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INTRODUCTION

The general repetitive nature of Pennsylvanian and

Permian rock sequences is well known and is particularly

striking in parts of the midcontinent region. It seems that

the concept of cyclic sedimentation is well established, at

least within this region and stratigraphic interval.

Throughout geologic history epicontinental seas have

repeatedly inundated the present land masses. In virtually every

locality where a sedimentary sequence exists at all, it contains

a record of the transgressions and regressions of such seas. It

is natural to equate depositional cycles with marine oscillations.

However, the large number of oscillations seemingly required

for deposition of the Pennsylvanian cyclothems has led to specu-

lation that physical transgression and regression may not have

been involved in each individual "cycle". Throughout this

paper, the terms transgression and regression should be under-

stood to stand symbolically for whatever mechanism may actually

have been operative.

A portion of the investigation reported here was designed

to question the existence of underlying mechanisms governing

the nature of repetitive sedimentary sequences. This was done

only as a logical step in the development of the methods employed.

It may be assumed with confidence that such mechanisms exist.

Speculation concerning the nature of these mechanisms is interest-

ing, but conclusions are difficult if not impossible to prove.



More practical questions concern the nature of the repetitive

record itself. For instance, in a given region and .within

a given stratigraphic interval, what lithologic units consti-

tute the ideal cyclothem? What sequence, if any, is repeatedly

though imperfectly represented by actual rock sequences?

A well-known ideal cyclothem, which seems to be applicable

to Pennsylvanian rocks in Kansas, is that proposed by R. C.

Moore (1935). Recognition of an ideal cyclothem has been

possible only after the study of large numbers of actual rock

sequences. The process is inductive. From an essentially

infinite number of possible ideals one is selected which seems

to fit the observational data at least as well as any other.

If the selected ideal cyclothem implies a reasonable

transgressive-regressive mechanism, as is certainly true of

the Moore ideal, then the overall concept takes on additional

weight as a unifying hypothesis. A recognized ideal cyclothem

has the attributes of a "natural law" in the sense that it

helps to organize diverse observational data in terms of a

single, simple, and reasonable hypothesis. An ideal cyclothem

is not only scientifically useful but intellectually satisfying.

The purpose of this investigation was to provide the

operational mechanics of an objective procedure for making the

necessary inductive step in the recognition of , an ideal cyclothem.

The methods used were specifically designed to answer certain

questions about cyclothems in Kansas. Some of the procedural

details, especially of classification and sampling, were

dictated by expedience and tailored to make use of available



data. Refinements and improvements will be necessary. It is

hopea, however, that the general approach used here will prove

useful in future studies and other areas.

Portions of the geologic discipline, e.g. mineralogy and

petrology, have long been tolerably quantitative. For many

years, however, W. C. Krumbein has stood virtually alone, the

outstanding proponent of a quantitative approach to problems

in stratigraphy and sedimentation. Grain-size analysis has

become popular, and facies maps are a standard procedure. There

have been followers but few innovators.

Recently, a number of other capable people have demonstrated

their interest in new ways of extending the quantitative influence

Aided and abetted by modern computer capabilities, a movement

is afoot. Although in most papers the long range goals of

this movement are only implied, the trend is clear and refreshing.
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SIMPLIFYING THE MOORE IDEAL CYCLOTHEM

How well does the Moore ideal cyclothem describe rock

sequences within the stratigraphic range for which it was

intended? With this general question in mind, the first step

was to formulate the Moore ideal as a numerical sequence. Moore's

original numerical designations were easily adapted (see Table 1).

The reason for combining the shales .1 and .2 into a single

lithologic unit, 2, was merely that the first criterion in

classification was to be gross lithology. It v/as desirable, in

so far as possible, to restrict the application of other criteria

such as fossil content and the presence or absence of coal.

Similarly, the regressive units .6, .7, .8, .9 would have been

difficult to distinguish from their transgressive counterparts

.1, .2, .3, .4 except on the basis of relatively subtle distinc-

tions. For that reason, corresponding transgressive and regressive

units were considered equivalent. With these modifications the

Moore ideal cyclothem is expressible as:

. . . 12 3 4 5 4 3 2 12 3 4 5 4 3 2 12 3 4 5 4 3...

an infinite sequence consisting of adjacent transgressive

(12 3 4 5) and regressive (54321) hemicycles. The

units 1 and 5 are at once both transgressive and regressive

and will here be called pivotal lithologies.



Table 1. Revised designations for cyclothem units,

after Moore (1935, p. 24-25).

~ designation
original description original revised

Sandstone. . 1

Shale (and coal). .9 1

Shale, typically with f

molluscan fauna. .8 )

Limestone, algal, mol-
luscan, or with mixed
molluscan and mollus-
coid fauna. .7 3

Shale, molluscoids domi-
nant . .64

Limestone, contains fusu-
linids, associated
commonly with mollus-
coids. .5 5

Shale, molluscoids domi-
nant . .44

Limestone, molluscan, or
with mixed molluscan
and molluscoid fauna. .3 3

Shale, typically with
molluscan fauna.

Shale, (and coal) may 2

contain land plants.
Sandstone. .0

Moore (1935, p. 26) anticipated the consideration of
such an infinite sequence when he remarked:

The entire cyclothem thus records a single
marine pulsation. .. .This nearly symmetrical or
harmonic sort of rhythm might be expressed numeri-
cally by the sequence 0-1-2-3-4-5-4-3-2-1-0.

In order to complete the classification, it was necessary

to consider additional criteria. Specifically, it was necessary

to distinguish between the shales, 2 and 4, and between the

limestones, 3 and 5. The scheme shown in Table 2 was adopted.
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The primary criteria correspond to Moore's original descrip-

tions.

If the chief purpose of this investigation were to establish,

once and for all, the "best" ideal cyclothem for the area con-

sidered, the classification of Table 2 would have to be considered

inadequate. The investigation purports to be objective, yet the

classification contains many subjective elements. Still worse,

the ultimate appeal to "position" when decision seems hopeless

assumes the underlying Moore ideal, and to answer questions

about the Moore ideal on this basis is decidedly circular.

Classification, however, may be considered a separate

problem. The purpose of this investigation is not to arrive

at unshakeable conclusions, but rather to indicate a line of

attack which should lead to objective conclusions, given a

better classification, more detailed data, and so forth.

THE DISCORDANCE INDEX, G

The second step in the procedure was to define a numerical

statistic to serve as a measure of the amount of deviation of

any actual rock sequence from the Moore (or some other) ideal

sequence. For this purpose, the discordance index G was

defined as follows:

1) Observe the first lithologic unit, a-^ (a-j^ = 1, . . .,5)
of the finite sequence of interest.

2) Consider a portion of the ideal sequence beginning
with a-, and such that a, occurs within a trans-
gressive hemicycle.



3) Sum the number of lithologic units which would
have to be inserted to convert the observed
sequence of (1) to the ideal sequence of (2).
Call this sum G-, .

4) Consider a portion of the ideal sequence beginning
with a, and such that a occurs within a regressive
hemicycle.

5) Sum as in (3), but comparing the observed sequence
of (1) with the ideal sequence of (4). Call this
sum G2.

6) The statistic G, characteristic of the observed
sequence of interest and the ideal being considered,
is the minimum of G-^ and Gp

.

G = min(G1; G2 )

This definition will, perhaps, be clarified by an example.

Consider a seven-unit actual sequence as follows:

actual sequence 2 3 2 5 3 2 1

ideal (transgressive) ...2 34 5 4 321 2 3 45432 1...

sum of omitted units 4 + 4 + 1 = 9= G-.

ideal (regressive) ...21 234 5 4 3 2_ 1 2 3 45432 1 . .

.

sum of omitted units 2+4+4+1= 11 =G2

G = min^^) = Gx = 9

.

The statistic G is called the discordance index because

it represents the number of omissions from the observed sequence

if the ideal is really applicable. The larger the value of G,

the less likely it seems that the observed sequence actually

resulted from the transgressive-regressive repetitions implied

by the ideal. Because equivalent lithologies in the transgressive

and regressive hemicycles are considered indistinguishable, it

is logical to characterize the observed sequence by the choice



of initial transgression or regression .which minimizes G. In

this way, the ideal sequence being considered is given the

"benefit of the doubt".

Clearly, the discordance index so defined was not the only

possible choice for a measure of observed deviation from ideal

sequences. The investigation reported here rests on the assump-

tion that G was a natural and interesting choice. However, the

methods used would be adaptable to other statistics, and this

is a possible direction for future investigation.

FORMULATING THE QUESTIONS

The general question which guided the translation of

the Moore ideal into a numerical sequence and the definition

of the discordance index must be made more specific. It can

be rephrased in the following alternative forms:

QUESTION A. 1. How well does the Moore ideal cyclothem
describe the rock sequences summarized
as the composite section of the Kansas
Rock Column?

2. Would some other ideal sequence describe
these "facts" better?

QUESTION B. 1. How well does the Moore ideal cyclothem
describe actual rock sequences observed
in outcrops reported from Kansas localities?

