
COMPUTER ARCHITECTURE SIMULATION
USING A REGISTER TRANSFER LANGUAGE,

by

LESTER BARTEL

B. A., Tabor College, 1983

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1986

Approved by:

Majory 'rofessor



.TH-

A11ED5 b565Q3

Table of Contents

List of Figures v

Acknowledgements vi

1 . Introduction 1

1 .1 . Purpose of an Architecture Simulator 1

1 .2 . Instruction Set Processor 3

1 .3 . Machine Cycle Simulator 3

1 .4 . Register Transfer Language 4

1 .5 . Silicon Compilers 6

1 .6 . Definitions 8

2 . Review of Existing CHDLs 10

2 .1 . Representative CHDLs 10

2 .1 .1 . CDL 10

2 .1 .2 . ISP 11

2 .1 .3 . AHPL 11

2 .1 .4 . DDL 13

2 .1 .5 . ADLIB 14



2 .1 .6 . DTMS 15

2 .1 .7 . CONLAN 17

2 .2 . Levels of Hardware Description 17

2 .2 .1 . Circuit Level 18

2 .2 .2 . Logic Gate Level 18

2 .2 .3 . Register Transfer Level 19

2 .2 .3 .1 . Structure Level 19

2 .2 .3 .2 . Functional Level 19

2 .2 .3 .3 . Behavior Level . .20

2 .2 .4 . Instruction Set Level 20

2 .2 .5 . Processor Memory Switch Level 21

2 .2 .6 . Algorithmic Level 21

2 .3 . Applications of CHDLs 21

2 .3 .1 . Descriptive Tool 22

2 .3 .2 . Simulation and Design Verification 23

2 .3 .3 . Design Automation and Hardware Synthesis 24

3 . Introduction to ASIM II 25

3 .1 . Purpose of ASIM II 25

3 .2 . Description of Components 27

4 . ASIM II Operation 30



4.1. Primitives 30

4 .2 . Description of Primitives 31

4 .2 .1 . ALU 31

4 .2 .2 . Selector 32

4 .2 .3 . Memory 33

4 .3 . Implementation Notes 34

4 .4 . Optimization Notes 37

4 .5 . Input and Output 38

5 . Conclusion 39

5.1. Benefits 39

5 .2 . Execution Speed 39

5 .3 . Hardware Construction 41

5 .4 . Future Considerations 42

Bibliography 45

Appendix A ASIM II Documentation Al

Appendix B ASIM II Syntax Bl

Appendix C ASIM II Source Code CI

Appendix D Example Stack Machine Simulator Specification

(Sieve of Eratosthenes) Dl

in



Appendix E Pascal Code for Example Generated by ASIM II El

Appendix F Specification and Hardware Circuit Fl

IV



List of Figures

Figure 3.1. Bit Concatenation 28

Figure 4.1. Alu specification and code generated by ASM II 31

Figure 4.2. Selector specification and code generated by ASIM II 32

Figure 4.3. Memory specification and code generated by ASIM II 34

Figure 5.1. Execution time comparison of ASIM and ASIM II 39



Acknowledgements

I wish to thank Dr. Thomas Pittman for his suggestion of this topic,

and his patient assistance. His suggestions were invaluable in the

preparation of this thesis.

Secondly, I wish to thank my major professor Dr. Virgil

Wallentine, and my committee members Dr. David Gustafson and Dr.

Maarten vanSwaay for serving on my committee, for their encouragement

and input to this thesis.

I also wish to thank my friend Naomi Regier for proofreading this

document and providing thoughtful suggestions to improve this thesis.

Finally, I wish to thank my parents, Albert and Lavina Bartel for

their prayers and encouragement during my graduate studies. This work

would not have been possible without their support.

vi



Chapter One

Introduction

1.1. Purpose of an Architecture Simulator

As computer chips have grown in complexity, the need for tools to

aid the engineer in designing and testing a proposed architecture has

increased greatly. Many of these tools are available as computer

programs, some of which are silicon compilers, RTL (Register Transfer

Language), or ISP (Instruction Set Processor). A silicon compiler deals

with the actual hardware mask generation and can be quite difficult to use.

ISP defines each opcode as an instruction to be executed, and thus is a one

to one replacement of the assembly code to a "high level language". RTL,

which is classified as a CHDL (Computer Hardware Description

Language), lies between silicon compilers and ISP in terms of the level of

abstraction it deals with. This thesis will concentrate on examining and

using an RTL.

Using a software simulator can greatly reduce the cost of designing

a new microprocessor by avoiding physical construction. This physical

construction is usually more error-prone and labor intensive than a



software system due to the need to actually build the circuit under

consideration. Great care must be taken to ensure that wires are hooked up

correctly and that the individual chips are working properly. Also, as

complexity increases, the length and type of connections becomes critical

and may cause problems which are not readily apparent. Some of these

problems can be ignored during the simulation phase without serious

consequence; they can be dealt with during the production of a prototype.

Since the project can be simulated on an existing computer, building a

prototype is not necessary until later in the design phase.

In the past three years, only brief mention is made of CHDLs in the

literature, partially due to manufacturers developing their own CHDL and

retaining it as a trade secret [50]. In light of this, it may be quite difficult

for a single CHDL to become a standard for computer architecture design,

implementation, and comparison. Some of the current CHDL

implementations are relatively old and are more difficult to port over to a

newer and faster computer. In implementing a new CHDL, it is desirable

to promote porting to other computers and to promote standardization of

hardware representation at the register transfer language level. It is

desirable to provide a complete set of primitives with which a designer can

define a circuit.



1 .2. Instruction Set Processor

ISP translates each opcode of the test architecture to an expression

in a high level language where the instruction execution is often

implemented as a large case structure [67]. This level of translation does

not lend itself well to actual circuitry generation, but is useful in designing

an instruction set for the microprocessor to execute and for simulating that

execution. After the instruction set has been generated and tested, it can be

converted to an RTL for further testing. The RTL provides a circuit level

definition of the microprocessor.

1.3. Machine Cycle Simulator

The machine cycle simulator, a technique especially useful in

microprocessor design, is somewhat related to the ISP. In addition to the

capabilities of the ISP, the machine cycle simulator traces the events at each

cycle, thus providing timing information not available via an ISP. This

type of simulator is quite close to an RTL simulator in the type of

information provided by the simulation run. However, the machine cycle

simulator specification is more difficult to convert to an actual circuit than

the RTL specification because it still does not represent the hardware in

detail.



1 .4. Register Transfer Language

RTL machine simulation is the process whereby a program written

in the assembly code of the machine to be simulated is read and executed by

a different machine. The result is the same as executing the code on the

architecture being simulated [67]. Other forms of RTL simulation employ

a machine which has characteristics that are not physically present. This

virtual machine may have more memory or a different instruction set,

among other characteristics.

An RTL defines the instruction set of a microprocessor for

simulation in terms of a small set of register transfer statements. If the

RTL statements are carefully chosen, they will remain unchanged as

instruction sets are defined for various microprocessors. An RTL is not

limited to microprocessors, but can also be used for almost any other piece

of digital electronic hardware. This extends its usefulness beyond

computer architecture to the electrical engineering field.

The basic composition of an RTL for a microprocessor is as

follows. The microprocessor is defined in terms of a set of register

transfers which carry out the intended function in the same way the actual

microprocessor would perform it. These register transfers are a mapping

of the data flow through the microprocessor. A translator then reads these

instructions to simulate the proposed architecture. The actual circuitry and



the register transfer code generate exactly the same final output. In

addition the register transfer execution will typically produce statistics

about the actual simulation, such as execution cycles required, memory

accesses, and other related information. This extra output is invaluable

when the designer desires to view the internal states of a microprocessor.

With the RTL model, this is easily accomplished; however, with the

hardware prototype, this can be difficult or impossible due to the need to

attach additional hardware to monitor the various signals.

A model of a real (or proposed) microprocessor can be defined

using an RTL. Tests may be run comparing different implementations of

the same languages, or of various languages. Studies of this sort could then

be applied to various compilers running on this microprocessor.

Comparisons could be made on execution efficiency of the compiler. In

this way, a compiler writer could ascertain the statements for which the

compiler has difficulty generating efficient code, and possibly deal with

these inefficiencies at the RTL level. These inefficiencies can be dealt with

by changing the register transfer sequences within the microprocessor to

make it more closely conform to the way compilers tend to generate code.

More importantly, the architecture could be changed with no hardware

modifications.



1.5. Silicon Compilers

In this study, an RTL compiler written in Pascal is presented that

will read the RTL specification and produce a Pascal program. This

resulting program will then simulate the target architecture and produce

output at each cycle of the simulation. There exists an RTL interpreter

with the same input specification. The compiler written in this study

generates code which executes approximately an order of magnitude faster

than the current simulator. The present interpreter is used in the

classroom at Kansas State University, and is too slow for use in large

projects.

Silicon compilers can be used to produce a mask used in the actual

production of the individual chips (microprocessor, controllers, and other

specialized chips), and thus find their way into the CAD/CAM category.

However, the silicon compiler is not very well suited for the testing of the

design functionality of microprocessor chips. Also, the silicon compilers

available today are quite inefficient both in terms of ease of use and

production efficiency (in terms of physical layout of the gates on the actual

chip surface) of the final chip specification [47]. An RTL is needed in the

early stages of development to ease the design of the chip that actually

performs the desired function.



Whereas a silicon compiler is concerned with the actual connection

and layout of the gates in a chip, an RTL avoids the gate level. Since the

RTL is a higher level of abstraction, a correct design is easier to build with

an RTL than with a silicon compiler. Occasionally gates must be simulated

in a microprocessor description, for example by saving certain internal

flags or operation results in flip-flops or to describe a specific interface

from memory to an ALU (Arithmetic Logic Unit). After the RTL

specification has been designed and rigorously tested, the design may then

be converted to a language suitable for a silicon compiler which will

produce the actual layout diagrams for production.

1.6. Definitions

In simulation languages, just as in programming languages, the

terms "procedural", "nonprocedural", "serial", "parallel", and

"concurrent" are very common. These terms are discussed below.

In a programming language, strict timing constraints seldom need

to be enforced. In contrast, for a simulation language, timing is critical to

the analysis of a design. Many times the designer must know the exact

cycle in which a particular event occurs so that the information can be

captured and analyzed properly. Each simulated unit has a "simulation

time" associated with it. The simulation time (or clock cycle) carries with



it the values of different components (registers, gates, flip-flops, etc.)

corresponding to that particular simulation time.

Depending on the sequencing structure and control structure of the

underlying language, a language can be classified as procedural or

nonprocedural. A set of statements is procedural if the statements are

executed in the same order as they are specified. This is typical of most

programming languages in use today. In a nonprocedural language, the

order of execution is not necessarily the same order as the statements are

specified.

The terms parallel and serial are commonly used in conventional

programming languages as well as CHDLs. In CHDLs the term parallel

means that the actions specified are to be executed simultaneously or in the

same simulation time. The term serial means one after the other. Two

sequencing mechanisms exist in programming languages. Procedural

means that the statements are executed in the same order as specified. The

term nonprocedural refers to the absence of a sequencing mechanism.

Concurrent means that two (or more) processes can be executing at the

same time, and that any communication between the processes must be

explicitly specified. The term concurrent is not synonymous with the term

parallel. If statements are executed in parallel, all are executed in the same

simulation time. No concept of simulation time exists in concurrent



operations. Parallel blocks are synchronous, while concurrent blocks are

asynchronous. In some CHDLs, a condition is associated with each

statement or statement body. In these languages, all statement bodies with a

true condition are executed in a nonprocedural and parallel fashion.



Chapter Two

Review of Existing CHDLs

2.1. Representative CHDLs

A number of CHDLs have been designed to describe different levels

of hardware. Each has been developed for a specific use at a certain level

of abstraction. Some CHDLs lie on the border of two abstraction levels

and use features from both levels, but may not be able to fully implement

both levels of abstraction. The following section presents a brief review of

several existing CHDLs. The levels of abstraction are described later in

this chapter.

2.1.1. CDL

CDL (Computer Design Language) is an Algol-like hardware

description language developed by Yaohan Chu at the University of

Maryland. CDL describes the structural and functional parts of a digital

system [50]. The structural components (memory, registers, clocks, and

switches) are declared explicitly at the beginning of the description. The

functional behavior of each element is described using operators. The

10



system can be described at only one level of abstraction. There is no

subroutine facility in CDL, thus making it unsuitable for modular

description of a system. However, its simple structure and portability

(implemented in Fortran) have made CDL a popular language. The

language makes use of Fortran's operators as well as user defined

operators. CDL can be used to describe complex digital systems. CDL was

implemented in two parts: a translator and a simulator. The translator

performs a syntax check of the description and translates it into a set of

tables and a polish string program. The simulator executes the output of

the translator and can accept simulation parameters through the

commands: LOAD, OUTPUT, SWITCH, RESET, and SIMULATE. CDL

does have some drawbacks. It does not easily lend itself to hardware

generation. Also, because of the nonmodular description feature of CDL

and the difficulty in using the polish string output of the translator to

generate logic diagram level, it is unsuitable for a Computer-Aided Design

And Test (CADAT) system.

2.1.2. ISP

ISP (Instruction Set Processor), as designed by Bell and Newell,

was initially intended to be used only for documentation purposes [10, 24].

Now, however, it is being used for design automation, software

11



generation, program verification, and architecture evaluation. ISPS

(Instruction Set Processor Specifications) is a computer language based on

ISP for which a compiler and simulator have been produced. ISPS is a

procedural language to describe instruction sets. Since it simulates an

architecture at the instruction set level, ISPS does not provide any data

concerning concurrency, timing, or interconnection of processors. A user

can arbitrarily stop, start, and count events during the execution of the

simulator, or examine and modify the contents of registers. By comparing

the results of the simulation with expected results, the user can detect

errors in the design of the system. ISPS is best suited to provide

performance information for a hypothetical architecture.

