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Abstract  22 

The convergent lady beetle (CLB), Hippodamia convergens (Guérin-Méneville), a species 23 

widely distributed and used in biological control, has exhibited high survival under field and 24 

laboratory conditions when treated with field rates of the pyrethroid -cyhalothrin, a highly 25 

unusual phenomenon for a natural enemy. This work investigated and characterized the 26 

phenomenon of pyrethroid resistance in a population of this species collected in Georgia, 27 

USA. The mechanism and level of resistance were evaluated by treating parental populations 28 

with -cyhalothrin ± piperonyl butoxide (PBO). The inheritance bioassay utilized parental 29 

crosses and backcrosses between parental populations to obtain testable progenies. Adult 30 

beetles from populations and progenies were topically treated with different doses of -31 

cyhalothrin (technical grade) to calculate knockdown (KD) and lethal (LD) doses, and to 32 

investigate the dominance based on a single dose and whether resistance is autosomal and 33 

monogenic (null hypothesis). Genetic variation in the parental populations was examined by 34 

applying a discriminating dose for resistant individuals (0.5 g/L). The data indicate that 35 

resistance is due to at least two factors: knockdown resistance and enzymatic detoxification of 36 

the insecticide. The knockdown effect is recessive and linked to the X-chromosome. 37 

Variability in proportions of individuals within families dying following knockdown indicated 38 

genetic variation in the resistant population. Further studies should be done to investigate the 39 

role of sex linked inheritance of resistance in the species and interactions of the various 40 

mechanisms involved in resistance.  41 

 42 

KEY WORDS: Lady beetles; pyrethroid; resistance inheritance; piperonyl butoxide; -43 

cyhalothrin 44 

45 
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1. Introduction  46 

Effective integration of insecticides and natural enemies has been a goal of integrated 47 

pest management (IPM) since the concept was first fully articulated by Stern et al. [1], 48 

although at the time and in the subsequent decades this integration has seemed highly 49 

unlikely. Most organophosphate, carbamate, and pyrethroid insecticides have broad activity 50 

spectra, with little selectivity toward natural enemies [2]. Insecticides can affect natural 51 

enemies, manifesting as death or alterations in behavior and fitness, via direct intoxication 52 

from insecticide application, or indirectly through consumption of contaminated prey or 53 

through scarcity of prey or hosts [3, 4].  54 

Overcoming this incompatibility is the most difficult aspect of integrating biological 55 

control agents and insecticides in IPM strategies. An ideal resolution is to replace all broad 56 

spectrum products with insecticides of greater selectivity [5, 6], but this is highly impractical 57 

at present. Some efforts have been made to utilize insecticide-resistant natural enemies in 58 

IPM, but such resistance in natural enemies is highly unusual relative to that observed in 59 

pests.  60 

Intensive insecticide use has selected for resistance to multiple classes of insecticides in 61 

numerous arthropod species, the vast majority of which are herbivores. Since 1914, when the 62 

first instance of resistance was observed in the San Jose scale, Quadraspidiotus perniciosus 63 

(Comstock) (Hemiptera: Diaspididae), more than 500 pest species resistant to insecticides 64 

have been recorded [7]. Insecticide resistance in natural enemies has also been reported, but 65 

much less frequently than for pest species. The predatory mite Neoseiulus (=Amblyseius) 66 

fallacis (Garman) (Acari: Phytoseiidae) was found to be resistant to azinphosmethyl in the 67 

1970s [8]. Subsequently, more cases were observed in predatory mites [9, 10]. Among insect 68 

natural enemies, field resistance has been reported for the parasitoid Anisopteromalus 69 

calandrae (Howard) (Hymenoptera: Pteromalidae) to malathion [11], and populations of the 70 
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lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) have exhibited resistance 71 

to carbaryl [12] and organophosphates and pyrethroids [2, 13, 14]. Similarly, Suckling et al. 72 

[9] found pyrethroid-resistant predatory mites in apple orchards in New Zealand. 73 

Although Coccinellidae have been widely studied and used in biological control for 74 

over a century, insecticide resistance has rarely been reported in this group of natural enemies. 75 

Lady beetles commonly occur in many ecosystems and are valued for their contributions to 76 

biological control of soft-bodied arthropod pests, such as aphids, whiteflies, scales, and mites 77 

[6, 15, 16]. Relative to other entomophages, lady beetles tend to be less susceptible to 78 

insecticides than other aphidophagous natural enemies, such as lacewings, syrphids, 79 

hemipterans, and hymenopteran parasitoids [17]. Studies of different species and populations 80 

of lady beetles and insecticides reveal variation in lady beetle susceptibility to insecticides 81 

[18, 19, 20, 21, 22, 23, 24], and this variation may be fodder for selection of insecticide 82 

resistance in the field. Indeed, Coleomegilla maculata (De Geer) (Coleoptera: Coccinellidae) 83 

populations in cotton fields were found to be resistant to DDT and several organophosphates 84 

by Head et al. [25] and Graves et al. [26]. More recently, a population of another lady beetle 85 

species, Eriopis connexa (Germar) (Coleoptera: Coccinellidae), collected from cabbage fields 86 

in Brazil was found to be 20-fold resistant to the pyrethroid -cyhalothrin relative to other 87 

populations [24].  88 

The convergent lady beetle (CLB) Hippodamia convergens (Guérin-Méneville) is a 89 

cosmopolitan species important in numerous agroecosystems [27]. Being widely distributed, 90 

populations of CLB are exposed to a wide variety of insecticides across time and space [19, 91 

23, 28, 29, 30]. This fact may explain differential survival among lady beetle species of cotton 92 

fields in Georgia, USA, when exposed to -cyhalothrin, a broad spectrum pyrethroid 93 

insecticide frequently used in various crops [23, 28, 30, 31].  94 

This study was conducted to investigate pyrethroid resistance (specifically, -95 
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cyhalothrin) in CLB in Georgia and to determine if the metabolism involved is suppressed by 96 

the synergist piperonyl butoxide (PBO). Furthermore, inheritance of the resistance and 97 

number of factors involved in the resistance were also examined. 98 

 99 

2. Material and Methods  100 

This study was carried out at the Biological Control Laboratory of the Tifton Campus of 101 

the University of Georgia (Tifton, GA).  102 

2.1. Chemicals. The insecticide used in the experiments was the pyrethroid -cyhalothrin 103 

(technical grade 99.5%; Chem Service, West Chester, PA, USA) and the synergist piperonyl 104 

butoxide (PBO) at 80% (Endura PB 80 EC-NF, 80% PBO, Endura Fine Chemicals, Bologna, 105 