2. Would some other ideal sequence describe
actual rock sequences better?

3. Is there adequate reason to believe that
actual rock sequences are not random?

GENERATING THE POPULATION OF SEVEN-UNIT SEQUENCES

In order to begin to answer the above questions, it was

necessary to restrict the length of the actual sequences which would
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serve as data units. In particular, question B3 required that

the distribution of G in a population of finite sequences be

known. If the population of all possible sequences of length

L were generated, the distribution of G in that population could

be determined. On the assumption of equal likelihood among the

sequences, the probability of occurrence of any particular G-value

could also be found. The following information was desired:

1) All permutations of L lithologies chosen from the

five recognized lithologic types such that identical

lithologies do not occur in adjacent positions in

sequence. This restriction was necessary because the

actual sequence 1223454, for instance, would probably

be reported as 123454.

2) The values of G which result from comparing each

sequence of the population with the Moore ideal.

This was accomplished with the aid of an IBM 1620 computer

program (see Appendix A). It can easily be shown that the

number of sequences in such a population is given by:

N = n(n - 1)
L_1 where

n is the number of distinct lithologies recognized, five in

this case, and L is the length of the sequences to be generated.

To see this, we may visualize the filling of L positions

in sequence by n distinct kinds of items. Let a 1? a2 ,
-.-a-^

be the items to be chosen. There are n choices for a-p and

for each of these there are n-1 choices for a2 . The single

restriction is ai ^ a . For given a1; a2 there are n-1

choices for a
3 , and so forth. In general,

position 1 2 3 L

item a-^ a
2

a, &\,

choices n n-I n-I n-I

ai f ai+l from which the above result

is clear.
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It was desirable to fix L in such a way that the population

would be of a manageable size, while the length of actual sequences

to be used would be sufficient to test the hypotheses of interest.

Intuitively, it would not have been wise to use actual sequences

of length 2, for example, to test hypotheses concerning an ideal

sequence with hemicycle length 5. After preliminary considera-

tions of this kind, L was chosen as 7 and the population consisting

of N = 5(4) 6 = 20,480

sequences was generated. At the same time each G was calculated.

Table 3 shows the distribution of G in this population.

If the sequences of the population are equally likely to occur

in nature, then each possible value of G (0,1,. . .,18) will have

the probability shown in column 3. In other words, Table 3

gives the expected frequencies of occurrence for each possible

G-value under the hypothesis of random deviation from the Moore

ideal.

A POPULATION OF ALTERNATIVE IDEALS

Would some other ideal sequence describe the facts better?

It was necessary to ask in turn, what other ideal sequences are

possible? Any sequence which contains each of the recognized

lithologies at least once could be taken as an ideal hemicycle.

Some sequences such as

1232323432323232323454
do not seem reasonable in terms of the complexity of the

transgressive-regressive mechanism implied if such a sequence

were to be considered a hemicycle . Nevertheless, there is no
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limit to the number of sequences which might improve upon the

Moore idesal cyclothem. In order to search systematically for

the "best;" ideal sequence, it was necessary to restrict the

universe of ideals in some manner.

Tabl e 3. Distribution of G in the population of seven-
unit sequences based on the Moore ideal.

G No. of Pr(G)|Hn Cum. Prob. (%)

15 .000732 0.073
1 37 .001807 0.254
2 101 .004932 0.747
3 209 .010205 1.768
4 389 .018994 3.667
5 621 .030322 6.699
6 895 .043701 11.069
7 1148 .056055 16.675
8 1638 .079981 24.673
9 1967 .096045 34.277

10 2061 .100635 44.341
11 1833 .089502 53.291
12 2273 .110986 64.390
13 2245 .109619 75.352
14 1770 .086426 83.995
15 904 .044141 88.409
16 1019 .049756 93.385
17 863 .042139 97.599
18 492 .024023 100.001

20480

Because the population of seven-unit sequences was already

available , it was convenient to consider a set of ideal hemicycles

obtained by examining each sequence of the larger population to

see whether either the 5th or 6th positions could be considered

pivotal. This was also accomplished with the aid of a computer

program (see Appendix A)

.
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The procedure was

:

1) Designate the lithologies in each sequence as a^,
a.2, • ••> a-v where the subscripts indicate the
position in sequence. Then s.^ = k (i=1...7; and
k=l. . .5).

2) If the set consisting of a-j_, a , ..., a^ contains
each integer (1,2,..., 5) exactly once, i.e. the first
five lithologies are all different, then the sequence
is a potential ideal generator subject to satisfaction
of the restriction in (3).

If the set consisting of a^, a2 , ..., a~ contains each
integer (1,2,..., 5) at least once, i.e. exactly one
lithology is repeated among the first six, then the
sequence is a potential ideal generator subject to
satisfaction of the restriction of (4)

.

3) If a^ = ag and a = a , then the sequence is pivotal
around ar and the hemicycle length is 5.

4) If a5 = a7 , then the sequence is pivotal around a
g

and the hemicycle length is 6.

For example, consider the sequence 3 2 4 15 3 5. Among

the first five lithologies, all are represented. However,

a4 ^ ag (1^3), so that the sequence is not pivotal around

a
5 . Among the first six lithologies, exactly one lithology (3)

is repeated, and a = a7 = 5. The sequence is pivotal around

a , and a-,, a
2 ,...,a„ constitute an ideal hemicycle.

The population of hemicycles obtained in this manner has

1200 members. From these hemicycles 660 distinct ideal sequences

can be generated. Consider the original seven-unit sequences

3 2 4 15 3 5 and 3 5 14 2 3 2. Both will contribute six-unit

hemicycles to the 1200-member population, but" these will be

merely transgressive and regressive, (obverse and reverse)

hemicycles of che same sequence:

...3241535142324153514 2 32 ...
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However, the original sequences 2 3 4 15 14 and 15 14 3 2 3

generate distinct ideals even though the first six positions

satisfy the obverse-reverse relationship. The first sequence

is pivotal around a5 and yields the ideal ...2341514 3234,

while the second is pivotal around a~ and yields the ideal

...15143 2341515 14323
It must be emphasized that the population of 660 ideals

generated in this way is by no means exhaustive; however, it

is exhaustive of symmetric ideals having five- and six-unit

hemicycles. A symmetric ideal is defined as one in which adja-

cent hemicycles are obverse and reverse, as opposed to sequences

like ...123451234512345..., which might be called

simply repetitive ideals. It should be mentioned here that

simply repetitive ideals may best describe actual rock sequences

in some areas. Moore (1935) and others have noted that the

typical Illinois cyclothem is probably of the simply repetitive

type.

Any symmetric ideal which might conceivably constitute an

improvement upon the Moore ideal either (1) belongs to the 660-

member population described above, or (2) has hemicycle length

at least seven. The latter possibility is by no means unthinkable.

The ideals to be considered were restricted in the particular

manner described only because the next larger, population, including

seven-unit hemicycles, would have been too large to have been

exhaustively analysed in the time available. Either faster

computers or a continuing program of study could allow for
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expanding the present investigation in the direction of a

larger population of ideals.

VARIATION OF G IN AN IDEALIZED COMPOSITE SECTION

Answers to questions Al and A2 involved a comparison

between one abstraction, the population of ideal sequences,

and another abstraction, the idealized composite section of

the Kansas Rock Column. The connection with reality attained

later by the use of actual measured sections was here lacking.

Accordingly, the answers obtained should be considered relatively

non-pertinent. This part of the investigation was designed to

illustrate how the necessary restriction in sequence length could

be overcome if it became desirable to analyse data pertaining

to long sequences of actual rock units (perhaps from continuous

coring operations).

The Kansas Rock Column (Moore, et al., 1951) was consulted,

and the stratigraphic interval to be used was chosen. The

interval conformed to that covered by available measured sections

used later; it extended from the Pleasanton Group (Hepler Sand-

stone, Missourian) below into the Council Grove Group (Roca

Shale, Wolfcampian) above. By studying the descriptions of

each formation and member, the number and classification of

recognized lithologies within the interval were determined.

The chief problems of classification at this stage were:

1) deciding what sequence of lithologies to use when
it happened that a formation or member was described
as being differently represented at different Kansas
localities, and

2) deciding upon the number of distinct lithologies to be
included when a formation or member was described as
"alternating shales and limestones" or the like.
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The unavoidable subjectivity of these decisions was not critical

in this phase of the study, since the purpose of the undertaking

was primarily illustrative. A total of 278 lithologies were

recognized and classified within the interval.

With the aid of a third computer program (see Appendix A)

this information was subjected to the following steps in

analysis: 1) the 278 lithologies were considered in seven-
unit subsequences from bottom to top. The
first seven lithologies constituted the first
subsequence, lithologies two through eight
constituted the second subsequence, and so
forth, making a total of 272 subsequences in
all.

2) For the Moore ideal cyclothem, a member of
population of ideals, G was computed for each
individual subsequence. The values of G were
combined in a five-point moving average, and
the variation of G through the interval was
graphically displayed (see Figure 1).

3) The average value of G over the interval was
determined for the Moore ideal.

4) For all distinct remaining members of the
population of ideals the average values of
G over the interval were also obtained.

