the die. To compare the simulated and experimental expansion ratio, the 

expansion ratio predicted by equation 2-64 was converted to cross sectional basis by finding the 

third root of the ER in equation 2-64 and then squaring it. 

 
                

  

  
        ∑       

  

  
        

 

   

 (2-64) 

2.7 Algorithm development of the integrated stochastic model 

The algorithm for the integrated mechanistic and stochastic model for expansion and 

shrinkage phenomenon during extrusion process was developed in parts. As mentioned earlier in 

this chapter, the microscopic model was taken from the popcorn puffing model of Schwartzberg 

et al. (1995). The popcorn model did not account for the shrinkage in their model since popcorn 

puffing takes place at a really low moisture content of the range of 0.07-0.28 dry basis (db). 

During the puffing, there is a possibility that the melt cools down fast and the glass transition 

temperature is reached much earlier, even before the shrinkage can take place. Hence, they 

modeled only the expansion of an individual spherical bubble in the popcorn using heat and mass 

transfer equations.  

Using this model for the popcorn system as the base, Alavi et al. (2003) modeled the 

expansion and shrinkage process taking place during supercritical fluid extrusion (SCFX) using 

CO2 as the nucleating agent. They integrated the bubble growth model with the macroscopic 



38 

 

scale of expansion taking place in a cylindrical extrudate. They also modeled for the shrinkage 

phenomenon as well as further expansion taking place in the dryer.  

In the current study, SCFX model was used as a base for development of mechanistic 

model for expansion and shrinkage process during extrusion for starch-based melts. The values 

of certain parameters such as cell density, initial bubble radius etc. were changed to account for 

the high temperature steam expansion because SCFX expansion takes place at relatively lower 

temperatures of less than 100ºC. In the SCFX model, the microscopic and macroscopic levels of 

the mechanistic model were integrated using temperature and moisture values. The temperature 

was considered same for the extrudate as well as for the bubble. Also, the loss in moisture taking 

place in the extrudate was also reduced proportionally depending on the current value of 

moisture content in the each microscopic layer. In the current model, same approach was utilized 

in integrating macroscopic and microscopic levels of the model. However, in the current steam 

based extrusion model, the average moisture loss in the extrudate layers was divided equally into 

the number of microscopic shells and it was later subtracted from each microscopic shell in 

addition to the moisture loss taking place in these spherical shells due to diffusion and vapor 

formation. This was done because the model assumes a microscopic system embedded in a 

macroscopic system. However, the dynamics of microscopic system embedded in different shells 

of the macroscopic system would be different. Hence, a proportionate reduction would not 

account for this factor. Thereby, subtraction of average moisture loss was carried out from the 

microscopic shells instead of the proportionate reduction. 

Later a stochastic interface was developed to input the values of a selected parameter as a 

distribution in the mechanistic model and to display the output of the parameters involved and 

product characteristics as a distribution.  
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The typical simulation time for a mechanistic model was about 30-45 minutes depending 

on the computational ability of the computer. Due to time constraints, 15 mechanistic 

simulations were run at a time in the stochastic model to generate a distribution. The code 

terminated and provided the results when the temperature of the extrudate reached in the range of 

glass transition temperature, Tg + 30ºC (Fan et al., 1994). Also due to the computational 

constraints, the code stopped if the number of time steps was greater than 10
7
. The algorithm for 

the stochastic model is given in figure 2-5 and the algorithm for the mechanistic model is given 

in figure 2-6. 
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     Figure 2-5: Algorithm for the stochastic model  
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                         Figure 2-6: Algorithm for the mechanistic model  
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Table 2-1 List of symbols and their meaning 

 ̇ Rate of change of bubble radius 

 ̈ Second derivative of bubble radius with respect to time 
Δfo Change in fo in time Δt 
∆M Mass of dry matter per layer of the bubble 
∆P Pressure difference driving expansion 
∆Py Yield stress 
∆Q Change in Q in time step ∆t 
∆R Change in bubble radius in time step ∆t 
ΔT Change in temperature 
∆t Minimum time step that can cause instability 

∆tm Maximum stable time step 
Δx1 Discretization step size for mass transfer at macroscopic level 
Δx2 Discretization step size for heat transfer at macroscopic level 
ΔZ Change in Z in time step Δt 
Ai Interfacial area between layers i and i+1 in shell (m) 
aw Water activity for given moisture content at bubble surface 
B Coefficient in the equation of aw 

C Coefficient in the equation of aw 
Ca Ambient moisture content 

ΔCp1 Change in specific heat of water at Tg1 

ΔCp2 Change in specific heat of starch at Tg2 

Cj Concentration of water in the jth shell of the macroscopic shells (kg/kg dry matter) 
Cp Heat capacity of the material 
den Diameter of the entrance of the die 
dex Die diameter at the exit 
D Diffusivity of water in cell wall (m2/s) 

Deff Effective bulk diffusivity of water in porous extrudate (m2/s) 
Di Diffusivity of water in each layer of the starch matrix (m2/s) 
E Elastic modulus of the material surrounding the bubble (Pa) 
Eb Coefficient in the equation of E 
Er Constant in the equation of Eb 
ER Expansion Ratio 
F Term in the equation of aw 
Fo Fraction of pore volume that is open 
G Constant in the equation of ζ 
h Convective heat transfer coefficient 
I Inertia term in equation for calculation of pressure difference at the cell wall 
K Consistency index in power law 

keff Effective thermal conductivity of the extrudate 
Kf Coefficient in equation of k 
Kc K at the inner surface of the pore 
Ks K at the outermost surface of the pore 

ksolid Thermal conductivity of the solid phase 
kgas Thermal conductivity of the gas phase 
kxc Mass transfer coefficient of water in starch matrix 
L Domain radius of the bubble 
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Ld Die dimension specified in figure 2-4 
Ld1 Die dimension specified in figure 2-4 
M Mass of dry solids in domain 
Mc Term given by equation 2-51 
M1 Mass fraction of moisture in extrudate 
M2 Mass fraction of solid starch in extrudate 
MT Term given by equation 2-57 
mf Flow rate of the melt 
n Flow behavior  
N Number of layers used in the microscopic model 

Nb Number of layers used in the macroscopic model 
Nc Term given by equation 2-54 
NT Term given by equation 2-60 
Pe Elastic stress in pore wall 
Pf Pressure of the fluid inside the extruder 
Pw Pressure exerted by vapor in pore (Pa) 

Pwsat Saturation vapor pressure at temperature T (Pa) 
Q Mass of water vapor in pore 
R Bubble radius at any instant of time 
ri Radial distance between center of domain and center of ith layer in shell (m) 
Ro Initial value of R 
Sf Cell wall failure stress 
Sw Average tensile stress in wall of cell 
T Temperature 
Ta Ambient temperature 
Tg Glass-transition temperature 
Tg1 Glass transition temperature of water 
Tg2 Glass transition temperature of solid starch 
To Temperature at start of puffing 
Tj Temperature in the jth shell of the macroscopic shells 
Vx Velocity of the cylindrical element 
W Width of the bubble 
Xwa Average moisture content of the shells of the bubble 
Xwc Moisture content at the core of the bubble 
Xwi Average value of X in the ith layer of shell 

     Average value of X in the ith layer of bubble (microscopic model) 
λ Latent heat changes caused by evaporation of water from shell. 
υ Specific volume of the vapor in the pore of the bubble 
ρs Density of the material in the matrix (Kg/m3) 
ρi Density of dry matter in ithshell of the individual bubble 
τo Flow yield stress (Pa) 
τr Coefficient in the equation of τo 
Ψ Spread factor in open cell fraction distribution 
  Radius of the domain 
  

   Pressure at outer surface of domain, i.e., at interfaces between domains (Pa) 
  

ҡ Term in equation of ΔXwc given by equation 2-34 
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θ Term given by equation 2-34 
ε Porosity of the extrudate 
α Coefficient in equation of ΔQ 
αt Thermal diffusivity in the starch matrix 
ζ Coefficient in equation of ΔQ 
ζr Tortuosity of the extrudate 
σ Surface tension at pore-shell interface 
ξ Term in equation 2-16 calculated using equation 2-17 
βf Coefficient in the equation of E 
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Chapter 3 - Stochastic modeling of expansion and shrinkage 

phenomena during extrusion for starch-based melts: II Modeling 

results and validation  

 3.1 Introduction 

Extrusion cooking has become extremely popular for production of snacks, ready-to-eat 

food and other food categories. Several changes take place inside an extruder such as starch 

gelatinization, protein denaturation, breakdown of anti-nutritional factors etc. due to extreme 

processing conditions present inside the extruder (Lai and Kokini, 1991). One of the remarkable 

phenomena taking place during extrusion cooking is expansion of the extrudate and a 

fundamental understanding of this expansion process at both the microscopic and macroscopic 

level can help in better operation, product quality, and process control. 

Wang et al.(2005) modeled the bubble growth dynamics during extrusion for starch-

based foams at both microscopic and macroscopic levels. Fan et al.(2012) used computational 

fluid dynamics method for modeling the bubble growth dynamics during expansion of corn 

starch. Alavi et al.(2003) also modeled the process dynamics that take place during super-critical 

fluid extrusion using carbon-di-oxide. In their model, carbon-di-oxide played the major role in 

expansion as the extrudate came out of the die. The role of water as a blowing agent was not 

considered in their model during extrusion; however, moisture content in the extrudates resulted 

in further expansion during oven drying.  

In the first part of this study, initially a mechanistic mathematical model was developed 

at microscopic (individual spherical bubble) and macroscopic (cylindrical extrudate) scale using 

equations from literature for material properties, heat, mass and momentum transfer. The 
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mechanistic model developed was later integrated with stochastic interface to capture the 

variability in product characteristics as a result of variability in input parameters. Feyissa et al 

(2012) performed a sensitivity analysis using the heat and mass transfer model of a contact 

baking process to rank the relative impact of different input parameters on the output. They used 

Monte Carlo simulation method to understand the propagation of uncertainty in input parameters 

(such as heat and mass transfer coefficients, evaporation rate parameters, thermo-physical 

properties etc.) to the uncertainty in output. For sensitivity analysis, they developed a linear 

regression model for each output parameter and the linear least squares method was used for 

finding corresponding regression coefficients. For example, for output parameters such as 

product temperature, they found that evaporation rate constant was most important factor 

affecting it. Based on study by Feyissa et al. (2012), stochastic interface developed in the current 

study also used Monte Carlo simulation method for predicting uncertainty in the output as a 

result of uncertainty in the input. The code was written in Microsoft Visual Basic with Excel as 

interface for taking the input values and representing the output.  

The major objectives of this part of the study was to (1) understand the dynamics of 

different parameters involved during expansion and shrinkage process such as bubble radius, 

domain radius, width, pressure difference acting on the bubble wall etc. with the help of 

mechanistic model (2) characterize the variability in input using DAQ and later understand the 

variability in output as a result of variability in the input using the stochastic model (3) perform a 

sensitivity analysis to investigate the impact level of different input factors on product 

variability. 
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 3.2 Materials and Methods 

 3.2.1 Input parameters in the mechanistic and stochastic model 

The input parameters in the mechanistic model include in-barrel moisture content, die 

temperature, number of discretization shells in macroscopic and microscopic levels, material 

constant (kf), feed rate etc. Typically in a deterministic model, a point estimate of these 

parameters is fed into the model which results in one value for output. However, in the stochastic 

model, a distribution of different input parameters was fed into the mechanistic model, one set of 

values at a time, which resulted in a distribution of output parameters. This distribution of input 

parameters was obtained by generation of random numbers from a normal distribution. This 

normal distribution was created using the average and standard deviation values of the 

experimental data obtained for a parameter using DAQ. The input parameters were assumed to 

have a normal distribution because normal or Gaussian distribution is the most commonly 

assumed distribution to characterize the variability in the data in many scientific disciplines 

(Limpert et al., 2001). 

In the current study, distributions of 3 selected input parameters: die temperature, in-

barrel moisture content, and material constant (kf) were generated and fed into the mechanistic 

model which resulted in output for product characteristics as a distribution. The in-barrel 

moisture content was calculated based on the moisture in the feed and the extruder water that 

was input during extrusion. In-barrel moisture content was calculated using equation 3-1 and 

using data recorded by DAQ such as extruder water in the equation. kf (equation 2-18) affects the 

viscosity of the melt which in turn plays an important role in bubble growth and shrinkage.  

                            
  ( ̇ )   ̇     ̇     ̇     ̇  

 ̇   ̇      ̇     ̇     ̇  
 

(3-1) 

Where, 
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   mc: moisture content in the feed  

 ̇  is the feed rate 

 ̇   is the rate of steam flow inside the pre-conditioner 

 ̇   is the rate of water flow inside the pre-conditioner 

 ̇   is the rate of steam flow inside the extruder 

 ̇   is the rate of water flow inside the extruder 

The simulation process for the mechanistic and stochastic model ended after the 

simulated temperature of the extrudate reached the glass transition temperature (equation 3-2) 

    
                   

             
 (3-2) 

Where  

           M1 : mass fractions of moisture, M2 : mass fraction of solid starch.  