Italy). 106 

2.2. Sources of H. convergens (CLB) populations. Two populations of H. convergens were 107 

established and maintained in the laboratory. One population (designated ‘Hc-CA’), which 108 

originated from field collections in California (Central Valley near Fresno, CA), was 109 

purchased in April 2011 from ARBICO Organics (Oro Valley, AZ). The second population 110 

(designated ‘Hc-GA’) was established from beetles collected in crimson clover in Decatur 111 

County, Georgia, USA (coordinates 30° 45’ 45.34’’ N and 84° 28’ 49.75’’ W) in April 2011.  112 

2.3. CLB maintenance. Larvae and adults were reared using eggs of Ephestia kuehniella 113 

(Zeller) (Lepidoptera: Pyralidae), obtained from Beneficial Insectary Inc. (Redding, CA, 114 

USA). Beetles were held in environmentally controlled conditions of 25 ± 1oC, and a 115 

photoperiod of 14:10h (L:D) for all rearing and bioassays. The two populations were 116 

maintained separately. Adults were kept in cylindrical plastic containers (30cm long, wide and 117 

high) containing openings on the sides closed with nylon mesh. Later, individual pairs were 118 

held in 500-ml plastic containers with a mesh-covered opening in the lid to allow ventilation, 119 

and a piece of paper towel as an oviposition substrate. Eggs were transferred to transparent 120 
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30-mL plastic cups. Eggs produced by at least 20 adult pairs were used to maintain the 121 

colonies and to provide insects for bioassays. Newly eclosed larvae were held individually in 122 

30-ml plastic cups and provided ad libitum with eggs of E. kuehniella.  123 

2.4. Dose-response curves. Adults of the F1 generation from both populations (Hc-CA and 124 

Hc-GA) were treated with the insecticide -cyhalothrin to determine the lethal dose (LD50). 125 

Preliminary bioassays were carried out to define doses which resulted in mortality from 0 to 126 

100%. Insects were topically treated by applying a 0.5 l droplet of the appropriate solution to 127 

the venter of the adult abdomen using a Hamilton syringe (25µL-volume). Based on 128 

preliminary tests six doses for each population (0.001, 0.002, 0.004, 0.006, 0.008, and 0.01 g 129 

a.i./L for Hc-CA; and 0.1, 0.3, 0.5, 0.7, 1.0, and 1.3 g a.i./L for Hc-GA) were selected for 130 

calculating the dose-mortality curve and the LD50. At least 20 adults (8 to 10 days old) were 131 

tested per dose.  132 

Treated and control groups were kept in petri dishes (12 cm diameter, and 1.5cm high) 133 

lined with filter paper and provided with a 10% honey solution soaked in cotton batting inside 134 

the petri dishes. Petri dishes with insects were stored in a climatic chamber at 25 ± 1ºC and 135 

photoperiod 14:10h (L:D). Knockdown and mortality were assessed 2 and 24h after 136 

insecticide application, respectively. A beetle was considered to be knocked down or dead if it 137 

was unable to turn upright and begin to walk after being placed on its dorsum at the respective 138 

observation intervals.    139 

2.5. Dose-response curves with the synergist PBO. The insecticide -cyhalothrin (99.5% 140 

technical grade) and the synergist PBO were applied in the bioassay diluted in acetone. 141 

Previous tests of varying doses of PBO indicated that 10 g a.i. of PBO/L (10 ppm) was the 142 

maximum sublethal dose and could be used in the dilutions to be tested. Thus, the synergism 143 

ratio using PBO was determined for Hc-GA and Hc-CA populations by treating the insects 144 

with -cyhalothrin dosage including PBO at 10 g a.i./L. The tested dosages of -cyhalothrin 145 
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alone began with a high dosage of 1 g a.i./L, which was then serially diluted by factors of 10 146 

during the preliminary test to obtain the final dosages. The dosages of -cyhalothrin + PBO 147 

used were: 0.0002, 0.0004, 0.0006, 0.0008, 0.001, and 0.003 g a.i./L for Hc-CA; and 0.005, 148 

0.01, 0.03, 0.05, 0.08, 0.10, and 0.5 g a.i./L for Hc-GA. The bioassay was conducted using -149 

cyhalothrin + PBO, as well as control treatments using only PBO or acetone. 150 

2.6. Dominance and role of sex linkage in resistance. The F1 progeny was tested to evaluate 151 

possible sex linkage related to the resistance. Females and males were kept individually in 152 

transparent 30-ml plastic cups. Sexes were differentiated based on the shape of the distal 153 

margin of the fourth visible abdominal sternite. The posterior margin of the fourth sternite has 154 

a concave shape in males while in females it is a straight line. Reciprocal crosses between 155 

virgin females (n=30) and males (n=30) from resistant (Hc-GA) and susceptible (Hc-CA) 156 

populations were made to obtain F1 progeny SR (♀ Hc-CA x ♂ Hc-GA) and RS (♀ Hc-GA x 157 

♂ Hc-CA). Free mating choice was allowed by pairing females and males of the two parental 158 

populations in plastic containers (30cm long, wide and high). Each F1 cross progeny (SR and 159 

RS) was reared separately to obtain sufficient adults to calculate the LD50.  160 

To test for sex linkage, males from both F1 reciprocal crosses (n=30) (SR and RS) were 161 

backcrossed with parental females: BC1 (♀ Hc-GA x ♂ F1 RS); BC2 (♀Hc-GA x ♂ F1 SR); 162 

BC3 (♀ H-CA x ♂ F1 RS); and BC4 (♀ Hc-CA x ♂ F1SR). The progenies obtained from 163 

backcross pairings were reared separately to obtain sufficient adults for each backcross to 164 

calculate the LD50 using 6 - 10 -cyhalothrin doses.  165 

2.7. Dominance of resistance in H. convergens to -cyhalothrin based on a single dose. In 166 

this bioassay we used 8-d old adults of the population groups Hc-CA (n = 120), HC-GA (n = 167 

120), F1 RS (n= 120) and F1 SR (n = 120). Five previously determined doses of -cyhalothrin 168 

(0.001, 0.01, 0.1, 0.5, and 1.0 g of a.i./L) were administered to adults of the different 169 

population groups as previously described. The control group was treated only with acetone 170 
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(n = 10). The knockdown effect and mortality were assessed 2 and 24h after insecticide 171 

application, respectively.   172 

2.8. Genetic variation within susceptible and resistant populations of H. convergens. We 173 

tested Hc-CA and Hc-GA for homozygosity of resistance traits in the respective populations. 174 

Individual virgin females and males (n=5) were paired for mating and egg production to 175 

compose five separate families. Then virgin female and male offspring of  Hc-CA, Hc-GA, F1 176 

reciprocal crosses, F1 RS and SR, and the four backcrosses (BC1 to BC4) were tested with a 177 

discriminating dose of 0.5 g a.i of -cyhalothrin/L for homozygous resistance (XRXR and 178 

