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Abstract 

This case study was motivated by the need for effective statistical analysis for a series of 

poultry feeding experiments conducted in 2006 by Kansas State University researchers in the 

department of Animal Science. Some of these experiments involved an automated auger feed 

line system commonly used in commercial broiler houses and continuous, proportion response 

data. Two of the feed line experiments are considered in this case study to determine if a 

statistical model using a non-normal response offers a better fit for this data than a model 

utilizing a normal approximation. The two experiments involve fixed as well as multiple random 

effects. In this case study, the data from these experiments is analyzed using a linear mixed 

model and Generalized Linear Mixed Models (GLMM’s) with the SAS Glimmix procedure. 

Comparisons are made between a linear mixed model and GLMM’s using the beta and binomial 

responses. Since the response data is not count data a quasi-binomial approximation to the 

binomial is used to convert continuous proportions to the ratio of successes over total number of 

trials, N,  for a variety of possible N values. Results from these analyses are compared on the 

basis of point estimates, confidence intervals and confidence interval widths, as well as p-values 

for tests of fixed effects. The investigation concludes that a GLMM may offer a better fit than 

models using a normal approximation for this data when sample sizes are small or response 

values are close to zero. This investigation discovers that these same instances can cause 

GLMM’s utilizing the beta response to behave poorly in the Glimmix procedure because lack of 

convergence issues prevent the obtainment of valid results. In such a case, a GLMM using a 

quasi-binomial response distribution with a high value of N can offer a reasonable and well 

behaved alternative to the beta distribution.  
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Chapter 1 - Introduction 

The motivating example for this master’s report comes from the field of poultry science. 

Kansas State University researchers in the Animal Science department conducted a series of 

experiments in 2006 involving the effectiveness of poultry feeding practices in large, commercial 

chicken houses. Some experiments involved an automated auger feed line system commonly 

used in commercial broiler houses. Three of these are described in Hancock et al. (2011). The 

statistical analyses described in that paper were completed with consultation assistance from the 

department of Statistics at Kansas State University. These initial analyses utilized linear mixed 

models to describe the presence of fixed and random effects with normally distributed response 

data. All responses were assumed to follow the normal distribution despite two of the responses 

being continuous values bounded between zero and one.  

Statistical analysis using linear mixed models is appropriate for many experiments 

containing more than one random effect. Assuming normality of parameter estimates, like 

means, are justified by Central Limit Theorems when the number of observations in “large.” 

Describing the response as normally distributed is desirable for a number of reasons. The normal 

distribution is a symmetric, two-parameter distribution that is considered mathematically well-

behaved. Its mathematical properties allow for simplicity of analysis because the error term has 

expected value of zero, the variance of the observations is equal to the variance of the errors, and 

confidence intervals for estimates are all symmetric. In maximum likelihood estimation with 

normal probability density functions, the canonical parameter,  , is equal to the mean and the 

variance function,     , is equal to 1 making estimation less computationally intensive than with 

other two parameter distributions in the exponential family.  

The assumption of normally distributed observations can be a poor approximation for 

responses that are 0/1, counts, or are continuous proportions between 0 and 1. In these instances, 

descriptive statistics may indicate that the observations are not symmetric about a mean or there 

may clearly be no linear relationship between the response and its expected value. Each of the 

three experiments discussed in Hancock et al. (2011) used a different response. One experiment 

measured the weight of birds after a feeding program, another experiment measured the ratio of 

weight of fines (crushed feed) to the total weight of feed in each identified, sequential pan along 



2 

 

the auger feed line after the feed was run through, and the last measured percent fat content in 

pellets and fines in a control pan and in pans along the auger feed line. The assumption of 

normally distributed response data was used in all three analyses. Analysis of residuals showed 

no evidence of non-normality of residuals for the weight response, but the other two residual 

analyses indicated definite deviations of the residuals from normality. 

Historically, a transformation on the response data has been used to stabilize variance 

with the resulting effect that a linear relationship is created between the response data and its 

expected value. The transformed response data are frequently approximately normally 

distributed and linear model methods can be used to conduct valid analysis on the transformed 

data scale. When a transformation is applied, the response data are actually changed according to 

a function such as log, square root arc sine, etc. These functions tend to diminish the dependence 

of the variance on the mean creating a data set with two independent parameters. This property is 

consistent with the normal distribution since non-normal data typically has a variance that is a 

function of the mean.  

Transforming the response data allows one to maintain the symmetry and mathematical 

simplicity of linear modeling when the data is significantly non-normal, but transforming 

response data actually changes the model and several unfortunate consequences can result. Point 

estimates may be infeasible or unrealistic when back-transformed to the original scale. For 

example, a mean estimate can be negative when the original data has a lower bound at zero 

(Gbur et al. 2012). Confidence intervals are symmetric, but they may lack substantive meaning. 

Back-transforming the endpoints of a confidence interval may not necessarily maintain the 

meaning of the interval (Stroup 2012). This is because under normal assumptions the mean and 

median are the same so confidence intervals for mean estimates from a log-transformed response 

are the same as confidence intervals for medians. When these confidence intervals are back-

transformed to a skewed distribution they remain the intervals surrounding the measure of 

central tendency, which is the median not the mean. Confidence intervals for the difference of 

means for log-transformed data also lose their meaning when back-transformed (Gbur et al. 

2012). Confidence intervals for differences on the log-scale back-transform to confidence 

intervals of the ratio of medians and provide no information about the difference of means. These 

issues create a number of potential problems involving interpretation of results from analyses 

using response transformations.  
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A modern approach to handling non-normal response data is the use of generalized linear 

models (GLM’s) to describe the response data with an exponential family distribution that 

closely fits the actual response. Extending this idea to models with random effects allows for the 

use of generalized linear mixed models (GLMM’s). The use of these complex models was not 

computationally feasible until the recent past when software advances and improvements to 

statistical analysis programs enabled users to easily, quickly and accurately apply GLMM’s to 

data sets (Stroup 2012). In a GLMM, the response data is not changed as it is with a 

transformation; instead, a function of the expected value of the response is modeled as having a 

linear relationship with the explanatory variables.  

In this master’s report, I will consider the two auger line poultry experiments with 

continuous, proportional responses described in Hancock et al. (2011). The primary objective of 

this paper is to determine if a generalized linear mixed model using the beta distribution or a 

binomial approximation to the beta offers a better fitting model than a linear mixed model. The 

secondary objective is to investigate the potential correlation structure between pans based on 

distance. These objectives will be addressed in the following way. Chapter 2 describes the design 

and methods used in the auger feed line experiments of Hancock et al. (2011). Chapter 3 offers 

an overview of the theory of correlation structures in mixed models, an overview of the theory of 

linear mixed models (LMM’s) and GLMM’s as well as describing how these models would be 

implemented with the auger feed line experiments. Chapter 4 first summarizes the results of 

correlation structure investigation and second summarizes the results of GLMM analysis 

compared to LMM analysis for each experiment. The final chapter offers some conclusions.   

 

Chapter 2 - Brief Review of the Motivating Example 

           Complete descriptions of the two experiments under consideration here and results of the 

initial analysis can be found in Hancock et al. (2011). Descriptions of the two experimental 

designs and a brief overview of experimental methods follow. The data from the two 

experiments with continuous, proportional responses involve the distribution of poultry feed via 

an automated auger feed line used in commercial broiler houses. The objective of the 

experiments was to determine if the auger system was degrading the nutritional quality of feed 

due to the shearing and compression effects caused by standard line operation.  
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           Both experiments utilized the same large, commercial auger system that distributes feed to 

93 total feed pans. The researcher had narrowed consideration down to 12 representative pans 

evenly spaced along the line (Fig. 2.1). Pan 1 was the actual first pan on the line and pan 12 was 

the 93
rd

 and last pan on the line. The experiments all used variations of a sorghum-soy based diet 

that was pelleted using standard procedures and met NRC guidelines (Hancock et al. 2011). 

 

Figure 2.1  General diagram of commercial auger system feed line 

 

Feedline   

 

0   1    2    3    4    5    6    7    8    9    10    11    12  

 Pans 

 

 Description of Experiment 1 

          In Experiment 1, two types of pelleted feed were manufactured using differing amounts of 

whole sorghum. This created one feed with high pellet durability index (PDI) and another with 

low PDI. The researcher was interested to know how great an impact this difference in PDI 

would have on the amount of intact, pelleted feed distributed to the different positions along the 

feed line. The line was run four times with the high PDI feed and four times with the low PDI 

feed. After each run, the total weight of feed in each of the 12 identified pans was measured. The 

feed in each pan was then sifted and the weight of the fines, crushed pellets that are destroyed by 

the feed line, was measured. The response of interest was the ratio of weight of fines to total 

weight of feed for each pan.  

          The experimental design used in Experiment 1 was a completely randomized design with a 

split plot. There were two fixed factors, feed with two levels (High PDI Feed, Low PDI Feed) 

and pan with twelve levels (1, 2, 3,… 12 locations along the feed line). There were two random 

effects, run with four levels (1, 2, 3, 4 runs of the feed line) and the residual term. 

           The ANOVA table with degrees of freedom for Experiment 1 is shown in Table 2.1. The 

whole plot main effect is Feed. The whole plot experimental unit and the whole plot error term is 

Run nested within Feed. The split plot fixed effects are Pan and the Pan*Feed interaction. The 
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split plot error term, Pan crossed by Run nested within Feed, is the residual term for the 

experiment.  

 

Table 2.1  ANOVA table for Experiment 1 

Source Deg. 

Freedom 

Overall Mean 1 

Feed 1 

Run(Feed) 6 

Pan 11 

Pan*Feed 11 

Pan*Run(Feed) 66 

Total 96 

 

 

Description of Experiment 2 

          Experiment 2 used only one high PDI, pelleted, sorghum-soy based feed. The pellets were 

coated on the outside with soybean oil by means of mixing the pellets with the oil in an industrial 

mixer for one minute. From the mixer, a control pan (denoted Pan 0) was filled with coated 

pellets that would not be run through the line. The process of coating a batch of pellets with oil 

and removing a control pan was completed four times, once for each run of the feed line. Each 

batch was run through the automated auger line individually. After each run, the feed in each of 

the 12 identified pans was separated into pellets and fines and the fat content was measured. The 

response of interest was the percent fat in the pellets and the percent fat in the fines. The 

researcher had two objectives in Experiment 2. Objective 1 was to determine if there was a 

statistically significant difference between the percent fat in the pellets and in the fines for each 

of the 12 pans along the line. Objective 2 was to determine if there was a statistically significant 

difference in the percent fat of the pellets in the control pan and the pellets in the 12 pans from 

the run.  

          The experimental design for Experiment 2 is a randomized complete block design. The 

blocks are the four runs and are a random effect. The random runs are the replication in the 



6 

 

experiment. The control pan is Pan 0. Pan is the fixed treatment factor with 12 levels (1, 2, 3,… 

12 locations along the feed line) for Objective 1 and with 13 levels (the previous 12 plus the 

control pan) for Objective 2.  