           ΔCp1: change in specific heat of water at Tg1, ΔCp2: change in specific heat of starch at Tg2 

             Tg1: Glass transition temperature of water, Tg2: glass transition temperature of solid starch 

 3.2.2 Extrusion (pilot scale) 

Degermed yellow corn meal (CCM 260, Bunge, Atchison, KS) was used for production 

of corn-based expanded products using Wenger TX 52 twin screw extruder. The density of the 

material used was 41 lbs./ft
3
 or 656.76 Kg/m

3
. The L/D ratio for screws was 19.5:1. A 4x2 

factorial design was used with varying levels of in-barrel moisture contents (0.19, 0.23, 0.28 and 

0.33 (db)), each at two screw speeds (250 rpm and 350 rpm). All the extrusion runs with 8 

different processing conditions were carried out on the same day and the product from each run 

was collected for about 10 minutes after 10 minutes of stabilization time (after the processing 

conditions were set for a particular run). Different screw speeds as well as in-barrel moisture 

contents resulted in different die temperatures which was also the input in the model. The feed 
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rate for the extrusion run was set at 70 kg/h. The moisture content in the feed was measured as 

0.11 dry basis (db). The schematic diagram of screw profile is provided in figure 3-1. A low 

shear screw profile was used for corn meal. Camire et al. (1991) found that torque requirement 

for corn meal was 6-12% lower for samples containing only corn meal than the samples 

containing 25% cottonseed flour.  

L and R in figure 3-1 represent the left and right screws which were identical except that 

the first two elements were double flight in left screw and single flight in right screw. Such kind 

of set up promotes smooth flow of the material from the feeder to the screws. The decision for 

keeping the left screw elements as double flight and right screw as single flight depends on the 

rotation of the screws. As the material progresses in the screw from the feed end to the die, the 

pitch of the elements is reduced to compress the material. Hence, the elements are changed from 

full pitch to ¾ pitch as the material moves towards the die.  

A tapered die with opening of 4.2 mm was used. The land length of the die was 4.7mm. 

The dimensions and shape of the die are given in figure 3-2. The die dimensions have an impact 

on expansion of the extrudate. Bouzaza et al. (1996) found that the lower die diameter resulted in 

higher expansion anisotropy in the extrudates whereas it was not majorly affected by the land 

length of the die. The product was dried using a 2 pass dryer and 1 pass cooler (Wenger 4800 

series). The residence time of the product in the dryer was 5 minutes on each belt i.e. 15 minutes 

in total at 212 F. Samples were collected both out of extruder as well as out of dryer. Product 

characteristics such as cross sectional radii, length and weight of each piece were measured using 

a caliper and a weighing balance. This product data was later compared with the simulated 

values obtained from mechanistic and stochastic model. 
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Element no.  

1
*
= SE-FP-9U-DF-F, 2

*
= SE-FP-9U-DF-F, 3= SE-FP-9U-DF-F, 4= SE-FP-9U-DF-F, 5= SE-3/4P-9U-

DF-F, 6= SE-3/4P-9U-DF-F, 7= SE-3/4P-9U-DF-F, 8= SE-3/4P-9U-DF-F, 9= SE-3/4P-9U-DF-F, 10= 

SE-3/4P-9U-DF-F, 11=KB-F, 12= KB-B, 13= SE-3/4P-6U-DF-F, 14= SE-3/4P-9U-DF-F, 15= SE-3/4P-

9U-DF-F, 16= SE-3/4P-9U-DF-F, 17=KB-F, 18= SE-3/4P-9U-DF-F, 19= SE-3/4P-9U-DF-F, 20=cone 

SE: Screw element, FP: Full pitch, 3/4P: ¾ Pitch, U: Units, DF: Double Flight, KB: Kneading block,       

F: Forward, B: Backward 

* First 2 elements are single flight in right screw and double flight in left screw.   

 

Figure 3-1: Low shear screw profile used for making expanded products using corn meal 

 

The processing conditions for extrusion run were set at a particular value; however, these 

values kept fluctuating which was recorded by data acquisition system (DAQ). DAQ records the 

values of input parameters every second which helps in understanding the variability associated 

with these parameters. Die temperature was measured by inserting a resistance temperature 

detector (RTD) inside the spacer just before the die. This value for die temperature measured was 

then recorded by DAQ.  

 

R 

L 

30ºC 60ºC 80ºC 100ºC 120ºC 

1 2 3 4 5 6 7 8 9 10 11 12 1

3 

14 15 16 17 18 19 20 
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Figure 3-2: Die dimensions of the tapered die used during extrusion runs 

 3.3 Results and Discussions 

 3.3.1. Experimental results 

The variability in two of the input parameters, die temperature and extruder water, as 

recorded by DAQ during extrusion processing is given in figure 3-3 along with the average value 

and the value recorded from control panel. The intersection point of control panel data and actual 

DAQ data reflects the instant at which the value was recorded. Hence, the difference in average 

DAQ value and the control panel value emphasizes on the presence of variability in input 

parameters during extrusion. The variability in input parameters (as recorded by DAQ) gets 

translated into variability in output (product characteristics). The DAQ data was plotted using 

~400 data points for each processing condition (figure 3-3).  
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Figure 3-3: a.-p. represent variability data for input parameters (die temperature and 

extruder water) obtained from DAQ for different extrusion conditions ranging from 0.19-

0.33 mc (db) at 250 and 350 rpm screw speed 

 

Table 3-1 summarizes the mean value, standard deviation (SD) and coefficient of variation (CV) 

observed in the input parameters for 8 different extrusion runs. The mean, SD and CV for input 

parameters are calculated from DAQ data for each processing condition. The CV for moisture 

content ranged from 0.62%-1.6%. It should be noted that CV for die temperature would vary 

depending on the scale (˚C, K or ˚F) used for mean value. Hence to remove this bias from the 

scale used, base normalization procedure was used for the CV for die temperature by subtracting 
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the room temperature from the average value of temperature. This normalized CV for die 

temperature ranged from 0.29%-0.91%. The CV for die temperature was lower as compared to 

CV for in-barrel moisture content. This variability for CV in input parameter such as 0.29% in 

die temperature and 0.62% in moisture content does not seem very significant; however, the 

translation of variability in input to variability in output was much larger as can be seen from the 

results in table 3-2. The mean, SD and CV for expansion ratio as reported in table 3-2 were 

calculated by measuring 30 randomly selected and representative pieces of extrudates from each 

processing condition. Since the product continuously coming out of the die was collected in 

multiple bags, to maintain maximum randomness in selection, random pieces were selected from 

different bags for the same processing condition. Diameter of the extrudates was taken as the 

mean of major and minor diameters of the same cross section of the extrudate.  

 

Table 3-1 Experimental variability data for in-barrel moisture content and die temperature 

for different extrusion runs 

Run In-barrel moisture content (db) Die temperature (K) 

m.c.(db),RPM mean SD CV(%) mean SD CV(%) 

0.19, 250 0.1887 0.0021 1.12 412.3490 0.3243 0.29 

0.19, 350 0.1885 0.0021 1.13 418.5462 0.5971 0.52 

0.23, 250 0.2297 0.0022 0.95 405.0985 0.6169 0.6 

0.23, 350 0.2295 0.0031 1.37 407.0256 0.6132 0.59 

0.28, 250 0.2783 0.0023 0.84 393.3737 0.5755 0.64 

0.28, 350 0.2779 0.0017 0.62 396.6596 0.4656 0.49 

0.33, 250 0.3298 0.0053 1.60 381.8687 0.7187 0.91 

0.33, 350 0.3305 0.0022 0.67 386.0022 0.5318 0.64 
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Figure 3-4 Products obtained from 8 different processing conditions 

 

 

             

Figure 3-5 Scale comparison of the expansion for product with highest sectional expansion 

and lowest sectional expansion. 

 

It can be observed from the product pictures obtained from different extrusion runs (figure 3-4) 

that there was non-uniformity in products. This variability in the product characteristics was 

captured using the stochastic model. Figure 3-5 gives the scale comparison of products with 

highest sectional expansion and lowest sectional expansion. The knife speed for all processing 
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conditions was kept same. It should be noted that the product at higher moisture content had 

lower sectional expansion but it was longer than the piece extruded at lower moisture content. 

This could be due to the higher flow rate at higher moisture (lower viscosity) which could have 

resulted in greater longitudinal expansion. 

The variability in the experimentally obtained product is given in table 3-2. The CV for 

extrudates out of the extruder ranged from 5.85-8.94% and that for extrudates out of the dryer 

ranged from 5.2-9.4%. It can be seen from table 3-2, how the variability in input parameters 

affect the variability in output i.e. expansion ratio of the extrudates. For example, a high CV of 

8.94% was observed in the extrudate out of extruder for 0.33mc (db) and 250 rpm. The CV for 

moisture content and die temperature for this condition was 1.6% and 0.91% respectively. 

Hence, it can be seen that a cumulative effect of not very significant variability in 

different input parameters (in-barrel moisture content, die temperature, feed rate etc.) can lead to 

high variability in output which can become a major concern for the industries. It is interesting to 

note that the mean values of expansion ratio obtained out of the dryer were higher than the 

values of expansion ratio out of the extruder. It is common to experience change in volume 

during drying. The product could either shrink due to further decrease in moisture content or 

could further expand due to more pore or gas formation (Rahman, M.S., 2001). Alavi et al. 

(2003) modeled the expansion of extrudates in the dryer. In their study, the extrudates produced 

by supercritical fluid extrusion using carbon-di-oxide were high in moisture content and had 

more closed pore fraction (open cell fraction ranging between 0.15 and 0.36) which facilitated in 

further expansion upon drying. The final bubble radius and open cell fraction in their study 

increased with increase in temperature of the oven during drying. 
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Table 3-2 Experimental variability data for expansion ratio of the extrudates for different 

extrusion run conditions 

Run Out of extruder Out of dryer 

m.c.(db),RPM mean SD CV(%) mean SD CV(%) 

0.19, 250 9.46 0.55 5.85 10.48 0.55 5.22 

0.19, 350 10.89 0.76 6.94 11.79 0.85 7.24 

0.23, 250 4.46 0.29 6.51 4.91 0.31 6.42 

0.23, 350 4.99 0.33 6.51 5.92 0.32 5.36 

0.28, 250 2.88 0.19 6.74 3.27 0.24 7.22 

0.28, 350 3.60 0.27 7.47 3.95 0.25 6.36 

0.33, 250 2.34 0.21 8.94 2.31 0.22 9.4 

0.33, 350 3.05 0.19 6.31 3.03 0.17 5.66 

 

The distribution of expansion ratio was studied to understand the variability of the output 

using histograms (figure 3-6). It was observed that the distribution for expansion ratio obtained 

from different extrusion runs did not necessarily follow a normal distribution. The distributions 

could be either skewed to the right, bi-modal etc. It should be noted that since these 

distributions/histogram were generated using 30 randomly selected pieces, the distribution for a 

particular processing condition may be different if another set of pieces was selected. Looking at 

the histograms is a way of understanding how the variability in the products looks like. No 

conclusions were derived for the type of distribution assumed by expansion ratio at different 

processing conditions. However, a shift in the values of expansion ratio could be easily observed 

from the histograms for different processing conditions. 
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Figure 3-6: a.-h. represent distributions of expansion ratio values (out of extruder) 

obtained experimentally from different extrusion processing conditions   

 3.3.2 Deterministic model results 

 3.3.2.1 Dynamics for different parameters from the deterministic model 

As the melt flows out of the extruder, it undergoes expansion followed by collapse also 

known as shrinkage (Fan et al., 1994). The expansion and shrinkage are interesting phenomena 

observed in the extrudates due to the resultant pressure (difference of vapor pressure, 

atmospheric pressure and other viscoelastic forces) acting on the wall of an individual cell, either 

in the outward (during expansion) or inward direction (during shrinkage) on the wall of an 

individual cell. This is clearer from the figure 2-2. Initially, the vapor pressure inside the bubble 

is high due to high temperature and moisture in the bubble. The vapor pressure can overcome the 

opposing stresses such as elastic stress, yield stress, tensile stress and atmospheric pressure. 

 Eventually the moisture and temperature decreases which results in a lower vapor 

pressure. The opposing stresses are higher and due to this, the resultant pressure acts in the 

inward direction. At this point of time, the yield stress acts towards prevention of collapse and 

acts in the outward direction. Thus when the resultant pressure is in inward direction, it leads to 

shrinkage. The temperature reduces further and the extrudate solidifies when its temperature 
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goes down below its glass transition temperature range, ~Tg+30 (Fan et al., 1994) after which no 

further shrinkage takes place. Study of the dynamics of different parameters involved in the 

bubble expansion and shrinkage phenomena provide better understanding of the process. 

