
A MARKOVIAN RELIABILITY ANALYSIS
OF ELECTRONIC CIRCUITS

by

M. SUNUARARAMAN

B.S. , Ranchi University, India, 1962

(Electrical Engineering)

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1965

Approved by:



CO-
TABLE OF CONTENTS

INTRODUCTION 1

DEFINITIONS, ASSUMPTIONS AND
CHARACTERISTICS OF THE MODEL 3

THE STRUCTURE OF THE PROCESS OF THE COMPONENT
PARAMETER VARIATION 6

THE DERIVATION OF THE CIRCUIT PROCESS FROM
THE COiMPONENT PROCESSES 9

THE DERIVATION OF THE RELIABILITY EQUATION 14

ESTIMATION AND TESTING OF MARKOV CHAINS 17

A GENERALIZED MARKOVIAN RELIABILITY ANALYSIS OF
AN »r' ELEMENT ELECTRONIC CIRCUIT 26

APPLICATION OF THE MARKOVIAN RELIABILITY ANALYSIS
TO A SIMPLE TWO RESISTOR CIRCUIT 38

DISCUSSION 51

ACKNOWLEDGMENTS 52

REFERENCES 53

APPENDIX 54



INTRODUCTION

In recent years reliability has become everybody's business.

The development of reliability originated in the early part of the

year 1958, when the United States suffered a temporary setback in

her attempt to place an unmanned satellite into orbit, after Russia

launched her first space satellite, Sputnik I, in November, 1957. The

series of failures and subsequent dismay and loss in prestige were

very serious. Several billions of dollars and years of development

and research were reduced to nothing as a result of the unreliability

of the system.

Although it is possible mathematically to formulate a model to

partially explain the unreliability of a system, there are such factors

as human beings, communications, understanding and requirements which

cannot be readily quantified and included in the expression for re-

liability. These intangible factors should not, however, be ignored

altogether. The model we shall create will base its usefulness on

how well the assumptions coincide with reality and on the facility

with which the life test data can be used to evaluate the measures

of performance.

This report deals with the evaluation of circuit reliability from

the knowledge of experimental data on component parts. The model de-

veloped here will take into account the following modes of failure:

(1) Failure of the circuit by the simultaneous drift of the

component parameters from their nominal values.

(2) Failure of the circuit by the catastrophic failure of a

constituent part.



The need for the development of the model arose when the models

hitherto used failed to provide for two significant characteristics

of the circuit behavior. These are:

(1) A circuit considered operative at a time point 't
9

' may have

failed earlier at 't. ' and then drifted back into an opera-

tive region by the time 't
2 . ' The immediate past history of

each component part cannot be ignored.

(2) A finite state, continuous-time Markov process can explain

more accurately the circuit behavior than a finite state,

discrete-time Markov process, as circuit deterioration occurs

over a continuous scale of time.

The analysis presented here is both exhaustive and comprehensive.

The report has the following chronological break down:

(1) Definitions, assumptions, and characteristics of the model.

(2) The structure of the process that will be used to represent

the component behavior.

(3) The derivation of the circuit processes from the component

processes.

(4) The derivation of the reliability equation from the circuit

process synthesised from the component processes.

(5) Estimation, testing, and correlation of Markov chains.

(6) Application of the Markovian model to a simple two resistor

circuit.

(7) Discussion.



DEFINITIONS, ASSUMPTIONS, AND
CHARACTERISTICS OF THE MODEL

DEFINITIONS

COMPONENT STATE ; A component parameter may assume any value in its

range of values. This operable range may be further partitioned into

several disjoint intervals. The state of the component at a time point

•t 1 is then the set to which the value of the component parameter is

assigned.

CIRCUIT STATE ; Several components constitute a circuit. Once each

of the components have been partitioned into disjoint intervals, it

is possible to synthesise the circuit states of the components. A

circuit state at time 't' is thus a K-tuple of the component parameter

states at time ' t. '

INFINITESIMAL GENERATOR MATRIX ; A is a matrix called the infinitesimal

qenerator matrix when its elements \. . are so defined that \.. &t +

(^t), i 4= j f is the probability that a system in state 'i' at time

zero enters state ' i ' by time at with \. . = - L \. ..J J 11 ij

FINITE STATE , DISCRETE TIME , MARKOV PROCESS OF ORDER 'Z' ; If we denote

the state of the system at time 't' by a random variable, x(t), then

the distribution of x(t) is a finite state, discrete time, Markov pro-

cess of order 'Z' if, and only if,

(1) x(t) can assume finite values.

(2) P / x(t) = b
" / X(t-l) = h nf X(t-2) = b of X(0) = b \

r I t t-1 t-2 oj



= p
r | X(t) = b

t
/ X(t-l) = b

t-1
, X(t-2) = b

t _ 2
,..,X(t-Z) = b

t _ z}

where b = state of the component part at time 't.

'

For Z = 1,

P
r | X(t) = b

t
/ X(t-l) = btl ,

X(t-2) = b
t _ 2

,.. f
X(0) = b

Q }

= P / X(t) = b / X(t-l) = b + . \r\ t t-1 J

STATIONARY TCANSITION PRODABILITIE^ : The transition probabilities p. . (t)

are stationary if, and only if, p..(t) = p. .
, a constant, for all values

of 't. ' This implies that given that the system is in state 'i' at time

't', the probability that the system will occupy state 'j ' at some fu-

ture time is independent of 't. '

COMPONENT PART: A component part is an element of the circuit. Example:

Resistors Rl, R2, R3, R4, etc.



ASSUMPTIONS AND CHARACTERISTICS

COMPONENT PARAMETER VARIATION ; It will be assumed that the transition

of one parameter of the circuit is independent of the corresponding tran-

sitions of the other parameters, given that these transitions are ran-

dom with respect to time.

COMPONENT PARAMETER BEHAVIOR : It is assumed that the state of the

component parameter at some future time, given the state of the compon-

ent parameter at the present time, is independent of the present age

of the component, the previous states the component parameter has occupied

the time spent in each of the previous states, and the time spent in

the present state, but is entirely dependent only on the time difference.

The distribution of the component parameter variation can be represented

by a discrete state, continuous time, Markov process with stationary

transition probabilities.

FAILURE SPECIFICATION FOR CIRCUIT ; It will be assumed that there exists

a range for the output parameter of the circuit, for which the circuit is

considered reliable. Such a specification enables one to partition the

total number of circuit states into two disjoint sets, namely, the operative

and failure sets.

COMPONENT LIFE TEST DATA ; Assume that the range of values of the para-

meters is divided arbitrarily into a finite number of states. Of the

N statistically identical parts put on test, let N. . (t) be the number

st
of parameters observed in state 'i' at the (t-l) ' period and observed

t h

in state 'j ' at the t period. A large and extensive life test data at

various time points must be available in N..(t) for every component para-

meter.



THE STRUCTURE OF THE PROCESS OF THE
COMPONENT PARAMETER VARIATION

Let JSRl, , represent the state of the process of the variation

of the component parameter R, , after n transitions. Then JSRl, x,

JSRl, s,..., JSRl, . will represent the chronological succession of

states of the component parameter Rl after 0, 1, ... n transitions

respectively.

Let the range of Rl be partitioned into 'm 1 disjoint intervals

or states. Then JSRl, v is a random variable which can take on any
(n) J

of the 'm' values.

