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Abstract 

Adjuvant systemic chemotherapy for the treatment of certain cancers, particularly breast and 

lymphoma, adversely impacts cardiovascular health. However, the extent to which it impairs 

endothelial function is not well understood. Therefore, the purpose of this study was to determine 

if microvascular and macrovascular endothelial-dependent vasoreactivity is attenuated in breast 

cancer and lymphoma patients currently being treated with chemotherapy compared to healthy 

counterparts. With laser Doppler imaging, cutaneous microvascular function was evaluated via 

changes in cutaneous vascular conductance (CVC) in response to iontophoresis of acetylcholine 

(ACh). Endothelium-dependent flow-mediated dilation (FMD) was evaluated in the brachial 

artery via ultrasonography. CVC responses to iontophoresis of ACh in the cutaneous 

microcirculation was significantly lower in cancer patients than in control subjects (cancer (n=7): 

959.9 ± 187.3%; control (n=7): 1556.8 ± 222.2%; P = 0.03). Furthermore, FMD was 

significantly lower in cancer patients than in control subjects (cancer: 2.2 ± 0.6%; control: 6.6 ± 

1.4%; P = 0.006). These data provide evidence of microvascular and macrovascular dysfunction 

in breast cancer and lymphoma patients currently undergoing adjuvant chemotherapy, which 

may contribute to the increased long-term risk of cardiovascular disease morbidity and mortality 

in those treated for cancer. 
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Chapter 1 - Introduction 

Adjuvant systemic chemotherapy is used for the treatment of many cancers, including breast and 

lymphoma, and is associated with acute and late-occurring cardiovascular complications (2). 

While effective in the treatment of cancer, anticancer chemotherapy increases the risk of 

developing multiple cardiovascular risk factors such as left ventricular dysfunction, 

hypertension, coronary artery calcification, ischemia, venous thromboembolism, QT 

prolongation, and bradycardia (50, 52). Furthermore, many cancer patients and survivors have an 

increased atherogenic profile compared to healthy control participants (5, 10, 50).  Taken 

together, cancer patients receiving adjuvant systemic chemotherapy may be at an increased risk 

to develop both subclinical cardiovascular injury as well as overt cardiovascular disease (37, 50).  

 

The development of chemotherapy-induced cardiotoxicity is predominantly characterized by 

progressive left ventricular dysfunction (52). However, other clinical manifestations, such as the 

development of endothelial vascular toxicity, may also occur (23, 45). In animal models, 

Doxorubicin chemotherapy has been shown to significantly impair endothelium-dependent 

vasodilation to acetylcholine (ACh) (11, 17). Similarly, conduit artery endothelium-dependent 

flow mediated dilation (FMD) is significantly decreased in adult cancer patients receiving cancer 

treatment with Doxorubicin (11) and Paclitaxel (47). While these initial studies provide some of 

the first evidence of endothelial dysfunction in cancer patients, there is still much that is not 

known about the progression and pathology of chemotherapy-induced endothelial dysfunction 

(34). This is concerning given that therapeutic interventions guided by evaluation of endothelial 

vascular function can provide a valuable method of detection, and therefore treatment, of those at 

risk for the development of overt cardiovascular disease (51). 
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To date the cutaneous microcirculation has been used to better understand the pathophysiological 

role of vascular dysfunction in heart failure, atherosclerosis, coronary artery diseases, peripheral 

vascular diseases, and type II diabetes (7, 14, 22, 39, 48, 49). Decreases in microvascular 

function occur early on in the progression of numerous cardiovascular and metabolic diseases 