Figure 3-7 provides the detailed dynamics of resultant pressure (or the pressure 

difference) acting on the bubble wall and the resulting bubble growth. The negative values of the 

resultant pressure are used to represent the pressure acting in the inward direction on the cell wall 

during the shrinkage phase. Till the time, pressure difference has a positive value, the radius of 

the bubble increases. As the pressure difference becomes zero, there is no change observed in the 

bubble radius. Later, the bubble radius decreases as the pressure difference becomes less than 

zero (i.e. acts in the inward direction). Eventually the rate of decrease in bubble radius becomes 

very low and the radius stabilizes. The expansion and shrinkage stops once glass transition 

temperature is reached. It is interesting to note that for higher moisture content 0.33mc(db), the 

simulation process went on for a long time (~150 s) as compared to lower moisture content 0.23 

mc(db) (~20s). This could be a result of lower value of glass transition temperature at higher 

moisture content. Since, the code does not stop until glass transition temperature is reached; the 

process was simulated for a long time. For the processing condition of 0.33 mc(db) and 386K, 

the pressure difference value as shown in figure 3-7(c) showed a cyclical trend over time i.e., the 

value for pressure difference  was negative in the shrinkage period; it dropped down to zero and 

became negative again, which is thermodynamically infeasible. Further research was conducted 

on the underlying code and the simulated results for finding the reason for cycling of pressure 

difference. For the processing condition of 0.33 mc(db) and 386K, it was found that after 

shrinkage started (at around 1.2883 seconds), the value of temperature started increasing after 

1.3044 seconds. Vapor pressure (Pw), one of the components in the pressure difference equation, 
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is the product of saturation vapor pressure and water activity which are dependent on 

temperature and moisture content of the inner most microscopic shell (Xwc). An increase in 

temperature or moisture results in increase in vapor pressure and vice versa (see appendix B, 

table 1 for sample calculations of vapor pressure as a function of temperature and moisture 

content). It was found that till the time Xwc was decreasing (while temperature was increasing 

after shrinkage), it compensated for the increase in temperature and it did not lead to rise in the 

value of Pw. But at around 1.3066 seconds, the value of Xwc became the minimum set value in 

the code for moistures in microscopic shells (0.004). Now, since Xwc reached its minimum 

value but the temperature was increasing, it resulted in increase in the value of Pw. Later when 

temperature started decreasing again, during that time there was an increase in moisture content 

of innermost microscopic shell which again increased the vapor pressure. During this time, the 

other components of pressure such as elastic stress, yield stress, and surface tension increased but 

at a slower pace as compared to the vapor pressure. As a result, the value of negative pressure 

(pressure in the inward direction during shrinkage period) reduced and reached zero. Eventually, 

further reduction in the temperature reduced the Pw and there was an increase in the value of 

other pressure components in the opposite direction as well. Hence the net value of the pressure 

difference (ΔP) became negative again, thereby showing a cyclical trend. Upon investigating the 

processing condition of 0.23mc (db) and 405.09K, same trend was observed. The 

fluctuation/increase in temperature was observed at 3.0015 seconds but during this time the 

moisture content in the innermost layer of microscopic shells (Xwc) decreased rapidly and 

reached its minimum set value in the code (0.004). As a result, there was a slight increase 

observed in Pw at 3.0092 seconds which resulted in decrease in negative pressure (pressure in 

the inward direction during the shrinkage phase), however, in this case, the increase in Pw was 
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not very high and the pressure difference remained negative i.e. in the inward direction. Hence, 

the cyclical trend was not observed in this case. Hence, this thermodynamic infeasibility in 

pressure difference value was an outcome of instability observed in temperature and moisture 

content dynamics. Hence, this can be prevented by stabilizing the dynamics of macroscopic 

temperature and microscopic moisture content.  

From figure 3-7, it can be observed that the simulated bubble radius increased suddenly 

in a very short period of time as the melt flowed out of the die. This could be due to sudden 

release of pressure as the melt exits the die. Within few seconds of exiting the die, shrinkage 

takes place reducing the bubble radius, for example, shrinkage took place in around 2 seconds 

for 0.23mc (db). A greater collapse was observed at higher moisture content. This could be due 

to lower viscosity at higher moisture content which provides lesser resistance to the collapse. 

The final values of bubble diameter predicted by the mechanistic model ranged from 0.04mm for 

the processing condition of 0.33 mc (db) and 250 rpm to 0.49mm for the processing condition of 

0.19 mc(db) and 250 rpm. The bubble diameter for the processing condition 0.19 mc (db) and 

350 rpm could not be simulated because of the limitation of the model, not being able to simulate 

temperatures higher than 410K. The actual die temperature for the processing condition 0.19 

mc(db) and 250 rpm was 412 K but it was simulated at 410 K. Karkle et al. (2012) used X-ray 

microtomography to study the cellular architecture of the extrudates formed by blends of corn 

flour and apple pomace. For 0% apple pomace in the formulation, their average cell diameter 

ranged from 0.75-1.05 mm depending on the moisture content. The average cell diameter 

decreased with increase in moisture content which was the same trend as predicted by the 

mechanistic model simulations. Trater et al. (2005) studied the microstructure of extrudates 

formed by brittle corn starch with different percentages of whey protein concentrate (WPC) in 
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the formulation. For 0.35 mc (db), and 5% WPC, the average cell diameter was measured as 

1.7mm. Cheng et al. (2007) also measured the average cell size for extrudates of corn starch and 

whey protein isolates (WPI). For 0% WPI, their cell size varied from 1.57-2.94 mm depending 

on the in-barrel moisture content during extrusion. Agbisit et al (2007) found the average cell 

diameter ranging from 2.07-6.32mm depending on the in-barrel moisture content (0.29-0.41 

(db)) during extrusion.  

  

  

Figure 3-7 Dynamics for bubble radius growth and shrinkage for 0.23mc(db) and 

0.33mc(db) 
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The predicted cell size was smaller than the average cell size measured in different 

studies on cellular architectural analysis. This could be due to the fact that during extrusion, the 

cells coalesce during expansion when the wall thickness reduces drastically, thereby increasing 

the final cell size.  However, the microscopic level of the mechanistic model simulates the 

growth and shrinkage dynamics of an individual bubble and the resultant cell size of the single 

bubble was thereby smaller than the experimental values obtained from literature.  

 

 

 

Figure 3-8 Schematic diagram of expansion, shrinkage and stabilization as observed at the 

macroscopic level 

Figure 3-8 is a schematic of how expansion and shrinkage looks like for the extrudate (at 

the macroscopic level) coming out of the die. The domain radius (figure 3-9 a. and b.) follows 

the same trend as bubble radius. However, the domain radius does not decrease as rapidly as the 

bubble radius. The wall thickness of the bubble decreases during expansion. Towards the end of 

expansion, the width of the bubble becomes close to zero (few micrometers). Wang et al. (2005) 

observed the same trend in their simulation and suggested that at this point of extremely small 

thickness, the cell might rupture depending on factors such as domain temperature, moisture etc. 

The eventual increase in cell wall thickness (figure 3-9 c. and d.) could be explained as a result 
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of shrinkage. The bubble radius and domain radius decrease during shrinkage, but the domain 

radius decreases less rapidly as compared to bubble radius, hence, the cell wall thickness 

increases again. Similar trend for cell wall thickness was observed by Fan et al., 2012. It should 

be noted that for the processing condition of 0.33 mc(db) and 386K, the cell wall thickness 

increased up to 200 µm after collapse which is not realistic. It could probably be occurring due to 

instability in the model at this processing condition which was also observed as cycling in 

pressure difference, temperature fluctuation and microscopic moisture instability at this 

processing condition. 
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Figure 3-9 Dynamics of domain radius, width and expansion ratio of the bubble for 0.23 

mc(db) and 0.33mc(db).  

The expansion ratio (figure 3-9 e. and f.) also followed the same trend as bubble radius 

where it increased until expansion and then decreased during shrinkage period. The final 

expansion ratio decreased with increase in moisture content from 0.23 (db)-0.33 (db). However, 

it is interesting to note that the maximum expansion ratio was higher at higher moisture content. 

This is due to lower viscosity at higher moisture content which provides the ease of higher 

expansion but at the same time it leads to higher collapse. The simulated values of final 

expansion ratio ranged from 1.16-12.86 depending on the processing conditions (table 3-3). 

Chinnaswamy and Hanna (1988) studied the expansion ratio of normal corn starch at different 

processing conditions. In their study, the expansion ratio ranged from 7.5-14.2 as the moisture 

content ranged from 0.06-0.3 (db). The expansion ratio increased with increase in moisture 

content up to 0.14(db) and decreased sharply with further increase in moisture content. The 

expansion ratio measured by Karkle et al. (2012) ranged from 5.9-10.5 depending on the 

moisture content (0.21-0.33 (db). In their study, the expansion ratio decreased with increase in 

moisture content which was the same trend obtained by the mechanistic model. Hence, the 
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expansion ratio predicted by the mechanistic model was similar to the range of expansion ratio 

measured experimentally in different studies. 

Figure 3-10 represents the dynamics of bulk temperature with time as a result of heat 

transfer with in cylindrical layers. The simulated temperature reduced gradually but there was a 

small fluctuation observed in the simulated value for bulk temperature at 0.23 mc(db) as well as 

0.33 mc(db) which is thermodynamically infeasible.. Upon investigation it was found that 

fluctuation in the temperature was an outcome of fluctuation in the outermost layer because the 

temperature in the inner layers decreased gradually. Temperature in the outermost layer was a 

function of ∆x2 (    
      

 
 

        
) and TNb. So during the shrinkage period, ER reduced and as a 

result ∆x2 also reduced. Also when ER reduced, ϵ reduced, since it was defined as (ϵ = 1-1/ER) 

in the code. This resulted in increase in keff.  An increase in keff and decrease in ∆x2 led to 

decrease in the term NT defined by (NT=h* ∆x2/ keff). A decrease in NT led to increase in the 

value of TNb+1 (outer most layer of the macroscopic shells) which possibly resulted in the 

observed fluctuation in temperature. As the temperature in the adjacent layer (TNb) went down, 

the effect of NT was compensated and the temperature of the outermost macroscopic shell 

decreased again. Sample calculations were done (shown in Appendix B, table 2) to see the 

impact of decreasing values of TNb and NT  upon TNb+1. It was found that when TNb was constant 

in the sample calculations and NT decreased, the value of TNb+1 increased but when the value of 

TNb was also reduced, it compensated for the effect of NT and the resulting value of TNb+1 also 

decreased. It is important to note that the stability criterion for the macroscopic heat transfer is 

set by the term MT (      
         ). In this term, the Δt used is calculated based on the 

mass transfer in spherical system of microscopic shells. It is possible that this Δt is not suitable 

for stability of different equation systems at all times. In heat transfer at macroscopic scale, since 
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Δt is small, it satisfies the stability condition of MT ≥4 (Geankoplis, 1993). However, it is not 

checked whether αt is suitable enough and later TNb+1 is computed using αt.  Hence, apart from 

checking the suitability of Δt for different equation systems, the stability condition for boundary 

should also be checked which is given as follows (Marek and Götz, 1995) 

   
 

       
 

where Fo is the Fourier number (   
     

   
   and Bi is the Biot number (   

     

    
).   

   

   

Figure 3-10 Dynamics of temperature of the extrudate with time for 0.23 mc(db) and 

0.33mc(db) 

The simulation process stops when temperature of the bulk (extrudate) reaches glass 

transition temperature range (Tg+30). When moisture content was 0.23 mc(db), the process 

stopped when temperature reached 363K (90˚C) i.e. at a glass transition temperature of about 

60˚C. At 0.33 mc (db), the process stopped at ~331K (58˚C) i.e. at a glass transition temperature 

of about 28˚C. These values of glass transition temperatures are in comparable range of the glass 

transition temperature values available in literature. Zeleznak and Hoseney (1987) performed a 
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study on glass transition temperature for wheat starch. They found that at a moisture content of 

0.23(db), the glass transition temperature for wheat starch was ~45˚C and for 0.28mc (db) was ~ 

25˚C. 

Figure 3-11 represent the change in bulk moisture (extrudate) with time. There was an 

initial steep reduction in the simulated bulk moisture which could be due to sudden loss of 

moisture from the outermost layer as the material flows out of the die. Later on the moisture did 

not decrease drastically or stabilized as can be seen from the straightened out line in figure 3-11. 