A detailed discussion of the features of Figure 1 will

not be undertaken because the connection with reality is at

best problematic. However, the following feature of Figure 1

is perhaps sufficiently general to be considered "real":

Levels of G are noticably higher in the Kansas City
Group and below as well as in the Admire Group and
above. Clearly, the interpretation is that the Moore
ideal is more descriptive of the "facts" within the
Middle Missourian through Virgilian of Kansas than
elsewhere in the interval considered.

Several points demand mention in connection with the

analysis described above. First, the sequential consideration
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Figure 1. (concluded)
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Of seven-unit subsequences is only one possible method of

obtaining an average G over an extended sequence. A comparison

of this method with a reasonable alternative is given in

Appendix B.

Secondly, because the input lithologies were visualized

as representing a continuous sequence, freedom of choice as

to the starting point (transgressive or regressive) could not

be allowed for each subsequence. Rather, the distinct values of

G- resulting from different starting points were first accumulated

and averaged over the entire interval and then minimized to

obtain the final G. Each G± represented a single initial choice

of transgression or regression (for the first subsequence).

Compared to the procedure for calculating G in a single seven-

unit sequence, the distinction here is summarized in the state-

ment that reported values were minimized average G (hereafter

called MAG) values over the interval.

Finally, when ideals with six-unit hemicycles are considered

there may be as many as four starting points which will yield

distinct G. , rather than two. In such cases, the reported

MAG was the minimum of the averaged Gi , where i = 1,2 or 1,2,3

or 1,2,3,4 depending on certain characteristics of the ideal

under consideration.

Analysis of the complete population of ideals showed that

no member had MAG less than that of the Moore ideal. For

explaining the composite section of the Kansas Rock Column on

the basis of the least-G criterion, the Moore ideal is the best
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possible sequence among all symmetric ideals with five- or

six-unit hemicycles. However, no basic significance is

claimed for this result because, as has been previously mention-

ed, the data from the Kansas Rock Column was pre-synthesized

and correspondingly unreal. In addition, bias may well have

been introduced by the writer during translation of descriptions

into numerical sequences.

DISTRIBUTION OF G IN A SAMPLE OF ROCK SEQUENCES

Answers to questions Bl, B2, and B3 were obtained from

a sample of actual seven-unit rock sequences drawn from

available measured sections within the region shown in

Figure 2.

The State Geological Survey of Kansas kindly made avail-

able a file of measured sections and provided a map of locations

for an initial selection of about 400 sections. This selection

included all available sections which happened to display at

least seven lithologic units within the interval from Hepler

Sandstone to Roca Shale. The preliminary set of 400 sections

was subjected to a sampling procedure as follows:

1) A grid was superimposed upon the map showing the
location of, and stratigraphic group (s) represented
in each available section.

2) The number of available sections per group was
tabulated for each grid subdivision.

3) The total number of sections to be retained was set
provisionally at 250, and it was decided that group
representation should be proportional to the "size"
of the group.
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4) The percent of the total interval actually occupied

by each stratigraphic group had been previously
estimated by

n
i (100)

P
i

= n

where P^ = percent of interval represented
by the ith group.

n- = number of recognized lithologies
1

within the ith group, estimated
from the Kansas Rock Column.

N = estimated total number of recog-
nized lithologies in the interval
studied.

5) These considerations dictated that the group represen-
tation in the final sample should be as follows:

Group represented % of sample ( = V
± )

Council Grove 8

Admire 6

Wabaunsee 33
Shawnee 23
Douglas 6

Pedee 1

Lansing 6

Kansas City 14
Pleasanton 3

6) Where a group was originally represented to excess,
sections were discarded from those grid subdivisions
containing the most representatives of the group
in question. The particular sections to be discarded
were randomly chosen. In this way 250 sections were
chosen from the available 400.

7) Locations of the desired 250 sections were then
communicated to Dr. D. F. Merriam, who provided
Xerox copies of the measured sections and descrip-
tions. To this point the writer was unaware of
the detailed characteristics of the sections to
be used.

8) On each section containing more than seven lithologic
units, according to the classification system of Table
2, a starting point was randomly chosen. Upward from
this starting point, seven successive units were defined
and classified as 1,2,3,4,5.
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9) For several different reasons, mainly because of
difficulty in interpreting descriptions, 15 sections
were considered unsuitable and were discarded. The
final sample consisted of 235 seven-unit sequences.

10) To check the percentage of group representation
each sequence in the final sample was classified
to group. In cases of overlap, the section was
counted twice. Compare the break-down below with
that of (4)

.

Group represented % of sample

Council Grove 8.1
Admire 7.0
V/abaunsee 31.4
Shawnee 20.3
Douglas 7.0
Pedee 1.1
Lansing 6.2
Kansas City 16.2
Pleasanton 2.6

The chief purpose of this procedure was to insure that

the final sample of seven-unit sequences would be spread over

the geographic area and the stratigraphic interval of interest.

The writer feels that this kind of "representativeness" is

a desirable feature of geologic sampling, in which true random-

ness is usually not at issue. In the present case, certainly,

it was not a matter of choosing between the kind of sample

obtained and a truly random sample. Ideally, a random sample

would have had both locality and stratigraphic interval (group)

randomly predetermined. It would have been necessary to be

able to go to any locality and there observe a section within

any stratigraphic group. The obvious difficulty is that

when one is restricted to surface measurements, he is also

restricted by the fact that outcrops are where you find them.
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In addition, it was necessary for this study to consider only

those sections already measured and recorded. No sample ox

the available sections could have been considered a random

sample of the population to which inference was to be made,

i.e. seven-unit sequences in the three-dimensional area-

interval of interest. That the sample actually used was

a reasonable approximation to that goal is, at this point,

simply assumed.

With the aid of a fourth computer program (see Appendix A)

the sample was analysed in a manner similar to that already

described for the composite section. Differences were as follows:

1) The 235 sections were separate entities and the
choice of a minimizing starting point was left open
for each seven-unit sequence.

2) The average values of G were determined after the
235 separate minimumizations, hence were average
minimum G (AMG) values, rather than MAG values
as before.

The G-values corresponding to each observed sequence,

with reference to the Moore ideal, formed the basis of a

simple test in answer to the question B3. Consider the

null hypothesis, PI : The sample of observed sequences was
drawn from a population described in
Table 3, i.e. every conceivable seven-
unit sequence had equal opportunity
to appear in the sample because the
sequences occur randomly in nature.

For the sake of brevity, call this HQ the randomness hypo-

thesis. The alternative hypothesis, then, is a nonrandom-

ness or the simple negation of H .
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Table 5 shows the observed number of occurrences for

the various G-values, the expected number according to the

distribution under HQ (from Table 3), and calculated

quantities necessary for a chi-square test of H
Q ,

where

G = a value of the discordance index.

Oq = the number of times (out of 235) the
particular G was observed.

Er
- the number of times the particular G
would be expected to have occurred
under H (=235 x column three of
Table 3).

Table 5. Data for the chi-square answer to B3

.

G °G
EG °G-EG (0G-EG )

2/EG

2
1

1

2 3 '23 8.62 14.38 23.99
3 6

I

4 12,
5 12 7.13 4.87 3.33
6 17 10.27 6.73 4.41
7 9 13.17 4.17 1.32
8 29 18.80 10.20 5.53
9 12 22.57 10.57 4.95

10 26 23.65 2.35 0.23
11 15 21.03 6.03 1.73
12 27 26.08 0.92 0.03
13 14 25.76 11.76 5.37
14 26 20.31 5.69 1.59
15 3 10.37 7.37 5.24
16 18

>
11.69 6.31 3.41

17 2 4 15.55 11.55 8.58
18 2j

Groupings at the extremes of the observed distribution

were made in order to satisfy the chi-square requirement
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that min(EG ) = 7. The procedure is to calculate the statistic;
G

X
2

=J2 (°G-EG>
2 = 69 ' 71

G EG

2
and to note that in large samples X is approximately chi-

square distributed under H . Reference to tabled chi-square

with 13 degrees ox freedom (m-1, where m = nO. cells used)

2reveals that under H the probability of observing a X

this large or larger is much less than 0.00001. The

randomness hypothesis is most decidedly to be rejected. It

may be desirable to emphasize the assumptions under which

the above chi-square test is a valid rejection of the random-

ness hypothesis. We assume:

1) that if the recognized lithologies actually occurred
in random sequences in nature, then any sequence would
be as likely to occur as any other.

2) that the population distribution of G under the
randomness hypothesis would be the same as the
distribution derived by generating all possible
sequences and assigning them equal probabilities.

3) that we have a random sample from the population of
interest, namely the population of all seven-unit
sequences, within the defined three-dimensional
area-interval

.

4) that the dependence of the theoretical G-distribution
on the ideal sequence of reference (the Moore ideal)
does not affect the test of randomness.

Assumptions (1) and (2) would appear to be justified. Assump-

tion (3) as we have already seen, is invalid but should be

approximately true. Assumption (4) is reasonable because the

alternative to randomness is unspecific. The particular kind

of order we visualize in order to be able to calculate G has
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no direct bearing on the question, "Does any order exist?".

In other words, the test would be expected to reject with

any choice of reference sequence.

The AMG values obtained from the analysis of the entire

population of 660 distinct ideals will allow no simple inter-

pretation. Of the ideals tested 78 yielded AMG less than

that of the Moore ideal. The twenty smallest AMG are listed

in Table 6.