2.1.3. AHPL

AHPL (A Hardware Programming Language) is a procedural

language developed by F. J. Hill at the University of Arizona. Like CDL,

AHPL is popular and well documented [37]. AHPL has applications in

three areas: documentation, design verification and automatic design. It is

supported by a simulator which provides design verification. A hardware

compiler provides automatic design by translating AHPL descriptions to

wiring lists specifying the interconnections of gates. The principle

weakness in AHPL is its difficulty to express parallelism.

12



2.1.4. DDL

DDL (Digital system Design Language) is a complex and powerful

block oriented nonprocedural language [25]. It is based on finite state

machines and is designed to describe digital systems at the boolean

equation, register transfer and algorithmic levels. Many of its features are

similar to CDL, but in addition it allows the design to be specified in a

block oriented fashion. This allows the designer to construct a portion of

the system, test it, and use that block as a module which is already

debugged. These blocks are expanded to their boolean equation

equivalents for actual simulation [50]. By incorporating this capability,

DDL has lost some of its flexibility as a simulator. DDL is well supported

by software. A translator and simulator were implemented in IFTRAN on

a Harris 6024 machine. This translator converts DDL descriptions to a set

of boolean equations and register transfer expressions which can be used

for hardware compilation. DDL is so well documented that it is used as an

instructional example in two text books [15, 23].

2.1.5. ADLIB

ADLIB (A Design Language for Indicating Behavior) is a part of

the SABLE (Structure And Behavior Linking Environment) simulation

and design automation system developed at Stanford University [64].

13



ADLIB was developed to describe the computer component types. The

interconnection of the component types is specified in a separate language,

SDL (Structure Design Language). This ADLIB/SABLE/SDL system is

designed to describe digital systems at different levels of abstraction. This

is an important feature which allows the designer to describe a subsystem,

and use that description in several other places without having to replicate

the description. This saves time by reducing the amount of work necessary

in the description, as well as reducing the number of potential design

errors. The multi-level description and simulation approach also aids in

validating a lower level design. For example, a system can be described at

the behavior level and also at the structure level. Both simulation results

can then be compared to assure the designer of similar descriptions.

ADLIB is a superset of Pascal and thus is strongly typed like Pascal.

It extends Pascal with constructs to specify synchronous and asynchronous

timing, extendable data types, subprocesses and intercomponent signaling.

It is well supported in software.

The strength of ADLIB is also its weakness. ADLIB works well at

the behavior level, but does not work well at the structure level. Structure

level simulation is an important aspect of CHDLs which are used to design

a circuit for the specification.

14



2.1.6. DTMS

DTMS (Descriptive Techniques for Modules and Systems) was

developed at Kansas State University to better describe digital systems

consisting of the interconnection of complex MSI (Medium Scale

Integration) and LSI (Large Scale Integration) modules [55]. Descriptions

in DTMS reflect the modular hardware of modern digital systems. Module

functions are described at a high behavior level, and their interconnections

are specified at the structural level. These modules communicate to each

other through busses. DTMS allows both procedural and nonprocedural

constructs to be expressed through PROCESS and NONPROCESS

sections. It is not implemented in software; instead it is intended as a

documentation tool.

2.1.7. CONLAN

The development of CONLAN (CONsensus LANguage) goes back

to the first Symposium on Hardware Descriptions Languages (HDL) at

Rutgers University [43, 44, 45]. The lack of an industry acceptance of the

dozens of HDLs then in existence prompted a team of people from the

United States and Europe to develop a language in which HDLs could be

standardized. There are several reasons why acceptance of existing HDLs

is so low:

15



1. None of the languages alone is sufficient to describe all aspects of

a system and cover all phases of the design process.

2. Languages of different scope are syntactically and semantically

unrelated.

3. Few of the languages are formally defined.

4. Only a few languages are implemented.

5. Descriptions are represented by character strings rather than

graphically.

6. There exists no complete hardware design methodology to tell

how to use HDLs effectively.

The main emphasis of CONLAN is to address the first four

deficiencies. CONLAN itself is not an HDL, but its primary objectives are

to 1) provide a common formal syntactic and semantic base for all levels of

hardware description, 2) provide a means for the derivation of user

languages from this common base, and 3) support CAD tools for

documentation, certification, synthesis, and so on. Although many

concepts of existing CHDLs appear in CONLAN, it is not intended as a

language standard, but instead is a formal system which allows designers to

construct HDLs of their choice in a consistent and unambiguous way. In

this way, the industry will be able to more efficiently use HDLs in the

entire phase of hardware development.

16



2.2. Levels of Hardware Description

CHDLs have become vital in the design of microprocessors and

related electronic equipment. As computers have become more complex,

tools have been developed to aid the engineer in the development of the

circuitry which makes up a computer system at different levels. Six levels

of hardware description are widely recognized among hardware designers

[50]. These are 1) circuit level, 2) logic gate level, 3) register transfer

level, 4) instruction set level or programming level, 5) processor memory

switch level, and 6) algorithmic level. A number of CHDLs have been

developed for use at the various levels of abstraction of the design of a

microprocessor.

2.2.1. Circuit Level

The components described at the circuit level are the transistors,

diodes, resistors, etc. which make up the various gates of an electronic

system. An electronic design is described as the interconnection of these

components and is the lowest level of abstraction recognized among

computer hardware designers. (There exist lower levels which are of

interest to engineers who build and test these components, however, these

levels are not usually used by the computer hardware developer.)

17



2.2.2. Logic Gate Level

The logic gate level is the description of a piece of hardware at the

logic gate (AND, OR, NOT, etc.) level. Its primary purpose is to describe

SSI (Small Scale Integration), MSI (Medium Scale Integration), and some

LSI (Large Scale Integration) circuits. The behavior is given by a set of

boolean equations, and timing is on the order of a gate delay. With the

advent of VLSI (Very Large Scale Integration), the computer design

engineer will have less use for this type of representation, and will need a

system that begins to model the behavior of the circuit instead of the

structure.

2.2.3. Register Transfer Level

The register transfer level is where most CHDLs are implemented.

At this level, registers are the basic component of the system. These

languages model the transfer of data between registers, and logical and

arithmetic expressions. Some examples of CHDLs at this level are AHPL,

DDL, and CDL. Most CHDLs operate at the register transfer level. This

level has been broken down into three sub-levels [9]. These are 1)

structure level, 2) function level, and 3) behavior level.

18



2.2.3.1. Structure Level

Structure level description consists of describing the system using

actual hardware components. Operators have physical counterparts. The

structure level partially corresponds to the logic gate level. The structure

level can describe hardware at the logic gate level, but generally only does

so when necessary. It typically uses components at a higher level of

abstraction.

2.2.3.2. Functional Level

Descriptions at the functional level consist of using actual hardware

components and their functional relationship rather than the connections

between them. Unlike the structure level, operators do not have physical

counterparts.

2.2.3.3. Behavior Level

The behavior level describes the external behavior of the system.

Its purpose is to describe the algorithm used by the hardware in terms of

its input and output functions. This level is similar to some of the higher

levels of abstraction.

19



2.2.4. Instruction Set Level

ISP is an example of a CHDL at the instruction set level. At this

level, the instruction set of the microprocessor is simulated. The bits that

make up the program being simulated are interpreted by a specific set of

rules, and results are produced based on these rules. This is a functional

description of a microprocessor whereas the previous levels describe the

structure of the underlying hardware. Using the instruction set level, an

engineer can first develop a workable instruction set (behavior level), and

then concentrate on the hardware (structure) level.

2.2.5. Processor Memory Switch Level

The Processor Memory Switch (PMS) level describes the system in

terms of processing units, memory components, peripherals, and switching

networks. Only the major properties of the system are defined at this level.

These properties include costs, memory capacities, system peripherals, and

information flow rates. One use for this level is to determine the cost

effectiveness of a particular design for a microprocessor. Another use is

its application as a formal feasibility study tool for the engineer.

20



2.2.6. Algorithmic Level

The highest level of abstraction is the algorithmic level. At this

level, only the algorithm executed by the hardware is important. This is an

important concept, especially considering the complexity of circuitry in

modern microprocessors. The engineer can build a module using a lower

level of abstraction. When the module is completed, it can be expressed as

an algorithm in order to reduce the complexity of the simulator

specification.

2.3. Applications of CHDLs

Most of the work in the area of CHDLs deals with the functional and

behavior level of the register transfer language level. Several simulators

exist on a variety of computers which operate at the functional and

behavior level. The operations which define the hardware in some of these

CHDLs are quite complex both in implementation and in the way they are

used by the hardware engineer.

CHDLs have important applications in the computer aided design,

documentation, and design automation systems. The applications fall into

three main categories. These are 1) descriptive tool, 2) simulation and

design verification, and 3) design automation and hardware synthesis [63].

A discussion of each application area is presented next.

21



2.3.1. Descriptive Tool

In any complex system development cycle, a product needs to be

described before producing it, and while building and testing it. Many

CHDLs are intended as a descriptive tool. Later some of these have been

modified for use with the other two application areas. After describing the

product, the description must be communicated to other members of the

design team and documented. The efficiency of the design team's efforts

can be increased with the use of a standard tool. Desirable features include

a consistency check of the documentation, as well as an automated

documentation revision system. As these tools become more sophisticated,

they will generate additional useful information.

2.3.2. Simulation and Design Verification

Another role of a CHDL is simulation and verification. As a system

is being developed, its actions can be simulated with a CHDL simulator.

The simulator output can then be checked with the expected results. Since

no actual hardware has been built in this phase, it is relatively easy to make

a change to the design, to correct a problem or experiment with a different

design. Simulating a design can also assist the engineer in verification of

the design. As designs become more complex, formal proof that it will

work with all possible sets of input data becomes more difficult. With the

22



help of a CHDL, the accuracy of a design can be tested. One way to do this

is by fault injection, the process of inserting a fault in the specification to

cause errors (by design) in the simulation run. Thus if a catastrophic

failure occurs on a certain type of fault, additional design work is

necessary to reduce the impact of the fault or reduce the chances of that

kind of fault occurring.

2.3.3. Design Automation and Hardware Synthesis

Additionally, the design process and hardware synthesis needs to be

automated to increase designer productivity. With a CHDL, design

automation is a realistic goal. As well as providing a standard method of

describing a particular system, the CHDL can be designed to produce a

specification for physical construction. In many cases the hardware

generated by these systems is not optimal, and may need hand optimization.

However, as CHDLs become more sophisticated they will produce better

specifications for the physical construction.

23



Chapter Three

Introduction to ASIM II

3.1. Purpose of ASIM II

Although the existing CHDLs have a large command set, a small

command set which provides a maximum of functionality is most

desirable. Thus it is the purpose of ASIM II (Architecture SIMulator II) to

realize this goal. ASIM II (and its predecessor ASIM) has a very small

command set, namely ALU, selector, and memory operations. With these

three primitives, it is possible to represent nearly any hardware device.

The primary advantage of the small command set is the ease of

remembering the different commands. If the entire command set is easily

learned by the hardware designer, a specification can be easily written

without the need to consult the users manual for the description of the

semantics and syntax of an exotic command utilized in certain designs.

This ease of use enables the designer to use ASIM II in place of a larger

language.

When writing a simulator it is important to consider that simulation

at this level is very likely to take considerably more execution time than the

24



actual architecture would require. The machine doing the simulation as

well as the machine being simulated will, of course, make a great deal of

difference. Since most work will likely involve simulating relatively new

architectures on an existing machine, simulation is expected to be quite

slow in comparison to what the actual execution speed of the simulated

device would be.

The major benefit of a RTL is to allow the circuit designer to

produce a circuit using a software system to evaluate the performance

characteristics of the design. Another benefit is in the classroom situation

where a student will be able to use the simulator instead of or in addition to

the actual hardware lab. ASM II is motivated by the need for a simulator

which would run at an acceptable speed for a significant specification. The

existing simulator, ASIM, provides an acceptable degree of usefulness, but

its simulation time is too slow to simulate a usable microprocessor

specification. ASIM was written in Pascal by Dr. Thomas Pittman on the

Macintosh computer. It was ported to a Harris computer and later to the

Vax 1 1/780. ASIM reads the specification into tables, and produces a

simulation run by interpreting the symbols in the table. ASIM II, on the

other hand, produces Pascal code from the specification which is then

compiled by a standard Pascal compiler and executed. The execution time

25



of ASIM II is less than that of ASIM by approximately an order of

magnitude. This reduction is offset in part by a longer compile time.

3.2. Description of Components

The three functional units in ASIM II are 1) ALU (Arithmetic and

Logic Unit), 2) Selector, and 3) Memory. These three components are

sufficient to describe many different hardware projects ranging from a

simple counter to a stack machine and beyond. A description of each of the

components follows. See Appendix A for the formal documentation of the

simulator, and Appendix B for the syntax diagrams which define the

language.

The format for an ALU is:

A name function left right

where name is the name of the ALU, function is an expression which

determines the operation to be performed on left and right, the two

operands.

The format for a Selector is:

S name selector valueO valuel value2 . . . valuen

where name is the name of the Selector, and the value of selector forms

an index to the appropriate value in the value list.

2ft



The format for a Memory is:

M name address data operation number [initial

values]

where name is the name of the memory, address is the address (0 based) of

the memory, data is the expression which gets stored in the memory (for a

write operation), operation is the operation which is performed on the

memory, number is the number of memory cells, and initial values is

an optional list of values from which the memory gets its initialization data.

Most fields in the components may contain a complex expression

(see Appendix B for a complete description of an expression and where the

expression can occur). This expression can be composed of the

concatenation of several components, and numeric constants. Thus

mem. 3. 4, #01, count .1 means to concatenate the fourth and fifth bits (bit

positions are zero based) of mem with the binary string oi and the second bit

of count giving the result shown in Figure 3.1.