XRy) following the same procedures used in the previous tests. Each adult pair corresponded 179 

to a population family or specified cross progeny. By examining offspring in individual 180 

families we could compare observed results with what would be expected for a homozygous 181 

population in detail, allowing us to discern individual deviations from homozygosity that 182 

could otherwise confound interpretation of results [32, 33].  As a component of this, the sex 183 

determination system of H. convergens must be considered in evaluating a sex linkage model 184 

for inheritance of insecticide resistance. The CLB has been characterized as 2n = 18 185 

autosomal and having homogametic females (XX) and heterogametic (Xy) males [34]. 186 

Therefore, males will be homozygous for traits acquired from the female on the X 187 

chromosome. 188 

2.9. Data analysis. The number of individuals exhibiting knockdown, death or survival per 189 

dose in the resistance inheritance and synergism tests were used to calculate the knockdown 190 

dose (KD) and the lethal dose (LD) for each population or progeny with the computer 191 

program Polo PC [35], based on Probit analysis [36]. Correction for natural mortality was 192 

unnecessary since control survival in all cases was 100%. A 2 goodness-of-fit test was used 193 

to test for parallelism and equality of the dose-mortality curves between populations. Data 194 

from resistance inheritance bioassays were used to obtain the resistance ratio (RR) between 195 
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resistant and susceptible populations based on the KD and LD calculated for each population, 196 

F1 progenies, and backcrosses. Likewise, the synergism ratio (SR) and the resistance ratio 197 

(RR) were calculated for treatments with -cyhalothrin only or when the synergist PBO was 198 

added. The RR and SR and their respective 95% confidence intervals (CI) were calculated and 199 

considered significant when the CI did not include the value 1.0, following the method of 200 

Robertson & Preisler [37]. 201 

Autosomal or sex-linked inheritance of resistance in H. convergens to -cyhalothrin was 202 

tested using the KD and LD determined for F1 adults from reciprocal crosses between Hc-GA 203 

and Hc-CA populations, F1 RS and F1 SR progenies. The degree of dominance (D) was 204 

estimated using the method of Stone [38], which is based on the KD or LD values. The 205 

standard error (SE) of the degree of dominance was calculated following the method of 206 

Lehmann [39], and interpreted after Preisler et al. [40]. The dominance (h) was estimated 207 

based on a single dose, following Hartl [41]. 208 

The minimum number of genes controlling resistance was investigated using the 209 

method of Lande [42] based on KD50 and LD50 responses. The minimum number of genes 210 

driving resistance was calculated separately for F1 progeny of H. convergens and the 211 

respective backcrosses.  212 

To evaluate genetic variation of parental populations, observed knockdown and 213 

mortality were initially corrected for the number of males and females of H. convergens 214 

tested. Thus, the testable hypothesis for genetic homozygosity is that the proportion of 215 

observed knockdown or mortality would be equal to the proportion of expected knockdown or 216 

mortality based on the sex-linked inheritance for H. convergens, assuming the recessive 217 

inheritance of resistance found with the discriminatory dose (0.5 g a.i. of -cyhalothrin/L). 218 

Thus, using the G-statistic goodness of fit test for heterogeneity [43], homogeneity was tested 219 

among families and the hypothesis of absence of genetic variation was tested within and 220 
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among families. The goodness of fit test was carried out only on the results for F1 RS and for 221 

the backcross BC2 (♀Hc-GA x ♂ F1 SR). The test was not conducted for families of the 222 

susceptible population (Hc-CA), the F1 SR progeny or their respective backcrosses (BC3 and 223 

BC4) because the knockdown and mortality responses observed were as expected for all 224 

families (1.00). Furthermore, for the resistant population (Hc-GA) and the backcross BC1 (♀ 225 

Hc-GA x ♂ F1 RS), the expected mortality is null (0.00) and, therefore, a G-statistic could not 226 

be calculated. 227 

 228 

3. Results 229 

3.1. Dose-response curves. The knockdown results fit the Probit model (P>0.05). In contrast, 230 

the dose-mortality curves differed in parallelism and equality (P<0.05); thus the KD50s and 231 

KD90s were calculated (Table 1). Based on KD50 and KD90 from evaluations 2h post-treatment 232 

the Hc-GA population was over 286 and 461-fold more resistant by knockdown effect to -233 

cyhalothrin than Hc-CA adults (Table 1). The LD50 and LD90 of the Hc-CA population were, 234 

respectively, 0.004 and 0.816 g a.i. of -cyhalothrin/L, compared to 0.015 and 4.595, 235 

respectively, for the Hc-CA and Hc-GA populations. Based on these values, the Hc-GA 236 

population was over 220 (LD50) and 308.0-fold (LD90) more resistant to -cyhalothrin than 237 

the Hc-CA population (Table 1).  238 

3.2. Dose-mortality curves with the synergist PBO. Adults from both populations exhibited 239 

similar patterns of response for knockdown and mortality when treated with -cyhalothrin 240 

plus the synergist PBO, but differed when using -cyhalothrin alone (Table 2). The KD50 and 241 

LD50, however, were lower than when only -cyhalothrin was applied. The KD50 and LD50 242 

synergism ratios were 1.62 and 6.94 (KD); and 5.53 and 17.24 (LD) for Hc-CA and Hc-GA 243 

populations, respectively. The resistance ratio (RR) of -cyhalothrin based on the KD50 or 244 

LD50 was reduced approximately 3-4 fold to ~70 for Hc-GA relative to Hc-CA when PBO was 245 
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added (Table 2). These results further demonstrate that the Hc-GA population is more resistant 246 

to -cyhalothrin than the Hc-CA population. Furthermore, the LD90 calculated for the Hc-GA 247 

population is 10.44 times greater than the highest field rate of -cyhalothrin recommended to 248 

spray cotton (0.44 g a.i./L).  249 

3.3. Dominance and role of sex linkage in resistance. The RR for the F1 RS beetles was 250 

greater than that of the F1 SR beetles when calculated using the KD50, KD90, LD50, and LD90 251 

values, suggesting that resistance is X-linked (Table 1). Further the degree of dominance 252 

varied from -0.66 to -0.13 based on KD50, and from -0.48 to 0.27 based on KD90 (Table 1). 253 

The resistance ratios of the KD50 for BC1 and BC2, both of which were offspring of Hc-GA 254 

mothers, were 211.33 and 70.47-fold, respectively, whereas the KD50 resistance ratios for 255 

BC3 and BC4, which were offspring of Hc-CA mothers, were 2.81 and 2.91, respectively. 256 