 Objective 1 is to compare the percent fat for the two types of feed, pellets and fines, at 

each pan. Thus, the ANOVA table (Table 2.2) and associated model contain a fixed treatment 

effect of Type, a random block effect of Run, and a random interaction effect of Run* Type. The 

experimental unit is the Run*Type combination and the interaction of Run by Type serves as the 

residual term.  

 

Table 2.2 ANOVA table for Experiment 2 Objective 1 by Pan 

 

 

 

 

 

 

 

 

 Objective 2 is a comparison of percent fat in pellets of the control pan (Pan 0) to each pan 

along the line (Pans 1-12). The ANOVA table for Objective 2 has the fixed effect of Pan rather 

than the fixed effect of Type (see Table 2.3).  

 

Table 2.3 ANOVA table for Experiment 2 Objective 2 for Pellets only 

 

 

 

 

 

 

 

 

Source Deg. 

Freedom 

Overall Mean 1 

Type 1 

Run 3 

Run*Type 3 

Total 8 

Source Deg. 

Freedom 

Overall Mean 1 

Pan 12 

Run 3 

Pan*Run 36 

Total 52 
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Chapter 3 - Overview of Linear Mixed Models and Generalized 

Linear Mixed Models 

There are numerous possible models for the two experiments described in Chapter 2 that 

would appropriately address the research objectives of the poultry scientists. The models 

considered here are ones that also satisfy the objectives of this report. Primary concern is on 

comparing LMM’s to GLMM’s, thus models utilizing a normal response distribution will be 

compared to similar models utilizing a beta response distribution and those utilizing a variation 

of the binomial distribution to approximate the beta distribution. Because spatial correlation 

between pans may exist, correlation structure will be investigated and the best fitting correlation 

structure will be chosen for each analysis. These results are summarized and compared in 

Chapter 4. The major considerations in model choice are classification of effects as fixed or 

random, variance-covariance structure, and response distribution.  

Only mixed models will be considered because all of the experimental designs contain 

more than one random effect. Experiment 1 and both objectives for Experiment 2 include the 

random effect of Run. Run is considered random because the runs are not chosen for their 

individual properties, but are considered random representatives from the population of all 

possible runs. Since Run is a random effect, any interaction with Run is also random. Pans are a 

fixed effect that may be correlated as a function of distance. Mixed models accommodate 

complex variance-covariance structures including correlation structures commonly used with 

repeated measures designs as in Experiment 1.   

 Correlation Structure 

Mixed models allow for specification of a complex variance-covariance structure. The 

variance-covariance structure of mixed models is necessarily more complex because it includes 

the contribution of random effects other than the “residual” or “error” term. Gbur et al. (2012, 

p24) describe the role of fixed and random effects in an analysis as follows, “Fixed effects 

determine a model for the mean of the response variable and random effects determine a model 

for the variance.” Mixed models can include specific variance-covariance structures to model 

patterns of variability due to time or space. For Experiment 1 and Experiment 2 Objective 2, the 

spatial correlation between pans will be investigated.  
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In both Experiment 1 and Experiment 2 Objective 2, measurements taken from the 12 

evenly spaced, sequential pans along the line are repeated measures with potential for correlated 

errors. If significant spatial correlation between pans exists but is ignored and the within Run 

errors are assumed independent, the Type I error rate will become inflated (Stroup 2012). 

Alternately, if the correlation structure is over-modeled the power of hypothesis tests will be 

negatively affected. A correlation structure that is a logical match to the data and a parsimonious 

fit should be identified.  

In order to choose a suitable between-Pan correlation structure for the feed line 

experiments, a variety of reasonable structures will be compared using fit statistics and graphical 

methods. Specifically, AICC fit statistics, mean plots, and plots of covariance as a function of lag 

between pairs of pans will be used to compare models with various correlation matrices. The null 

model likelihood ratio test will also be used to test a model with a specified   correlation matrix 

against the model with no between-Pan correlation,       . In this context,   is the portion of 

the R matrix (described in detail later) that describes the correlation among pans for each subject. 

The simplest variance-covariance structure that includes correlation within subjects is 

compound symmetry, which is coded CS in SAS. This structure is the default   matrix used by 

proc GLIMMIX when the ‘random’ statement is used. In the feed line experiments compound 

symmetry would assume equal variance for all levels of fixed effects and equal correlation   

between each pan regardless of their separation on the line. The   matrix using compound 

symmetry is 

       [

    
    
    
    

] 

The next level of complexity in variance-covariance structure is the first order auto-

regressive model. This model, coded AR(1) in SAS, is a homogeneous variance, two parameter 

structure like compound symmetry, but it employs a power function so that pans closer together 

on the line would be more closely correlated.  

          

[
 
 
 
 
       

        

         

     
            ]
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Even though the AR(1) structure has an additional element of complexity compared to the 

compound symmetry structure, it is done with the same two parameters (      used in the 

compound symmetry structure.  

 Similar to the AR(1) model , but without the restriction that correlation decreases with 

increasing power of  , is the Toeplitz model. The Toeplitz structure requires     parameters, 

where      is the number of rows or columns of the   matrix. A separate correlation parameter 

   is calculated for each pair of distances, but every pair of distances that have the same lag have 

the same correlation.  

         

[
 
 
 
 
        

          

          

     
            ]

 
 
 
 

 

 

 The next level of complexity in variance-covariance structure modeling is the first-order 

ante-dependence model coded ANTE(1) in SAS. This model assumes heterogeneous variance 

components and relaxes the assumption of a strict power function relationship for correlation 

within subjects. The R matrix for ANTE(1) is as follows 

 

          

[
 
 
 
 
 
 
 
 
 
 
 
 

  
                    ∏  

   

   

        
              ∏  

   

   

                
        ∏  

   

   

     

    ∏  

   

   

      ∏  

   

   

      ∏  

   

   

   
 

]
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 The most complex correlation structure is the unstructured model. The unstructured 

correlation structure involves an individually estimated variance and covariance for every 

element in  . 

 Linear Mixed Models 

 

A Linear Mixed Model (LMM) is a mixed model with a normal response. LMM’s will be 

used to model the feed line experiments and will serve as a baseline for comparisons. Using a 

LMM for these experiments naively ignores that the response is a continuous proportion, which 

may not be well approximated by the normal distribution. 

 The classic representation of a LMM in matrix form is written 

                  Eq. 3.1 

                  Eq. 3.2 

                  Eq. 3.3 

where   and   are known design matrices for the fixed and random effects respectively,   is an 

unobservable vector of fixed effects,   is an unobservable vector of random effects distributed 

according to Eq. 3.2, and   is an unobservable vector of random error effects distributed 

according to Eq. 3.3 (Christensen 2002). The vectors   and   are independent of one another and 

both have an expectation of zero. The variance-covariance matrices for   and   are labeled   and 

  respectively.  

The same model can be written in probability distribution form in two different but 

equivalent ways. The first is the marginal model. 

       [ ]                    Eq. 3.4 

In the marginal model, the mean is based only on fixed effects and the parameters that describe 

the random effects appear in the variance-covariance matrix, V, only (Littell et al. 2006). The 

second model is the conditional model. 

                     Eq. 3.5 

In the conditional model,   is distributed as in Eq. 3.2. For LMM’s, the two models are exactly 

the same. If the response is modeled according to a non-normal distribution, the models are 

different (Stroup 2012). 
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 Mixed model equations are used to obtain best linear unbiased estimates (BLUEs) for the 

fixed-effect parameter vector,  . Best linear unbiased predictors (BLUPs) are the predictors used 

when information on the random effects,  , needs to be incorporated. In the auger feed line 

experiments, BLUE’s are used to obtain fixed effect parameter estimates averaged over all runs 

and BLUP’s are used to obtain predicted values for individual runs. The estimate of the 

expectation of the conditional LMM (Eq. 3.5),       , is the BLUP and the estimate of the 

expectation of the marginal LMM (Eq. 3.4),     , is the BLUE. 

 Generalized Linear Mixed Models 

 

 GLMM’s extend the theory of LMM’s to responses that have a non-normal distribution. 

In GLMM’s the response data is not transformed; instead, the explanatory variables are 

expressed as having a linear relationship to a function   of the mean of    , the response 

variable conditioned on the random effects. This function is the link function and it relates the 

response to the explanatory variables in a linear fashion, thus allowing the use of standard LMM 

techniques for estimation and hypothesis testing. The conditional linear predictor for a GLMM 

is   

                                                [   ]       .     Eq. 3.6 

The conditional model is used to describe GLMM’s since the link function is a function of the 

conditional expectation.  

Appropriate choice of response distribution and accompanying link function are pivotal 

in GLMM applications. In the feed line experiments, responses are continuous proportions 

between 0 and 1. The response distributions of interest for this data are the beta and binomial 

distributions (Stroup 2012). Both beta and binomial distributions typically use the logit link 

function in GLMM’s. 

  Logit Link:        
 

   
                                                  Eq. 3.7 

 The beta distribution is a practical choice to describe continuous response data that is 

bounded by zero and one (Johnson and Kotz 1970). The beta distribution can take many shapes 

due to its two independent parameters. This makes it ideal for modeling percent data that may 

create varying histogram shapes based on the correlation between subjects or other patterns 

specific to the data set. The beta distribution’s two-parameter flexibility also makes it 
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computationally difficult to use in SAS analyses involving repeated measures. Stroup (2012, 

p435) discusses the uncertainty involving the relationship of the lowest level random effect and 

the conditional response in repeated measures analyses. Stroup concludes that two-parameter 

exponential family distributions are problematic because “we have not yet clearly established 

how best to model repeated measures with these data.” 

The standard parameterization according to Johnson and Kotz (1970) of the beta 

distribution with parameters     has the probability density function 

           
      

        
             where            

with expected value  

  [ ]      
 

   
 

and variance 

     [ ]   
  

             
 

SAS uses the parameterization of Ferrari and Cribari-Neto (2004) for the beta 

distribution. This alterative parameterization of the beta density function is expressed in terms of 

the expected value   and the precision parameter  . The precision parameter is inversely 

proportional to the variance of  . The reciprocal of   is a dispersion parameter. (Cribari-Neto 

and Zeileis 2010) The SAS parameterization for          uses   
 

   
 and       to 

rewrite the density function as 

           
    

              
                   where          Eq. 3.8 

with expected value  

  [ ]             Eq. 3.9 

and variance 

    [ ]   
      

     
        Eq. 3.10 

  The variance of y is a function of  , thus this parameterization is heteroscedastic. When 

SAS implements a GLMM analysis in the GLIMMIX procedure, a different standard error will 

automatically be calculated for each estimated mean. If the same analysis were implemented 

with a normally distributed response, SAS would by default assume a common variance 

(Schabenberger 2005).  
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 The potential problems associated with beta response models create the need for a 

reasonable alternative, one-parameter distribution that offers better behavior when included in a 

repeated measures model. The binomial distribution is mathematically and practically similar to 

the beta distribution but it is designed for discrete responses that are the ratio of successes to 

number of trials. This discrepancy can be overcome and the binomial distribution can be used for 

continuous proportion data if the data are forced into binomial form. Cribari-Neto and Zeileis 

(2010 p5) successfully use beta response regression models to model binomial data for large 

numbers of trials. These authors show that for large enough values of N a discrete binomial 

model can be approximated with a continuous beta model. It is intuitive that for equally large 

values of N a continuous beta model should be well approximated by a discrete binomial model. 

