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Abstract

The regression model has been given a considerable amount of attention and played a

significant role in data analysis. The usual assumption in regression analysis is that the

variances of the error terms are constant across the data. Occasionally, this assumption of

homoscedasticity on the variance is violated; and the data generated from real world appli-

cations exhibit heteroscedasticity. The practical importance of detecting heteroscedasticity

in regression analysis is widely recognized in many applications because efficient inference

for the regression function requires unequal variance to be taken into account. The goal of

this thesis is to propose new testing procedures to assess the adequacy of fitting parametric

variance function in heteroscedastic regression models.

The proposed tests are established in Chapter 2 using certain minimized L2−distance

between a nonparametric and a parametric variance function estimators. The asymptotic

distribution of the test statistics corresponding to the minimum distance estimator under

the fixed model and that of the corresponding minimum distance estimators are shown to

be normal. These estimators turn out to be
√
n−consistent. The asymptotic power of the

proposed test against some local nonparametric alternatives is also investigated. Numerical

simulation studies are employed to evaluate the finite sample performance of the test in one

dimensional and two dimensional cases.

The minimum distance method in Chapter 2 requires the calculation of the integrals

in the test statistics. These integrals usually do not have a tractable form. Therefore,

some numerical integration methods are needed to approximate the integrations. Chap-

ter 3 discusses a nonparametric empirical smoothing lack-of-fit test for the functional form



of the variance in regression models that do not involve evaluation of integrals. empiri-

cal smoothing lack-of-fit test can be treated as a nontrivial modification of Zheng (1996)’s

nonparametric smoothing test and Koul and Ni (2004)’s minimum distance test for the

mean function in the classic regression models. The asymptotic normality of the proposed

test under the null hypothesis is established. Consistency at some fixed alternatives and

asymptotic power under some local alternatives are also discussed. Simulation studies are

conducted to assess the finite sample performance of the test. The simulation studies show

that the proposed empirical smoothing test is more powerful and computationally more

efficient than the minimum distance test and Wang and Zhou (2006)’s test.
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Chapter 1

Introduction

It is a common assumption of a regression model that all the random error terms are mu-

tually independent with mean zero and equal variances. Occasionally, this assumption on

the variance function (i.e. homoscedasticity) is not satisfied, while the real data generated

from the applications often exhibits a certain non-constant variance (i.e. heteroscedasticity

) structure. Heteroscedasticity is caused by many things such as data pooling, different

levels of determination, different measurements of error, important variables that may be

omitted from the model, as well as many others.

It is well known that when the assumptions of the linear regression models are correct,

ordinary least squares (OLS) provide unbiased and efficient estimates of the parameters. If

the errors are heteroscedastic, the OLS estimators remain unbiased but they are not how-

ever the best linear unbiased estimators (BLUE). Also hypothesis testing and confidence

intervals which are based on the standard errors will not be correct as their assumptions are

violated. The practical importance of detecting non-constant variance in the regression is

now widely recognized among researchers and practitioners, in that the efficient statistical

inference for the regression analysis should take the heteroscedasticity into account, when
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the homoscedasticity assumption fails.

The commonly used graphical methods of examining the assumption of homoscedasticity

are based on the visual examination of residual plots (i.e. plots of residuals versus either

the corresponding fitted values or explanatory variables, etc.) after fitting a parametric

or nonparametric model. For example, a fan-shaped or double-bow pattern residual plots

indicate non-constant variance.

1.1 Diagnostic Plots Detecting Unequal Error Vari-

ances: Blood Pressure Example

The following graph shows the diagnostic plot detecting unequal-variances in the relationship

between diastolic blood pressure and age among healthy adult women 20 to 60 years old,

collected data on 54 subjects (p.427,Applied Linear Statistical Models Kutner, Nachtsheim,

Neter, and Li (2004)).

Figure 1.1: Diagnostic Plots Detecting Unequal Error Variances
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The scatter plot of the data in Figure 1.1 strongly suggests a linear relationship between

diastolic blood pressure and age, but also indicates that the error term variance increases

with age, i.e. the heteroscedasticity exhibit in this data set is evident. This is a severe model

assumption violation in ordinary least squares regression. This encourages us to include a

variance function to the regression models and develop a goodness-of-fit testing procedures

for checking the adequacy of the variance function.

A significant amount of statistical research has already been conducted in the area of

checking for heteroscedasticity in a regression model. Most of the past researches in this

area are based on checking whether the variance function is constant or not. However, there

is little in the literature where we can find an examination of the adequacy of the variance

function. This thesis can provide a contribution to the statistical analysis, namely to re-

gression modeling devoted to the problem of heteroscedasticity in order to obtain efficient

and reliable results.

1.2 Literature Review

In literature, a remarkable amount of statistical research has already been carried out for

assessing the heteroscedasticity in both parametric and nonparametric regression models.

Early works in this area include some graphical procedures and some formal tests, most

of which are based on the residuals obtained by fitting a model with a completely spec-

ified regression and variance function. Harrison and McCabe (1979) propose a test for

heteroscedasticity based on the direct use of ordinary least squares residuals from a single

regression on the complete set of observations.
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Breusch and Pagan (1979) suggest a simple test for heteroscedasticity in a linear re-

gression model using the Lagrange multiplier test. In addition, White (1980) introduces a

natural test for heteroscedasticity by comparing a parameter covariance matrix estimator

which is consistent to the usual covariance matrix estimator, even when the errors of a

linear regression models are heteroscedastic. Moreover, Koener and Basset (1981) suggest a

class of tests for heteroscedasticity in linear regression models based on regression quantile

statistics.

A diagnostic test for heteroscedasticity based on the score statistic is presented by Cook

and Weisberg (1983) and a graphical procedure is used to implement the test. Most of

the above tests have been proposed for checking whether a variance function is constant

or not, but do not discuss whether a specific variance function can adequately describe the

variability in the data.

Some authors have discussed heteroscedasticity tests in regression models with non para-

metric variance structures. Diblasi and Bowman (1997) propose a nonparametric test of con-

stant variance for the errors in a linear regression model based on nonparametric smoothing

of the residuals. Muller and Zhao (1995) propose a general semi-parametric variance func-

tion model in a fixed design regression setting. The regression function is assumed to be

smooth and is modeled nonparametrically. The relationship between the mean regression

function and the variance function is assumed to follow a generalized linear model. Eubank

and Thomas (1993) propose some diagnostic tests and plots for detecting heteroscedasticity

in the completely nonparametric regression model. However, this test requires an assump-

tion of the normally distributed errors. When the covariate is one dimensional, Dette and

Munk (1998) propose a simple and consistent test for heteroscedasticity in a nonparametric

regression setup. The test is based on an estimator for the best L2- approximation of the

variance function by a constant.
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Since the problem of testing heteroscedasticity is equivalent to that of pseudoresiduals

for a constant mean, Dette (2002) constructs a testing procedure which can detect the al-

ternatives converging to the null at a rate of (n
√
h)−1 where n is the sample size and h is

the bandwidth in the kernel smoothing. Liero (2003) carries out a nonparametric regression

model with random design and derives an asymptotic α-test for the hypothesis that the

conditional variance of the observations is constant against that depends on the design.

This test is based on the L2 distance between a nonparametric variance in both null and

alternative models. The test by Liero (2003) also can detect local alternatives converging to

the null hypothesis as the same rate as in the test of Dette (2002). Classical tests, such as

the Wald test, the likelihood ratio test, and the score test may be constructed for assessing

the variability of the data, but they require the specification of an alternative model and

parametric error distribution.

In the multi-dimensional covariate case, a Cramer-von Mises Type test based on cumu-

lative estimated residuals, is proposed by Zhu et al. (2001). These tests are able to detect

the local alternatives converging to the null at the parametric rate of 1/
√
n, regardless of

the type of regression function and the variance function. The asymptotic distributions of

the above test statistics are usually complicated and are not asymptotically distribution

free. Some bootstrapping methods are used to find the critical values and p-values. A

major shortcoming of these test procedures is that they highly depend on the choice of a

smoothing parameter, which can affect the results of the statistical analysis.

According to my knowledge, compared to the research of testing heteroscedasticity, fewer

meticulous procedures for testing the adequacy of a given variance function are proposed

in the literature. Dette et al. (2007) study the problem of testing the parametric form of
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the conditional variance in nonparametric regression models. They propose a Kolmogorov-

Smirnov and a Cramer-von Mises type tests which are constructed from a stochastic process.

These stochastic processes are based on the difference between the empirical processes that

are obtained from the standardized nonparametric residuals under the null and alternative

hypotheses. They discuss the local behavior and the consistency of a bootstrap approxima-

tion. The finite sample properties of the approximation are also investigated by means of a

simulation study.

In the multi-dimensional covariate case, Wang and Zhou (2006) present a kernel smooth-

ing based nonparametric test for checking the adequacy of parametric variance function of

the covariate or regression mean. It does not specify a parametric distribution for the ran-

dom errors. Under the null hypothesis, it has an asymptotical normal distribution and is

powerful against a large class of alternatives. The test can detect 1/
√
nhd/2 local alternative,

where n is the sample size, d is the dimension of the covariates, and h is the bandwidth in

constructing the test statistic.

In this thesis, a testing procedure is proposed to appraise the adequacy of fitting the

variance function with a parametric function in the heteroscedastic regression models. The

test is based on certain minimized L2-distance between a nonparametric variance function

estimator and a parametric variance function estimator. The asymptotic normality, consis-

tency and local power of the test are discussed. A simulation study is carried out to check

the performance of the test. The proposed test statistic is comprised of some integrations

and hence it is computationally not easy. A simple but more powerful new test is proposed

using the idea of Zheng (1996).
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1.3 The Objective and the Overview of the Thesis

The objective of this thesis is to develop a new testing procedure to assess the adequacy

of fitting the variance function with a parametric form in the heteroscedastic regression

models. The parametric method is preferred for ease in interpretation, compared with non-

parametric or semi-parametric methods, even though these methods are flexible in modeling.

The proposed inference procedures are motivated from the minimum distance idea of Wol-

fowitz (1957) in order to provide strongly consistent estimates and decision rules. Minimum

distance method in statistics is a statistical method which can be used to check the goodness

of fit statistics in a mathematical model to data. Chi-square test, Cramer-von Mises type

test, Kolmogorov-Smirnov test and Anderson-Darling test are some examples of statistical

tests that have been used for minimum distance estimation. It is shown that the minimum

distance estimates have the invariant property of maximum likelihood estimates ( Drossos

and Philippou (1980)).

The goal of this study is to propose new testing procedures to assess the adequacy of

fitting parametric variance function in heteroscedastic regression models. In contrast to

classical methods based on residuals, the proposed tests in Chapter 2 are based on certain

minimized L2−distance between a nonparametric and a parametric variance function es-

timator. The asymptotic distribution of the test statistic corresponding to the minimum

distance estimators under the fixed model is shown to be normal. Also these estimators are

√
n−consistent. The asymptotic power of the proposed test against some local nonparamet-

ric alternatives is also investigated. Numerical simulation studies are conducted to evaluate

the finite sample performance of the test in one dimensional and two dimensional cases.

The minimum distance method proposed in Chapter 2 requires the calculation of the
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integrals in the test statistics. These integrals do not have a tractable form. Therefore, some

numerical integration methods are needed to approximate the integrations. Chapter 3 of

the thesis discusses a nonparametric empirical smoothing lack-of-fit test for the functional

form of the variance in regression models that do not involve evaluation of integrals. The

proposed test can be treated as a nontrivial modification of Zheng (1996)’s nonparametric

smoothing test and Koul and Ni (2004)’s minimum distance test for the mean function in

the classic regression models. It establishes the asymptotic normality of the proposed test

under the null hypothesis. Consistency at some fixed alternatives and asymptotic power

under some local alternatives are also discussed. Simulation studies are conducted to assess

the finite sample performance of the proposed empirical smoothing test. The simulation

studies show that this test is more powerful and computationally more efficient than some

existing tests.

The rest of the thesis is organized as follows: Chapter 2 of the thesis provides the de-

scription, the asymptotic normality , consistency, and local power of the proposed minimum

distance test against local mis-specifications, a simulation study using the bootstrap method,

and some simulation results. The proof of the main results are also included in Chapter 2.

Chapter 3 includes the discussion of the nonparametric empirical smoothing lack-of-fit test

for the functional form of the variance in regression models. A summary of the thesis and

a proposed future works are given in Chapter 4.
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Chapter 2

Conditional Variance Function

Checking in Heteroscedastic

Regression Models

This chapter discusses the test, the test statistic, assumptions, and main results associated

with the minimum distance conditional variance function checking in heteroscedastic regres-

sion model. Consistency and local power of the minimum distance test are also discussed.

The simulation procedure and the simulation results are presented next while the proof of

some theorems are given at the end of the chapter.

2.1 Parametric Regression Models

Parametric regression is a form of regression analysis in which the predictors take prede-

termined form and is constructed according to the information derived from the data. Let

Y be a one-dimensional response variable, X be a d-dimensional explanatory variable, β

be a p-dimensional unknown parameter vector, and ε be a random error. Then, usually a
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parametric regression model can be written as,

Y = m(X; β) + ε (2.1)

where the function m(X; β) = E(Y |X) is the unknown regression function. Including a

variance function in the regression model is imperative as it can describe the variability of

the model and hence produce efficient parameter estimates.

2.2 Heteroscedastic Regression Models

The goal of this report is to consider the heteroscedastic parametric regression models

which means the variance of the disturbances are not constant across the data. Consider

the regression model,

Y = m(X; β) +
√
v(X)ε (2.2)

where v is the conditional variance of Y given X and

E(ε|X) = 0, E(ε2|X) = 1 (2.3)

From the assumptions in (2.3), we have

E[(Y −m(X; β))2|X = x] = v(x). (2.4)

Let v(X; β, θ) be a given parametric variance function, where (β, θ) ∈ Γ × Θ, and Θ is

a compact subset of Rq.
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Then the hypothesis of interest, can be written as,

H0 : v(X) = v(X; β0, θ0) for some (β0, θ0) ∈ Γ×Θ (2.5)

H1 : v(X) 6= v(X; β, θ) for all (β, θ) ∈ Γ×Θ.

The above hypothesis tests whether the variance function v(x) can be modeled parametri-

cally. Additionally, assuming that the given variance function holds, we are interested in

finding the parameters, (β0, θ0) in the given family that best fits the data.

In real applications, β is usually unknown, but a natural way to proceed is to replace β

with an estimator β̂. There are many estimating procedures which can provide an estimator

of β, say β̂n, such that
√
n(β̂n − β0) → N(0,Σβ0,θ0) in distribution, where Σβ0,θ0 is a p × p

positive definite matrix defined on the true parameters β0 and θ0. In the case of known β,

the hypothesis test (2.5) is equivalent to the testing of the regression function in the model

(Y −m(X; β))2 = v(X) + ξ. (2.6)

In the equation (2.6), (Y − m(X; β))2 can be viewed as the new response variable and

ξ = (Y −m(X; β))2 − E[(Y −m(X; β))2|X], which is the error term, is uncorrelated with

X (i.e. E(ξ|X) = 0).

2.2.1 Minimum Distance Method: Test Statistic

The proposed inference procedures are motivated from the minimum distance method which

is developed by Wolfowitz (1953), Wolfowitz (1954), and Wolfowitz (1957) for estimating
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parameters or function of distributions. The test statistic of (2.7) is constructed in a similar

way that Koul and Ni (2004) use in minimum distance model checking procedure. It is based

on the L2-distance between a nonparametric variance function estimator and a parametric

variance function estimator. The test statistic is of the form,

T ?n(β, θ) =

∫
C

[∑n
i=1Kh(x−Xi)(Yi −m(Xi; β))2∑n

i=1Kw(x−Xi)
− v(x; β, θ)

]2

dG(x), (2.7)

where C is a compact set in Rd, G is a weighting measure with c which is a compact

subset of its support, K is a kernel function Kh(.) = h−dK(./h), and h is the bandwidth.

Note that the first term of the square, inside the integrand is a Nadaraya-Watson kernel

regression estimator.

The corresponding minimum distance estimator is

θ?n = argmin
θ∈Θ

T ?n(β̂, θ) (2.8)

Since the integrand inside the square of T ?n is not centered, and because of the non

negligible asymptotic bias in the nonparametric estimator, which is the first term inside the

integrand, the statistic T ?n(β̂n, θ
?
n) does not have desirable asymptotic properties under the

null hypothesis. In addition, the estimator, θ?n is consistent but not normally distributed.

To overcome this difficulty, another form of L2-distance, Tn(β̂n, θ̂n), is used to construct the

test statistic, where

Tn(β, θ) =

∫
C

[∑n
i=1Kh(x−Xi)[(Yi −m(Xi; β))2 − v(Xi; β, θ)]∑n

i=1Kw(x−Xi)

]2

dG(x) (2.9)

and the corresponding estimator of θ is

θ̂n = argmin
θ∈Θ

Tn(β̂n, θ). (2.10)
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Under the null hypothesis H0, the ith summand inside the squared integral of Tn(β, θ)

is now conditionally centered, given the ith explanatory variable, 1 ≤ i ≤ n. But the

asymptotic bias in n1/2(θ̂n − θ0) and Tn(β, θ̂n) caused by the nonparametric estimator f̂h

of f , in the denominator of Tn(β, θ). According to Koul and Ni (2004), these asymptotic

biases can be made negligible if we use an optimal window width (w) for the estimation of

the density f different from h and possibly a different kernel to estimate f .

2.3 Required Assumptions

Here we shall state the following assumptions for the results and proof in our procedures.

Let
.
m(x; β) as the derivative of m with respect to β,

.
vβ(x; β, θ) as the derivative of v with

respect to β, and
.
vθ(x; β, θ) as the derivative of v with respect to θ.

(e1). The random variables {(Xi, Yi) : Xi ∈ Rd, Yi ∈ R, i = 1, 2, · · · , n} are i.i.d. with

respect to regression function E(Y |X = x) = m(x; β) and E((Y − m(x; β))2|X =

x) = v(x) satisfying
∫
v2(x)dG(x) <∞, where G is a σ-finite measure on Rd.

(e2). E{((Y −m(X; β))2 − v(X))2} <∞, and

the function τ(x) = E{((Y −m(X; β))2 − v(X))2|X = x} is a.s. (G) continuous on

C.

(e3). E{(Y −m(X; β))2 − v(X)}2+δ <∞ for some δ > 0.

(e4). E{(Y −m(X; β))2 − v(X)}4 <∞.

(f1). X has a uniformly continuous density f , that is bounded from below on C.

(f2). The density function f , is twice continuously differentiable with a compact support.

(g). G has a continuous density function g.
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(k). The kernel function K, is positive symmetric square integrable densities on [−1, 1]d. In

addition, it satisfies the Lipschitz condition.

(h1). h, w → 0, nh2d, nw2d →∞ as n→∞.

(h2). w ∼ n−a, where a < min(1/2d, 4/d(d+ 4)).

(m1). For any fixed x,m(x, β) is differentiable with respect to β and its derivative is square

integrable, that is E‖ .
m(X; β)‖2 <∞ and

∫
C
‖ .
m(x; β)‖4dG(x) <∞.

(m2). For any
√
n consistent estimator of β0,

√
n sup

1≤i≤n
|m(Xi; β̂n)−m(Xi; β0)− (β̂n − β0)

′ .
m(Xi; β0)| = op(1).

(v1). For all β and θ, v(x; β, θ),
.
vβ(x; β, θ), and

.
vθ(x; β, θ) are a.s. continuous in x with

respect to integrating measure G.

(v2). The parametric family of variance function v(x; β0, θ) is identifiable with respect to θ,

that is if v(x; β0, θ1) = v(x; β0, θ2), for almost all x(G), then θ1 = θ2.

(v3). v(x; β, θ) is Lipschitz continuous with respect to β and θ. That is, for some positive

continuous function l on C, and for any α > 0,

|v(x; β1, θ1)− v(x; β2, θ2)| ≤ l(x)[‖β1 − β2‖α + ‖θ1 − θ2‖α]

holds for all β1, β2, θ1, and θ2.

(v4).

lim sup
n→∞

P

(
sup
|v(Xi; β, θ)− v(Xi; β, θ0)− .

v
′

θ(Xi; β, θ0)(θ − θ0)|
‖θ − θ0‖

≥ ε

)
= 0

14



where the supremum is taking over the set {1 ≤ i ≤ n; β ∈ Γ;
√
nhd‖θ − θ0‖ ≤ k} for

any k > 0, and

lim sup
n→∞

P

(
sup
|v(Xi; β, θ)− v(Xi; β0, θ)−

.
v

′

β(Xi; β0, θ)(β − β0)|
‖β − β0‖

≥ ε

)
= 0

where the supremum is taking over the set {1 ≤ i ≤ n; θ ∈ Θ;
√
nhd‖β − β0‖ ≤ k} for

any k > 0.

(v5).

lim sup
n→∞

P
(
suph−d/2‖ .vθ(Xi; β, θ)−

.
vθ(Xi; β, θ0)‖ ≥ ε

)
= 0

where the supremum is taking over the set {1 ≤ i ≤ n; β ∈ Γ;
√
nhd‖θ − θ0‖ ≤ k} for

any k > 0, and

lim sup
n→∞

P
(
suph−d/2‖ .vβ(Xi; β, θ)−

.
vβ(Xi; β0, θ)‖ ≥ ε

)
= 0

where the supremum is taking over the set {1 ≤ i ≤ n; θ ∈ Θ;
√
nhd‖β − β0‖ ≤ k} for

any k > 0.

(v6). For any β, there exist a function k(x), such that
∫
C
k2(x)dG(x) <∞, and

sup
θ∈Θ
|v(x; β, θ)− v(x; β0, θ)|+ sup

θ∈Θ
|v̇θ(x; β, θ)− v̇θ(x; β0, θ)| < k(x)‖β − β0‖.

(v7). supθ∈Θ

∫
C
v2(x; β0, θ)dG(x) <∞,

∫
C
‖v̇θ(x; β0, θ0)‖2dG(x) <∞.

Under the conditions, (f1), (k), (h1), (h2), it is well-known that the followings: (See Mack

and Siverman (1982)),

sup
x∈C

∣∣∣f̂h(x)− f(x)
∣∣∣ = op(1), sup

x∈c

∣∣∣f̂w(x)− f(x)
∣∣∣ = op(1), (2.11)
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sup
x∈C

∣∣∣∣∣ f(x)

f̂w(x)
− 1

∣∣∣∣∣ = op(1).

2.4 Main Results

Theorem 2.4.1. Assume that the conditions (e1), (e2), (f1), (h1), (h2), (k), (m1), (m2), and

(v1)− (v3) hold, then under H0 in (2.5), θ?n → θ0, θ̂n → θ0 in probability.

To show the asymptotic normality of the minimum distance estimator θ̂n, we shall assume

that β̂n has the following approximate linear expression,

√
n(β̂n − β0) =

1√
n

n∑
i=1

L(Yi, Xi; β0, θ0) + op(1) (2.12)

with EL(Y,X; β0, θ0) = 0,ΣL = EL(Y,X; β0, θ0)L
′
(Y,X; β0, θ0) > 0 and

E‖L(Y,X; β0, θ0)‖2+δ <∞. (2.13)

In literature, there are some standard estimation procedures to find β̂n, namely, the

least squares, weighted least squares, quasi-likelihood procedures, etc. Hence the above is a

convenience assumption. We make the following additional assumption on L.

(l). ρ(x) = E[(ε2−1)L(Y,X; β0, θ0)|X = x] is a.s. continuous in x with respect to integrating

measure G.
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We define the following terms for easy use of the future procedures.