Among this surprisongly large number of "improvements"

over the Moore ideal, the best is. . .12^3452^543. . . ,

The chief difference between this and the Moore ideal is the

extra unit-2 per hemicycle. Table 7 shows another set of the

hemicycles which generate ideals with relatively low AMG.

The grouping is intended to illustrate some of the reasons for

the results obtained. Note first that all ideals shown have

six-unit hemicycles, and the unit repeated in the hemicycle

is either 2 or 3. Both of the observations hold for all 78

"improvements"

.

Table 8 shows the distribution and frequency of the

recognized units among the positions (a^) of the sample

sequences. The high proportions of units 2 and 3 would

seem to account for the fact that ideals with extra units

2 or 3 have low AMG, other factors remaining constant. Note

also the low proportion of unit-1 in the sample. Table 7

shows that the position unit-i occupies has relatively little

effect on the value of AMG. In the first group of four ideal

hemicycles, for instance, the change in position of unit-1

from ai to a.4. caused the change in AMG rank from 1 to 7.
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_e 6. Value and rank of twenty smallest AMG.

ideal hemicycle A K rank

1 2 3 4 5 2
I 2 5 4 3 2
2 1 3 4 5 2
2 i 5 4 3 2
2 3 1 4 5 2

1 2 3 4 2 5

2 3 4 1 5 2

2 3 4 2 5

2 1 3 2 4 5

1 2 3 2 4 5
1 3 2 5 4 3
2 3 1 4 2 5

I 3 2 5 3 4
2 3 1 2 4 5
3 I 2 5 4 3

2 1 3 2 5 4
3 i 2 5 3 4
I 2 3 2 5 4
2 3 4 1 2 5

I 3 2 3 4 5

7.4596 1

7.5106 2

7.7702 3

7.8468 4
7.8979 5

8.0043 6

8.0383 7

8.0894 8

8.1021 9

8.1489 10
8.2213 11
8.2596 12
8.2638 13
8.2723 14
8.3191 15
8.3404 16
8.3447 17
8.3872 18
8.3957 19
8.4085 20

12 3 4 5 (Moore) 9.9319 79

Table 7. Selected AMG showing relationships: * indicates
reverse of a previously listed hemicycle.

ideal hemicycle AMG rank

12 3 4 5 2 7.4596 1

2 13 4 5 2 .7702 2

2 3 14 5 2 7.8979 5

2 3 4 15 2 8.0383 7

12 5 4 3 2 7.5106 2
2 15 4 3 2 7.8468 4

*2 5 x 4 3 2 8.0383 7
*2 5 4 1 3 2 7.8979 5

12 3 4 2 5 8.0043 6

2 13 4 2 5 8.0894 ' 8
2 3 14 2 5 8.2596 12
2 3 4 12 5 8.3957 19

12 3 2 4 5 8.1489 10
2 13 2 4 5 8.1021 9
2 3 12 4 5 8.2723 14
2 3 4 14 5 9.6468 68



Table 8. Distribution and frequency of recognized
lithologic units in the sample of seven-
unit sequences.
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J,, it
Positi.on 1 2 3 5

1 26 79 71 22 37

2 24 92 62 28 29

3 14 76 31 32 32

4 17 85 68 33 32

5 13 80 82 28 32

6 7 93 57 38 40

7 15 65 86 27 42

TOTAL 116
percent 7.05

570 507 208 244
34.65 30.32 12.65 14.83

In summary, the relative proportions in the sample of

the units 1-5 interact with the ordering of these units in

the ideal and AMG is a complex function of both. This should

have been obvious at the outset. Are all 78 ideals with

low AMG to be considered improvements over the Moore ideal?

If the classification of lithologies were entirely objective

and unambiguous, the answer would be an unqualified yes.

PROBLEMS OF CLASSIFICATION

The classification used here is deficient. It has already

been mentioned that the tie-breaking "position" criterion

begs the question. In a sense, the use of such a criterion

is the most serious deficiency of this study. In another

sense, it was largely irrelevant. Given criteria adequate to

assign every litl^oiogy in the chosen area-interval to one of

the recognized a priori classes, the need for tie-breaking
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would have been automatically removed. This study has been

chiefly concerned with the mechanical procedures whereby use-

ful conclusions would be reached, given, as a point of departure,

just such an objective- and unambiguous classification of

cyclothemic units.

The following brief discussion is intended as the barest

food for thought concerning the difficulties to be encountered

in any future attack on problems of classification. The

discussion is in terms of the specific questions asked here,

but the implications are more general.

Fusulinid Requirement

In the Moore ideal, the type-5 unit is pivotal between

the hemicycles in such a way that if physical transgression

and regression is visualized, then unit 5 represents maximum

transgression or the so-called "deep-water" limestone. It

may be true that the prescence of fusulinids is one of the

best criteria for recognizing such a unit. Still, the type-5

unit which contains fusulinids at one locality may be

physically continuous with a limestone which is type-3 at

another locality because fusulinids are lacking. If a true

facies change is so indicated, such a situation need not

concern us too much. On the other hand, if other faunal

elements remain the same we may legimately wonder whether

fusulinids are all that important. With special regard to

the present study, it is probable that fusulinids may be

lacking in the descriptions of some measured sections though

present at the outcrop.
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Inclusiveness of ]
'nit 3

The limestones encountered in the sections used for this

investigation are fusulinid-bearing, fossiliferous (no

fusulinids), or unfossiliferous; massive to thin-bedded and

often wavy-bedded; hard and dense to soft, argillaceous or

"punky"; pure to ferruginous or otherwise impure; and so

forth. Almost any combination of such adjectives describes

some limestone in the interval considered. In what sense

can all non-fusulinid limestones be considered equivalent?

In particular it seems likely that the many impure and thin-

bedded limestones interbedded with shales and not distinguished

as members should be separated from other type-3 units.

Inclusiveness of Unit 2

A similar objection can be made concerning the criteria

for recognizing unit 2. As a general rule, the shales of the

interval considered tend to be less fossiliferous than adjacent

limestones. This alone accounts for the scarcity of positively

identifiable type-4 units, and the majority of shales became

type-2 by default as it were. Unit 2 may be marine or nonmarine,

fossiliferous or unfossiliferous, and any color at all.

Degree of elasticity for Unit 1

An attempt to use the classification of Table 2 on

descriptions of measured sections is especially difficult when

the terms siltstone, mudstone, and conglomerate are encountered.

Is siltstone to be called sandstone or shale? Is mudstone

to be considered shale or, if calcareous, impure limestone?
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What about conglomeratic limestones? The relative scarcity

of type-1 units in the sample is probably "real" regardless

of classification difficulties, but we may wonder whether the

prescence of sandstone is really an environmental measure.

The sandstone environment, whatever it may be, could have been

present at many points in time which did not happen to coincide

with a supply of coarse elastics.

Thickness

Thickness is a criterion whether it should be or not.

For this investigation, all lithologic units less than .3

feet thick were ignored. Clearly there must be some such

arbitrary cut-off point. Is it then reasonable to assign

equal weight to all limestones, for instance, from .3 to

20 feet in thickness?

Generalizations and Directions

We may distinguish at least three types of troublesome

questions stated or implied in the above discussion:

1) How many lithologies should be recognized?

2) What combination of criteria will effect the
assignment of actual rock units to the n
recognized categories without ambiguity?

3) Given an appropriate set of criteria, how should
they be weighted, i.e. what is the order of their
relative importance?

There exist no set procedures to tell us which criteria

may be of importance, but intuitively we may conclude that it

will be necessary to consider many types of criteria. Surely

an objective synthesis should draw information from many
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fields. Paleontology, mineralogy, petrology, seciimentology,

geochemistry, all may be called upon to contribute to the

store of measurable variables from which a set of criteria

appropriate for the purpose at hand may somehow be chosen. A

subjective guiding principal for preliminary selection of

criteria would include an evaluation, in terms of current

geologic thought, of the "amount of information" about ancient

environment contained in any particular variable.

Various types of cluster and factor analysis exist which

could be applied to such preliminary criterion matrices, and

in theory at least useful answers to questions like (1) and

(2) would eventually result. For an interesting example of

factor analysis applied to a geologic problem see Imbrie and

Purdy (1962). Question (3) could then be approached in a rela-

tively straightforward manner through the use of discriminant

functions.

Development of a fully objective classification designed

specifically for an investigation such as this would be a long

and arduous task. By side-stepping the difficult job and

anticipating some of the potential returns on such an investment

of effort, this study may serve as some small motivation. The

even more difficult task of developing a master classification

which would be adequate with reference to a broader field of

problems is not outside the realm of possibility. The first

steps should be taken with such a larger goal already in mind.
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CONCLUSIONS

It is easy to see, in retrospect, that the classification

used here was such that the preponderance of units 2 and 3

in the sample was inevitable. Any change in the classification

which tended to equalize the proportions of the recognized

units would probably tend to reduce the number of improvements

on the Moore ideal. Of course, this is not to be considered

a goal, i.e. justification of the appropriate criteria must

be based on independent evidence.