(15, 36); therefore, evaluation of microvascular function in cancer patients may provide valuable 

insight into the pathological consequences of anticancer chemotherapy. When used in 

conjunction with iontophoresis of ACh, measurement of cutaneous microvascular red blood cell 

flux, via laser Doppler flowmetry, allows for non-invasive evaluation of endothelium-dependent 

microvascular reactivity. Therefore, the purpose of the present study was to determine whether 

breast cancer and lymphoma patients currently undergoing adjuvant systemic chemotherapy 

exhibit a reduced microvascular and macrovascular endothelium-dependent vascular function 

compared to healthy counterparts. Using laser Doppler flowmetry in response to ACh 

iontophoresis, we hypothesized that cutaneous microvascular function would be lower in 

chemotherapy-treated cancer patients than control subjects. In addition, using endothelium-

dependent flow-mediated dilation of the brachial artery we hypothesized that macrovascular 

endothelial function would also be decreased in chemotherapy treated cancer patients, compared 

to control subjects.  
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Chapter 2 - Methods 

 Participants 

The present study utilized a case-control cross-sectional study design (ClinicalTrials.gov 

ID:NCT03062878). Patients diagnosed with breast cancer (stage I-III n=3, stage IV n=2) or non-

Hodgkin’s lymphoma (stage I-III n=1, stage IV n=1) were recruited from Manhattan, Kansas and 

the surrounding communities. All patients were currently being treated with chemotherapy 

therapy at the time of testing (Table 2). Cancer diagnosis and chemotherapy regimen was 

confirmed by each patient’s current oncologist. As all patients had already received anticancer 

treatment, healthy participants were recruited for comparison purposes. In a 1:1 ratio, cancer 

patients were matched with a healthy control based on sex, age, and body mass index (BMI). 

Upon enrollment in the study, health history and physical activity history questionnaires were 

completed. Both patients and controls were excluded from the study if they had known 

cardiovascular disease or two or more comorbidities (i.e. uncontrolled hypertension, diabetes, 

dyslipidemia, current tobacco use). Four participants (patients n=3, controls n=1) were currently 

taking hypertension medication (Angiotensin Converting Enzyme (ACE) inhibitors, Angiotensin 

II receptor blockers, Beta blockers, or diuretics). All procedures were approved by the 

Institutional Review Board of Kansas State University and conformed to the standards set by the 

Declaration of Helsinki. Written informed consent was obtained from all participants.  

 

 Experimental Procedures 
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Testing was conducted in a temperature-controlled room (21–23°C) after a > 4 hour fast.  All 

experiments were performed while the participant remained in the supine position. Following a 

10-min acclimation period, each participant was instrumented for continuous beat-by-beat blood 

pressure (systolic, diastolic, and mean) measurements via photoplethysmography (Finometer 

Pro, Finapres Medical Systems, Amsterdam, The Netherlands). Heart rate was monitored via 

three-lead ECG (S/5 Light Monitor). All blood pressure measurements were performed at heart 

level on the right side, unless contraindicated by lymph node dissection, in which case the left 

side was used, (n=2). To avoid the potential of trapped metabolites affecting forearm blood flow, 

testing order was not randomized with cutaneous microvascular function always preceding 

brachial artery FMD.  

 

Cutaneous microvascular function. An iontophoresis drug delivery probe with an integrated laser 

Doppler probe and temperature regulator was placed on the left forearm 15 cm away from a 

conductive hydrogel drug dispersive electrode (PF 384, Perimed, Järfälla, Sweden). The 

integrated laser Doppler flowmeter (PeriFlux 5010 laser-Doppler perfusion monitor; Perimed, 

Jarfalla, Sweden) measured cutaneous red blood cell flux, which was used as an index of 

cutaneous blood flow. The temperature regulator maintained local skin temperature at 33°C 

around the perimeter of the probe. The drug delivery and drug dispersive probes formed a 

complete circuit in that they were both connected to a USB power supply (PF 751, Perimed, 

Järfälla, Sweden) that controlled the intensity, duration and interval of the current delivery. The 

drug delivery electrode contained 200 µL of a 2% ACh solution (Sigma-Aldrich, St. Louis, MO, 