Π =

∫
C

vθ(x; β0, θ0)v
′

β(x; β0, θ0)dG(x), (2.14)

Σ0 =

∫
C

.
vθ(x; β0, θ0)

.
v

′

θ(x; β0, θ0)dG(x), (2.15)

Ω =

∫
τ(x)v2(x; β0, θ0)

.
vθ(x; β0, θ0)

.
v

′

θ(x; β0, θ0)g2(x)

f 2(x)
dx, (2.16)

M =

∫
ρ(x)v(x; β0, θ0)

.
v

′

θ(x; β0, θ0)g(x)dx. (2.17)

Theorem 2.4.2. Assume that the conditions (e1)− (e3), (f1), (f2), (g), (h2), (l), (m1), (m2),

and (v1)− (v5) hold. Then under H0 in (2.5),

√
n(θ̂n − θ0)

d⇒ N(0,Σ−1
0 ΣΣ−1

0 ) (2.18)

where Σ0 as in 2.15, and Σ = Ω + ΠΣLΠ + ΠM +M
′
Π.

If ρ(x) = 0 in (l), then M = 0, and the asymptotic variance of θ̂n is simply Ω + ΠΣLΠ.

Again, we define the following terms which will use for the asymptotic normality of the

minimum distance statistic Tn(β̂, θ̂),

Cn(β, θ) =
1

n2

n∑
i=1

∫
C

K2
h(x−Xi)[(Yi −m(Xi; β))2 − v(Xi; β, θ)]

2dψ̂w(x) (2.19)

Γn(β, θ) =
2hd

n2

∑
i 6=j

(∫
C

Kh(x−Xi)Kh(x−Xj)ξi(β; θ)ξj(β; θ)dψ̂w(x)

)2

(2.20)

Γ = 2

∫
C

τ 2(x)g2(x)

f 2(x)
dx.

∫ (∫
K(u)K(u+ v)du

)2

dv, (2.21)

where

ξi(β; θ) = (Yi −m(Xi; β))2 − v(Xi; β, θ), (2.22)

and dψ̂w(x) = dG(x)/f̂ 2
w(x).
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Theorem 2.4.3. Assume that the conditions (e1), (e2), (e4), (f1), (f2), (g), (h2), (l), (m1), (m2),

and (v1)− (v5) hold. Then under H0 in (2.5),

nhd/2Γ−1/2
n (β̂, θ̂)(Tn(β̂, θ̂)− Cn(β̂, θ̂))

d⇒ N(0, 1). (2.23)

Thus, the test that rejects H0 whenever |nhd/2Γ
−1/2
n (β̂, θ̂)(Tn(β̂, θ̂)−Cn(β̂, θ̂))| ≥ zα/2 is

of the asymptotic size α, where zα/2 is the 100(1 − α)th percentile of the standard normal

distribution.

2.5 Consistency and Local Power of the Minimum Dis-

tance Test

In this section, we shall show that, under some regularity conditions, the minimum distance

test is consistent for certain fixed alternatives, and has non-trivial asymptotic power against

a large class of 1/
√
nhd/2 local nonparametric alternatives.

2.5.1 Consistency

Suppose v1(x) to be a known positive and real-valued function such that v1(x) /∈ {v(x; β, θ) :

β ∈ Γ, θ ∈ Θ}. Consider the alternative hypothesis Ha : v(x) = v1(x), for all x ∈ Rd.

Suppose the true value of β under Ha is still β0, the estimator β̂n is usually not a consistent

estimator for β0. But under some regularity conditions, Jennrich (1969)’s Theorem 6 implies

for any n, there exists a least square estimator which is consistent of some other value, say

βa, and also it is asymptotically normal. The minimum distance estimator θ̂n has the same

property. So without loss of generality, we assume now the estimators β̂n and the minimum

distance estimator θ̂n in ( 2.10) satisfy
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√
n(β̂n − βa) = Op(1) and (2.24)

√
n(θ̂n − θa) = Op(1) (2.25)

for some βa ∈ Γ, θa ∈ Θ.

The following notations are used to express the consistency of the minimum distance

test procedure. Let m0(x) = m(x; β0),ma(x) = m(x; βa), and va(x) = v(x; βa, θa) and then

∆ =

∫
C

[(m0(x)−ma(x))2 + (v1(x)− va(x))]2dG(x)

Theorem 2.5.1. Suppose the conditions for Theorem 2.4.3 hold with β0, θ0 being replaced

by βa, θa. Then under Ha, if ( 2.24), and ( 2.25) hold with ∆ > 0, for 0 < α < 1, the test

that rejects H0 whenever |nhd/2Γ
−1/2
n (β̂, θ̂)(Tn(β̂, θ̂)−Cn(β̂, θ̂))| ≥ zα/2 is consistent for Ha.

2.5.2 Local Power

Let δ(x) be a positive real valued function such that
∫
C
δ2(x)dG(x) <∞. Here we shall study

the asymptotic power of the proposed minimum distance test against the local alternatives

HLOC : v(x) = v(x; β0, θ0) + cnδ(x), for allx ∈ Rd. (2.26)

Under HLOC , the regression model is of the form

Y = m(X; β0) +
√
v(X; β0, θ0) + cnδ(X)ε.

We shall assume that the estimators β̂, θ̂ used in the test statistic have the same asymptotic

properties as in the null case. Then we have the following theorem.
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Theorem 2.5.2. Suppose the conditions in Theorem 2.4.3 hold and cn = 1/
√
nhd/2. Then

under the local alternative HLOC,

nhd/2Γ−1/2
n (β̂, θ̂)(Tn(β̂, θ̂)− Cn(β̂, θ̂))

d⇒ N

(
Γ−1/2

∫
C

δ2(x)dG(x), 1

)
.

2.6 Simulation Study

We have conducted out a simulation study to investigate the performance of the test pro-

posed in finite sample situations. There are several purposes for conducting the simulation

study. Namely, investigating the validity of the test procedure, checking the influence of

the bandwidth choice, and error distribution on the validity and power of the test. The

test statistic has a relatively complicated form, which makes the implementation of the test

procedure difficult. In particular, the integration usually has no tractable expressions. So

that a Reimman-sum approximation is necessary. But the test statistic can be simplified

by choosing proper weighting measure G, and using an approximately equivalent expression

for Γ̂n. For example, choose dG(x) = g(x)dx = f̂ 2
w(x)dx, then Tn(β̂n, θ̂n) and Cn(β̂n, θ̂n) in

( 2.9) and ( 2.19) respectively, can be simplified as

Tn(β̂n, θ̂n) =

∫
C

[
1

n

n∑
i=1

Kh(x−Xi)ξi(β̂n, θ̂n)

]2

dx,

Cn(β̂n, θ̂n) =
1

n2

n∑
i=1

∫
C

K2
h(x−Xi)ξ

2
i (β̂n, θ̂n) dx,

where ξi(β; θ) = (Yi − m(Xi; β))2 − v(Xi; β, θ). With the definition of τ 2(x) in (e2), and

g(x) = f̂w(x)2, a simpler consistent estimator of Γ in ( 2.21) can be written as
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Γ̂n = 2

∫
C

[
n∑
i=1

Kh(x−Xi)ξ
2
i (β̂n, θ̂n)

]2

dx.

∫ (∫
K(u)K(u+ v)du

)2

dv.

2.6.1 A Bootstrap Algorithm

It is observed by the authors Hardle and Mamman (1993) that in testing parametric as-

sumptions regarding the regression function, the asymptotic calculation of the level by

approximations (similar as in Theorems 2.4.2, 2.4.3 and 2.5.1) is inappropriate for realistic

sample sizes. It is well known that the bootstrap procedure usually provides better perfor-

mance for small to moderate sample sizes in the nonparametric smoothing tests.

To investigate the finite sample performance of the minimum distance test procedure,

we generate the samples from the following models:

Model 0 : Yi = β1 + β2Xi +
√
θ1 + θ2Xiεi,

Model 1 : Yi = β1 + β2Xi +
√
θ1 + θ2Xi + 0.5X2

i εi,

Model 2 : Yi = β1 + β2Xi +
√
θ1 + θ2Xi + 0.8X2

i εi,

Model 3 : Yi = β1 + β2Xi +
√
θ1 + θ2Xi +X2

i εi,

for i = 1, 2, · · · , n.

The data from model 0 are used to study the empirical level, while data from models

1− 3 are used to study the empirical power of the test.

In the simulation, we generate Xi ∼ N(0, 1), for i = 1, 2, · · · , n, with β1 = 1, β2 = 2, θ1 =

2 and θ2 = 0.1. Two types of error distributions considered are:
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(1). ε1, ε2, · · · , εn are independently drawn from the standard normal distribution N(0, 1);

(2). ε1, ε2, · · · , εn are independently drawn from the uniform distribution U(−
√

3,
√

3).

The normality of the minimum distance test statistic that is proved here allows one to use

bootstrap methodology. The following is a simple bootstrap algorithm to implement the

minimum distance test procedure which consists of six steps.

Step 1. For a given random sample of observations, obtain a
√
n- consistent estimator β̂n

of β under the null hypothesis. Such estimator can be found by using least squares

procedures, weighted least squares, pseudo-likelihood procedures, etc..

Step 2. Obtain the minimum distance estimator θ̂n of θ by minimizing Tn(β̂n, θ) under the

null hypothesis.

Step 3. Define ε̂i = [Yi −m(Xi; β̂n)]/

√
v(Xi; β̂n, θ̂n) for i = 1, 2, · · · , n.. Center and stan-

dardize ε̂1, ε̂2, · · · , ε̂n such that they have means of zero and variances of one.

Step 4. Obtain a bootstrap sample from the standardized residuals in step 3; denote

them as ε̂?i for i = 1, 2, · · · , n and define Y ?
i = m(Xi; β̂n) +

√
v(Xi; β̂n, θ̂n)ε̂?i for

i = 1, 2, · · · , n.

Step 5. For the bootstrap sample (Xi, Y
?
i ) for i = 1, 2, · · · , n, calculate the estimator β̂?n as

in step 1 and the minimum distance estimator θ̂?n as in Step 2 under the null hypothesis.

Let ξ?i (β̂
?
n, θ̂

?
n) = (Y ?

i −m(Xi; β̂
?
n))2 − v(Xi; β̂

?
n, θ̂

?
n). Then the bootstrap version of the

test statistic is

T ?n(β̂?n, θ̂
?
n) =

∫
C

[
1

n

n∑
i=1

Kh(x−Xi)ξ
?
i (β̂

?
n, θ̂

?
n)

]2

dx.
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Step 6. Repeat Steps 4 and 5 a sufficiently large number of times. For a specified signifi-

cance level of the test, the critical value is then determined as the appropriate quantile

of the bootstrap distribution of the test statistic.

The kernel function K is chosen to be the Epanechnikov kernel function which is of the

form,

K(u) =
3

4
(1− u2)I(|u| ≤ 1),

which is used throughout the simulation. The integration
∫

[
∫
K(u)K(u+v)du]2dv = 0.4338.

The bandwidth h is chosen to be an−1/3, where a is some positive constant, and the sam-

ple sizes are taken to be n = 100, 200, 300, 400, 500, 800, and 1000. The compact set C is

chosen to be [−3, 3] and the integration is approximated by a Riemman sum with [−3, 3]

being equally divided into 300 subintervals. The test is calculated with 500 simulation

runs with the nominal level α = 0.05. Thus, the simulated level has a Monte Carlo Error

of
√

0.05× 0.95/500 ≈ 1%. We use 400 samples per run to obtain the critical value c?α.

The empirical size and power are computed by using the relative frequency of the event

#{Tn(β̂n, θ̂n) ≥ c?α}/500. The simulation is done using the R statistical software.

2.6.2 Simulation Results

For a = 1, Table 2.1 and Table 2.2 report the minimum distance estimator of θ1 and θ2 for

different sample sizes.

Table 2.1: Mean and MSE of θ̂1

100 200 300 400 500 800 1000
Mean 1.9747 1.9759 1.9778 1.9929 1.9981 1.9932 1.9914
MSE 0.0970 0.0443 0.0316 0.0259 0.0181 0.0123 0.0091

The mean of the minimum distance estimator of θ1 is around the true value of 2, and
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the mean square error of it decreases when the sample size gets bigger. The situation is the

same for the estimator of θ2 in the following Table 2.2.

Table 2.2: Mean and MSE of θ̂2

100 200 300 400 500 800 1000

Mean 0.1002 0.0941 0.1055 0.1037 0.0968 0.0968 0.0986
MSE 0.1151 0.0567 0.0397 0.0291 0.0263 0.0136 0.0116

Table 2.3: Empirical size and power for h = n−1/3

100 200 300 400 500 800 1000
Model 0 0.044 0.038 0.042 0.040 0.044 0.045 0.046

ε ∼ N(0, 1) Model 1 0.130 0.170 0.252 0.312 0.358 0.526 0.610
Model 2 0.210 0.330 0.452 0.556 0.600 0.846 0.912
Model 3 0.226 0.386 0.552 0.636 0.764 0.934 0.936

Model 0 0.042 0.034 0.048 0.052 0.072 0.042 0.052

ε ∼ U(−
√

3,
√

3) Model 1 0.210 0.384 0.534 0.648 0.780 0.948 0.990
Model 2 0.364 0.644 0.834 0.918 0.954 1.000 1.000
Model 3 0.476 0.732 0.874 0.954 0.980 1.000 1.000

Table 2.3 shows the empirical size and power, which are the frequencies of rejecting the

corresponding null hypothesis under the significance level α = 0.05 of the minimum distance

test for two different error distributions with a = 1.

We see from the tables with a = 1, that under H0 (that is, model 0 in the variance

function) the empirical levels are slightly less than the nominal level α = 0.05, regardless of

the selection of bandwidth for all the chosen sample sizes. Thus the proposed test is con-

servative for all chosen sample sizes, which is clear from the power curve in Figure 2.1. The

empirical powers against all alternative models get larger when the sample sizes get larger.

For fixed sample size, the alternative model 1 has smaller powers. Then the power becomes

bigger when the alternative model is further apart from the null model (as the coefficient

of x2 changes from 0.5 to 1). In considering the influence of the error distribution on the

performance of the test, it is clear that the empirical levels with the uniformly distributed
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Figure 2.1: Empirical Size and Power Curves (h = n−1/3)

error are slightly closer to the nominal level than that with the normally distributed error.

This indicates that the different distributions of the error terms have some effect on both

the accuracy and the power of the test.
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To see the effect of the bandwidth on the performance of the minimum distance test, we

also conduct a simulation study for a = 0.5 and the simulation results are shown in Table

2.4.

Table 2.4: Empirical size and power for h = 0.5n−1/3

100 200 300 400 500 800 1000
Model 0 0.044 0.044 0.046 0.036 0.048 0.042 0.044

ε ∼ N(0, 1) Model 1 0.124 0.194 0.256 0.316 0.414 0.568 0.650
Model 2 0.236 0.334 0.466 0.608 0.658 0.872 0.930
Model 3 0.298 0.416 0.616 0.712 0.806 0.950 0.958

Model 0 0.040 0.036 0.052 0.054 0.076 0.038 0.050

ε ∼ U(−
√

3,
√

3) Model 1 0.188 0.354 0.516 0.602 0.734 0.924 0.976
Model 2 0.332 0.622 0.798 0.890 0.940 0.992 1.000
Model 3 0.450 0.688 0.862 0.944 0.966 0.998 1.000

Figure 2.2: Empirical Size and Power Curves (h = 0.5n−1/3)

Compared to the case of a = 1, the simulation results for a = 0.5 only vary slightly

(see Figure 2.1 and Figure 2.2). The slight difference between these mentioned simulations

does indicate that the bandwidth may have certain influence on the test when sample sizes
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are small to moderate. Therefore, in the real world problem, it is better to perform the

test with several values of bandwidth to make a decision to reject or not to reject the null

hypothesis.

2.6.3 Simulation Study: Two Dimensional Case

To investigate the performance of the test more deeply, we conduct a simulation study

when the design variable has two dimensions. The data are generated from the models

Y = β0 + β1X1 + β2X2 +
√
θ0 + θ1X1 + θ2X2 + b(X2

1 +X2
2 )ε. The sample from the model

with b = 0 are used to study the empirical level, while data from models with b = 0.5, 0.8, 1

are used to study the empirical power of the test. In the simulation, X1 ∼ N(0, 1), X2 ∼

N(0, 1), β0 = 1, β1 = 2, β2 = 1, θ0 = 2 and θ1 = θ2 = 0.1. We study the effect of two error

distributions such as ε ∼ N(0, 1), ε ∼ U(−
√

3,
√

3). The Kernel function K is chosen to be

the product of Epanechnikov kernel, i.e. K(u, v) = 9(1−u2)(1−v2)I(|u| ≤ 1)I(|v| ≤ 1)/16.

The bandwidth h is chosen to be n−1/5 in the two dimensional case (d=2) as the upper

bound on the exponent a in n−a is min{1/2d, 4/d(d+ 4)} in (h2). The sample sizes used are

100, 200, 300, 400, and 500, and the nominal level used is α = 0.05. The weighting measure

is chosen to be dG(x) = f̂ 2
wdFn(x) to make the computation easier., where Fn(x) is the

empirical CDF of (X1, X2). Similar to the one dimensional case, the test is calculated with

500 simulation runs while the critical value c∗α is calculated using 400 bootstrap samples per

run. The empirical size and power are computed by using #{Tn(β̂n, θ̂n) ≥ c?α}/500.

Table 2.5 gives the empirical sizes and powers regarding the test and it reveals that

the proposed test is quite conservative for small to moderate sample sizes. In general, the

power would become smaller with the higher dimensional data. In our simulation, we can

also see this difference in Table 2.3 and Table 2.5. In the consideration of the influence
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of the error distribution on the performance of the test, we see that under model 0, the

rejection frequencies with normally distributed errors are less than those with the uniformly

distributed errors. But under other models (Model 1, Model 2, and Model 3), there is a

considerable improvement in the power with uniformly distributed error compared to that

with normally distributed errors. This reveals that the different error distributions have

some effect on both the accuracy and the power of the test.

Table 2.5: Empirical size and power for h = n−1/5: Two Dimensional Case.

100 200 300 400 500 800 1000
Model 0 0.020 0.022 0.018 0.038 0.028 0.037 0.029

ε ∼ N(0, 1) Model 1 0.102 0.124 0.102 0.114 0.154 0.212 0.196
Model 2 0.176 0.198 0.200 0.236 0.258 0.364 0.422
Model 3 0.260 0.196 0.290 0.350 0.384 0.474 0.586

Model 0 0.022 0.042 0.036 0.042 0.020 0.046 0.068

ε ∼ U(−
√

3,
√

3) Model 1 0.120 0.160 0.194 0.294 0.356 0.544 0.626
Model 2 0.176 0.264 0.432 0.538 0.636 0.730 0.862
Model 3 0.226 0.386 0.532 0.654 0.714 0.850 0.888

Figure 2.3: Empirical Size and Power Curves (h = n−1/5): Two Dimensional Case
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2.7 Proofs of the Main Results (Minimum Distance

Test)

This section is devoted to providing necessary tools for proving the results in chapter 2. We

use C̃n(β, θ) in ( 2.19)to denote Cn(β, θ) when dψ̂w(x) is replaced by dψ(x) = dG(x)/f 2(x)

and same understanding for Γ̃n(β, θ) in ( 2.20). For the sake of convenience, we also define

the following:

µn(x; β) =
1

n

n∑
i=1

Kh(x−Xi)(Yi −m(Xi; β))2, (2.27)

ηn(x; β, θ) =
1

n

n∑
i=1

Kh(x−Xi)v(Xi; β, θ), (2.28)

η̇n(x; β, θ) =
1

n

n∑
i=1

Kh(x−Xi)v̇θ(Xi; β, θ). (2.29)

The following are the required lemmas to prove the Theorem 2.4.1.

Lemma 2.7.1. Assume that the conditions (e1), (e2), (f1), (h1), (h2), (m1), (m2) and (v1)−

(v3) hold, then under H0,

(a) : θ̃n = argmin
θ∈Θ

T ?n(β0, θ) is a consistent estimator of θ0;

(b) : supθ∈Θ|T ?n(β̂n, θ)− T ?n(β0, θ)| = op(1),

where T ?n is as defined in ( 2.7).

The proof of (a) is similar to that of corollary 3.1 in Koul and Ni (2004), hence the proof

is omitted here.
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Proof of part (b):

Let

An1 =

∫
C

[
µn(x; β̂n)− µn(x; β0)

f̂w(x)

]2

dG(x), An2(θ) =

∫
C

[
v(x; β̂n, θ)− v(x; β0, θ)

]2

dG(x).

(2.30)

Then the test statistic,

T ?n(β̂, θ̂) =

∫
C

[∑n
i=1 Kh(x−Xi)(Yi −m(Xi; β̂))2∑n

i=1Kw(x−Xi)
− v(x; β̂, θ̂)

]2

dG(x)

can be written as the sum of T ?n(β0, θ), An1, An2(θ) and three other terms which are bounded

above by 2
√
An1An2(θ), 2

√
An1T ?n(β0, θ) and 2

√
An2(θ)T ?n(β0, θ),using the Cauchy-Schwartz

inequality. Therefore it is enough to show that An1 = op(1), supθ∈Θ|An2(θ)| = op(1) and

supθ∈Θ|T ?n(β0, θ)| = Op(1). Adding and subtracting m(x; β0) from Yi −m(Xi; β̂n), the term

An1 is bounded above by An11 and An12, where

An11 = 2

∫
C

[∑n
i=1Kh(x−Xi)[m(Xi; β̂n)−m(Xi; β0)]2∑n

i=1Kw(x−Xi)

]2

dG(x),

An12 = 8

∫
C

[∑n
i=1 Kh(x−Xi)(Yi −m(Xi; β0))(m(Xi; β̂n)−m(Xi; β0))∑n

i=1Kw(x−Xi)

]2

dG(x).

Let

eni = m(Xi; β̂n)−m(Xi; β0)− (β̂n − β0)
′ .
m(Xi; β0). (2.31)
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Then

An11 =

∫
C

[∑n
i=1Kh(x−Xi)(eni + (β̂n − β0)

′ .
m(Xi; β0))2∑n

i=1Kw(x−Xi)

]2

dG(x)

≤ 8 sup
1≤i≤n

|eni|4
∫
C

[f̂h(x)/f̂w(x)]2dG(x)

+8‖β̂n − β0‖4

∫
C

n−1

n∑
i=1

Kh(x−Xi)‖
.
m(Xi; β0)‖2/f̂w(x)]2dG(x)

= op(n
−2)Op(1) +Op(n

−2)Op(1)

= op(1)

from the conditions (f1), (m1), (m2), (k), (h1), (h2), the
√
n-consistency of β̂n, and the fact (2.11).

Similarly, we can show that

An12 = 8

∫
C

[∑n
i=1Kh(x−Xi)(Yi −m(Xi; β0))((eni + (β̂n − β0)

′ .
m(Xi; β0)))∑n

i=1Kw(x−Xi)

]2

dG(x)

≤ 16 sup
1≤i≤n

|eni|2
∫
C

[n−1

n∑
i=1

Kh(x−Xi)|εi|
√
v(Xi; β0, θ0)/f̂w(x)]2dG(x)

+ 16‖β̂n − β0‖2

∫
C

[n−1

n∑
i=1

Kh(x−Xi)‖
.
m(Xi; β0)‖/f̂w(x)]2dG(x)

= op(n
−1)Op(1) +Op(n

−1)Op(1)

= op(1)

from the conditions (m1), (m2), (k), (h1), (h2), the
√
n-consistency of β̂n, and the fact 2.11.

Supθ∈ΘAn2(θ) = op(1) can be obtained by using the Lipschitz condition in (v3) and the
√
n

consistency of β̂n. The last requirement, Supθ∈ΘT
?
n(β0, θ) = Op(1) can be shown using (v1)

and ∫
C

[∑n
i=1Kh(x−Xi)(Yi −m(Xi; β0))2∑n

i=1Kw(x−Xi)

]2

dG(x) = Op(1). (2.32)

Hence the proof of part (b) is completed.
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To state the second lemma, let L2(G) denote a class of square integrable real valued functions

of Rd with respect to G. Define

ρ(v1, v2) =

∫
C

[v1(x)− v2(x)]2dG(x), where v1, v2 ∈ L2(G)

and the map

M(u) = argmin
θ∈Θ

ρ(u, v(x; β0, θ)), u ∈ L2(G).

Lemma 2.7.2. Let v satisfy conditions (v1)− (v3). Then the following results hold.