It is interesting to note that the extrudate moisture did not change significantly even when the 

temperature was higher than 100˚C. This was due to the parameter values computed in the 

mechanistic model where diffusivity of the moisture within the cylindrical shells of the extrudate 

was not very high but the mass transfer coefficient for the outermost layer was high enough. As a 

result, the moisture from only the outermost layer decreased significantly but the moisture from 

the inner layers did not reduce significantly. Hence, the average value of moisture in all the 

cylidrical shells of the extrudate did not decrease significantly as represented in figure 3-11.    
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Figure 3-11 Dynamics of average extrudate moisture with time for 0.23 mc(db) and 0.33 

mc(db) 

As the bubbles expand, some of the cells burst open and lose their ability to expand 

further. Such cells are accounted for by open cell fraction. In figure 3-12, it can be seen that for 

0.23mc (db), more expansion resulted in greater number of open cells. However, value of open 

cell fraction as 1 is unrealistic because physically it means that all the cells are open which does 

not happen in real life. Nevertheless, the simulated results provided a comparison for open cell 

fraction at lower and higher moisture content. At 0.33 mc (db), lesser expansion took place and 

greater number of bubbles was intact. Thus the open cell fraction at this condition was much 

lower (~0.4). Karkle et al. (2012) measured the void fraction as 0.59 for extrudates from corn 

flour (0% apple pomace) when moisture content was 0.33mc (db) which is close to the simulated 

value. They also obtained the similar trend where the void fraction decreased (0.76-0.59) as the 

moisture content was increased (0.21-0.33 (db)) 

  

Figure 3-12 Open cell fraction for processing conditions: 0.23 mc(db), 405.09K and 

0.33mc(db), 386K with time 
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0.629-0.842 depending on the formulation (percentage of whey protein concentrate and moisture 

content). 

In figure 3-13, Xwc represents the moisture content in the inner most shell of the bubble, 

Xwi(N) represents the moisture content in the outermost shell of the bubble and Xwa represents 

the average moisture content of all the shells of the bubble. The moisture from the bubble shells 

migrates to the inner most shell of the bubble and is formed into vapor. As a result more 

moisture migrates from the matrix into the bubble. At higher moisture (0.33 mc (db)), the glass 

transition temperature was lower and as a result the simulation process stopped after a long time. 

In the simulated results, thermodynamic instability was encountered in the moisture content of 

microscopic shells (as can be seen from moisture content dynamics of outermost microscopic 

shell in figure 3-13) which led to fluctuations in average microscopic shells moisture as well. 

The zoomed out results for the different layers help in better understanding of the dynamics in 

the microscopic shells. It can be seen that for both processing conditions, an increase in moisture 

in the inner most layer (Xwc) can be observed. Microscopic moisture fluctuations were analyzed 

and it was found that the moisture content increased in the innermost layer before the spike in the 

moisture of the outer layer was observed. The dynamics for moisture content in different layers 

before the spike was observed in outer layer are given in figure A-6.  It was observed that the 

moisture content in the innermost layer was constantly increasing before the fluctuations started, 

however the moisture was stable in the other layers. Hence, this increase in moisture in the 

innermost layer eventually led to increase in moisture in the intermediate layers since moisture 

was transferred to the intermediate layer from both the outer layers as well as the inner layers. 

Later on, this increase in moisture was propagated to the outer layers observed as 

thermodynamically infeasible spike in Xwi(N) where moisture became higher than the initial 
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value. To remove this instability, apart from defining Δt suitably, the definition of Δr should also 

be investigated since it contains a point of discontinuity.  

A slight increase in the moisture in the innermost layer of microscopic shells was also 

observed in the popcorn puffing model by Schwartzberg et al. (1995). They explained this 

increase in Xwc as a balancing effect of increase in radius and decrease in pressure difference 

towards the end of expansion. According to them, at large values of bubble radius (Xwa-Xwc) was 

proportional to multiple of ∆P and R. So when ∆P decreased near the end of expansion, it 

compensated for the increase in R and as a result (Xwa-Xwc) decreased which was observed as a 

fluctuation in Xwc.   

  

 

  

Figure 3-13 Microscopic shell moistures for different layers for 0.23mc(db) and 

0.33mc(db).  
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 3.3.2.2 Expansion ratio of extrudates (experimental and simulated) 

The expansion ratio of the extrudates was simulated by mechanistic model using 

experimental values of die temperature and in-barrel moisture content for each processing 

condition. The model showed computational instability at temperature above 410K. Hence, it 

was not possible to simulate the processing condition of 0.19 mc(db) and 350 rpm which had a 

die temperature of 418K. Initially, the computational instability was encountered for temperature 

above 400K. To remove this, the number of shells in the microscopic layer was increased from 

25 to 50 which increased the simulation time by a factor of 4. It took about 45 minutes to an hour 

to run one mechanistic simulation depending on the computational ability of the computer when 

50 microscopic spherical shells were used. Further reduction in time step or discretization step 

for achieving stability in finite element method led to impractical computation time 

requirements. For example, upon increasing the number of microscopic shells by 100, the 

computation time for mechanistic model became almost 24 hours and it led to stability up to 412 

K, not further. Hence, considering time constraints, further reduction in discretization was not 

carried out to remove instability in computation for temperatures above 410K. It was interesting 

to note that upon increasing the number of spherical shells from 25 to 50, the dynamics for 

different parameters shifted a little because changing number of shells led to change in mass per 

layer (∆M) which in turn affected equations for calculation of domain radius and change in 

moisture for microscopic shells. However, the shape and trend for the dynamics of parameters 

did not change significantly. Similar result was obtained by Lach, L. (2006) who observed 

significant difference in the results when the number of microscopic shells was increased from 

10 to 25. However, they did not observe significant difference upon further increasing the 

number of spherical shells at the microscopic level. They explained this trend as a result of 
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insufficient discretization of the bubble interface for computation purposes when the number of 

microscopic shells was 10.  

The simulated and experimental values of expansion ratio for different processing 

conditions are listed in table 3-3. It can be seen from the results that the simulated value was less 

than the experimental value for low and high moisture content of 0.19 mc(db) and 0.33mc(db). 

For other two moisture contents (0.23(db) and 0.28(db)), the simulated value was higher than the 

experimental value. Hence, it is difficult to comment on the bias of the model. More clarity on 

comparison of simulated and experimental values could be obtained from observing the trend of 

these values for different processing conditions (figure 3-14).    

The trend of expansion ratio for experimental values in figure 3-14 shows that as the 

moisture content was increased beyond 0.19mc(db), the expansion ratio reduced. This could be 

due to the decrease in viscosity with increasing moisture content. Lower viscosity in turn results 

in low shear in the extruder as well as greater collapse during shrinkage phase which leads to 

lower final expansion. For a particular value of in-barrel moisture content, the expansion ratio 

increased with increase in screw speed from 250 rpm to 350 rpm. This is a result of higher 

amount of shear experienced in the extruder with increase in screw speed. From the experimental 

results, it can be observed that 0.19 mc (db) is the optimum value of moisture content for 

obtaining highest expansion ratio.  

 

Table 3-3 Comparison for simulated values of expansion ratio with average values of 

expansion ratio obtained experimentally for different extrusion processing conditions 

In-barrel moisture 

content (db) 
Temperature (K) Simulated value 

Average experimental 

value 

0.1887 412.3 6.53 (used 410K) 9.46 

0.1885 418.5 - 10.89 
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0.2297 405.1 10.74 4.46 

0.2295 407 12.86 4.99 

0.2783 393.4 6.65 2.88 

0.2779 396.7 10.59 3.60 

0.3298 381.9 1.16 2.34 

0.3305 386 2.00 3.05 

 

     

Figure 3-14 Expansion ratio trends with increasing moisture content for experimental and 

simulated values.  

*the model gets unstable at values of temperature higher than 410K. Hence, expansion ratio for 0.19 mc(db) at 350 rpm (418.5K) 

could not be simulated. Also 410K was used instead of 412.3K for 0.19mc(db) at 250 rpm. 

 

The trend for simulated values of expansion ratio is shown in figure 3-14(b). The 

expansion ratio increased initially with increase in moisture content from 0.19-0.23(db). With 

further increase in moisture content, the expansion ratio decreased. A similar trend was observed 

by Chinnaswamy and Hanna (1988) who investigated the optimum process conditions for 

obtaining maximum expansion. They observed an expansion ratio of 9 at low moistures of 0.08 

(db) and the maximum expansion ratio of ~15 at about 0.16 (db) which reduced on further 

increase in moisture content. One of the reasons for lower final expansion ratio at higher 
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moisture content is greater amount of collapse due to lower viscosity at higher moisture content. 

Della Valle et al. (1997) reported a decrease in volumetric expansion index with increase in 

moisture content due to greater collapse at higher moisture content. Moraru and Kokini (2003) 

explained that the extrudate melt with lower viscosity is prone to collapse of the cellular matrix 

at higher vapor pressure. Collapse was also simulated by Fan et al. (2012) and Wang et al. 

(2005). 

It should be noted that the simulated expansion ratio for higher screw speed was higher at 

a specific moisture content which again matches with the experimental trend for expansion ratio. 

There was a shift in simulated expansion ratio values from the experimental results. This 

difference in values could be a result of material properties that are input into the mechanistic 

model. The equations for material properties such as diffusivity, consistency index etc. were 

taken from literature which was measured for a comparable material but not exactly the same 

material that was extruded (corn meal). For example, the equation of consistency index derived 

by Parker et al. (1989) for maize starch was used in the model. Similarly, the correlation of 

diffusivity with respect to temperature and moisture, used in the model, was measured by Van 

der Lijn (1976) for maltose system. The literature comparisons for expansion ratio and cell size 

diameters are provided in table 3-4. 

Table 3-4 Literature comparisons 

Author Year Material 

used 

Moisture 

content 

temperature Expansion 

ratio 

Cell size 

(diameter 

mm) 

Chinnaswamy, 

R. and Hanna, 

M.A. 

1988 Normal 

corn starch 

0.06-0.3 

(db) 

140˚C (413K) 7.5-14.2  

Karkle et al. 2012 Corn flour*1 0.21(db) - 10.5 ~1.05 
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0.25(db) 

0.33(db) 

8.0 

5.9 

~0.9 

~0.75 

Cheng et al. 2007 Corn 

starch*2 

0.29 (db) 

0.37(db) 

140˚C (413K)  2.94 

1.57 

Trater et al. 2005 Corn starch 

with WPC 

0.35 (db) 

with 5% 

WPC 

-  1.7 

Agbisit et al. 2007 cornstarch 0.29-

0.41(db) 

140˚C (413K)  2.07-6.32 

Babin et al.  2007 Maize*3 

with 

different 

amylose% 

0.25(db) 

0.25(db) 

0.32(db) 

163±3˚C  

187±2˚C 

187±2˚C 

 

 

 3.02 

0.35,1.03 

0.86 

*1 corn flour with apple pomace was used at different concentration. For comparison, 0% pomace compositions are 

mentioned here  

*2 corn starch was used in combination with whey protein isolate. For comparison, 0% WPI composition is mentioned 

here 

*3 maize with high amylose content was used. For comparison, results for maize with 23% amylose is mentioned here 

 

 3.3.2.3 Sensitivity analysis using mechanistic model 

The mechanistic model was used for performing a sensitivity analysis for 3 selected input 

parameters: in-barrel moisture content, die temperature and material constant (kf) in consistency 

index equation. It was carried out by varying value of one parameter and keeping the value of 

rest of the input parameters constant.  

For example, the three selected parameters for the processing condition 0.33 mc(db), 350 

rpm (die temperature 386K), were increased and decreased by 15% and the resulting expansion 

ratio was observed in each case. For the processing condition of 0.23 mc(db), 250 rpm (die 

temperature 405. 09K), only 5% increase and decrease in the input parameters was considered 

and the simulation results are presented in figure 3-15. This was done because even 5% increase 
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in the temperature (normalized) was equal to 410K and a further increase in temperature was not 

possible to simulate considering model constraints as mentioned above.  

  

  

  

0

5

10

15

20

25

30

35

0.2805 0.33 0.3795

ER
 

moisture content (db) 

sensitivity with respect to moisture 
content 

max ER

final ER

experimental 
conditions 
mc=0.33(db) 
temp= 386K 
kf = 1 
experimental 
ER = 3.05 

a. 

0

5

10

15

20

25

30

35

0.22 0.23 0.24

ER
 

moisture content (db) 

sensitivity with respect to moisture 
content 

max ER

final ER

experimental 
conditions 
mc=0.23(db) 
temp= 405.09K 
kf = 1 
Experimental 
ER = 4.46 

d. 

0

10

20

30

40

50

373.55 386 398.45

ER
 

temperature (K) 

sensitivity with respect to temperature 

max ER

final ER

experimental 
conditions 
mc=0.33(db) 
temp= 386K 
kf = 1 
Experimental  
ER =  3.05 

b. 

0

10

20

30

40

50

399.99 405.09 410

ER
 

temperature (K) 

sensitivity with respect to temperature 

max ER

final ER

experimental 
conditions 
mc=0.23(db) 
temp= 405.09K 
kf = 1 
Experimental ER 
= 4.46 

e. 