USA) applied to the small sponge on the electrode. Following a 2-min baseline, a 100 µA anodal 

current was used to deliver the ACh in seven successive 20-s doses, with an interval of 60s. 
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Current delivery was managed and confirmed with the available software (PeriIont Software, 

Perimed, Järfälla, Sweden). Although current-induced vasodilation is a potential limitation of 

iontophoresis, previous work in clinical populations has implemented similar protocols (1, 38, 

49) with minimal current-induced vasodilation elicited.  Furthermore, this procedure follows 

recommended techniques (31), and pilot work from our lab confirmed that this procedure 

minimizes the current-induced vasodilation, thus demonstrating that the majority of dilation 

occurs via the actions of ACh.  

 

Data acquisition software (DI-720, DATAQ Instruments, Akron, OH, USA) was used to record 

continuous measurements of cutaneous blood flow, reported as arbitrary perfusion units (PU); 

MAP, in mmHg; and heart rate (HR), in beats per minute during baseline, ACh iontophoresis, 

and for a minimum of 5 minutes following the completion of the last ACh delivery. Data were 

sampled at 100 Hz. Baseline averages of cutaneous blood flow, MAP and HR were calculated 

over a 2-min rest period. Data from the cutaneous blood flow response to ACh were binned to 

10-s averages, from which the highest PU value was identified as the peak response. To 

normalize for MAP, cutaneous vascular conductance (CVC, PU/mmHg) was calculated as: 

(PU/MAP) x 100. The relative change in CVC from baseline to peak was calculated as: [(peak-

baseline CVC)/baseline CVC] x 100. To reflect the cumulative effect of ACh iontophoresis, area 

under the curve (AUC) for arbitrary perfusion units and cutaneous vascular conductance was 

calculated for each patient and control subject. 

 

Brachial artery FMD. In accordance to previously established guidelines (46), brachial artery 

endothelium-dependent FMD was performed on the left arm, unless contraindicated by lymph 
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node dissection, in which case it was performed on the right arm, (n=3). Instrumentation 

included a 6 cm tourniquet blood pressure cuff (Hokanson SC5, Bellevue, WA, USA) connected 

to an automated rapid cuff inflator (Hokanson E20, Bellevue, WA, USA), placed distal to the 

ultrasound transducer. A non-invasive 2D Doppler ultrasound equipped with a multi-frequency 

linear array transducer operating in duplex mode at a frequency of 10.0 MHz and 4.0 MHz, 

respectively (Logiq S8, GE Medical Systems, Milwaukee, WI, USA) was used to make 

simultaneous measurements of brachial artery diameter and blood velocity ~10 cm from the 

antecubital fossa (i.e. just proximal to the tourniquet cuff). The Doppler sample volume was set 

at the full width of the vessel, and the insonation angle was maintained at < 60°. Following a 1-

min baseline measurement, the tourniquet cuff was inflated to > 250 mmHg for 5 minutes. After 

the 5-min occlusion period, the tourniquet cuff was released (<1s), followed by a 2-min recovery 

period. Measurements of brachial artery diameter were made continuously during the 1-min 

baseline, the last 10 s of the occlusion period, and during the 2-min post-occlusion recovery 

period. A commercially available edge-detection and wall-tracking software package (Vascular 

Research Tools 6, Medical Imaging Applications, Coraville, Iowa, USA) was used to measure 

brachial artery diameters which were then averaged into 3-s bins. FMD was calculated, as both 

an absolute (mmΔ) and a relative (%Δ) value, as the peak post-occlusion diameter change from 

baseline.   

 

Statistical Analysis. Statistical analyses were performed using a commercially available software 

package (SigmaPlot/SigmaStat 12.5, Systat Software, Point Richmond, CA, USA). Pair 

differences between the patient and control groups were determined by independent samples t-
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tests. All data are presented as mean ± SE, unless stated otherwise. Statistical significance was 

declared when P < 0.05. 
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Chapter 3 - Results 

Demographic and clinical variables for chemotherapy patients and control subjects are presented 

in Table 1. There were no significant differences in age, height, weight, and BMI between 

chemotherapy patients and control subjects. Resting MAP was also not different between groups 

(P = 0.5). A description of cancer type and anticancer therapy parameters is presented in Table 2. 