(a). M(u) always exists , ∀u ∈ L2(G),

(b). If M(u) is unique, then M is continuous at u in the sense that for any sequence

of un ∈ L2(G) converging to u ∈ L2(G),M(un)→M, i.e., ρ(un, u)→ 0 implies

M(un)→M(u), as n→∞.

(c).M(v(x; β0, θ)) = θ uniquely for ∀θ ∈ Θ.

This lemma is related to Minimum Hellinger Distance Functionals and the proof is omit-

ted as it is similar to Theorem 1 of Beran (1977).

Proof of Theorem 2.4.1 We shall use the part (b) in Lemma 2.7.2 with un(x) =

v(x; β0, θ
?
n) and u(x) = v(x; β0, θ0). Note that θ?n = M(un), θ0 = M(u), uniquely by (v2).

So it suffices to show that

ρ(un, u) =

∫
C

[v(x; β0, θ
?
n)− v(x; β0, θ0)]2dG(x) = op(1). (2.33)

By adding and subtracting µn(x; β0)/f̂w(x) in the parenthesis of the above integral, ρ(un, u),

expanding the quadratic, and using the Cauchy- Schwartz inequality on the cross product
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and can show that it is bounded above by the sum

2

∫
C

[µn(x; β0)/f̂w(x)− v(x; β0, θ
?
n)]2dG(x) + 2

∫
C

[µn(x; β0)/f̂w(x)− v(x; β0, θ0)]2dG(x).

Using a similar argument, like proving of Cn2(θ0) = op(1) in Koul and Ni (2004), the second

term is the order of op(1), while the first term is bounded above by the sum of

Bn1 = 6

∫
C

[v(x; β0, θ
?
n)− v(x; β̂n, θ

?
n)]2dG(x),

Bn2 = 6

∫
C

[µn(x; β̂n)/f̂w(x)− v(x; β̂n, θ
?
n)]2dG(x),

Bn3 = 6

∫
C

[µn(x; β̂n)/f̂w(x)− µn(x; β0)/f̂w(x)]2dG(x).

Lipschitz condition (v3) and the
√
n-consistency of β̂n imply that Bn1 = op(1). To show

that Bn2 = op(1), note that from part (b) of Lemma 2.7.1, supθ∈Θ|T ?n(β̂n, θ) − T ?n(β0, θ)| =

op(1), therefore,

T ?n(β̂n, θ
?
n)− T ?n(β0, θ

?
n) = op(1), T ?n(β̂n, θ̃n)− T ?n(β0, θ̃n) = op(1), (2.34)

where θ̃n is defined in part (a) of Lemma 2.7.1. Hence

T ?n(β̂n, θ
?
n)− T ?n(β̂n, θ̃n) = T ?n(β0, θ

?
n)− T ?n(β0, θ̃n) + op(1). (2.35)

By the definition of θ?n and θ̃n, the left hand side of (2.35) is non-positive, and the difference

T ?n(β0, θ
?
n)−T ?n(β0, θ̃n) on the right hand side is non-negative. Hence, T ?n(β0, θ

?
n)−T ?n(β0, θ̃n) =

op(1). Notice that since T ?n(β0, θ̃n) ≤ T ?n(β0, θ0) = op(1),then we have T ?n(β0, θ̃n) = op(1), but

this implies T ?n(β̂n, θ
?
n) = op(1) or Bn2 = op(1). Finally, notice that Bn3 = An1, where

An1 is defined in (2.30), and from the proof of 2.7.1, we have An1 = op(1), and so is Bn3.
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Therefore, (2.33) is proved and hence θ?n is a consistent estimator of θ0.

Now let’s show the consistency of θ̂n. Again we will use part (b) of 2.7.2 but with

un(x) = v(x; β0, θ̂n) and u(x) = v(x; β0, θ0). Note that θ̂n = M(un), θ0 = M(u), uniquely

by (v2). It thus suffices to show that

ρ(un, u) =

∫
C

[v(x; β0, θ̂n)− v(x; β0, θ0)]2dG(x) = op(1). (2.36)

Adding and subtracting v(x; β̂n, θ̂n), µn(x; β̂n)/f̂w(x), µn(x; β0)/f̂w(x) in the brackets of the

above integral, ρ(un, u) is bounded above by the sum of the following four terms of

Cn1 = 4

∫
C

[v(x; β0, θ̂n)− v(x; β̂n, θ̂n)]2dG(x),

Cn2 = 4

∫
C

[µn(x; β̂n)/f̂w(x)− v(x; β̂n, θ̂n)]2dG(x),

Cn3 = 4

∫
C

[µn(x; β̂n)/f̂w(x)− µn(x; β0)/f̂w(x)]2dG(x),

Cn4 = 4

∫
C

[µn(x; β0)/f̂w(x)− v(x; β0, θ0)]2dG(x).

Lipschitz condition (v3) and the
√
n-consistency of β̂n imply that Cn1 = op(1). Note that

the integral in Cn3 is simply An1 defined in (2.30),so we have Cn3 = op(1). Also it is obvious

that Cn4 = op(1). In the following, we shall show that Cn2 is the order of op(1). It is implied

by the following claim

supθ∈Θ|Tn(β̂n, θ)− T ?n(β̂n, θ)| = op(1). (2.37)

To show this, by adding and subtracting ηn(x; β̂n, θ)/f̂w(x) in the parenthesis of the inte-

grand in T ?n(β̂n, θ), we can show that |Tn(β̂n, θ)− T ?n(β̂n, θ)| ≤ Dn(θ) + 2D
1/2
n (θ)T

1/2
n (β̂n, θ),

where Dn(θ) =
∫

[ηn(x; β̂n, θ)/f̂w(x)− v(x; β̂n, θ)]
2dG(x). Therefore it suffices to show that

supθ∈ΘDn(θ) = op(1), supθ∈ΘTn(β̂n, θ) = op(1).
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For this purpose, adding and subtracting ηn(x; β0, θ)/f̂w(x), v(x; β0, θ)in the brackets of the

integrand of Dn(θ), we can show that Dn(θ) is bounded above by 3Dn1(θ) + 3Dn2(θ) +

3Dn3(θ), where

Dn1(θ) =

∫
C

{[ηn(x; β̂n, θ)− ηn(x; β0, θ)]/f̂w(x)}2dG(x),

Dn2(θ) =

∫
C

{ηn(x; β0, θ)/f̂w(x)− v(x; β0, θ)}2dG(x), (2.38)

Dn3(θ) =

∫
C

{v(x; β̂n, θ)− v(x; β0, θ)}2dG(x).

From the condition (v3), we can show that Dn1(θ) = ‖β̂n − β0‖2α.Op(1), and Dn3(θ) ≤

‖β̂n − β0‖2α
∫
C
‖l(x)‖2dG(x). Therefore, by the

√
n consistency of β̂n, both Dn1(θ) and

Dn3(θ) are of the order of op(1) uniformly for θ ∈ Θ. The proof of supθ∈ΘDn2(θ) is similar

to the proof of supθ∈ΘCn2(θ) = op(1) in Koul and Ni (2004). This concludes that the

proof of supθ∈ΘDn(θ) = op(1). To show supθ∈ΘTn(β̂n, θ) = Op(1), note that Tn(β̂n, θ) is

bounded above by 3An1 + 3Tn(β0, θ) + 3Dn1(θ), where An1 is as defined in (2.30). We have

already shown that An1 = op(1),and supθ∈ΘDn1(θ) = op(1), so we only have to show that

supθ∈ΘTn(βn, θ) = Op(1), but this can be done by using similar argument in Koul and Ni

(2004). Hence, complete the proof of the theorem.

�
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The following lemma is necessary to prove the Theorem 2.4.2 which appears as in Theorem

2.2 part (2) in Bosq (1998) .

Lemma 2.7.3. Let f̂w(x) be the kernel estimate associate with a kernel density function

K which satisfies a Lipschitz condition. If (f2) holds and w = an(log n/n)1/(d+4), where

an → a0 > 0, then for any positive integer k,

n2/(d+4)

(log n)2/(d+4) logk n
sup
c
|f̂w(x)− f(x)| → 0

almost surely.

Proof of Theorem 2.4.2:

The first step is to show that

nhd‖θ̂n − θ0‖2 = Op(1). (2.39)

For this purpose, let

Hn(θ) =

∫
C

(
1

nhd

n∑
i=1

K

(
x−Xi

h

)
[v(Xi, β̂n, θ)− v(Xi, β̂n, θ0)]

)2

dψ̂w(x).

We claim that nhdHn(θ̂n) = Op(1). To see this, note that

Hn(θ̂n) ≤ 2

∫
C

(
1

nhd

n∑
i=1

K

(
x−Xi

h

)
[(Yi −m(Xi; β̂n))2 − v(Xi, β̂n, θ̂n)]

)2

dψ̂w(x)

+ 2

∫
C

(
1

nhd

n∑
i=1

K

(
x−Xi

h

)
[(Yi −m(Xi; β̂n))2 − v(Xi, β̂n, θ0)]

)2

dψ̂w(x)

= 2Tn(β̂n, θ̂n) + 2Tn(β̂n, θ0) ≤ 4Tn(β̂n, θ0).
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Therefore, it is sufficient to show that

nhdTn(β̂n, θ0) = Op(1). (2.40)

Adding and subtracting (Yi −m(Xi; β0))2, v(x : β0; θ0) from (Yi −m(Xi; β̂n))2 − v(x, β̂n, θ0)

in Tn(β̂n, θ0), we can show that Tn(β̂n, θ0) is bounded above by 3An1 +3Tn(β0, θ0)+3Dn1(θ0),

where An1 is defined in (2.30) and Dn1(θ0) is given in (2.38). Since An1 = OP (1/n) from

the proof of Lemma 2.7.1, nhdAn1 = Op(h
d) = op(1). Note that Dn1(θ0) is bounded above

by 2Dn11(θ0) + 2Dn12(θ0), where

Dn11(θ0) =

∫
C

[
n−1

∑n
i=1Kh(x−Xi)[v(Xi, β̂n, θ0)− v(Xi, β0, θ0)− (β̂n − β0)

′
v̇β(Xi; β0, θ0)]

f̂w(x)

]2

dG(x)

and

Dn12(θ0) =

∫
C

[
n−1

∑n
i=1 Kh(x−Xi)[(β̂n − β0)

′
v̇β(Xi; β0, θ0)]

f̂w(x)

]2

dG(x).

It is easy to see that Dn11(θ0) is bounded above by

sup
1≤i≤n

|v(Xi, β̂n, θ0)− v(Xi, β0, θ0)− (β̂n − β0)
′
v̇β(Xi; β0, θ0)|

∫
C

[
f̂h(x)

f̂w(x)

]2

dG(x)

which has the order of op(n
−1) by (v4). By Cauchy-Schwartz inequality, Dn12(θ0) is bounded

above by

‖β̂n − β0‖2

∫
C

[
n−1

∑n
i=1Kh(x−Xi)‖v̇β(Xi; β0, θ0)‖

f̂w(x)

]2

dG(x)

which is Op(1/n) by (v1) and the
√
n consistency of β̂n. Therefore nhdDn1(θ0) =

nhdOp(1/n) = op(1). So, we only have to show that nhdTn(β0, θ0) = Op(1).

Let ∆n(x) = f 2(x)/f̂ 2
w(x) − 1. Then nhdTn(β0, θ0) is bounded above by the following two
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terms.

Qn1 = nhd
∫
C

[∑n
i=1 Kh(x−Xi)v(Xi; β0, θ0)(ε2i − 1)

f(x)

]2

dG(x) and

Qn2 = nhd
∫
C

[∑n
i=1 Kh(x−Xi)v(Xi; β0, θ0)(ε2i − 1)

f(x)

]2

∆n(x)dG(x).

Note that ε2i − 1 are i.i.d. with mean 0, so

E

∫
C

[
1

nhd

n∑
i=1

Kh(x−Xi)v(Xi; β0, θ0)(ε2i − 1)

]2

dG(x)

=
1

nh2d

∫
C

EK2
h(x−X)v(X; β0, θ0)τ(x)dψ(x) (2.41)

where dψ(x) = dG(x)/f 2(x). Then from conditions (e2), (f1) and (v1), we can show that

the right hand side of (2.41) is the order of Op(1/nh
d). Hence Qn1 = Op(1). Realizing

that |Qn2| ≤ supx∈c|∆n(x)|.Qn1, then from 2.11, we have Qn2 = op(1). These imply that

nhdTn(β0, θ0) = Op(1), hence nhdHn(θ̂n) = Op(1). Similar to proof of (4.6) in Koul and Ni

(2004), we can show that

lim inf
n→∞

P

(
Hn(θ̂n)/‖θ̂n − θ0‖2 ≥ 1

2
inf
‖b‖=1

b
′
Σ0b

)
= 1, (2.42)

where Σ0 is defined in 2.15. To prove, (2.42), let

dni = v(Xi; β̂n, θ̂n)− v(Xi; β̂n, θ0)− v̇′

θ(Xi; β̂n, θ0)(θ̂n − θ0). (2.43)
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Then Hn(θ̂n)/‖θ̂n − θ0‖2 can be written as the sum of Hn1 +Hn2 +Hn3, where

Hn1 =

∫
C

[
n−1

n∑
i=1

Kh(x−Xi)dni/‖θ̂n − θ0‖

]2

dψ̂w(x),

Hn2 =

∫
C

[
n−1

n∑
i=1

Kh(x−Xi)v̇
′

θ(Xi; β̂n, θ0)(θ̂n − θ0)/‖θ̂n − θ0‖

]2

dψ̂w(x)

and Hn3 is a term whose absolute value being bounded above by D
1/2
n1 D

1/2
n2 , where Dn1 and

Dn2 are defined as in (2.38). From the condition (v4), it is easy to see that Hn = op(1).

Adding and subtracting, v̇θ(Xi; β0, θ0) from v̇θ(Xi; β̂n, θ0) in the integrand of Hn2, we can

show that

Hn2 = Hn21 +Hn22 +Hn23, where

Hn21 =

∫
C

(
(nhd)−1

n∑
i=1

Kh(x−Xi)
v̇θ(Xi; β0, θ0)(θ̂n − θ0)

‖θ̂n − θ0‖

)2

dψ̂w(x),

Hn22 =

∫
C

(
(nhd)−1

n∑
i=1

Kh(x−Xi)
[v̇θ(Xi; β̂n, θ0)− v̇θ(Xi; β0, θ0)](θ̂n − θ0)

‖θ̂n − θ0‖

)2

dψ̂w(x),

and Hn23 is bounded above by H
1/2
n21.H

1/2
n22. From the condition (v6) and the fact of 2.11, we

can show that Hn22 = Op(‖β − β0‖) = op(1), while

Hn21 ≥ inf
‖b‖=1

∫
C

b
′
η̇n(x; β0, θ0)η̇

′

n(x; β0, θ0)bdψ̂w(x) ≡ inf
‖b‖=1

Σn(b).

By the usual calculation, we can show that for each b ∈ Rq,Σn(b) → b
′
Σb in probability.

Also note that for any δ > 0 and any b1, b2 ∈ Rq such that ‖b1 − b2‖ ≤ δ, we have

|Σn(b2)− Σn(b1)| < δ(δ + 2)

∫
C

[
n−1

n∑
i=1

Kh(x−Xi)‖v̇θ(Xi; β0, θ0)‖

]2

dψ̂w(x).

Condition (v7) and the fact that 2.11, imply the above integration is Op(1). From these
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observations and the compactness of the unit circle {b ∈ Rq : ‖b‖ = 1}, we obtain that

sup
‖b‖=1

|Σn(b)− b′Σb| = op(1).

Notice that we also have Hn21 = Op(1), therefore, Hn23 will be the order of Op(1). Hence we

have proved (2.42). The claim (2.39) will then follow from (2.42), nhdHn(θ̂n) = OP (1),Σ0 >

0 and the fact

nhdHn(θ̂n) = nhd‖θ̂n − θ0‖2.[Hn(θ̂n)/‖θ̂n − θ0‖2].

That is the proof of

nhd‖θ̂n − θ0‖2 = Op(1).

Asymptotic normality of θ̂n

Since θ0 is an interior point of Θ, by the consistency of θ̂n for sufficiently large n, θ̂n

will be in the interior point of Θ, so Ṫn,θ(β̂n, θ̂n) = 0, where Ṫn,θ(β̂n, θ̂n) is the derivative of

Tn(β̂n, θ) with respect to θ, evaluated at θ = β̂n. This is equivalent to

∫
C

[µn(x; β̂n)− ηn(x; β̂n, θ̂n)]η̇n(x; β̂n, θ̂n)dψ̂w(x) = 0.

By adding and subtracting ηn(x; β̂n, θ0) from µn(x; β̂n)− ηn(x; β̂n, θ̂n), the above can be

written as

∫
C

[µn(x; β̂n)− ηn(x; β̂n, θ0)]η̇n(x; β̂n, θ̂n)dψ̂w(x) (2.44)

=

∫
C

[ηn(x; β̂n, θ̂n)− ηn(x; β̂n, θ0)]η̇n(x; β̂n, θ̂n)dψ̂w(x).

Denote the left hand side as Ln and the right hand side as Rn, then note that Ln can be
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written as the sum of Ln1 + Ln2 + Ln3, where

Ln1 =

∫
C

[µn(x; β̂n)− µn(x; β0)]η̇n(x; β̂n, θ̂n)dψ̂w(x),

Ln2 =

∫
C

[µn(x; β0)− ηn(x; β0, θ0)]η̇n(x; β̂n, θ̂n)dψ̂w(x),

Ln3 =

∫
C

[ηn(x; β0, θ0)− ηn(x; β̂n, θ0)]η̇n(x; β̂n, θ̂n)dψ̂w(x).

For Ln1, we have

Ln1 = 2

∫
C

n−1

n∑
i=1

Kh(x−Xi)(Yi −m(Xi; β0))(m(Xi; β0)−m(Xi; β̂n))η̇n(x; β̂n, θ̂n)dψ̂w(x)

+

∫
C

n−1

n∑
i=1

Kh(x−Xi)(m(Xi; β0)−m(Xi; β̂n))2η̇n(x; β̂n, θ̂n)dψ̂w(x)

= Ln11 + Ln12.

Recall the notation eni in (2.31) then we have,

Ln11 = −2

∫
C

(
n−1

n∑
i=1

Kh(x−Xi)(Yi −m(Xi; β0))eni

)
η̇n(x; β̂n, θ̂n)dψ̂w(x)

−2

∫
C

η̇n(x; β̂n, θ̂n)

(
n−1

n∑
i=1

Kh(x−Xi)(Yi −m(Xi; β0))ṁ
′

βm(Xi; β0)

)
dψ̂w(x)(β̂n − β0).

Notice that

η̇n(x; β̂n, θ̂n) = η̇n(x; β̂n, θ̂n)− η̇n(x; β̂n, θ0) + η̇n(x; β̂n, θ0)− η̇n(x; β0, θ0)− η̇n(x; β0, θ0),
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then by the condition (v5) and the fact of 2.11, we can show that

∫
C

‖η̇n(x; β̂n, θ̂n)‖2dψ̂w(x) =

∫
C

‖v̇θ(x; β0, θ0)‖2dG(x) + op(1) (2.45)

= Op(1). (2.46)

Therefore, by Cauchy-Schwartz inequality and from the condition (m2),

n‖
∫
C

(
n−1

n∑
i=1

Kh(x−Xi)(Yi −m(Xi; β0))eni

)
η̇n(x; β̂n, θ̂n)dψ̂w(x)‖2

≤ n

∫
C

(
n−1

n∑
i=1

Kh(x−Xi)(Yi −m(Xi; β0))eni

)2

dψ̂w(x)

∫
C

‖η̇n(x; β̂n, θ̂n)‖2dψ̂w(x)

= sup
1≤i≤n

|eni|2Op(1)

= op(1).

Similarly, we can show that

√
n

∫
C

η̇n(x; β̂n, θ̂n)

(
n−1

n∑
i=1

Kh(x−Xi)(Yi −m(Xi; β0))ṁ
′

βm(Xi; β0)

)
dψ̂w(x)(β̂n−β0) = op(1)

by the fact that
√
n(β̂n − β0) = Op(1) and the fact of

∫
C

‖n−1

n∑
i=1

Kh(x−Xi)(Yi −m(Xi; β0))ṁ
′

βm(Xi; β0)‖2dψ̂w(x) = Op(1/nh
d)

which can be shown by the fact of 2.11 and an expectation and variance argument. There-

fore,
√
nLn11 = op(1). Using Caushy-Schwartz inequality and the conditions of (m1) and

(m2) on Ln12, we can show that
√
nLn12 = op(1). Thus we have proved that

√
nLn1 = op(1). (2.47)
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Now, let’s consider Ln2. For convenience, denote Un(x) = µn(x; β0)− ηn(x; β0, θ0). Adding

and subtracting v̇θ(Xi, β0, θ0) from v̇θ(Xi, β̂n, θ̂n) in η̇n(x; β̂n, θ̂n), Ln2 can be written as

Ln2 =

∫
C

Un(x).n−1

n∑
i=1

Kh(x−Xi)(v̇θ(Xi, β̂n, θ̂n)− v̇θ(Xi, β0, θ0))dψ̂w(x)

+

∫
C

Un(x).n−1

n∑
i=1

Kh(x−Xi)v̇θ(Xi, β0, θ0)dψ̂w(x)

= Ln21 + Ln22.

In the following, we shall prove that
√
nLn21 = op(1). In fact

Ln21 =

∫
C

Un(x).n−1

n∑
i=1

Kh(x−Xi)(v̇θ(Xi, β̂n, θ̂n)− v̇θ(Xi, β0, θ0))

(
f 2(x)

f̂w(x)
− 1

)
dψ(x)

+

∫
C

Un(x).n−1

n∑
i=1

Kh(x−Xi)(v̇θ(Xi, β̂n, θ̂n)− v̇θ(Xi, β0, θ0))dψ(x)

= L
′

n21 + L
′′

n22.

Using the Cauchy-Schwartz inequality, the second term is bounded above by the square

root of

∫
C

U2
n(x)dψ(x).

∫
C

[
n−1

n∑
i=1

Kh(x−Xi)(v̇θ(Xi, β̂n, θ̂n)− v̇θ(Xi, β0, θ0))

]2

dψ(x)

which is again bounded above by

∫
C

U2
n(x)dψ(x).sup‖v̇θ(Xi, β̂n, θ̂n)− v̇θ(Xi, β0, θ0)‖2

∫
C

[
n−1

n∑
i=1

Kh(x−Xi)

]2

dψ(x).

Notice that ‖v̇θ(Xi, β̂n, θ̂n)− v̇θ(Xi, β0, θ0)‖ is bounded above by the sum of ‖v̇θ(Xi, β̂n, θ̂n)−
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v̇θ(Xi, β0, θ̂n)‖ and ‖v̇θ(Xi, β0, θ̂n)− v̇θ(Xi, β0, θ0)‖. By (v5), both terms are op(h
d/2).

Since
∫
C
U2
n(x)dψ(x) = Op(1/nh

d),

√
nL

′′
n21 =

√
n.Op(1/

√
nhd).op(h

d/2) = op(1).
√
nL

′
n21 = op(1).

Hence we proved
√
nLn21 = op(1). (2.48)

With considering Ln22, we have

Ln2 =

∫
C

Un(x).n−1

n∑
i=1

Kh(x−Xi)v̇θ(Xi, β0, θ0)

(
f 2(x)

f̂w(x)
− 1

)
dψ(x)

+

∫
C

Un(x).n−1

n∑
i=1

Kh(x−Xi)v̇θ(Xi, β0, θ0)dψ(x)

= L
′

n22 + L
′′

n22.

By the the Cauchy-Schwartz inequality,

‖L′

n22‖2 ≤
∫
C

U2
n(x)dψ(x).