McCullagh and Nelder (1989 p124-128) present the “quasi-binomial” response model that can be 

substituted for the beta response model. McCullagh and Nelder (1989) show how continuous 

proportions can be approximated by a number of successes out of number of trials provided a 

large number of trials are chosen.  

 In order to have a one-parameter exponential family distribution model to compare beta 

response model results to, a quasi-binomial data set will be created for each of the feed line 

experiments. Once the quasi-binomial methodology is used to create new data sets, the responses 

can be modeled as standard binomial responses. Since McCullagh and Nelder (1989) specify “a 

large number of trials” a variety of values for N (number of theoretical trials) will be explored. A 

new set of responses    (integer number of successes) will be created for each value of N used. 

The following equation is solved for each    to create the new data set.  

 
  

 
                                                       

 “Proportion” is the original continuous response. To ensure the    values are integers,      

           will need to be rounded to the nearest integer. Rounding will have less impact on the 

data set for large values of N. The SAS code in Appendix A fully illustrates how the quasi-

binomial data set is created for each experiment.  

The standard parameterization of the binomial distribution according to Mood et al. 

(1974, p88-89) is 

            {
(
 
 
)                           

                                            
}         
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with expected value 

  [ ]        

and variance 

    [ ]      

where   is the number of trials,   is the probability of success in each trial and      . 

 SAS parameterizes the binomial distribution in terms of the expected value  .  

                         {
(
 
 
)                         

 

 
          

                                            
}   Eq. 3.11 

with expected value  

  [ ]             Eq. 3.12 

and variance 

    [ ]   
      

 
        Eq. 3.13 

The scale parameter,  , is equal to one for the binomial distribution and only the parameter   is 

estimated. 

 GLMM’s require an iterative procedure for parameter estimation. The two general 

categories of iterative procedure used by SAS are linearization and integral approximation. The 

GLIMMIX procedure uses the Pseudo-likelihood method for linearization and either Laplace 

approximation or adaptive Gauss-Hermite quadrature for integral approximation. These methods 

maximize log likelihoods of exponential family, non-normal distributions. Pseudo-likelihood is 

the default method for Proc GLIMMIX. The method used for all analysis in this report is 

Laplace. The Laplace method is an approximation for maximum likelihood and is 

computationally simpler than adaptive Gauss-Hermite quadrature. The Laplace method generally 

performs the same as Pseudo-likelihood but performs better when used with beta response 

variables (Stroup 2012, p328).  

 LMM and GLMM with Experiment 1 

In Experiment 1, the fixed effects are Feed, Pan and Feed*Pan. The random effects are 

Run(Feed) and Pan*Run(Feed), the whole plot and split plot error terms, respectively. The 

researcher intends to make conclusions about the destructiveness of the feed line on two kinds of 

feed, high PDI and low PDI. The following LMM in scalar form is used to describe the 

experiment 
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                                     Eq. 3.14 

where                                

 

  is the overall mean,    is the effect of the  th feed,       is the random effect of the  th run 

nested within the  th feed,    is the fixed effect of the  th pan, and      is the interaction effect 

of the  th feed and the  th pan. The random effects are assumed to be distributed as follows 

given there is no between-Pan correlation structure 

              (       
 )                         (    

 )   

with        and      being independent of one another. The probability distribution of the 

response conditioned on the random effects is  

 

                             
   

 

 The model for Experiment 1 in matrix form (Eq. 3.1) consists of: Y – a 96 1 vector of 

responses, X – a 96 39 design matrix for the fixed effects of Feed, Pan and Feed*Pan,   – a 

39 1 vector of the fixed effect parameters                 ,   – a 96 8 design matrix of 

random Runs nested within Feed,   – a 8 1 vector of random effects       , and   – a 96 1 

vector of the unobservable split plot errors.          where the G matrix contains all the 

variance components associated with random vector u.          where the R matrix contains 

the variance components for Pan and the between-Pan covariance components over all 8 Run by 

Feed combinations. If no correlation among Pans exists and Pan variability is constant, then 

     
  . 

When the analysis of Experiment 1 is conducted in SAS using the LMM, few lack of fit 

issues are evident in the residual analysis. There are minor deviations from normal at each end of 

the Q-Q plot of residuals shown in Fig. 3.1 and some right skew of the histogram in Fig. 3.2. The 

results of the Tests for Normality used by SAS in the Univariate procedure are summarized in 

Table 3.1. None of the tests have a p-value that would indicate the residuals differ significantly 

from the normal distribution.  
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Figure 3.1 Q-Q plot for residuals for Experiment 1 using a LMM 

 

 

Figure 3.2 Histogram of distribution of residuals for Experiment 1 using a LMM 
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Table 3.1 Tests for Normality of Residuals for Experiment 1 using a LMM 

Tests for Normality 

Test Statistic p Value 

Shapiro-Wilk W 0.981325 Pr < W 0.1940 

Kolmogorov-Smirnov D 0.060903 Pr > D >0.1500 

Cramer-von Mises W-Sq 0.056135 Pr > W-Sq >0.2500 

Anderson-Darling A-Sq 0.383482 Pr > A-Sq >0.2500 

 

The analysis will be re-run using GLMM’s to model the response according to beta and 

quasi-binomial distributions. The GLMM results and residuals can then be compared to those of 

the LMM with the expectation that neither model will offer a significantly superior fit. The 

conditional model for the GLMM with beta or binomial response consists of the logit link set 

equal to the linear predictor  

      
 

   
                        

where                             

and response distribution for the beta is 

                                 

and the response distribution for the binomial is  

                                      

                                               

The binomial distribution here is the quasi-binomial distribution described earlier in Ch. 3. Once 

the new data set of number of successes out of trials is created as previously described, the data 

is modeled as a traditional binomial response data.  

 LMM and GLMM with Experiment 2 

In Experiment 2, the fixed effects are Type and Pan for Objective 1 and 2 respectively. 

The random effects for both objectives are Run and the interaction of Run and the fixed effect, 

which serves as the error term. Objective 1 is to compare the percent fat found in the pellets to 

the percent fat found in the fines for each pan 1-12 on the feed line. The following LMM in 

scalar form is used to describe Objective 1 
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                       Eq. 3.15 

where                     

  is the overall mean,    is the effect of the  th type of feed (pellet or fine),    is the random effect 

of the  th run, and     is the term for random error associated with the Type by Run interaction.  

The random effects are assumed to be distributed as follows given there is no within-subject 

correlation structure  

           (    
 )            (    

 )   

with    and     being independent of one another. The probability distribution of the response 

conditioned on the random effects is  

        (          
 ) 

Objective 2 is to compare the percent fat found in the pellets for each Pan 1-12 along the feed 

line to that of the control Pan (Pan 0). The model for Objective 2 is identical to that of Objective 

1 expect the term    in Eq. 3.15 is replaced with    where              and    is the effect of 

the  th pan. 

 The model for Experiment 2 in matrix form (Eq. 3.1) consists of: Y – a 8 1 vector of 

responses for Objective 1 and a 52 1 vector of responses for Objective 2, X – a 8 3 design 

matrix for the fixed effect Type for Objective 1 and a 52 13 design matrix for the fixed effect 

Pan in Objective 2,   – a 3 1 vector of the fixed effect parameters   and    for Objective 1 and a 

13 1 vector of the fixed effect parameters   and    for Objective 2, Z – a 8 4 design matrix of 

random Runs for Objective 1 and a 52 4 design matrix of random Runs for Objective 2,   – a 

4 1 vector of random effects    for both objectives, and   – a 8 1 vector of unobservable errors 

for Objective 1 and a 52 1 vector of unobservable errors for Objective 2.          where the 

G matrix contains all the variance components associated with random vector u.          

where      
   in Objective 1 and R contains the variance components of Pan and the between-

Pan covariance components for each Run in Objective 2. If no correlation among Pans exists and 

Pan variability is constant, then      
   in Objective 2. 

 The residual analysis for Experiment 2 Objective 1 using a LMM indicates that the 

residuals deviate somewhat from normality, but not enough to result in p-values less than 0.05 in 

the Tests of Normality conducted in Proc Univariate (Table 3.2). The Q-Q Plot in Fig. 3.3 and 
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the histogram in Fig. 3.4 both show minor deviations of the residuals from the normal 

distribution.   

 

Figure 3.3 Q-Q plot for residuals for Experiment 2 Objective 1 using a LMM 

 
Figure 3.4 Histogram of distribution of residuals for Experiment 2 Objective 1 using a 

LMM 
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Table 3.2 Tests for Normality of Residuals for Experiment 2 Objective 1 using a LMM 

Tests for Normality 

Test Statistic p Value 

Shapiro-Wilk W 0.975809 Pr < W 0.0727 

Kolmogorov-Smirnov D 0.06535 Pr > D >0.1500 

Cramer-von Mises W-Sq 0.062801 Pr > W-Sq >0.2500 

Anderson-Darling A-Sq 0.487854 Pr > A-Sq 0.2261 

 

 The residual analysis for Experiment 2 Objective 2 using a LMM indicates a substantial 

lack of fit of the model. The Q-Q Plot for residuals in Fig. 3.5 shows deviations from the normal 

line and the histogram of residuals in Fig. 3.6 shows a poor match with the curve representing 

the normal distribution. Table 3.3 summarizes the results of four Tests for Normality performed 

on the residuals. Of the four tests, three tests (Shapiro-Wilk, Cramer-von Mises, and Anderson-

Darling) have p-values less than 0.05 indicating the residuals follow a distribution that is non-

normal.  

Figure 3.5 Q-Q plot for residuals for Experiment 2 Objective 2 using a LMM 
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Figure 3.6 Histogram of distribution of residuals for Experiment 2 Objective 2 using a 

LMM 

 

 

Table 3.3 Tests for Normality of Residuals for Experiment 2 Objective 2 using a LMM 

Tests for Normality 

Test Statistic p Value 

Shapiro-Wilk W 0.949253 Pr < W 0.0271 

Kolmogorov-Smirnov D 0.114855 Pr > D 0.0858 

Cramer-von Mises W-Sq 0.160412 Pr > W-Sq 0.0180 

Anderson-Darling A-Sq 0.907599 Pr > A-Sq 0.0205 

 

The analyses for Objective 1 and Objective 2 will be re-run using GLMM’s to model the 

response according to beta and quasi-binomial distributions. The scalar models for the GLMM’s 

will be created as was done in Experiment 1.  The expectation is that a better fitting models can 

be obtained, which may impact the conclusions of the analysis, particularly for Objective 2.  
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Chapter 4 - Results 

This chapter presents the results of analysis. The objectives are to determine if the 

conclusions drawn regarding research objectives remain consistent across the different response 

models under consideration and to compare the models themselves. The response is modeled as 

Gaussian (LMM), beta (GLMM) and with 10 variations of the quasi-binomial distribution where 

the sample size N varies from 10 to 1000 (GLMM). Correlational structure between Pans within 

Run is determined for each experiment and incorporated into the variance-covariance structure. 