At time t=0, the probability of initially starting the process

from each of the 'm' possible states is given by

(i) ^
a

o
P
r {

JS81
(0) = ' } •

i = 1 , 2, . . ,m

where £ a <£ 1, and subject to the condition,

2 a =1.
o

l

Let p.. represent the stationary probability of transition, from

state 'i' after (n-1) transitions to state 'j ' after n transitions.

p. . L P { JSRl, x = J/JSRl, '

x = i },r
ij - r I (n) (n-1) J

i ij - It 2,— ,m.

where p. . > 0, and subject to the condition,

m

2 P. . = 1

i .j = i
1J



THE DISTRIBUTION OF THE TIME SPENT

IN A PARTICULAR STATE

The time spent in a state is a random variable T
fi

given by,

H. (t) = P ( T £ t / JSR1, n = i }",

i r L n -^ ln-1; J

where H. (t) is the probability of leaving state »i" at or before time

t.».

(4)
For any given state, it can be proved that the probability

that the process is in that state at any time is distributed expo-

nentially.

f (t) \. -e
"X

i-t

0,0



If f(t) is the probability of occupying state 'i' at time 't,

'

with ameantime of (\.) , then

f(t) = \. "V*' t > 0.
i «e

= otherwise,

H<t>-jJf(t>.dt«£x
1
.,-V t .i-.-Y*

If Q. . (t) is the probability of occurence of the joint events,

leaving state 'j ' at or before time 't 1 and entering state 'j ' after the

first transition, then,

Q. . (t) = P ( T <t, JSR1, s = j/JSRl, n si\
ij r I n - (n) J (n-1) J

= P. . (l-e'V 1
)

ij

The above equation completely identifies the Markov process for

the component parameter. The given equation had been arrived at by

making two important assumptions. These are :

(1) The distributions of the states and the time spent in each state

are independent.

(2) The density function of the time spent in any state in expo-

nentially distributed.



THE DERIVATION OF THE CIRCUIT PROCESS
FROM THE COMPONENT PROCESSES

Let (JSCT) be the state occupied by the circuit after 'n'

transi tions.

If the circuit consists of 'k' component parameters, then the

state of the circuit is the 'k' tuple of the states of the component

parameters.

Corresponding to (JSCT)n, let the component parameters Rl, R2,.
f

Rk, occupy states (JSRl) , (JSR2) ,...,(JSRk) after n, , n ,.. t and
n
l

n
2 k

L <L

n, transitions respectively.

Then, (JSCT) =f \ (JSRl) , (JSR2) ,.., (JSRk) 1
n L n

i
n
2 V

For simplicity consider a system composed of three parameters

Rl, R2, and R3.

At time t = 0;

(JSCT) = i

(JSR1)
Q
= u

(JSR2)
Q
= v

(JSR3) = w

Let the circuit state change from state 'i' to state 'j ' on the

next transition, after a time period t = t. It will be assumed that this

change in circuit state is brought about by a change in state of the com-

ponent parameter Rl only.

At time t = t;

(JSCT), =
j

1
J

(JSRl), = q
1



(JSR2) = v

(JSR3) = w

The chart shown below schematically illustrates the component

transition relative to the circuit transition.

q
Rl ...

R2 ...

*5»-

t=0

v

t=t

... m states

t=0 t=t

w
R3 ... *? *?

t=0 t=t

i

J ... m9 states
i

*-

i

i

... m„ states

CIRCUIT

OUTPUT

PARAMETER

t=0 t=t
... m. x nip x m„ states

Each of the component parameters Rl, R2, and R3 are arbitrarily

partitioned into m , m., , and nu states respectively. The actual values

of each of the parameters before transition (t=0) and after transition

(t=t) are represented in the chart.

The notation «-»- indicates that the transitions can occur in the

either direction.

In order that (JSRl) = u changes to (JSRl) = q, it is obvious

that,

1. Time spent by Rl in state 'u' (T ,

R
, ) < time spent by R2 in

state 'v » (T /RO ))

2. Time spent by Rl in state 'u' (T ,
R
J < time spent by R3 in

state 'w' (Twfto)).

3. Time spent by Rl in state *u' (T ,„ J < time spent by the cir-

cuit in 'i ' (T, , v ).
1 (c)

10



0.. (t) = Pr { T
l(c)

< t, (JSCDj = j / (JSCT) = i }

= Pr{T
l(Rl)

<t, T
1(R1)

<T
1(R2)

,^T
1(R3) , (JSRl^ = q/

(JSRl),. = u, (JSR2) r = v, (JSR3) r = w X
J

Consider the process, after a small time interval t« t. For

this interval, let uQ.Ai) be the infinitesimal probability that the

circuit changes from state 'i' to state 'j.' In order to obtain the

probability that the circuit changes from state *i' to state 'j ' in a

time interval T , X t, it is necessary to integrate all such infini-

tesimal probabilities over a time interval 't. '

dQ. . (T ) =
[ 1 - H Oc) . I 1 - II (T )~|. dO (t)

ij L v J L w J uq

Hence,

Q.. (,)«J
o

dQ.. (,)

-J^ 1 -"* W]-[l- ™
w W]'dL W

Now,

H (T ) = 1 - e
v

H Or) = 1 - <

w

Q (T ) = P
uq uq

-Xv •

-Xw •T

(1 - e^ U#T
)

dQ (t) = P • X u
uq uq

-Xu«T
,

e dx

Q..(t) = T e
v w D ,

e P • Au« e
U(

*

-X .,

t -(X + X + X )• T
e

u v w
• P

X
_ u

uq
u • dnc

X +X -r\

U V w

r -(X +\ +X ). T_
t

'«, { " e
"

V W
lo

11



, _^ t:— •
" • 1 - e u v w

X +X +X uq L
U V w n

Let,

X. = X +x +x ,

i u v w

i D - X'.' Dand P. . = . ,. ,. • P
11 X +X +X uqJ u v w n

P
X. uq

Q..(t) = P..
'

1 - e i
l "

The form of the above equation is identified with a finite state,

discrete time, Markov process of order one, with stationary transition

probabilities.

Hence, the circuit process is Markovian, if process of each of the

component parameters is also Markovian.

At this stage, a question arises. Does the Markovian relationship

for the circuit hold good, if the circuit transition was from (JSCT)

to (JSCT) .,.
n+1

Let the circuit change from state 'i • at time 't' to state 'j
' at

time 't+t.

'

At time: t= t

(JSR1) = q

(JSR2) = v

(JSR3) = w

(JSCT) = i
n

12



At time t= t+t:

(JSR1) = q

(JSR2)
Q

= v

(JSR3), = 1

(JSCT)
n+1

=j

Specifically, in order that parameter R2 continues to remain in

state 'v ' for a duration of time that is less than or equal to 't
'

,

the following condition must hold good:

Pr
{
T
l(R2) < * + T / «SB2) =V, T

1(R2)
>t}

= 1 - e
-Xv - T

It is noticed that the probability that R2 continues to remain in

state 'v ' is independent of the time spent in the previous state, and is

entirely dependent on the time difference 't». Where a parameter takes

less time than all other parameters to change state, it will effect the

change in state of the circuit earlier. Thus a Markovian relationship

does hold good for all circuit transitions, and for i,j = 1, 2,.., m.

It will be assumed that the probability of change of state of the

circuit, due to change of states of two or more parameters is negligible.

13



THE DERIVATION OF THE RELIABILITY EQUATION

Relationship between a continuous time Markov process and a

discrete time Markov process can be expressed in the form,

P(t), = e

Where,

P(t) - A matrix, whose elements P..(t) are defined as the pro-

mxm bability that the circuit is in state 'j ' at time 't',

given that the circuit was in state 'i' at time 't'=0.