Five (71.4%) patients were diagnosed with breast cancer. Two (28.6%) patients were diagnosed 

with Non-Hodgkin’s lymphoma. All seven patients were receiving chemotherapy at the time of 

testing, and only one had received radiation.  

 

Cutaneous microvascular function. Skin blood flow responses to ACh iontophoresis from 

representative subjects are illustrated in Figure 1. Values demonstrating cutaneous microvascular 

reactivity in response to ACh iontophoresis are presented in Table 3. In comparison to the 

control subjects, parameters of absolute cutaneous microvascular reactivity were significantly 

blunted in chemotherapy patients; peak perfusion units (PU) (Table 3; cancer: 73.3 ± 12.5 PU; 

control: 133.2 ± 29.2 PU; P = 0.04), peak cutaneous vascular conductance (CVC) (Table 3; 

cancer: 67.5 ± 11.4 PU/mmHg; control: 113.7 ± 22.8 PU/mmHg; P = 0.048). Similarly, relative 

changes in cutaneous microvascular reactivity were significantly reduced in chemotherapy 

patients; % change in PU (Table 3; cancer: 998.5 ± 192.9%; control: 1652.8 ± 215.2%; P = 

0.02), % change in CVC (Table 3; Figure 2A; cancer: 959.9 ± 187.3%; control: 1556.8 ± 

222.2%; P = 0.03). Additionally, as demonstrated by the area under the curve (AUC) values, the 

cumulative response to ACh iontophoresis was significantly lower in chemotherapy patients 

compared to the control group; AUC PU (Table 3; cancer: 34773.8 ± 7353.1 PU; control: 
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75925.0 ± 19190.3 PU; P = 0.03) and AUC CVC (Table 3; Figure 2B; cancer: 32915.4 ± 6901.0 

PU/mmHg; control: 69403.6 ± 17352.1 PU/mmHg; P = 0.04).  

 

Brachial artery FMD. Markers of endothelium-dependent brachial artery FMD are presented in 

Table 4. Resting brachial artery diameter (mm) prior to cuff inflation was not different between 

chemotherapy patients and control subjects (Table 4; cancer: 3.41 ± 0.24 mm; control: 3.21 ± 

0.27 mm; P = 0.3). Following 5 min of arterial occlusion, the FMD response was significantly 

lower in chemotherapy patients when expressed in both absolute (Table 4; Figure 3A; cancer: 

0.07 ± 0.02 Δ mm; control: 0.20 ± 0.03 Δ mm; P = 0.004) and relative terms (Table 4; Figure 3B; 

cancer: 2.18 ± 0.55 Δ %; control: 6.63 ± 1.41 Δ %; P = 0.006).  
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Table 1 - Subject Characteristics 

 

Values are means ± SD or n (%). BMI, body mass index; MAP, mean arterial pressure; HTN, 

hypertension.  

  

 

 Chemotherapy Patients (n = 7) Controls (n = 7) P Value 

Demographics        

Age (yr)  55   ± 13 54  ± 7 0.9 

Females (%) 6 (85.7%) 6 (85.7%)  

Clinical Parameters        

Height (cm) 164  ± 6 162  ± 8 0.6 

Weight (kg) 79.7  ± 28.7 71.1  ± 21.6 0.5 

BMI (kg/m2) 29.7  ± 11.5 26.9  ± 7.2 0.6 

Resting MAP 

(mmHg) 

106  ± 6 110 ± 14 0.5 

HTN 

medication (%) 

3 (42.9%) 1 (14.3%) 0.3 
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Table 2 - Description of cancer and anti-cancer therapy 