27



mem. 3. 4, #01, count .1

I I I I I I Ha j_l 1 1 1 1 1 1 1 1

1

count

lOIOIOIOIOIOlOlll

Figure 3.1 Bit Concatenation

28



Chapter Four

ASIM II Operation

4.1. Primitives

ASIM II has a small instruction set with which it is possible to

express nearly any piece of hardware. It lacks no primitive which is

needed to form a more complete command set to describe digital electronic

equipment. The primitives ALU, selector, and memory have been used to

describe a small stack machine which is able to execute a set of stack

operators. The popular Sieve of Eratosthenes (a prime number generator

implemented with a standard algorithm to assure similar test conditions

among the various machines being benchmarked) has been implemented as

a series of stack commands and is simulated using this simulator

specification. The stack machine implementation of the Sieve of

Eratosthenes is shown in Appendix D.

4.2. Description of Primitives

Each component in the specification can be replaced with a

hardware component when constructing the prototype of the specification.

29



These hardware components can be purchased and easily connected

together in the way described by the device description. A description of

each primitive follows.

4.2.1. ALU

The ALU primitive is a software representation of a hardware

ALU. In some cases, the ALU describes gates (NAND, AND, OR, NOT,

etc.) and in other cases an actual arithmetic unit capable of addition,

subtraction, multiplication, division, and comparison. Each ALU has three

inputs (see Section 3.2). The function input tells the ALU which operation

to perform. If the operation is a constant, the ALU may be implemented as

a series of gates which perform that one function; otherwise, an actual

ALU may be used, with the function bits determining its actual function.

The left and right operands form the data inputs to the ALU, while the

name contains the output of the ALU for use as input to another

component. See Figure 4.1 for an example of an ALU specification and the

code which ASIM II generates to simulate that specification. The ALU

named "alu" shows the generic code generated for an ALU. The ALU

named "add" shows the optimized code for a function whose value is a

constant and whose function is to add the left and right operands. The

30



Specification:

A alu compute left 3048
A add 4 left 3048

Code generated:

alu := dologic (compute, left, 3048) ;

add := left + 3048;

Figure 4.1 ALU Specification and Code Generated by ASM II

function dologic is shown in Appendix E with the code generated for the

stack machine.

4.2.2. Selector

A selector is usually implemented as a data selector/multiplexor

when the description is used to construct a hardware circuit. The selector

input selects the input (valueO, valuel, ..., valuen) which is connected to the

output. Again, the name of the selector is used to hold the output value for

use as input to another component. See Figure 4.2 for an example of the

code generated by ASIM II.

31



Specification:

S selector index valueO valuel value2 value3

Code generated:

case index of
selector = valueO;

1 selector = valuel;
2 selector = value2;
3 selector = value3

end;

Figure 4.2 Selector Specification and Code Generated by ASIM II

4.2.3. Memory

A memory is a much more complicated device. The hardware

representation can be implemented in a variety of ways depending on the

actual use of the memory, and the number of cells in that memory. If the

memory is a single location, it will typically be represented as a flip-flop,

or a set of flip-flops to hold several bits, i.e. a register. If the memory is

composed of several cells, it may be represented as a ROM or RAM,

depending on the type of operations that may be performed on it.

Automatic logic generation of a circuit from the specification can be quite

difficult if the designer wishes to have the circuit optimized to a reasonable

32



extent. However, the primary goal of ASIM II is to simulate a design in

preparation of building a prototype. See Figure 4.3 for an example of the

code generated from an ASIM II specification of a memory. (See next

section for a description of the various temporary variables used.)

4.3. Implementation Notes

An ALU is implemented as a procedure call which accepts as inputs

the function, left, and right operands. A case statement then decodes the

function, and computes the result of the function applied to the left and

right operands.

A selector, consisting of a case statement with the selector operand,

provides the index to the list of cases. If the value of the selector exceeds

the number of cases, a runtime error will result. It is up to the

programmer to ensure that there are enough cases for the range of selector

values.

Memories are implemented as a zero-based array of integers. If the

number of memory locations is specified as negative, the memory is

initialized with the initializer list. A memory in ASIM II, just like real

hardware, has a delay from when it is accessed to when it actually provides

the result of that access. This delay is one cycle.

33



Specification:

M memory address data operation -4 12 34 56 7£

Code generated in initialization procedure:

memory [0] = 12
memory [1] = 34
memory [2] = 56
memory [3] = 78

Code generated in main program:

Compute new value and handle input and output

case land (operation, 3) of
0: tempmemory := memory [address]

;

1 : begin
tempmemory := data;
memory [address] : = data

end;
2: tempmemory := sinput (address)

;

3: begin
tempmemory := data;
soutput (address, data)

;

end
end; {case}

Figure 4.3 Memory Specification and Code Generated by ASM II

34



Trace writes

if land (operation, 5) = 5 then
writeln(' Write to memory at ' address :1, '

: ',

tempmemory : 1 )

;

Trace reads

if land (operation, 9) = 8 then
writeln ( ' Read from memory at '

, address:!, '
: ',

tempmemory : 1 )

;

Figure 4.3 (continued)

To eliminate the need for actual parallel processing of the components, the

components are sorted in a dependency order. If the value of a selector

requires the result of an ALU, the ALU's value is computed first, etc.

Memories are not sorted. Instead, their results are stored in temporary

memories (similar to the memory buffer register in actual hardware)

while the new value is being computed.

The values of the components (if traced) are printed after their new

values have been computed. In the case of memories, the value used in the

computation is printed before it is updated with the new value it may have

received during that cycle.

35



4.4. Optimization Notes

In implementing ASIM II, an emphasis was placed on optimization

of the code produced by the compiler in an effort to reduce execution time.

This optimization has a goal of reducing the number of procedure calls in

the program. The generic procedure takes the function of the the ALU,

and returns the value based on the three inputs, namely function, left, and

right. If the function is a constant, code is generated which performs the

function inline, rather than call the procedure. Similarly, if the memory

operation is a constant, the case structure is eliminated and only the

appropriate action is performed on the memory.

4.5. Input and Output

Input and output is possible with ASIM II, and models actual

hardware designs in use today by using memory mapped I/O. Memory

mapped I/O treats the input and output as a special case of memory. The

I/O is received from the standard input or sent to the standard output in this

simulator. ASIM II utilizes a procedure for the I/O, thus making changes

in the handling of I/O easy to implement. A memory in the specification

can contain the input values for execution as well. For example, the stack

machine description takes its input directly from the specification. A RAM

in the description contains the code which is executed. Its output is sent to

36



the standard output and consists of the prime numbers generated by the

simulator.

37



Chapter Five

Conclusion

5.1. Benefits

ASIM II is an important tool for the design of a digital electronic

circuit. It provides all of the necessary primitives to express nearly any

circuit in a form suitable for simulation. Since the design can be simulated

on a software system, actual hardware prototypes need not be built until

later in the design phase. Secondly, it is a documentation tool (at a low

level) useful for generating hardware that performs the function described

in the specification. A team of designers can use this specification format

to convey various designs to one another in a standard way.

5.2. Execution speed

The simulation time of ASIM II has been reduced significantly over

that of its predecessor ASIM (see Figure 5.1). The data in Figure 5.1 was

taken from the compile and execution time of the stack machine example in

appendices D and E.

38



ASIM
Generate tables 10.8

Simulation time 310.6

ASIM II

Generate code 34.2

Pascal Compile 43.2

Simulation time 15.0

Traditional Methods

Generate Prototype 100000

Run Prototype 0.01

Figure 5.1 Execution time comparison (in seconds) of ASIM and ASIM II

Both ASIM and ASIM II executed the specification for 5545 cycles (the

maximum number of cycles allowable in this specification of the stack

machine). The best of 5 time trials was taken with 3 of the timings taken

very early in the morning to reduce the effect of other user activity causing

excessive variations. ASIM uses 10.8 seconds of cpu time to prepare the

tables necessary for simulation. 310.6 seconds are used in the actual

simulation . ASIM II used 34.2 seconds to generate the Pascal code from

the specification, and 43.2 seconds to compile the Pascal code to the object

code. The simulation used only 15.0 seconds. Thus if the simulation

39



preparation times are not considered, (the simulator is used more often

than code is generated and compiled for it) ASIM II runs approximately 20

times faster than ASIM. Including the preparation times it is nearly 2.5

times faster. This reduction has come at the cost of increased preparation

time for large specifications. This includes the Pascal compile time to

translate the code generated by the simulator into machine code. In

contrast to the specification compile time, hand wiring of a prototype

would take several days. Execution of the prototype would be so fast (real

time) that monitoring states in the circuit would be difficult. However, a

prototype is a necessary phase of any hardware project.

5.3 Hardware Construction

A hardware circuit can be easily built from a hardware

specification in ASIM II. Essentially, ASIM II is a list of hardware

components with the wiring interconnection specified by the names of the

components and their bit fields. If the bit field exists in the specification,

then it is known that only the particular pins corresponding to that

component are hooked up to to the named component. The specification is

most like a block diagram of the circuit. The connections between

components are not labeled with pin numbers nor actual component types.

Enough information exists so that the engineer can choose appropriate

40



components which perform the function of the specified component. See

Appendix F for an example of a hardware specification and circuit for a

small 10 bit microprocessor with five instructions (load, store, branch,

branch on borrow, and subtract) and 128 bytes of program and data

memory. Note that each of the components in the specification has a

hardware component represented in the diagram. It should be noted that

this is not an optimum circuit, but rather a reflection of the ASIM II

specification and demonstrates the ease of translating the specification to an

actual hardware circuit. Actual hardware generation is beyond the scope

of this thesis, however, it is appropriate to show a small example to

demonstrate the value of ASIM II for larger projects.

5.4. Future Considerations

The ALUs, selectors, and memories provide a slightly higher level

of abstraction than most other CHDLs provide. This makes hardware

description somewhat more modular in that the lower level primitives such

as gates are not expressed unless they are necessary in the description.

Thus, a complete description is smaller in ASIM II than in most of the

other CHDLs.

As with all software, there is always room for improvement.

Further optimization of the code is possible using heuristics to determine

41



which memories do not need temporary variables in which to store results

while the new values are computed for the memories.

Modularity is an important concept in today's programming

languages. ASIM II, however, does not have any high level modularity

construct. The behavior of an electronic circuit is difficult to express in a

modular fashion without providing the the actual description of the module

and expanding that description at compile time. As semiconductor prices

continue to fall and microprocessors gain more features, modularity will

become more important. The designer will be less concerned over the

amount of silicon required for the circuit than the additional time needed to

produce a specification with fewer gates (typically less modular due to the

gate reduction techniques).

ASIM II has become a valuable tool for small digital hardware

projects. With improved speed, and modularity, it could become even

more useful for simulating hardware components at the behavior and

structure levels.

42



Bibliography

1

.

Computer Hardware Description Languages and their Applications.

IFIP 1983.

2. Microprocessor Development and Development Systems. 1 982

3. Microprocessor Systems: Software and Hardware Architecture.

1984

4. Alexandridis, Nikitas A., Microprocessor System Design Concepts.

1984.

5. Baer, Jean-Loup, Computer Systems Architecture. Computer
Science Press, Rockville, Maryland 1980.

6. Ballieu, G., Lewi, J., and Willems, Y. D., "A Microprogramming
Language at the Register Transfer Level", Microprocessing and
Microprogramming, Oct, Nov, Dec 1981. pl79-188.

7. Bara, J. Born, "A CDL Compiler for Designing and Simulating

Digital Systems at the Register Level". p96-102. Proceedings of:

1975 International Symposium on Computer Hardware Description

Languages and their Applications. Sept 3-5, 1975. New York NY.

8. Barbacci, Mario. "An Architectural Research facility - ISP
Descriptions, Simulation, Data Collection", pg 161-173. AFIPS
1977.

9. Barbacci, Mario R. "A Comparison of Register Transfer

Languages for Describing Computers and Digital Systems", IEEE
Transactions on Computers, V24 N2 (Feb 1975) pi 37- 150.

10. Barbacci, M., "Instruction Set Processor Specifications (ISPS): The
Notation and Its Applications", IEEE Transactions on Computers,

Vol C-30, No. 1, January 1981.

43



11. Barbacci, M., "Instruction Set Processor Specifications for

Simulation, Evaluation, and Synthesis". 64-72. Proceedings of:

The Sixteenth Annual Conference on Design Automation. June
25-27, 1979. San Diego, Calif. Hightower, D. W. (Ed.)

12. Barbacci, Mario R., and Parker, Alan., "Using Emulation to

Verify Formal Architecture Descriptions". Computer, VI 1 N5
(May 1978) p51-56.

13. Blasewitz, Robert M., Microcomputer Systems:
Hardware/Software Design. 1982.

14. Borrine, D. "LASCAR: A Language for Simulation of Computer
Architecture", pi 43- 152. Proceedings of: 1975 International

Symposium on Computer Hardware Description Languages and
their Applications. Sept 3-5, 1975. New York NY.

15. Breuer, Melvin A., Design Automation of Digital Systems.
Prentice Hall, Inc., Englewood Cliffs, N.J. 1972.

16. Burris, Harrison R. "Instrumented Architectural Level Emulation
Technology", pg 937-946. AFIPS 1977.

17. Chang, S. J. "Some Applications of Hardware Description

Languages in Real-time Digital System Development", pi 81 -182.

Proceedings of: 1975 International Symposium on Computer
Hardware Description Languages and their Applications. Sept 3-5,

1975. New York NY.

18. Chiang, Mike, and Palkovic, Richard, "LCC Simulators Speed
Development of Synchronous Hardware", Computer Design,

March 1, 1986, p87-92.

19. Chu, Yaohan, "Why do we Need Computer Hardware Description

Languages?". Computer, Chu, Yaohan, Dec 1974. pi 8-22.

20. Dasgupta, Subrata, "On the Verification of Computer Architectures

Using an Architecture Description Language", Department of

Computer Science, University of Southwestern Louisiana,

Lafayette, Louisiana.

44



21. Dasgupta, Subrata, and Olafsson, Marius, "Towards a Family of

Languages for The Design and Implementation of Machine
Architectures", Department of Computing Science, University of

Alberta, Edmonton, Alberta Canada.