A - An infinitesimal generator matrix whose elements X.. are

mxm so defined that X.. A t + 0«^t, i = j, is the probability

that a circuit in state 'i' at time zero enters state '
j

'

by time "t with X . .
= -Z X.

.

J
i-J

J

The proof of this equation is as follows:

For a sufficiently small 't',

Lim P(t) = I,

t->0
+

where I is a unit matrix.

From Chapman-Kolmogorov equation for a discrete time Markov process,

P(t) • P(^t) = P(t +^t), t, ^t >

Taking log of both sides,

log P(t) + log P(^t) = log P (t + ^t).

The above equation will hold good, only if log P(t) is continuous

over time 't. 1 This suggests that log P(t) can be expressed in a linear

relation of the form,

log P(t) = A -i- At. A, A are mxm matrices.

But the initial conditions specify,

P(0) = I

log P(0) = logI = 0=A + B' 0=0

14



Hence A =

Thus, log P(t) = At

P (t)= e
At

.

A is the constant slope of the linear function log P(t). Thus,

A is also a matrix whose elements ^.. are so defined that X... ^t+0« (^t),

i 4 J t i s the probability that a circuit in state 'i' at time zero en-

ters state M ' by time ^t with ^. . = I X . .

.

Let,

S - Set of success states

S
9

- Set of failure states

A - Infinitesimal generator matrix that includes both S and S

At - Infinitesimal generator matrix that includes S but excludes S„,

a - The initial distribution of the circuit that includes both
o

S and S .

a - The initial distribution of the circuit that includes S, but
o 1

excludes S_.

If now, it is known that the circuit is operative at time 't 1 = 0,

that is, only the operative circuit states are selected for use, then,

the distribution of the circuit states at time 't 1 is,

= a
1

• P(t)
ieS

= a
1

. / P. .(t) )o I ij J

o • {n- a

1.S

ieS

i
- a . e

o

-l ^ *t
= a • e t

o

t

ieS
1

15



The expression for the distribution of the circuit at time 't 1

is defined for a particular state 'j ' at time 't. ' Summing over all

j e s., the probability of the circuit not failing before time 't' is

obtained. This is the circuit reliability R(t), given by the expression:

K(t) - I a. • e t
J i

_ -o A »t T= a. • e t .1

R.(t) = e V\ I
l

In the latter sections, systematic procedures will be developed for

the partitioning into states of the component parameter, and for the

approximate determination of the circuit failure boundaries.

16



ESTIMATION AND TESTING OF MARKOV CHAINS

Various assumptions have been made earlier, in the derivation

of the reliability equation. These are:

(1) The transition probabilities of the finite state, discrete

time, Markov process are stationary.

(2) The Markov chain is of first order.

It is the purpose of this section to develop statistical techniques

for validating the above assumptions. In addition, the method of estimation

of the transition probabilities of the Markov chain will be presented.

ESTIMATION OF THE TRANSITION PROBABILITIES
OF A FIRST ORDER MARKOV CHAIN

Let,

n - The number of statistically identical electronic component

parts put on test,

n.. - The number of parameters observed in state 'i' at the

(t-l) ' period and observed in state 'j ' at the t period,

n.(t-l) - The number of parameters observed in state 'i' at the

(t-l) period.

T - The period over which the test is conducted,

m - The number of states into which the range of data is

partitioned.

n.(t-l) = 2 n..(t)

17



THE RESULTS OF THE TEST

FOR THE »t
th

' PERIOD

ij 1 2 3 4 • • J • * m

1 nn (t) n
2
(t) n

13
(t) n

14
(t) n. . (t)

1 i

n
n (t)
].m

2 n ,(t) n 99 (t) ripo^t) n
24

(t) n
2

. (t) n n (t)
2m

3 n
31

(t) n„ (t) n
33

(t) n
34

(t) n . (t)
3i

n Q (t)
3m

4 n
41

(° n
42

(t) n
43

(t) n
44

(t) n„. (t)
4i

n. (t)
4m

•

i n. . (t)
ll

n.., (t)
i2

n. (t)
i3

n. .(t)
i4

n..(t)
ii

n. (t)
lm

•

m n , (t)
ml

n (t)
m2

n (t)
mo

n „(t)
m4

n .(t) n (t)
mm

TRANSITION PROBABILITIES TO ESTIMATE

FOR TIE »t
th

' PERIOD

1
9 3 4 i m

1 p (t) P l2
(t) p l3

(t) P 14
(t) Pl .(t) Pl (t)K lm

2 P21
Ct) P 00 (t) p93

(t) p24
(t) p2

.(t) P2m
(t)

3 p31
(t) P« 2

(t) P33 U) P34
(t) p . (t)

*3i P3m (t)

4 P41
(t) P42

(t) P43
Ct) P44

(t) p.. (t)F
4i P4m (t)

•

i pn (t) P .

2
(t) p.

3
(t) p. . (t)K i4

p..(t)
1 n p. (t)r im

•

m
|Pml

(t) Pm2 (t) Pm3 (t) P /t)
*m4 p .(t)

*mj
p (t)rmm

18



The probability of getting n. (t), n.., (t), . . . ,n. (t) in s ome

+ u

specified order for the t period is.

, >. n. . (t) <- n n.., (t) ,„•,
= Pn (t) il Pi2

(t) l2 pim
(t)

n. (t)
lm

_ « d /, \ n. . (t)= n p. . u) ij

The probability of getting n..(t), n. 9 (t),..., n. (t) in some
1 J. * ~- X ill

specified order over the test period 'T' is,

= n n
Pii

(t)
n
ij

(t)

t=i j=i J

It will be seen that the set of number n..(t) forms a set of suf-
iJ

ficient statistics for estimating p..(t).

The likelihood function for estimating p..(t) is,

r r, t ^ \ n. . (t)
L = n P Hi

(t) ij

j=l J

m
L* = log L = I n. . (t) log p. . (t)

J-l
J J

The estimator p. . (t) can be found by equating the first deriva-

tives of L* equal to zero and solving for the parameters.

L* = n.. (t) log p., (t) + n. (t) log p.„(t) +..,+n. (t) log p (t)
il J v \\ id a r i2 1m a r

im

= n..(t) log p..(t) +n. (t) log p. (t) +n. (t) log l-p..(t) —p.
n
(t)

il J *il i2 J *i2 !am J L *il *im-l J

3L* _
f

. _J , (
. (-1)

- n.,(tJ • 7~~T + n. (U •

9p..(t) "il
L

p.,(t) "irn '
i . p ( t ) — p. ft)r il r

il *il r im-l

= n.,(t) • 77T ~ n. (t) •
" j-

\

777
il Pn (t) 1m 1 - pn (t) — P-^^t)

=

19



= n.„(t) • -J-
7^ - n. (t)

op (t) i2 p. (t) lm
, (

v ,-,K i2 r i2 1 - p.,(t) - - p. At)r il r im-l

=

op. (t.) lm 777 ~ n - ^t) : 771 777K im p. (t) im 1 - p.,(tJ - - p. ,U)r im r il r im-l

=

Substituting p. = 1 - p.,(t) - - p. , (t) and rearranging the
a 'im ' ll 'lm-l J a

equations

,

n. (t)

n..(t) = p..Ct) • 777-
ll *il p. (t)

n. (t)

n. n (t) = p. n (t) * 777
i2 *i2 p. (t)

n. (t)

n. (t) = p. (t) • 777 .

im r im p. It.)