The purpose of this investigation will have been served

if any motivation has been provided toward the development

of an objective classification based on geochemical and/or

lithologic indicators of environment. In addition it is

hoped that the distinction is fully grasped between what is

reasonable and what is demonstrable. In the opinion of the

writer, there is some degree of evidence here that the Moore

ideal cyclothem is, after all, the truth behind the complexity

of the observable quantities. But opinion is relatively worth-

less. Refinement of the criteria for classification may

ultimately render the truth susceptible to demonstration by

methods similar to those developed here.

In the meantime, geology as a scientific discipline needs

more and better attempts to demonstrate the truth of its

reasonable hypotheses. If nothing else, such attempts will

often demonstrate that our basic methods of observation,

measurement, and classification are inadequate to deal
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systematically with the larger problems. ,.

T

e need to become

increasingly aware that the only slightly exaggerated

formulation, "How do you feel about cyclothems?", is simply

not a scientifically meaningful question. We need to become

increasingly willing to focus our attentions on hypotheses

at least potentially susceptible to proof and on methods

oriented toward the realization of that potential.
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APPENDIX A. Programs Used.

The programs reproduced here were written with the

specific problems of this study in mind, and most of them

are inflexible. In other areas of study, for different

classifications of recognized lithologies, or for different

lengths of the sequenges to be sampled many modifications s

in the programs would be necessary. In addition, the use

of SENSE SWITCHES, PAUSES, etc., shov/s that personal super-

vision of the running of these programs was necessary. The

forms given are the original IBM 1620 programs, although programs

3 and 4 were later mc-ified for unsupervised use on an IBM

1410-1401 tape oriented system. 1 Finally, the writer does

not claim that the forms used here are either elegantly

conceived or characterized by optimum running-time. For these

reasons, it is not expected that others will desire to use

these programs in precisely their present forms.

However, experienced programmers may find it helpful to

use bits and pieces of the present forms in programs designed

to accomplish similar ends. Accordingly, the following

presentation is given:

I. The general objectives of major steps in the execution
of each program.

II. Definitions or descriptions of the important symbolic
designations used in each program.

III. The FORTRAN source program itself with comments keyed
to the general objectives.
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PRCC ..:,! 1 — Population Generator

(T) Read control

a. length of sequences to be used (here 7) = LSEQ

b. number of recognized lithologies (here 5) = NDIG

c. first sequence to be considered (digits entered
in reverse order); example — 1425313. *

(2) Initialize and enter Moore ideal.

(3) Depending on (la) enter nested loops designed to increment
each digit of (lc) between original values and maximum
values equal to NDIG.

For the example in (lc) the sequence actually under
consideration is the reverse: 3 13 5 2 4 1. The next
sequences to be considered will be 3 1 3 5 2 4 2,313524 3, 313524 4, and'3 13 5 2 4 5. If
NDIG = 5, the program will then skip to 3135251,
and so forth.

(4) For each sequence under consideration, the adjacent digits
are examined. If two adjacent digits are equal, the sequence
is not to be considered a member of the population and the
program increments as in (3) and goes on to the next sequence.

(5) Fnen no two adjacent digits of the sequence considered
are equal, the program proceeds to calculate G for
that sequence

a. by considering the initial digit as belongint to
the transgressive hemicycle of the Moore ideal, and

b. by considering the initial digit as belongint to
the regressive hemicycle of the Moore ideal, whence

c. G = min(5a,5b).
(o) Punch the digits of each population member together with

the corresponding G-value.

(7) Continue until the last candidate for inclusion in the
population has been considered. For the example given,
the last candidate would be 5 5 5 5 5 5 5. Of course,

*Also ente 3 here is INUM; see definition below.
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PROGRAM 1 — Population Generator

(?) (cont) the last sequence to be accepted as a population

member will be 5454545. Similarly, the first

sequence to be entered for consideration will be

12 12 12 1.

Important symbols .

LSEQ = length of sequences to be generated.

NDIG = number of recognized lithologies.

INUM = number of sequences to be considered by the

successive enumeration procedure before skipping
to a new starting point. Can be used to save
time by skipping a long series of trial sequences
all of which will be rejected.

MRET = multiplying factor for extending Moore ideal
into the M(k) positions.

IN(I) = subscripted variable representing input digits
of beginning sequence; maximum I = 12

.

IS1 to= unsubscripted variables' set equal to the IN(I)

IS12 ' and used as the lower index of the nested DO's.

KJ(J), = subscripted variables used for juggling the

LU(K) original (and incremented) digits of sequences.

MST1 = starting point for calculation of G (transgressive)

MST2 = second starting point (regressive).

IG1 = G calculated from MST1

.

IG2 = G calculated from MST2.

IGMIN = min(IGl,IG2).
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C CYCLOTHEM PR03LEM
C PROGRAM 1 — POPULATION GENERATOR
C

DIMENSION KU( 12) »LU(12) »M(56) ,IN( 12

)

100 FORMAT (2(15))
101 FORMAT (12 (13)* 15)
102 FORMAT ( 12 ( I 3 ) , 3 ( I 5 ) )

104 FORMAT (11HTHAT IS ALL)
L

C (?) READ CONTROL
C

W
99 READ 100, LSECUNDIG
92 READ 101, ( IN( J) ,J = 1,12) »INUM

IF. (SENSE SWITCH.!) 91,90
91 PAUSE

C

C (T) INITIALIZE
C

90 INPU7=LSEQ+1
DO 98 I=1,LSEQ
KU ( I ) = I N ( I )

98 CONTINUE . .

DO 97 I=INPUT,12
KU ( I )=0

97 CONTINUE
I S 1 = I N ( 1 )

I S 2 = I N ( 2 )

... IS3=I\(3) ...
IS4=IN(4)

..... IS5 = IN(5)
IS6=IN(6)
IS 7= IN ( 7 ) J
IS8=IN(8)
-S9=IN(9)
IS10=IN( 10)
IS11 = IN(11) ........
IS12=IN(12)
INC=0
MRET=NDIG-2

(I) ENTER MOORE IDEAL AND EXPAND INTO THE M(K) POSITIONS

96 J=INC*NDI.G
:

' = I N C *M R E T

DO 95 I=1,NDIG
L=ItJ+K
M ( L ) = I

.95 CONTINUE
J=(INC+1)*NDIG
DO .94 I=1,MRET '. 1_
L= I+J+K
M(L)=NDIG-I _....

94 continue
:nc=inc+i ..

IF (INC-7) 96,93,96
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c _
C (3) ENTER NESTED L.OOPS

93 60 TO (1 2»3*4»5*6»7»a*9»10»ll»12) »LSEQ
12 DO 50 I12=IS12»NDIG

. . (12 1 = 112
11 DO 50 I 11 = IS11»NDIG

KU (11 ) = I 11
10 DO 50 I10=IS10,NDIG

KU (101=110
9 DO 50 I9=IS9»NDIG

KU ( 9 1 = I 9
3 DO 50 I8=IS8,NDI6

KU (8 ) = Ift -

7 DO 50 I7=IS7»NDIS
KU(7)=I7

6 DO 50 I6=IS6»NDIG
KU (6 1 = 16

5 DO 50 I5=IS5,NDI6
KU(51=I5

4 DO 50 I4=IS4,NDI6
KU (4 1=14

3 DO 50 I5=IS3»NDIG
KU(3)=I3

2 DO 50 I2=IS2,NDI6
KU(21=I2

1 DO 50 I1=IS1»NDI6
KU (11 = 11 . . _ -

J=l
C
C @ EXAMINE ADJACENT DIGITS
C

25 IF(KU( J)-KU( J+l 1 1 30,50*30

"

-

30 IF (J-LSEQ+11 40,45,40
40 J=J+1

GO TO 25 .

45 CONTINUE
KINC=KU(LSEQ)

C

C (T) SET STARTING POINTS FOR IG1.IG2
C

GO TO (501 ,502,503,504,505* 1 ,KINC
501 MST1=1

GO TO 700
502 MST1=2

_ MST2=8
GO TO 700

503 MST1=3
MST2=7
GO TO 700

504 MST1=4
MST2=6
60 TO 700

505 MST1=5

>,
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c
C (5) CALCULATE IGi

.

700 J=0
161 =

DO 701 I=1,LSEQ .

K=LSEO+l-I
702 MUP=MST] +J

IF (KU(K)-M(MUP) )• 703*704,70 3

703 IG1= IG1+1
J = J + 1

GO TO 702
70-, ^'=J + 1

701. CONTINUE
IF (KU(LSEQ)-l) 705*706,705

705 IF (KU(LSEG)-NDIG) 710,706,710
706 IG2=IG1

GO TO 900
C ^^^
C . (J) CALCULATE IG2
C

7x0 J = ___

IG2 =

DO 711 I=1,LSEQ .

K=LSEQ+1-I
712- MUP=MST2+J

IF (KU(K)-M(MUP) ) 713,714,713
713 IG2=IG2+1

J=U + 1

GO TO 712

.

714 J=J+1
- 711. CONTINUE ... :

C

C (T) FORM MINIMUM G
C

900 IF (IG1-IG2) 902,902,903
902 IGMIN=IG1

GO TO 904
903 IG,v,IN=IG2

. 904 DO 901 J = l,12 . .