0

5

10

15

20

25

30

35

0.85 1 1.15

ER
 

kf 

sensitivity with respect to material 
constant (kf) 

max ER

final ER

experimental 
conditions 
mc=0.33(db) 
temp= 386K 
kf = 1 
Experimental 
ER = 3.05 

c. 

0

5

10

15

20

25

30

35

0.95 1 1.05

ER
 

kf 

sensitivity with respect to material 
constant (kf) 

max ER

final ER

experimental 
conditions 
mc=0.23(db) 
temp= 405.09K 
kf = 1 
Experimental 
ER = 4.46 

f. 



84 

 

Figure 3-15 Sensitivity analysis results from the mechanistic model for 2 different 

processing conditions (0.33mc(db), 386K) and (0.23mc(db), 405.09K) 

 

For the experimental conditions, 0.33 mc(db) and die temperature 386K, increase in 

moisture content reduced the viscosity which led to higher maximum expansion ratio but it can 

be observed that the collapse was also higher at higher moisture content. With increase in 

temperature, the expansion ratio increased and there was a huge difference between expansion 

ratio at 373.55K and 386K. This indicated that expansion ratio was very sensitive to temperature. 

Upon increase in material constant value (kf), no significant difference was observed in final 

expansion ratio; however, it is worthy to note that the collapse was lower as the consistency 

index was increased. 

For the processing condition, 0.23 mc(db) and die temperature 405.09K, with increase in 

moisture content, the final expansion ratio increased. The final expansion ratio increased upon 

increasing the temperature from 399.99 to 405.09K but decreased with further increase in 

temperature. With increase in consistency index, the final expansion ratio reduced. For this 

processing condition, the results for maximum expansion ratio were inconsistent.   

 3.3.2.4 Comparison of porosities of experimental and simulated values 

It was observed that the sectional expansion ratio at higher moisture content was lower 

than sectional expansion at lower moisture content. However, it was observed that the product 

with smaller sectional expansion was longer in size even though the knife speed was same at all 

processing conditions. Hence, to compare the actual expansion for different processing 

conditions, porosity  ) for experimental and simulated values was calculated using equation 3-2 

and the results are summarized in table 3-5. It can be observed that experimental and predicted 
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porosity values were similar. This provides a better comparison for expansion of extrudates at 

different processing conditions. 

     
 

   
 (3-2) 

where VEI represents the volumetric expansion ratio.  

 

Table 3-5 Simulated and experimental porosity of extrudates at different processing 

conditions 

Moisture content Temperature Simulated porosity Experimental porosity 

0.1887 412.3 0.94 0.97 

0.1885 418.5 - 0.97 

0.2297 405.1 0.97 0.89 

0.2295 407 0.98 0.91 

0.2783 393.4 0.94 0.80 

0.2779 396.7 0.97 0.85 

0.3298 381.9 0.20 0.72 

0.3305 386 0.65 0.81 

 

 3.3.3 Stochastic modeling results 

Stochastic model helped in capturing the variability in output parameters (product 

characteristics such as expansion ratio) as a result of variability in input parameters. To 

understand the existing variability in the extruded products, a commercial product, Cheetos 

puffs, was tested by measuring diameter of 30 randomly selected pieces. A coefficient of 

variation of 2.7% was observed in the diameter for this commercial product. Hence, it is 

important to understand and address this variability with the help of a stochastic model for better 

process and quality control.  
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The stochastic interface developed for the mechanistic model in the current study could 

input a distribution of each parameter (generated by n values) into the mechanistic model and 

resulted in the n values of output which were used for generating the distribution for output. In 

the current study, due to time constraints, 15 values each for 3 selected parameters (in-barrel 

moisture content, die temperature and material constant (kf) in consistency index equation) were 

input into the mechanistic model and 15 values of expansion ratio were obtained for different 

processing conditions which were used to analyze the variability in the output. Each stochastic 

simulation comprising of 15 mechanistic simulations took 8-9 hours to run depending on the 

computational ability of the computer.  

Stochastic simulation were carried out for 3 different processing conditions (0.33 mc(db) 

and 386K, 0.28mc(db) and 393.37K, and 0.23mc(db) and 405.10K). It was not possible to 

perform a stochastic simulation for 0.19mc(db) since the average value of temperature at that 

moisture content was above 410K. During stochastic simulation, the random values generated for 

input parameters were higher or lower than the average value by one or two standard deviation 

values. Since the code showed instability at temperature values higher than 410K, the stochastic 

simulation for lowest moisture content was not performed.     

Using these stochastic simulations, sensitivity analysis was carried out for three selected 

input parameters at different processing conditions. The sensitivity analysis was carried out by 

varying CV of one parameter, keeping the CV of other two parameters constant and observing its 

effect on the CV of expansion ratio.  

Table 3-6 Sensitivity analysis of expansion ratio with respect to moisture content 

(0.23mc(db) and 405.10K) 

Moisture content (db) Temperature (K) Material constant (kf) ER (simulated) 

Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) 
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0.23 0.0022 0.95 405.10 0.6125 0.60 1 0.02 2 10.81 1.05 9.7 

0.23 0.0020 0.85 405.10 0.6125 0.60 1 0.02 2 11.10 1.37 12.30 

0.23 0.0024 1.05 405.10 0.6125 0.60 1 0.02 2 10.57 0.95 9.00 

0.23 0.0057 2.5 405.10 0.6125 0.60 1 0.02 2 10.60 1.42 13.39 

Experimental values for expansion ratio of extrudates (30 pieces)  4.46 0.29 6.51 

 

Table 3-7 Sensitivity analysis of expansion ratio with respect to die temperature 

(0.23mc(db) and 405.10K) 

Moisture content (db) Temperature (K) Material constant (kf) ER (simulated) 

Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) 

0.23 0.0022 0.95 405.10 0.6125 0.60 1 0.02 2 10.81 1.05 9.7 

0.23 0.0022 0.95 405.10 0.5105 0.50 1 0.02 2 10.86 1.07 9.89 

0.23 0.0022 0.95 405.10 0.7147 0.70 1 0.02 2 11.15 1.11 9.92 

0.23 0.0022 0.95 405.10 2.55 2.5 1 0.02 2 10.26 1.89 18.45 

Experimental values for expansion ratio of extrudates (30 pieces) 4.46 0.29 6.51 

 

Table 3-8 Sensitivity analysis of expansion ratio with respect to material constant (kf) 

(0.23mc(db) and 405.10K) 

Moisture content (db) Temperature (K) Material constant (kf) ER (simulated) 

Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) 

0.23 0.0022 0.95 405.10 0.6125 0.60 1 0.02 2 10.81 1.05 9.7 

0.23 0.0022 0.95 405.10 0.6125 0.60 1 0.01 1 10.99 1.09 9.91 

0.23 0.0022 0.95 405.10 0.6125 0.60 1 0.03 3 10.64 1.06 9.99 

0.23 0.0022 0.95 405.10 0.6125 0.60 1.00 0.025 2.5 10.95 1.03 9.44 

Experimental values for expansion ratio of extrudates (30 pieces) 4.46 0.29 6.51 

 

Table 3-6, 3-7 and 3-8 represent the sensitivity analysis with respect to moisture content, 

die temperature and material constant (kf) respectively for the processing condition of 0.23 

mc(db) and 405.10K. The experimental value of CV for moisture content (0.95%) and for die 

temperature (0.6%) was used initially. A CV of 2% was assumed for material constant (kf). 

Using these three values of CV, a CV of 9.7% was obtained for expansion ratio from the 
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stochastic simulations. Later CV was varied for one parameter at a time, keeping CV for other 

two parameters as constant.  

It is interesting to note in table 3-6 that when CV for moisture content was increased by 

0.1%, CV for expansion ratio decreased and when the CV for moisture content was decreased by 

0.1%, CV for expansion ratio increased. This trend is counter-intuitive but it is due to the 

complex non-linear partial differential equations present in the mechanistic model which could 

lead to such trends. Also, since the difference in CV was very less and the values of the 

parameters were generated randomly, it is highly likely, that CV could increase or decrease for 

another set of simulation. Similar trend was observed for other parameters as well. Hence for a 

better clarity of the change in CV of expansion ratio upon changing the CV of input parameters, 

a higher value of CV (2.5%) was used for each parameter. A much higher CV for the processing 

condition of 0.23 mc(db) and 405.10K would lead to instability since for this condition, with 

higher CV, a higher value of temperature could be generated (more than 410K) and due to the 

limitation of the model, simulation could not be carried out at  temperature above 410K. 

A 2.5% CV in moisture content resulted in 13.39% CV in expansion ratio whereas a 

2.5% CV in die temperature resulted in 18.45% CV in expansion ratio. For 2.5% CV in material 

constant (kf), 9.44% CV in expansion ratio was observed. Hence, the variability in temperature 

had the greatest impact on the variability in expansion ratio at 0.23 mc(db) and 405.10K.  

Table 3-9 Sensitivity analysis of expansion ratio with respect to moisture content 

(0.28mc(db) and 393.37K) 

Moisture content (db) Temperature (K) Material constant (kf) ER (simulated) 

Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) 

0.28 0.0023 0.84 393.37 0.5786 0.64 1 0.02 2 6.89 0.65 9.37 

0.28 0.0021 0.74 393.37 0.5786 0.64 1 0.02 2 6.98 0.88 12.55 

0.28 0.0026 0.94 393.37 0.5786 0.64 1 0.02 2 6.50 0.58 8.99 
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0.28 0.0139 5.00 393.37 0.5786 0.64 1 0.02 2 6.77 1.19 17.53 

Experimental values for expansion ratio of extrudates (30 pieces) 2.88 0.19 6.74 

  

Table 3-10 Sensitivity analysis of expansion ratio with respect to die temperature 

(0.28mc(db) and 393.37K) 

Moisture content (db) Temperature (K) Material constant (kf) ER (simulated) 

Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) 

0.28 0.0023 0.84 393.37 0.5786 0.64 1 0.02 2 6.89 0.65 9.37 

0.28 0.0023 0.84 393.37 0.4882 0.54 1 0.02 2 6.39 0.48 7.52 

0.28 0.0023 0.84 393.37 0.6690 0.74 1 0.02 2 6.75 0.65 9.61 

0.28 0.0023 0.84 393.4 4.5187 5.00 1 0.02 2 6.15 3 49.67 

Experimental values for expansion ratio of extrudates (30 pieces) 2.88 0.19 6.74 

 

Table 3-11 Sensitivity analysis of expansion ratio with respect to material constant (kf) 

(0.28mc(db) and 393.37K) 

Moisture content (db) Temperature (K) Material constant (kf) ER (simulated) 

Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) 

0.28 0.0023 0.84 393.37 0.5786 0.64 1 0.02 2 6.89 0.65 9.37 

0.28 0.0023 0.84 393.37 0.5786 0.64 1 0.01 1 7.13 0.77 10.78 

0.28 0.0023 0.84 393.37 0.5786 0.64 1 0.03 3 6.53 0.53 8.17 

0.28 0.0023 0.84 393.37 0.5786 0.64 1 0.05 5 6.72 0.62 9.21 

Experimental values for expansion ratio of extrudates (30 pieces) 2.88 0.19 6.74 

 

Tables 3-9, 3-10 and 3-11 provide the results for sensitivity analysis for the processing 

condition 0.28 mc(db) and 393.37K. The first row in each table represents the variability in input 

parameters obtained experimentally and the variability in simulated values of expansion ratio 

obtained using these experimental values of variability in input. Similar inconsistent trends were 

observed upon smaller variation in CV values as for the earlier processing condition. Hence, a 

higher value of CV (5%) was used for obtaining better clarity. A CV of 5% in moisture content 

resulted in a CV of 17.53% in expansion ratio, keeping the CV of other two parameters constant. 
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A CV of 5% in die temperature resulted in CV of 49.67% in simulated values of expansion ratio 

and a CV of 5% in material constant (kf) resulted in a CV of 9.21% in expansion ratio. Hence, 

the variability in temperature had the major impact on variability in expansion ratio as compared 

to other two factors.  

Similarly, tables 3-12, 3-13 and 3-14 represent the results from the sensitivity analysis 

carried out for 0.33 mc(db) and 386K. It can be seen that 5% variability in moisture, temperature 

and material constant (kf) resulted in 25.58%, 78.99% and 17.9% CV in simulated values of 

expansion ratio. Hence, clearly for all three processing conditions, temperature was the strongest 

factor in deciding the variability in the output, which is expansion ratio in this case. Owusu-

Ansah et al. (1983) developed a regression model to find the dependence of transformation 

(gelatinization, melting etc.) of corn starch upon different input factors during extrusion cooking. 

They found out that after the moisture and temperature interaction term, temperature was the 

second most important factor which affected these changes. Moisture content and screw speed 

were other important factors for transformation during twin screw extrusion of corn starch. These 

results are consistent with the results from the sensitivity analysis in this study.  