The analysis results will allow us to determine how the GLMM models compare to the LMM 

and what range of count parameters for the quasi-binomial distribution offers a good 

approximation to the beta distribution.  Models will be compared on the basis of point estimates, 

their confidence intervals and confidence interval widths, as well as p-values for F-tests of the 

fixed effects.  

 Correlation Structure 

Prior to comparing response distributions, the within Run correlation between Pans will 

be investigated. Graphical methods will be used to visualize changes in point estimates by Pan 

and changes in covariance by distance between Pans. Littell et al. (2006) and Stroup (2012) 

recommend mean plots and plots of covariance by distance.  

 Experiment 1 Correlation Structure 

In Experiment 1, Run(Feed) is the subject of the repeated measure Pan. The levels of Pan 

yield the 12 rows and 12 columns for the correlation matrix  . Two kinds of plots are generated 

in SAS to aid in the choice of reasonable correlation structure. The first is the LSMeans plot of 

the response, Ratio, as a function of Pan. Fig. 4.1 indicates that the correlation between Pans 

within Run(Feed) is likely a function of Pan position because Pans that are far apart have greater 

difference in point estimates than those close together on the feed line.  
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Figure 4.1 LS-Means plot of point estimates for each Feed by Pan for Experiment 1   

 

 

A plot of covariance as a function of lag or distance between pairs of Pans (Stroup 2012, 

p421) is produced in SAS to gain better understanding of the structure. This plot is shown in Fig. 

4.2. It is created by using a LMM with unstructured correlation structure to analyze the data for 

Experiment 1 in Proc Mixed and outputting the elements of the fixed effects variance-covariance 

matrix, R, to the be used in the plot. For the unstructured correlation structure, each element of 

the R matrix is individually estimated and is used as a point on the graph. Each line on the graph 

represents a row from the R matrix beginning with the diagonal variance component and moving 

right across the row. For example, the blue, square-point line in Fig. 4.2 shows the variance of 

Pan 2 at horizontal axis element 0, the covariance between Pan 2 and a pan that is one pan 

interval away at horizontal axis element 1, and so on until the covariance between Pan 2 and Pan 

12 (10 pans apart) is shown at the horizontal axis element 10.  
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Figure 4.2 Plot of Covariance by Lag for Experiment 1 

 

 

Fig.4.2 allows us to visualize the actual structure of the correlation between Pans within 

Run(Feed) in order to choose an appropriate structure. Fig.4.2 shows a definite decrease in 

covariance as distance between Pans increases. The two simplest correlation structures that fit 

this criteria are AR(1) and Toeplitz. A simpler structure would be compound symmetry, but we 

would expect the graph of covariance by lag to be flat. The graph does not show strong evidence 

of the amount of decrease in covariance being dependent on Pan position, thus heterogeneous 

variance models can be disregarded as more complex than necessary.  

 Fit statistics are a good method of evaluating variance-covariance structures when the 

response is modeled as normal and can be used to determine whether AR(1), Toeplitz, or some 

other structure would create a better fitting model. We will rely on fit statistics to make the final 

determination of correlation structure. Using a LMM in the Mixed Procedure in SAS, fit 

statistics for models using compound symmetry, AR(1), Toeplitz, ARH(1), and ANTE(1) 

correlation structures were obtained. The Null Model Likelihood Ratio Test has a p-value of 
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<.001 for each of the aforementioned models indicating that all models would offer significant 

improvement over the variance component only structure with no correlation. The Akaike 

Information Criterion with small sample correction (AICC) values for models fit with these 

correlation structures are summarized in Table 4.1. The model using Toeplitz correlation 

structure would be selected as a better fit based on a slightly lower AICC value.  

 

Table 4.1 AICC values for models with various correlation structures for Experiment 1 

Type AICC 

CS -266.5 

AR(1) -283.2 

Toeplitz -287.6 

ARH(1) -263.8 

ANTE(1) -256.9 

 

 Graphical evidence and fit statistics both favor the choice of Toeplitz for the correlation 

structure between Pans within Run(Feed) for Experiment 1. The forthcoming results for 

Experiment 1 comparing the LMM to GLMM’s will all use the Toeplitz structure for the   

matrix.  

 Experiment 2 Correlation Structure 

 In Experiment 2, the correlation between Pans within Run is relevant only in Objective 2 

where the percent fat in pellets along the line is compared to the percent fat of a control pan. For 

this objective, Run is the subject of the repeated measure Pan. Because of the addition of the 

Control Pan (Pan 0), the correlation matrix   is 13 x 13. As with Experiment 1, a LS means plot 

of percent fat by Pan and a plot of covariance by distance are generated in SAS to facilitate the 

choice of an appropriate correlation structure.   
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Figure 4.3 LS-Means plot of point estimates by Pan for Experiment 2 Objective 2 

 

Fig. 4.3 indicates a likely positive correlation between Pan and Percent Fat in Pellets. As in 

Experiment 1, the plot of Correlation as a function of lag or distance (Fig. 4.4) will give a better 

indication of what the correlational structure is appropriate. 

 

Figure 4.4 Plot of Covariance by Lag for Experiment 2 Objective 2 
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Fig. 4.4 shows a large amount of fluctuation in covariance between adjacent pans, but no overall 

increasing or decreasing pattern. This suggests that the   matrix for Experiment 2 Objective 2 

should utilize Compound Symmetry structure. 

 To confirm this interpretation, fit statistics were generated using a LMM and the Mixed 

Procedure in SAS. Table 4.2 summarizes the AICC values for the LMM using variance 

component only, compound symmetry, AR(1), ARH(1), and ANTE(1) correlation structures. 

Toeplitz is not included due to lack of convergence. As expected, compound symmetry structure 

has the lowest AICC value and hence offers the best model fit. All forthcoming analysis results 

will utilize compound symmetry correlation structure for Experiment 2 Objective 2.  

 

Table 4.2 AICC values for models with various correlation structures for Experiment 2 

Objective 2 

Type AICC 

VC 28.5 

CS 23.5 

AR(1) 26.0 

ARH(1) 52.4 

ANTE(1) 128.5 

 

 Results for Experiment 1 

The research objectives for Experiment 1 are to determine if there is a statistically 

significant difference in the ratio of fines to total weight of feed in a pan for each type of feed 

(High PDI, Low PDI) and among the pans (Pan 1 – Pan 12) on the feed line. All models under 

consideration yield p-values <.0001 in the Type III Tests for Fixed Effects for Type and for Pan, 

but none produce a statistically significant p-value for the Feed*Pan interaction. Though the 

same conclusions are reached for all models, the models do not all yield the same point estimates 

and confidence intervals. 

Figures 4.5 and 4.6 show the mean estimates and 95% confidence intervals for High PDI 

and Low PDI Feed respectively. Figure 4.7 compares mean estimates and 95% confidence 

intervals for the first and last pans on the feed line (Pan 1 and Pan12). It can be seen in all three 

figures that the quasi-binomial N=10 model produces very wide confidence intervals and point 
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estimates out of line with the other models. This is to be expected since high round off error is 

inherent in the construction of the quasi-binomial data set for low values of N. The normal 

response model performs comparably to the beta response model and high N quasi-binomial 

models for Low PDI feed, but produces a wider confidence interval and higher point estimate for 

High PDI feed. The normal response model also produces a much narrower 95% confidence 

interval than the other models for Pan point estimates. The quasi-binomial response model 

closely approximates the beta response model for values of N as low as 25 for Feed and for 

values of N of 200 or greater for Pan.  

 

Figure 4.5 High PDI mean estimates with 95% confidence intervals for Experiment 1 
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Figure 4.6 Low PDI mean estimates with 95% confidence intervals for Experiment 1 

 

 

  

Figure 4.7 Pan 1 & Pan 12 mean estimates with 95% confidence intervals for Experiment 1 
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Figure 4.8 shows the widths of the 95% confidence intervals for point estimates of levels 

of main effects in Experiment 1. It is notable that there is a relatively small range of widths for 

the two levels of Feed where estimates are averages of 48 observations. There is a much greater 

range for the levels of Pan, where estimates are averages of only 8 observations. Overall, the 

normal response model produces very narrow confidence intervals and quasi-binomial response 

models with low values of N produce wide confidence intervals.  

 

Figure 4.8 95% confidence interval widths for mean estimates  for Experiment 1 

 

 

 Results for Experiment 2 

 Experiment 2 Objective 1 

The researcher’s objective in Experiment 2 Objective 1 is to determine if there is a 

statistically significant difference in the percent fat in the pellets and the fines for each pan along 

the feed line. Since this analysis is done by pan, there are only 8 degrees for each pan (Table 

2.2). The combination of extremely small sample size and observations close to zero create 
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issues in the Glimmix procedure particularly with the beta response model. Convergence issues 

prevent the obtainment of confidence intervals for the beta response model, indicating that this is 

an instance where a good approximation to the beta response model is needed. For all pans along 

the feed line, the normal response model generates confidence intervals that are unrealistically 

narrow.  

 Figures 4.9, 4.10, and 4.11 show mean estimates and 95% confidence intervals for the 

percent fat in Fines and Pellets for Pan 1, Pan 6 and Pan 12 respectively. These figures show the 

first, middle, and last pans on the feed line and are representative of all the pans on the feed line. 

In all three figures, extremely narrow confidence intervals for the normal response models and 

extremely wide confidence intervals for quasi binomial response models with low values of N 

can be seen. These issues coupled with the results for Experiment 1, lead to the conclusion that a 

quasi-binomial response model with N of 200 or greater would be a good alternative to the beta 

response model.  

 

Figure 4.9 Pan 1 mean estimates with 95% confidence intervals for Experiment 2 

Objective1 
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Figure 4.10 Pan 6 mean estimates with 95% confidence intervals for Experiment 2 

Objective 1 

 

Figure 4.11 Pan 12 mean estimates with 95% confidence intervals for Experiment 2 

Objective 1 
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The implications of response distribution are evident in the p-values for the test of 

difference in mean percent fat in Pellets and Fines summarized in Table 4.3. The narrow 

confidence intervals produced by the normal response model lead to p-values less than 0.05 for 

Pans 1, 2, 3, 4, 5, 6, 8, and 9. This seems unlikely based on the mean estimates, which would 

lead one to expect few statistically significant differences. Similar statistically significant 

differences are found with the beta response model, which we know to be invalid because of 

convergence issues. There are no statistically significant differences for Type for any of the Pans 

when a quasi-binomial response model is used.  

 

Table 4.3 P-values for test of difference in mean percent fat in Fines and Pellets by Pan  

Pan Beta +                  Normal Quasi-Bin 

N = 50 

Quasi-Bin 

N = 200 

Quasi-Bin 

N = 500 

Quasi-Bin 

N = 1000 

1 0.0036 0.0037 0.7297 0.6064 0.3796 0.2426 

2 0.0004 0.0009 0.7297 0.5555 0.4091 0.2682 

3 0.0409 0.0436 0.7297 0.5031 0.2775 0.1873 

4 0.0041 0.0046 0.6041 0.5061 0.2975 0.1811 

5 DNC 0.0222 0.7297 0.6064 0.3809 0.2431 

6 0.0042 0.0046 0.8636 0.5583 0.3847 0.2169 

7 DNC 0.069 1 0.6687 0.5918 0.4388 

8 0.0297 0.0333 0.8636 0.6116 0.465 0.3523 

9 0.0289 0.0298 0.8636 0.6116 0.4952 0.3529 

10 0.1651 0.1659 1 0.8626 0.6281 0.5481 

11 0.237 0.2413 1 0.7936 0.6639 0.5446 

12 0.057 0.0571 0.7297 0.8616 0.7031 0.5699 

 

+ GLMM using the Beta response did not converge for pans 5 and 7. Beta p-values are unlikely to be valid 

++ For Quasi-Binomial 10 and Quasi-Binomial 25 p-values were 1 for all pans.  