These results are consistent with X-linked resistance. Despite the low ratios for BC3 and BC4 257 

they were significantly different from the parental Hc-CA population according to the method 258 

of Robertson and Preisler [37] (Table 1).  259 

The mortality data for the progenies and backcrosses fit a Probit model (P>0.05), except 260 

for the mortality of the F1 RS progeny (P<0.05). There were significant differences between 261 

the F1 progenies (SR and RS) in both the LD50 and LD90 [RR50(IC95%): 7.44 (4.48-12.35) and 262 

TR90(IC95%): 24.11 (8.56-67.87)], which, taken with the backcross results, strongly suggests a 263 

maternal effect or X-linked. The degree of dominance varied from -0.28 to 0.47 for the LD50, 264 

from -0.34 to 0.78 for the LD90 (Table 1).  265 

3.4. Dominance of resistance in H. convergens to -cyhalothrin based on a single dose. 266 

The results indicate recessive dominance in the F1 progenies tests and variability in the 267 

resistance based on single dose results. The resistance was found to be functionally dominant 268 

(h = 1.0) for the Hc-GA population at the lowest tested dose (0.001) for both reciprocal 269 

crosses (RS and SR) (Table 3). For F1 SR, however, resistance was functionally recessive (h = 270 
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0.0) at doses of 0.1 and 1.0 g a.i. of -cyhalothrin/L at 2 and 24h evaluations, respectively; 271 

while for F1 RS it was recessive only at the highest tested dose at knockdown 2h post-272 

treatment (Table 3). Based on mortality evaluated 24h post-treatment the effective dominance 273 

ranged from 0.32 to 0.5 for doses greater than 0.1 g a.i. of -cyhalothrin/L for F1 RS (Table 274 

3).  275 

3.5. Minimum number of loci. The number of loci coordinating resistance in H. convergens 276 

to -cyhalothrin was estimated at -4.39 and 0.74 genes for the F1 RS and F1 SR progenies, and 277 

for their respective backcrosses. On the other hand, when considering the mortality data, the 278 

number of genes coordinating resistance is estimated at -1.23 and 3.73 for the F1 progenies SR 279 

and RS, and their backcrosses, respectively.  280 

3.6. Genetic variation within susceptible and resistant populations of H. convergens. The 281 

paired females and males from Hc-GA and the F1 RS progeny resulted in four pairs that 282 

produced viable offspring (families), out of the five pairs set up. Thus, only four families were 283 

utilized for the BC1 and BC3 backcrosses. The knockdown and mortality results indicated 284 

that Hc-GA male parents, used to form the ♀ Hc-GA x ♂ Hc-GA families, were not 285 

susceptible to -cyhalothrin (i.e. the males of Hc-GA were not XSy). The genetic variation in 286 

resistance observed in the Hc-GA population is likely related to the proportion of susceptible 287 

adults produced by pairings of heterozygous females (XRXS) and resistant males (XRy) 288 

(Tables 4 and 5). Families of the susceptible population (Hc-CA), the progeny of F1 SR and 289 

the backcrosses BC3 and BC4 exhibited responses aligned with the expected frequency of 290 

susceptible offspring (1.00) (Tables 4 and 5). Families of F1 RS were similar to one another in 291 

knockdown (P = 0.6611) and mortality (P = 0.0948). Furthermore, the proportion of 292 

individuals exhibiting knockdown and mortality was significantly different from the expected 293 

proportion in three of the four families (Tables 4 and 5), evidencing genetic variation for 294 

knockdown (2 = 30.23, P < 0.0001, df = 4) and mortality (2 = 25.35, P < 0.0001, df = 4). 295 
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Variation was observed among families of BC2 (♀ Hc-GA x ♂ F1 SR) for knockdown (2 = 296 

26.55, P < 0.0001, df = 5), but not for mortality (2 = 0.55, P =0.9932, df = 5). Variation for 297 

the knockdown effect was observed for only two out of five families (Table 4). Regardless of 298 

individual family outcome, there was no difference among BC2 families based on knockdown 299 

(P = 0.3277) or mortality (P = 0.9942). For the backcross BC1 (♀ Hc-GA x ♂ F1 RS), the 300 

high variability among families and variation from the expected response confirm the genetic 301 

variation of their parental resistant population (Hc-GA).  302 

 303 

4. Discussion 304 

Resistance in H. convergens to -cyhalothrin was confirmed in a Georgia population, 305 

and it appears to have multiple mechanisms that also may differ in inheritance. Based on 306 

knockdown response (KD50), the resistance seems to be autosomally inherited and 307 

incompletely recessive, but based on KD90 the inheritance also appears to be sex-linked. Sex-308 

linked inheritance of resistance is also indicated based on lethal dose (LD) results calculated 309 

for F1 progenies 24h post-treatment. Several factors might contribute to the variability 310 

observed in types of responses, including presence of heterozygotes in the parental population 311 

causing unexpected genetic variation in reciprocal crosses (see below) and resulting in dose-312 

mortality curve slopes approaching 1.0 [44]. In addition, we cannot disregard genetic 313 

differences of the two studied populations that probably also affect our results.  314 

The metabolism of -cyhalothrin has at least one resistance mechanism in H. 315 

convergens, as indicated by the action of the synergist PBO in significantly decreasing 316 

resistance in the GA population. The estimated KDs and LDs were reduced by adding PBO to 317 

-cyhalothrin for the resistant population. Recovery from knockdown by 24h post-treatment 318 

was reduced by approximately 2/3 with addition of PBO, and a similar reduction was 319 

observed in the LD responses (Table 2). However, resistance in the Hc-GA population was 320 
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not fully suppressed by PBO – resistance in this population was still approximately 70 times 321 

that of Hc-CA after PBO was added. Thus, considering that the resistance was not fully 322 

inhibited with PBO, further studies are needed to identify the other mechanism(s) present. 323 

The hypothesis of sex-linked inheritance should be accepted if the KD and LD 324 

calculated for backcrosses BC1 and BC2 are similar to the resistant Hc-GA population and F1 325 

RS, respectively, and if the KDs and LDs of backcrosses BC3 and BC4 are similar to those of 326 

the F1 SR progenies and the susceptible population (Hc-CA), respectively. Only the KDs and 327 

LDs of BC2 and BC4 differed from the expected result. However, the limited differences 328 

observed also suggest presence of genetic variation [45] or possible natural variation [46] 329 

(Table 1). Furthermore, bioassays of single-paired crosses with the discriminating dose of -330 

cyhalothrin clearly indicated sex-linked inheritance for both knockdown (KDs) and mortality 331 

(LDs) (Table 5). Additionally, the resistance phenotype of males carrying XR-chromosome 332 

yielded responses similar to those of females that were XRXR. Finally, estimates of the 333 

minimum number of genes responsible for -cyhalothrin resistance in H. convergens based on 334 