Summing the left and right sides separately,

m n. (t ) m
I n..(t) = ^777 Z p--(t)

i] p. \t) ._,
r ij

j=l J K im j-1 J

n. (t)

n. (t-1 )
=

1
x/

p. (t)
' im

m m

[because, z n..(t) = n.(t-l): z p..(t) = ll

j=i 1J ' j=i 1J J

Thus,

n. (t)

p. U) - —7-—r\
*im n. (t-1

)

1

that is,

a V (t)

p
ij

(t) =
n^UTT) for J = 1. 2 m

20



For stationary transition probabilities,

T T

A "• •A -1,1
p. . ~ ~

L

1J "i

I n. . (t)

t=l 1J

T
I

Z n. . (t)

.
1=1

lJ

T-1
1

Z n.(t-l)
t=l

1
Z n.(t)

t=0 *

(7)
For large sample sizes, there is a theorem which states that

A
for large sample size, p.. is normally distributed with a mean p...

A
This fact will be used to test the properties of the estimator p...

It is necessary to show that the estimator p. . conforms to all
ij

the properties of a maximum likelihood estimator, namely the estimator

is:

1. Unbiased

2. Efficient

3. Consistent

4. Sufficient

1. p. is normally distributed with the true value of the mean

p. . , that is

,

E (p..) = p..

Hence, the estimator p.. is unbiased.

A
2. p. . has the smallest variance of the set of estimators which

are normally distributed.

Let (p..), be any other estimator which is normally distributed.

It can be shown that,

Var(p. .)

^T <1VarCpV),

Thus, p. is the most efficient estimator.
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3. p.. is a consistent estimate of p...

For N-»oo, the estimate of p..-»-p. • that is,

Lim p. . - p. .

i ,j = 1 , 2, 3, . . ,m

There exists a number 'c' such that

Prob | p.. - p.. >t [ < r]

N-*oo J J

Where,

c, n >o.

n, -» 0, as .\->co

4. The estimator utilizes all the data relevant to the estimation

of the transition probabilities. It is thus a sufficient statistic.

TESTS OF HYPOTHESES

TEST OF THE HYPOTHESIS THAT THE

TRANSITION PROBABILITIES ARE STATIONARY

Denoting the null hypothesis by 'H ' and the alternative hypothesis

by ' H ' the requirement of the test is stated below:

H: p. . (t) = p. . for t=l ,2, . . . ,T

H: p..(t) is dependent on 't'.

The estimate for p.

.

(t) is given by,

. n..(t)

p

A
. (t ) = -4—

v

*ij n. (t-1)J
l

The likelihood function to be maximized under the null hypothesis

is given by,

r - rr n
A n..(t)

T i fj=l
1J
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The likelihood function to be maximized under the alternative

hypothesis is given by,

L> = II II $..<t>
n
ij

(t)

T l,j=l 'J

The likelihood ratio criteria is then,

\- L -TTTT A n..(t)
,

^•j- 1
p..(t)

n
ij

(t)

It is known that -2 log X. is distributed as chi-square with

(r-l) m(m-l) degrees of freedom. For any given region of confidence

1-a in order that the null hypothesis is true, the following condition

must be satisfied,

2
" 2 l°g ^x^ (r.D

[
m (n,-l)]

2
for any desired confidence interval and degrees of freedom

can be found from any printed table of the chi-square distribution.
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TEST OF THE HYPOTHESIS THAT A MARKOV
CHATN TS OF FTRST ORDER

Consider testing the null hypothesis that the Markov chain is

of first order against the alternative hypothesis that it is second order.

H : The stationary Markov chain is of first order against,

H : The stationary Markov chain is of second order.

The maximum likelihood estimate for stationary, second order transi-

tion probabilities is given by,

a *av ,= o iJ k

T

I n, ,

iik t=2
pijk " m ' T

I n... I n.(t-l)
1=1

1
-)1 t=2 1J

The null hypothesis states that,

pijk
::

p2jk
: •*• ::

pmjk
=:

pjk

for j , k = 1, 2, . . . ,m.

The likelihood ratio criterion for testing the hypothesis is,

L( under H )

X = rt"
L<under H )

m A
n P ,,

"jk

. 1 . k- 1
J

Piik
ljk

i.j.k=l 1Jk

m A

i ,j ,k=l p. .

.

J ljk

(for a given i ,j

)

2
From the knowledge of the fact that -2 log K is distributed as y

for a given region of confidence i- a with m(m-l) degrees of freedom,

it is possible to state the condition for H to be true.
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If H is true, then,

-2 log ^ < v „ ( i
^2

y , , y.2 can be found from any printed table of the chi-square
x a,m(m-l) J y M

distribution.
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A GENERALIZED MARKOVIAN RELIABILITY
ANALYSIS OF AN 'r' ELEMENT ELECTRONIC CIRCUIT

DATA

Let 'N 1 statistically identical electronic component parts be put

on test over a period 'T. ' If there are 'r 1 different component

parameters denoted by Zl, Z*2,..., and Zr respectively. Then the

ranges of each of these parameters as obtained from the test can be

summarized as below:

zj < Zl < Z
1

- Parameter Zl
b — — a

Z
2

< Z2 < Z
2

- Parameter Z2
b — — a

r r
Z, < Zr < Z - Parameter Zr
b — — a

Let each of these ranges be partitioned into disjoint intervals

m
1

, m„,..., and m states respectively. By definition, each such inter-

val will be a state.

State - 1 z} < Zl < z\
b — 1

State - 2 zj < Zl < z\ _
1 — 2 Parameter Zl

State - m. Z
1

.< Zl < Z
1

1 m-1— - a

State - 1 Z
2

< Z2 < Z
2

b — 1

State - 2 Z
2

< Z2 < Z
2

State - m Z
2

,< Z2 < Z
2

<L m^j-1— — a

Parameter Z2
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State - 1 Zj" < Zr < z\
D — 1

State - 2 Z* < Zr < z£

Parameter Zr

State - m Z
r

_ < Zr < Z
r

r m -1 — _ a
r

Let n..(t) be the number of parameters observed in state 'i' at the

(t-1) period and observed in state 'j ' at the t period, for any given

component part.

The number of parameters observed in state 'i' at the (t-1) period,

for the given component part, is then

n. (t-1) = £ n. . (t)

J
J

N = I n.(t-l) = I I n..(t)
l . ij

l i J
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ESTIMATION AND TESTING OF MARKOV CHAINS

The transition probabilities jp. .r are estimated from the data,

for each of the component parameters. Testing procedures, outlined

earlier, are then applied to verify that the data came from a station-

ary, first order, Markov process.

The state probabilities for the circuit can be found as below.

Let the initial state 'i' of the circuit be expressed as„

. . /.l 1 Ul- U, m ,..., q >

•r' component parameters

The probability that the circuit remains in state 'i' is,

a = P { JSZl = l
1
} • P { JSZ2 = m

1

} • • • P {jSZr = q
1

}

Component parameters Zl , Z2,..., and Zr are subject to an initial

probability distribution as,

i
n
i
(0)

P
r I

JSZJ = » I " N

where j = 1, 2,.

1 = 1, 2,.

= 1, 2,.

= 1. 2,.

.,r

. ,m for j = 1

.,m
2

for j = 2

. ,m
r

for j = r
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DERIVATION OF THE CIRCUIT
STATES FROM THE COMPONENT STATES

Let the circuit be considered operable, if the output para-

meter V
0[]T

is subject to the condition,

b < V
QUT < a

By circuit analysis it is possible to establish the functional

relationship between Vq.._ and the various component parameters.