22. Dennis, Jack B., "Computer Architecture and the Cost of
Software", Computer Architecture News, Vol 5, No 1, April 1976,

Pgl7.

23 Dietmeyer, D.L., Logic Design of Digital Systems, 2nd. ed., Allyn
and Bacon, 1978.

24. Djordjevic, J., Ibbett, R. N., and Barbacci, M. R., "Evaluation of

Computer Architectures Using ISPS", Proceedings of the Institute

of Electronics Engineering, PartE, 127 (4), 1980, p 126.

25. Duley, J.R., and Dietmeyer, D. L., "A Digital System Design
Language (DDL)", IEEE Transactions on Computers, C-17 (9),

1968, p850.

26. Evangelisti, C. J., Goertzel, G., Ofek, H., "Designing with LCD:
Language for Computer Design", IEEE 1977 Design Automation
Conference, p 369.

27. Franta, W. R„ and Giloi, W.K. "APL*DS: A Hardware
Description Language for Design and Simulation". p45-52.

Proceedings of: 1975 International Symposium on Computer
Hardware Description Languages and their Applications. Sept 3-5,

1975. New York NY.

28. Fuller, Samuel H. "Evaluation of Computer Architectures Via Test

Programs", pg 147-160. AFIPS 1977.

29. Gardner, R. I. Jr., Estrin, G., and Potash, H. "A Structural

Modeling Language for Architecture of Computer Systems".

pl61-171. Proceedings of: 1975 International Symposium on

Computer Hardware Description Languages and their Applications.

Sept 3-5, 1975. New York NY.

45



30. Hafer, L., and Parker, A. C. "A Formal Method for the

Specification, Analysis, and Design of Register Transfer Level
Digital Logic". p846-853. ACM IEEE 18th Design Automation
Conference Proceedings. Nashville, Term. June 29-July 1, 1981.

31. Hafer, L. J., and Parker, A. C, "Automated Synthesis of Digital

Hardware", IEEE Transactions on Computers, Vol C-31, no 2,

p93-109, Feb 1982.

32. Hafer, L. J., and Parker, A. C. "Register-Transfer Level Digital

Design Automation: The Allocation Process". p213-219.
Proceedings of: Fifteenth Annual Design Automation Conference.

June 19-21, 1978. Las Vegas Nev.

33. Hahn, Winfried, "Computer Design Language - Version Munich
(CDLM) A Modern Multi-level Language", 1983 Design
Automation Conference, p 4.

34. Hakozaki, Katusya. "Design and Evaluation System for Computer
Architecture", pg 81, AFIPS 1973.

35. Hartenstein, R. W., Fundamentals ofStructured Hardware Design:

A Design Language Approach at Register Transfer Level. Elsevier

North-Holland, Inc., New York, 1977.

36. Hayes, John P. Computer Architecture and Organization.

(McGraw-Hill 1978).

37. Hill, Fredrick J., and Peterson, Gerald R., Digital Systems:

Hardware Organization and Design. New York, John Wiley &
Sons, Inc. 1973.

38. Huen, W. H., and Siewiorek, D. P., "Intermodule protocol for

Register Transfer Level Modules: Representation and Analytic

Tools". p56-62. Proceedings of: Second Annual Symposium on

Computer Architecture. Jan 2-22, 1975. Houston TX.

39. Kumar, K. S. DTMS II - "An Improved Computer Hardware
Description Language for Modules and Systems", Phd Dissertation

Kansas State University, 1982.

46



40. Ma, Perng-Yi. "The Design of a Firmware Engineering Tool: The
Microcode Compiler." pg 87 AFIPS 1981.

41. Mano, M. Morris, Digital Logic and Computer Design. Prentice

Hall, Inc., Englewood Cliffs, N.J. 1979.

42. Marczynski, R. W., Pulczyn, W. T., and Sochacki, J. M. "OSM -

Microprogrammed Hardware Structure Description Language".
pl81-182. Proceedings of: 1975 International Symposium on
Computer Hardware Description Languages and their Applications.

Sept 3-5, 1975. New York NY.

43. Piloty, Robert. "CONLAN - A Formal Construction Method for

Hardware Description Languages: Basic Principles", pg 209 AFIPS
1980.

44. Piloty, Robert. "CONLAN - A Formal Construction Method for

Hardware Description Languages: Language Derivation", pg 219
AFIPS 1980.

45. Piloty, Robert. "CONLAN - A Formal Construction Method for

Hardware Description Languages: Language Application", pg 229
AFIPS 1980.

46. Rauscher, Tomlinson Gene. "Developing Application Oriented

Computer Architectures on General Purpose Microprogrammable
Machines", pg 715-722. AFIPS 1976.

47. Schindler, Max, "Silicon Compilers Travel Rough Roads to

Acceptance", Electronic Design, Vol 34, No 10, May 1, 1986.

48. Schindler, Max, "New Languages Help Create and Test Systems

With no Need for Breadboards", Electronic Design, Vol 34, No 23,

October 2, 1986, p90.

49. Schorr, H., "Computer Aided Digital System Design and Analysis

Using a Register Transfer Language" IEEE Transactions

Electronic Computers, vol EC-13, pp. 730-737, Dec. 1964.

50. Shiva, Sajjan G., "Computer Hardware Description Languages - A
Tutorial", Proceedings of the IEEE, Vol. 67, No 12, December

1979.

47



51. Shiva, Sajjan G., "Combinational Logic Synthesis from an HDL
Description", Proceedings of the 17th Design Automation
Conference, 1980, p550-551.

52. Shiva, Sajjan G., Covington, J. A., "Modular
Descriptoin/Simulation/Synthesis Using DDL", Proceedings of the

19th Design Automation Conference, 1982, p321-325.

53. Shiva, Sajjan G., "Use of DDL in an Automatic LSI Design and Test

System", International Symposium on CHDLs, 1979, p28-31.

54. Shiva, Sajjan G., Patel, D. C, "Simulation Attributs of Computer
Hardware Description Languages", The Radio and Electronic

Engineer, Vol 54, No 1, January 1984, p45-50.

55. Singh, Anil Kumar, "Descriptive Techniques for Digital System
Containing Complex Hardware Components", Phd Dissertation,

Kansas State University, 1981.

56. Smith, William R., "AADC Computer Family Architecture

Questions and Answers", Computer Architecture News, Vol 4, No
3, September 1975.

57. Su, Stephen Y. H., "A Survey of Computer Hardware Description

Languages in the U.S.A.", Computer, December 1974, p45.

58. Su, Stephen Y. H., "Hardware Description Language Applications:

An Introduction and Prognosis", Computer, June 1977, plO.

59. Su, Stgephen Y. H. Computer Hardware Description Languages &
Applications. IEEE New York, NY. 1975.

60. Svobodova, L., Computer Performance Measurement and
Evaluation Methods: Analysis and Applications, New York,

Elsevier North-Holland, 1976.

61

.

Teng, Albert Y., Experiments in Logic and Computer Design. 1 984

62. VanCleemput, W. M. IEEE New York, NY. 1979.

48



63. VanCleemput, W. M., "Computer Hardware Description
Languages and their Applications", Proceedings of the 16th Design
Automation Conference, June 1979, p554-560.

64. VanCleemput, W. M., "An Hierarchical Language for the

Structural Description of Digital Systems", IEEE 1977 Design
Automation Conference, p 377.

65. Villar, E., and Bracho, S., "Checking Sequences for the Control

Unit in Digital Circuits Described by means of Register Transfer

Languages". International Journal of Electronics, V59 Nl 19-31.

66. Wakerly, John F., "Pascal Extensions for Describing Computer
Instruction Sets", Computer Architecture News, Vol 8, No 7,

December 15, 1980, pg 15.

67. Williams, M. H, and Stewart, A. J., "Machine Cycle Simulator for

a Microprocessor". Microprocessors and Microsystems, April

1982, pl31-134.

49



Appendix A

ASIM II Documentation

To invoke ASIM II, type sim [file]. If file is not specified, you

will be prompted for an input file. File contains the specification to be

compiled. After successful compilation, type pc simulator . p in order to

generate executable code (a.out) from the specification.

File format:

The first line must be a comment line starting with the '#' character.

This line is echoed to the code file as a comment. Any number of macros

may follow. A macro begins with a '-' and is followed by a name,

followed by a text string which will be substituted for the macro name in

the definition of components. (No whitespace between '-' and name, and

no whitespace in macro string). A macro may be placed anywhere in an

expression as long as the macro string can legally replace the macro name.

The macro name is entered in the component specification with a
'-'

immediately followed by the macro name, and may be part of any string.

Any character except letters and numbers will delimit a macro name from

Al



the rest of the string. A macro may contain a macro name, as long as that

name has already been defined (cannot be circular or recursive).

The number of cycles the simulator is to run can, but need not be

specified. The format is an '=' sign followed by a decimal integer.

(Whitespace between '=' and integer). If the number of cycles is not

specified, you will be asked how many cycles to execute at the beginning of

the simulation. After those cycles have been executed, you will again be

prompted for the cycle number to continue to.

A list of all component names follows with an '*' immediately

following each name that is to be traced at each cycle. A period ends the

list of names. The names may be listed in any order. Those followed by an

'*', will be printed in the order listed. The component specification

follows the list of names. Components consist of ALUs (A), Selectors (S),

and Memories (M), and may appear in any order. The components will be

sorted to resolve any dependencies. Circular dependencies will generate an

error message providing a clue to the component(s) which are involved in

the dependency. Following is a list of the components:

A name function left right

S name address valueO valuel . . . valuen

M name address data operation number [valueO valuel

. . . valuen]

A2



It is up to the user to provide enough values for all possible address

values in a selector. Otherwise a runtime error will result. If number <

then the memory is initialized with the values listed. The specification

must end with a period.

Notes:

Fields must not contain whitespace. Comments may be placed

anywhere in the file where whitespace is permitted. A comment starts with

a '{' and ends with a '}'. Nested comments are not supported. A runtime

error will occur if the number of sources for the selector is less than the

value of the address, or if a memory address falls outside the declared

range which starts at 0. If the number in memory is less than zero, then

there must be exactly that many initial values provided. All components

are initialized to zero before simulation begins (except memories with

initial values listed).

I/O Memory operations take the memory data from standard input,

or send the memory data to standard output, depending on the read/write

bit. If the address (for both read and write) is 0, then the data is treated as

character data, if the address is 1, the data is treated as an integer,

otherwise the data is treated as an integer, and the address read or written is

A3



printed. These input and output functions are handled as a procedure in

ASIM II, and may be modified by the user if some other action is desired.

Below is a list of ALU functions and memory operations

ALU functions:

1 right

2 left

3 NOT(left)

4 left + right

5 left -right

6 left * 2 Aright (shift left)

7 left* right

8 AND(left, right)

9 OR(left, right)

10 XOR(left, right)

1

1

unused

12 left = right

13 left < right

Memory operations:

read

1 write

2 input

3 output

4 trace writes

8 trace reads

Functions 12 and 13 evaluate to 1 if true, if false.

A4



simulator

macrodef

cycle

i
component

I

Appendix B
ASIM II Syntax

macrodef

string

name

letter

cycle

1
number

letter

digit

Bl



component

® <f> ®
\ ' <r u

name name name

i ' u u
exp exp exp

' 1 ui '

exp exp exp

' u'

exp exp

i

i

r i

number Q
t

r

number

'

r

number

1
r

B2



number

©*
hexint

binint

powerof2

decint

compref

number

exp

subfield

-o

number

7

subfield

number o number

->(#) bitstring

-> compref

B3



digit

-KD-*

-KD-*

-KD-*

-KD-*

hexdigit

bitstring < r

fO^l
i

decint

*(™^i k- bitstr
*o<

r ring

^ J

it
L
^ alS

hexint

fc/Tl *- hexc
*k±/> i

Llglt

powerof2

*r*i » decrrj »

nai

digit

-©-

-KD-

-KD-

w



Appendix C

ASIM II Source Code

* *)

* Author: Lester Bartel *)

* Program name: ASIM II *)

* Date completed: 7 October 1986 *)

*)

* Description: ASIM II is an architecture simulator that *)

* reads an input description from a file and produces *)

* Pascal code which will simulate the specification. *)

* If an error occurs in the specification, the code *)

* generation ceases, and an error is reported describing *)

* the error condition. *)
*

*)
****** *********************************************************)

program simulator (input/ output);

label
1;

const
strsize - 127; {max length of string}
maxcomponents = 500; {max number of components}

type
charset = set of char;
string = array [0 .. strsize J of char;
kindtype = (alu, sel, mem)

;

caseptr = Acasetype;
casetype = record
casevalue : string;
link: caseptr

end; (record}
valueptr = Avaluetype;
valuetype = record

value: integer;
link: valueptr

end; { record}
nameptr = Anametype;
nametype = record

ci



name : string;
print, used: boolean;
link: nameptr

end; {record}
compptr = Acomptype;
comptype = record

used: boolean;
name: string;
link: compptr;
case kind: kindtype of

alu: (funct/ left, right: string)

;

sel: (select: string;
cases : caseptr)

;

mem: (addr, data, opn: string;
number: integer;
values: valueptr)

end; {record}
macroptr "macrotype;
macrotype = record

name, macro: stringy-

link : macroptr
end; {record}

var

token, filename, comment: string;
ch: char;
donereading, err, varflag, endmacrodef, gettokenend: boolean;
inf, sim: text;
numbers, hexnums, letters, whitespace: charset;
numcomponents, numcycles, i : integer;
nametable, nptr : nameptr;
comptable, ptr : compptr;
macrotable: macroptr;
highbits: array [0.. 31] of integer;

function length (a: string): integer;

(* *

<* This function returns the length of the string passed in. *

(* *

begin
length := ord<a[0]

)

end; {length}

C2



procedure concat (var a: string; b: string)

;

*****************************************************;*********,
* i

* This procedure concatenates the string b to the end of '

* string a, returning the string a. >

* i

var index, lena, lenb: integer;
begin

lena:= length (a);

lenb:= length(b);
if lena + lenb > strsize then

lenb:= strsize - lena;
a[0] := chr(lena+lenb)

;

for index := 1 to lenb do
a [lena+index] : = b[index]

end; {concat}

procedure concatl (var a: string; b: char)

;

(* *)

(* This procedure concatenates the character b to the end of *)

(* the string a returning the string a. *)

(* *)

begin
if length(a) < strsize then a[0] := chr (length (a) +1) ;

a [length (a) ] := b
end; {concatl}

function strcmp (strl, str2: string): boolean;

(*

(* This function compares the two strings passed to for <

(* equality. It returns a boolean value. '

(*

var i, lenl : integer;
begin

if length (strl) <> length (str2) then
strcmp := false

else begin
i := 1;

lenl := length (strl)

;

while (strl[i] = str2[i]) and (i < lenl) do

i := i + 1;

if strl[i] = str2[i] then

C3



strcmp := true
else

strcmp := false
end; {if}

end; {strcmp}

procedure swrt (var fil: text; a: string);

(* *)

(* This procedure prints the string a to the file fil. *)

<* *!