Table 3-12 Sensitivity analysis of expansion ratio with respect to moisture content (0.33 mc 

(db) and 386K) 

Moisture content (db) Temperature (K) Material constant (kf) ER (simulated) 

Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) 

0.33 0.0022 0.67 386 0.5312 0.64 1 0.02 2 2.09 0.37 17.83 

0.33 0.0021 0.66 386 0.5312 0.64 1 0.02 2 2.13 0.61 28.64 

0.33 0.0023 0.68 386 0.5312 0.64 1 0.02 2 2.10 0.39 18.65 

0.33 0.02 5.00 386.00 0.53 0.64 1.00 0.02 2.00 2.24 0.57 25.58 

Experimental values for expansion ratio of extrudates (30 pieces) 3.06 0.19 6.31 

 

Table 3-13 Sensitivity analysis of expansion ratio with respect to die temperature (0.33 mc 

(db) and 386K)  
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Moisture content (db) Temperature (K) Material constant (kf) ER (simulated) 

Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) 

0.33 0.0022 0.67 386 0.5312 0.64 1 0.02 2 2.09 0.37 17.83 

0.33 0.0022 0.67 386 0.5229 0.63 1 0.02 2 2.15 0.51 23.90 

0.33 0.0022 0.67 386 0.5395 0.65 1 0.02 2 2.02 0.31 15.43 

0.33 0.0022 0.67 386 4.15 5 1 0.02 2 3.24 2.56 78.99 

Experimental values for expansion ratio of extrudates (30 pieces) 3.06 0.19 6.31 

 

Table 3-14 Sensitivity analysis of expansion ratio with respect to material constant (kf) 

(0.33 mc (db) and 386K) 

Moisture content (db) Temperature (K) Material constant (kf) ER (simulated) 

Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) 

0.33 0.0022 0.67 386 0.5312 0.64 1 0.02 2 2.09 0.37 17.83 

0.33 0.0022 0.67 386 0.5312 0.64 1 0.01 1 2.04 0.43 21.15 

0.33 0.0022 0.67 386 0.5312 0.64 1 0.03 3 2.08 0.41 19.87 

0.33 0.0022 0.67 386 0.5312 0.64 1 0.05 5 1.86 0.33 17.91 

Experimental values for expansion ratio of extrudates (30 pieces) 3.06 0.19 6.31 

3.5 Conclusions 

The mechanistic and stochastic model results were compared with the experimental and 

literature values. The simulated values for expansion ratio deviated from the experimental 

values, possibly due to the difference in material properties that were input in the model and the 

material properties of the corn meal which was used for validation. However, the trend of 

expansion ratio for both simulated and experimental values at different processing conditions 

was similar. The stochastic model was useful in conducting a sensitivity analysis to rank the 

input parameters depending on their impact on the variability in the product characteristics such 

as expansion ratio. In this study, die temperature was found as the most prominent factor 

impacting the variability in expansion ratio. In-barrel moisture content also affected the 
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variability in expansion ratio considerably; however, material constant in consistency index 

equation did not have a considerable effect on the variability of expansion ratio. 
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Chapter 4 - Conclusions and Future Work 

A mathematical model was developed to understand the expansion and shrinkage 

phenomena taking place during extrusion processing and to capture the variability in output or 

product characteristics as a result of variability in input parameters using a stochastic interface. 

 4.1 Background of the study 

 The mechanistic model was developed at the microscopic (individual bubble) as well as 

macroscopic level (extrudate). This deterministic part of the model formed backbone of overall 

stochastic modeling approach and to develop this model, expansion phenomenon from the 

popcorn puffing model (Schwartzberg et al., 1995) and shrinkage phenomenon from supercritical 

fluid extrusion model (Alavi et al., 2003) were adapted. The uniqueness of this approach was to 

model shrinkage phenomenon for steam-based extrusion which takes place at higher 

temperatures as compared to supercritical fluid extrusion where the expansion model was kept 

same as vapor induced puffing in a popcorn system. 

The code developed in Visual Basic for supercritical fluid extrusion was provided and the 

current model was based on this code. A fraction of code written for supercritical fluid extrusion 

was altered in order to model the steam based extrusion and some new coding was added for the 

development of stochastic interface.  

 4.2 Thermal infeasibilities in the simulated results and major modeling flaws 

The mechanistic model is useful in understanding the dynamics of different parameters 

involved in the process of expansion and shrinkage. However, the current model does not capture 

expansion or collapse phenomenon as the simulated dynamics of certain parameters obtained 
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from mechanistic model are thermodynamically infeasible. This invalidates the results from 

stochastic model which was based on mechanistic model. For instance, at processing condition 

of 0.33 mc(db) and 386K, cycling in pressure difference and accompanying change in bubble 

radius obtained from simulation(figure A-1, appendix A) are thermodynamically not feasible and 

reflect fundamental defect in the current modeling approach. Some other results that reflect this 

flaw in modeling approach include discontinuity in macroscopic temperature (figure A-3, 

appendix A) and fluctuations in moisture content of microscopic shells (figure A-4, appendix A).  

For the same processing condition, anomalous behavior was observed for simulated dynamics of 

cell wall thickness (figure A-2, appendix A). These instabilities are related to fundamental flaws 

in the modeling approach involving computation of macroscopic temperature, microscopic 

moisture and possibly coupling of heat and mass transfer at microscopic and macroscopic levels. 

 4.3 Discussion on addressing flaws in the current modeling approach 

The mechanistic model which formed the basis of overall stochastic modeling approach 

resulted in several parameter dynamics that are thermodynamically infeasible. Hence, to obtain a 

better understanding of possible reasons and approaches to address these fundamental flaws in 

the current model, incorrect parameter dynamics as well as entire coupled microscopic and 

macroscopic modeling approach were further examined. 

Upon investigating the structure of entire model, it was observed that time step (∆t) is a 

major contributor in stability while computing non-linear partial differential equations by 

numerical techniques. In the current model, ∆t is computed based on mass transfer taking place 

in spherical shells of the microscopic model. It uses the Von-Neumann or the Fourier stability 

condition such that (α∆tm/∆x
2
 ≤ ½). This concept of largest value of time (∆tm ) that can provide 

computational stability, ∆tm was adapted from popcorn model and the actual time step used in 
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the current model was ∆t = 0.7* ∆tm . The discretization term ∆x used in calculating this time 

step was computed based on the outermost layer of concentric spherical shells and was taken as 

(L-rN)
2
. The same time step was then used for numerically computing heat and mass transfer 

equations at macroscopic level in the model. It is possible that due to multiple partial differential 

equations involved in the model, it forms a system of stiff equations (Kass, M., 1997, Fasshauer, 

G., 2007) such that the stability condition which satisfies one set of equations might not be 

sufficient for the other set of equations. This can lead to fluctuations or instabilities in parameter 

dynamics predicted by the model. Since, in current model, all systems of equations are 

interdependent which can possibly lead to a complex feedback error, a better approach would be 

to consider a fixed minimum time step for achieving stability rather than using an adaptive 

method for calculating ∆t. This is because the adaptive approach for calculation of ∆t does not 

consider all sets of equations and the minimum requirement of ∆t could vary with time for 

different systems of equations. However, while deciding upon the time step, it should be noted 

that very small values of ∆t can degrade the accuracy of results where the error can be very large 

(report by Buttsworth, D.R., University of Oxford). These thermal infeasibilities in parameter 

dynamics and possible solutions are discussed in following sections. 

 4.3.1 Fluctuations in the macroscopic temperature 

Temperature in current process is expected to decrease gradually as product comes out of 

the die, however, a fluctuation was observed in average temperature value which is 

thermodynamically infeasible. This fluctuation in temperature occurred after the shrinkage phase 

started. Hence, to find out the starting point and location of this fluctuation, temperature 

dynamics for different macroscopic cylindrical shells was observed. It was found that the 

temperature reduced gradually in all other macroscopic cylindrical shells except the temperature 
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in outermost shell which fluctuated (figure A-5, appendix A). This eventually resulted in the 

fluctuation in average value of temperature. In simulated results from deterministic model, it was 

observed that for the processing condition of 0.33 mc(db) and 386 K, shrinkage phenomenon 

started at around 1.27 seconds and an increase in outermost layer started at around 1.288 

seconds. Since temperature in other layers was decreasing gradually, the temperature increase in 

outermost layer TNb+1 was observed as increase in average temperature at around 1.29 seconds. 

Upon observing the numerical form of temperature equation used for computing heat transfer in 

outermost layer, it was found to be a function of Biot number (NT) and the adjacent layer (TNb). 

It should be noted that for equations system of heat transfer in macroscopic model, stability was 

decided by the term MT (      
         ). MT which has same expression as that of the 

Fourier number should be greater than equal to 4 for stability (Geankoplis, 1993) and this 

stability condition can be achieved by setting up appropriate discretization (Δx2) and Δt.  

MT could be made larger by either increasing ∆x2 or decreasing ∆t. If ∆t is very small then this 

condition is satisfied, however, suitability of ∆x2 gets overlooked in the process. 

In current model, ∆t was computed based on the system of spherical microscopic shells 

and the same value was then transferred to cylindrical macroscopic shells. Since, ∆t was very 

small, it satisfied the condition of MT≥4; however, no adjustment was made to ∆x2. While 

computing TNb+1, this ∆x2 played an important role and if not suitable enough, it could lead to 

fluctuations as observed in the current model. Sample calculations were done to observe the 

impact of ∆x2 and TNb on the value of temperature in outermost layer. After the shrinkage started, 

expansion ratio (ER) reduced leading to a decrease in the value of ∆x2 (∆x2= (dex*ER
1/3

)/(2*(Nb-

1)). Also decrease in ER resulted in an increase in value of keff (because of decrease in ϵ (ϵ=1-

1/ER)). As a result, it led to a decrease in value of Biot number (NT) which increased the value of 
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TNb+1. Eventually a decrease in the value of TNb compensated for the decrease in NT (sample 

calculations provided in appendix B, table 2) and the final value of temperature decreased. From 

these sample calculations, it can be seen that when the value of NT decreased while TNb was 

constant, the value of temperature increased, however, when value of TNb was also decreased, it 

compensated for the decrease in NT and as a result the value of TNb+1 decreased. 

In order to prevent this instability leading to thermodynamically infeasible results, apart 

from assigning a value of ∆t suitable for all systems for equations, value of ∆x2 should also be 

checked. A possible way to do that would be checking stability condition at the boundary layer 

for heat transfer (Marek & Götz, 1995) given by 

   
 

       
 

 where Fo is the Fourier number (   
     

   
   and Bi is the Biot number (   

     

    
).  

Hence, it should be checked whether this condition is satisfied by ∆x2 and ∆t at all times which 

could possibly remove the stability error in temperature dynamics.  

 4.3.2 Microscopic moisture fluctuations 

Microscopic moisture fluctuations were analyzed and it was found that the moisture 

content increased in innermost layer before the spike in moisture of outer layer was observed. 

The dynamics for moisture content in different layers before the spike was observed in outer 

layer are given in figure A-6, appendix A.  It was observed that the moisture content in the 

innermost layer was constantly increasing before fluctuations started, however moisture was 

stable in other layers. Hence, this increase in moisture in innermost layer eventually led to 

increase in moisture in intermediate layers since moisture was transferred to the intermediate 

layer from both the outer layers as well as the inner layers. Later on, this increase in moisture 
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was propagated to outer layers and the outcome was observed as thermodynamically infeasible 

spike in Xwi(N) where moisture content became higher than the initial value. 

 4.3.2.1 Role of time step (Δt) 

The mass transfer equations governing the dynamics of moisture content in spherical 

shells of microscopic model were investigated for both the intermediate layers as well as 

boundary conditions. It was found that certain stability criterions were defined in the popcorn 

model for achieving computational stability. Once such criterion was ∆t which was defined 

based on discretization in the outermost layer (L-rN)
2
. Schwartzberg et al., 1995 mentioned that 

Δtm occurred while computing ΔXws, however, since the current model was based on a different 

system as compared to the popcorn system; it could be useful to investigate how Δtm varies if it 

is defined based on discretization in core or inner layer of spherical shells. For example, results 

could vary if ∆tm is defined as     
       

     
  instead. The actual value of ∆t was taken as 

0.7*∆tm in the model which might not be sufficient for different systems of equations at certain 

time points. Hence, stability of entire system could be improved by lowering the value of time 

step. Also, it was found that ∆t increased considerably as well as fluctuated towards the end of 

simulation process (figure A-7, appendix A) which could also lead to instability in entire system 

comprising of different sets of heat and mass transfer equations. It might satisfy one system but 

might lead to divergence in other systems. It can be observed from figure A-7 that fluctuations in 

Xwi(N) and Δt were encountered around the same time. Hence, the rate of change of ∆t should 

be a matter of investigation and a good way would be to set a suitable minimum fixed value of ∆t 

instead of using the adaptive method to compute ∆t based on a particular system since the system 

is greatly interdependent and has high chances of feedback instability. 
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 4.3.2.2 Role of Δr 

Another possible reason for these fluctuations could be the definition of ∆r at different 

time points based on the dynamics of bubble and more specifically the radius of innermost shell 

and pore radius. In the popcorn model, this criterion was defined as  

   
 

 
              

                         

This definition of ∆r involves a point of discontinuity. Since ∆r controls the dynamics of 

moisture in the core ∆Xwc which in turn affects moisture dynamics of rest of the layers, 

instabilities could arise if Δr is not suitably defined. Figure A-7 appendix A, represent the 

dynamics of Δr for processing condition of 0.33 mc(db) and 386K. A spike was observed in Xwc 

when the value of Δr became suddenly very low, almost approaching zero. Hence a possible 

solution could be to define ∆r such that there are minimum fluctuations in ∆r which could 

possibly help in achieving stability in the microscopic moisture dynamics. 