W = f(Z1
'
Z2 .---. Zr)

Next, the relationship between the circuit state and the component

parameter states will be derived. Total number of circuit states

possible = m, x m.. x ,..., mr
1 2 r

r

= n m.

i=l
*

Let JSCT be the circuit state number, JSCT = 1, 2,...,

r

H m.

i=l
*

Let percentage change in Zl > percentage change in Z2 > percentage

change in Z3 and so on. Then,

JSCT = n m. (JSZ1-1) + II m. (JSZ2-l) +

i=2
x

i=3
1

m (JSZ(r-l) -1)+ JSZr
r
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This equation is obvious from the fact that for each state of

Z(r-l) there are m states of Zr, for each state of Z(r-2) there are
r

m . x m states of Z(r-l), and so on.
r-1 r '

For example, let

JSZ1 =1,2

JSZ2 =1,2

JSZ3 =1,2

Number of circuit states possible = 2x2x2=8.

If the percentage change in Zl< the percentage change in Z2<

the percentage change in Z3, then

JSCT = A (JSZl -1) + 2(JSZ2 -1) + JSZ3

JSZ1 JSZ2 JSZ3 JSCT111 1112 2

12 1 3

12 2 A

2 11 5

2 12 6

2 2 1 7

2 2 2 8

The scheme, shown above, summarizes the circuit states in terms

of the component parameter states.
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DETERMINATION OF THE FAILURE BOUNDARIES
OF THE CIRCUIT

In order to know whether a particular state 'JSCT' is a success

or a failure, it is necessary to obtain the value of V^.„ correspond-

ing to the values of Zl , Z2,...
t

and Zr, of the states, JSZl , JSZ2,...,

and JSZr respectively. If the value of Vq._ lies within the operable

range then JSCT = (JSZl, JSZ2, . . .
, JSZr) yields a state of success.

A computer program can be developed to compute the values of

V
0I]T

for various values of Zl, Z2,..., and Zr. ( States of Zl , Z2,...
f

and Zr. )

The corresponding state number of the circuit and the circuit con-

dition success or failure can be easily recorded. Often, a circuit

state may be found to lie in the regions of both success and failure.

By redefining the states of the component parameters, it is possible

to obtain a result from which accurate failure boundaries can be obtained.

Let the range of values for a component parameter Zi be partitioned

into m. states as below:
1

State - 1 Z* < Zi < z]
b — 1

State - 2 Z
l

< Zi < Z*

Parameter Zi

State -
j Z

1
,< Zi < Z

1

State - m. Z
1

< Zi < Z
1

i m. ,— — a
l-l

State -l State -2

•

State -j State
•

-m.
l

i A A Z
1

, Z
1

z
1

Vi
z 1

a
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Each interval is divided into several sub-intervals. The length

of each of these sub-intervals is made as small as possible, within the

limitation of the computing capacity.

The value of each of the parameters is incremented by a value of

the sub-interval length. Knowing further, the relationship between JSCT

and JSZi (i = 1, 2,...,r) for all 'i', the computer is programmed to

record the following values at the output:

Zi Z2 ... Zr V
0UT

JSZI JSZ2 ••• JSZr JSCT K

'K' further signifies whether the circuit is in a state of success (l)

or in a state of failure (0).

Let Np be the number of failure states of the circuit as obtained

from the computer output.
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SYNTHESISATION OF THE CIRCUIT MATH IX

FROM THE COMPONENT MATRICES

If

py
. - The finite state, discrete time, transition pro-

bability matrix of the parameter Zi

.

Ay. - The finite state, continuous time, transition

probability matrix.

Then,

p7
. = e Zi (The discrete time process data are obtained in

steps of time interval, t=l.)

From the above relation,

log pZi
= A

z
.

Let Qz
. = pz

. - I

A
z

. = log pz
. = log (Qz

. + I )

2^4
Zi Vi J^Zi _^Zi

2 3 " 4

This series in Q7
- will converge to log pz

. only when the diagonal

elements of pz . > j*

It is possible, at this stage, that the matrix \7
. has yielded some

negative off diagonal elements. This may be due to some sample variations

indicating that the sample did not come from a continuous time process.

There are two ways of handling this situation: \z
- may be either altered

to eliminate the negative off diagonal elements by suitably distributing

this effect, or alternatively work with the same matrix. The second course

would, however, be chosen as this would cause less cumulative error.
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Having obtained Ay. matrices for all 'i' (that is, all the para-

meters), it is next necessary to develop procedures for synthesing the

circuit matrix A,- from the component parameter matrices.

For the sake of illustration, consider a circuit consisting of three

parameters Zl , Z2, Z3. Let the equation, relating the circuit state num-

ber to the component state numbers be given by,

JSCT = 4(JSZl) + 2CJSZ2 -l) + JSZ3.

Let, X ll(Zl) X 12(Z1)

/k
Zl

"

X2l(Zl) X22(Zl)

X ll(Z2) X 12(Z2)

*Z2
=

X21(Z2) X22(Z2)

X 11(Z3) X 12(Z3)

/k
Z3

=

X21(Z3) X22(Z3)

From the equation relating JSCT, JSZl , JSZ2, and JSZ3, the following

scheme can be derived.

JSZl JSZ2 JSZ3 JSCT

1 1 1 1

1 1 2 2

1 2 1 3

1 2 2 4

2 1 1 5

2 1 2 6

2 2 1 7

2 2 2 8
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The circuit output parameter matrix will be of the form,

1 2 ... 8

X ll(C) X 12(C)

X2l(C) X22(C)

8

X 18(C)

,

X28(C)

X81(C) X82(C) X88(C)

A Markov process was derived for the circuit in an earlier section.

The circuit was found to follow a Markov process, only when the transitions

of the circuit states occurred due to change of state of one component

parameters. It will, therefore, be assumed that the probability of cir-

cuit transition, due to change of states of more than one component para-

meter, is zero. It follows that the probability of circuit transition =

probability of the component parameter transition, effecting the circuit

transition.

With these ground rules, it is possible to derive the transition

probability matrix for the circuit.

To calculate the elements of the first row of the circuit matrix,

the following table is derived.

Circuit 'C Parameter 21 Parameter Z2 Parameter Z3

Present Next
State State

Present Next
State State

Present Next
State State

Present Next
State State

1 1 1 1

2 1 1 2

3 1 2 1

A 1 2 2

5 2 1 1

6 1 2

7 2 2 1

8 2 2 2
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(1) xn(c)
= -\ Mj

It is necessary to know X
2 , \ ~ and \,r>* in order to calculate

hi.

(2) X 10 ((—
= \,p|^i, since the change in circuit state from state

-1 to state -2 was brought about by the change of state of the parameter

Z3 from state -1 to state -2.

(3) Xio(p) =
^"i?f7')i»

since the change in circuit state was effected

by the change of state of the parameter Z2 only.

(A) ^-ia(c)
= 0, as the probability of the circuit transition due to

simultaneous change of states of parameters Z2 and Z3 is zero.

15(C) ' 12(Zl), change of state of the circuit being effected,

only by the change of state of Zl

.

(6) X-./.ep")
= 0. due to simultaneous changes of states of Zl and Z3.

(7) ^ij(r) = Oi due t0 simultaneous changes of states of Zl and Z2.

(8) A-iofr -

)

= 0, due to simultaneous changes of states Zl , Z2, and Z3.

Thus

,

X
ll(C)

=
"I X 12(C)

+ X 13(C)
+ X 15(C)

+ X 16(C)
+ X 17(C)

+ X 18(C) J

" "I X 12(Z3)
+ X 12(Z2)

+ X 12(Zl) ).