(**************A**A*********************************************J

var i: integer;
begin

for i:« 1 to length (a) do
write (fil, a [i] )

;

end; {swrt}

function max(a, b: integer): integer;

(* *)

(* This function returns the largest of a and b. *)

(* *)

begin
if a > b then
max := a

else
max := b

end; {max}

procedure printcomperr;

(*

(* This procedure prints the last component read in. It is

{* used to report which component caused an error condition.
(*

var ptr: compptr;
begin

if not donereading then begin
ptr := comptable;
while ptr A .link <> nil do
ptr := ptr A

. link;

write ('Last component read is <');

swrt (output, ptr A .name)

;

writeln('> (error is in this or the next component). 1

);

C4



end; { if

}

end; { print comperr

}

function numberofbits (str : string) : integer;
/***************************************************************

(* *

(* This function returns the number of bits represented by *

{* the expression in str. It is used for code optimization. *

(* *

var i, n, m: integer;
begin

n := 0;

m := 0;

i := 1;

while (i <- length (str)) and (n < 31) do begin
if str[i] in ['%', '#'] then begin

i := i + 1;

m := 0;

while (i <= length (str)) and (str[i] in ['0', '!'])

do begin
m : = m + 1 ;

i := i + 1

end; {while}

if 3tr[i] <> '
. then

n := n 4- m
else begin

i := i + 1;

m := 0;

while (str[i] in numbers) and (i <= length(str)) do begin
n := m * 10 + ord(str[i])

;

i :- i + 1

end; {while}
n := n + m;

end; (if)

end (if %}

else if (str[i] = '$') or (str[i] in numbers) then begin
i := i + 1;

while not (str [i] in ['.', ' ,']) and (i <= length (str)) do
i := i + 1;

if (str[i] = '.') and (i <- length (str)) then begin
m := 0;

i := i + 1;

while (str[i] in numbers) and (i <= length (str)) do begin
m :- m * 10 + ord(str [i] )

;

i := i + 1

end; {while}

n := n + m
end

C5



else
n := 31

end (If $)

else if str[i] = '*' then begin
i := i + 1;

m := 0;

while (str[i] in numbers) and (i <= length (str) ) do begin
m := m * 10 + ord(str[i]);
i := i + 1;

end; {while

}

n := max(n, m + 1)

end (if *)

else if str[i] in letters then begin
i := i + 1;

while <(str[i] in letters) or (str[i] in numbers)) and
(i <- length (str) ) do

i := i + 1;

if (str[i] = '.') and (i <= length (str)) then begin
m :- 0;

i := i + 1;

while (str[i] in numbers) and (i <= length(str)) do begin
m := m * 10 + ord (str [i] )

;

i := i + 1

end; (while)

if (str[i] - '.') and (i <= length(str)) then begin
n := n - m;

m := 0;

i := i + 1;

while (str[i] in numbers) and (i <= length(str)) do begin
m := m * 10 + ord(str[i] )

;

i := i + 1

end; (while)

n := n + m + 1

end (if)

else
n := n + 1

end (if)

else
n := 31

end; (if letters)
i := i + 1;

end; (main while)
if n > 31 then

n := 31;

numberofbits := n

end; (numberofbits

J

C6



function str2num (a: string): integer;
***************************************************************

* This function returns the integer equivalent of the string *

* passed to it. The string may consist of the summation of *

* any combination of numbers as defined in the syntax chart. *

***************************************************************

var i, j, k, 1, m, len: integer;
begin

j := 0;

i := 1;

len := length (a) ;

while i <= len do begin
if (a[i] in numbers) or (a[i] in ['"', '$', '%']) then begin

case a[i] of
'0', '1', '2', '3', M', '5', '6', •!'

, '8', '9'
: begin

k := 0;

while (a[i] in numbers) and (i <= len) do begin
k := k * 10 + ord(a[i]) - ord('O');
i := i + 1

end; {while}

j :- j + k;

end; {case numbers}
1 %

' : begin
k := 0;

i :- i + 1;

while (a[i] in ['1', '0']) and (i <= len) do begin
k :- k * 2;

if a[i] - '1' then k := k + 1;

i :- i + 1

end; {while}

j := j + k;

end; {case %}

'
$

' : begin
k := 0;

i :« i + 1;

while (a[i] in hexnums) and (i <= len) do begin
k := k * 16;

if a[i] in numbers then
k :» k + ord(a[i]) - ord('O')

else
k := k + ord(a[i]) - ord('A') + 10;

i :- i + 1

end; {while}

j := j + k;

end; {case $}
1

A

'
: begin

k := 0;

C7



i := i + 1;

while (a[i] in numbers) and (i <= len) do begin
k := k * 10 + ord(a[i]) - ord('O');
i := i + 1

end; {while}

1 := 1;

for m :- 1 to k do
1 :- 1 * 2;

j :- J + i;

end {case A
}

end; {case}

if (i <= len) and (a[i] <> ' + ') then begin
write ( 'Error . Malformed number ');

swrt (output, a)

;

writeln( '
.

' )

;

err := true;
printcomperr;
goto 1

end
end
else begin

write { 'Error . Malformed number '
)

;

swrt (output, a)

;

writeln{ '

.

' )

;

err := true;
printcomperr;
goto 1

end; {if}

i := i + 1

end; {while}

str2num :=
j

end; {str2num}

function numeric (str: string) : boolean;
IT**************************************************************
* *

* This function determines if the expression passed in as *

* string is a numeric constant. It is used for optimization.*
* *

var i: integer;
begin

numeric := true;
for i := 1 to length(str) do

if not (str[i] in ['+', '%', '$', ' A ', '0'..'9', 'A'.-'F']) then
numeric := false

end; {numeric}

C8



function land (a, b: integer): integer;

(* *)

(* This function performs the bit and function on the values *)

(* of a and b. *)

<* *)

type bitnos = 0..31;
bigset = set of bitnos;

var intset: record case boolean of
false: (i, j: integer);
true: (x, y: bigset)

end;
begin
with intset do begin

i := a;

j := b;

x :- x * y;

land :== i

end
end {land};

function findname (name : string) : compptr;
(A*************************************************************,

(* *

(* This function finds the component name and returns a *

(* pointer to it. *

<* '
i

var ptr: compptr;
begin

findname := nil;
ptr := comptable;
while (ptr <> nil) do begin

if strcmp (ptr A .name, name) then findname := ptr;
ptr := ptr A .link

end; {while}

end; {findname}

C9



procedure expr(str: string; tempflag: boolean);

(* »)

(* This procedure generates the Pascal code for the expr in *)

(* str. If tempflag is true, it generates code for the *)

(* temporary values for the memories. Otherwise, code is *)

(* generated using the subscripted memory value. The str *)

(* may be any valid expression derivable from the syntax *)

(* diagrams. *)

<* *j

var fptr: compptr;
a, b r name: string;
i/ jr k, 1* m, n, o, p, q, frombit, tobit, bits, numbits,
consttotal : integer;

fromflag, toflag, addflag, dirtyflag: boolean;
begin

i := length (str)

;

j := i;

numbits := 0;

consttotal := 0;

addflag := false;
dirtyflag := false;
repeat
while (i>0) and (str[i] <> ',') do

i := i - 1;

1 := i;

a[0] := chr(j - i) ;

for k := i+1 to j do
a[k-l] := str[k];

if a[l] in [*$', '%', ,A
*, 'O'..^'] then begin {number}

m := 1;

while (m <= length (a)) and (a[m] <> *.') do begin
b[m] := a [m]

;

m := m + 1

end; {while}

b[0] := chr(m - 1)

;

q := 0;

o := str2num(b)

;

if <a[mj = '.') and (m <= length (a)) then begin
m := m + 1;

n := m;

while m <= length (a) do begin
b [m - n + 1] :=a [m] ;

m := m + 1

end; {while}

b[0] := chr(length(a) - n - 1)

;

for p := 1 to str2num(b) do
q := q + highbits [p]

;

cio



consttotal := consttotal + land(o, q) * highbits [numbits]

;

numbits := numbits + str2num(b)
end
else begin

consttotal := consttotal + o * highbits [numbits]

;

numbits := 31

end {if}

end {case numbers}
else if a[l] = *#* then begin {binary string}

a[l] := '%';

consttotal := consttotal + str2num(a) * highbits [numbits]

;

numbits := numbits + length{a) - 1

end {case #}

else if a[l] in ['a'.-'z', 'A'.-'Z'] then begin
{ component reference

}

dirtyflag := true;
fromflag := false;
toflag := false;
frombit := ;

tobit := 0;

if addflag then write (sim, ' + );
m := 1;

while (m <= length (a)) and (a[m] <> '.') do begin
name [m] := a [m]

;

m := m + 1

end; {while}

name[0] := chr(m - 1)

;

fptr := f indname (name)

;

if fptr = nil then begin
err := true;
write < 'Error . Component <');

swrt (output, name)

;

writeln(*> not found.');
goto 1

end; {if}

m := m + 1;

n :- 1;

if m <= length (a) then begin
while (m <= length (a)) and (a[m] <> *.*) do begin

b [n] := a [m] ;

n := n + 1;

m := m + 1

end; {while}

b[0] := chr{n - 1)

;

fromflag := true;

frombit := str2num(b);
DO := m + 1;

n := 1;

end; {if}

if m <= length (a) then begin

en



while m <= length (a) do begin
b[n] := a[m]

;

n := n + 1;

m := m + 1

end; {while}

b[0] := chr(n - 1)

;

tobit := str2num(b);
toflag := true;

end; {if}

if fromflag then
write (sim, land( ')

;

fptr := findname (name)

;

if fptr <> nil then
if fptr A

. kind = mem then
if tempflag then begin
write (sim, 'temp' )

;

swrt (sim, fptr A .name)

end
else
begin

write (sim, 'ljb' )

;

swrt (sim, name)

;

write (sim, '
[

' )

;

expr (fptr A -addr, tempflag)

;

write (sim, *
]

'

)

end {if}

else begin
write (sim, 'ljb* )

;

swrt (sim, name)

end; {if}

if fromflag then begin
write (sim, ' , '

)

;

bits := highbits [frombit]

;

if toflag then begin
for m := frombit + 1 to tobit do
bits := bits + highbits [m] ;

end; {if}

writetsim, bits:l, ')');

end; {if}

if frombit > numbits then
write (sim, * div ', highbits [frombit - numbits] :1)

else
if numbits - frombit <> then
writetsim, ' * ', highbits [numbits - frombit] :l)j

if fromflag then
if toflag then

numbits := numbits + tobit - frombit + 1

else
numbits := numbits + 1

else

C12



numbits := 31;

addflag := true
end {case letters}
else begin

err := true;
write { 'Error. Malformed expression ' )

;

swrt (output, str)

;

writeln{ '
. )

;

printcomperr;
goto 1

end; {case

}

if numbits > 31 then begin
err := true;
write ( 'Error . Too many bits in ');

swrt (output, str)

;

writeln( '
.