∫
C

[
n−1

n∑
i=1

Kh(x−Xi)v̇θ(Xi, β0, θ0)

]2

dψ(x).supx∈c

∣∣∣∣∣f 2(x)

f̂w(x)
− 1

∣∣∣∣∣
2

,

so, using Lemma 2.7.3

n‖L′

n22‖2 = n.Op(1/nh
d).o((logk n)2(log n/n)4/(d+4)) = op((logk n)2(log n)4/(d+4)nad−4/(d+4))

which is op(1). Therefore,
√
nL

′
n22 = op(1). This together with the result in (2.48), implies

√
nLn2 =

√
n

∫
C

Un(x).n−1

n∑
i=1

Kh(x−Xi)v̇θ(Xi, β0, θ0)dψ(x) + op(1)

=
√
n

∫
C

Un(x).η̇h(x)dψ(x) + op(1), (2.49)
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where

η̇h(x) = E[Kh(x−X)v̇θ(Xi, β0, θ0)]. (2.50)

Finally, let us consider Ln3. Adding and subtracting v(x, β0, θ0) from v(x, β̂n, θ0) and

taking

rni = v(Xi; β̂n, θ0)− v(Xi; β0, θ0)− (β̂n − β0)
′
v̇β(Xi; β0, θ0), (2.51)

we have

√
nLn3 = −

√
n

∫
C

n−1

n∑
i=1

Kh(x−Xi)rniη̇n(x; β̂n, θ̂n)dψ̂w(x)

−
√
n

∫
C

η̇n(x; β̂n, θ̂n)η̇
′

nβ(x; β0, θ0)dψ̂w(x)(β̂n − β0). (2.52)

Condition (v4) and some routine argument can show that the first term on the right hand

side of (2.52) is the order of op(1), and the second term is equal to

∫
C

η̇n(x; β0, θ0)η̇
′

nβ(x; β0, θ0)dψ(x)
√
n(β̂n − β0) + op(1).

Note that ∫
C

η̇n(x; β0, θ0)η̇
′

nβ(x; β0, θ0)dψ(x) = Π + op(1),

where Π is defined in (2.14). then we have

√
nL3 = Π

√
n(β̂n − β0) + op(1). (2.53)
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Combining (2.47), (2.49),and (2.53), we have

√
nLn =

√
n

∫
C

Un(x)η̇h(x)dψ(x)− Π
√
n(β̂n − β0) + op(1). (2.54)

Take sni = (ε2i − 1)v(Xi, β0, θ0)
∫
C
Kh(x − Xi)η̇h(x)dψ(x), tni = ΠL(Yi, Xi; β0, θ0), where L

is defined in 2.12. Then
√
nLn =

1√
n

n∑
i=1

(sni − tni). (2.55)

For convenience, we shall give the proof only for p = q = 1. For the multidimensional case,

the results can be proved using the Wald Scheme and applying the same argument. Note

that {sni − tni; i ≤ 1 ≤ n} are i.i.d. centered random variables for each n.

By the Lindeberge-Feller Central Limit Theorem, it suffices to show that as n→∞,

E[(sn1 − rn1)2]→ Σ, (2.56)

E[(sn1 − rn1)2I[|sn1 − rn1|] > λ
√
n]→ 0 for all λ > 0, (2.57)

where Σ is defined in Theorem 2.4.2. Since

E[(sn1 − rn1)2] = E

[
τ(x)v2(X; β0, θ0)

(∫
Kh(x−X)η̇h(x)dψ(x)

)2
]

+ Π2E[L2(Y,X; β0, θ0)]

+2ΠE

[
ρ(X)v(X; β0, θ0)

∫
Kh(x−X)η̇h(x)dψ(x)

]
= σ11 + Π2E[L2(Y,X; β0, θ0)] + 2Πσ12.

By Fubini theorem,

σ11 =

∫ ∫
EKh(x−X)Kh(y −X)τ(x)v2(X; β0, θ0)η̇h(x)η̇h(y)dψ(x)dψ(y).

By the transformations of x − z = uh, y − z = vh, and using the assumed continuity of
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τ(x), v(X; β0, θ0), f and g, we, obtain

σ11 =

∫ ∫ ∫
K(u)K(v)τ(z)v2(z; β0, θ0)η̇h(z + uh)η̇h(z + vh)f(z)

g(z + uh)g(z + vh)

f 2(z + uh)f 2(z + vh)
dudvdz

→
∫
τ(x)v2(x; β0, θ0)v̇2

θ(x; β0, θ0)g2(x)

f(x)
dx

as h→ 0. By the transformation x− z = uh, we can obtain

σ12 =

∫
ρ(x)v(x; β0, θ0)v̇θ(x; β0, θ0)g(x)dx.

Therefore, Σ has the form in Theorem 2.4.2.

To show (2.57), we use the inequality,

(a+ b)r ≤ 2r−1(ar + br) for a, b > 0, r > 1.

Then the left side of (2.57) is bounded above by

λ−δn−δ/2E[(sn1 − tn1)2+δ] ≤ 21+δλ−δn−δ/2E(sn1)2+δ + 21+δλ−δn−δ/2E(tn1)2+δ.

Using the Hölder’s inequality, and the continuity of τ(x), v(x; β0, θ0), and v̇θ(x; β0, θ0)

with respect to x,

E(sn1)2+δ ≤ E

[(∫
C

(Kh(x−X)η̇h(x))(2+δ)/2dψ(x)

)2

(τ(x)v(x; β0, θ0))2+δ

]
= O(h−δd/2).

Therefore, 21+δλ−δn−δ/2E(sn1)2+δ = O(nh−δd/2) = op(1). From 2.13, we can see that

21+δλ−δn−δ/2E(tn1)2+δ = O(n−δ/2) = o(1). It is the proof of (2.57). Hence

√
nLn ⇒ N(0,Σ) in distribution (2.58)
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Now let us consider the term Rn. In the following, we shall show that Rn = Hn(θ̂n − θ0)

with Hn = Σ0 + op(1) where Σ0 is defined in 2.15. To see this, define

dni = v(Xi; β̂n, θ̂n)− v(Xi; β̂n, θ0)− v̇′

θ(Xi; β̂n, θ0)(θ̂n − θ0). (2.59)

Then Rn can be written as the sum of Rn1 +Rn2, where,

Rn1 =

∫
C

n−1

n∑
i=1

Kh(x−Xi)dni.η̇n(x; β̂n, θ̂n)dψ̂w(x),

Rn2 =

∫
C

η̇n(x; β̂n, θ̂n)η̇
′

n(x; β̂n, θ0)dψ̂w(x)(θ̂n − θ0).

Let

Rn11 =

∫
C

n−1

n∑
i=1

Kh(x−Xi)
dni

‖θ̂n − θ0‖
η̇n(x; β̂n, θ̂n)dψ̂w(x)

(θ̂n − θ0)
′

‖θ̂n − θ0‖
.

Then Rn1 can be written as Rn1 = Rn11(θ̂n − θ0). But

‖Rn11‖ ≤ sup
1≤i≤n

|dni|
‖θ̂n − θ0‖

∫
C

n−1

n∑
i=1

Kh(x−Xi).‖η̇n(x; β̂n, θ̂n)‖dψ̂w(x).

From (v4), we know the first factor of the above inequality is of op(1). Applying Cauchy-

Schwartz inequality to the second factor and using (2.43), the integral is Op(1). Therefore,

√
nRn1 = op(1)

√
n(θ̂n − θ0).

Note that the usual calculations show that

∫
C

η̇(x; β̂n, θ̂n)η̇(x; β̂n, θ0)dψ̂w(x) = Σ0 + op(1).
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Hence,
√
nRn2 = (Σ0 + op(1))

√
n(θ̂n − θ0). Therefore,

√
nRn = (Σ0 + op(1))

√
n(θ̂n − θ0).

This, together with (2.58), proved the theorem of

√
n(θ̂n − θ0)

d⇒ N(0,Σ−1
0 ΣΣ−1

0 ).

�

Proof of Theorem 2.4.3: In order to prove this theorem, it is necessary to state and prove

the following lemmas.

Lemma 2.7.4. Suppose all the conditions in Theorem 2.4.2 hold, then

(i). nhd/2[Tn(β̂n, θ̂n)− Tn(β̂n, θ0)] = op(1),

(ii). nhd/2[Tn(β̂n, θ0)− Tn(β0, θ0)] = op(1),

(iii). nhd/2[Tn(β0, θ0)− T̃n(β0, θ0)] = op(1).

Proof: Recall

Tn(β̂n, θ̂n) =

∫
C

[∑n
i=1Kh(x−Xi)[(Yi −m(Xi; β̂n))2 − v(Xi; β̂n, θ̂n)]∑n

i=1 Kw(x−Xi)

]2

dG(x)

and dψ̂w(x) = dG(x)/f̂ 2
w(x). By adding and subtracting v(Xi; β̂n, θ0) from ξi(β̂n; θ̂n) = (Yi−

m(Xi; β̂n))2− v(Xi; β̂n, β̂n) and expanding the square terms, we can show that Tn(β̂n, θ̂n)−

Tn(β̂n, θ0) = Qn1 − 2Qn2, where
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Qn1 =

∫
C

[
1

n

n∑
i=1

Kh(x−Xi)[v(Xi; β̂n, θ̂n)− v(Xi; β̂n, θ0)]

]2

dψ̂w(x),

Qn2 =

∫
C

[
1

n

n∑
i=1

Kh(x−Xi)ξ̂i

]
.

[
1

n

n∑
i=1

Kh(x−Xi)[v(Xi; β̂n, θ̂n)− v(Xi; β̂n, θ0)]

]
dψ̂w(x).

To show part (i) in Lemma 2.7.3, it necessary to show that

nhd/2Qn1 = op(1), nhd/2Qn2 = op(1). (2.60)

Recall the definition of dni in (2.43), we can show that Qn1 ≤ 2Qn11 + 2Qn12, where

Qn11 =

∫
C

[
1

n

n∑
i=1

Kh(x−Xi)dni

]2

dψ̂w(x),

Qn12 =

∫
C

[
1

n

n∑
i=1

Kh(x−Xi)v̇
′

θ(Xi; β̂n, θ0)(θ̂n − θ0)

]2

dψ̂w(x).

From the assumption of (v4), we can show that

Qn11 ≤ ‖θ̂n − θ0‖2 sup
1≤i≤n

|dni|2

‖θ̂n − θ0‖2

∫
C

f̂ 2
h(x)dψ̂w(x) = op(1/n),

and from the assumption of (v5),

Qn12 ≤ 2‖θ̂n − θ0‖2

∫
C

[
1

n

n∑
i=1

Kh(x−Xi)‖v̇θ(Xi; β̂n, θ0)− v̇θ(Xi; β0, θ0)‖

]2

dψ̂w(x)

+ 2‖θ̂n − θ0‖2

∫
C

[
1

n

n∑
i=1

Kh(x−Xi)‖v̇θ(Xi; β0, θ0)‖

]2

dψ̂w(x)

= Op(1/n).

This imply, nhd/2Qn1 = op(1) in (2.60). Now we’ll consider Qn2. By adding and sub-
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tracting v̇
′

θ(Xi; β̂n, θ0)(θ̂n− θ0) to and from v(Xi; β̂n, θ̂n)− v(Xi; β̂n, θ0), we can write Qn2 as

a sum of Qn21 and Qn22, where

Qn21 =

∫
C

[µn(x; β̂n)− ηn(x; β̂n, θ̂n)].
1

n

n∑
i=1

Kh(x−Xi)dnidψ̂w(x),

Qn22 = (θ̂n − θ0)
′
∫
C

[µn(x; β̂n)− ηn(x; β̂n, θ̂n)].
1

n

n∑
i=1

Kh(x−Xi)v̇θ(Xi; β̂n, θ0)dψ̂w(x).

By the Cauchy-Schwartz inequality, assumption (v4) and (2.40),

‖Qn21‖2 ≤ Tn(β̂n, θ0)‖θ̂n − θ0‖2 sup
1≤i≤n

(
|dni|

‖θ̂n − θ0‖

)2 ∫
C

f̂ 2
w(x)dψ̂w(x) = op(1/n

2hd).

Therefore, nhd/2Q21 = nhd/2op(1/
√
n2hd) = op(1). Note that Q22 can be written as

Q
′
22 −Q

′′
22, where

Q
′

n22 = (θ̂n − θ0)
′
∫
C

[µn(x; β̂n)− ηn(x; β̂n, θ̂n)].η̇n(Xi; β̂n, θ̂n)dψ̂w(x)

Q
′′

n22 = (θ̂n − θ0)
′
∫
C

[µn(x; β̂n)− ηn(x; β̂n, θ̂n)].[η̇n(Xi; β̂n, θ̂n)− η̇n(Xi; β̂n, θ0)]dψ̂w(x).

By Cauchy-Schwartz inequality, we can show that

|Q′′

n22|2 ≤ ‖θ̂n − θ0‖2 sup
1≤i≤n

‖η̇n(Xi; β̂n, θ̂n)− η̇n(Xi; β̂n, θ0)‖2.Tn(β̂n, θ0).

∫
C

f̂ 2
w(x)dψ̂w(x).

From the assumption of (v5), the
√
n− consistency of θ̂n, it is clear that |Q′′

n22|2 =

Op(1/n
2). Therefore, nhd/2Q

′′
n22 = nhd/2op(1/n) = op(h

d/2) = op(1).

With considering Q
′
n22, note that the integration is same as the left side of (2.44), hence
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Q
′

n22 = (θ̂n − θ0)
′
∫
C

[ηn(x; β̂n, θ̂n)− ηn(x; β̂n, θ0)]η̇n(x; β̂n, θ̂n)dψ̂w(x).

By adding and subtracting η̇n(x; β̂n, θ0), η̇n(x; β0, θ0) from η̇n(x; β̂n, θ̂n), Q
′
n22 can be writ-

ten as the sum of Q
′
n221 +Q

′
n222 +Q

′
n223, where

Q
′

n221 = (θ̂n − θ0)
′
∫
C

[ηn(x; β̂n, θ̂n)− ηn(x; β̂n, θ0)][η̇n(x; β̂n, θ̂n)− η̇n(x; β̂n, θ0)]dψ̂w(x),

Q
′

n222 = (θ̂n − θ0)
′
∫
C

[ηn(x; β̂n, θ̂n)− ηn(x; β̂n, θ0)][η̇n(x; β̂n, θ0)− η̇n(x; β0, θ0)]dψ̂w(x),

Q
′

n223 = (θ̂n − θ0)
′
∫
C

[ηn(x; β̂n, θ̂n)− ηn(x; β̂n, θ0)]η̇n(x; β0, θ0)dψ̂w(x).

Then from the conditions (v4), (v5) and 2.11, we can show that nhd/2Q
′
n221 = op(1), nhd/2Q

′
n222 =

op(1) and nhd/2Q
′
n223 = op(1). That is, nhd/2Q

′
n22 = op(1). Therefore, nhd/2Qn22 = op(1),

and nhd/2Qn2 = op(1) which is the second part of the (2.60) and hence the proof of (i).

Following is the proof of part (ii). By the definition of µn and ηn, Tn(β̂n, θ0)−Tn(β0, θ0)

can be written as the sum of An1 + An2 + 2An3 + 2An4 + 2An5, where

An1 =

∫
C

[µn(x; β̂n)− µn(x; β0)]2dψ̂w(x),

An2 =

∫
C

[ηn(x; β̂n, θ0)− ηn(x; β0, θ0)]2dψ̂w(x),

An3 =

∫
C

[µn(x; β̂n)− µn(x; β0)][µn(x; β0)− ηn(x; β0, θ0)]dψ̂w(x),

An4 =

∫
C

[µn(x; β̂n)− µn(x; β0)][ηn(x; β0, θ0)− ηn(x; β̂n, θ0)]dψ̂w(x),

An5 =

∫
C

[µn(x; β0)− ηn(x; β0, θ0)][ηn(x; β0, θ0)− ηn(x; β̂n, θ0)]dψ̂w(x).
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From (2.30), nhd/2An1 = nhd/2Op(1/n) = Op(h
d/2) = op(1) and from (2.38), An2 =

Dn1(θ0) = Op(1/n), hence nhd/2An2 = Op(h
d/2) = op(1). Now let us consider An3.. For

convenience, let Un(x) = µn(x; β0)−ηn(x; β0, θ0) and then An3 can be written as An31−2An32,

where

An31 =

∫
C

1

n

n∑
i=1

Kh(x−Xi)[m(Xi; β̂n)−m(Xi; β0)]2Un(x)dψ̂w(x),

An32 =

∫
C

1

n

n∑
i=1

Kh(x−Xi)[Yi −m(Xi; β0)][m(Xi; β̂n)−m(Xi; β0)]Un(x)dψ̂w(x).

Using the assumption of (m2), the definition if eni in (2.31), and the Cauchy-Schwartz

inequality, one can show that

|An31| ≤ 2 sup
1≤i≤n

|eni|2
(∫

C

f̂ 2
h(x)dψ̂w(x).Tn(x; β0, θ0)

)1/2

+2‖β̂n − β0‖2

∫
C

[
1

n

n∑
i=1

Kh(x−Xi)‖ṁ(Xi; β0)‖2

]2

dψ̂w(x).Tn(x; β0, θ0)

1/2

= op(1/n)Op(1/
√
nhd) +Op(1/n)Op(1/

√
nhd).

Hence, nhd/2An31 = op(1/
√
n) + Op(1/

√
n) = op(1). Now An32 can be written as a sum

of An321 + An322, where

An321 =

∫
C

[
1

n

n∑
i=1

Kh(x−Xi)[Yi −m(Xi; β0)]eni

]
Un(x)dψ̂w(x),

An322 = (β̂n − β0)

∫
C

[
1

n

n∑
i=1

Kh(x−Xi)[Yi −m(Xi; β0)]ṁ(Xi; β0)

]
Un(x)dψ̂w(x).
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By Cauchy-Schwartz inequality,

|An321| ≤ sup
1≤i≤n

|eni|

∫
C

[
1

n

n∑
i=1

Kh(x−Xi)|Yi −m(Xi; β0)|

]2

dψ̂w(x).Tn(x; β0, θ0)

1/2

= op(1/
√
n).Op(1).Op(1/

√
nhd).

Hence, nhd/2An321 = op(1). Again using the Cauchy-Schwartz inequality,

|An322| ≤ ‖β̂n − β0‖

(∫
C

‖ 1

n

n∑
i=1

Kh(x−Xi)[Yi −m(Xi; β0)]ṁ(Xi; β0)‖2dψ̂w(x).Tn(x; β0, θ0)

)1/2

= Op(1/
√
n).Op(1/

√
nhd).Op(1/

√
nhd).

Therefore, nhd/2An322 = Op(1/
√
nhd) = op(1). This implies that nhd/2An32 = op(1) and

hence nhd/2An3 = op(1).

Using Cauchy-Schwartz inequality on A2
n4, we get

A2
n4 ≤

∫
C

[µn(x; β̂n)− µn(x; β0)]2dψ̂w(x).

∫
C

[ηn(x; β̂n, θ0)− ηn(x; β0, θ0)]2dψ̂w(x).

From (2.30) and (2.38), both above integrations are Op(1/n). Therefore, nhd/2An4 =

Op(h
d/2) = op(1).

Finally, let’s consider An5. By the definition of rni in (2.51), we have

ηn(x; β̂n, θ0)−ηn(x; β0, θ0) =
1

n

n∑
i=1

Kh(x−Xi)rni+(β̂n−β0)
′ 1

n

n∑
i=1

Kh(x−Xi)v̇β(Xi; β0, θ0).
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So, An5 can be written as the sum of An51 and An52, where

An51 =

∫
C

Un(x)
1

n

n∑
i=1

Kh(x−Xi)rnidψ̂w(x),

An52 = (β̂n − β0)
′
∫
C

1

n

n∑
i=1

Kh(x−Xi)v̇β(Xi; β0, θ0)Un(x)dψ̂w(x).

From (v4) and Cauchy-Schwartz inequality,

|An51|2 ≤ sup
1≤i≤n

|rni|2.
∫
C

U2
n(x)dψ̂w(x).

∫
C

f̂ 2
hdψ̂w(x) = op(1/n)Op(1/nh

d),

So, nhd/2An51 = nhd/2op(1/nh
d/2) = op(1). By adding and subtracting EKh(x−X)v̇β(X; β0, θ0)

from 1
n

∑n
i=1Kh(x−X)v̇β(X; β0, θ0), An52 can be written as the sum of An511 +An512, where

An511 = (β̂n − β0)
′
∫
C

[
n−1

n∑
i=1

Kh(x−Xi)v̇β(Xi; β0, θ0)− EKh(x−X)v̇β(X; β0, θ0)

]
Un(x)dψ̂w(x),

An512 = (β̂n − β0)
′
∫
C

[EKh(x−X)v̇β(X; β0, θ0)]Un(x)dψ̂w(x).

By the routing calculations, we can show that

∫
C

[
n−1

n∑
i=1

Kh(x−Xi)v̇β(Xi; β0, θ0)− EKh(x−X)v̇β(X; β0, θ0)

]2

dψ̂w(x) = OP (1/nhd).

Therefore, nhd/2An511 = nhd/2Op(1/
√
n)Op(1/nh

d) = Op(1/
√
nhd) = op(1). As for An512, we

first claim that nhd/2An512 = nhd/2Ãn512 + op(1), where Ãn512 is same as for An512 but with

f̂ 2
w(x) is replaced by f 2(x). In fact nhd/2|An512 − Ãn512| is bounded above by
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nhd/2‖β̂n − β0‖
′
∫
C

EKh(x−X)‖v̇β(X; β0, θ0)‖|Un(x)|

∣∣∣∣∣f 2(x)

f̂ 2
w(x)

− 1

∣∣∣∣∣ dG(x)

≤ nhd/2Op(1/
√
n)Op(1/

√
nhd)sup

x∈C

∣∣∣∣∣f 2(x)

f̂ 2
w(x)

− 1

∣∣∣∣∣ = op(1)

by (2.11). So, we only have to show that nhd/2Ãn512 = op(1). SinceEKh(x−X)v̇β(X; β0, θ0) =

v̇β(x; β0, θ0)f(x) + o(1) uniformly for x ∈ C, hence we only need to show that

nhd/2(β̂n − β0)
′
∫
C

Un(x)
v̇β(x; β0, θ0)g(x)

f(x)
dx = op(1). (2.61)

To see this, note that

∫
C

Un(x)
v̇β(x; β0, θ0)g(x)

f(x)
dx =

1

n

n∑
i=1

[
1

hd

∫
C

K

(
x−Xi

h

)
v̇β(x; β0, θ0)g(x)

f(x)
dx

]
ξi.

Since, f(x) has a compact support and v̇β, g, and f are continuous, we can show that

1

hd

∫
C

K

(
x−Xi

h

)
v̇β(x; β0, θ0)g(x)

f(x)
dx =

v̇β(Xi; β0, θ0)g(Xi)

f(Xi)
+ op(1).

Hence,

∫
C

Un(x)
v̇β(x; β0, θ0)g(x)

f(x)
dx =

1

n

n∑
i=1

v̇β(Xi; β0, θ0)g(Xi)ξi
f(Xi)

+ op(1)
1

n

n∑
i=1

ξi = Op(1/
√
n).

which implies (2.61) has order of nhd/2Op(1/n) = op(1). So is the desired result.

�
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Lemma 2.7.5. Suppose all the conditions in Theorem 2.4.2 hold, then

(i). nhd/2[Cn(β̂n, θ̂n)− Cn(β̂n, θ0)] = op(1);

(ii). nhd/2[Cn(β̂n, θ0)− Cn(β0, θ0)] = op(1);

(iii). nhd/2[Cn(β0, θ0)− C̃n(β0, θ0)] = op(1),

where Cn is as defined in (2.19).

Proof: By adding and subtracting v(Xi; β̂n, θ0) from ξ̂i = (Yi−m(Xi; β̂n))2−v(Xi; β̂n, β̂n), Cn(β̂n, θ̂n)

can be written as the sum of Cn(β̂n, θ0) + 2Bn1 +Bn2, where

Bn1 =
1

n2

n∑
i=1

∫
C

K2
h(x−Xi)[(Yi −m(Xi; β))2 − v(Xi; β̂n, θ0)][v(Xi; β̂n, θ0)− v(β̂n, θ̂n)]dψ̂w(x),

Bn2 =
1

n2

n∑
i=1

∫
C

K2
h(x−Xi)[v(Xi; β̂n, θ0)− v(β̂n, θ̂n)]2dψ̂w(x).