Proceeding as before, all the other row vectors of A- can be determined

Hence, A~ can be derived for an 'r' element circuit.
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COMPUTATION OF THE RELIABILITY
OF THE CIRCUIT

Having obtained the necessary ingredients to compute reliability,

the reliability at various time points can be calculated.

Cancelling those states of n
f
which correspond to failure from

the initial distribution vector a and the infinitesimal generator ma-
o y

trix Ar of the circuit, new matrices a and A,, are obtained. Hence,
C o t

R(t) = a
1

• . e
A
t

'
l

• I
o

= a» [ I + A
t

• I • t + (A* . I) • £ (A? • I) £
+ . . .
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APPLICATION OF THE MARKOVIAN RELIABILITY
ANALYSIS TO A SIMPLE TWO RESISTOR CIRCUIT

The following hypothetical circuit is assumed.

Rl

WWVu

Vi R2 V
OUT " V0

By circuit analysis,

Vi = IR1 + IR2,

VO = IR2.

VO _ R2

Vi Rl + R2

Hpnce VO = —^2 . uinence, vu
R ^ + R2

vi

The circuit will be considered operable under the condition:

0.1997 V < VO <_ 0.2130 V

Let the nominal values of the circuit parameters be

Rl = 5200 Q

R2 = 1400 a

Let the life test data yield the following ranges of values for the

resistors:

Rl : 5000 Q - 5750 Q

R2 : 1300 Q - 1600 Q

Suppose, that these ranges of Rl and R2 can be partitioned into the

following states:

For Rl:

State: 1 Rl < 5500 Q

State: 2 Rl > 5500 a
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For R2:

State: 1 R2 < 1400 a

State: 2 1400 < R2 < 1540

State: 3 R2 > 1540

It is noticed that the parameter R2 has a larger percentage varia-

tion than parameter Rl.

Percentage variation of Rl = *
,.

"—*— x 100 = 15%

n • *. • c do - 1600 - 1300 mn - oe qo/Percentage variation of R2 =
\

r
\c\{)

x ~ 25.8/b

Hence the circuit state will be adequately represented by the equation,

JSCT = 3(JSR1 -1) + JSR2

The following table can be derived from this equation

JSR1 JSR2 JSCT

1 1 1

1 2 2

1 3 3

2 1 4

2 2 5

2 3 6

Due to lack of actual test data, the following first order, stationary,

transition probability matrices for the component parameters Rl and R2 are

assumed:

Hi

PR2 =

0.9889 0.0111

_0.019l 0.9809_

1.0

0.007 0.9745 0.0186

0.0033 0.9967
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Since p. . > p for each of the above matrices, the equivalent

continuous time matrices can be written as,

\l = l03 Phi " l09 %1 + » = «hl " 2
+

3
+ •••

A
R2

= l0° PR2
= log %2 + :)

<&2

0*2 - 2

$2

Thus

,

Hence,

V

<ta
=

A =
Rl

0.9889
0.0191

0.0111
0.9809

-0.0111
0.0191

O.Olll"

-0.0l9l_

"1.0

0.007

_0

0.9745
0.0033

"0

0.0070 0.0255

_0 0.0033

-0.0111 O.Olll"

-0.0191 -0.0191

0.0186
0.9967

0.0186

0.0033

1

1

*R2 = 0.0071 -0.0259 0.0189

0.0033 -0.0033

The computer is programmed such that for incremental values of 50Q

and 20Q for Rl and H2 respectively, the following information is printed

out at the output.
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value of Rl value of R2 value of VO JSRl JSR2 JSCT K

Circuit states 1, 3, 5 and 6 are designated as failure, as these states

have been found to fail most often.

Deleting those states corresponding to failure from the A
c

matrix,

the resultant circuit matrix takes the form:

1 2 3 4 5 6

1

2 K
22 >^24

3

4 X
42

X
44

5

6

That is,

2 4

2 X22
X
24

4 X
42

X44

The following table gives the circuit state transitions in terms of

the transitions of the component parameter states.

Circuit 'C' Parameter Rl Parameter R2

Present
State

Next
State

Present
State

Next
State

Present
State

Next
State

2 1 1 2 1

2 2 1 2 2

2 3 1 2 3

2 4 2 2 1

2 5 2 2 2

2 6 2 2 3

4 1 2 1 1 1

4 2 2 1 1 2

4 3 1 1 3

4 4 2 2 1 1
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Table (Continued)

Circuit 'C' Parameter Rl Parameter R2

Present
State

Next
State

Present Next
State State

Present Next
State State

4 5 2 2 1 2

4 6 2 1 3

Thus
,

X2l(C) ~ X21(R2) " * 0071

+
22(C) " "L X2l(C)

"" X23(C) " X24(C) X25(C) " X26(C)X., + XoC/TI + Xr
]"'

X.23(C)

W24(C)

X23(R2)
= 0.0189

\25(C) X 12(Rl)
=

' 0111

W26(C)

Hence,

X22(C)
= "

[
°- 0071 + 0.0189 + 0.0111

k24(C)

= -0.0371

=

Now,

X41(C)
= X21(R1)

= 0.0191

X42(C)
=

°

X43(C)
=

°

X44(C)
=

" (X
41

+ X
42

+ X
43

+ X45
+ X46

J

X45(C) ' X 12(R2)
°

\ 46(C)

.'. X44(C)

X 13(R2)

= -0.0191

=

X42(C) " ° 42



Hence, the infinitesimal generator matrix for the circuit is,

X22(C) X24(C)

X42(C) X44(C)

A
t

=
-0.0371

R. (t) = I + A„ • I't +(A, • I)
l t t

^+ (A
3

21
VA

t

-0.0191

i) £
31

•••'

A
t
=

\
2=

-0.0371

-0.0191^

-0.0371 -0.0371

-0.0191 -0.0191

0.001376

0.000364

3 4
Neglecting the higher powers of A , A ..., etc.

1 -0.0371
R.(t) = +

l
1 -0.0191 lIj

t +
0.001376

0.000364

t_
21

R.(t) =
l

1 -0.0371

-0.0191
t +

0.001376

0.000364

Let the initial probability vector for the circuit, as estimated from

the knowledge of life test data be,

(0, k, 0, £, 0, 0)

Deleting those states that represent failure, the initial probability

vector is then,

If now t is in units of months,

R (1) = (£,£) ' R.(l)

rtM

LLh

-0.0371

0.0191
0.9642

0.9812

1 +
0.001376

0.000364
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=|x 1.9454 = 0.9727

-0.0371

0.0191

.2 +
0.001376

0.000364

=h 1.8910 = 0.9455

R(3) = (1- .Ly
<-2 , 2 >]

~ 1
1 -0.0371
+ • 3 +

.

1
_ J

-0.0191_

" 0.8950

*. *>
0. 94 43

0.001376

0.000364

= hi. 8393 = 0.9196

R(4)
1 -0.0371*

+ . 4 +

1 -0.0191
— -J

) ,

'0.8568
1

.
o. 9248^

Thus,

{

= c*. i)

= J- x 1.7816 = 0.8908

R(l) = 0.9727

R(2) = 0.9455

R(3) = 0.9196

R(4) = 0.8908

0.001376

0.000364
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FORTRAN LISTING 1410-FO-970
00010 F0RMAT(2X,2I5)
00140 F0RMAT(2X,2I5,F6.4,4I5)
00005 F0RMAT(4X,2HR1,3X,2HR2,3X,2HV0,5X, 17H JSR1 JSR2 JSCT K)

READd, 10) I , J

WRIT£(3,5)
00006 VI=1.