 

The differences in 95% confidence interval widths between the models can be seen in 

Figure 4.13. The lines for normal and beta are both approximately zero. The confidence interval 

widths are very similar for quasi-binomial response models with N = 200 or greater.  
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Figure 4.12 95% confidence interval widths for mean estimates for Experiment 2 

Objective1 

 

 Experiment 2 Objective 2 

The research objective for Experiment 2 Objective 2 is to determine if there is a 

statistically significant difference in the percent fat of the pellets in the 12 pans along the line and 

the percent fat of the control pan (Pan 0). The analysis for Experiment 2 Objective 2 has issues 

similar to Experiment 2 Objective 1. In the experimental design for Objective 2, there are 52 

degrees of freedom (Table 2.3), which is substantially higher than the 8 degrees of freedom in 

Objective 1, but response values are still proportions close to 0. As in Objective 1 analysis, the 

Glimmix procedure is unable to calculate standard errors for point estimates when the beta 

distribution is used. The normal response produces unrealistically narrow confidence intervals 
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and the quasi-binomial response with high N values produces extremely wide confidence 

intervals. Again, using the quasi-binomial response with N greater than 100 produces consistent 

point estimates and useable confidence interval widths.  

Figure 4.13 shows mean estimates with 95% confidence intervals for the control pan (Pan 

0), Convergence issues prevent any confidence interval from being generated for the beta 

response and the confidence interval for the normal response is unrealistically narrow. As a 

result, no comparisons between Pan 0 and the other Pans along the feed line can be made for the 

beta response and p-values for differences in Pans for the normal response are expected to be 

artificially low. This is seen in Table 4.4 where p-values for differences between Pan 0 and the 

other 12 pans are summarized. The quasi-binomial response models with large values of N offer 

better results. For these models, p-values stabilize for N greater than 100 and lead to the 

conclusion that there are no statistically significant differences between Pan 0 and any Pan 1-12.  

 

Figure 4.13 Pan 0 mean estimates with 95% confidence intervals for Experiment 2 

Objective 2 
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Table 4.4 P-values for test of difference in mean percent fat in Pan 0 and Pans 1-12 

Pan 0 

vs Pan 

Beta +                  Normal Quasi-Bin 

N = 50 

Quasi-Bin 

N = 200 

Quasi-Bin 

N = 500 

Quasi-Bin 

N = 1000 

1 . 0.3467 0.6877 0.9222 0.8524 0.7928 

2 . 0.0631 0.6877 0.8457 0.6665 0.6017 

3 . 0.4101 0.6877 0.9222 0.9011 0.8265 

4 . 0.2261 0.8376 0.8457 0.8044 0.7267 

5 . 0.3207 0.6877 0.9222 0.8044 0.7595 

6 . 0.0423 0.5544 0.7714 0.6665 0.5722 

7 . 0.008 0.4397 0.7714 0.5408 0.4623 

8 . 0.0106 0.5544 0.7714 0.5812 0.4623 

9 . 0.0066 0.5544 0.7714 0.5408 0.437 

10 . 0.0011 0.4397 0.6314 0.502 0.3239 

11 . 0.0077 0.4397 0.7714 0.5408 0.4623 

12 . 0.0036 0.6877 0.6998 0.502 0.389 

 

+ P-values for differences are unobtainable for the beta distribution. No standard errors for estimates could be 

generated due to convergence issues 

++ For Quasi-Binomial 10 and Quasi-Binomial 25 p-values were 1 for all pans. 

 

The conclusion that there are no statistically significant differences between pans is 

verified graphically in Figure 4.14 and Figure 4.15. These figures show mean estimates and 95% 

confidence intervals for all models under consideration. Figure 4.14 shows Pan 0 and the first 

pan along the feed line (Pan 1) and Figure 4.15 shows Pan 0 and the last pan along the feed line 

(Pan12). In both figures, there is little difference between means for any model other than quasi-

binomial responses with very low values of N and clearly overlapping confidence intervals for 

all models.  
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Figure 4.14 Pan 0 & Pan 1 mean estimates with 95% confidence intervals for Experiment 2 

Objective 2 

 

 

Figure 4.15 Pan 0 & Pan 12 mean estimates with 95% confidence intervals for 

Experiment2 Objective 2 
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 A comparison of 95% confidence interval widths is found in Figure 4.16. The beta and 

normal response generate confidence intervals that are approximately zero and quasi-binomial 

response with N less than 100 generate confidence intervals that are extremely wide. Quasi-

binomial response models with N greater than 100 have 95% confidence intervals widths of 

similar size.  

 

Figure 4.16 95% confidence interval widths for mean estimates for Experiment 2 

Objective2 

 

 

 

Chapter 5 - Conclusions 

The mathematically logical choice of probability distribution for response data that is a 

continuous proportion bounded by 0 and 1 is the beta distribution. We would like to use a 

GLMM with a beta response for experiments with multiple random effects and a proportion 

response in SAS Glimmix procedure, but characteristics of the data set or experimental design 
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may make this impossible. The beta response model in the Glimmix procedure is known to 

perform inconsistently in repeated measures analyses (Stroup 2012, p.435). The beta response 

model also had more lack of convergence issues than other models in this series of experiments 

where the response proportions are close to zero.  

The issues with using a beta response model in Proc Glimmix create a need for a 

reasonable alternative. The traditional solutions are to use a square root arc sine transformation 

on the response data or to rely on the normal distribution to closely approximate the beta 

distribution. Transformations do not always yield feasible point estimates and, as seen in 

Experiment 2, the normal distribution can be a poor alternative. The results of this investigation 

show that a quasi-binomial response model with a high value of N (greater than 100) offers a 

good approximation to the beta response model that behaves well with GLMM’s in SAS 

Glimmix procedure.  

Experiment 1 is a situation where the beta response model, the normal response model, 

and quasi-binomial models with values of N that were not extremely low are all good options for 

analysis. This experiment had a relatively large sample size and had response values that were 

not near the boundaries of the 0, 1 interval. Mean estimates and 95% confidence intervals for 

quasi-binomial response models with N = 200 or greater very closely approximate the beta 

response model.  

Experiment 2 is an example of a situation where the beta response model is not a feasible 

option due to lack of convergence. In both Objective 1 and Objective 2, response values are close 

to zero and sample sizes are small, this is particularly true in Objective 1 where the analysis is 

done by Pan. In the analyses for Experiment 2, the normal response model is a poor choice 

because it produces extremely narrow confidence intervals. As a result, the normal response 

model yields a statistically significant difference in percent fat in Pellets and Fines for many of 

the Pans along the feed line even when there is little difference in the estimated mean values. A 

high type I error rate is likely for this model. The quasi-binomial response models perform 

consistently and produce reasonable confidence interval widths for models with N = 200 or 

greater in Experiment 2. These models were also shown to approximate the beta response model 

well in Experiment 1. This evidence leads to the conclusion that a quasi-binomial response 

model with a high value of N is a good alternative to the beta response model when small sizes 

are small and response data is a continuous proportion close to zero.   
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The use of the quasi-binomial model as an alternative to the normal model will be 

recommended to researchers involved with the motivating poultry feed line experiments 

(Hancock et al. 2012). The quasi-binomial model is a good option for analysis in the series of 

experiments considered in this case study, but more investigation is needed to determine if this 

alternative performs well with a greater variety of data sets. It is left to other researchers to 

consider this question and to perform simulation studies to determine the robustness of the 

conclusions found in this case study.  
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Appendix A - SAS Programs 

This appendix contains the SAS 9.3 programs used to obtain the reported results. 

 Experiment 1 

The following data input is used for each analysis performed for Experiment 1. 

data feedline; 

 input pan $ feed $ run $ Fines Pellets   Total   Ratio; 

 N10 = 10; 

 Y10 = round(Ratio*10); 

 N25 = 25; 

 Y25 = round(Ratio*25); 

 N50 = 50; 

 Y50 = round(Ratio*50); 

 N100 = 100; 

 Y100 = round(Ratio*100); 

 N200 = 200; 

 Y200 = round(Ratio*200); 

 N300 = 300; 

 Y300 = round(Ratio*300); 

 N400 = 400; 

 Y400 = round(Ratio*400); 

 N500 = 500; 

 Y500 = round(Ratio*500); 

 N750 = 750; 

 Y750 = round(Ratio*750); 

 N1000 = 1000; 

 Y1000 = round(Ratio*1000); 

 datalines; 