We can see that Bn2 is bounded above by the sum of Bn21 +Bn22, where

Bn21 =
2

n2

n∑
i=1

∫
C

K2
h(x−Xi)d

2
nidψ̂w(x),

Bn22 =
2

n2

n∑
i=1

∫
C

K2
h(x−Xi)[v̇

′

θ(Xi; β̂n, θ0)(θ̂n − θ0)]2dψ̂w(x),

and dni is as defined in (2.59).

By (v4), and the
√
n−consistency of θ̂n,

Bn21 ≤
2

n2
sup

1≤i≤n

|dni|2

‖θ̂n − θ0‖2
.‖θ̂n − θ0‖2

n∑
i=1

∫
C

K2
h(x−Xi)dψ̂w(x).
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Since

1

n2

n∑
i=1

∫
C

K2
h(x−Xi)dψ̂w(x) = Op(1/nh

d),

we can show that nhd/2|Bn21| = nhd/2op(1)Op(1/n)Op(1/nh
d) = op(1). For Bn22, we have

Bn22 ≤
4

n2
‖θ̂n − θ0‖2

n∑
i=1

∫
C

K2
h(x−Xi)‖v̇β(Xi; β̂n, θ0)− v̇β(Xi; β0, θ0)‖2dψ̂w(x),

+
4

n2
‖θ̂n − θ0‖2

n∑
i=1

∫
C

K2
h(x−Xi)‖v̇β(Xi; β0, θ0)‖2dψ̂w(x)

From (v5), and the
√
n−consistency of θ̂n and β̂n, one can show that the first term is op(1/n

2),

and the second term is Op(1/n)Op(1/nh
d). Therefore, nhd/2Bn22 = op(1). This implies

nhd/2Bn2 = op(1). As for Bn1, by adding and subtracting (Yi −m(Xi; β0))2 − v(Xi; β0, θ0)

from (Yi −m(Xi; β̂n))2 − v(Xi; β̂n, θ0), it can be written as the sum of Bn11 + Bn12 + Bn13,

where

Bn11 =
1

n2

n∑
i=1

∫
C

K2
h(x−Xi)[(Yi −m(Xi; β̂n))2 − (Yi −m(Xi; β0))2]Vn(x)dψ̂w(x),

Bn12 =
1

n2

n∑
i=1

∫
C

K2
h(x−Xi)[(Yi −m(Xi; β0))2 − v(Xi; β0, θ0)]Vn(x)dψ̂w(x),

Bn13 =
1

n2

n∑
i=1

∫
C

K2
h(x−Xi)[v(Xi; β0, θ0)− v(Xi; β̂n, θ0)]Vn(x)dψ̂w(x)

and Vn(x) = v(Xi; β̂n, θ0) − v(Xi; β̂n, θ̂n). Bn11 can be written as the sum of B
′
n11 + B

′′
n11,

where

B
′

n11 =
1

n2

n∑
i=1

∫
C

K2
h(x−Xi)[m(Xi; β̂n)−m(Xi; β0)]Vn(x)dψ̂w(x),

B
′′

n11 =
2

n2

n∑
i=1

∫
C

K2
h(x−Xi)[Yi −m(Xi; β0)][m(Xi; β̂n)−m(Xi; β0)]Vn(x)dψ̂w(x).
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Notice that

m(Xi; β̂n)−m(Xi; β0) = eni + ṁ
′
(Xi; β0)(β̂n − β0), (2.62)

and

Vn(x) = −dni − v̇
′

θ(Xi; β̂n, θ0)(θ̂n − θ0). (2.63)

Then from (m2), (v4), (v5), and the
√
n−consistency of θ̂n and β̂n, one can show that

B
′
n11 = Op(1/n

√
n)Op(1/nh

d), hence nhd/2B
′
n11 = op(1). Notice that

1

n2

n∑
i=1

∫
C

K2
h(x−Xi)|Yi −m(Xi; β0)|dG(x) = Op(1/nh

d),

and then by a similar argument leads to B
′′
n11 = Op(1/n)Op(1/nh

d). So nhd/2B
′′
n11 = op(1).

This implies nhd/2Bn11 = op(1). Using (2.63), we have

nhd/2|Bn12| = nhd/2Op(1/
√
n)Op(1/nh

d) = Op(1/
√
nhd) = op(1).

By the condition (v4) and (2.63),

nhd/2|Bn13| = nhd/2Op(1/n)Op(1/nh
d) = Op(1/nh

d/2) = op(1).

Therefore nhd/2Bn1 = op(1) and hence the part (i) is proved.

To see (ii), adding and subtracting (Yi−m(Xi; β0))2−v(Xi; β0, θ0) from (Yi−m(Xi; β̂n))2−

v(Xi; β̂n, θ0), then Cn(β̂n, θ0) − Cn(β0, θ0) can be written as the sum of the following five
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terms

1

n2

n∑
i=1

∫
C

K2
h(x−Xi)[(Yi −m(Xi; β̂n))2 − (Yi −m(Xi; β0))2]2dψ̂w(x),

1

n2

n∑
i=1

∫
C

K2
h(x−Xi)[v(Xi; β0, θ0)− v(Xi; β̂n, θ0)]2dψ̂w(x),

2

n2

n∑
i=1

∫
C

K2
h(x−Xi)ξi[(Yi −m(Xi; β̂n))2 − (Yi −m(Xi; β0))2]dψ̂w(x),

2

n2

n∑
i=1

∫
C

K2
h(x−Xi)[(Yi −m(Xi; β̂n))2 − (Yi −m(Xi; β0))2][v(Xi; β0, θ0)− v(Xi; β̂n, θ0)]dψ̂w(x),

2

n2

n∑
i=1

∫
C

K2
h(x−Xi)ξi[v(Xi; β0, θ0)− v(Xi; β̂n, θ0)]dψ̂w(x).

Usual calculations will show that all five terms are op(1/nh
d/2). This implies the result

of (ii). Finally, the claim (iii) can be shown in a similar way as in Koul and Ni (2004).

�

Lemma 2.7.6. Suppose all the conditions in Theorem 2.4.2 hold, then

(i). Γn(β̂n, θ̂n)− Γn(β0, θ0) = op(1);

(ii). Γn(β0, θ0)− Γ̃n(β0, θ0) = op(1).

Proof: By the definition of ξ̂i and ξi , and denoting ti = (Yi − m(Xi; β̂n))2 − (Yi −

m(Xi; β0))2, si = v(Xi; β̂n, θ̂n)− v(Xi; β0, θ0) , we have ξ̂i = ξi + ti − si. Hence

ξ̂iξ̂j = ξiξj + ξitj − ξisj + tiξj + titj − tisj − siξj − sitj + sisj.

For convenience, define δij = ξ̂iξ̂j − ξiξj and Khi = Kh(x−Xi). Then
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Γn(β̂n, θ̂n) =
2hd

n2

∑
i 6=j

(∫
C

KhiKhjξiξjdψ̂ω(x)

)2

+
2hd

n2

∑
i 6=j

(∫
C

KhiKhjδijdψ̂ω(x)

)2

+
4hd

n2

∑
i 6=j

(∫
C

KhiKhjξiξjdψ̂ω(x)

)(∫
C

KhiKhjδijdψ̂ω(x)

)
.

Note that the first term is just Γn(β0, θ0), we have

∣∣∣Γn(β̂n, θ̂n)− Γn(β0, θ0)
∣∣∣ ≤ 2hd

n2

∑
i 6=j

(∫
C

KhiKhj |δij| dψ̂ω(x)

)2

+
4hd

n2

∑
i 6=j

(∫
C

KhiKhj |ξiξj| dψ̂ω(x)

)(∫
C

KhiKhj |δij| dψ̂ω(x)

)
. (2.64)

To proceed , we need the following facts which can be proved using similar argument

in Koul and Ni (2004). For the sake of simplicity , details are omitted.

hd

n2

∑
i 6=j

(∫
C
KhiKhj |ξiξj| dψ̂ω(x)

)2

= Op(1), (2.65)

hd

n2

∑
i 6=j

(∫
C
KhiKhj |ξi| dψ̂ω(x)

)2

= Op(1), (2.66)

hd

n2

∑
i 6=j

(∫
C
KhiKhj |ξi|K(Xi)dψ̂ω(x)

)2

= Op(1), (2.67)

hd

n2

∑
i 6=j

(∫
C
KhiKhjdψ̂ω(x)

)2

= Op(1), (2.68)

where K(x) is such that
∫
C
K2(x)dG(x) <∞. Note that the first term on the right hand

side of (2.64) is bounded above by eight terms, such as 8hd

n2

∑
i 6=j(
∫
C
KhiKhj |ξitj| dψ̂ω(x))2,

8hd

n2

∑
i 6=j(
∫
C
KhiKhj |ξisj| dψ̂ω(x))2, etc. All these eight terms can be shown as op(1). Since

the proofs are similar, we only show that the first term above is op(1). Since ti = (m(Xi; β̂n)−

m(Xi; β0))2−2(Yi−m(Xi; β0))(m(Xi; β̂n)−m(Xi; β0)) we have that 2hd

n2

∑
i 6=j(
∫
C
KhiKhj |ξitj| dψ̂ω(x))2
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will be bounded above by the following two terms:

8hd

n2

∑
i 6=j

(∫
C

KhiKhj|ξi(Yi −m(Xi; β0))||(m(Xi; β̂n)−m(Xi; β0))|dψ̂ω(x)

)2

(2.69)

and

4hd

n2

∑
i 6=j

(∫
C

KhiKhj|ξi||(m(Xi; β̂n)−m(Xi; β0))|dψ̂ω(x)

)2

. (2.70)

By (m2) and (2.67) , we can show that (2.69) has the order Op(1/n), and (2.66) has the

order Op(1/n
2). Hence2hd

n2

∑
i 6=j(
∫
C
KhiKhj|ξitj|dψ̂ω(x))2 = op(1). By applying the Cauchy-

Schwartz inequality to the double sum, we can also show that the second term on the right

hand side of (2.64) is op(1). Hence we have proven the first claim of this lemma .

Similar to the proof of Lemma 2.7.5 in Koul and Ni (2004), one can show that (ii) holds.

�

Lemma 2.7.7. Suppose (e1), (e2), (e4), (f1), (g), (k), (h1), and (v1) hold; then

nhd/2(T̃n(β0, θ0)− C̃n(β0, θ0))
d⇒ N(0,Γ).

where Γ is as defined in (2.21).

Proof: Details of the proof of this theorem are similar to that of Lemma 5.1 in Koul and Ni

(2004) with obvious modifications.

Proof of the Theorem 2.5.1: Let Y a
i = m(Xi; βa) +

√
va(Xi)εi. Denote Khi(x) = Kh(x−

Xi), and Kwi(x) = Kw(x−Xi). Adding and subtracting Y a
i from Yi in Tn(β̂n, θ̂n), it can be

written as the sum of Tn1 + 4Tn2 + Tn3 + 4Tn4 + 2Tn5 + 4Tn6, where
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Tn1 =

∫
C

[∑n
i=1Khi(x)(Yi − Y a

i )2∑n
i=1 Kωi(x)

]2

dG(x),

Tn2 =

∫
C

[∑n
i=1Khi(x)(Yi − Y a

i )(Y a
i −m(Xi; β̂n))∑n

i=1Kωi(x)

]2

dG(x),

Tn3 =

∫
C

[∑n
i=1Khi(x)[Y a

i −m(Xi; β̂n)− v(Xi; β̂n, θ̂n)]∑n
i=1Kωi(x)

]2

dG(x),

Tn4 =

∫
C

[∑n
i=1Khi(x)(Yi − Y a

i )2∑n
i=1 Kωi(x)

][∑n
i=1Khi(x)(Yi − Y a

i )(Y a
i −m(Xi; β̂n))∑n

i=1Kωi(x)

]
dG(x),

Tn5 =

∫
C

[∑n
i=1Khi(x)(Yi − Y a

i )2∑n
i=1 Kωi(x)

][∑n
i=1Khi(x)[(Y a

i −m(Xi; β̂n))2 − v(Xi; β̂n, θ̂n)]∑n
i=1 Kωi(x)

]
dG(x),

Tn6 =

∫
C

[∑n
i=1Khi(x)(Yi − Y a

i )(Y a
i −m(Xi; β̂n))∑n

i=1Kωi(x)

]
.[∑n

i=1Khi(x)[(Y a
i −m(Xi; β̂n))2 − v(Xi; β̂n, θ̂n)]∑n

i=1Kωi(x)

]
dG(x).

Using Cauchy-Schwartz inequality , one can show that Tn5, Tn6 are the order of op(1). Note

that under Ha, Yi−Y a
i = m(Xi; β0)−m(Xi; βa) + [

√
v1(Xi)−

√
va(Xi)]εi. Then Tn1 can be

written as the sum Tn11 + Tn12 + Tn13 + Tn14 + Tn15 + Tn16, where
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Tn11 =

∫
C

[∑n
i=1Khi(x)(m0(Xi)−ma(Xi))

2∑n
i=1Kωi(x)

]2

dG(x),

Tn12 =

∫
C

[∑n
i=1Khi(x)(

√
v1(Xi)−

√
va(Xi))

2ε2i∑n
i=1Kωi(x)

]2

dG(x),

Tn13 = 2

∫
C

[∑n
i=1Khi(x)(m0(Xi)−ma(Xi))

2∑n
i=1 Kωi(x)

]
.[∑n

i=1Khi(x)(
√
v1(Xi)−

√
va(Xi))

2ε2i∑n
i=1Kωi(x)

]
dG(x),

Tn14 = 4

∫
C

[∑n
i=1 Khi(x)(m0(Xi)−ma(Xi))(

√
v1(Xi)−

√
va(Xi))εi∑n

i=1 Kωi(x)

]2

dG(x),

Tn15 = 4

∫
C

[∑n
i=1Khi(x)(m0(Xi)−ma(Xi))

2∑n
i=1 Kωi(x)

]
.[∑n

i=1Khi(x)(m0(Xi)−ma(Xi))(
√
v1(Xi)−

√
va(Xi))εi∑n

i=1Kωi(x)

]
dG(x),

Tn16 = 4

∫
C

[∑n
i=1 Khi(x)(

√
v1(Xi)−

√
va(Xi))

2ε2i∑n
i=1 Kωi(x)

]
.[∑n

i=1Khi(x)(m0(Xi)−ma(Xi))(
√
v1(Xi)−

√
va(Xi))εi∑n

i=1Kωi(x)

]2

dG(x).

While Tn11 →
∫
C

[m0(x)−ma(x)]4dG(x) , Tn12 →
∫
C

[
√
v1(x)−

√
va(x)]4dG(x) and Tn13 →

2
∫
C

[m0(x) − ma(x)]2[
√
v1(x) −

√
va(x)]2dG(x). The remainder terms converges to 0 in

probability.

So

Tn1 →
∫
C

(
[m0(x)−ma(x)]2 + [

√
v1(x)−

√
va(x)]2

)2

dG(x) (2.71)

in probability.

Now, let us consider Tn2. Denote mn(x) = m(x; β̂n). By the definition of Y a
i , Tn2 can be

written as the sum of Tn21 and a remainder, where
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Tn21 =

∫
C

[∑n
i=1 Khi(x)[

√
v1(Xi)−

√
va(Xi)]

√
va(Xi)ε

2
i∑n

i=1 Kωi(x)

]2

dG(x) (2.72)

Condition (m2), the
√
n-consistency of β̂n, and Cauchy-Schwartz inequality imply the re-

mainder term is op(1), and a routing argument leads to Tn21 =
∫
C

[
√
v1(x)−

√
va(x)]2va(x)dG(x)+

op(1). Hence Tn21 →
∫
C

[
√
v1(x)−

√
va(x)]2va(x)dG(x) in probability. As for Tn3, similar to

the arguments in proving Theorem 2.4.3 , one can show that

nhd/2(Tn3 − Ca
n)⇒ N(0,Γa) (2.73)

Where

Ca
n =

1

n2

n∑
i=1

∫
C

K2
h(x−Xi)[(Y

a
i )−m(Xi; β̂n)2 − v(Xi; β̂n; θ̂n)]2dψ̂w(x)

and Γa is the same as Γ in the null case except for β0 and θ0 being replaced by βaand θa,

respectively.

Using the definition of Y a
i , Tn4 can be written as a sum of twelve terms. One can show

that all other terms are negligible in probability, except for the following two terms,

Bn1 =

∫
C

[∑n
i=1Khi(x)(m0(Xi)−ma(Xi))

2∑n
i=1Kωi(x)

]
.[∑n

i=1Khi(x)(
√
v1(Xi)−

√
va(Xi))(

√
va(Xi))ε

2
i∑n

i=1Kωi(x)

]
dG(x),

Bn2 =

∫
C

[∑n
i=1Khi(x)(

√
v1(Xi)−

√
va(Xi))

2ε2i∑n
i=1Kωi(x)

]
.[∑n

i=1Khi(x)(
√
v1(Xi)−

√
va(Xi))(

√
va(Xi))ε

2
i∑n

i=1Kωi(x)

]
dG(x).
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In fact, one can show that

Bn1 =

∫
C

[m0(x)−ma(x)]2(
√
v1(x)−

√
va(x))

√
va(x)dG(x) + op(1)

Bn2 =

∫
C

(
√
v1(x)−

√
va(x))3

√
va(x)dG(x) + op(1)

That is

Tn4 =

∫
C

[m0(x)−ma(x)]2(
√
v1(x)−

√
va(x))

√
va(x)dG(x)

+

∫
C

(
√
v1(x)−

√
va(x))3

√
va(x)dG(x) + op(1).

By some simple algebra, one can show that

Tn1 + 4Tn2 + 4Tn4 = ∆ + op(1). (2.74)

Under the alternative hypothesis H1, Cn(β̂n, θ̂n) can be written as Ca
n plus a remainder

which can be shown as a negligible term. While Γn, after adding and subtracting Y a
i from

Yi, Y
a
j from Yj , can be written as a sum of bounded in probability terms. Details are similar

to that of Koul and Song (2009) and hence we omit the proof for the sake of simplicity.

Combining the results from (2.74), and the asymptotic distributions of Γn(β̂n, θ̂n), and

Cn(β̂n, θ̂n), one can see that nhd/2Γ
−1/2
n (β̂n, θ̂n)[Tn(β̂n, θ̂n) − Cn(β̂n, θ̂n)] = nhd/2Γ

−1/2
n [Tn1 +

4Tn2 + 4Tn4] + op(nh
d/2) which tends to ∞ as long as ∆ > 0. This implies the consistency

of the minimum distance test. Hence the proof of the theorem.

�

Proof of Theorem 2.5.2: Details of the proof of this theorem are similar to that of to the

Theorem 2.5.1 with obvious modification.
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Chapter 3

Empirical Smoothing Lack-of-Fit

Tests For Variance Function

This section discusses a nonparametric Empirical Smoothing Lack-of-Fit test for the func-

tional form of the variance in regression models. The proposed test can be treated as a

nontrivial modification of Zheng (1996)’s nonparametric smoothing test and Koul and Ni

(2004)’s minimum distance test for the mean function in the classic regression models. The

section establishes the asymptotic normality of the proposed test under the null hypothesis.

Consistency at some fixed alternatives and asymptotic power under some local alternatives

are also discussed. A simulation study is conducted to assess the finite sample performance

of the proposed test. The simulation study also shows that the proposed test is more pow-

erful and computationally more efficient than some existing tests.

3.1 Introduction

The proposed test in the previous section using minimum distance method requires the

calculation of the integrations in the test statistics. These integrations usually do not have
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a tractable form, so some numerical methods are needed to approximate the integrations.

The empirical L2 test proposed in this section is much simpler and computationally easier

than that using the minimum distance method.

This section is organized as follows. The Empirical Smoothing Lack-of-Fit test statistic

and the technical assumptions are stated in subsection 3.2. The asymptotic null distribution,

the consistency and local power study of the test are presented in subsection 3.3. Subsection

3.4 contains simulation studies to show the finite sample performance of the test. Subsection

4.5 gives a comparison remarks of Minimum Distance test, Empirical Smoothing Lack-of-

Fit test, and the test proposed by Wang and Zhou (2006). All the proofs of main results

regarding this section are presented in subsection 4.6.

3.2 Test Statistic and Assumptions

In this subsection, a new lack-of-fit test is proposed to check the adequacy of a parametric

form of the variance function in the heteroscedastic regression models. To be specific,

consider the following regression model,

Y = m(X; β) +
√
v(X)ε (3.1)

where Y is a one dimensional response variable, X is a d-dimensional explanatory variable,

m(x; β) is the mean function of known form characterized by the unknown p-dimensional

parameter β, and v(x) is the conditional variance function of Y given X = x.
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The hypothesis to be tested is

H0 : v(X) = v(X; β0, θ0) for some (β0, θ0) ∈ Γ×Θ v.s. H1 : H0 is not true. (3.2)

Assuming that the error term ε satisfies E(ε|X) = 0 and E(ε2|X) = 1, we have

E[(Y −m(X; β))2|X = x] = v(x), (3.3)

which implies that testing the variance function in model (3.1) is equivalent to testing the

mean function in the following regression model

(Y −m(X; β))2 = v(X) + ξ (3.4)

if β is known, where (Y − m(X; β))2 is viewed as the response variable and, ξ = (Y −

m(X; β))2 − E[(Y −m(X; β))2|X] is the error term, uncorrelated with X. Similar to Koul

and Ni (2004), a lack-of-fit test is developed in the previous section for H0 in (3.2) based on

the quantity of

Tn(β, θ) =

∫
C

[
h−d

∑n
i=1Kh(x−Xi)[(Yi −m(Xi; β))2 − v(Xi; β, θ)]

w−d
∑n

i=1Kw(x−Xi)

]2

dG(x), (3.5)

where C is a compact set in Rd, G is a weighting measure with C being a compact subset

of its support, K is a kernel function, Kh(·) = K(·/h), and h,w are the bandwidths. In

real applications, β and θ are usually unknown. In the previous method, β is estimated in

advance, θ is estimated by θ̂n = arg minθ∈Θ Tn(β̂n, θ). The test statistic is then constructed

from Tn(β̂n, θ̂n). The integral in Tn(β̂n, θ̂n) usually does not have a tractable form. Therefore,

one has to approximate the integration using some numerical methods to implement the

test. These numerical methods either take a long execution time because of the complex
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iterations or provide unstable results because of the subjectivity of choosing some tuning

parameters in the algorithms. Zheng (1996) provided a nonparametric smoothing test for

checking the adequacy of mean function forms. This test has a close connection with Koul

and Ni (2004) minimum distance method, but it does not need to calculate any integrations.

Wang and Zhou (2006) applied Zheng (1996) method to test the hypothesis (3.2). Denote

ξi = (Yi −m(Xi; β0))2 − v(Xi; β0, θ0). Note that under H0,

E(ξi|Xi) = 0 and E[ξiE(ξi|Xi)f(Xi)] = 0, for i = 1, 2, · · · , n (3.6)

while under H1, since E(ξi|Xi) = v(Xi)− v(Xi; β0, θ0), it is clear that

E[ξiE(ξi|Xi)f(Xi)] = E[((E(ξi|Xi))
2)f(Xi)] = E[(v(Xi)− v(Xi; β0, θ0))2f(Xi)] > 0. (3.7)

Applying Zheng (1996)’s idea, Wang and Zhou (2006)’s test is based on the quantity

n−1

n∑
i=1

ξiE(ξi|Xi)f(Xi) (3.8)

which is a sample analogue of E[ξiE(ξi|Xi)f(Xi)]. The estimators of E(ξi|Xi) and f(Xi)

using the leave-one-out Nadaraya-Watson kernel estimates,

Ê(ξi|Xi) =
1

(n− 1)f̂(Xi)

∑
j 6=i

1

hd
Kh(i, j)ej, and f̂(Xi) =

1

(n− 1)

∑
j 6=i

1

hd
Kh(i, j),

(3.9)

respectively, where ei = (Yi − m(Xi; β̂n))2 − v(Xi; β̂n, θ̂n), i = 1, 2, . . . , n, β̂n and θ̂n are

any
√
n-consistent estimator of β0 and θ0, the true parameter of β and θ under the null

hypothesis, respectively, and Kh(i, j) = K((Xi − Xj)/h). Wang and Zhou (2006) test is
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then constructed from the following quantity

Zn =
1

n(n− 1)

∑
i 6=j

1

hd
Kh(i, j)eiej.