001351=5000,5750,50
R 1=1 +50

~ DO 13 5J= 1300, 1600,20

"

R2=J+20
V0=(R2/(R1+R2) )*VI

00035 IF(5500.-R1)40,45,45
00040 JSRl=l

G0T050
00045" JSR1=2
00050 IF( 1400.-R2)51,55,55
00051 IF( 1540.-R2)52,52,60
00055 JSR2*1

G0T0145
00060 JSR2 = 2

" G0T0145
00052 JSR2=3
00145 IF(JSRl-l) 135,70,65
00070 IF(JSR2-1 ) 135,90,82
00065 IF( JSR1-2)135,83, 135
0G082_IF( JSR2-2)135,95,84
00083 IFUSR2-1) 135,105,85

~

00084 IF( JSR2-3)135,100,135
00085 IFUSR2-2) 135,106,86
00086 IF( JSR2-3)135,107,135
00090 JSCT=1

GOTO 110
00095"JSCT=2

GOTOUO
00100 JSCT=3

GOTOUO
00105 JSCT=4

GOTOUO
"00106 JSCT = 5

GOTOUO
00107 JSCT=6
00110 IF(0.1997-V0)115, 130,125
00115 IFIVO-0. 2130)130, 130, 125
00125 K=0

G0T0138
00130 K=l
00138 WRITE (3, 140) I , J , VO, JSR1 , JSR2 , JSCT ,K
00135 CONTINUE

END
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RL R2 VO JSR1 JSR2 JSCT K

5000 1300 .2072 2 1 4 1

5000 1320 .2097 2 1 4 1

5000 1340 .2121 2 1 4 1

5000 1360 .2146 2 1 4

5000 1380 .2170 2 1

2 2

4
5000 1400 .2194 5

5000 1420 .2218 2 2 5

5000 1440 .2242 2 2 5

5000 1460 .2266 2 2

2 2

5

5000 L4a0 .2290 5

5000 1500 .2313 2 2 5

5000 1520 .2336 2 3 6
5000 1540 .2360 2 3 6

5000 1560 .2383 2 3 6
5000 1580 .2406 2 3

2 3

6

65000 1600 .2428
5050 1300 .2056 2 1 4 1

5050 1320 .2080 2 1 4 1

5050 1340 .2105 2 1 4 1

5050 1360 .2129 2 1 4 1

50 50 1380 .2153 2 1

2 2

4

550 l 00 .2177
5050 .420 .2201 2 2

2 2

5

55050 1440 .2225
5050 1460 .2249 2 2 5

5050 1480 .2272 2 2 5

5050 1500 .2296 2 2 5

5050 1520 .2319 2 3 6
5050 1540 .2342 2 3 6

5050 1560 .2365 2 3 6
5050 1580 .2388 2 3 6
5050 1600 .2410 2 3 6
5100 1300 .2040 2 1 4 1

5100 1320 .2064 2 1 4 1

5100 1340 .2089 2 1

2 1

4 1

5100 1360 .2113 4 1

5100 1380 .2137 2 1 4
5100 1400 .2161 2 2 5

5100 1420 .2185 2 2 5

5100 1440 .2208 2 2 5

5100 1460 .2232 2 2 5

5100 1480 .2255 2 2 5

5100 1500 .2278 2 2 5

5100 1520 .2301 2 3 6

5100 1540 .2324 2 3 6

5100 1560 .2347 2 3 6

5100 1580 .2370 2 3 6

5100 1600 .2392 2 3 6

5150 1300 .2024 2 1 4 1

5150 1320 .2048 ? 1 4 1

5150 1340 .2073 2 1

2 1

4 1

5150 1360 .2097 4 1

5150 1380 .2121 2 1 4 1

5150 1400 .2145 2 2 5
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5150 1420 .2168 2 2 5

5150 1440 .2192 2 2 5

5150 1460 .2215 2 2 5

5150 1480 .2238 2 2 5

5150 1500 .22ul 2 2 5

5150 1520 .2284 2 3 6

5150 1540 .2307 2 3 6

5150 1560 .2330 2 3 6

5150 1530 .2352
1600 .2375

2

2

3 6

5150 3 6

5200 1300 .2009 2 4 1

5200 1320 .2033 2 4 1

5200 1340 .2057 2 4 1

5200 1360 .2081 2 4 1

52 00 1380 .2105 2 4 1

5200 1400 .2128 2 2 5 1

5200 1420 .2152 2 2 5

5200 1440 .2175 2 2 5

5200 1460 .2199 2 2 5

5200 1480 .2222 2 2 5

5200 1500 .2245 2 2 5

5200 1520 .2268 2 3 6

5200 1540 .2290 2 3 6

5200 1560 .2313 2 3 6

5200 1580 .2335 2 3 6
5200 1600 .2358 2 3 6

5250 1300 .1993 2 4
5250 1320 .2018 2 4 1

5250 1340 .20h2 2 4 1

5250 1360 .2065 2 4 1

5250 1380 .2089 2 4 1

5250 1400 .2113 2 2 5 1

52 50 1420 .2136 2 2 5

5250 1440 .2159 2 2 5

5250 1460 .2182 2 2 5

52 50 1480 .2205 2 2 5

5250 1500 .2228
1520 .2251

2

2

2

3

5

5250 6
5250 1540 .2274

1560 .2296
2 3 6

:>250 2 3 6

5250 1580 .2318
1600 .2341

2

2

3

3

6
5250 6

5300 1300 .1979
1320 .2002

2

2

4
4 15300

5 300 1340 .2026 2 4 1

5300 1360 .2050 2 4 1

5300 1330 .2074 2 4 I

5300 1400 .2097 2 2 5 1

5300 1420 .2120 2 2 5 1

53 00 1440 .2143 2 2 5

5 300 1460 .2166 2 2 5

5300 1480 .2189 2 2 5

5 3 00 1500 .2212 2 2 5

5300 1520 .2235 2 3 6
5300 1540 .2257 2 3 6
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5300 1560 .2279 2 3 6

5 3 00 15 80 .2302 2 3 6

5300 1600 .2324 2 3 6
5350 13C0 .1964 2 1 4
5350 1320 .1988 2 1 4
5350 1340 .2011 2 1 4
5350 1360 .20^5 2 1 4
5350 1380 .2058 2 1 4
5350 1400 .2082 2 2 5

5350 1420 .2105 2 2

2 2

5

553 50 1440 .2'.? 8

5350 1460 .2151 2 2

2 2

5

55350 1480 .2173
5350 1500, .2196 ? 2 _5 _
5350 1520 .2219 2 3 6

5350 1540 .2241 2 3

2 3

6

65350 1560 .2263
5350 1530 .2285 2 3 6
5350 1600 .2307 2 3 6

5400 1300 .1949 2 1 4
5400 1320 .1973 2 1 4
5400 1340 .1997 2 1

2 1

4
45400 1360 .2020

5400 1380 .2043 2 1 4
5400 14C0 .2066 2 2 5

5400 1420 .2089 2 2 5

5400 1440 .2112 2 2 5

5400 1460 .2135 2 2 5

5400 1480 .2158 2 2 5

5400 1500 .2180 2 2 5

5400 1520 .2203 2 3 6

5400 1540 .2225 2 3 6

5400 1560 .2247 2 3 6
5400 1580 .2269 2 3

2 3

6

65400 1600 .2291
5450 1300 .1935 2 1 4
5450 1320 .1959 2 1 4

5450 1340 .1982 2 1 4
5450 1360 .2005 2 1 4
5450 1380 .2028 2 1 4

5450 1400 .2052 2 2 5

5450 1420 .2074 2 2 5

5450 1440 .2097 2 2 5

5450 1460 .2120 2 2 5

5450 1480 .2142 2 2 5

5450 1500 .2165 2 2 5

5450 1520 .2187 2 3 6
5450 1540 .2209 2 3 6
5450 1560 .2231 2 3 6

5450 1580 .2253 2 3 6

5450 1600 .2275 2 3 6

5500 1300 .1921 1 1

1 1

1

15500 1320 .1944
5500 1340 .1968 1 1 1

5500 1360 .1991 1 1 1
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5500 1380 .2014 1111
5500 1400 .2037 12 2 1