KDs and LDs also support sex linkage as the model of inheritance. Sex linkage inheritance 335 

patterns tend to inflate phenotypic variances that are critical for estimating the number of 336 

genes governing the trait [42]. This inflated variance confounds accurately estimating the 337 

number of genes underlying the response, yielding results such as the negative gene estimated 338 

values for the F1 progenies obtained in this study.   339 

The knockdown responses indicate that -cyhalothrin resistance in H. convergens is 340 

inherited as a recessive trait. Thus, the difference in degree of dominance for the sex-linked 341 

response is independent of the survival of the heterozygotes in F1 RS progeny (dominant) and 342 

mortality in the F1 SR progeny (recessive) [47]. The difference is a result of varying mortality 343 

patterns between the offspring of the F1SR reciprocal cross compared to F1 SR. Male F1 RS 344 

progeny would be resistant (XRy), while female progeny would be susceptible (XRXS). In 345 
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contrast, both male (XSy) and female (XRXS) F1 SR progeny would be susceptible. In this 346 

way, the presence of resistant males in F1 RS population inflates the KD and LD values, 347 

affecting degree of dominance for each reciprocal cross depending on the magnitude of the 348 

response for resistant individuals.  349 

The mortality data for F1RS progeny did not fit the Probit model, indicating that the Hc-350 

GA population was not homozygous for resistance. Assaying for homozygosity revealed 351 

presence of XRXS females in the Hc-GA population. Despite the heterozygosity in the Hc-GA 352 

population, it was not the only influencing factor because the KD for F1 RS progeny fit the 353 

Probit model. Some individuals of the F1SR progeny, as well as resistant individuals from Hc-354 

GA, recovered from knockdown (2h) during the 24h post-treatment mortality evaluation in 355 

the bioassay of dose-mortality. The results from single-pair families demonstrated that the 356 

gene influencing recovery from treatment might be also sex-linked, as males and females of 357 

F1 SR and females of F1 RS did not recover 24h after treatment. However, the degree of 358 

dominance was not conclusive because the discriminatory dose used in the single-pair cross 359 

bioassay was sufficiently high to yield functionally recessive inheritance. Thus, a sex linkage 360 

model can yield varying results for the resistance mechanisms.  361 

Our results indicate that heterozygous Hc-GA females (XRXS) used in the F1 RS 362 

reciprocal cross can produce susceptible males (XSy). The presence of susceptible males in 363 

such a cross would not be anticipated for the offspring of reciprocal crosses (F1 RS) if the 364 

parental populations are homozygous susceptible (XSXS and XSy) or resistant (XRXR and 365 

XRy), based on an “Xyp” sex determination system. Presence of susceptible males might 366 

generate unusually low LDs and the conclusion that resistance is autosomally inherited. This 367 

occurred with a heterogeneous population of Cydia pomonella (L.) (Lepidoptera: Tortricidae) 368 

tested for resistance to the CpGV (Baculoviridae), and resistance was originally characterized 369 

as autosomally inherited [48]. However, after selection in the laboratory, single-pair 370 
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experiments with the selected homozygous-resistant C. pomonella population revealed that 371 

inheritance was sex-linked [33]. Results from single-pair experiments with a heterozygous 372 

population of C. pomonella, similar to our experiments, supported sex-linked inheritance for 373 

resistance [49]. Based on the slopes of the dose-mortality curves calculated for F1 RS and F1 374 

SR, there is also support for sex-linked heritability of resistance in H. convergens similar to C. 375 

pomonella [49].  376 

Numerous studies have reported recessive inheritance for pyrethroid resistance in 377 

different groups of insects. However, sex-linked inheritance of resistance is not common 378 

compared to autosomal inheritance. These results add to the reported cases of sex-linked 379 

inheritance of resistance: Sitophilus oryzae L. (Col.: Curculionidae) [50], Culex 380 

quinquefasciatus Say [51], Sitophilus zeamais Mots. [52], Spodoptera littoralis Boisduval 381 

(Lepidoptera: Noctuidae) [53], Helicoverpa armigera Hübner [54], Leptinotarsa 382 

decemlineata (Say) (Coleoptera: Chrysomelidae) [55], Grapholita molesta (Busck) 383 

(Lepidoptera: Tortricidae) [56], and C. pomonella [33]. 384 

When -cyhalothrin is applied in high doses to resistant H. convergens, the effective 385 

dominance is best characterized as recessive, but at lower doses it is functionally dominant. 386 

This pattern of dominance has been reported in other insects [32, 57, 58, 59, 60, 61, 62]. 387 

Dominance is not an intrinsic trait of one allele [63], as its expression is dependent on the 388 

dose applied [47]. Thus, when a dose is sufficiently high to kill all heterozygotes in the 389 

population, the resistance can be functionally recessive, as described by Curtis et al. [64]. On 390 

the other hand, at low doses in which the heterozygotes survive, resistance would be 391 

characterized as functionally dominant. Numerically, we found no functionally recessive 392 

response for F1 RS progeny at high doses of -cyhalothrin. This can be explained by 393 

inheritance driven by sex linkage due to the presence of XRy males.  394 
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Resistance of H. convergens to -cyhalothrin was likely selected by historically 395 

widespread and intensive insecticide use in Georgia crop systems where the beetles regularly 396 

occurred. Using cotton as an example, DDT was widely used during the 1950's to control boll 397 

weevil and bollworms in cotton [65]. DDT was replaced with organophosphates (OPs) after 398 

DDT resistance was detected in boll weevil [66]. Detection of bollworms resistant to OPs [67] 399 

led, in turn, to wide and frequent use of pyrethroid insecticides in Georgia to control this 400 

group of pests in the 1980's [68]. The persistence of boll weevil in cotton required repeated 401 

applications of broad-spectrum insecticides beginning as early as the appearance of the first 402 

flower bud and continuing until close to harvest, producing prolonged negative effects on 403 

natural enemy populations [69]. Thus, the historically intensive use of DDT, OPs, and 404 

pyrethroids in cotton fields, as well as other surrounding crops frequented by H. convergens 405 

(e.g., pecans, tobacco, corn), would have applied significant selection pressure to H. 406 

convergens populations for resistance. Even after pesticide use was dramatically reduced by 407 

widespread adoption of Bt-transgenic cotton resistant to lepidopteran pests and following 408 

eradication of the boll weevil in Georgia [69, 70], pyrethroids and OPs continue to be applied 409 

for stink bugs and other pests [71]. The recently reduced application frequency of pyrethroids 410 

and OPs to cotton likely reduced the negative effect on H. convergens populations and, 411 

therefore, permitted resistance-conferring genes to be fixed in the population, affording the 412 

stability typical of pyrethroid resistance. 413 

Unlike the case with autosomally inherited resistance, sex linkage allows males of H. 414 

convergens to exhibit resistance to -cyhalothrin even when the allele is present at low levels, 415 

because they need only a single resistant allele to confer complete resistance. This capacity 416 

may facilitate persistence and rapid spread of the resistant allele(s) in the population. 417 