01 H 1 141 633 774 0.182170543 

02 H 1 121 660 781 0.154929577 

03 H 1 129 682 811 0.159062885 

04 H 1 126 668 794 0.158690176 

05 H 1 116 663 779 0.148908858 

06 H 1 143 667 810 0.17654321 

07 H 1 109 735 844 0.129146919 

08 H 1 102 689 791 0.128950695 

09 H 1 133 664 797 0.166875784 

10 H 1 95 699 794 0.119647355 

11 H 1 192 692 884 0.21719457 

12 H 1 120 457 577 0.20797227 

01 L 1 634 264 898 0.706013363 

02 L 1 576 261 837 0.688172043 

03 L 1 552 256 808 0.683168317 

04 L 1 631 180 811 0.778051788 

05 L 1 612 186 798 0.766917293 

06 L 1 671 177 848 0.791273585 

07 L 1 629 225 854 0.736533958 
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08 L 1 613 205 818 0.749388753 

09 L 1 642 173 815 0.787730061 

10 L 1 589 209 798 0.738095238 

11 L 1 707 92 799 0.88485607 

12 L 1 518 55 573 0.904013962 

01 H 2 56 686 742 0.075471698 

02 H 2 42 682 724 0.05801105 

03 H 2 30 501 531 0.056497175 

04 H 2 75 708 783 0.095785441 

05 H 2 85 691 776 0.109536082 

06 H 2 101 730 831 0.121540313 

07 H 2 89 689 778 0.114395887 

08 H 2 109 685 794 0.137279597 

09 H 2 121 685 806 0.150124069 

10 H 2 94 682 776 0.121134021 

11 H 2 143 668 811 0.176325524 

12 H 2 127 647 774 0.164082687 

01 L 2 596 165 761 0.783180026 

02 L 2 585 161 746 0.784182306 

03 L 2 624 170 794 0.785894207 

04 L 2 668 179 847 0.78866588 

05 L 2 660 145 805 0.819875776 

06 L 2 664 138 802 0.827930175 

07 L 2 647 148 795 0.813836478 

08 L 2 641 150 791 0.810366625 

09 L 2 621 180 801 0.775280899 

10 L 2 670 179 849 0.789163722 

11 L 2 696 103 799 0.871088861 

12 L 2 659 119 778 0.847043702 

01 H 3 51 697 748 0.068181818 

02 H 3 41 657 698 0.058739255 

03 H 3 27 442 469 0.057569296 

04 H 3 80 693 773 0.103492885 

05 H 3 65 694 759 0.085638999 

06 H 3 73 707 780 0.093589744 

07 H 3 76 707 783 0.09706258 

08 H 3 103 678 781 0.131882202 

09 H 3 148 653 801 0.184769039 

10 H 3 84 682 766 0.109660574 

11 H 3 146 662 808 0.180693069 

12 H 3 108 486 594 0.181818182 

01 L 3 577 187 764 0.755235602 

02 L 3 584 172 756 0.772486772 

03 L 3 . . . . 

04 L 3 661 124 785 0.842038217 

05 L 3 633 143 776 0.815721649 

06 L 3 604 159 763 0.791612058 

07 L 3 632 146 778 0.812339332 

08 L 3 638 142 780 0.817948718 

09 L 3 658 142 800 0.8225 

10 L 3 747 194 941 0.793836344 
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11 L 3 663 152 815 0.813496933 

12 L 3 665 127 792 0.839646465 

01 H 4 53 693 746 0.071045576 

02 H 4 41 703 744 0.055107527 

03 H 4 30 545 575 0.052173913 

04 H 4 82 694 776 0.105670103 

05 H 4 57 698 755 0.075496689 

06 H 4 65 697 762 0.085301837 

07 H 4 72 697 769 0.093628088 

08 H 4 86 685 771 0.11154345 

09 H 4 128 659 787 0.162642948 

10 H 4 54 532 586 0.092150171 

11 H 4 148 659 807 0.183395291 

12 H 4 120 451 571 0.210157618 

01 L 4 578 177 755 0.765562914 

02 L 4 592 164 756 0.783068783 

03 L 4 579 178 757 0.764861295 

04 L 4 641 137 778 0.823907455 

05 L 4 621 151 772 0.804404145 

06 L 4 703 163 866 0.811778291 

07 L 4 517 96 613 0.843393148 

08 L 4 581 156 737 0.788331072 

09 L 4 652 165 817 0.798041616 

10 L 4 662 143 805 0.822360248 

11 L 4 678 131 809 0.838071693 

12 L 4 739 125 864 0.855324074 

; 

 

proc print data=feedline; 

 

run; 

 

LMM analysis with residual analysis 

 
title 'Normal Response Proc MIXED'; 

proc glimmix data=feedline; 

class pan feed run; 

model ratio = feed pan pan*feed; 

random intercept/subject=run(feed) type=toep; 

lsmeans feed|pan/cl; 

output  resid student pred out=means; 

run; 

 

 

proc print  data=means; 

run; 

 

proc univariate data=means normal; 
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 var resid; 

 qqplot resid/ normal (mu=0 sigma=0.02172); 

 histogram resid/ normal; 

run; 

 

 

proc univariate data=means normal; 

 var student; 

 qqplot student/ normal (mu=0 sigma=0.02172); 

 histogram student/ normal; 

run; 

Variance Component Analysis 

 title 'Mean Plots for Ratio'; 

 proc glimmix data=feedline; 

  class feed run pan; 

  model ratio=feed|pan; 

  random intercept/ subject=run(feed); 

  lsmeans feed*pan/ 

   plot=meanplot(sliceby=feed join); 

  output out=predicted_ratio pred=p resid=r; 

  run; 

  

  

 title 'Plot of Covariance as a Function of Distance'; 

 proc mixed data=feedline; 

  class feed run pan; 

  model Ratio=feed|pan; 

  repeated/type=un sscp subject=run(feed); 

  ods output covparms=cov; 

  

 data times; 

  do time1=1 to 12; 

   do time2=1 to time1; 

    dist=time1-time2; 

  output; 

   end; 

  end; 

  

 data covplot; 

merge times cov; 

 

symbol color=black interpol=join line=1 v=circle; 

symbol2 color=blue interpol=join line=1 v=square; 

symbol3 color=green interpol=join line=1 v=dot; 

symbol4 color=red interpol=join line=1 v=star; 

symbol5 color=yellow interpol=join line=1 v=plus; 

symbol6 color=orange interpol=join line=1 v=diamond;  
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symbol7 color=purple interpol=join line=1 v=triangle; 

symbol8 color=brown interpol=join line=1 v=club; 

symbol9 color=black interpol=join line=2 v=spade; 

symbol10 color=red interpol=join line=2 v=heart; 

symbol11 color=blue interpol=join line=2 v=star; 

symbol12 color=green interpol=join line=2 v=diamond; 

 

proc gplot data=covplot; 

 plot estimate*dist=time2; 

run; 

 

title 'Normal Response Proc MIXED with Repeated Pan default VC'; 

proc mixed data=feedline; 

class pan feed run; 

model ratio = feed pan pan*feed; 

repeated pan/subject=run(feed) rcorr; 

run; 

 

title 'Normal Response Proc MIXED with Repeated Pan Compound Symmetry'; 

proc mixed data=feedline; 

class pan feed run; 

model ratio = feed pan pan*feed; 

repeated pan/subject=run(feed) type=CS rcorr; 

run; 

 

title 'Normal Response Proc MIXED with Repeated Pan AR(1)'; 

proc mixed data=feedline; 

class pan feed run; 

model ratio = feed pan pan*feed; 

repeated pan/subject=run(feed) type=AR(1) rcorr; 

run; 

 

title 'Normal Response Proc MIXED with Repeated Pan Toeplitz'; 

proc mixed data=feedline; 

class pan feed run; 

model ratio = feed pan pan*feed; 

repeated pan/subject=run(feed) type=toep rcorr; 

run; 

 

title 'Normal Response Proc MIXED with Repeated Pan ARH(1)'; 

proc mixed data=feedline; 

class pan feed run; 

model ratio = feed pan pan*feed; 

repeated pan/subject=run(feed) type=ARH(1) rcorr; 

run; 

 

title 'Normal Response Proc MIXED with Repeated Pan ANTE(1)'; 

proc mixed data=feedline; 

class pan feed run; 

model ratio = feed pan pan*feed; 

repeated pan/subject=run(feed) type=ANTE(1) rcorr; 
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run; 

 

 

GLMM Analysis 

 

title 'Normal Response Proc MIXED'; 

proc mixed data=feedline; 

class pan feed run; 

model ratio = feed pan pan*feed; 

random intercept/subject=run(feed) type=toep; 

lsmeans feed|pan/cl; 

run; 

 

 

title 'Normal Response Proc GLIMMIX'; 

proc glimmix data=feedline; 

class pan feed run; 

model ratio = feed pan pan*feed; 

random intercept/subject=run(feed) type=toep; 

lsmeans feed|pan/cl; 

run; 

 

 

title 'Beta Response'; 

proc glimmix data=feedline method=laplace; 

class pan feed run; 

model ratio = feed pan pan*feed/dist=beta; 

random intercept/subject=run(feed) type=toep; 

lsmeans feed|pan/ilink cl; 

run; 

 

 

title 'Quasi-Binomial Response N=10'; 

proc glimmix data=feedline method=laplace; 

class pan feed run; 

model Y10/N10 = feed pan pan*feed; 

random intercept/subject=run(feed) type=toep; 

lsmeans feed|pan/ilink cl; 

run; 

 

 

title 'Quasi-Binomial Response N=25'; 

proc glimmix data=feedline method=laplace; 

class pan feed run; 

model Y25/N25 = feed pan pan*feed; 

random intercept/subject=run(feed) type=toep; 

lsmeans feed|pan/ilink cl; 

run; 
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title 'Quasi-Binomial Response N=50'; 

proc glimmix data=feedline method=laplace; 

class pan feed run; 

model Y50/N50 = feed pan pan*feed; 

random intercept/subject=run(feed) type=toep; 

lsmeans feed|pan/ilink cl; 

run; 

 

 

title 'Quasi-Binomial Response N=100'; 

proc glimmix data=feedline method=laplace; 

class pan feed run; 

model Y100/N100 = feed pan pan*feed; 

random intercept/subject=run(feed) type=toep; 

lsmeans feed|pan/ilink cl; 

run; 

 

 

title 'Quasi-Binomial Response N=200'; 

proc glimmix data=feedline method=laplace; 

class pan feed run; 

model Y200/N200 = feed pan pan*feed; 

random intercept/subject=run(feed) type=toep; 

lsmeans feed|pan/ilink cl; 

run; 

 

 

title 'Quasi-Binomial Response N=300'; 

proc glimmix data=feedline method=laplace ; 

class pan feed run; 

model Y300/N300 = feed pan pan*feed; 

random intercept/subject=run(feed) type=toep; 

lsmeans feed|pan/ilink cl; 

run; 

 

 

title 'Quasi-Binomial Response N=400'; 

proc glimmix data=feedline method=laplace; 

class pan feed run; 

model Y400/N400 = feed pan pan*feed; 

random intercept/subject=run(feed) type=toep; 

lsmeans feed|pan/ilink cl; 

run; 

 

 

title 'Quasi-Binomial Response N=500'; 

proc glimmix data=feedline method=laplace; 

class pan feed run; 

model Y500/N500 = feed pan pan*feed; 

random intercept/subject=run(feed) type=toep; 
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lsmeans feed|pan/ilink cl; 

run; 

 

 

title 'Quasi-Binomial Response N=750'; 

proc glimmix data=feedline method=laplace; 

class pan feed run; 

model Y750/N750 = feed pan pan*feed; 

random intercept/subject=run(feed) type=toep; 

lsmeans feed|pan/ilink cl; 

run; 

 

 

title 'Quasi-Binomial Response N=1000'; 

proc glimmix data=feedline method=laplace; 

class pan feed run; 

model Y1000/N1000 = feed pan pan*feed; 

random intercept/subject=run(feed) type=toep; 

lsmeans feed|pan/ilink cl; 

run; 

 

 

 Experiment 2 

The following data input is used for each analysis performed for Experiment 2.  

data PercentFat; 

input Sample $ DM BeakerNumb $  EmptyBkrWt   SampleWt   ExtBkrWt  PercFat count 

Type $; 

 

if mod (_N_,4)=1 then run=1; 

if mod (_N_+1,4)=1 then run=4; 

if mod (_N_+2,4)=1 then run=3; 

if mod (_N_+3,4)=1 then run=2; 

 

if count>0 and count<5 then pan=0; 

if count>4 and count<9 then pan=01; 

if count>8 and count<13 then pan=02; 

if count>12 and count<17 then pan=03; 

if count>16 and count<21 then pan=04; 

if count>20 and count<25 then pan=05; 

if count>24 and count<29 then pan=06; 

if count>28 and count<33 then pan=07; 

if count>32 and count<37 then pan=08; 

if count>36 and count<41 then pan=09; 

if count>40 and count<45 then pan=10; 

if count>44 and count<49 then pan=11; 

if count>48 and count<53 then pan=12; 

if count>52 and count<57 then pan=01; 

if count>56 and count<61 then pan=02; 
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if count>60 and count<65 then pan=03; 

if count>64 and count<69 then pan=04; 

if count>68 and count<73 then pan=05; 

if count>72 and count<77 then pan=06; 

if count>76 and count<81 then pan=07; 

if count>80 and count<85 then pan=08; 

if count>84 and count<89 then pan=09; 

if count>88 and count<93 then pan=10; 

if count>92 and count<97 then pan=11; 

if count>96 and count<101 then pan=12; 