' )

;

goto 1

end; {if}

j :- i - 1;

i := i - 1

until i < 0;

if dirtyflag then
if consttotal <> then

write (sim, ' + * , consttotal : 1)

else
else

write (sim, consttotal: 1)

end; {expr}

procedure genfunctions;

*)

This procedure generates the variable declarations, memory *)

initialization procedure, alu function, input function, *)

and output procedure. *)

*)

var vptr: valueptr;
begin

{generate variable declarations}
ptr := comptable;
write (sim, 'var '

) ;

varflag := false;
repeat

if (varflag) then
if (ptr A .kind in [alu, sel] ) then begin

write (sim, ' , 1 jb' )

;

swrt (sim, ptr A .name)

end

C13



else begin
write (sim, ' , temp ' )

;

swrt (sim, ptrA .name)

;

write (sim, ', adr');
swrt (sim, ptr A .name)

;

write {sim, ', data');
swrt (sim, ptr A .name)

;

write (sim, ', opn');
swrt (sim, ptrA .name)

end
else

if (ptr A
. kind in [alu, sel] ) then begin

varflag := true;
write (sim, 'ljb' )

;

swrt (sim, ptr A .name)

end
else begin

write (sim, 'temp* )

;

swrt (sim, ptr A .name)

;

write (sim, ', adr*);
swrt (sim, ptr A .name)

;

write (sim, ', data ' ) ,

swrt (sim, ptr A .name)

;

write (sim, ', opn');
swrt (sim, ptr A .name)

;

varflag := true
end;

ptr :- ptr A .link
until ptr = nil;
writeln(sim, ': integer;');
writeln(sim, ' cycles, cyclecount : integer;');
ptr :- comptable;
repeat

if ptr A
. kind = mem then begin

write (sim, * ljb* )

;

swrt (sim, ptr A .name)

;

writeln(sim, ': arrayfO..*, abs (ptr A .number) - 1:1, '] of
integer; ')

end; (if)

ptr := ptrA .link
until ptr = nil;

{generate bit and function}
writeln (sim)

;

writeln(sim,
writeln (sim,

writeln (sim,

writeln (sim,

writeln (sim,

writeln (sim,

function land (a, b: integer) : integer;
type bitnos = 0..31;');

bigset = set of bitnos;');
var intset: record case boolean of);

false: (i, j : integer) ;
'

)

true : (x, y : bigset) *
)

;

C14



writeln (sim,

writeln (sim,

writeln (sim,

writeln (sim,

writeln (sim,

writeln (sim,

writeln (sim,

writeln (sim,

writeln (sim,

end; ' )

;

begin ' )

;

with intset do begin');
= a;');
- b;*);
= x * y;');

land := i ' )

;

end ' )

;

end { land} ;
' )

;

'] :
=

{generate procedure to initialize memories}
writeln (sim)

;

writeln(sim, 'procedure initvalues; ')

;

writeln (sim, ' var i : integer; ' )

;

writeln (sim, 'begin* )

;

ptr :- comptable;
while ptr <> nil do begin

if ptrA .kind = mem then begin
if ptr A

. number < then begin
vptr :- ptr". values;
for i := to -ptr" .number - 1 do begin

write (sim, ' 1 jb' )

;

swrt (sim, ptr" .name)

;

writeln(sim, '[', 1:1,
vptr := vptr". link

end; {for}

end
else begin

writeln (sim, ' for i

write (sim, ' 1 jb' )

;

swrt (sim, ptr" .name)

writeln (sim, ' [i] :=

end; {if}

write (sim, ' temp');
swrt (sim, ptr" .name)

;

writeln (sim, ' := 0;')

end; {if}

ptr := ptr" -link

end; {while}

writeln (sim, 'end; {initvalues} ' )

;

vptr" .value: 1,

:=- to ', ptr". number - 1:1,

0;')

do') ;

{generate function to calculate alu functions}
writeln (sim)

;

writeln (sim, 'function dologic (funct, left, right: integer)

:

integer; )

;

writeln(sim, 'const mask = ', highbits[30] - 1 + highbits [30] : 1,

*
; *

) ;

writeln(sim, 'var value : integer;');
writeln (sim, 'begin ' )

;

writeln (sim, ' value := 0;
' )

;

C15



writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln

2;');

writeln
writeln
writeln
writeln
writeln
writeln

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

(sim,

case funct of);
: value := 0; ')

;

1 : value := right; ' )

;

2 : value := left; *)

;

3 : value := mask - left;');
4 : value := left + right;');
5 : value := left - right;');
6 : while (right > 0) and (left <> 0) do begin'),

left := land (left + left, mask);*);
- left; ')

;

= right - 1 ; '
) ;

9 :

10:

value
right

end; ' )

;

value :

value :

value :

value :

left * right; ')

;

land (left, right);');
left + right - land (left, right);'),
left + right - landdeft, right) *

11: value := 0; *) ;

12: if left - right then value := 1;

13: if left < right then value := 1')

end; {case} ' )

;

dologic := value;');
end; {dologic} ' )

;

{generat
writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

function for input to memory)
sim) ;

function sinput (address : integer): integer;');
var datum: char;');

data : integer; ' )

;

begin ' )

;

if address = then begin');
read (input, datum) ;

' )

;

sinput := ord(datum) ')

;

end ' )

;

else if address = 1 then begin');
read (input, data) ; '

) ;

sinput := data' )

;

end ' )

;

else begin' )

;

write (output, '
' Input from address '', address:!,

sim,

sim,

sim,

sim,

sim,

sim,

sim,

sim,

sim,

sim,

sim,

sim,

sim,

sim,

);')

sim,

sim,

sim,

sim,

readln (input, data) ;

'

sinput :« data;');
end ' )

;

end; {sinput} ' )

;

{generate procedure for output from memory}
writeln (sim)

;

writeln (sim, 'procedure soutput (address, data

:

writeln (sim, 'begin' )

;

integer) ;
' )

;

C16



writeln (sim,

writeln (sim,

writeln (sim,

address : 1,

writeln (sim^

if address = then writeln (output , chr (data) ) '
)

;

else if address = 1 then writeln (output, data)');
else writeln (output, ' 'Output to address '',

1 ', data:l) ')

;

end; {soutput }
' )

;

end; {genfunctions

}

procedure checkname (name: string);
***********************************************************

* This procedure checks all names for valid characters. I

* the first character is not a letter, or the remaining
* characters are not letters or numbers, then an error is
* reported.
*

***********************************************************

var start, i: integer;
begin

if name[l] = '-' then start := 2

else start := 1;

if not (name [start] in letters) then err := true;
for i := start + 1 to length(name) do

if not (name[i] in letters) and not (name[i] in numbers) then
err :- true;

if err then begin
write ( 'Error . Component name ');

swrt (output, name)

;

writeln (
' invalid, use letters and numbers only. ' )

;

goto 1

end; {if}

end; {checkname}

procedure gettoken;
(*************************************************************

(*

(* This procedure gets each whitespace delimited string of
(* characters and returns them in the global variable token.
(* Macro substitution is done here as well. If a macro name
{* is found in the string, the actual text of the macro is
(* substituted immediately.
(*

(*************************************************************

var macro: string;
ptr : macroptr;

begin
token[0] := chr(O)

;

if gettokenend then begin
token[0] := chr (1)

;

C17



token [1] := ',';

gettokenend := false
end
else begin

while (ch in whitespace) and (not eof(inf)) do
if ch = '

{
' then

while ch <> '
} do

read(inf, ch)

else
read(inf , ch)

;

{end if end while)
while not (ch in whitespace) and (not eof(inf)) do begin

{substitute macro name for actual macro text}
if endmacrodef and (ch = '~') then begin
macro [0] :- chr (0)

;

concatl (macro, ch)

;

read(inf , ch)

;

while not (ch in whitespace) and (not eof(inf)) and
( (ch in letters) or (ch in numbers)) do begin

concatl (macro, ch)

;

read(inf, ch)

end; {while}
ptr := macrotable;
while (ptr <> nil) and (not strcmp (macro, ptr A .name)) do
ptr := ptr A

. link;
if ptr » nil then begin

write ( 'Error . Macro <);
swrt (output, macro)

;

writelnO not defined.');
err :» true;
goto 1

end
else

concat (token, ptr A .macro)
end
else begin

concatl {token, ch)

;

read(inf, ch)

end; {if}

end; {while}
end; {if}

if (token(ord(token[0] ) ] = '.') and (ord(token[0] ) <> 1) then begin
token{0] := chr (ord(token[0] ) - 1)

;

gettokenend := true
end;

end; {gettoken}

C18



procedure addname (namein: string; printflag: boolean);
I***************************************************************
{* *

(* This procedure adds the component name and all of the data *

(* associated with it to the data structure. *

(* *

var ptr: nameptr;
begin

checkname (namein)

;

if nametable = nil then begin
new(nametable)

;

with nametable A do begin
link := nil;

name := namein;
print := printflag;
used := false

end; {with}

end
else begin
ptr := nametable;
while ptr A .link <> nil do begin

ptr := ptr A .link;

end;

new {ptr A .link)

;

with ptr A .link A do begin
link := nil;

name :«• namein;
print := printflag;
used : false

end; {with}

end; {if}

end; {addname}

procedure name;
***************************************************************
* *

* This procedure reads the component name from the input *

* file. *

* *

***************************************************************

begin
while token[l] <> '.' do begin

if token [length (token) ] = '*' then begin
token[0] :« chr (ord(token[0] )-l)

;

addname (token, true)
end
else

C19



addname (token, false)

;

gettoken;
end; {while}
gettoken;

end; {name}

procedure macrodef;
{***************************************************************

(* *

(* This procedure reads and stores the macro definition in *

(* the macro data structure. *

(* *

(***************************************************************

var ptr: macroptr;
begin

checkname (token)

;

new (macrotable)

;

with macrotable A do begin
link := nil;
name := token;
gettoken;
macro := token

end; {with}

ptr := macrotable;
gettoken;
while token [1] = ' -*• do begin

checkname (token)

;

new (ptr A . link)

;

ptr :=- ptr A
. link;

with ptr A do begin
link :- nil;

name := token;
endmacrodef := true;
gettoken;
endmacrodef := false;
macro := token

end; {with}

gettoken
end; {while}

end; {macrodef}

procedure cycle;
***************************************************************
* *

* This procedure gets the number of cycles which are to *

* be simulated. *

* *

***************************************************************

C20



begin
gettoken;
numcycles := str2num (token)

;

gettoken
end; {cycle}

procedure readit

;

**************************************************************
*

* This procedure reads the input file, calling any necessary
* support procedures. It places the specification in the
* data structure for processing by other procedures.

**************************************************************

var nptr: nameptr;
flag: boolean;
vptr, ovptr: valueptr;
cptr, ocptr : caseptr;

begin
endmacrodef := false;
comment [0] := chr (0) ;

repeat
read (inf , ch)

;

concatl (comment, ch)

until eoln(inf);
writeln (sim, 'program simulator (input , output) ;

')

;

if comment [1] <> '#' then begin
err:= true;
writeln ( 'Error. Comment required. ' )

;

goto 1

end
else begin

write (sim, '
{

' )

;

swrt (sim, comment)

;

writeln (sim, '

J

' )

;

end; { if

}

ch:= ' ';

gettoken;
if token [1] = '-' then macrodef;
endmacrodef := true;
numcycles := ;

if token [1] = '=' then cycle;
name

;

while token[l] <> '.' do begin
if (length (token) =1) and (token [1] in [ 'A', 'S' , 'M' ] ) then begin
ptr := comptable;
if ptr = nil then begin

new (ptr)

;

comptable := ptr

C21



end
else begin

while ptr A .link <> nil do
ptr := ptr A

. link;

new (ptr A
. link)

;

ptr :*» ptrA .link

end; {if}

with ptr A do begin
link := nil;

used := false;
i := 0;

numcomponents := numcomponents + 1;

case token [1] of
'A* : kind := alu;

'S' : kind := sel;

M' : kind := mem
end; {case}

case kind of

alu : begin
gettoken;
name := token;
gettoken;
funct := token;
gettoken;
left := token;
gettoken;
right := token;
gettoken;

end;

sel : begin
gettoken;
name := token;
gettoken;
select := token;
i:= 0;

gettoken;
repeat

new(cptr)

;

cptr A .casevalue := token;
cptrA .link := nil;

if i = then
ptr A

. cases := cptr
else

ocptr A .link := cptr;

ocptr := cptr;
i := i + 1;

gettoken
until <token[l] in ['A', 'S', 'M*, '-']) and

(length (token) = 1)

;

end;

C22



mem : begin
gettoken;
name := token;
gettoken;
addr := token;
gettoken;
data := token;
gettoken

;

opn := token;
gettoken;
if token[l] = '-' then begin

for i := 2 to length (token) do
token [i-1] := token(i];

token[0] := chr (ord (token [0] ) - 1)

;

number := - {str2num (token) )

;

for i := to abs (number) - 1 do begin
gettoken;
new(vptr)

;

if i = then
values := vptr

else
ovptr A .link := vptr;

ovptr := vptr;

vptr A
. value := str2num (token)

;

vptr^.link := nil
end; {for J

end
else

number := str2num (token)

;

gettoken;
end;

end; {case}

nptr := nametable;
repeat

flag := strcmp (nptr A
. name, name)

;

if flag then begin
used := true;
nptr A

. used := true
end
else

nptr := nptr A
. link;

until flag or (nptr - nil)

;

end; (with)

end
else begin

err:= true;

write ( 'Error . Component expected. Got <') ;

swrt (output, token)

;

writeln (
' > instead .

' )

;

printcomperr;

C23



goto 1

end;

end; {while};
writeln {numcomponents : 1

,

end; {readit}
components read.

' )

;

procedure checkdcl;
********************** ********************************

* This procedure checks the declarations of the components. *

* if a component is declared but not used, or used, but not *

* declared, a warning message is issued. Code generation *

* continues

.

*

* *

***************************************************************

var nptr: nameptr;
cptr: compptr;

begin
nptr := nametable;
repeat
with nptr A do begin

if not used then begin
write ( 'Warning: '

)

;

swrt (output, name) ;

writeln(' declared but not defined.')
end; {if}

nptr := nptrA .link
end; {with}

until nptr = nil;
cptr := comptable;
repeat
with cptrA do begin

if not used then begin
write ( 'Warning: '

)

;

swrt (output, name)

;

writeln(' defined but not declared.')
end; {if}

cptr := cptr A
. link

end; {with}

until cptr = nil
end;

C24



function compare (a, b: string): boolean;

<*

(* This function breaks the expression in b into the
(* individual pieces, and compares these pieces with the
(* string a. If the any part of b is in a, then compare
(* returns true.
(*

var i, j : integer;
c: string;

begin
i := 1;

compare := false;
while i <= length (b) do begin

j := 1;

if b[i] in letters then begin
while ((b[i] in letters) or (b[i] in numbers)) and

(i <= length (b) ) do begin
c[j] := b[i];

j :« j + 1;

i := i + 1

end; (while}

c[0] := chr(j - 1)

;

if strcmp (a, c) then
compare := true;

end; {if}

i :« i + 1;

end; {while}

end; {compare}

function dependent (a, b: compptr) : boolean;

<* *)

(* This function returns true if the component a depends on *)

(* the value of component b. *)

(* *)

var c: string;
cptr: caseptr;

begin
dependent : = false;
c := b A .name;
with a A do

case kind of

alu: if compare (c, funct) or compare (c, left) or
compare (o, right) then

dependent := true;

C25



sel : begin
if compare (c, select) then dependent := true;
cptr := cases;
while cptr <> nil do begin

if compare (c, cptr A .casevalue) then
dependent := true;

cptr := cptrA .link
end; {while

}

end; {case sel}
mem : dependent : false

;

end; {case}
end; { dependent

}

procedure orderit;
************************************************************
*

* This procedure sorts the alu and selector components in
* dependency order. It also checks for circular
* dependencies

.