Similar to the question raised in Song and Du (2011) when checking the adequacy of mean

function, we wonder why not use the empirical version of the second term in (3.7) to build

the test statistic? An attractive feature of the empirical version of E(E2(ξ|X)f(X)) is that

the variance of this empirical version will be less than that of (3.8) used in Wang and Zhou

(2006), which is derived from the following fact

E(E4(ξ|X)f 2(X)) ≤ EE(ξ2|X)E2(ξ|X)f 2(X) = Eξ2E2(ξ|X)f 2(X) (3.10)

by applying Cauchy-Schwartz inequality. So if a new test is constructed based on the

standardized sample analogue of the second term in (3.7), comparing to Zheng (1996)’s

test which uses the standardized sample analogue of the first term in (3.7) as the test

statistic, we will find that these two test statistics might have similar numerators based on

the first equality in (3.7), while the new test statistic has a smaller denominator than Wang

and Zhou (2006)’s test statistic. This implies that the new test might be more powerful

than Wang and Zhou (2006)’s test. Although that the variance of the population version

(3.10) is smaller than that of (3.8) does not necessarily imply their empirical counterparts

posses the same relationship, in particular, after replacing all unknown quantities with

the estimators, but it is intuitively appealing to investigate the actual performance of the

new test. Comparing with Wang and Zhou (2006)’s test, the new test statistic is relatively

complicated, in particular, the appearance of the kernel estimator of f(x) in the denominator

needs some extra conditions to avoid the possible asymptotic negligibility at the boundary

points and the possible numeric instability when f(x) is small. In real applications, if we
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are not sure whether or not these conditions hold for f(x), then special attention should

be paid when employing the proposed method. But except that, the new test shares the

same advantages as Wang and Zhou (2006)’s test. Another important fact revealed in the

current work is the inherent connection between the selection of smoothing parameter and

the choice of kernel functions, which is also found in Song and Du (2011).

Using the leave-one-out estimators in (3.9), the sample analogue of E[(E(ξ|X))2f(X)]

is given by

1

n

n∑
i=1

[
1

(n− 1)hd

∑
j 6=i

Kh(i, j)ej

]2

f̂−1(Xi). (3.11)

By expanding the square term, it can be written as

1

n(n− 1)2h2d

n∑
i=1

[∑
j 6=i

∑
k 6=i

Kh(i, j)Kh(i, k)ejek

]
f̂−1(Xi). (3.12)

Similar to the leave-one-out technique in (3.9), we drop all the terms with k = j from the

third sum in (3.12), accordingly, change one 1/(n−1) into 1/(n−2). Then the test statistic

we are proposing has the form

Zn =
1

n(n− 1)(n− 2)h2d

n∑
i=1

[∑
j 6=i

∑
k 6=i,j

Kh(i, j)Kh(i, k)ejek

]
f̂−1(xi), (3.13)

Denote ṁ(x; β) as the derivative of m(x; β) with respect to β, and v̇β(x; β, θ), v̇θ(x; β, θ)

be derivatives of v(x; β, θ) with respect to β and θ respectively. The following is a list of

technical assumptions needed for proving the main results in the paper.

C1: The design variable X has a compact support I and minx∈If(x) ≥ c, where c is

a positive constant.This typical restriction avoids a nonparametric estimator of f(x)

from vanishing near the boundary of the design space.

C2: m(x; β), v(x; β, θ) and their derivatives ṁ(x; β), v̇β(x; β, θ), v̇θ(x; β, θ) are continuous
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in x for all θ and β.

C3: E[ε4|X = x] is continuous in x.

C4: For any
√
n-consistent estimator of β0,

sup
1≤i≤n

|m(Xi; β̂n)−m(Xi; β0)− (β̂n − β0)
′
ṁ(Xi; β0)| = Op(1/n).

C5: For any
√
n-consistent estimators β̂n, θ̂n of β0 and θ0 respectively,

sup
1≤i≤n

|v(Xi; β̂n, θ̂n)−v(Xi; β0, θ0)−(β̂n−β0)
′
v̇β(Xi; β0, θ0)−(θ̂n−θ0)

′
v̇θ(Xi; β0, θ0)| = Op(1/n).

C6: The Kernel function K is nonnegative, bounded, continuous, and symmetric function

such that
∫
K(u)du = 1. This is the most commonly used one in the nonparametric

literature. Note that the boundedness of K implies
∫
K2(u)du <∞.

C7: The bandwidth h is chosen so that h→ 0 and nh2d →∞ as n→∞.

Condition (C1) is a typical restriction that avoids a nonparametric estimator of f(x)

from vanishing near the boundary of the design space; Conditions (C4) and (C5) might

appear stronger, but if the second derivatives of m(x; β) and v(x; β, θ) with respect to β

and θ are bounded in a neighborhood of β0, θ0, then (C4) and (C5) hold. The conditions

(C6) and (C7) are the typical assumptions adopted in nonparametric smoothing literature.

The condition (C3) is imposed when proving the theorem regarding the local power of the

test under a fixed alternative.
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3.3 Main Results

This subsection is devoted to present the main results of the proposed nonparametric Em-

pirical Smoothing Lack-of-Fit test. For the sake of simplicity, denote,

τ 2(x; β, θ) = E(ξ2|X = x) = v2(x; β, θ)[E(ε4|X = x)− 1]. (3.14)

The asymptotic distribution of Zn under the null hypothesis is given in the following theo-

rem.

Theorem 3.3.1. Assume that the conditions (C1)-(C7) hold, then under H0 in (3.2),

nhd/2Zn =⇒ N(0, σ2), where

σ2 = 2

∫ [∫
K(u+ v)K(v)dv

]2

du ·
∫

[τ 2(x; β0, θ0)]2f 2(x)dx. (3.15)

Let H(u) =
∫
K(u + v)K(v)dv, which is the convolution of K. Then σ2 can be consis-

tently estimated by σ̂2, where

σ̂2 =
2

n(n− 1)

∑
i 6=j

1

hd
H2

(
xi − xj
h

)
e2
i e

2
j .

Thus, the test that rejects H0 whenever,

Tn =
nhd/2|Zn|

σ̂
> Zα/2 (3.16)

is of the asymptotic size α, where Zα is the (1− α)100th percentile of the standard normal

distribution.

The result above is similar to that in Wang and Zhou (2006) except for the first in-

tegration in σ2. The integration in Wang and Zhou (2006)’s result is
∫
K2(v)dv. Note

that H is the convolution of K, by Cauchy-Schwartz inequality, one can easily show that
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∫
H2(v)dv ≤

∫
K2(v)dv. That is, our test has a smaller asymptotic variance than that of

Wang and Zhou (2006)’s test.

Although the motivation of the current research is to construct a more precise test

by modifying Wang and Zhou (2006)’s test, it turns out that there are some interesting

connections with the method proposed in the previous section using minimum distance test

based on (3.5). In fact, if we choose w = h, dG(x) = f̂h(x)dFn(x) in (3.5), where Fn(x)

is the empirical cumulative distribution function of Xi’s, then after a slight and obvious

modification, Tn(β̂n, θ̂n) is simply Zn defined in (3.13).

The proof of Theorem 3.3.1, which is postponed to subsection 5.5, shows that

nhd/2Zn =
1

(n− 1)hd/2

∑
j 6=k

H

(
Xj −Xk

h

)
εjεk + op(1) := Vn + op(1). (3.17)

This also gives an interesting connection between our test and Wang and Zhou (2006)’s

test: Our test is asymptotically equivalent to Wang and Zhou (2006)’s test with the kernel

function K replaced with the convolution H of K, nevertheless, our test is more powerful.

If one wants to construct a test based on Vn in (3.17) with the random errors εi’s replaced

by the residual ei’s, denoted it as V̂n, that is, we will rejects H0 whenever

Rn = nhd/2|V̂n|/σ̂ > zα/2, (3.18)

then the conditions needed for the asymptotic theory can be greatly simplified. For example,

(C1) can be removed, and (C7) can be changed to nhd →∞.

Typically, nonparametric tests are design to be omnibus, in the sense that they are

consistent against a very wide class of fixed alternatives. A test is said to be consistent

against a given alternative if the power of the test under that alternative tends to 1 as

sample size tends to ∞. Let v1(x) be a known positive real valued function such that
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v1 /∈ {v(x; β, θ) : (β, θ) ∈ Γ×Θ}. Consider the alternative hypothesis

Ha : E((Y −m(X, β))2|X) = v1(X). (3.19)

Under the null hypothesis, we have assumed that estimator θ̂n is
√
n-consistent for the true

parameter θ0. Would this estimator still have the similar property under the alternative

hypothesis Ha? The question is of interest in its own right. In the classic regression setup,

Jennrich (1969) and (White, 1981, 1982) showed that, under some mild regularity condi-

tions, the nonlinear least squares estimator converges in probability and is asymptotically

normal even in the presence of model misspecification. Suppose the true value of β under

Ha is still β0, the estimator β̂n is usually not a consistent estimator for β0. But under some

regularity conditions, it is a consistent estimator of some other value, say βa; moreover β̂n is

still asymptotically normal. In the following, we simply assume that
√
n(θ̂n − θa) = Op(1)

and
√
n(β̂n − βa) = Op(1) under the alternative Ha for some βa ∈ Γ, θa ∈ Θ. We will not

justify this assumption rigorously here.

The following theorem states the asymptotic property of the test statistic under Ha.

Theorem 3.3.2. Suppose the conditions (C1) − (C7) hold with β0 and θ0 replaced by βa

and θa. Then under the alternative hypothesis Ha in (3.19),

Zn → E [(m(X; β0)−m(X; βa))
2 + (v1(X)− v(X; βa, θa))]

2
f(X) in probability and,

σ̂2 →
∫ [∫

K(u+ v)K(v)dv

]2

du·∫ [
τ 2(x; βa, θa) + (m(X; β0)−m(X; βa))

2 + (v1(x)− v(x; βa, θa))
]2
f 2(x)dx, (3.20)

in probability, where τ 2(x; βa, θa) is defined as in (3.14)

The consistency of the test is thus implied by the positiveness of E[(m(X; β0)−m(X; βa))
2+
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(v1(X)− v(X; βa, θa))]
2f(X) and the finiteness of the right hand side of (3.20). Comparing

with the corresponding result in the previous method, this result only differs in the denom-

inator, like the null case. This implies the current test will be more powerful than Zheng

(1996)’s test for fixed alternatives.

Sometimes, it would also be desirable to investigate how sensitive the test is to lo-

cal alternatives. For this purpose, let δ(x) be a positive real valued function such that∫
c
δ2(x)dG(x) < ∞. Note that δ(x) is a function that is not in the parametric class of

{v(X; β0, θ0) : (β, θ) ∈ Γ×Θ}. Consider the following local alternative

HLoc : v(x) = v(X; β0, θ0) + cnδ(x), ∀x ∈ I, (3.21)

where cn is a sequence of numbers converging to zero.

Under HLoc, the regression model has the form

Y = m(X; β0) +
√
v(X; β0, θ0) + cnδ(X)ε.

The following theorem states that the proposed test has nontrivial power against a sequence

of local alternatives which approaches to the null hypothesis at the rate of 1/
√
nhd/2.

Theorem 3.3.3. Given the assumptions (C1)− (C7) hold, then under the local alternative

hypothesis HLoc in (3.21), nhd/2Zn/σ̂ ⇒ N(µ, 1), where µ = E[δ2(x)f(x)]/σ, and σ is

defined as in (3.15).
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3.4 Simulation

This section investigates the finite sample performance of the proposed test through a Monte

Carlo simulation study. We generate samples from the following models:

Model0 : Yi = β1 + β2Xi +
√
θ1 + θ2Xiεi,

Model1 : Yi = β1 + β2Xi +
√
θ1 + θ2Xi + 0.5X2

i εi,

Model2 : Yi = β1 + β2Xi +
√
θ1 + θ2Xi + 0.8X2

i εi,

Model3 : Yi = β1 + β2Xi +
√
θ1 + θ2Xi +X2

i εi,

for i = 1, 2, · · · , n.

The data from model 0 are used to study the empirical level, while the data from model

1-3 are used to study the empirical power of the test. In this simulation, Xi ∼ U(−3, 3), for

i = 1, 2, · · · , n, with β1 = 1, β2 = 2, θ1 = 2 and θ2 = 0.1. Two types of error distributions

are considered, ε ∼ N(0, 1) and ε ∼ U(−
√

3,
√

3). The kernel function K is chosen to be the

standard normal and the bandwidth is set to be h = an−1/3 where a is a positive constant

and the sample sizes are chosen to be n = 100, 200, 300, 400, 500, and 800. In the simulation,

we chose a = 0.5, 0.8, and 1 to see the influence of the bandwidth on the power of the test.

For all scenarios, the nominal significance level is chosen to be 0.05, and the test is repeated

500 times. The empirical size and power are computed by using the relative frequency of

the event #{Tn(β̂n, θ̂n) ≥ 1.96}/500 with Tn being defined in (3.16). Table 3.1 shows the

empirical level and power of the test for a = 1.

This simulation study shows that the empirical levels are all less than the nominal level

0.05 and hence the proposed test is conservative for all chosen sample sizes and for both error

types. This is common for nonparametric smoothing tests. The empirical powers against

all alternative models get larger when the sample sizes get larger. The power performance
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Table 3.1: Empirical sizes and powers of the Empirical Smoothing test (a = 1)

100 200 300 400 500 800
Model 0 0.014 0.022 0.020 0.042 0.024 0.024

ε ∼ N(0, 1) Model 1 0.056 0.342 0.666 0.844 0.942 0.998
Model 2 0.134 0.650 0.926 0.982 1.000 1.000
Model 3 0.224 0.748 0.960 1.000 1.000 1.000
Model 0 0.008 0.002 0.012 0.014 0.022 0.016

ε ∼ U(−
√

3,
√

3) Model 1 0.358 0.872 0.990 0.998 1.000 1.000
Model 2 0.602 0.998 1.000 1.000 1.000 1.000
Model 3 0.730 0.966 1.000 1.000 1.000 1.000

is satisfactory and it is even higher for uniform errors than normal errors with the same

means and standard deviations.

We also conduct a simulation study using a bootstrap method as it generally provides

more accurate approximation to the distribution of the test statistic than asymptotic normal

theory does when the sample size is small to moderate. The bootstrap method we use in

this study is same as that of in the previous section. We use 400 bootstrap samples per run

to obtain the critical value c∗α. The empirical size and power are computed by using the

relative frequency of the event #{Tn(β̂n, θ̂n) ≥ c∗α}/500. Table 3.2 shows the empirical level

and power of the test for a = 1 using the bootstrap method.

Table 3.2: Empirical sizes and powers of the Empirical Smoothing test using bootstrapping
method (a = 1)

100 200 300 400 500 800
Model 0 0.062 0.046 0.054 0.055 0.043 0.048

ε ∼ N(0, 1) Model 1 0.120 0.390 0.716 0.880 0.968 0.994
Model 2 0.174 0.694 0.932 0.999 1.000 1.000
Model 3 0.260 0.782 0.976 0.998 1.000 1.000
Model 0 0.061 0.059 0.062 0.052 0.050 0.050

ε ∼ U(−
√

3,
√

3) Model 1 0.474 0.950 0.996 0.998 1.000 1.000
Model 2 0.744 0.996 1.000 1.000 1.000 1.000
Model 3 0.790 1.000 1.000 1.000 1.000 1.000
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Similar pattern as in Table 3.1 can be seen in the Table 3.2, but the empirical levels

are close to the nominal level 0.05 when the sample sizes get larger. We also conduct some

simulation studies for different values of a. Since the simulation results are similar, we will

not report them here for the sake of brevity.

3.5 Results Comparison

As a comparison, we carry out a simulation study for the test proposed in Chapter 2 using

bootstrapping method. The simulation results are shown in Table 3.3 for a = 1. The

simulation results for other values of a are similar, hence omitted here. Comparing Table 3.2

and 3.3, we can see that the proposed test is more powerful than the minimum distance test

proposed in the previous section.

Table 3.3: Empirical sizes and powers of the Minimum Distance test using bootstrapping
method (a = 1)

100 200 300 400 500 800
Model 0 0.044 0.038 0.042 0.040 0.044 0.045

ε ∼ N(0, 1) Model 1 0.130 0.170 0.252 0.312 0.358 0.526
Model 2 0.214 0.330 0.452 0.556 0.600 0.846
Model 3 0.226 0.386 0.552 0.636 0.764 0.934
Model 0 0.042 0.034 0.048 0.052 0.072 0.042

ε ∼ U(−
√

3,
√

3) Model 1 0.210 0.384 0.534 0.648 0.780 0.948
Model 2 0.364 0.664 0.834 0.918 0.954 1.000
Model 3 0.476 0.732 0.874 0.954 0.980 1.000

By extending the comparison further, a simulation is conducted using the test proposed

in Wang and Zhou (2006) method too. Figure 3.1 - Figure 3.8 show the curves of empirical

sizes and powers of Minimum Distance(MD) test, Empirical Smoothing Lack-of-Fit(ES)

test, and the test proposed by Wang & Zhou(WZ). Figure 3.1 and Figure 3.2 show that the

empirical sizes with uniform errors are close to the nominal significance level of α = 0.05

for all three tests. More concisely, the empirical sizes of Empirical Smoothing Lack-of-Fit
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test with uniform error and h = n−1/3 are closer to the nominal levels than that of any

other tests. Figure 3.3 - Figure 3.8 show the finite sample powers of the tests and it is clear

that the Empirical Smoothing Lack-of-Fit test surpasses that of other two tests in almost

all cases.

Another interesting finding from the simulation study is that the finite sample powers are

not stable for different choices of bandwidths (different values of a) and for different error

distributions (i.e. normal or uniform). Furthermore, we can see the bigger values of a, the

larger the power. Note that the convolution of normal densities is still a normal density, so

increasing the values of a = 1 to a =
√

2 is equivalent to replacing a standard normal kernel

with the convolution of two standard normal kernels. According to the theory developed in

the study, this will decrease the asymptotic variance of the test statistic and hence leads to

a more powerful test.

Figure 3.1: Comparison of Empirical Sizes, Model 0 (h = n−1/3)
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Figure 3.2: Comparison of Empirical Sizes, Model 0 (h = 0.5n−1/3)

Figure 3.3: Comparison of Empirical Powers, Model 1 (h = n−1/3)
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Figure 3.4: Comparison of Empirical Powers, Model 1 (h = 0.5n−1/3)

Figure 3.5: Comparison of Empirical Powers, Model 2 (h = n−1/3)
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Figure 3.6: Comparison of Empirical Powers, Model 2 (h = 0.5n−1/3)

Figure 3.7: Comparison of Empirical Powers, Model 3 (h = n−1/3)
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Figure 3.8: Comparison of Empirical Powers, Model 3 (h = 0.5n−1/3)

3.6 Proof of the Main Results (Empirical Smoothing

Test)

Proof of Theorem (3.3.1): Adding and subtracting m(Xi; β0) and v(Xi; β0, θ0) from ei, ei

can be written as

ei = (Yi −m(Xi; β0) +m(Xi; β0)−m(Xi; β̂n))2 − v(Xi; β0, θ0) + v(Xi; β0, θ0)− v(Xi; β̂n, θ̂n)

= ξi + (∆mi)
2 − 2∆mi(Yi −m(Xi; β0))−∆vi,

where ∆mi = m(Xi; β̂)−m(Xi; β0) and ∆vi = v(Xi; β̂n, θ̂n)− v(Xi; β0, θ0). Then Zn can be

further written as the sum of Zn1, Zn2, · · · , Zn10 where

Znl =
1

n(n− 1)(n− 2)h2d

n∑
i=1

[∑
j 6=i

∑
k 6=i,j

Kh(i, j)Kh(i, k)

]
f̂−1(Xi)Pjk,l
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for l = 1, 2, · · · , 10 with,

Pjk,1 = ξjξk, Pjk,2 = 2ξj(∆mk)
2, Pjk,3 = −2ξj∆vk, Pjk,4 = ∆vj∆vk,

Pjk,5 = −2∆vj(∆mk)
2, Pjk,6 = (∆mj)

2(∆mk)
2, Pjk,7 = 4∆mj∆vk(Yj −m(Xj; β0)),

Pjk,8 = −4∆mjξk(Yj −m(Xj; β0)), Pjk,9 = −4(∆mk)
2∆mj(Yj −m(Xj; β0)),

Pjk,10 = 4∆mj∆mk(Yj −m(Xj, β0))(Yk −m(Xk; β0)).

In the following, We use Z̃nl to denote Znl when f̂(Xi) is replaced by f(Xi) for l =

1, 2, · · · , 10.

Now let’s consider

nhd/2Z̃n1 =
1

(n− 1)(n− 2)h3d/2

n∑
i=1

[∑
j 6=i

∑
k 6=i,j

Kh(i, j)Kh(i, k)ξjξk

]
f−1(Xi)

=
1

(n− 1)h3d/2

n∑
j=1

∑
k 6=j

[
1

(n− 2)

∑
i 6=j,k

Kh(i, j)Kh(i, k)f−1(Xi)

]
ξjξk.

By changing variable, we have

E
[
Kh(i, j)Kh(i, k)f−1(Xi)|Xj, Xk

]
=

∫
K

(
x−Xj

h

)
K

(
x−Xk

h

)
f−1(x)f(x)dx

=hd
∫
K

(
u+

Xj −Xk

h

)
K(u)du

=hdHh(j, k), (3.22)

where Hh(j, k) = H((Xj − Xk)/h). Notice that this H is the convolution of K. If K is a

nonnegative, bounded, continuous, and symmetric density function, so is H.
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Now we can write, nhd/2Z̃n1 = An1 + An2 where,

An1 =
1

(n− 1)h3d/2

n∑
j=1

∑
k 6=j

[
1

(n− 2)

∑
i 6=j,k

Kh(i, j)Kh(i, k)f−1(Xi)− hdHh(j, k)

]
ξjξk,

An2 =
1

(n− 1)hd/2

n∑
j=1

∑
k 6=j

Hh(j, k)ξjξk.

Using the expectation-variance argument, we can show that An1 is the order of op(1). In

fact, it is clear that EAn1 = 0 and next we’ll consider the second moment of An1. Let

Gh(j, k) =
1

(n− 2)

∑
i 6=j,k

Kh(i, j)Kh(i, k)f−1(Xi)− hdHh(k, j).

Notice that Gh(j, k) = Gh(k, j) and then An1 can be rewritten as

An1 =
1

(n− 1)h3d/2

n∑
j=1

∑
k 6=j

Gh(j, k)ξjξk.