 

drop count  DM; 

 

datalines; 

  

CONTROL 100 15 62.2027 2.0058 62.3387 6.78 1 C 

CONTROL 100 17 63.1907 2.0057 63.3273 6.81 2 C 

CONTROL 100 18 63.0344 2.0017 63.1742 6.98 3 C 

CONTROL 100 9B 66.8418 2.0025 66.9753 6.666666667 4

 C 

1-1-P 100 9B 67.008 2.0082 67.1439 6.767254258 5 P 

2-1-P 100 10 60.9826 2.0071 61.1295 7.319017488 6 P 

3-1-P 100 14B 63.0365 2.0026 63.1705 6.691301308 7 P 

4-1-P 100 3 65.0005 2.0135 65.143 7.077228706 8 P 

1-2-P 100 6B 61.7599 2.0197 61.9004 6.956478685 9 P 

2-2-P 100 6 62.2958 2.0076 62.4453 7.44670253 10 P 

3-2-P 100 2B 65.9223 2.0153 66.0625 6.956780628 11 P 

4-2-P 100 11 61.558 2.007 61.7008 7.12 12 P 

1-3-P 100 12B 64.8981 2.018 65.0357 6.818632309 13 P 

2-3-P 100 11 62.0479 2.0061 62.1898 7.073426051 14 P 

3-3-P 100 10B 67.975 2.0057 68.1113 6.795632448 15 P 

4-3-P 100 18B 63.5884 2.0115 63.731 7.089236888 16 P 

1-4-P 100 1 61.9094 2.006 62.0456 6.789631107 17 P 

2-4-P 100 8B 62.9336 2.0078 63.0835 7.465883056 18 P 

3-4-P 100 7B 64.24 2.0076 64.379 6.923689978 19 P 

4-4-P 100 11B 62.4212 2.0056 62.5587 6.85580375 20 P 

1-5-P 100 16 62.4971 2.0024 62.6384 7.06 21 P 

2-5-P 100 6B 61.0583 2.0128 61.1984 6.9604531 22 P 

3-5-P 100 3B 60.2876 2.0027 60.4301 7.115394218 23 P 

4-5-P 100 4B 61.7532 2.0019 61.8884 6.753584095 24 P 

1-6-P 100 13 64.9092 2.0035 65.0517 7.11 25 P 

2-6-P 100 3B 64.9107 2.0146 65.0576 7.291770078 26 P 

3-6-P 100 4B 63.3905 2.0009 63.5384 7.391673747 27 P 

4-6-P 100 1B 62.8896 2.002 63.0259 6.808191808 28 P 

1-7-P 100 14 67.6607 2.0014 67.8033 7.13 29 P 

2-7-P 100 17B 67.6618 2.0093 67.808 7.276165829 30 P 

3-7-P 100 16B 62.0979 2.0107 62.2497 7.549609589 31 P 

4-7-P 100 16B 61.8557 2.0025 61.9979 7.101123596 32 P 

1-8-P 100 2 62.5727 2.0031 62.7127 6.989166791 33 P 

2-8-P 100 15B 63.3307 2.0125 63.4869 7.761490683 34 P 

3-8-P 100 5B 61.4147 2.0058 61.5592 7.204108087 35 P 
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4-8-P 100 3 62.4056 2.0246 62.5479 7.03 36 P 

1-9-P 100 4 62.058 2.0133 62.1988 6.99349327 37 P 

2-9-P 100 15B 62.4992 2.0056 62.6539 7.713402473 38 P 

3-9-P 100 11B 64.8469 2.0057 64.9937 7.31914045 39 P 

4-9-P 100 10B 62.2041 2.0057 62.3461 7.079822506 40 P 

1-10-P* 100 13 64.3848 2.0088 64.5429 7.87037037 41

 P 

2-10-P 100 7B 63.5169 2.0216 63.6636 7.256628413 42 P 

3-10-P 100 14B 62.4149 2.0173 62.5626 7.321667575 43 P 

4-10-P 100 13B 61.9529 2.0046 62.095 7.088695999 44 P 

1-11-P 100 8B 61.8326 2.0086 61.9812 7.398187792 45 P 

2-11-P 100 17 64.9196 2.0148 65.0652 7.226523724 46 P 

3-11-P 100 13B 61.5954 2.0083 61.7421 7.304685555 47 P 

4-11-P 100 8 62.4826 2.0116 62.6262 7.138596142 48 P 

1-12-P 100 9 60.9319 2.0098 61.0714 6.940989153 49 P 

2-12-P 100 18 65.675 2.004 65.8306 7.764471058 50 P 

3-12-P* 100 12B 65.4949 2.0077 65.6471 7.580813867 51

 P 

4-12-P 100 5B 61.5591 2.007 61.699 6.97060289 52 P 

1-1-F 100 7 61.055 2.0036 61.2066 7.57 53 F 

2-1-F 100 7B 66.532 2.0025 66.698 8.289637953 54 F 

3-1-F 100 18B 61.3026 2.0104 61.4583 7.744727417 55 F 

4-1-F 100 18 64.8443 2.0914 65.0046 7.664722196 56 F 

1-2-F 100 8B 64.9148 2.0087 65.0681 7.631801663 57 F 

2-2-F 100 1 63.5125 2.0189 63.6824 8.42 58 F 

3-2-F 100 2 62.4143 2.0075 62.5702 7.77 59 F 

4-2-F 100 15 62.2948 2.0074 62.4541 7.935638139 60 F 

1-3-F 100 5 62.8889 2.08 63.0459 7.548076923 61 F 

2-3-F 100 2B 64.7879 2.0005 64.9466 7.933016746 62 F 

3-3-F 100 10 61.8529 2.0064 62.0303 8.84 63 F 

4-3-F 100 15 62.5271 2.0478 62.6829 7.60816486 64 F 

1-4-F 100 7 67.0064 2.0648 67.1629 7.579426579 65 F 

2-4-F 100 17B 62.2901 2.0225 62.46 8.400494438 66 F 

3-4-F 100 11B 62.0581 2.0072 62.2257 8.349940215 67 F 

4-4-F 100 14 61.3048 2.0077 61.4632 7.889624944 68 F 

1-5-F 100 11 62.4136 2.0383 62.564 7.378697935 69 F 

2-5-F 100 14B 65.0005 2.0222 65.1665 8.208881416 70 F 

3-5-F 100 6 66.8395 2.0026 67.003 8.16 71 F 

4-5-F 100 14 61.7602 2.0015 61.9128 7.624281789 72 F 

1-6-F 100 8 67.9721 2.0863 68.1324 7.683458755 73 F 

2-6-F 100 16B 65.6713 2.0298 65.8416 8.389989161 74 F 

3-6-F 100 9 61.7504 2.0073 61.9168 8.29 75 F 

4-6-F 100 10 63.3893 2.0799 63.5527 7.85614693 76 F 

1-7-F 100 9B 60.9295 2.0045 61.0814 7.577949613 77 F 

2-7-F 100 5 62.9305 2.0072 63.0975 8.32 78 F 

3-7-F 100 10B 62.2925 2.0188 62.4494 7.771943729 79 F 

4-7-F 100 17 61.594 2.0271 61.7446 7.429332544 80 F 

1-8-F 100 13B 62.0405 2.0062 62.1873 7.317316319 81 F 

2-8-F 100 5B 62.4785 2.0012 62.6452 8.330001999 82 F 

3-8-F 100 12 63.5871 2.0027 63.7546 8.36 83 F 

4-8-F 100 16 60.5294 2.003 60.6818 7.608587119 84 F 
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1-9-F 100 4B 62.5718 2.0031 62.7203 7.413509061 85 F 

2-9-F 100 12B 60.9797 2.0014 61.1403 8.024382932 86 F 

3-9-F 100 8 61.9501 2.0064 62.1166 8.30 87 F 

4-9-F 100 12 64.795 2.0008 64.9543 7.961815274 88 F 

1-10-F 100 15B 61.9035 2.0161 62.0549 7.509548137 89 F 

2-10-F 100 6B 60.527 2.0057 60.6813 7.693074737 90 F 

3-10-F 100 13 61.4145 2.0896 61.5868 8.245597243 91 F 

4-10-F 100 7 66.5353 2.0022 66.6909 7.771451403 92 F 

1-11-F 100 9 65.9217 2.0318 66.0682 7.21035535 93 F 

2-11-F 100 3B 65.683 2.0129 65.8305 7.327736102 94 F 

3-11-F 100 12 64.8953 2.0367 65.0654 8.351745471 95 F 

4-11-F 100 16 63.3307 2.0181 63.4863 7.710222486 96 F 

1-12-F 100 1B 64.3788 2.0008 64.5204 7.077169132 97 F 

2-12-F 100 4 65.4907 2.0065 65.6504 7.96 98 F 

3-12-F 100 6 60.2871 2.0828 60.456 8.109275975 99 F 

4-12-F 100 5 65.6849 2.0049 65.8377 7.621327747 100 F 

 

; 

 

proc sort data=PercentFat; 

by run; 

run; 

 

proc print data=PercentFat; 

run; 

 

Objective 1 LMM analysis with residual analysis 

 

data FinesVPellets; 

 set PercentFat; 

if Type eq 'C' then delete; 

run; 

 

proc print data=FinesVPellets; 

run; 

 

title 'Normal Objective 1 by PAN'; 

proc glimmix data=FinesVPellets; 

class run Type; 

model percfat = Type; 

random intercept/ subject=run; 

lsmeans Type/cl; 

output resid student pred out=OBJ1; 

run; 

 

proc print data=OBJ1; 

run; 

 

proc univariate data=OBJ1 normal; 
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 var resid; 

 qqplot resid/ normal (mu=0 sigma=0.272); 

 histogram resid/ normal; 

run; 

 

 

proc univariate data=OBJ1 normal; 

 var student; 

 qqplot student/ normal (mu=0 sigma=0.272); 

 histogram student/ normal; 

run; 

 

 

Objective 2 LMM analysis with residual analysis 

 

data PelletsVControl; 

 set PercentFat; 

if Type eq 'F' then delete; 

run; 

 

proc print data=PelletsVControl; 

run; 

 

 

title 'Normal Objective 2 Control'; 

proc glimmix data=PelletsVControl; 

class run pan; 

model percfat = pan; 

random intercept/ subject=run; 

output resid student pred out=OBJ2; 

run; 

 

proc print data=OBJ2; 

run; 

 

proc univariate data=OBJ2 normal; 

 var resid; 

 qqplot resid/ normal (mu=0 sigma=0.1939); 

 histogram resid/normal; 

run; 

 

proc univariate data=OBJ2 normal; 

 var student; 

 qqplot student/ normal (mu=0 sigma=0.1939); 

 histogram student/normal; 

run; 
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Objective 2 Variance Component Analysis 

data PelletsVControl; 

 set PercentFat; 

if Type eq 'F' then delete; 

run; 