*

************************************************************

var i, j, k, num: integer;
tempi, ptr: compptr;
a, b: array [1 . .maxcomponents] of compptr;

begin
i := 1;

j := 1;

num : = ;

ptr := comptable;
{break component list into 2 pieces: one with alus and
selectors, and the other with memories}

a[l] := nil;

a[2] := nil;

while ptr <> nil do begin
case ptr A .kind of

alu, sel : begin
a[i] := ptr;

i := i + 1;

end;
mem : begin

b[j] := ptr;

j := j + 1

end
end; {case}
ptr := ptr A .link

end; {while}

a [i] :« nil;

b[j] := nil;

num := i - 1;

C26



{sort alus and selectors}
for k := 1 to num do

for i := 1 to num do
for j := i to num do

if dependent (a [i] , a[j]) then begin
tempi := a [j] ;

a[j] := a[i];

a[i] := tempi
end; {if}

{check for remaining dependencies}
for i := 1 to num do

for j := i to num do
if dependent (a [i] , a[j]) then begin

err := true;
write ( 'Error . Circular dependency with ');

swrt (output, a
[ j]

A .name)

;

write (
' and/or '

)

;

swrt (output/ a [i]
A .name)

;

writeln ('.');

goto 1

end; {if}

j := 1;

if a[l] <> nil then
comptable := a[l]

else begin

j :- 2;

comptable := b[l]

end; {if}

ptr := comptable;
i := 2;

while a[i] <> nil do begin
ptrA

. link := a [i]

;

ptr := a[i];
i := i + 1

end; {while}
while b[j] <> nil do begin
ptrA

. link := b[ j]

;

ptr := b[j];

j := j + 1

end; {while}

ptr A .link := nil
end; {orderit}

procedure init;
*************************************************************

* This procedure initializes variables

.

*************************************************************

C27



begin
donereading := false;
nametable := nil;
comptable := nil;
macrotable := nil;
numcomponent s : = ;

gettokenend := false;
varflag := false;

numbers := [ ' ' . . ' 9
' ]

;

letters := ['a'..'z', 'A'.-'Z'];
hexnums : = [ ' ' . . ' 9 ' , * A *

.
.

'

F
]

;

whitespace := [chr(9), chr(10), chr(13), ' ', '(', *}'];

rewrite (sim, 'simulator .p' )

;

if argc = 2 then
argv (1, filename)

else begin
writeln ( 'Enter name of input file.');
i:= 0;

repeat
read(filename [i] )

;

i:=i+l
until eoln

end;

reset (inf , filename)

;

write ( 'Reading file ');

for i := to 20 do
write (filename [i] ) ;

writeln;
highbits[0] := 1;

for i := 1 to 31 do
highbits[i] := highbits [i-1] * 2;

end; (init}

procedure gencode;
***************************************************************)
* *)

* This procedure generates the Pascal code for the main *)

* program of the simulator. . *)

* *)

va r fpt r : comppt r

;

flag, f lag2 : boolean;
cptr: caseptr;
mask : integer;

begin
mask := highbits [30] - 1 + highbits [30]

;

{generate main program}
writeln (sim)

;

writeln (sim, 'begin' )

;

C28



write In (sim, ' initvalues; )

;

write (sim, 'cycles := ' );

writeln (sim, numcycles : 1, '
;

' )

;

if cycles = then begin');
writeln {' 'Number of cycles to trace' 1 );'

writeln (sim,

writeln(sim,
writeln (sim,

writeln (sim,

writeln (sim.

read (cycles) ; '
) ;

end; ' )

;

cyclecount : 0;');

{start of main loop}
writeln (sim, 'while cyclecount <= cycles do begin');

{generate assignments to components J

ptr :- comptable;
while ptr <> nil do begin

case ptr A .kind of
alu: begin

with ptr A do begin
if numeric (funct) then

case str2num (funct) of
: begin

write (sim, ' 1 jb' )

;

swrt (sim, name)

;

writeln (sim, ' := ;
'

)

end;

1 : begin
write (sim, ' 1 jb' )

;

swrt (sim, name)

;

write (sim, ' := '
) ;

expr(right, true)

;

writeln (sim, '
;

'

)

end;
2 : begin

write (sim, ' 1 jb ' )

;

swrt (sim, name)

;

write (sim, ' := ' )

;

expr(left, true)

;

writeln (sim, '
;

'

)

end;

3 : begin
write (sim, * 1 jb' )

;

swrt (sim, name)

;

write (sim, ' := ', mask : 1, * -

expr(left, true)

;

writeln (sim, '
;

'

)

end;

4 : begin
write (sim, ' 1 jb' )

;

swrt (sim, name)

;

write (sim, ' := '
) ;

C29



expr (left, true)

;

write (sim, ' + )

;

expr (right, true)

;

writeln (sim, '
;

' )

;

end;

begin
write (sim, 'ljb' )

;

swrt (sim, name)

;

write (sim, ' := '
)

;

expr (left, true)

;

write (sim, * - *
) ;

expr (right, true)

;

writeln (sim, '
;

' )

;

end;

begin
write (sim, ' ljb ' )

;

swrt (sim, name)

;

write (sim, ' := dologic(6, ');

expr (left, true)

;

write (sim, ' , '
)

;

expr (right, true)

;

writeln (sim, )

;
'

)

end;

begin
write (sim, ' 1 jb' )

;

swrt (sim, name)

;

write (sim, ' := ' )

;

expr (left, true)

;

write (sim, ' * '
)

;

expr (right, true)

;

writeln (sim, '
;

*

)

end;

begin
write (sim, 1 jb ' )

;

swrt (sim, name)

;

write (sim, ' := '
)

;

write (sim, ' land( ' )

;

expr (left, true)

;

write (sim, ' , )

;

expr (right, true)

;

writeln (sim, '
)

;
'

)

end;

begin
write (sim, ' ljb ' )

;

swrt (sim, name)

;

write (sim, ' := '
)

;

expr(left, true)

;

write (sim, ' + ' )

;

expr (right, true)

;

write (sim, ' - land(');

C30



expr (left, true)

;

write (sim, ' , '
)

;

expr (right, true)

;

writeln (sim, '
)

;
'

)

end;

10 : begin
write (sim, ' ljb* )

;

swrt (sim, name)

;

write (sim, * := '
)

;

expr (left, true)

;

write (sim, ' + '
)

;

expr (right, true)

;

write (sim, ' - land(');
expr (left, true)

;

write (sim, ' , '
)

;

expr (right, true)

;

writeln (sim, ' )
;

'

)

end;

11 : begin
write (sim, 'ljb' )

;

swrt (sim, name)

;

writeln(sim, ' := 0;')

end;

12 : begin
write (sim, 'if *

) ;

expr (left, true)

;

write (sim, ' = '
) ;

expr (right, true)

;

write (sim, then ljb');
swrt (sim, name)

;

writeln (sim, ' := 1
' ) ;

write (sim, ' else ljb');
swrt (sim, name)

;

writeln(sim, ' := 0;')

end;

13 : begin
write (sim, 'if '

) ;

expr (left, true)

;

write (sim, ' < '
) ;

expr (right, true)

;

write (sim, ' then ljb' )

;

swrt (sim, name)

;

writeln (sim, ' := 1
' )

;

write (sim, ' else ljb');
swrt (sim, name)

;

writeln (sim, ' := 0;')

end
end { case optimize alu functions

}

2lse begin
write (sim, ' 1 jb' )

;

C31



swrt (sim, narae)

;

write (sim, := dologic (
' )

;

expr (funct, true)

;

write (sim, , '
)

;

expr {left, true);

write (sim, ',

expr (right, true)

;

writeln (sim, ');*);

end; {if}

end; {with}

end; {case alu}

sel: begin
write (sim, 'case ');

expr (ptr A .select, true)

;

writeln (sim, * of);
i :- 0;

cptr := ptr A
. cases;

while cptr <> nil do begin
write(sim, ' ', i:l, '

: ljb');
swrt (sim, ptr A .name)

;

write (sim, ' := '
)

;

expr (cptr A .casevalue, true)

;

writeln (sim, * ;
' )

;

cptr := cptrA .link;
i := i + 1

end; {while}
writeln (sim, 'end; ' )

;

end; {case sel}

mem : ;

end; {case}

ptr := ptr A .link

end; {while}

{generate trace statements

}

nptr := nametable;
writeln (sim, ' write ( ' 'Cycle '

' , cyclecount : 3)
;

' )

;

while nptr <> nil do begin
if nptr A

. print then begin
write (sim, write C' ');

swrt (sim, nptr A .name)

;

write (sim, *= '

' , ' )

;

fptr := findname (nptr A .name)

;

if fptr <> nil then
if fptr A .kind = mem then begin
write (sim, 'temp' )

;

swrt (sim, nptr A .name)

end
else begin

write (sim, '1 jb' )
,*

swrt (sim, nptr A .name)

C32



end; {if}

writeln (sim, : 1) ; '

)

end; {if}

nptr := nptrA .link
end; {while

}

writeln (sim, 'writeln; ' )

;

{assign temporary memory values (adr, data, opn)

}

ptr := comptable;
while ptr <> nil do begin

if ptr". kind = mem then begin
write (sim, ' adr ' )

;

swrt (sim, ptr A .name)

;

write (sim, ' := '
)

;

expr (ptr A .addr, true)

;

writeln (sim, '
;

)

;

write (sim, 'data ' )

;

swrt (sim, ptr A .name)

;

write(sim, ' := temp');
swrt (sim, ptr A .name)

;

writeln (sim, '
;

' )

;

write (sim, 'opn' )

;

swrt (sim, ptr A .name)

;

write (sim, ' := )

;

expr (ptr A .opn, true)

;

writeln (sim, '
;

'

)

end; {if}

ptr := ptrA .link;

end; {while

}

{assign memories their new values}
ptr := comptable;
while ptr <> nil do begin

if ptr A .kind = mem then begin
if numeric (ptr A .opn) then begin

case land (str2num(ptr A .opn) , 3) of

: begin
write (sim, 'temp *

)

;

swrt (sim, ptr A .name)

;

write (sim, ' := ljb' )

;

swrt (sim, ptr A .name)

;

write (sim, ' [adr' )

;

swrt (sim, ptr A .name)

;

writeln (sim, ' ]
;

'

)

end;
1 : begin

write (sim, 'temp')

;

swrt (sim, ptr A .name)

;

write (sim, * := ' )

;

expr (ptrA . data, true)

;

C33



writeln (sim, ' ; '
) ;

write (sim, 1 jb ' )

;

swrt (sim, ptr A .name)

;

write (sim, ' {adr ' )

;

swrt (sim, ptr A .name)

;

write (sim, •] := temp');
swrt (sim, ptrA .name)

;

writeln (sim, '
;

'

)

end;

2 : begin
write (sim, 'temp' )

;

swrt (sim, ptr A .name)

;

write (sim, := sinput(');

expr (ptr A .data, true)

;

writeln (sim, '
)

;
'

)

end;

3 : begin
write (sim, 'temp' ) ;

swrt (sim, ptr A .name)

;

write (sim, ' := '
)

;

expr (ptr A .data, true)

;

writeln (sim, '
;

' )

;

write (sim, 'soutput (

' )

;

expr (ptrA
. data, true)

;

write (sim, ' , temp ' )

;

swrt (sim, ptr A .name)

;

writeln (sim, ' )
;

'

)

end
end {case}

end
else begin

write(sim, 'case land(opn');
swrt (sim, ptr A .name)

;

writeln (sim, ', 3) of);
write (sim, ' 0: temp*);
swrt {sim, ptr A .name)

;

write (sim, := ljb' )

;

swrt (sim, ptr A .name)

;

write (sim, ' [adr' )

;

swrt (sim, ptr A .name)

;

writeln (sim, '];');

writeln (sim, ' 1 : begin' )

;

write (sim, ' temp');

swrt (sim, ptr A .name)

;

write (sim, * := '
)

;

expr {ptr A
. data, true)

;

writeln (sim, '
;

' )

;

write (sim, ' ljb');
swrt (sim, ptr A .name)

;

write (sim, ' [adr' )

;

C34



swrt (sim, ptr A .name)

;

write {aim, '] := temp');
swrt (sim, ptr A .name)

;

writeln (sim, '
;

' )

;

writeln (sim, ' end; ' )

;

write (sim, ' 2 : temp' )

;

swrt (sim, ptr A .name)

;

write (sim, ' := sinput (adr ' )

;

swrt (sim, ptr A -name)

;

writeln (sim, ');');

writeln (sim, ' 3: begin');
write (sim, ' temp');
swrt (aim, ptr A .name)

;

write (sim, ' := '
)

;

expr (ptr A .data, true)

;

writeln (sim, '
;

* )

;

write {sim, ' soutput {adr ' )

;

swrt (sim, ptr A .name)

;

write (sim, ' , temp'

)

\

swrt (sim, ptr A .name)

;

writeln (sim, ');');

writeln {sim, ' end' )

;

writeln (sim, 'end; {case} '

)

end;

(generate code to trace writes}

flag := false;
flag2 := false;

if not (numeric (ptr A .opn) ) and
(numberofbits (ptr A .opn) >= 3) then

flag := true
else

if numeric (ptr A
. opn) then

if land {str2num(ptr A
. opn) , 4) = 4 then

flag2 := true;

if flag then begin
write (sim, 'if land( ' )

;

expr {ptr A
. opn, true)

;

writeln (sim, ', 5) =5 then');

write (sim, ' '

)

end;

if flag or flag2 then begin
write (sim, ' writeln (•' Write to ');

swrt (sim, ptr A .name)

;

write (sim, ' at '

' , ' )

;

expr (ptr A .addr, true)

;

write (sim, ' : 1,
'

' :
'

' , ' )

;

expr (ptr A .name, true)

;

writeln (sim, ' :1) ; '

)

end; {if}

C35



{generate code to trace reads)
flag := false;
flag2 := false;
if not (numeric (ptr A .opn) ) and (numberofbits (ptr A .opn) >=4) then

flag :- true
else

if numeric (ptr A
. opn) then

if land(str2num (ptr A .opn) , 8) = 8 then
flag2 := true;

if flag then begin
write (sim, ' if land( ' )

;

expr (ptr A . opn, true)

;

writeln (sim, ' , 9) =8 then' )

;

write (sim, ' ')

end;

if flag or flag2 then begin
write (sim, writeln (*' Read from ');

swrt (sim, ptr A .name)

;

write (sim, ' at '", ');

expr (ptr A .addr, true)

;

write (sim, :1, ' '
:

'*, ' );

expr (ptr A .name, true)

;

writeln (sim, : 1) ;
T

)

end; (if)

end; { if

}

ptr := ptr A
. link

end; {while

}

{generate code to check for end of loop}

writeln (sim,

writeln (sim,

writeln (sim,

writeln (sim,

writeln (sim,

writeln (sim,

cyclecount := cyclecount + 1;
' )

;

if cyclecount = cycles + 1 then begin');
writeln (' 'Continue to cycle (0 to quit)'');
read (cycles) ;

' )

;

end; ' )

;

end; {while }
' )

;

{end of main loop}

writeln (sim, 'end. ' )

;

end; {gencode}

begin {main}

init;

readit

;

donereading := true;

writeln ( 'Sorting components .')

i

orderit;
checkdcl;
writeln ( 'Generating code.');

C36



genfunctions;
gencode

;

1:

if err then
writelnf 'Error in program (no code generated). 1

);

end.