The independence of ξj and ξk when j 6= k, and E(ξ|X) = 0 imply

EA2
n1 =

1

(n− 1)2h3d
E

(
n∑
j=1

∑
k 6=j

Gh(j, k)ξjξk

)2

=
1

(n− 1)2h3d
E

 n∑
j=1

∑
k 6=j

G2
h(j, k)ξ2

j ξ
2
k +

n∑
j=1

∑
l 6=j
k 6=j

Gh(j, k)Gn(j, l)ξ2
j ξkξl


=

2

(n− 1)2h3d

n∑
j=1

∑
k 6=j

EG2
h(j, k)ξ2

j ξ
2
k

=
2n

(n− 1)h3d
EG2

h(1, 2)τ 2(X1)τ 2(X2),

where τ 2(x) = τ 2(x; β0, θ0) is as defined in (3.14). Conditioning on (X1, X2), Gh(1, 2) is a

sum of i.i.d. centered random variables. Therefore the expectation of G2
h(1, 2)τ 2(X1)τ 2(X2)
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equals

E

[
1

(n− 2)

∑
i 6=1,2

Kh(i, 1)Kh(i, 2)f−1(Xi)− hdHh(1, 2)

]2

τ 2(X1)τ 2(X2)

≤ 1

(n− 2)
E[Kh(3, 1)Kh(3, 2)f−1(X3)− hdHh(1, 2)]2τ 2(X1)τ 2(X2)

≤ 1

(n− 2)
EK2

h(1, 3)K2
h(2, 3)f−2(X3)τ 2(X1)τ 2(X2)

=
1

n− 2

∫∫∫
K2

(
x− y
h

)
K2

(
x− z
h

)
τ 2(y)τ 2(z)f−1(x)f(y)f(z)dxdydz

=
h2d

n− 2

∫∫∫
K2(u)K2(v)τ 2(x− uh)τ 2(x− vh)f−1(x)f(x− uh)f(x− vh)dxdudv

From the continuity and boundedness of K, τ 2, f and by (C1), (C3), (C6), we have

EG2
h(1, 2)τ 2(X1)τ 2(X2) = O(h2d/(n− 2)) (3.23)

So EA2
n1 = o(1) from (C7). This implies

nhd/2Z̃n1 = An2 + op(1). (3.24)

To show that nhd/2Z̃n2 = op(1), denote

dni =m(Xi; β̂n)−m(Xi; β0)− (β̂n − β0)
′
ṁ(Xi; β0) = ∆mi − (β̂n − β0)

′
ṁ(Xi; β0)

By (C4), sup
1≤i≤n

|dni| = Op(1/n).

Using the notation dni and an = 1/(n(n−1)(n−2)h2d), Z̃n2 is the sum of Z̃n21 + Z̃n22 + Z̃n23

where,
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Z̃n21 =2an

n∑
i=1

[∑
j 6=k

∑
k 6=i,j

Kh(i, j)Kh(i, k)ξjd
2
nk

]
f−1(Xi)

Z̃n22 =4an

n∑
i=1

[∑
j 6=k

∑
k 6=i,j

Kh(i, j)Kh(i, k)ξjdnk(β̂n − β0)
′
ṁ(Xk; β0)

]
f−1(Xi)

Z̃n23 =2an

n∑
i=1

[∑
j 6=k

∑
k 6=i,j

Kh(i, j)Kh(i, k)ξj(β̂n − β0)
′
ṁ(Xk; β0)ṁ′(Xk; β0)(β̂n − β0)

]
f−1(Xi)

Notice that |Z̃n21| is bounded above by

2 sup
1≤k≤n

|dnk|2 · an
n∑
i=1

[∑
j 6=k

∑
k 6=i,j

Kh(i, j)Kh(i, k)|ξj|

]
f−1(Xi).

The expectation of the second term is further bounded by

1

h2d
E
[
Kh(1, 2)Kh(1, 3)E(|ξ2||X2)f−1(X1)

]
≤ 1

h2d

∫∫
K

(
x− y
h

)
K

(
x− z
h

)
τ(y)f(y)f(z)dxdydz

=

∫∫
K(u)K(v)τ(x− uh)f(x− vh)f(x− uh)dxdudv = O(1)

Therefore,

nhd/2Z̃n21 = nhd/2 ·Op(1/n
2) ·Op(1) = op(1). (3.25)

Now Z̃n22 can be written as the sum of Z̃ ′n22 and Z̃ ′′n22, where

Z̃ ′n22 =
2(β̂n − β0)

′

n(n− 1)h2d

n∑
i=1

∑
j 6=k

[
1

n− 2

∑
i 6=j,k

Kh(i, j)Kh(i, k)f−1(Xi)− hdHh(j, k)

]
ξjdnkṁ(Xk; β0),

Z̃ ′′n22 =
2(β̂n − β0)

′

(n− 1)hd

n∑
j=1

∑
j 6=k

Hh(j, k)ξjdnkṁ(Xk; β0).
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To show Z̃ ′n22 = op(1), note that |Z̃ ′n22| is bounded above by

2 sup
1≤k≤n

|dnk|
|β̂n − β0|
n(n− 1)h2d

n∑
i=1

∑
j 6=k

[
1

n− 2

∑
i 6=j,k

Kh(i, j)Kh(i, k)f−1(Xi)− hdHh(j, k)

]
ξjṁ(Xk; β0).

Using the expectation-variance argument to the second term in the above expression,

consider

E

[
1

(n− 1)h2d

∑
j 6=k

[
1

n− 2

∑
i 6=j,k

Kh(i, j)Kh(i, k)f−1(Xi)− hdHh(j, k)

]
ξjṁ(Xk; β0)

]2

=
1

(n− 1)2h4d
E

[
n∑
k=2

(
1

n− 2

∑
i 6=1,k

Kh(i, 1)Kh(i, k)f−1(Xi)− hdHh(1, k)

)
ṁ(Xk; β0)

]2

τ 2(X1)

=
1

(n− 1)2h4d

n∑
k=2

E

(
1

n− 2

∑
i 6=1,k

Kh(i, 1)Kh(i, k)f−1(Xi)− hdHh(1, k)

)2

ṁ(Xk; β0)ṁ
′
(Xk; β0)τ 2(X1)

+
1

(n− 1)2h4d

n∑
k1 6=k2

E

(
1

n− 2

∑
i 6=1,k1

Kh(i, 1)Kh(i, k1)f−1(Xi)− hdHh(1, k1)

)
ṁ(Xk1 ; β0)(

1

n− 2

∑
i 6=1,k2

Kh(i, 1)Kh(i, k2)f−1(Xi)− hdHh(1, k2)

)
ṁ(Xk2 ; β0)τ 2(X1)

=
(n− 1)

(n− 1)2h4d
E

(
1

n− 2

∑
i 6=1,2

Kh(i, 1)Kh(i, 2)f−1(Xi)− hdHh(1, 2)

)2

ṁ(Xk; β0)ṁ
′
(Xk; β0)τ 2(X1)

+
(n− 1)(n− 2)

(n− 1)2h4d
E

(
1

n− 2

∑
i 6=1,2

Kh(i, 1)Kh(i, 2)f−1(Xi)− hdHh(1, 2)

)
ṁ(X2; β0)(

1

n− 2

∑
i 6=1,3

Kh(i, 1)Kh(i, 3)f−1(Xi)− hdHh(1, 3)

)
ṁ(X3; β0)τ 2(X1).

With the results of (3.23), the boundedness of ‖ṁ(x; β0)‖ and the assumptions of (C3),

the expectation of the first term on the right hand side is bounded above by O(h2d/(n−2)).

By a trivial argument, the second term on the right is Op(1/nh
d/2).

Since β̂n is a
√
n-consistent estimator and by (C4),
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nhd/2Z̃ ′n22 = nhd/2.Op(1/
√
n).Op(1/

√
n).O(1/nhd/2) = op(1).

Now let’s consider Z̃ ′′n22.

According to the Lemma 3.3b in Zheng (1996),

1

n(n− 1)hd

n∑
j=1

∑
j 6=k

Hh(k, j)ξjṁ(Xk; β0) = Op(1/
√
n).

So, one can show that nhd/2Z̃ ′′n22 = nhd/2.Op(1/
√
n).Op(1/

√
n).Op(1/

√
n) = op(1). This

implies that

nhd/2Z̃n22 = op(1) (3.26)

Finally we show that nhd/2Z̃n23 = op(1). For simplicity, we only prove the result for

p = 1. The general case can be argued element wise. It is easily see that Z̃n23 is bounded

above by

|β̂n − β0|2

n(n− 1)(n− 2)h2d
·

n∑
i=1

∑
j 6=k

∑
k 6=i,j

Kh(i, j)Kh(i, k)|ξj||ṁ(Xk; β0)ṁ
′
(Xk; β0)|f−1(Xi)

The expectation of the second term is further bounded above by

n(n− 1)(n− 2)E
[
Kh(1, 2)Kh(1, 3)E(|ξ2||X2)f−1(X1)ṁ(Xk; β0)ṁ

′
(Xk; β0)

]

By the boundedness of ‖ṁ(x; β0)‖,
√
n−consistency of β̂n, and the conditions imposed in

the previous derivation, we can show that

nhd/2Z̃n23 = nhd/2.Op(1/n).O(1) = op(1) (3.27)
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Using the results of (3.25), (3.26), and (3.27), it is clear that

nhd/2Z̃n2 = op(1). (3.28)

Next, let’s show that nhd/2Z̃n3 = op(1). Adding and subtracting (β̂n − β0)
′
v̇β(Xk; β0, θ0)

and (θ̂n − θ0)
′
v̇θ(Xk; β0, θ0) from ∆vk = v(Xk; β̂n, θ̂n)− v(Xk; β0, θ0) and denoting

unk = ∆vk − (β̂n − β0)
′
v̇β(Xk; β0, θ0)− (θ̂n − θ0)

′
v̇θ(Xk; β0, θ0),

nhd/2Z̃n3 can be written as the sum of the following three terms.

Bn1 =− 2(β̂n − β0)
′

(n− 1)(n− 2)h3d/2

n∑
i=1

[∑
j 6=k

∑
k 6=i,j

Kh(i, j)Kh(i, k)

]
f−1(Xi)ξj v̇β(Xk; β0, θ0),

Bn2 =− 2(θ̂n − θ0)
′

(n− 1)(n− 2)h3d/2

n∑
i=1

[∑
j 6=k

∑
k 6=i,j

Kh(i, j)Kh(i, k)

]
f−1(Xi)ξj v̇θ(Xk; β0, θ0),

Bn3 =− 2

(n− 1)(n− 2)h3d/2

n∑
i=1

[∑
j 6=k

∑
k 6=i,j

Kh(i, j)Kh(i, k)

]
f−1(Xi)ξjunk.

By adding and subtracting hdHh(j, k), Bn1 can be written as the sum of Bn11 + Bn12,

where

Bn11 =− 2(β̂n − β0)
′

(n− 1)h3d/2

∑
j 6=k

[
1

(n− 2)

∑
i 6=j,k

Kh(i, j)Kh(i, k)f−1(Xi)− hdHh(j, k)

]
ξj v̇β(Xk; β0, θ0),

Bn12 =− 2(β̂n − β0)
′

(n− 1)hd/2

∑
j 6=k

Hh(j, k)ξj v̇β(Xk; β0, θ0).
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Let v̇βl(Xk; β0, θ0) denote the l−th element of the p× 1 vector v̇β(Xk; β0, θ0). Note that

E

[
1

(n− 1)h3d/2

∑
j 6=k

[
1

(n− 2)

∑
i 6=j,k

Kh(i, j)Kh(i, k)f−1(Xi)− hdHh(j, k)

]
ξj v̇βl(Xk; β0, θ0)

]2

=
n

(n− 1)2h3d
E

[
n∑
k=2

(
1

(n− 2)

∑
i 6=1,k

Kh(i, 1)Kh(i, k)f−1(Xi)− hdHh(1, k)

)
v̇βl(Xk; β0, θ0)

]2

τ 2(X1)

=
n(n− 1)

(n− 1)2h3d
E

(
1

(n− 2)

∑
i 6=1,2

Kh(i, 1)Kh(i, 2)f−1(Xi)− hdHh(1, 2)

)2

v̇2
βl(X2; β0, θ0)τ 2(X1)

+
n(n− 1)(n− 2)

(n− 1)2h3d
E

(
1

(n− 2)

∑
i 6=1,2

Kh(i, 1)Kh(i, 2)f−1(Xi)− hdHh(1, 2)

)
v̇βl(X2; β0, θ0)

(
1

(n− 2)

∑
i 6=1,3

Kh(i, 1)Kh(i, 3)f−1(Xi)− hdHh(1, 3)

)
v̇βl(X3; β0, θ0)τ 2(X1).

With the assumption of the continuity of v̇(X; β0, θ0), τ 2(X) and using the result of (3.23),

one can show that the expectation in the first term on the right is O(h2d/(n−2)). Therefore

the first term on the right hand side is Op(1/nh
d) which is op(1). By a lengthy but trivial

argument, one can show that the second term on the right is Op(1). Using these results and

the
√
n−consistency of β̂n, Bn11 = Op(1/

√
n)Op(1) = op(1).

Next, we’ll consider Bn12. According to the Lemma 3.3b in Zheng (1996),

1

n(n− 1)hd

n∑
j=1

∑
j 6=k

Hh(k, j)ξj v̇β(Xk; β0, θ0) = Op(1/
√
n).

Therefore Bn12 = nhd/2Op(1/
√
n)Op(1/

√
n) = op(1). Hence Bn1 is op(1).

Using the similar arguments used in showing Bn1 = op(1), the
√
n−consistency of θ̂n,

and the continuity of v̇θ(x; β0, θ0), we can show that Bn2 = op(1).
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To show that Bn3 = op(1), note that |Bn3| is bounded above by

sup
1≤k≤n

|unk|
2

(n− 1)h3d/2

n∑
j=1

∑
j 6=k

[
1

((n− 2))

∑
i 6=j,k

Kh(i, j)Kh(i, k)f−1(Xi)|ξj|

]
.

It can be shown that the expectation of the second term is

2n(n− 1)

(n− 1)h3d/2
E

[
Kh(1, 2)Kh(1, 3)

f(X1)
E(|ξ2||X2)

]
= O(nhd/2).

By (C5) and sup
1≤k≤n

|unk| = Op(1/n)

Bn3 = Op(1/n)O(nhd/2) = op(1).

Hence

nhd/2Z̃n3 = op(1). (3.29)

Using similar arguments, one can show that

nhd/2Z̃nl = op(1) for all l = 4, 5, · · · , 10. (3.30)

Note that the above results are obtained by replacing f̂(x) with f(x). Next we will

consider this modification. We denote

Cn =
nhd/2

n(n− 1)(n− 2)h2d

∑
i 6=j,k

Kh(i, j)Kh(i, k)f−1(Xi)

[
f(Xi)

f̂(Xi)
− 1

]
ξjξk

=
hd/2

(n− 1)

∑
j 6=k

Mn(Xj, Xk)ξjξk,
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where

Mn(Xj, Xk) =
1

(n− 2)h2d

∑
i 6=j,k

Kh(i, j)Kh(i, k)f−1(Xi)

[
f(Xi)

f̂(Xi)
− 1

]
.

The symmetry of Mn(Xj, Xk) and the assumptions of error terms imply

EC2
n =

4hd

(n− 1)2

∑
j 6=k

EM2
n(Xj, Xk)τ

2(Xj)τ
2(Xk) = O(hd)EM2

n(X1, X2)τ 2(X1)τ 2(X2).

Note that

EM2
n(X1, X2)τ 2(X1)τ 2(X2)

= E

[
1

(n− 2)h2d

n∑
i=3

Kh(i, 1)Kh(i, 2)f−1(Xi)

[
f(Xi)

f̂(Xi)
− 1

]]2

τ 2(X1)τ 2(X2)

≤ 1

(n− 2)h4d

n∑
i=3

EK2
h(i, 1)K2

h(i, 2)f−2(Xi)

[
f(Xi)

f̂(Xi)
− 1

]2

τ 2(X1)τ 2(X2)

=
1

h4d
EK2

h(3, 1)K2
h(3, 2)f−2(X3)

[
f(X3)

f̂(X3)
− 1

]2

τ 2(X1)τ 2(X2). (3.31)

From the condition (C1), we can see that the last expectation in (3.31) has the same

order as

1

h4d
EK2

h(3, 1)K2
h(3, 2)f−2(X3)

[
f(X3)− f̂(X3)

]2

τ 2(X1)τ 2(X2) (3.32)

Notice that

f̂(X3)− f(X3) =
1

nhd

n∑
j=4

Kh(j, 3)− 1

hd
E [Kh(4, 3)|X3]

+
1

hd
E [Kh(4, 3)|X3]− f(X3)

+
1

nhd
Kh(1, 3) +

1

nhd
Kh(2, 3) +

1

nhd
Kh(1, 1).
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Using the previous results, we can show that (3.32) is bounded above by the sum of the

following three terms:

3E
K2
h(3, 1)K2

h(3, 2)

h4df 2(X3)

[
1

nhd

n∑
j=4

Kh(j, 3)− 1

hd
E [Kh(4, 3)|X3]

]2

τ 2(X1)τ 2(X2)

3E
K2
h(3, 1)K2

h(3, 2)

h4df 2(X3)

[
1

hd
E [Kh(4, 3)|X3]− f(X3)

]2

τ 2(X1)τ 2(X2),

3E
K2
h(3, 1)K2

h(3, 2)

h4df 2(X3)

[
1

nhd
Kh(1, 3) +

1

nhd
Kh(2, 3) +

1

nhd
Kh(1, 1)

]2

τ 2(X1)τ 2(X2).

By changing variables when calculating the above expectations, one can show that the

first term has the order of O(1/nh3d), the second term has the order of O(1), and the third

one has the order of O(1/n2h4d). Therefore,

C2
n = Op(1/nh

2d) +Op(h
d) +Op(1/n

2h3d)

By condition (C7) together with the above results, Cn = op(1).

Now we will consider,

Dn =
nhd/2

n(n− 1)(n− 2)h2d

∑
i 6=j,k

Kh(i, j)Kh(i, k)f−1(Xi)

[
f(Xi)

f̂(Xi)
− 1

]
ξj(∆mk)

2

Using the same definition of Mn(Xj, Xk), we can write

Dn =
hd/2

(n− 1)

∑
j 6=k

Mn(Xj, Xk)ξj(∆mk)
2.

Note that ∆mk = dnk+(β̂n−β0)
′
ṁ(Xk; β0). Dn can be written as the sum of Dn1+Dn2+Dn3
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where,

Dn1 =
2hd/2

(n− 1)

∑
j 6=k

Mn(Xj, Xk)ξjd
2
nk,

Dn2 = 2
4hd/2

(n− 1)

∑
j 6=k

Mn(Xj, Xk)ξjdnk(β̂n − β0)
′
ṁ(Xk; β0),

Dn3 =
2hd/2

(n− 1)

∑
j 6=k

Mn(Xj, Xk)ξj(β̂n − β0)
′
ṁ(Xk; β0).ṁ

′
(Xk; β0)(β̂n − β0).

By the symmetry of Mn(Xj, Xk) in its arguments, the result of (3.31), and (C3) imply

ED2
n1 =

hd

(n− 1)2

∑
j 6=k

EM2
n(Xj, Xk)E(ξ2

i |Xj)(d
2
nk)

2

≤ O(hd)

[
sup

1≤k≤n
|dnk|2

]2

EM2
n(Xj, Xk)E(ξ2

i |Xj)

≤ O(h2)

[
sup

1≤k≤n
|dnk|2

]2 [
O(1/nh3d) +O(1) +O(1/n2h4d)

]
= O(hd) ·O(1/n2)

[
O(1/nh3d) +O(1) +O(1/n2h4d)

]
Hence the condition (C7) and the above results imply Dn1 = op(1).

Using the similar arguments in proving nhd/2Z̃n22 = op(1), nhd/2Z̃n23 = op(1),
√
n−

consistency of β̂n, and the boundedness of ‖ṁ(x; β0)‖, we can show that Dn2 = op(1) and

Dn3 = op(1). Therefore Dn = op(1). By continuing this way, one can deal with all other

modified terms.

By (3.24), (3.28), (3.29), and (3.30)

nhd/2Zn =
1

(n− 1)hd/2

n∑
j=1

∑
k 6=j

Hh(j, k)ξjξk + op(1). (3.33)

From Lemma 3.3a in Zheng (1996) and from Theorem 2.1 in Song and Du (2011),
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nhd/2Zn ⇒ N(0, σ2),

where

σ2 = 2

∫ [∫
K(u+ v)K(v)dv

]2

du.

∫
[τ 2(x)]2f 2(x)dx, (3.34)

with τ 2(x) = E(ξ2|X = x).

�

Proof of Theorem 3.3.2:

Under Ha, we write Y a
i = m(Xi; βa) +

√
va(Xi)εi and Yi = m(Xi; β0) +

√
v1(Xi)εi. Define

m0(x) = m(x; β0),ma(x) = m(x; βa), va(x) = v(x; βa, θa) and Kij = Kh(i, j).

The test statistic can be written as

Zn = an
∑
i 6=j 6=k

KijKikejekf̂
−1(xi),

where an = 1
n(n−1)(n−2)h2d

and ei = (Yi − m(Xi; β̂))2 − v(Xi; β̂n, θ̂n). By adding and sub-

tracting Y a
i from Yi in the test statistic, we can write it as the sum of the following six

terms:
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Un1 =an
∑
i 6=j 6=k

KijKik(yj − yaj )2(yk − yak)2f̂−1(xi),

Un2 =4an
∑
i 6=j 6=k

KijKik(yj − yaj )2(yk − yak)(yak −m(Xk; β̂n))f̂−1(xi),

Un3 =2an
∑
i 6=j 6=k

KijKik(yj − yaj )2
[
(yak −m(Xk; β̂))2 − v(Xk; β̂n, θ̂n)

]
f̂−1(xi),

Un4 =4an
∑
i 6=j 6=k

KijKik(yj − yaj )(yaj −m(Xj; β̂n))(yk − yak)(yak −m(Xk; β̂n))f̂−1(xi),

Un5 =4an
∑
i 6=j 6=k

KijKik(yj − yaj )(yaj −m(Xj; β̂n))
[
(yak −m(Xk; β̂n))2 − v(Xk; β̂n, θ̂n)

]
f̂−1(xi),

Un6 =an
∑
i 6=j 6=k

KijKik

[
(yaj −m(Xj; β̂n))2 − v(Xj; β̂n, θ̂n)

] [
(yak −m(Xk; β̂n))2 − v(Xk; β̂n, θ̂n)

]
f̂−1(xi).

Since Yi − Y a
i = m(Xi; β0) − m(Xi; βa) + (

√
v1(Xi) −

√
va(Xi))εi, and taking ∆mi =

m(Xi; β0) − m(Xi; βa), ∆vi = (
√
v1(Xi) −

√
va(Xi)), Un1 can be written as the following

six terms:

Un11 =an
∑
i 6=j 6=k

KijKik∆
2mj∆

2mkf̂
−1(xi),

Un12 =4an
∑
i 6=j 6=k

KijKik∆
2mj∆mk∆vkεkf̂

−1(xi),

Un13 =2an
∑
i 6=j 6=k

KijKik∆
2mj∆

2vkε
2
kf̂
−1(xi),

Un14 =4an
∑
i 6=j 6=k

KijKik∆mj∆mk∆vj∆vkεjεkf̂
−1(xi),
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Un15 =4an
∑
i 6=j 6=k

KijKik∆mj∆vj∆
2vkεjε

2
kf̂
−1(xi),

Un16 =an
∑
i 6=j 6=k

KijKik∆
2vj∆

2vkε
2
jε

2
kf̂
−1(xi).

With the assumption on ε, one can show that Un11 → E[(m(X; β0)−m(X; βa))
4f(X)], Un13 →

2E[(m(X; β0)−m(X; βa))
2(
√
v1(X)−

√
va(X))2f(X)], Un16 → E[(

√
v1(X)−

√
va(X))4f(X)],

and all other terms are of order op(1).

Hence, Un1 → E
[
(m(X; β0)−m(X; βa))

2 + (
√
v1(X)−

√
va(X))2

]2

f(X).

Using the
√
n− consistency of β̂n under Ha and (C4), we can write Un2 as the sum of the

following two terms and remainders of order op(1) :

Un21 =an
∑
i 6=j 6=k

KijKik∆
2mj∆vk

√
va(Xi)ε

2
kf̂
−1(xi),

Un22 =an
∑
i 6=j 6=k

KijKik∆
2vj∆vk

√
va(Xi)ε

2
jε

2
kf̂
−1(xi).

Using the same arguments as in the previous, one can show that

Un2 → 4E
[
(m(X; β0)−m(X; βa))

2(
√
v1(X)−

√
va(X)) + (

√
v1(X)−

√
va(X))3

]√
va(X)f(X)

in probability.

Using the condition (C4) and the
√
n− consistency of β̂n to βa, Un4 can be written as

the sum of the following term and a remainder of order op(1) :

Un41 =an
∑
i 6=j 6=k

KijKik∆vj∆vk

√
va(Xj)

√
va(Xk)ε

2
jε

2
kf̂
−1(xi).
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Again using the same arguments, Un4 → 4E
[
(
√
v1(X)−

√
va(X))2va(X)

]
f(X). Using the

same methods used in null case, one can show that Un3 = Un5 = Un6 = op(1). After doing

some algebraic manipulations,we can show that

Zn → E
[
(m(X; β0)−m(X; βa))

2 + (v1(X)− va(X))
]2
f(X)

in probability.