Information on factors that usually influence resistance, such as initial allele frequency in the 418 

field population, population size, sex ratio in the field, adaptive costs of resistance, migration, 419 
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and polyandry in H. convergens are needed to better understand evolution of the resistance in 420 

this important natural enemy species. However, initial results of resistance selection in Hc-GA 421 

under laboratory conditions suggest rapid evolution of resistance can occur, as described for 422 

recessive and sex-linked inherited resistance [54]. Variables, such as high frequency of the 423 

allele for resistance, heterozygote female XRXS being susceptible to -cyhalothrin and being 424 

killed in the progeny, males requiring only one allele to survive the insecticide application, 425 

and the interaction of resistance mechanisms driving the survival of susceptible individuals to 426 

the insecticide application, can pace the evolution of resistance in H. convergens. Despite the 427 

likelihood of multiple genes governing resistance of H. convergens to -cyhalothrin, the 428 

nature of the interactions among these genes was not studied. The interaction among factors 429 

governing inheritance of resistance is complex to define [72], but studies focusing on the role 430 

of the multiple genes in resistance, the adaptive costs to maintain multiple resistance genes in 431 

the absence of insecticide pressure, and the benefits of different resistance mechanisms in the 432 

studied species are open avenues for investigation. For instance, we treated adults of Hc-GA 433 

and Hc-CA with 10-fold the field rate of the organophosphate dicrotophos and the results 434 

showed 100% and 0% survival for these two populations, respectively. 435 

In conclusion, the inheritance of -cyhalothrin resistance in H. convergens is sex-linked 436 

and recessive. Likely, the major mechanism of the resistance involves insensitivity of a kdr-437 

type target site, with participation of detoxifying enzymes, which were partially inhibited by 438 

PBO leading to greater susceptibility of the resistant population (Hc-GA). These results differ 439 

from those obtained for another lady beetle species, E. connexa, that exhibits resistance to the 440 

-cyhalothrin, but in which resistance is autosomally inherited and incompletely dominant, 441 

and which was fully inhibited with PBO with high activity of esterase (A.R.S.R. unpublished 442 

data). Further, the LD50 and LD90 for the Hc-GA population (0.816 and 4.595 g) are greater 443 

than the highest recommended field rate of -cyhalothrin for cotton (44 g of a.i/ha at 100 444 
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L/ha) Roberts et al. [73], indicating the possibility of effectively integrating these predators 445 

with pyrethroid insecticides.  446 

 447 
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Table 1. Knockdown and mortality responses of Hippodamia convergens susceptible (Hc-CA) and resistant (Hc-GA) populations, F1 progeny from reciprocal crosses and from 716 
backcrosses to -cyhalothrin during 2h and 24h evaluation intervals post-treatment, respectively. n, number of tested individuals; df, degrees of freedom; SE, standard error of the slope; CI, 717 
confidential intervals at 95% probability; DD, degree of dominance; and χ2, Chi-square test. 718 
Population or 
Progenya n df Slope ± SE 

KD50 
(CI95%)b 

RR50 
(CI95%)c DD50 ± SE 

KD90 

 (CI95%)b 
RR90 

(CI95%)c DD90 ± SE χ2 
Knockdown - 2h evaluation   

Hc-CA 191 4 2.39 ± 0.42 
0.001 

(0.0004-0.002) 
-  

0.004 
(0.002-0.011) 

-  6.76 

Hc-GA 221 4 1.73 ± 0.28 
0.297 

(0.156-0.439) 
286.75 

(86.59-949.64) 
 

1.636 
(0.955-6.219) 

461.16 
(133.26-1595.93) 

 4.76 

F1 RS 214 5 1.10 ± 0.20 
0.012 

(0.005-0.021) 
11.91 

(5.43-26.11) 
-0.13 ± 0.15 

0.182 
(0.105-0.474) 

51.11 
(24.04-108.68) 

0.27 ± 0.17 4.50 

F1 SR 220 4 1.52 ± 0.19 
0.003 

(0.0002-0.007) 
2.62 

(0.57-12.02) 
-0.66 ± 0.27 

0.019 
(0.009-0.038) 

5.35 
(2.81-10.16) 

-0.48 ± 0.11 0.50 

BC1 198 6 1.32 ± 0.19 
0.271 

(0.162-1.14) 
211.33 

(111.96-398.90) 
 

2.254 
(1.02-15.43) 

835.24 
(252.59-2761.92) 

 6.35 

BC2 167 4 0.72± 0.20 
0.073 

(0.026-0.144)
70.47 

(31.19-159.24)
 

4.480 
(1.100-396.1)

1259.04 
(143.76-11026.3)

 6.33 

BC3 267 8 2.27 ± 0.33 
0.003 

(0.002-0.004) 
2.81 

(1.71-4.63) 
 

0.011 
(0.008-0.017) 

3.00 
(1.85-4.89) 

 4.78 

BC4 268 8 2.63 ± 0.40 
0.003 

(0.002-0.004) 
2.91 

(1.80-4.71) 
 

0.009 
(0.007-0.014) 

2.61 
(1.64-4.14) 

 1.78 

Mortality - 24h evaluation LD50   LD90    

Hc-CA 191 4 2.12 ± 0.33 
0.004 

(0.003-0.005) 
-  

0.015 
(0.010-0.028) 

-  1.24 

Hc-GA 221 4 1.71 ± 0.32 
0.816 

(0.631-1.167) 
220.03 

(76.89-629.65) 
 

4.595 
(2.54-15.53) 

308.00 
(79.62-1191.39) 

 1.54 

F1 RS 214 5 1.17 ± 0.17 
0.194 

(0.059-1.745) 
52.33 

(32.30-84.80) 
0.47 ± 0.16 

2.423 
(0.545-14490) 

162.29 
(56.64-465.02) 

0.78 ± 0.26 19.63* 

F1 SR 220 4 2.19 ± 0.33 
0.026 

(0.019-0.034) 
7.03 

(4.89-10.11) 
-0.28 ± 0.09 

0.100 
(0.072-0.173) 

6.73 
(3.62-12.52) 

-0.34 ± 0.12 1.46 

BC1 198 6 2.03 ± 0.39 
0.804 

(0.548-1.441) 
216.95 

(131.14-358.92) 
 

3.431 
(1.793-12.971) 

230.03 
(85.46-619.16) 

 1.03 

BC2 167 4 1.45 ± 0.22 
0.364 

(0.245-0.621) 
98.08 

(59.26-162.32) 
 