I=13-J
LU{ I )=KU(J)

901 CONTINUE

C (&) OUTPUT
C .

PUNCH 102» (LU( I ), 1 = 1,12) ,161, IG2,IGMIN
. INUM=INUM-1 . .

IF (INUM) 905,92,50
905 IF (S^N^E SWITCH t ) 9?.^n ' >>

50 CONTINUE
TYPE..104
END
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PROGRAM 2 -- Eligible Ideals.

(T) Read one card at a time from output of PROGRAM 1, i.e.
the individual digits of each member of the total
population of LSEQ-unit sequences. Note, however, that
this program was written to handle only the case where
LSEQ = 7.

(2) Initialize.

3) Examine the first five digits of the sequence being
considered.

a. If each of the integers 1,2,3,4,5 is present
exactly once

b. examine the sixth digit to see if it is the same
as the fourth and likewise the third vs seventh.
If both,

c. accept the sequence as an ideal generator with
hemicycle length 5 and punch digits of original
sequence, hemicycle length, and G-value of
original sequence.

d. If conditions are not satisfied, go to (4).

Examine the first six digits of the sequence being considered.

a. If exactly one of the digits 1,2,3,4,5 is repeated,

b. examine the seventh digit to see if it is the same
as the fifth. If so,

c. accept the sequence as an ideal generator with
hemicycle length 6 and punch as in (3c).

(E) Repeat until total input population is exhausted.

Note: this program does not yield the final population of
ideals, as the obverse-reverse relationship discussed
in the text was revealed and sorted out by inspection
of these results.

Important symbols .

IA(J) - subscripted variable carrying digits of the input
sequences to be tested; J = 1,7

IGEE = G-value for the sequence considered, along for the
ride.



PROGRAM 2 — Eligible Ideals.

':' :r)ortant symbols , (cont)

31, m set in turn to eacia IA(J) and used in branching
IAG02 operations.

IB1 = locations used to indicate occurrence or non-
IB2 occurrence of the lithologic classifications

1 to 5.

IB5
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C PROGRAM 2 — ELIGIBLE IDEALS
C

DIMENSION IA(7)
100 FORMAT ( 15X»7( 13) ,10X,I5)
101 FORMAT (7(I3).5X»I3,36X»I5)
102 FORMAT (13HLOGICAL ERROR)

C
C (J) READ ONE DATA CARD

200 READ 100, ( IA( J ) » J=l ,7 ) » IGEE

C (7) INITIALIZE
C

_. I P I V = 1

131 =

— -132 =

133 =

- 134 =

-55 =

C

C @ EXAMINE FIRST FIVE DIGITS
C

DO 201 J=l,5
IAG01=IA(J)
GO TO (1 ,2,3,4,5) » IAG01

1. 181 = 1

GO TO 201
.2 132 = 1

GO TO 201
3 133=1

GO TO 201
4 12 4=1 _

GO TO 201
5 IB 5 = 1

201 CONTINUE
202 I3SUM=I51+IB2+I33+IB4+I35

GO TO (203,204,204,204,204,205) ,IPIV
203 .IF ( I3SUM-5) . 300,206,300
204 TYPE 102

PAUSE
205 IF (I3SUM-5) 200,400,200
206 IPIV=5

GO TO 400
300. IPJLV.=-6

.

C @ EXAMINE SIXTH DIGIT.........



300 IP IV = 6

IAG02=IA(6)
GO TO ( 11,12,13,14,15) ,IA602

11 181=1
60 TO 202

. 12 IB2=1
GO TO 202

60 TO 202
14 IB4=1

60 TO 202
15 13 5=1 .

60 TO 202

~3 "CHECK DI6ITS 4,6 AND 3,7

400 IF(IPIV-5) 204,401,405
401 IF ( IA(4)-IA(6) ) 404,402,404
402 IF ( IA(3)-IA(7) ) 200,403,200

3*4 OUTPUT

403 PUNCH 101, ( IA(J) ,U=1,7) ,IPIV, I6EE
60 TO 200 .„..._ „._..._„._..:

404 IPIV=6
_405. IF .( IA.(.5 )-IA(7! ) 200,403,200

END

47
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PROGRAM 3 — MAG over an Extended Sequence.

(T) Read Control — number of lithologies in extended
sequence (here 278) = NLITH.

(£) Read Data from cards 1 to NLITH
integer representing classification of lithology
in question,

b. identification number.

(3) Read one at a time from the population of ideal generators
(reduced output from PROGRAM 2) and extend the given
digits through a sequence of M(k), k = 1 to 500.

(4) Consider seven-unit subsequences consisting of the
integers in (2a) for cards 1 through 7, cards 2 through
8, .... , cards i through i+6, etc.

(5) Find starting points which may yield different subsequence
G-values.

\6J By comparison with the M(k), calculate the G-value for
each of the subsequences of (4) and according to the
setting of SENSE SWITCH 1

a. punch and accumulate subsequence G-values or

b. accumulate only.

c. Calculate average G when subsequences are exhausted.

(7) Repeat step (6) for initial starting positions of (5).
Minimize the distinct averages so obtained; minimum is
MAG.

(s) Punch ideal being considered (first seven digits) and
the MAG value.

(9} Repeat from (3) until population of ideals is exhausted.

Important symbols .

NLITH = sample size; number of lithologies in extended
sequence, maximum 450.

IA(J) = classification of lithologies present, J = 1, NLITH.

ITHEM(K) = integers in ideal considered.

NPIV = pivotal position of ideal considered.

LOGIC = indicator of transgression or regression used in
extending ideal.
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PROGRAM 3 — MAG over an Extended Sequence.

Important symbols . (cont)

MST(J) = starting points, J - 1,4.

NREP = number of subsequences, NLITH-6.

IC = an accumulator showing which starting point is being

used; also occurs as subscript in MST(IC), IGEE(iC), etc.

IGEE(K) = G-vaiues per subsequence and starting point.

GEE(K) = equivalent values in floating point.

SUMG(K) - GEE(K) summed over subsequences.

AVGEE(K) = average G over subsequences per starting point.

AVMIN = minimum of AVGEE(K) = MAG.
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CYCLOTHEM PROBLEM
PROGRAM 3 — MAG OVER AN EXTENDED SEQUENCE

DIMENSION IA(450) » ID(450) »M(500) >ITHEM(7) »MST (4 ) » I GEE { 4)
DIMENSION GEE(4) ,SUMG(4) ,AVGEE(4}

100 FORMAT (7(13) »5X, 13)
101 FORMAT ( I5,60X, 15)

_ 102 FORMAT (13)
10 FORMAT (2( 14) , 3X , I 3 * 10X ,7 ( 13) ,5X,I3)
104 FORMAT (7(13) »F14.8)

(T) READ CONTROL

.-.198. READ 1.02 »..NLITH.. ..

9

READ DATA

_ .
...DO 199 J = 1,NLITH

199 READ 101, IA(J) ,ID(J)

(s) READ ONE IDEAL GENERATOR

200 READ 100, ( I THEM ( J ) , J = l , 7) »NPI

V

INITIALIZE

DO 203 1=1,4
.203 SUMG( I )=0.

LOGIC=l
1 = 2

J=0
MM) = I7KEM(.l.)
Mi 500)=0

(i) EXTEND IDEAL INTO THE M(K) POSITIONS

201 K=I-J
M ( I ).= I THEM ( K ).

"

_ _
IF (M(50C) ) 202,202*300

202 GO TO (1,2), LOGIC
1 IF (NPIV-K) 203', 204,203
2 IF (NPIV-K) 204,203*204

203 L0GIC=1
- IF (K-i) 206,205*206

205 J=J+2
206 1=1+1

GO TO 201
204 L0GIC=2

IF (K-l) 205,207,205
207-LOGIC=

GO TO 206
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300 IF (SENSE SWITCH 2

)

700 ,701
700

c
PAUSE

c

c
© FIND STARTING ?0 INTS , MST ( I ) 1=1,4

.701 IF (NPIV-5) 311,301 ,311 .

301 IF ( I A ( 1 )
-ITHEM(l) ) 302 5 305i.302

302 IF [ IA(1 )••ITHENH2 ) ) 303 ,306).303
303 IF ( IAU)--ITHEMO) ) 304 ,307: 304
304 IF ( IA(1 )--ITHEM(4) ) 309 ,308,.309
305 MST(1)=1

GO TO 497
306 MSTd )=2

MS.T.(2 )=8
GO TO 498

307 MSTd) =3
MST(2 )=7
GO TO 498

303 MST( 1 ) =4
MST(2)=6
GO TO 493

-
.