Finally, similar to the Lemma 3.4 in Zheng (1996) and from Theorem 3.1 in Song and Du

(2011), we have

σ̂2 →
∫ [∫

K(u+ v)K(v)dv

]2

du.∫
[τ 2(x) + (m(X; β0)−m(X; βa))

2 + (v1(X)− v(X; βa, θa))]
2f 2(x)dx,

in probability.

�

Proof of Theorem (3.3.3): Under the local alternative,

HLoc : v(x) = v(x; β0, θ0) + cnδ(x), ∀x ∈ Rd,

we write Y L
i = m(Xi; β0) +

√
v(Xi)εi and Yi = m(Xi; β0) +

√
v(Xi) + cnδ(Xi)εi. Define

v(x) = v(x; β0, θ0) and Kij = Kh(i, j).

The test statistic can be written as

Zn = an
∑
i 6=j 6=k

KijKikejekf̂
−1(Xi),
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where an = 1
n(n−1)(n−2)h2d

and ei = (Yi − m(Xi; β̂n))2 − v(Xi; β̂n, θ̂n). By adding and sub-

tracting Y L
i from Yi in the test statistic, we can write it as the sum of the following six

terms:

Wn1 =an
∑
i 6=j 6=k

KijKikξjξkf̂
−1(Xi),

Wn2 =2an
∑
i 6=j 6=k

KijKik(Yj − Y L
j )2ξkf̂

−1(Xi),

Wn3 =an
∑
i 6=j 6=k

KijKik(Yj − Y L
j )2(Yk − Y L

k )2f̂−1(Xi),

Wn4 =4an
∑
i 6=j 6=k

KijKik(Yj − Y L
j )(Y L

j −m(Xj; β̂n))ξkf̂
−1(Xi),

Wn5 =4an
∑
i 6=j 6=k

KijKik(Yj − Y L
j )2(Yk − Y L

k )(Y L
k −m(Xk; β̂n))f̂−1(Xi),

Wn6 =4an
∑
i 6=j 6=k

KijKik(Yj − Y L
j )(Y L

j −m(Xj; β̂n))(Yk − Y L
k )(Y L

k −m(Xk; β̂n))f̂−1(Xi),

where ξi = (Y L
i −m(Xi; β̂n))2 − v(Xi; β̂n, θ̂n).

Similar to the proof of the null case,

nhd/2Wn1 =
1

(n− 1)hd/2

n∑
j=1

∑
k 6=j

1

hd
1

(n− 2)

∑
i 6=j 6=k

Kh(i, j)Kh(i, k)f̂−1(Xi)ξjξk + op(1)

=
1

(n− 1)hd/2

n∑
j=1

∑
k 6=j

Hh(j, k)ξjξk + op(1)

⇒N(0, σ2),

where σ2 is given in (3.34).

Since Yi−Y L
i = (

√
v(Xi) + cnδ(Xi)−

√
v(Xi))εi with v(Xi) = v(Xi; β0, θ0), we can write
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Wn2 =2an
∑
i 6=j 6=k

KijKik(
√
v(Xj) + cnδ(Xj)−

√
v(Xj))

2ε2jξkf̂
−1(Xi),

=2an
∑
i 6=j 6=k

KijKik
c2
nδ

2(Xj)

(
√
v(Xj) + cnδ(Xj) +

√
v(Xj))2

ε2jξkf̂
−1(Xi)

By taking c2
n = 1/nhd/2,

nhd/2Wn2 ≤
1

2
an
∑
i 6=j 6=k

KijKik
δ2(Xj)

v(Xj)
ε2jξkf̂

−1(Xi)

By the assumptions of ε, ξ and similar to the arguments in Theorem 3.3.2, one can show

that the right hand side of the above is op(1). Hence nhd/2Wn2 = op(1). Using the facts of

√
n−consistency of β̂n, cn → 0 as n → ∞, assumption (C4), and similar methods used in

the previous part, one can show that nhd/2Wn3 = nhd/2Wn4 = nhd/2Wn5 = op(1).

Next, we will consider nhd/2Wn6.

nhd/2Wn6 =4nhd/2an
∑
i 6=j 6=k

KijKikc
2
nδ(Xj)δ(Xk)ε

2
jε

2
kV

′
(Xj)V

′
(Xk)f̂

−1(Xi)

where

V (Xi) =

√
v(Xi) + cnδ(Xi)

(
√
v(Xi) + cnδ(Xi) +

√
v(Xi))

By adding and subtracting 1/2 from V (Xj) and V (Xk), nh
d/2Wn6 can be written as the
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sum of Wn61 +Wn62 +Wn63; where

Wn61 = 4an
∑
i 6=j 6=k

KijKikδ(Xj)δ(Xk)

[
V (Xj)−

1

2

] [
V

′
(Xk)−

1

2

]
ε2jε

2
kf̂
−1(Xi),

Wn62 = 4an
∑
i 6=j 6=k

KijKikδ(Xj)δ(Xk)

[
V

′
(Xj)−

1

2

]
ε2jε

2
kf̂
−1(Xi),

Wn63 = an
∑
i 6=j 6=k

KijKikδ(Xj)δ(Xk)ε
2
jε

2
kf̂
−1(Xi).

Note that

V (Xi)−
1

2
=

√
v(Xi) + cnδ(Xi)

(
√
v(Xi) + cnδ(Xi) +

√
v(Xi))

− 1

2

=
cnδ(Xi)

2[
√
v(Xi) + cnδ(Xi) +

√
v(Xi)]2

≤ cnδ(Xi)

8v(Xi)
(3.35)

Since v(x; β0, θ0) is a continuous function and the design variable X has the compact

support I, there is a constant c > 0 such that v(x; β0, θ0) ≥ c for ∀x ∈ I. Hence by the

inequality in 3.35, V (Xi)− 1
2
≤ cnδ(Xi)

8c
.

Now |Wn61| is bounded above by

c2
n

16c2
an
∑
i 6=j 6=k

KijKikδ
2(Xj)δ

2(Xk)ε
2
jε

2
kf̂
−1(Xi)

The continuity and boundedness of δ and using the similar arguments in Theorem 3.3.2,

the second part of the above expression is Op(1). Since c2
n = 1/nhd/2 which goes to 0

as n → ∞, it is clear that Wn61 = op(1). Using the same arguments, we can show that

Wn62 = op(1).
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Again using the same methods used in proving Theorem 3.3.2, we can show that

Wn63 = E[(δ(X))2f(X)] + op(1).

Hence, nhd/2Wn6 → E[(δ(X))2f(X)] in probability. Hence as the summary,

nhd/2Zn = nhd/2Wn1 + E[δ2(X)f(X)] + op(1), so nhd/2Zn → N(E[δ2(X)f(X)], σ2) and it

completes the proof of Theorem (3.3.3).

�
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Chapter 4

Summary and Future Research

Two testing procedures; Minimum Distance test and Empirical Smoothing Lack-of-Fit test

are developed in the thesis to assess the adequacy of fitting parametric variance function

in heteroscedastic regression models. The asymptotic distribution of the test statistics are

shown to be normal and the estimators of the parameters are
√
n−consistent. The asymp-

totic power of the proposed tests against some local nonparametric alternatives are also

investigated. Numerical simulation studies are conducted to evaluate the finite sample per-

formance of the tests. It reveals that the Empirical Smoothing Lack-of-Fit test is more

powerful and computationally more efficient than some existing tests. Also the simulation

studies show that the selection of bandwidths and the different distributions of the error

terms have some effects on both the accuracy and the power of the test. Therefore, in the

real world problems, it is better to perform the tests with several values of bandwidth and

different error distributions to make a decision to reject or not to reject the null hypothesis.

Although the motivation of the Empirical Smoothing Lack-of-Fit test in Chapter 3 of the

thesis is to construct a more precise test by modifying Wang and Zhou (2006)’s test, it turns

out that there are some interesting connections with the method proposed in Chapter 2 of
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the thesis using minimum distance test. In fact, if we choose w = h, dG(x) = f̂h(x)dFn(x)

in the minimum distance test statistic Tn(β, θ), where Fn(x) is the empirical cumulative dis-

tribution function of Xi’s, then after a slight and obvious modification, Tn(β̂n, θ̂n) is simply

Zn defined in Empirical Smoothing Lack-of-Fit test.

In both of the tests proposed in previous Chapters, one of the main assumptions is a

known parametric form of the mean function. In the real world problems, this assumption

may be violated. It can be relaxed by estimating the mean function using kernel-smoothing

estimator. Consider the following regression model:

Y = m(X) +
√
v(X)ε,

where Y is a one dimensional response variable, X is a d-dimensional explanatory variable,

m(.) is the mean function only assumed to be smooth, and v(x) is the conditional variance

function of Y given X = x. We want to test

H0 : v(X) = v(X; θ) for some θ ∈ Θ

i.e. whether the variance function v(X) can be modeled parametrically. Let m̂(x) be the

estimator of m(x) using kernel-smoothing method.

Define the the test statistic similarly as in Chapter 2 using Minimum Distance method,

Tn(θ) =

∫
C

[∑n
i=1 Kh(x−Xi)[(Yi − m̂(Xi))

2 − v(Xi; θ)]∑n
i=1 Kw(x−Xi)

]2

dG(x) (4.1)
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and the corresponding estimate of θ is

θ̂n = argmin
θ∈Θ

Tn(θ).

Considering the Empirical Smoothing Lack-of-Fit test in Chapter 3, define ξ̂i = (Yi −

m̂(Xi))
2 − v(Xi; θ̂n), where θ̂n is the estimator of θ. Under the null hypothesis, the test

statistic can be written as

Zn =
1

n(n− 1)(n− 2)h2d

n∑
i=1

[∑
j 6=i

∑
k 6=i,j

Kh(i, j)Kh(i, k)ξ̂j ξ̂k

]
f̂−1(xi). (4.2)

Under the above circumstances, the asymptotic distributions of the test statistics of 4.1

and 4.2 under the null hypothesis and consistency, asymptotic power under some local

alternatives can be discussed as a future work.
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Appendix A

R Codes

A.1 Minimum Distance Test - One Dimensional

# "Minimum Distance Conditional Variance Function

# Checking in Heteroscedastic Regression Models"

# Using Bootstrap Method (One Dimensional)

set.seed(5637)

a=1; # constant in bandwidth: 1, 0.8, 0.5

total=500; # Simulation runs

power=matrix(rep(0,28),nrow=4)

k1=1;

for(b in c(0, 0.5, 0.8, 1))

{

k2=1;

for(n in c(100, 200, 300, 400, 500, 800,1000))

{

h=a*n^{-1/3} # Bandwidth

Mx=0; Sx=1; # Mean and Stdev of design variable

Me=0; Se=1; # Mean and Stdev of error
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bt1=1; bt2=2; th1=2; th2=0.1; # True valus of parameters

K=function(u){3*(1-u^2)*(abs(u)<=1)/4}; # Kernel Function

# variables to store MD estimate adn MD test statistic

Tn=Est.theta1=Est.theta2=rep(0,total);

freq=0;

for(i in seq(total))

{

##### Generating Sample #####

repeat

{

x=runif(n,-3,3);

e=rnorm(n,Me,Se);

y=bt1+bt2*x+sqrt(th1+th2*x+b*x^2)*e;

# LSE for the regression parameter

myreg1=lm(y~x);

###### Minimum Distance Estimate #####

ngrid=300;

xgrid=seq(-3,3,length=ngrid);

dgrid=xgrid[2]-xgrid[1];

xdiff=kronecker(xgrid,rep(1,n))-kronecker(rep(1,ngrid),x);

Kh=K(xdiff/h)/h;

mKh=matrix(Kh,nrow=ngrid,byrow=T);

y2=(myreg1$residual)^2;

yT=mKh%*%y2;

x1T=apply(mKh,1,sum);

x2T=mKh%*%x;

myreg2=lm(yT~x1T+x2T-1);

theta1=myreg2$coefficient[1];

theta2=myreg2$coefficient[2];

Est.theta1[i]=theta1;

Est.theta2[i]=theta2;
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if(all((theta1+theta2*x)>0)) break;

}

###### Bootstrap step ########

res=myreg1$residual/sqrt(theta1+theta2*x);

res=(res-mean(res))/sd(res); # standardization of residuals #

TTn=rep(0,400); #Bootstrap sample size=400

for(j in seq(400))

{

bres=sample(res,replace=T)

bY=myreg1$fitted+sqrt(theta1+theta2*x)*bres;

myreg3=lm(bY~x);

yy2=(myreg3$residual)^2;

yT=mKh%*%yy2;

x1T=apply(mKh,1,sum);

x2T=mKh%*%x;

myreg4=lm(yT~x1T+x2T-1);

xi=yy2-(myreg4$coefficient[1]+myreg4$coefficient[2]*x);

TTn[j]=sum((mKh%*%xi/n)^2)*dgrid;

}

cval=TTn[order(TTn)][380] # Bootstrap critical value

xi=(myreg1$residual)^2-(myreg2$coefficient[1]+myreg2$coefficient[2]*x);

Tn[i]=sum((mKh%*%xi/n)^2)*dgrid;

freq=freq+(Tn[i]>=cval)

}

power[k1,k2]=freq/total; #Power of the test

k2=k2+1;

}

k1=k1+1;

}

dimnames(power)=list(c("M0","M1","M2","M3"), c(100,200,300,400,500,800,1000))

power

A.2 Minimum Distance Test - Two Dimensional

# "Minimum Distance Conditional Variance Function

# Checking in Heteroscedastic Regression Models"

# Using Bootstrap Method (Two Dimensional)
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set.seed(9999)

a=1; # constant in bandwidth: 1, 0.8, 0.5

total=500; # Simulation runs

power=matrix(rep(0,28),nrow=4)

k1=1;

for(b in c(0,0.5,0.8,1))

{

k2=1;

for(n in c(100,200,300,400,500,800,1000))

{

h=a*n^{-1/3} # Bandwidth

bt0=1; bt1=2; bt2=1; # True values of parameters

th0=2; th1=0.1; th2=0.1;

K=function(u,v){9*(1-u^2)*(1-v^2)*(abs(u)<=1)*(abs(v)<=1)/16};# Kernel Function

# Variables to store MD estimate and MD test statistic

Tn=Est.theta0=Est.theta1=Est.theta2=rep(0,total);

freq=0;

for(i in seq(total))

{

####### Generating Sample ####

repeat

{

b0=bt0;

b1=bt1;

b2=bt2;
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th0=th0;

th1=th1;

th2=th2;

x1=rnorm(n,0,1);

x2=rnorm(n,0,1);

e=runif(n,-1.732,1.732);

y=b0+b1*x1+b2*x2+sqrt(th0+th1*x1+th2*x2+b*x1^2+b*x2^2)*e;

# LSE for the regression parameter

myreg1=lm(y~x1+x2);

####### Minimum Distance Estimate ######

x1diff=kronecker(x1,rep(1,n))-kronecker(rep(1,n),x1)

x2diff=kronecker(x2,rep(1,n))-kronecker(rep(1,n),x2)

Kh=K(x1diff/h,x2diff/h)/(h^2);

mKh=matrix(Kh,nrow=n,byrow=T)

y2=(myreg1$residual)^2;

yT=mKh%*%y2;

x0T=apply(mKh,1,sum);

x1T=mKh%*%x1;

x2T=mKh%*%x2;

myreg2=lm(yT~x0T+x1T+x2T-1);

theta0=myreg2$coefficient[1];

theta1=myreg2$coefficient[2];

theta2=myreg2$coefficient[3];

Est.theta0[i]=theta0;

Est.theta1[i]=theta1;

Est.theta2[i]=theta2;

if(all((theta0+theta1*x1+theta2*x2)>0)) break;

}

##### Bootstrap step #######

res=myreg1$residual/sqrt(theta0+theta1*x1+theta2*x2);
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res=(res-mean(res))/sd(res); # standardization of residuals

TTn=rep(0,400); # Bootstrap sample size=400

for(j in seq(400))

{

bres=sample(res,replace=T)

bY=myreg1$fitted+sqrt(theta0+theta1*x1+theta2*x2)*bres;

myreg3=lm(bY~x1+x2);

yy2=(myreg3$residual)^2;

yT=mKh%*%yy2;

x0T=apply(mKh,1,sum);

x1T=mKh%*%x1;

x2T=mKh%*%x2;

myreg4=lm(yT~x0T+x1T+x2T-1);

xi=yy2-

(myreg4$coefficient[1]+myreg4$coefficient[2]*x1+myreg4$coefficient[3]*x2);

TTn[j]=sum((mKh%*%xi/n)^2)/n;

}

cval=TTn[order(TTn)][380] # Bootstrap critical value

xi=(myreg1$residual)^2-

(myreg2$coefficient[1]+myreg2$coefficient[2]*x1+myreg2$coefficient[3]*x2);

Tn[i]=sum((mKh%*%xi/n)^2)/n;

freq=freq+(Tn[i]>=cval)

}
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power[k1,k2]=freq/total; # Power of the test

k2=k2+1;

cat("b=",b,"n=",n,"\n")

}

k1=k1+1;

}

dimnames(power)=list(c("M0","M1","M2","M3"),c(100,200,300,400,500,800,1000))

power

A.3 Empirical Smoothing Lack-of-Fit Test

## "Empirical Smoothing Lack-of-Fit Tests for Variance Function "#

## Using Bootstrap Method ######

rm(list=ls())

set.seed(5637)

a=1; # constant in bandwidth: 1, 0.8, 0.5

total=500; # Simulation runs

power=matrix(rep(0,28),nrow=4)

k1=1;

for(b in c( 0, 0.5, 0.8, 1))

{

k2=1;

for(n in c(50,100,200,300,400,500, 800))

{

h=a*n^{-1/3} # Bandwidth

Mx=0; Sx=1; #Mean and Stdev of design variable

Me=0; Se=1; # Mean and Stdev of error

bt1=1; bt2=2; #True values of parameters

th1=2; th2=0.1;

K=function(u){dnorm(u)}; # Kernel Function
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### variables to store MD estimate and MD test statistic ###

Tn=Est.theta1=Est.theta2=rep(0,total)

Zn=rep(0,total)

Sigma=rep(0,total)

freq=0;

for(i in seq(total))

{

######### Generating Sample ########

repeat

{

x=runif(n,-3,3);

e=rnorm(n,0,1);

y=bt1+bt2*x+sqrt(th1+th2*x+b*x^2)*e;

# LSE for the regression parameter

myreg1=lm(y~x);

######### Minimum Distance Estimate ########

ngrid=200;

xgrid=seq(-3,3,length=ngrid);

dgrid=xgrid[2]-xgrid[1];

xdiff=kronecker(xgrid,rep(1,n))-kronecker(rep(1,ngrid),x)

Kh=K(xdiff/h);

mKh=matrix(Kh,nrow=ngrid,byrow=T)

y2=(myreg1$residual)^2;

yT=mKh%*%y2;

x1T=apply(mKh,1,sum);

x2T=mKh%*%x;

myreg2=lm(yT~x1T+x2T-1);

theta1=myreg2$coefficient[1];

theta2=myreg2$coefficient[2];

if(all((theta1+theta2*x)>0)) break;

}
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######### Bootstrap step ########

res=myreg1$residual/sqrt(theta1+theta2*x);

res=(res-mean(res))/sd(res);# standardization of residuals #

TTn=rep(0,400); # Bootstrap sample size=400

for(j in seq(400))

{

bres=sample(res,replace=T)

bY=myreg1$fitted+sqrt(theta1+theta2*x)*bres;

myreg3=lm(bY~x);

yy2=(myreg3$residual)^2;

yT=mKh%*%yy2;

x1T=apply(mKh,1,sum);

x2T=mKh%*%x

myreg4=lm(yT~x1T+x2T-1)

xi=yy2-(myreg4$coefficient[1]+myreg4$coefficient[2]*x)

xdiff=kronecker(x,x, FUN="-")

xKh=matrix(xdiff,nrow=n) # xij for i ne j

Kh1=K(xKh/h)/h

fx=apply(Kh1, 1, mean)*n/(n-1)-1/((n-1)*sqrt(2*pi))

A1=Kh1%*%xi-diag(Kh1)*xi

A2=Kh1^2%*%xi^2-diag(Kh1^2)*xi^2

Zn=(sum(A1^2/fx)-sum(A2/fx))/(n*(n-1)*(n-2))

H= function(u){dnorm(u, 0, sqrt(2))}

Hh=H(xKh/h)/h

Sigma= 2*h*(t(xi^2)%*%(Hh^2)%*%(xi^2)-diag(Hh^2)%*%(xi^4))/(n*(n-1))

TTn[j]=n*sqrt(h)*abs(Zn)/sqrt(Sigma)

}

cval=TTn[order(TTn)][380] # Bootstrap critical Value

xi=(myreg1$residual)^2-(myreg2$coefficient[1]+myreg2$coefficient[2]*x)

A1=Kh1%*%xi-diag(Kh1)*xi

A2=Kh1^2%*%xi^2-diag(Kh1^2)*xi^2

Zn=(sum(A1^2/fx)-sum(A2/fx))/(n*(n-1)*(n-2))

Sigma= 2*h*(t(xi^2)%*%(Hh^2)%*%(xi^2)-diag(Hh^2)%*%(xi^4))/(n*(n-1))

Tn[i]=n*sqrt(h)*abs(Zn)/sqrt(Sigma)

freq=freq+(Tn[i]>=cval)

cat(b, n, i, " ", theta1, " ", theta2, " ", freq/total,"\n")

}

power[k1,k2]=freq/total; # Power of the test
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k2=k2+1;

}

k1=k1+1;

}

dimnames(power)=list(c("M0", "M1", "M2", "M3"),c(50,100,200,300,400,500, 800))

power

cat("Calculation took", proc.time()[1], "seconds.\n")

A.4 Plots of Empirical Sizes and Powers of the Tests

data1<-read.table("D:/Academic/simulation/RPOLT/power0unif1.txt", header = T)

data1

# Range of X and Y

x1range <- range(data1$Size)

y1range <- range(data1$pvalue)

data2<-read.table("D:/Academic/simulation/RPOLT/power0norm1.txt", header = T)

data2

# Range of X and Y

x2range <- range(data2$Size)

y2range <- range(data2$pvalue)

par(mfrow=c(1,2))

##### set up the plot ####

plot(x1range, y1range, type="n", xlab="Sample Size",

ylab="Frequency of Rejecting the Null", ylim=c(0,0.1))

colors <- rainbow(3)

linetype <- c(1:3)

plotchar <- seq(18,22,1)

abline(h=0.05)

abline(h=1)

# add lines

for (i in 1:3) {
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method1 <- subset(data1, Method==i)

lines(method1$Size, method1$pvalue, type="b", lwd=1.5,

lty=linetype[i], col=colors[i], pch=plotchar[i])

}

# add a title and subtitle

title("Empirical Sizes with Uniform Error (a = 1)", font.main= 1)

# add a legend

legend(600, 0.02, c("MD","ES","WZ"), cex=0.8, col=colors,

pch=plotchar, lty=linetype, title="Method")

##############################################

# set up the plot

plot(x2range, y2range, type="n", xlab="Sample Size",

ylab="Frequency of Rejecting the Null", ylim=c(0,0.1))

colors <- rainbow(3)

linetype <- c(1:3)

plotchar <- seq(18,22,1)

abline(h=0.05)

abline(h=1)

# add lines

for (i in 1:3) {

method2 <- subset(data2, Method==i)

lines(method2$Size, method2$pvalue, type="b", lwd=1.5,

lty=linetype[i], col=colors[i], pch=plotchar[i])

}

# add a title and subtitle

title("Empirical Sizes with Normal Error (a = 1)", font.main=1)

# add a legend

legend(600, 0.02, c("MD","ES","WZ"), cex=0.8, col=colors,

pch=plotchar, lty=linetype, title="Method")
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