 

 Chemotherapy Patients 

(n = 7) 

Breast Cancer  5 (71.4%) 

Stage  

I-III 3 (60%) 

IV 2 (40%) 

Pathobiology  

IDC 4 (80%) 

DCIS 1 (20%) 

Hormonal Status  

ER +/- 4/1 (80%/20%) 

PR +/- 2/3 (40%/60%) 

HER2 +/- 3/2 (60%/40%) 

Non-Hodgkin’s Lymphoma  2 (28.6%) 

Stage  

I-III 1 (50.0%) 

IV 1 (50.0%) 

Pathobiology  

Follicular, Nodular 1 (50.0%) 

Nodal Marginal Zone B Cell 1 (50.0%) 

Chemotherapy  7 (100%) 

Alkylating Agent 4 (57.1%) 

Anthracycline 2 (28.6%) 

Antimicrotubule  2 (28.6%) 

Aromatase Inhibitor 2 (28.6%) 

Monoclonal Antibody 5 (71.4%) 

Radiation  1 (14.3%) 

Values are n (%). IDC, invasive ductal carcinoma; DCIS, ductal carcinoma in situ; ER, estrogen 

receptor; PR, progesterone receptor; HER2, human epidermal growth factor 2 receptor.  
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Table 3 - Cutaneous microvascular reactivity 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Values are means ± SE. ACh, acetylcholine; PU, perfusion units; CVC, cutaneous vascular 

conductance; AUC, area under the curve; PORH, post-occlusive reactive hyperemia; FMD, flow-

mediated dilation. *Statistically significant.   

  

 

 Chemotherapy 

Patients (n=7) 

Controls (n=7) P Value 

ACh        

Peak PU 73.3  ± 12.5 133.2  ± 29.2 0.04* 

Peak CVC 67.5  ± 11.4. 113.7  ± 22.8 0.048* 

% Change 

PU 

998.5  ± 192.9 1652.8  ± 215.2 0.02* 

% Change 

CVC  

959.9 ± 187.3 1556.8 ± 222.2 0.03* 

AUC PU 34773.8 ± 7353.1 75925.0 ± 19190.3 0.03* 

AUC CVC 32915.4 ± 6901.0 69403.6 ± 17352.1 0.04* 
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Table 4 - Flow-mediated dilation of the brachial artery 

 

Values are means ± SE. FMD, flow-mediated dilation. *Statistically significant.   

  

 

 Chemotherapy Patients 

(n=7) 

Controls (n=7) P Value 

FMD        

Baseline 

(mm) 

3.4 ± 0.2 3.2 ± 0.3 0.3 

FMD (Δ 

mm) 

0.1 ± 0.0 0.2 ± 0.0 0.004* 

FMD (Δ %) 2.2 ± 0.6 6.6 ± 1.4 0.006* 
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Figure 1 – Skin blood flow response, in arbitrary perfusion units (PU), to ACh iontophoresis in a 

representative chemotherapy patient (solid line) and their matched representative control subject 

(dashed line). Notice the overall pattern is very similar between the patient and the control; 

however, the magnitude is much greater in the control subject compared to the chemotherapy 

patient. 
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Figure 2 – (A) Relative increase in cutaneous vascular conductance (CVC) in response to ACh 

iontophoresis. CVC was significantly reduced in chemotherapy patients (filled bar), compared to 

controls (open bar) (P=0.03). (B) Cutaneous vascular conductance (CVC) area under the curve 

(AUC) in response to ACh iontophoresis. AUC, as an index of the overall response to ACh-

mediated vasodilation, was significantly reduced in chemotherapy patients (filled bar), compared 

to controls (open bar) (P=0.04). 
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Figure 3 – (A) Absolute increase in brachial artery diameter (mm) in response to arterial 

occlusion. Flow-mediated dilation (FMD) was significantly reduced in chemotherapy patients 