2.754 
(1.346-9.637) 

184.56 
(65.92-516.78) 

 4.58 

BC3 267 8 2.17 ± 0.25 
0.015 

(0.012-0.019) 
4.07 

(2.90-5.71) 
 

0.059 
(0.043-0.091) 

3.93 
(2.19-7.08) 

 4.78 

BC4 268 8 2.24 ± 0.27 
0.011 

(0.009-0.014) 
3.05 

(2.17-4.27) 
 

0.042 
(0.031-0.065) 

2.83 
(1.58-5.08) 

 4.20 
aF1 RS and F1 SR stand for reciprocal crosses between ♀ Hc-GA x ♂ Hc-CA and ♀ Hc-CA x ♂ Hc-GA, respectively; BC1, BC2, BC3, and BC4 are the backcrosses of ♀ Hc-GA x ♂ F1 RS, ♀ Hc-GA x ♂ F1 SR, ♀ Hc-CA x ♂ F1 719 
RS; and ♀ Hc-CA x ♂ F1 SR, respectively. bg a.i./L of -cyhalothrin at technical grade producing 50 or 90% knockdown effect in the population 2h after treatment. cRR, resistance ratio estimated by the relationship of KDs or LDs 720 
between resistant and susceptible populations following the method of Robertson and Preisler [37]. *P-value (<0.05) 721 
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Table 2. Knockdown (2h) and mortality (24h) responses of Hippodamia convergens (Hc) populations from California (CA) and Georgia 722 
(GA) to -cyhalothrin (99.5% technical grade) only or with 10 ppm of piperonyl butoxide (PBO) added to the solution. n. number of tested 723 
adults; df = degree of freedom; SE = standard error for the slope; LDs = lethal doses in g of a.i./L; CI = 95% confidence intervals; and χ2= chi-724 
square test. 725 
Population/ 
Progeny n df Slope ± SE 

LD50 
(CI95%)a 

SR50 
(CI95%)b 

RR50 
(CI95%)c 

LD90 

 (CI95%)a 
SR90 

(CI95%)b 
RR 90 

(CI95%)c χ2 

Knockdown - 2h evaluation with -cyhalothrin  

Hc-CA 191 4 2.39 ± 0.42 
0.001 

(0.0004-0.002) 
- - 

0.004 
(0.002-0.011) 

- - 6.76 

Hc-GA 221 4 1.73 ± 0.28 
0.297 

(0.156-0.439) 
- 

286.75 
(86.59-949.64) 

1.636 
(0.955-6.219) 

- 
461.16 

(133.26-1595.93) 
4.76 

Knockdown - 2h evaluation with  -cyhalothrin + PBO  

Hc-CA 278 4 2.64 ± 0.33 
0.0006 

(0.0005-0.0008) 
1.62 

(1.07-2.45) 
- 

0.002 
(0.001-0.004) 

1.82 
(1.16-2.86) 

- 3.87 

Hc-GA 182 5 1.45 ± 0.23 
0.043 

(0.030-0.061) 
6.94 

(4.40-10.93) 
67.05 

(45.70-98.37) 
0.327 

(0.186-0.881) 
5.00 

(2.08-12.02) 
167.81 

(75.53-372.82) 
0.69 

Mortality - 24h evaluation with -cyhalothrin 

Hc-CA 191 4 2.12 ± 0.33 
0.004 

(0.003-0.005) 
- - 

0.015 
(0.010-0.028) 

- - 1.24 

Hc-GA 221 4 1.71 ± 0.32 
0.816 

(0.631-1.167) 
- 

220.03 
(76.89-629.65) 

4.595 
(2.54-15.53) 

- 
308.00 

(79.62-1191.39) 
1.54 

Mortality - 24h evaluation with -cyhalothrin + PBO 

Hc-CA 278 4 3.30 ± 0.42 
0.0007 

(0.0006-0.0008) 
5.53 

(4.23-7.22) 
- 

0.002 
(0.001-0.003) 

9.10 
(5.34-15.49) 

- 4.38 

Hc-GA 182 5 1.57 ± 0.24 
0.047 

(0.034-0.067) 
17.24 

(11.24-26.70) 
70.55 

(49.49-100.57) 
0.309 

(0.182-0.762) 
14.84 

(5.19-42.39) 
188.81 

(91.57-389.27) 
3.43 

ag a.i./L of -cyhalothrin at technical grade producing 50 or 90% knockdown or mortality effect in the population 2 and 24h after treatment, respectively. 726 
bSR, synergism ratio based on the relationship of LD50 or LD90 calculated from populations treated with -cyhalothrin and -cyhalothrin + PBO following the method of 727 
Robertson and Preisler [37]. 728 
cRR, resistance ratio based on the relationships of LD50 or LD90 calculated from populations treated with -cyhalothrin and  -cyhalothrin synergized with PBO following the 729 
method of Robertson and Preisler [37]. 730 
 731 

732 
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Table 3. Dominance (h) of resistance in Hippodamia convergens adults based on knockdown and mortality 733 
responses evaluated 2h and 24h periods after treatment with different doses (g a.i. of -cyhalothrin) for susceptible 734 
(Hc-CA), resistant (Hc-GA), and F1 reciprocal crosses F1 SR (♀ Hc-CA x ♂Hc-GA), and F1 RS (♀ Hc-GA x ♂ Hc-735 
CA).  736 

 737 
Doses  

Population/ 
Progeny n Knockdown (%) ha 

 Population/ 
Progeny n Mortality (%) ha 

0.001 

Hc-CA 24 33.33   Hc-CA 24 16.67  
Hc-GA 24 0.00   Hc-GA 24 0.00  
F1 SR 24 0.00 1.00  F1 SR 24 0.00 1.00 
F1 RS 24 0.00 1.00  F1 RS 24 0.00 1.00 

0.01 
 

Hc-CA 24 100.00   Hc-CA 24 91.67  
Hc-GA 24 0.00   Hc-GA 24 0.00  
F1 SR 24 83.33 0.17  F1 SR 24 16.67 0.82 
F1 RS 24 41.67 0.58  F1 RS 24 0.00 1.00 

0.1 

Hc-CA 24 100.00   Hc-CA 24 100.00  
Hc-GA 24 33.33   Hc-GA 24 8.33  
F1 SR 24 100.00 0.00  F1 SR 24 79.17 0.23 
F1 RS  24 75.00 0.38  F1 RS  24 54.17 0.50 

0.5 

Hc-CA 24 100.00   Hc-CA 24 100.00  
Hc-GA 24 79.17   Hc-GA 24 20.83  
F1 SR  24 100.00 0.00  F1 SR  24 95.83 0.05 
F1 RS 24 95.83 0.20  F1 RS 24 75.00 0.32 