.309 MST(1)=5
GO TO 497

------ •

311 ....I F ( I A ( 1 )
-•I THEM (1 ) ) 312 .315, 312

312 IF ( I A f I )-•ITHEM(2) ) 3 13 i > 316

,

313
313 IF ( I A ( 1 )-

IF ( IA(1 >-

•ITHEM(3) )

ITHEM(4) )

.
314.
319,

> 3 1.7

,

>318,
314

314 319
.. .315 NP61=1

MST(1)=1
GO TO 320

316 NP61=2
MST(1)=2
GO TO 320

317 NP61=3
MSTd )=3
GO TO 320

318 NP61=4
MST(1)=4 ...

GO TO 320
319 IF ( IA(1 )- I THEM (5 ) ) 346, 345, 346
320 NIAS=0

DO 322 K=l ,6
IF ( I A ( 1 )

-

ITHEM(K) ) 322, 321, 322
321 NI.AS=NIAS+1

CONTINUE
«<

322
IF (NIAS-2) 330,331*-330 •

330 GO TO (497 ,342,343,344!

,

NP61
... 331 GO TO (351 ,354,356,2157) , NP.61

342 MSTd) =10
GO TO 498 v

343 MSTd) =9
""

GO TO 498

•

s
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344

345

346

351
3 52

353
354
355
356
357

360

361

362

363

364

-365

366

367

MST(2) =3
GO TO 498
MS T ( I ) = 5

MST(2)=7
GO TO 498
MSTd )=6
GO TO 497
IF .( IA(1)

( I A ( 1 )

( I A ( 1

)

( I A (

1

{ IA( 1

( I A ( 1

= 6

l r

1 F

. F

IF

TriEM
) -I THEM
J-ITHEM
>-ITHEM
J-ITHEM
)-IT

(3)
(4)

(5)
(4)
(5)

(5)

52,
53 »

63,
55,
66 >

68.

360?
361,
362 ,

364,
365,
367,

352
353
363
35 5

366
36 8

368

497
498
499

.800.

MST(2
MST(3
GO TO
MSTI2
MST (

3

GO TO
MST (2

MST (3

GO TO
MST (2

MST (3

GO TO
MST (2
GO TO
MST (2

MST (3

MST (4

GO TO
MST (2
MST (3

MST (4

GO TO
MST (2

MST (3
GO TO
MST (2

MST (3

MST (4

GO TO
MST (2

.MST (3

GO TO
MST (2

MST (3

MST(4

499
= 3

= 9

499
= 4

499
= 5

499

498

= 8

50
= 5 —
= 7
= 10
500

= 10
499
= 5

= 7

= 9

500
= 6
= 9

499
=

=

=

IF (SENSE SWTICH 2) 800,500
PAUSE :

500

© CALCULATE G PER SUBSEQUENCE

NREP=NLlTH-6
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T C • 1

IF (SENSE SWITCH 2) 900,501
900 PAUSE
501 M1ST=MST(IC)-1

DO 599 I=1»NREP
:GEE(IC;=0 ...
J =

- 502 . K=M1ST+J+I
IF (M(K)-IA(I)) 503,504,503

503 J=J+1
GO TO 502

504 LMIN=I+1
LMAX=I+6

DO 598 L=LMIN»LMAX
. 506 LUP=N+L

IF ( IA(L)-M(LUP)'). 505,59 8,50 5

505 N = N + 1

IGE£( IC) =IGEE( IO + 1

. GO TO 506
598 CONTINUE

@ PUNCH SUBSEQUENCE G IF DESIRED

IF (SENSE SWITCH 1) 600,601
..600.. PUNCH 103, ID( I )

,

ID(LMAX) , IGEE( IC) , ( I THEM ( JA ) »JA = 1 ,7) , IC

(Q CONVERT TO FLOATING POINT AND ACCUMULATE

,_601..GEE( IC)=IGEE( IC)

SUMG( IC)=SUMG( IC)+GEE( IC)

.3.99 CONTINUE
REP=NREP
AVGEE{ IC)=SUMG( IC) /REP

Q) CHEC.< FOR REMAINING. STARTING POSITIONS AND REPEAT IF NECESSARY

602 IF (IC-4) 603*604,603 .

603 IC=IC+1
IF (MST( IC) ) 501,6 05,501

605 AVGEE( IC)=999.
GO TO 602

(?) MINIMIZE 0VER..JHE STARTING POINTS .

'.

604 AVMIN=AVGEE(1 )

DO 607 1=2,4
.IF (AVMIN-AVGEE( I ) ).. 607,607,608

603 AVMIN=AVGEE( I

)

_607 CONTINUE. ..'....

(?) OUTPUT
PUNCH 104, ( ITHEM(K) ,K=1,7) ,AVMIN

.
GO TO 200 - -

END
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PROGRAM 4 AIvIG over a Sample of Actual Sequences.

(1) Read Control — number of sequences in sample (here 235)^ = NSEQ.

(2) Read Data from cards 1 to NSEQ.

a. identification number

b. seven digits representing classification of the

distinct lithologies in the sequence.

(3) Read one at a time from the population of ideal generators

and extend the given digits through a sequence M(k),

k = 1 to 100.

(4) Depending on the lithology repeated in the ideal and

the first lithology of the sample sequence, locate

the starting points (among the M(k)) which may yield

different values of G per sample sequence.

(H) Calculate G for each of the NSEQ sample sequences,

minimize over starting points, and accumulate.

(?) Divide the accumulation of (5) by NSEQ to obtain AMG.

(7) Punch digits of ideal considered, AMG.

(i) Repeat from (3) until population of ideals is exhausted.

Important symbols .

NSEQ = sample size; number of seven-unit sequences used,

maximum 300.
ISEQ(I,J) = classification (J) of the lithologies in each

sample sequence (I = I, NSEQ).

ITHEM(K), M(K), NPIV, all as in PR0GRAM 3.
LOGIC, MST(K), IC

SUMG, AVG = as in PROGRAM 3 but no longer subscripted since
minimization is prior to accumulation.
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C CYCLOTHEM PROBLEM
C PROGRAM 4 — AMG OVER A SAMPLE OF ACTUAL SEQUENCES
C

DIMENSION ISEG(300,7)

»

IT-EX (7) »M( iOOJ >MSTU) >IGEE(4) » ISCODOOO

)

100 FORMAT (13)
Dl F ( I3,5X,7( 13) )

102 FORMAT ( 7 ( 13 ) » 5X * I 3

)

103 FORMAT ( 13 » 10X* 13 * 10X »7 ( 13 )

)

104 FORMAT (4HF0R 7 ( I 3 ) » 3X , 2 1HAVERAGE MINIMUM G IS F12.8)

C © READ CONTROL
C

198 READ 100, NSEQ

C © READ DATA
C

DO 199 1=1, NSEQ
199 READ 101, ISCODf I ) »( ISEQ( I »J

J

»J=1»7)

C (T) READ ONE IDEAL GENERATOR

200 READ 102, ( I THEM ( K ) »K=1 » 7 ) ,NPI V

C

C . INITIALIZE
C

M ( 1 )=ITHEM(1

)

M{ 100 )=0

LOGIC=l
1 = 2

J =

ISUMG=0
C
C @ EXTEND IDEal INTO THE M(K) POSITIONS
C

201 K=I-J
M(

I

)=ITHEM(K)
IF (M(100) ) 202,202*300

202 GO TO (1,2) »LOGIC . — ' L_ -

1 IF (NPIV-K) 203,204,203
2—IF (NPIV-K) 204,203*204

203 LOGIC=l
IF (K-l) 206,205*206

205 J=J-r2

GO TO 201
204 LOGIC=2

IF (K-l) ^^5, 207, 205
207 LOGIC=l

GO TO 206
300. .DO. 599- IA=1»NSEQ_ . I. 1

! —
IF (SENSE SWITCH 2) 700,701

700 PAUSE .. .____._

C

C . (4) FIND STARTING POINTS, MST ( I ) 1=1,4
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701 IF. (NPIV-5)
301 IF (ISEQdA,
302 IF (ISEQdA,
303 IF (ISEQ(IA»
304 IF (ISEQdA.
305 MST( 1)=1

GO TO 497
306 MST(1)=2

MST(2)=8
60 TO 498

307 MST( 1 ) =3
MST(2)=7
GO TO 498 __

30S MST(1)=4
MST(2)=6
GO TO 493

3C9 MST(1)=5
GO TO 497

.311 IF... ( ISEQdA*
512 IF (ISEQdA,
312 IF (ISEQdA*
314 IF (ISEQdA,
315 NP61=1

MST(1)=1
-, GO TO 32C

316
'-NP61 = 2

MST(1)=2
GO TO 320

317 NP61=3
MST(1 )=3
GO TO 320

318 NP61=4
MST(1)=4
GO TO 320

319 IF (ISEQdA,
320 NIAS=0

. DO 322 K=l ,6
IF (ISEQdA,

321 NIAS=NIAS+1
322 CONTINUE

IF (NIAS-2)
330 GO TO (497,3
,331 GO TO (351,3
342 MST(2)=10

GO TO 498
343 MST(2)=9

GO TO 498
344 MST(2)=8

. GO. TO 498
345 MST(1)=5

MST(2)=7
GO TO 498

346 MST(1)=6
GO TO 497

311 ,301,311
1 )-ITHEM(l ) )

1 )- 1 THEM (2 ) )

1 )-ITHEM(3 )

)

1 )-ITHEM(4) )

302,305*302
303 ,306 ,303
304,307,304
309,308,309

1)-ITHEM(
1 )-ITHEM(2 )

)

1)-ITHEM(3J

)

1 )-ITHEM(4) )

312 ,3.15*312
313*316*313
314,317,314.
319,318,319

1)-ITHEM(5)) 346,345,346

l-ITHEM(K) ) 322,321,322

330,331,330
42,343 ,344) ,

54,356,357)

,

NP61
NP61.
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C
c

c

351 IF ( ISE0(IA»1 )-ITHEM(3)

)

352 IF ( ISEQ(IA>1)-ITHEM(4.) )

353 IF (ISEO( IA»1 )-ITHEM{5 )

)

354 IF ( ISEGH IA»1 )-ITHEM(4)

)

35 5 IF ( ISEQ( IA»1 )- 1 THEM (5 ) ]

356 ( ISE0( IA.l )-ITHEM(5 ) )

357 MST(2)=6
MSfT(3)=8
GO TO 499

360 MST(2)=3
MST(3)=9
GO TO 499

361 MST(2)=4
MST.(3.L=8
GO TO 499
MST(2)=5
MST(3)=7
GO TO 499
MST(2)=6
GO TO 49 8

MST(2)=4
MST(3)=8 .