(filled bar), compared to controls (open bar) (P=0.004). (B) Relative increase in brachial artery 

diameter (% change from baseline) in response to arterial occlusion. Flow-mediated dilation 

(FMD) was significantly reduced in chemotherapy patients (filled bar), compared to controls 

(open bar) (P=0.006). 
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Chapter 4 - Discussion 

 

The major finding of this study is that microvascular and macrovascular endothelium-dependent 

vasoreactivity is attenuated in breast cancer and lymphoma patients currently being treated with 

chemotherapy compared to healthy counterparts. Specifically, significant decreases in ACh-

mediated cutaneous vasodilation were observed. Additionally, our experiments demonstrated 

that these cancer patients also exhibit a significantly decreased endothelium-dependent FMD of 

the brachial artery. Taken together our findings suggest that the chemotherapy has a negative 

impact on endothelial health, which may contribute to the increased long-term risk of 

cardiovascular disease morbidity and mortality in cancer survivors (50, 52). 

 

To the best of our knowledge, this is the first study investigating microvascular endothelial 

function in cancer patients currently being treated with chemotherapy, compared to healthy 

counterparts. We demonstrate that these patients treated with a combination of adjuvant systemic 

chemotherapies experience endothelial dysfunction at multiple locations. It is well established 

that impairments in endothelial signaling, leading to endothelial dysfunction, occur early in 

pathogenesis of cardiovascular disease (51). As such, vascular remodeling and decreases in 

endothelium-dependent vasodilation are clinically important, as they are likely the earliest 

pathological outcome associated with decreases in cardiovascular health (19, 51). Therefore, the 

decreased endothelial function within the intact circulation of cancer patients currently 

undergoing chemotherapy highlights that the chemotherapy-induced toxicity extends well 

beyond the myocardium and may be eliciting globalized systemic effects.  
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Cutaneous iontophoresis with ACh has previously been used to evaluate changes in 

microvascular function in a variety of clinical populations (33, 38, 49). The contribution of nitric 

oxide (NO) to ACh-mediated cutaneous vasodilation is well supported by several investigations 

(4, 16, 27, 32) but not all (24).  In addition to NOS-dependent pathways, COX-dependent 

pathways and EDHF-dependent pathways are also thought to play a role in ACh-mediated 

cutaneous vasodilation (16, 24, 27, 32). However, while the exact mechanism(s) of ACh-induced 

cutaneous vasodilation are not fully understood, it does provide valuable insight into the adverse 

cardiovascular effects that may be occurring in cancer patients undergoing adjuvant 

chemotherapy. Since each of the ACh-mediated vasodilator pathways are endothelium-

dependent, the findings suggest that cancer patients undergoing adjuvant chemotherapy 

experience some degree of endothelial dysfunction within the microcirculation.   

 

Consistent with previous investigations we observed a significant decrease in macrovascular 

endothelium-dependent FMD of the brachial artery in our group of cancer patients. Duquaine et 

al. (2003) demonstrated significant reductions in endothelium-dependent FMD of the brachial 

artery following a single Doxorubicin infusion (11). Similarly, Vassilakopoulou et al. (2010) 

found that endothelial function was significantly impaired in cancer patients following treatment 

with the taxane-based chemotherapy drug Paclitaxel, as evidenced by significantly reduced 

brachial artery endothelium-dependent FMD (47). Furthermore, patients treated with both 

Paclitaxel and an anthracycline demonstrated the most severe reductions in endothelial function, 

possibly due to a negative synergistic effect of the drugs (47). Endothelium-depended brachial 

artery FMD is largely NO dependent; suggesting that in our group of cancer patients treated with 

chemotherapy the observed decreases in FMD is due, in part, to decreases in NO bioavailability. 
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The potential mechanisms for the observed decreases in microvascular and macrovascular 

function in our cancer patients may be linked to the molecular actions of the prescribed 

chemotherapy. Of the chemotherapies in our experimental group, many are associated with 

factors known to affect endothelial function. For example, Cyclophosphamide is a cell-cycle 

non-specific alkylating agent that is commonly used to treat breast cancer and lymphoma (12, 