 4.3.2.3 Role of coupling of microscopic and macroscopic heat and mass transfer 

The coupling effect of microscopic and macroscopic models was also tested to 

investigate if thermodynamically infeasible results could be due to the way these two levels of 

model are coupled. The mass transfer of microscopic and macroscopic models were decoupled 

by not subtracting the average moisture loss in macroscopic shells from microscopic shells and 

keeping mass transfer in two systems independent (figure A-8, appendix A). In this case, 

multiple fluctuations in outermost microscopic shell were not observed, however, instability in 

moisture content of outermost microscopic shell was still observed where moisture content 

spiked to a value greater than the initial value. This indicated that coupling of these two levels of 
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the model might not be a major cause of these instabilities. Figure A-8 represents the dynamics 

of moisture content in different layers and also dynamics of Δt and Δr in the decoupled model. It 

can be observed that fluctuations in Δt and Δr still occurred and instabilities in moisture content 

were observed around the same time when these fluctuations occurred.  

 4.3.3. Cycling of Pressure difference  

Pressure difference is dependent on different components and vapor pressure is one of the 

major pressure components driving the expansion process. Vapor pressure is dependent upon 

temperature and moisture content of the product. Higher temperature and higher moisture 

content in the inner most microscopic shell results in higher vapor pressure (sample calculations 

provided in appendix B, table 1, for vapor pressure as a function of temperature and moisture 

content of the inner most microscopic shell, Xwc). It was found that for processing condition of 

0.33mc(db) and 386K, when temperature increased after shrinkage started, the moisture content 

in inner most microscopic shell (Xwc) was still decreasing and as a result, increase in vapor 

pressure was not observed. However, when moisture content in innermost microscopic shell 

reached to a minimum and temperature was still increasing, it resulted in an increase in vapor 

pressure. Also, the increase in moisture content of the inner most layer when temperature value 

was decreasing, again led to an increase in vapor pressure. At this time, other components of 

pressure in the opposite direction were also increasing but at a slower pace as compared to vapor 

pressure. As an outcome, the pressure difference value became less negative and reached zero. 

Later, with further reduction in temperature (reducing the vapor pressure) and increase in the 

value of other pressure components in opposite direction, the resultant pressure was negative 

again which was observed as cycling of pressure difference. Similar observation was made for 

the other processing condition of 0.23 mc (db) and 405.09K. A slight increase in vapor pressure 
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was observed for this processing condition as well but in this case, when the temperature 

increased, moisture content in innermost microscopic shell decreased very rapidly and net 

pressure difference in inward direction did not become significantly less negative. Hence it did 

not reach zero and the cycling of pressure difference was not observed in this case. 

Figure A-9 represents dynamics of pressure difference for the processing condition of 

0.33mc (db) and 386K during the time points when cycling of pressure difference occurred. It 

can be seen that the temperature increased first followed by Xwc which resulted in an increase in 

vapor pressure and less negative value of ΔP. Hence, it is possible that the stability in 

macroscopic temperature and microscopic moisture dynamics can help in preventing this 

thermodynamically infeasible dynamics of pressure difference. Hence, to summarize, following 

steps can be taken to prevent the instability in the model which results in thermodynamically 

infeasible parameter dynamics: 

1) Δt should be defined such that it promotes stability in different equation systems. Other 

definitions of Δt such as those including discretization based on the inner shells rather 

than outer shells can be tried. However, it would be most suitable to define a fixed value 

of Δt rather than using the adaptive approach which would not only reduce the varying 

parameters but also promote stability in the stiff equation system of the current model. 

2) A check must be kept on the value of Δx2 based on the stability condition, so that 

temperature fluctuations in the boundary layer can be prevented.  

3) Discontinuities in Δr should be checked and it should be defined appropriately in order to 

promote stability in the dependent parameter dynamics.  

4) In general, there are several conditional equations used in the model such as definition of 

flow yield stress, elastic modulus etc. which have a point of discontinuity depending on 



106 

 

moisture content in microscopic shells. Coefficients used in these equations and 

switching points should be decided on suitably to prevent discontinuities which affects 

the stability of the system and leads to random fluctuations in simulated results. 

 4.4 Other limitations of the model and future studies 

The mechanistic model had a limitation of temperature and encountered instability for 

temperatures higher than 410K. The highest temperature at which mechanistic code could 

execute stably increased from 400K to 410K when number of microscopic shells in the model 

was increased from 25 to 50. However, increasing the number of microscopic shells greatly 

increased the computation time and each mechanistic simulation took about 45 minutes to 1 hour 

depending on computational ability of computer. Further increase in number of microscopic 

shells led to impractical computational time, for example, a further increase in number of 

microscopic shells (N = 100) led to computation time of about 24 hours and the computational 

stability was achieved up to 412K. Hence, within the scope of this thesis, results for different 

processing conditions have been given for 50 microscopic shells and up to die temperature of 

410K. In future studies, methods should be explored for increasing the stability of the model at 

higher temperatures such as further reduction of computational time step etc. 

 The results from mechanistic simulations could be made more generalized to different 

types of extruders if more number of independent variables is input in the model and 

intermediate parameters are calculated using characteristic equations. For example, die 

temperature is an input in the current model, however, it depends on several factors such as 

screw speed, screw roughness, in-barrel moisture content etc. and hence, the die temperature 

value could differ for different extruders for the same set of processing conditions.  



107 

 

Hence, a more comprehensive modeling could be done to include all independent 

parameters which will make the application of the mechanistic model more generalized. Also, it 

was observed that the simulated and experimental values did not match quantitatively and the 

model under predicted and over predicted the expansion ratio values for certain processing 

conditions. However, upon plotting trends for expansion ratio, the simulated trend was found 

similar to the experimental trend with a shift in optimum value. This shift in values could be a 

result of material properties such as diffusivity, consistency index etc. which were taken from 

literature. Hence, it would be worthwhile to perform experimentation to derive equations for 

material properties for the specific material which was used for validation to test the accuracy of 

the model. Certain equations could be further investigated such as the equation for expansion 

ratio which is based on the popcorn puffing model and depends on open cell fraction. The 

constants and coefficients used in that expansion ratio equation were empirically derived for the 

popcorn system and modifications of those constants to match the material used for validation 

would further improve the model predictions. Another interesting area for further investigation 

could be an integration of microscopic and macroscopic level in the mechanistic model. It should 

be noted that microscopic model is developed for an individual bubble and the dynamics of heat 

and mass transfer could change depending on location of that individual bubble in entire 

macroscopic model. Hence, a more generalized approach in defining microscopic and 

macroscopic systems would make the model sturdier. The model could be broadened from 

simple starch-based melts to formulations with other components such as proteins, fats etc.  

In current study, the mechanistic model was integrated with stochastic interface to 

understand the impact level of variability in different input parameters on variability in output 

parameters. Sensitivity analysis was carried out for three selected input parameters by varying 
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the CV of one parameter and keeping the CV of other two parameters constant. This was done 

for three processing conditions, taking average values of moisture and temperature from the 

experimental data. For further studies in this area, a broader range of CV could be tested for 

these three as well as other parameters during sensitivity analysis. Depending on the 

computational ability, greater number of mechanistic simulations could be carried out in one 

stochastic simulation which would provide better clarity of the process.  
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Charts representing thermodynamic instabilities in the Appendix A - 

mechanistic model 

 

 

Figure A-1 Dynamics for (a.) pressure difference and (b.) resulting bubble growth radius 

and shrinkage for 0.33mc(db) 
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Figure A-2 Dynamics of cell wall thickness of the bubble for 0.33 mc(db) 

 

  

Figure A-3 Dynamics of the temperature of the extrudate with time for 0.23mc(db) and 

0.33 mc(db) 
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Figure A-4 Microscopic shell moistures for different layers with time for 0.33 mc(db) 
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Figure A-5 (a)Temperature dynamics in different layers of macroscopic shells. (b.) 

temperature dynamics in the inner most layer when the fluctuation occurs. (c.) 

temperature dynamics in the adjacent layer to the outermost layer when the fluctuation 

occurs. (d) temperature dynamics in the outermost layer when the fluctuation occurs. 
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Figure A-6 Dynamics for moisture content in different microscopic shells before observing 

the spike in Xwi(N). 
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Figure A-7 Dynamics of moisture content in the (a) outermost microscopic shell, (b) Δt (c) 

innermost microscopic shell (d) Δr 
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Figure A-8 Dynamics of different parameters for the mechanistic model with decoupled 

microscopic and macroscopic levels. 
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Figure A-9 Dynamics of (a) pressure difference, ΔP (b) microscopic moisture in the 

innermost layer and (c) temperature during the time when cycling of ΔP occurs.  
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Sample calculations supporting explanation of Appendix B - 

thermodynamic infeasibilities  

Table B-1 Sample calculation for vapor pressure (as a function of temperature and 

moisture) 

    say Xwc = 

0.15 

  

temp B= -0.5362 - 

0.001394 * T 

+ 2.0474 * 

(468.9 - T) / 

(477.42 - T) 

 temp aw= b * Xwc 

+ C * Xwc / 

(F + Xwc) 

Pwsat = 

1002.2 * 

Exp(9.43699 

- 3867.44 / 

(T - 43.37)) 

Pw = 

aw*Pwsat 

379 0.805635146  379 0.81478879 124.4639144 101.4118 

380 0.802421819  380 0.815483003 128.7981015 105.0327 

381 0.799170754  381 0.816171508 133.2561945 108.7599 

    say Xwc = 

0.13 

  

temp C= 0.2479 + 

0.001216 * T 

 temp aw= b * Xwc 

+ C * Xwc / 

(F + Xwc) 

Pwsat = 

1002.2 * 

Exp(9.43699 

- 3867.44 / 

(T - 43.37)) 

Pw = 

aw*Pwsat 

379 0.708764  379 0.796450848 124.4639144 99.12939 

380 0.70998  380 0.797203407 128.7981015 102.6783 

381 0.711196  381 0.797951005 133.2561945 106.3319 

    say Xwc = 

0.04 

  

temp F= 0.002004 

+ 

0.000003165 

* T 

 temp aw= b * Xwc 

+ C * Xwc / 

(F + Xwc) 

Pwsat = 

1002.2 * 

Exp(9.43699 

- 3867.44 / 

Pw = 

aw*Pwsat 
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(T - 43.37)) 

379 0.003203535  379 0.396787089 124.4639144 49.38567 

380 0.0032067  380 0.39727632 128.7981015 51.16844 

381 0.003209865  381 0.397764959 133.2561945 53.00464 

 

 

 

Table B-2 Sample calculations to demonstrate effect of values of NT and TNb on TNb+1 

TNb+1= Ts * Nb * NT / (0.5 * (2 * Nb - 1) + Nb * NT) + TNb * 0.5 * (2 * Nb - 1) / (0.5 * (2 * Nb - 1) +Nb * NT) 

  

Ts=298K, Nb = 6 

  

NT 

TNb+1 (when TNb 

=390K) TNb NT TNb+1 

0.0602 384.3304 390 0.0602 384.3304 

0.0601 384.3393 389.9 0.0601 384.2454 

0.0600 384.3481 389.8 0.0600 384.1604 

0.0599 384.357 389.7 0.0599 384.0754 

0.0598 384.2719 389.6 0.0598 383.9903 
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Explanation of model algorithm and fixed input parameter Appendix C - 

values 

Table C-1 The input values of the parameters that were kept constant 

Parameter Value Unit 

Nb (Number of macroscopic shells) 6  

N (Number of microscopic shells) 50  

Ps (Atmospheric pressure, fluid pressure 

after melt exits the die) 

101.325 KPa 

mf (flow rate of the melt) 0.007292 Kg/s (wet+dry feed rate) 

mc (initial value of moisture content) 0.2297 g water/ g dry matter (not constant 

input in stochastic model) 

To (Initial temperature of the melt) 405.0985 K (not constant input in stochastic 

model) 

Ro (Initial bubble radius) 5.00E-05 m 

σ (Surface tension at pore-shell surface) 2.00E-06 kN/m 

den (diameter at die entrance) 1.70E-02 m  

dex (diameter at die exit) 4.20E-03 m  

Ld (die dimension) 1.46E-02 m 

Ld1 (die dimension) 7.30E-03 m 

M (=ρs/Ncell) 5.80E-08 kg(mass per domain) 

h (convective heat transfer coefficient) 10.00 W/m2.K  

n (flow behavior index) 0.4  

Ψ (spread factor in open cell fraction 

distribution) 

0.75  

K_factor (coefficient in equation of 

consistency index) 

1 (not constant input in the stochastic 

model) 

D_factor (coefficient in equation of 

diffusivity) 

1  

Er (constant in equation of Eb) 10 kPa 

τr (coefficient in the equation of τo) 0.1 kPa 
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βf (coefficient in the equation of E) 17  

ρs (density of dry unexpanded material) 1.16E+00 g/cm3 

Ncell (Cell density) 2.00E+04 cells/cm3 

kxc (Mass transfer coefficient of water in 

starch matrix) 

1.00E-05  

 

For stochastic model, three selected parameters were varied, namely, temperature, initial 

moisture content and material constant in consistency index equation. Depending on the 

processing condition, up to 5% of coefficient of variation was used for each of these three input 

parameters to generate the distribution (set of values) for input in the mechanistic model.    