352 ,360,3
3 53,361,3
363*362,3
3 5 5,364,3
366,365 ,

3

368,367,3

52
53
63
55
66
63

362

363

364

360

365

366

-3.67-

GO TO 500
MST(2)=5
MSTi'3)=7
MST(4)=10
GO TO 500
VST (2) =6
MST(3)=10
GO TO 499
MST(2)=5 -

MST(3)=7
MST(4)=9 -

GO TO 500
368 MST(2)=6

MST(3)=9-
-GO TO 499.
MST(2)=0
MST(3)=0
MST(4)=0
IF (SENSE
PAUSE

497
498
499

800
SWITCH 2 ) 800,500

© CALCULATE G PER SAMPLE SEQUENCE AND OVER* STARTING • POINTS

500 DO 593 IC=1*4
IF (MST(IO) 501,598,501

501 IGEE(IC)=0
....N = MST( IC)-1 __
DO 597 L=2,7

506 LUP=N+L
IF { ISEQ( IA»L)-M(LUP) )

505 N.=N+1
IGEE( IC)=IGEE( IO+l
GO TO.506

505,597,505
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5 97 CONTINUE

IF H.C-11 601,600,601

(?) MINIMIZE OVER STARTING POINTS

600 IGM=IGEE(1)
GO TO 593

.601 .IF ( IGM-IGEE( IC.)J 598,598,602
602 IGM.IGEE(IC)
598 CONTINUE

© SUM MINIMUM G OVER THE SAMPLE SET

TSUMG=ISUMG+IGM . .

IF (SENSE SWITCH 1) 603,599

PUNCH MINIMUM G PER SAMPLE SEQUENCE IF DESIRED

603 PUNCH 103, I SCOD ( I A ) > I GM , ( I THEM ( J ) , J = 1 » 7

)

599 CONTINUE
SEQ=NSEQ
SUMG=ISUMG . -

(T AVERAGE

.. AVJ3=SUMG/SEQ

Q) OUTPUT

PUNCH 104, ( ITHEM(U) »J = 1 ,7) ,AVG.

GO TO 200
END.
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APPENDIX 3. An Alternative to MAG.

Let us first express MAG somewhat more generally as;

& _ />

n-L + l

where n = number of lithologies in
an extended sequence,

L = length of subsequence (7
for MAG),

g^ = increment of the total G
due to the transition from
a^ to a^+i

.

Then given the minimizing initial choice of transgression or

regression, G. = MAG, as used in the body of this paper.

The reasons for using this kind of measure in Program 3 were:

a) to make MAG magnitudes comparable to those obtained
for 7-unit sequences, and

b) to make the subsequence G's easily available from the
Program, as for the purposes of Figure 1 subsequence
G's were of interest in their own right.

It was only after this procedure had been adopted and applied

that a certain disadvantage became clear.

An alternative procedure for satisfying (a) above
n-

1

would have been: ^gj
GL = (i-/)-^—* n-j

i.e. the number of transitions in a subsequence of length L

times the average increment per transition in the extended

sequence.

Furthermore, G^ is the better measure in the sense that it

makes use of all the information in the extended sequence and

gives equal weight to each g.^.
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On the contrary, GL is "biased" in the sense that g-^ and gn-1

are used only once, g£ and gn_2 a^e used only twice, . . . ,

SL-2 und gn-L+2 are used only L_2 times. All the remaining

g. (if any) are used L-l times, and GT
would be the same as

X Li

G if it were not for this "bias" with reference to the first

and last L-2 terms.

This observation leads logically to the question of how

one might convert from Gr to Gy. A little reflection reveals

that

E(JlX) + f>-;-0& + £'(L-n+i-i)fi = (L-l)£& (A)

which holds for certain conditions on n,L.

To illustrate take an arbitrary sequence with n=15 and

L=7 and find the g. with reference to the Moore ideal.

ai

first term
in (A)

correction
terms

2 o 1(0) +5(0)
5 2 2(2) +4(2)
3 1 3(1) +3(1)
2 4(0) +2(0)
1 5(0) +1(0)
2 6(0)
5 2 6(2)

1 6(1)
4 <-, 6(4)
3 2 5(2) +1(2)
£ 4 4(4) +2(4)
3 2 3(2) +3(2)
2 2(0) +4(0)
5 4 1(4) +5(4)

sums 22 85

Whence by (A) 85 + 11 + 36 = 6(22) = 132.

11 36
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In the example, the middle g. for which no correction is

necessary are 0,2,1,4 (for i = 6,7,8,9). In general, the

number of such g. is: (n-1) - 2(L-2). It is easy to see from

the example that (A) will hold whenever the two groups ox

correction terms do not "overlap", i.e. wl

(n-1) - 2(L-2) $s

n > 2L - 3

For L=7, the particular case of interest in this paper,

n ]> 11 is sufficient to guarantee that (A) holds. In the

section concerning the idealized composite sequence, the value

of n is 273.

Expressing (A) in terms of TL and GT we have:

L-Z n-i

(h-l-u) gl + YKL" 1 "') §i + Y2(L-n +*-')& = (*-0Gl
(b)

'

and for the case of interest where L=7

:

(n-/)Gr - (n-C)Gr = J3C6-^+^(i-n^}& < c>-

Let the right-hand side of (C) be called k(I), a positive

integer depending on the particular ideal in question and

on the first six and last six a. of the extended sequence. Then

(n-l)G
?

- (n-6)G
?

= k(I).

For any practical problems it should be possible to show that

some k
x
< k(I) < kg. (D)

Even for the purposes of this paper, however, the procedure

is laborious. It involves enumeration of all distinct con-

figurations of ideal hemicycies and comparison of these
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with the leading and trailing six a
i

of the extended sequence

used. Details are omitted, but it can be shown that for the

idealized composite sequence described in the body of this

paper 10 < k(I) < 134. In the same part of the study,

as previously mentioned, n - 278. Finally, the results showed

that 7.897 < G? (-MAG) < 20.717. So that

k < nG
?

- G
?

- nG~
7

+ 6G7 < k

k
2

- 5G
?
< n(G7 - G~7 ) - (G7 - G~

7 ) < i<
2

- 5G"
7

k
l " 5G7
n - 1

< G7 " G7
k2 - 5 G

?

n - i

10 - 5(20.717) < Q - Q < 134 - 5(7.897)
277 277

-.34 < G
?

- G
?
< +.33

(D)

provides bounds for the difference between the two measures.

A few calculations were carried out using (C) and

values of MAG actually obtained from PROGRAM 3. In most

cases, the difference j G„ - (L, is much less than the absolute

extremes. of (D) . Values appear to be concentrated around

.02. The largest actually calculated value was approximately

.17. For sample sizes above 200, then, the difference between

the alternative measures of average G over an extended

sequence is essentially neglible. For smaller sample, G„

might be preferable.
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Rock sequences can be translated into numerical sequences

by associating with each recognized lithology an integer

(1 to 5) according to a fixed classification scheme. Finite

numerical sequences, corresponding to actual measured sections,

can then be compared to infinite numerical sequences, corres-

ponding to ideal cyclothemic repetitions. If an actual sequence

is considered to be a fragmentary ideal, with some lithologies

missing owing either to non-deposition or subsequent removal,

the deviation of the actual from the ideal can be measured

by a discordance index defined as the minimum value of the

number of missing lithologies. The ideal sequence which best

explains the overall characteristics of a sample of finite

sequences is the ideal for which the average value of the

discordance index is least.

In this manner, the "best" ideal cyclothem for an area

and stratigraphic interval of interest can be determined

from arithmetic operations on a sample of actual rock sequences

derived from measured sections within the area and interval.

The method is developed, and application is made to measured

sections from the Missourian-Wolfcampian interval of northeast

Kansas.

Of particular interest is the ideal sequence which

corresponds to the ideal cyclothem proposed by Moore for this

region. Results seem to indicate that the best ideal cyclothem

for the area-interval considered would be quite similar to

that proposed by Moore. However, the classification used was



clearly inadequate. Deficiencies of the classification are

discussed briefly.

A short sermon is preached, in which present conclusions

are dismissed while the general methods and approach of this

study are highly recommended.