42). It has been associated with left ventricular dysfunction, with both total dose and prior 

anthracycline exposure being risk factors of occurrence (20, 35). Although the precise 

mechanism of Cyclophosphamide-induced cardiotoxicity is unknown, it is speculated that it 

directly injures the endothelium, resulting in the extravasation of toxic metabolites, eventually 

damaging cardiomyocytes (21). While the consequences of this cascade in the peripheral 

circulation are largely unknown, based on the present study, we cannot rule out that a similar 

mechanism attenuates ACh-mediated cutaneous vasodilation and/or endothelium-dependent 

brachial artery FMD. 

  

In addition to being a risk factor for cardiotoxicity in patients being treated with Paclitaxel, 

treatment with anthracyclines alone has been associated with cardiotoxicity (52). Anthracyclines, 

such as Doxorubicin and Epirubicin, are known to cause acute, subacute, and late cardiac 

damage (53), with the most widely accepted hypothesis pertaining to the generation of reactive 

oxygen species (ROS). Specifically, treatment with anthracyclines results in increased levels of 

ROS, which then leads to increases in apoptotic pathways, reduced myofilament synthesis, 

pathological myocardial hypertrophy, and altered cardiac metabolism (6). In addition to affecting 

cardiomyocytes, anthracyclines have also been implicated in the development of endothelial 
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dysfunction. Kotamraju et al. (2000) reported Doxorubicin induced bovine aortic endothelial cell 

apoptosis that was related to intracellular hydrogen peroxide formation (29). Furthermore, their 

findings demonstrated Doxorubicin-induced hydrogen peroxide generation and calcium release 

activated apoptosis (26). Taken together, it appears that anthracyclines cause endothelial 

dysfunction via generation of ROS (e.g. hydrogen peroxide), resulting in oxidative stress and 

apoptosis. Additionally, the endothelium itself, via eNOS uncoupling, may also be a contributing 

factor. Duquaine et al. (2003) demonstrated that endothelial denudation completely abolished 

ROS generation in rabbit aortic rings exposed to Doxorubicin, suggesting an endothelial source 

of free radical generation in the early stages of anthracycline exposure (11). The authors 

speculate this generation of ROS from eNOS is due to a change in its normal function, resulting 

in eNOS uncoupling. In health, eNOS is involved with NO production. However, when exposed 

to anthracyclines, it appears that eNOS begins to generate nicotinamide adenine dinucleotide 

phosphate-oxidase (NADPH), resulting in ROS generation.  

 

Perhaps in light of the well-characterized adverse effects on cardiac function, anthracyclines are 

no longer the most commonly used initial chemotherapy regimen (18). Indeed the use of other 

classes of chemotherapy, particularly taxane-based regimens (e.g., Paclitaxel and Docetaxel) 

appear to be implemented more frequently. Paclitaxel is a cell-cycle specific drug that inhibits 

cell division and replication, especially in rapidly dividing neoplastic cells (47), and is often used 

for treatment against solid tumors in patients with breast cancer (9). The effects of Paclitaxel on 

endothelial cells are still largely unknown; however, its function as an antimicrotubule agent may 

contribute to the observed endothelial dysfunction. Specifically, previous reports have 

highlighted the importance of the endothelial cytoskeleton in both maintaining structural 
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integrity, and regulating the production of endothelium-derived vasodilators (e.g. NO and 

prostaglandins) (8, 28). In addition to the adverse effects on the structural components of 

endothelial cells, Paclitaxel may also be eliciting inflammation. Cremophor EL, the formulation 

vehicle used for Paclitaxel, induces histamine release (40), which has been shown to disrupt 

vascular endothelial barrier function, resulting in inflammation (3). As such, it is possible that 

repeated and systemic exposure to Paclitaxel during treatment would be detrimental to the 

endothelium, both structurally and functionally.    