1.0 

Hc-CA 24 100.00   Hc-CA 24 100.00  

Hc-GA 24 95.83   Hc-GA 24 33.33  
F1 SR 24 100.00 0.00  F1 SR 24 100.00 0.00 
F1 RS  24 100.00 0.00  F1 RS  24 70.83 0.44 

ah varies between 0 and 1 (0 = survival is recessive and 1 = survival is dominant). 738 
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Table 4. Knockdown response (2h evaluation post-treatment) of resistant adults XRXR 739 
and XRy of Hippodamia convergens treated with a discriminatory dose (0.5 g a.i. of -740 
cyhalothrin/L). Observed and expected proportions of knockdown are presented according to 741 
the progeny genotype and the null hypothesis: parental susceptible and homozygous resistant 742 
as function of inheritance of resistance linked to the XR-chromosome with 1040 tested adults. 743 

 744 

Population/
Progenya 

Sex linkage      
Offspring genotype Expected 

proportion 
 Observed 

proportion (SE) 
χ2 P 

♂ ♀ Adultsb F/nc Adultsb   

Hc-GA XRy XRXR 0.00 A/20 0.67 (0.05) NCd NC 
   0.00 B/30 0.37 (0.03) NC NC 
   0.00 C/30 0.15 (0.06) NC NC 
   0.00 D/40 0.48 (0.12) NC NC 

Hc-CA XSy XSXS 1.00 (A-E)/150 1.00 (0.00) 0.00 1.00 

F1 RS XRy XRXS 0.50 A/30 0.75 (0.00) 7.50 0.01* 
   0.50 B/30 0.65 (0.06) 2.70 0.10 
   0.50 C/30 0.77 (0.07) 8.53 <0.00* 
   0.50 D/30 0.80 (0.01) 11.5 <0.00* 
       

F1 SR XSy XRXS 1.00 (A-E)/150 1.00 (0.00) 0.00 1.00  
         

BC1  XRy XRXR 0.00 A/30 0.00 (0.00) NC4 NC 
   0.00 B/30 0.18 (0.08) NC NC 
   0.00 C/30 0.05 (0.03) NC NC 
   0.00 D/30 0.53 (0.02) NC NC 
        

BC2 XRy XRXS 0.50 A/30 0.63 (0.06) 1.88 0.16 
   0.50 B/30 0.64 (0.02) 2.41 0.12 
   0.50 C/30 0.63 (0.06) 1.88 0.16 
   0.50 D/30 0.71 (0.12) 5.21 0.02* 
   0.50 E/30 0.86 (0.04) 15.2 <0.00* 
        

BC3 XSy XRXS 1.00 (A-D)/110 1.00 (0.00) 0.00 1.00 
        

BC4  XSy XSXS 1.00 (A-E)/150 1.00 (0.00) 0.00 1.00 
aSusceptible (Hc-CA) and resistant (Hc-GA) populations;  F1 RS, cross of ♀ Hc-GA x ♂ Hc-745 
CA, and F1 SR cross of  ♀ Hc-CA x ♂ Hc-GA. The backcrosses BC1 (♀ Hc-GA x ♂ F1 RS), 746 
BC2 (♀ Hc-GA x ♂ F1 SR), BC3 (♀ Hc-CA x ♂ F1 RS), and BC4 (♀ Hc-CA x ♂ F1 SR). 747 
bProportion of adults (mean pooled for males and females). 748 
cF stands for families, and n stands for number of insects tested per family for each 749 
population, progeny, and backcrosses.  750 
dNC stands for qui-square and p-values not determined; while *stands for significant 751 
deviation from the null hypotheses. 752 
 753 
 754 
 755 

756 
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Table 5. Mortality response 24h post-treatment of resistant adults XRXR and XRy of 757 
Hippodamia convergens treated with a discriminatory dose (0.5 g a.i. of -cyhalothrin/L). 758 
Observed and expected proportions of mortality are presented according to the progeny 759 
genotype considering the null hypothesis: parental susceptible and homozygote resistant as 760 
function of inheritance of resistance linked to the XR-chromosome with 1040 tested adults. 761 

Population/
Progenya 

Sex linkage      
Offspring genotype Expected 

proportion 
 Observed 

proportion (SE) 
χ2 P 

♂ ♀ Adultsb F/nc Adultsb   

Hc-GA XRy XRXR 0.00 A/20 0.54 (0.01) NC4 NC 

   0.00 B/30 0.37 (0.03) NC NC 

   0.00 C/30 0.00 (0.00) NC NC 

   0.00 D/40 0.40 (0.15) NC NC 

Hc-CA XSy XSXS 1.00 (A-E)/150 1.00 (0.00) 0.00 1.00 

F1 RS XRy XRXS 0.50 A/30 0.75 (0.00) 7.50 0.01* 

   0.50 B/30 0.50 (0.00) 0.00 1.00 

   0.50 C/30 0.77 (0.09) 8.53 <0.00* 

   0.50 D/30 0.78 (0.01) 9.31 <0.00* 
     

F1 SR XSy XRXS 1.00 (A-E)/150 1.00 0.00 1.00 
         

BC1  XRy XRXR 0.00 A/30 0.00 (0.00) NC NC 

   0.00 B/30 0.03 (0.03) NC NC 

   0.00 C/30 0.00 (0.00) NC NC 

   0.00 D/30 0.50 (0.00) NC NC 
        

BC2 XRy XRXS 0.50 A/30 0.50 (0.00) 0.00 1.00 

   0.50 B/30 0.53 (0.03) 0.13 0.72 

   0.50 C/30 0.54 (0.04) 0.21 0.65 

   0.50 D/30 0.50 (0.00) 0.00 1.00 

   0.50 E/30 0.54 (0.04) 0.21 0.65 
        

BC3 XSy XRXS 1.00 (A-D)/110 1.00 0.00 1.00 
        

BC4  XSy XSXS 1.00 (A-E)/150 1.00 0.00 1.00 
aSusceptible (Hc-CA) and resistant (Hc-GA) populations;  F1 RS, cross of ♀ Hc-GA x ♂ Hc-CA, and 762 
F1 SR cross of ♀ Hc-CA x ♂ Hc-GA . The backcrosses BC1 (♀ Hc-GA x ♂ F1 RS), BC2 (♀ Hc-763 
GA x ♂ F1 SR), BC3 (♀ Hc-CA x ♂ F1 RS), and BC4 (♀ Hc-CA x ♂ F1 SR). 764 
bProportion of adults (pooled for males and females). 765 
cF stands for families, and n stands for number of insects tested per family for each 766 
population, progeny, and backcrosses.  767 
dNC stands for qui-square and p-values not determined; while *stands for significant 768 
deviation from the null hypotheses. 769 
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