5500 1420 .2060 12 2 1

5500 1440 .2082 12 2 1

5500 1460 .2105 12 2 1

5500 1480 .2127 12 2 1

5500 1500 .2149 12 2

5500 1520 .2172 13 3

5 5 00 1540 .2194 1 3 3

5500 1560 .2215 13 3

5500 1580 .2237 13 3

5500 1600 .2259 13 3
55S0 1300 .1907 1110
5550 1320 .1930 1110
5550 1340 .1954 1 1 1

5550 1360 .1977 1110
55b0 1380 .2000 1111
55*>0 1400 .2022 '1 2 2 1

5550 1420 .2045 12 2 1

5 5 50 1440 .206 7 12 2 1

5550 1460 .2090 12 2 1

5550 1480 .2112 12 2 1

5550 1500 .2134 12 2

5550 1520 .2156 13 3

5550 1540 .2178 13 3

5550 1560 .2200 13 3

5550 1580 .2222 13 3

55!>0 1600 .2243 13 3

5600 1300 .1893 1110
5600 1320 .1917 1110
5600 1340 .1940 1110
5600 1360 .1963 1110
5600 1380 .1985 1110
5600 1400 .2008 12 2 1

5600 1420 .2031 12 2 1

5600 1440 .2053 12 2 1

5600 1460 .2075 12 2 1

5600 1480 .2097 12 2 1

5600 1500 .2119 12 2 1

5600 1520 .2141 13 3

5600 1540 .2163 13 3

5600 1560 .2135 1 3 3

5600 1580 .2206 13 3

5600 1600 .2228 13 3 *

5650 1300 .1880 1110
56b0 1320 .1903 1110
5650 1340 .1926 1110
5650 1360 .1949 1110
5650 1380 .1971 1110
5650 1400 .1994 12 2

5650 1420 .2016 12 2 1

5650 1440 .2039 12 2 1

5650 1460 .2061 12 2 1

5650 1480 .2083 12 2 1

5650 1500 .2105 12 2 1
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5650 1520 .2127 1L 3 3 1

5650 1540 .2148 ] 3 3
5650 1560 .2170 1L 3 3
5650 1580 .2191 ] 3 3

5650 1600 .2213 ] 3 3
5700 1300 .1867 1 I

5700 1320 .1889 1 1

5700 1340 .1912 1 1

5700 1360 .1935 .1 1

5700 1380 .1958 1 1

5700 1400 .1980 1 2 2
5700 1420 .2002 ] 2 2 1

5700 1440 .2024 ] 2 2 1

5700 1460 .2047 ] 2 2 1

5700 1480 .2068 ] 2 2 1

5700 1500 .2090 1 2 2 1

3 15700 1520 .2112 ]L 3

5700 1540 .2134 1L 3 3

5700 1560 .2155 ]L 3 3
5700 1580 .2176 ]L 3 3
5700 1600 .2198 ]L 3 3

57 r>0 1300 .1853 ] 1

5750 1320 .1876 ] 1

5750 1340 .1899 ] 1

5750 1360 .1922 ] 1

5750 1380 .1944 1 1

5750 1400 .1966 ]L 2 2

5750 1420 .1988 1L 2 2

5750 1440 .2011 ]L 2 2 1

5750 1460 .2032 !L 2 2 1

5750 1480 .2054 ]L 2 2 1

5750 1500 .2076 JL 2 2 1

5750 1520 .2098 1L 3 3 1

5750 1540 .2119 L 3 3 1

5750 1560 .2140 ]L 3 3
5750 1580 .2162 ]L 3 3
5750 1600 .2183 ]L 3 3
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DISCUSSION

It has been demonstrated how a Markovian model can be applied

to the determination of circuit reliability from data on the component

characteristics. Component part reliability testing programs are in

progress in many areas of the electronic industry in U.S.A. Today these

programs vary in magnitude, levels of environmental and electrical stress

and types of component part tested.

The Markovian model developed here can be of significant value to

the semi-conductor electronics, especially in the wake of the aero-space

age.

The model, however, has many shortcomings. We found that our

computations were cumbersome and tedious even for a two parameter circuit.

This leaves the model open to criticism so far as the practicability of

the approach is concerned. A search for a simpler approach is needed,

by the alteration of the model to suit our requirements. This can be

brought about by an automated technique in the computer for,

(1) Partitioning the component data into states.

(2) Estimation and testing of Markov chains.

(3) Determination of the failure boundaries of the circuit.

(4) Computation of the reliability of the circuit at the desired

time points.

Another shortcoming is that the model can only utilize data that

comes from a first order, stationary, continuous time finite state process.

Thus, it is necessary to verify at each time point the validity of the

data with respect to the model.

Despite the many weaknesses displayed by the model, the approach is

very useful in the reliability study of electronic components under environ-

mental and electrical stresses.
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This appendix has been devoted to a graphical approach of the

failure boundary determination.

The following data were summarized from the computer output.

R2 The upper limit of value The lower limit of
of Rl at which the cir- value of Rl at which

cuit failed. the circuit failed.

5000 1360 __

5050 1300 —
5100 1380 —

. 5150 1400 —
5200 1420 .

—
5250 1420 1300

5300 1440 1300

5350 1460 1320

5400 1460 1320

5450 1460 1340

5500 1500 1360

5550 1500 1360

5600 1520 1380

5650 1540 1400

5700 1540 1400

5750 1560 1420

(1) These data are graphically plotted with ordinate 'R2' and

abscissa 'Rl .
'

(2) Two plots are obtained namely for the upper and lower limits

or R2 above or below which failure took place.

The region of success is obviously the area between the two plots

(3) The boundaries of the states of Rl and R2 are clearly shown.
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The objective will be to define the states, as to obtain the

states of failure and success with def initeness. It is clear from the

graph, that the present definition of states require revision. In fact,

an additional state for each of the parameters Rl and R2 can be defined

Another fact that is evident from the graph is that a large num-

ber of states for each of Rl and R2 is further helpful in a clear and

accurate determination of the failure boundaries.

C
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The report deals with the evaluation of reliability

of electronic circuits from the knowledge of data on component

parts. This study has been motivated by the fact that a re-

liability model must include two forms of failures. Namely,

failure of the component by the catastrophic failure of the

parameters, and failure of the component by the drift of the

component parameters. A Markovian reliability model is found

to provide good results for the reliability of an electronic

circuit that incorporates both these forms of failures. A

generalized expression for the reliability of a circuit con-

taining 'r' parameters is obtained. Based on this approach,

the reliability of a specific two resistor circuit is evaluated.

A continuous Markovian representation of the component

parameter drift is based on the assumption that the state of

the component parameter at some future time, given the state of

the component parameter time is independent of the present age

of the component, the previous states occupied, the time spent

in each of the previous states, and the time spent in the pre-

sent state. An analysis of this nature is believed to partially

fill the need for an exhaustive reliability study of electronic

circuits.