 

In addition to the negative synergistic effects observed when Paclitaxel and anthracyclines are 

used concomitantly, similar outcomes have been reported when anthracyclines are used in 

conjunction with Herceptin. Indeed, patients treated with both anthracyclines and Herceptin are 

at a much greater risk of developing symptomatic heart failure than those treated with Herceptin 

alone (43). Herceptin, a monoclonal antibody, blocks the human epidermal growth receptor-2 

(HER2) signaling pathway, which is overexpressed in HER2 + breast cancer patients (44), 

resulting in simultaneous ROS accumulation and decreased NO bioavailability, which have been 

proposed as mechanisms that impair endothelial function (41). Considering three (60%) of our 

breast cancer patients were HER2 +, these potential mechanisms should be further investigated. 

 

Several experimental considerations should be recognized when interpreting the findings of this 

study. First, the sample size was modest, but very similar to previous investigations evaluating 

endothelial function in human cancer patients (11, 13) and the effect was large enough that 

significant differences in the cancer patients were still observed.  Second, while documented, the 

type of treatment was not controlled for; however, we did obtain detailed treatment records from 
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each patient’s treating oncologist. While the diversity in treatment limits our ability to identify 

treatment-specific mechanisms of endothelial dysfunction, it does make the results more 

generalizable to the cancer patient community. Third, the population measured was 

predominantly female, and is therefore not representative of cancer patients as a whole. Lastly, 

the use of cutaneous microcirculation does pose limitations to the extrapolation of our findings to 

other vascular beds, and therefore warrants additional discussion. Despite the cutaneous 

circulation being proposed as a model of generalized microvascular function (25), it is well-

established that there are different mechanisms of regulation across vascular beds and along the 

arterial tree (30). Within the cutaneous circulation both vasoconstrictor and vasodilator pathways 

exist with multiple regulatory mechanisms (30). As such, extreme caution should be used when 

extrapolating the current findings in the cutaneous microcirculation to other vascular beds (e.g., 

coronary). Nevertheless, assessment of the cutaneous microcirculation does provide valuable 

insight into the changes in cardiovascular health that may be occurring during chemotherapy 

treatment. Decreases in cutaneous vasoreactivity are known to occur early on in the progression 

of atherosclerosis (48), and can be used to predict the risk of future cardiovascular events in 

patients with coronary artery disease (22). In the present study it was clear that the cutaneous 

microvascular response to ACh was abnormal in the cancer patients compared to healthy 

matched controls; thus, providing evidence that adjuvant systemic chemotherapy adversely 

affects vascular health.  

 

In conclusion, the present study demonstrates that endothelium-dependent vasoreactivity within 

microvascular and macrovascular beds is attenuated in breast cancer and lymphoma patients 

currently undergoing chemotherapy. To date, various chemotherapy regimens, especially 



23 

anthracyclines, have been studied and characterized based on central cardiotoxicities affecting 

the heart. However, the present study indicates that not only is the peripheral circulation, at both 

the macro- and microvascular levels of the arterial tree negatively affected by chemotherapy, but 

also that other classes of chemotherapies (e.g. alkylating agent, taxanes and monoclonal 

antibodies) may be playing a role in the observed endothelial dysfunction. Indeed, the 

endothelium within these circulations appears to be affected, as evidenced by significantly 

reduced ACh-mediated cutaneous vasodilation and brachial artery FMD in breast cancer and 

lymphoma patients, compared to matched controls. Taken together these findings suggest 

patients undergoing adjuvant systemic chemotherapy experience endothelial dysfunction, which 

may contribute to the increased long-term risk of cardiovascular disease morbidity and mortality 

seen in cancer survivors.  
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