 

proc print data=PelletsVControl; 

run; 

 

title 'Mean Plots for Ratio'; 

proc glimmix data=PelletsVControl; 

 class run pan; 

 model percfat=pan; 

 random intercept/ subject=run; 

 lsmeans pan/ 

  plot=meanplot(join); 

 output out=predicted_ratio pred=p resid=r; 

 run; 

 

 

title 'Plot of Covariance as a Function of Distance'; 

proc mixed data=PelletsVControl; 

 class run pan; 

 model percfat=pan; 

 repeated/type=un sscp subject=run; 

 ods output covparms=cov; 

 

data times; 

 do time1=1 to 13; 

  do time2=1 to time1; 

   dist=time1-time2; 

 output; 

  end; 

 end; 

 

data covplot; 

 merge times cov; 

 

symbol color=black interpol=join line=1 v=circle; 

symbol2 color=blue interpol=join line=1 v=square; 

symbol3 color=green interpol=join line=1 v=dot; 

symbol4 color=red interpol=join line=1 v=star; 

symbol5 color=yellow interpol=join line=1 v=plus; 

symbol6 color=orange interpol=join line=1 v=diamond;  

symbol7 color=purple interpol=join line=1 v=triangle; 

symbol8 color=brown interpol=join line=1 v=club; 

symbol9 color=black interpol=join line=2 v=spade; 

symbol10 color=red interpol=join line=2 v=heart; 

symbol11 color=blue interpol=join line=2 v=star; 

symbol12 color=green interpol=join line=2 v=diamond; 
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symbol13 color=purple interpol=join line=2 v=u; 

 

 

proc gplot data=covplot; 

 plot estimate*dist=time2; 

run; 

 

 

proc mixed data=PelletsVControl; 

class run pan; 

model percfat = pan; 

repeated pan/subject=run type=VC r rcorr; 

run; 

 

 

proc mixed data=PelletsVControl; 

class run pan; 

model percfat = pan; 

repeated pan/subject=run type=CS r rcorr; 

run; 

 

 

proc mixed data=PelletsVControl; 

class run pan; 

model percfat = pan; 

repeated pan/subject=run type=AR(1) r rcorr; 

run; 

 

 

proc mixed data=PelletsVControl; 

class run pan; 

model percfat = pan; 

repeated pan/subject=run type=Toep r rcorr; 

run; 

 

 

proc mixed data=PelletsVControl; 

class run pan; 

model percfat = pan; 

repeated pan/subject=run type=ARH(1) r rcorr; 

run; 

 

 

proc mixed data=PelletsVControl; 

class run pan; 

model percfat = pan; 

repeated pan/subject=run type=ANTE(1) r rcorr; 

run; 
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Objective 1 GLMM analysis 

data FinesVPellets; 

 set PercentFat; 

if Type eq 'C' then delete; 

run; 

 

proc print data=FinesVPellets; 

run; 

 

proc sort data=FinesVPellets; 

by pan; 

run; 

 

 

Title 'Proc Mixed Normal Exp2 Obj1'; 

proc mixed data=FinesVPellets; 

by pan; 

class run Type; 

model PercFat = Type; 

random intercept/ subject=run; 

lsmeans Type/ cl pdiff; 

run; 

 

 

Title 'Proc Glimmix VC Normal Exp2 Obj1'; 

proc glimmix data=FinesVPellets; 

by pan; 

class run Type; 

model PercFat = Type; 

random intercept/ subject=run type=VC; 

lsmeans Type/cl pdiff; 

run; 

 

 

Title 'Beta VC Laplace Exp2 Obj1'; 

proc glimmix data=FinesVPellets method=laplace; 

by pan; 

class run Type; 

model PercFat = Type/dist=beta; 

random intercept/ subject=run type=VC; 

lsmeans Type/ilink cl pdiff; 

run; 

 

 

Title 'QB10 VC Laplace Exp2 Obj1'; 

proc glimmix data=FinesVPellets method=laplace; 

by pan; 

class run Type; 

model Y10/N10 = Type; 

random intercept/ subject=run type=VC; 
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lsmeans Type/ilink cl pdiff; 

run; 

 

 

Title 'QB25 VC Laplace Exp2 Obj1'; 

proc glimmix data=FinesVPellets method=laplace; 

by pan; 

class run Type; 

model Y25/N25 = Type; 

random intercept/ subject=run type=VC; 

lsmeans Type/ilink cl pdiff; 

run; 

 

 

Title 'QB50 VC Laplace Exp2 Obj1'; 

proc glimmix data=FinesVPellets method=laplace; 

by pan; 

class run Type; 

model Y50/N50 = Type; 

random intercept/ subject=run type=VC; 

lsmeans Type/ilink cl pdiff; 

run; 

 

 

Title 'QB100 VC Laplace Exp2 Obj1'; 

proc glimmix data=FinesVPellets method=laplace; 

by pan; 

class run Type; 

model Y100/N100 = Type; 

random intercept/ subject=run type=VC; 

lsmeans Type/ilink cl pdiff; 

run; 

 

 

Title 'QB200 VC Laplace Exp2 Obj1'; 

proc glimmix data=FinesVPellets method=laplace; 

by pan; 

class run Type; 

model Y200/N200 = Type; 

random intercept/ subject=run type=VC; 

lsmeans Type/ilink cl pdiff; 

run; 

 

 

Title 'QB300 VC Laplace Exp2 Obj1'; 

proc glimmix data=FinesVPellets method=laplace; 

by pan; 

class run Type; 

model Y300/N300 = Type; 

random intercept/ subject=run type=VC; 

lsmeans Type/ilink cl pdiff; 
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run; 

 

 

Title 'QB400 VC Laplace Exp2 Obj1'; 

proc glimmix data=FinesVPellets method=laplace; 

by pan; 

class run Type; 

model Y400/N400 = Type; 

random intercept/ subject=run type=VC; 

lsmeans Type/ilink cl pdiff; 

run; 

 

 

Title 'QB500 VC Laplace Exp2 Obj1'; 

proc glimmix data=FinesVPellets method=laplace; 

by pan; 

class run Type; 

model Y500/N500 = Type; 

random intercept/ subject=run type=VC; 

lsmeans Type/ilink cl pdiff; 

run; 

 

 

Title 'QB750 VC Laplace Exp2 Obj1'; 

proc glimmix data=FinesVPellets method=laplace; 

by pan; 

class run Type; 

model Y750/N750 = Type; 

random intercept/ subject=run type=VC; 

lsmeans Type/ilink cl pdiff; 

run; 

 

 

Title 'QB1000 VC Laplace Exp2 Obj1'; 

proc glimmix data=FinesVPellets method=laplace; 

by pan; 

class run Type; 

model Y1000/N1000 = Type; 

random intercept/ subject=run type=VC; 

lsmeans Type/ilink cl pdiff; 

run; 

 

 

 

Objective 2 GLMM analysis 

 

data PelletsVControl; 

 set PercentFat; 

if Type eq 'F' then delete; 



59 

 

run; 

 

proc print data=PelletsVControl; 

run; 

 

Title 'Proc Mixed Normal Exp2 Obj2'; 

proc mixed data=PelletsVControl; 

class run pan; 

model PercFat = pan; 

random intercept/ subject=run type=CS; 

lsmeans pan/cl pdiff=control adjust=dunnett; 

run; 

 

 

Title 'Proc Glimmix CS Normal Exp2 Obj2'; 

proc glimmix data=PelletsVControl; 

class run pan; 

model PercFat = pan; 

random intercept/ subject=run type=CS; 

lsmeans pan/cl pdiff=control adjust=dunnett; 

run; 

 

 

Title 'Beta CS Laplace Exp2 Obj2'; 

proc glimmix data=PelletsVControl method=laplace; 

class run pan; 

model PercFat = pan/dist=beta; 

random intercept/ subject=run type=CS; 

lsmeans pan/ilink cl pdiff=control adjust=dunnett; 

run; 

 

 

Title 'QB10 CS Laplace Exp2 Obj2'; 

proc glimmix data=PelletsVControl method=laplace; 

class run pan; 

model Y10/N10 = pan; 

random intercept/ subject=run type=CS; 

lsmeans pan/ilink cl pdiff=control adjust=dunnett; 

run; 

 

 

Title 'QB25 CS Laplace Exp2 Obj2'; 

proc glimmix data=PelletsVControl method=laplace; 

class run pan; 

model Y25/N25 = pan; 

random intercept/ subject=run type=CS; 

lsmeans pan/ilink cl pdiff=control adjust=dunnett; 

run; 

 

 

 



60 

 

Title 'QB50 CS Laplace Exp2 Obj2'; 

proc glimmix data=PelletsVControl method=laplace; 

class run pan; 

model Y50/N50 = pan; 

random intercept/ subject=run type=CS; 

lsmeans pan/ilink cl pdiff=control adjust=dunnett; 

run; 

 

 

Title 'QB100 CS Laplace Exp2 Obj2'; 

proc glimmix data=PelletsVControl method=laplace; 

class run pan; 

model Y100/N100 = pan; 

random intercept/ subject=run type=CS; 

lsmeans pan/ilink cl pdiff=control adjust=dunnett; 

run; 

 

 

Title 'QB200 CS Laplace Exp2 Obj2'; 

proc glimmix data=PelletsVControl method=laplace; 

class run pan; 

model Y200/N200 = pan; 

random intercept/ subject=run type=CS; 

lsmeans pan/ilink cl pdiff=control adjust=dunnett; 

run; 

 

 

Title 'QB300 CS Laplace Exp2 Obj2'; 

proc glimmix data=PelletsVControl method=laplace; 

class run pan; 

model Y300/N300 = pan; 

random intercept/ subject=run type=CS; 

lsmeans pan/ilink cl pdiff=control adjust=dunnett; 

run; 

 

 

Title 'QB400 CS Laplace Exp2 Obj2'; 

proc glimmix data=PelletsVControl method=laplace; 

class run pan; 

model Y400/N400 = pan; 

random intercept/ subject=run type=CS; 

lsmeans pan/ilink cl pdiff=control adjust=dunnett; 

run; 

 

 

Title 'QB500 CS Laplace Exp2 Obj2'; 

proc glimmix data=PelletsVControl method=laplace; 

class run pan; 

model Y500/N500 = pan; 

random intercept/ subject=run type=CS; 

lsmeans pan/ilink cl pdiff=control adjust=dunnett; 
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run; 

 

 

Title 'QB750 CS Laplace Exp2 Obj2'; 

proc glimmix data=PelletsVControl method=laplace; 

class run pan; 

model Y750/N750 = pan; 

random intercept/ subject=run type=CS; 

lsmeans pan/ilink cl pdiff=control adjust=dunnett; 

run; 

 

 

Title 'QB1000 CS Laplace Exp2 Obj2'; 

proc glimmix data=PelletsVControl method=laplace; 

class run pan; 

model Y1000/N1000 = pan; 

random intercept/ subject=run type=CS; 

lsmeans pan/ilink cl pdiff=control adjust=dunnett; 

run; 
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