 Explanation of the algorithm (figure C-1) 

Initially the input values were taken into the model.  

“calculate pressure at the entrance of the die by backward flow” 

Starting with the atmospheric pressure at the end/exit of the die, the pressure at the 

entrance of the die was calculated 

“calculate pressure drop as the fluid proceeds through the die” 

Time and distance was initialized to zero, change in distance as the melt flows through 

the die (dx) was calculated by multiplying (vx * ∆t) until the exit of the die.  

“Calculate L, D, and K for different layers” 

Parameters such as consistency index, diffusivity for the microscopic shells, domain 

radius etc. were calculated. Since these properties were dependent on temperature, moisture and 

bubble radius which did not change until die exit, there values remained same until the material 

exits the die.  

“calculate Pw, ∆Py, Pe” 

Different pressure components were calculated.  
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“calculate ΔP” 

Pressure difference acting on the cell wall was calculated.  

“check point 1” (Nucleation?) 

If nucleation did not take place, there was no change in temperature, moisture, bubble 

radius etc. and next time step was computed. If the melt has not exited the die, pressure drop is 

computed again.  

“check point 2” (die exit?) 

Once nucleation takes place, stabilizing time step (Δt) is computed. If the melt has still 

not exited the die, next time step is computed and the loop goes back to calculating pressure 

drop. If after, increment of distance (x) in the die, the melt exits the die, then domain radius, 

diffusivity, consistency index, Pw, ∆Py, Pe, ΔP (change in pressure) is computed. Stabilizing 

time step is computed and based on all these values, change in radius and temperature is 

computed.  

“check point 3” (T> Tg+30) 

If the temperature is less than (Tg + 30), then the process ends, since the melt solidifies. In 

the beginning, the temperature is higher than (Tg + 30) and change in moisture content of 

microscopic shells is computed. Other parameters such as open cell fraction, expansion ratio are 

also computed.  

“check point 4” (Xwa > 0) 

If the average moisture content of the microscopic shells is less than 0, then the process 

ends, otherwise, change in macroscopic moisture is calculated and new values of moisture 

content in different macroscopic shells is calculated by subtracting the loss in moisture content 

from each shell.  
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It should be noted that temperature used to compute the parameters in microscopic and 

macroscopic model is same, thereby, integrating the microscopic and macroscopic levels.  

The average loss is moisture of the macroscopic shells is also computed and it is divided 

by number of microscopic shells (say, Xratio). Time step is incremented and new values of 

bubble radius (add or subtract change in radius depending on expansion or shrinkage phase), 

moisture in microscopic shells is calculated. For calculating the moisture in microscopic shells, 

first the change in moisture from each microscopic layer is subtracted from the previous value 

and then X ratio is subtracted to integrate the loss in moisture in the macroscopic model with the 

moisture in microscopic model. Hence the two levels, microscopic and macroscopic, are 

integrated by values of moisture and temperature.  

“Check point 5” (R<0) 

If bubble radius is less than 0, then the process ends, otherwise, the process is looped 

back to another check point.  

“Check point 6” (Die exit?) 

If the material has not exited the die, then pressure drop is calculated. If the material has 

exited the die, the fluid pressure outside the domain becomes atmospheric pressure and code is 

directed to calculation of properties like diffusivity, consistency index, domain radius etc. Hence, 

the complete simulation takes place. 
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Figure C-1 Algorithm of the mechanistic model 

 

 Explanation of the stochastic algorithm 

The stochastic model inputs a distribution of selected 3 inputs and generates the output as 

a distribution.  
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1) Firstly, values of die temperature and moisture content as recorded using DAQ (~400 data 

points) are input in the model. An average and standard deviation of these values is computed. A 

coefficient of variation of 2% and average value of 1 is assumed for the third parameter (material 

constant in consistency index equation) which results in a standard deviation of 0.02 for the third 

parameter.  

2) Based on the average and standard deviation values of these three parameters, random 

numbers are generated by the code using the NORMINV function in excel. NORMINV function 

generates random numbers from a normal distribution which has an average and standard 

deviation as computed in the previous step.   

3) Say, 30 random values of each of these 3 parameters is generated from the above step. First 

value of each of these parameters, along with the other parameters that are kept constant (as 

specified in the table in Appendix B) is fed into the mechanistic model and an output value for 

expansion ratio is simulated from the mechanistic model. Eventually, all 30 values of these 3 

parameters are fed into the mechanistic model which results in 30 different outputs. Hence, the 

distribution of output is obtained.  

 

Check point 1 “n input values taken?” 

If the n values (30 here) are already input in the model, then the code stops. Otherwise, the code 

is looped back to the beginning of the mechanistic model and next set of values of the 3 

parameters along with fixed parameters is input into the mechanistic model.  

 Sample Calculations of the mechanistic model 

 

For moisture content = 0.2297, Initial temperature = 405.0985 
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1) Get all initial values and values of other parameters. 

Nb = 6, N = 50, Ps = 101.325 KPa, mf= 0.00729 kg/s, mc = 0.2297 g water/ g dry matter, To= 

405.09K, Ro= 50 µm, σ=2*10
-6 

kN/m, den=1.7 *10
-2 

m, dex=4.2*10
-3 

m, Ld=1.46*10
-2 

m, 

Ld1=7.3*10
-3 

m, M (=ρs/Ncell)= 5.8*10
-8 

Kg, h=10 W/m
2
K, n=0.4, Ψ=0.75, k_factor = 1, 

Dw_factor = 1, Er = 10 KPa, τr=0.1 KPa, βf=17, ρs=1.16 g/cm
3
, Ncell= 20000 cells/cm

3
, kxc=10

-5
 

Xwc = Xws = Xi(i) = mc = 0.2297 

 

2) Calculate pressure at the entrance of the die by backward flow. 

Using values of input parameters for moisture, temperature etc.  

Ks = K_factor * 0.000672 * Exp(4960 / T - 12.1 * mc / (1 + mc)) = 14.57 

rhow = ρ = 1000 * (1 + mc) / (0.64 + mc) = 1413.94 

d2= 0.0042 (because x<Ld1) 

vx = 4 * mf / (ρ * 3.14159 * d2 ^ 2) = 0.372 

dxd = vx * Δt = 0.0000372 

dPx = dxd * Ks * 4 * ((32 * mf / (ρ * 3.14159)) ^ n) * (((3 * n + 1) / (4 * n)) ^ n) / d2 ^ (3 * n + 

1) = 8.097 

P = P + dPx = 101.325+8.097 = 109.424 

xd = xd + dxd = 0+0.0000372 = 0.0000372  

 

Hence, the pressure at the entrance of the die is calculated (till xd becomes Ld) 

 

Value of xd and time is reset to 0 

 

3) Calculate pressure drop as the fluid proceeds through the die and calculation of other 

parameters such as Pw, D, and K. 

First calculating the vapor pressure at given moisture and temperature 

Pwsat = 1002.2 * Exp(9.43699 - 3867.44 / (T - 43.37)) = 285.756 

B = -0.5362 - 0.001394 * T + 2.0474 * (468.9 - T) / (477.42 - T) = 0.7053 

C = 0.2479 + 0.001216 * T = 0.7405 

F = 0.002004 + 0.000003165 * T = 0.0033 

G = 0.4561 

aw = B * Xwc + C * Xwc / (F + Xwc) = 0.892 
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Pw = Pwsat * aw = 254.894 

υ = G * T / Pw - 0.01637 = 0.7084 

D = Dw_factor * 0.0000000135 * Exp(-21.61 * (548 - T) * (1.194 + 3.68 * Xwc) / (T * (1 + 18.98 * 

Xwc))) = 7.42 * 10
-10

 

Ds = Dw_factor * 0.0000000135 * Exp(-21.61 * (548 - T) * (1.194 + 3.68 * Xws) / (T * (1 + 18.98 * 

Xws))) = 7.42 * 10
-10 

D(i) = Dw_factor * 0.0000000135 * Exp(-21.61 * (548 - T) * (1.194 + 3.68 * Xwi) / (T * (1 + 18.98 

* Xwi))) = 7.42 * 10
-10

 

K(i) = K_factor * 0.000672 * Exp(4960 / T - 12.1 * Xwi / (1 + Xwi)) = 14.57 

ρ(i) = 1000 / (0.64 + Xwi) = 1149.82 

ϵ = 1 - 1 / ER = 0 (since ER = 1 at time step = 1) 

ζr = 1 

Deff = Dw_factor * (1 - ϵ) * (1 / ζr) * 0.0000000135 * Exp(-21.61 * (548 - T) * (1.194 + 3.68 * 

Cav) / (T * (1 + 18.98 * Cav))) = 7.42 * 10
-10 

Kc = K_factor * 0.000672 * Exp(4960 / T - 12.1 * Xwc / (1 + Xwc)) = 14.57 

Ks = K_factor * 0.000672 * Exp(4960 / T - 12.1 * Xws / (1 + Xws)) = 14.57 

Eb = Er * Exp((300 - T) / 26) = 0.176 

τr = 0.1 

E = Eb = 0.176 

τo = τr = 0.1 

Pressure drop 

d2 = den - (den - dex) * xd / (Ld - Ld1) = 0.017 

vx = 4 * mf / (rhow * 3.14159 * d2 ^ 2)= 0.023 

dxd = 0.023 * 0.0001 = 0.0000023 

xd = xd + dxd = 0.0000023 

dPf = -dxd * Ks * 4 * ((32 * mf / (rhow * 3.14159)) ^ n) * (((3 * n + 1) / (4 * n)) ^ n) / d2 ^ (3 * n 

+ 1) =          -0.023 

Pf = Pf +dPf = 2045.12-0.023 = 2045.097 

Hence, the pressure drop is calculated until the exit of the die 

 

4) Calculation of L 
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L is computed using equation 2-20 by summation of (ΔM/ρi) for 50 microscopic shells.(not 

feasible to compute manually). 

 

5) Calculation of ΔPy, Pe, ΔP, Δt 

Once the value of L is obtained, Pe and ΔPy is obtained using equation 2-8 and 2-13.  

After obtaining the components of pressure, ΔP is computed using equation 2-16.. 

The rest of the process is as explained in the algorithm 

Calculate Δt using equation 2-37 and 2-38. 

 

6) Calculation of ΔR and ΔT 

Since all the parameters such as pressure components, Δt, Kc, Ks, R and L are calculated in 

previous steps, ΔR is calculated using equation 2-39 

ΔT is computed using equations 2-56 to 2-61. All the parameters needed are either input values 

or computed in the previous steps.  

 

If temperature is greater than Tg 

 

7) Calculate change in moisture content of microscopic shells using equations 2-21, 2-25, 2-33 

and 2-36 (using parameters computed from the above steps). 

 

8) Calculate open cell fraction using equations 2-40 to 2-44. Calculate expansion ratio using 

equation 2-64. 

 

If average moisture in microscopic shells >0 then and melt has exited the die, 

9) Calculate change in moisture in macroscopic shells using equations 2-50 to 2-55 and update 

the existing values (by subtraction of the moisture lost). 

 

10) Update the values of all the parameters such as bubble radius (addition or subtraction of the 

change in radius depending on expansion or shrinkage), moisture in microscopic shells 

(subtracting the loss in moisture from microscopic shells and average loss in moisture from 
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macroscopic shells divided by the number of layers in the microscopic shells), open cell fraction 

(addition of change in open cell fractions) etc.  

 

11) Loop back to check point 6, and then either compute pressure drop first or L, D. K values 

with the updated values of moisture, temperature, bubble radius etc. 