C37



Appendix D

Example Stack Machine Simulator Specification

# Itty Bitty Stack Machine Simulator Specification

bit functions}
#000000000000 {=zero.0.~k}

high bit position in LDC loop)
high bit of RAM address}
I/O select bit in RAM address}
~d selects right operand for alu}
~d selects fp to ALD right}
~d..~dd selects write data}
0..~st selects next state)
~a signals absolute addressing}
~f signals frame pointer update}
~g signals goto, not increment}
~i signals increment or branch}
~1 loads left from ram}
~o signals pop, not push; ~z adds,
~p signals stack pointer update}
~r loads right from ram}
~s selects state from opcode+n}
~v selects frame pointer to load, not 1 to add}
~w writes into stack ram}
~w selects LDC loop test, not BZ}
~x enables condition test}
~y selects frame offset for ram address}
~z indicates escape; current opcode}

{Macro
-pack
~k n
~ra n
~n 12

~d 5

~dd 7

-St 4

~a 10
-1 11
~g 9

-i 6

~1 3

~o 1

~P 7

~r 4

~s 12
~V
~w 8

~x 13
~y 5

not loads

}

{Component list . . .

}

state rom parm relpc offset psp sp pushpop selfp fp afp addr
ram op left right neg selr alu exit write newpc pc prog ir
data newst

.

{Component specifications.
M state newst 1 1

}

{write next state (at end) }

A exit %110,rom.~w ram rom.~w,~pack

S newst rom. ~s .~x, exit .

(000) parm.0.~st
{~s selects state from opcode+n}
{next state from rom}

Dl



{001} parm.0.~st
(010) 1, rom. ~z, prog. 0.3

{011} 1, rom. ~z,prog. .3

{100}
{101} parm.0.~st

{110}
{111} 1, rom. ~z,prog.0 .3

M pc newpc rom.~i 1

A newpc %100 relpc offset

S relpc rom.~a pc

S offset rora.~g 1 left

M sp pushpop rom.~p 1

{~z indicates escape; current
opcode}

{~x enables condition test}
{~w selects LDC loop test, not
BZ)

{~i signals increment or branch}

{~a signals absolute addressing}

{~g signals goto, not increment}

{~p signals stack pointer
update}

A pushpop rom. ~z, #0, rom.~o sp psp

S psp rom.~v.~z

{0-2}

{~v selects frame pointer to
load, not 1 to add}
{~o signals pop, not push; ~z
adds, not loads)

{011} fp
{100} 1

{101} left
{110} 1

{111} right

M fp selfp rom.~f 1

S selfp ir.O sp ram

S addr rom.~y sp afp

A afp %100 fp left

M left ram rom.~l 1

M right ram rom.~r 1

A neg %101 ram

S selr parm.~d

{~f signals frame pointer
update}

{load from current sp or from
stack}

{~y selects frame offset for ram
address}

{frame offset = fp+left}

{~1 loads left from ram}

{~r loads right from ram}

{negative of right}

{~d selects right operand for
alu}

D2



{000} alu
{001} alu
{010} fp
{011} pc
{100} ir .0

{101} rara.O

{110} left
{111} neg

{0} right
{1} fp

A alu op ram selr

M ir prog rom.~s 1 {So that prog isn't held up, hack
remembers the value of prog at fetch
time. Note that prog must be used to
calculate newst because ir won't be
valid until the cycle following the
fetch}

M data prog parm.8 1 { gets prog's value when it is
data }

S write parm.~d.~dd {~d..~dd selects write data}

{~d selects fp to ALU right}

-k, data. 0.3

M ram addr.0.~m write addr .~n, rom. ~w 4096 {~w writes into
stack ram the 11 sets trace reads & writes }

S op ir.0.3 {Opcode-ALU function ROM follows}
{0} {1} {2} %1 {3} %100 {4} %1 {5} %1000 {6} %1101
{7} %1100 {8} %11 {9} {10} %100 {11} %111 {12} %10
{13} %1 {14} %1100 {15} %101

{decode rom follows}
^~s+ A~l+ A ~r+ A ~i
^-w
"~w {~dd=4} A~w {~dd=5}
^~w+ A ~y {goto $19 so addr and ram can bounce

back}
^~w
^~w {~dd=7}
~~w {goto NEG}
*~y+ A~w+ A ~l {goto SWAP+2}
~~w {~dd=6}
A~z+ A~p+ A~o+ A~v+ A ~l A ~a+ A~g
A ~w
*~r+ A ~z+ A~p+ A ~o
A ~x+ A ~z+ A ~p+ A ~o A ~i+ A ~g
A~w {parm= A 5+ A 7+ A

8, ~dd=5)
A~w {parm= A 5+ A 7+ A

8}
A~l+ A~z+ A ~p+ A ~w

rom state. 0.5
{00 fetch}
{01 LDZ)
{02 LD0}
{04 ST. . .

}

{05 =NOT}
{06 =NEG}
{07 EQUAL

}

{08 INDEX. . .

}

{09 SWAP . . .

}

{0A EXIT. . .

}

{0C LD}
{0D ST}
{0E BZ}
{10 LDC}
{11 LDC)
{12 SWAP}
{13 INDEX}

D3



{14 LDC}
{15 EXIT}
{16 CALL}
{17 LDC}
{18 LDC}
{19-1E}

{IF esc}
{20 esc}
{21 LDZ}
{22 LDO}
{23 LD1}
{24 DUPE}
{25 AND}
{26 LESS}
{27 EQUAL}
{28 NOT}
{29 NEG}
{2A ADD}
{2B MPY}
{2C LD}
{2D ST}
{2E BZ}
{2F GLOB}
{30 NOP}
{31 LDC}
{32 SWAP)
{33 INDEX}
{34 ENTER}
{ enter does

sp gets sp
{35 EXIT}
{36 CALL}
{37-3F}

-w+ A~i {parm= A 5+ A7+ A
8}

-f+ A~p+ A ~o+ A ~z
-w+ A ~a+ A~g {~dd=3}
-w+ A ~i {parra= A 5+ A 7+ A

8, ~dd=5}
-w+ A ~i {parm= A 7+ A

8, ~dd=4}
{19-1E are interim states (see
parm) }

-s+ A~z+ A ~i

*~z+ A

^~z+ A

*~z+ A

^~z+ A

*~z+ A

^~z + A

*~Z + A

^~w
-~w {

^~Z + A

^~Z+ A

-~y

*~Z + A

^~Z + A

^~w {

-p

-P+
A~i

-p+ A~i {goto LD0+1}
-p {goto LD+1}
-p+ A~o {goto NOT, goto IE}
-p+ A~0 {goto EQUAL+1, goto ID}
-p+ A ~o {goto ID}

-dd=7

}

-p + A ~o {goto NOT, goto IE}
-p+ A ~o {goto NOT, goto IE}

-p+ A ~o {goto 1C}
-p+ A ~o {goto IB}
-dd=l

}

A~z+ A~p+ A ~i
A~z+ A~p+ A ~o {goto 1A}
A~z+ A ~p+ A~o
A~w+ A ~f+ A~p+ A~z+ A ~v {~dd=2}

the following: write fp to A sp,
+ left, increment pc }

A~p+ A~o+ A ~v
A~i

fp gets sp,

parm state. 0.5 {part 2 of decode rom}
{00} 128+3+ A 8 160 25 224 6 9 192 11 4 15 25
{10} 0+ A 5+ A 7+ A

8 16+ A 5+ A 7+ A
8 9 8 17+ A 5+ A7+ A

8 10 96
20+ A 5+ A 7+ A 8

{18} 23+ A 7+ A 8 18 14 13 7 5

{20} 31 1 2 2 12 30 29 29 224 30 30 12 28 27 32
{30} 24 26 19 64 21 22

M prog pc -133 {-1024}
3 10

1

2
13

000
enter }

; count
ldz }

IdO 4 }

st }

I
for(i-0;

: flags [i]

{program rom follows}
ldl 10 ; ldc 2 6 }

-

i<=size;
= true }

i++)

D4



2

10
4

2

13
4

3

7

3

9

14
2

13

1

2

13

2

12

2

10
12

14

2

12

4

4

10
2

10

4

13

4

2

13

10
4

2

10

1

10

1 3 10

10

IdO 5 ; one less than array addr
since 1 is added immediately }

FORI IdO 1 }

add }

dupe }

IdO 1 }

swap }

st }

dupe }

ldl 10 ; ldc 26 = size + array
offset )

equal }

ldl 1; ldc 17 = endforl - fori }

neg }

bz }

ENDFOR1 IdO 5 ; loc 5 unused, get
junk off stack }

st >

; for (i=0; i <= size; i++) )

ldz }

IdO 1 )

st }

; if (flags [i]) }

FOR2 IdO 1 ; get i }

Id }

IdO 6 ; get start of flags }

add )

Id ; get flags [i] }

ldc 58=S3a ; INC - IF }

bz }

; prime = i + i + 3 }

IF IdO 1 ; get i }

Id }

dupe }

dupe }

add ; i + i }

IdO 3 }

add ; this is the prime number }

dupe }

IdO 4096; output prime }

st }

dupe }

IdO 2 ; store prime }

st }

; for (k=i+prime; k <= size;
k+=prime) ; flags [k] = false }

add ; k=i+prime }

FOR3 dupe }

IdO 6 }

add ; add array address }

ldz }

swap )

D5



13
2

12

10

4

3

6

2

14
1

3

9

14

2

13

2 4

12
2 1

10
2 4

13

2 1

12
2 1

10
4

2 1

13
3 5

7

1 5 13
9

14

•

st ; flags [k]=0 }

IdO 2 ; get prime }

Id }

add ; k = k + prime }

dupe }

ldl 5 ; ldc 21 = size + 1 )

less }

IdO ; ENDFOR3 - SKIP }

bz }

SKIP ldz }

ldl 8 ; ldc 24=ENDFOR3-FOR3 }

neg }

bz ; forced jump }

ENDFOR3 IdO 5 ; here if
not (k<size+l) }

st ; store it to get it off the
stack }

; count ++ }

IdO 4 }

Id }

IdO 1 }

add }

IdO 4 }

st }

; i++ )

INC IdO 1 }

Id }

IdO 1 }

add }

dupe }

IdO 1 }

st }

ldl 5; ldc 21=size+l }

equal )

ldc 93=$5d ;ENDFOR2 - FOR2 }

neg }

bz; goto beginning of for loop }

ENDFOR2 nop }

D6



Appendix E

Pascal Code for Example Specification

program simulator (input, output);
{# Itty Bitty Stack Machine Simulator Specification}
var ljbrom, ljbexit, ljbrelpc, ljboffset, Ijbnewpc, ljbpsp,

ljbpushpop, ljbselfp, ljbafp, ljbaddr, 1 jbneg, - 1 jbparm,
ljbop, ljbselr, ljbalu, ljbnewst, ljbwrite, tempstate,
adrstate, datastate, opnstate, temppc, adrpc, datapc,
opnpc, tempsp, adrsp, datasp, opnsp, tempfp, adrfp,
datafp, opnfp, templeft, adrleft, dataleft, opnleft,
tempright, adrright, dataright, opnright, tempir, adrir,
datair, opnir, tempdata, adrdata, datadata, opndata,
tempram, adrram, dataram, opnram, tempprog, adrprog,
dataprog, opnprog: integer;
cycles, cyclecount : integer;
ljbstate: array[0..0] of integer;
ljbpc: array[0..0] of integer;
ljbsp: array[0..0] of integer;
ljbfp: array[0..0] of integer;
ljbleft: array [0..0] of integer;
ljbright: array[0..0] of integer;
ljbir: array[0..0] of integer;
ljbdata: array[0..0] of integer;
ljbram: array [0 .. 4095] of integer;
ljbprog: array [0 .. 132] of integer;

function land (a, b: integer): integer;
type bitnos 0..31;

bigset = set of bitnos;
var intset: record case boolean of

false: (i, j: integer);
true: (x, y: bigset)

end;
begin
with intset do begin

i := a;

j := b;
x : = x * y

;

land := i

end
end {land};

El



procedure initvalues;
var i: integer;
begin
for i := to do

ljbstate[i] := 0;
terapstate := 0;

for i := to do
ljbpc[i] := 0;
terappc := 0;

for i := to do
ljbsp[i] := 0;

tempsp := 0;

for i := to do
ljbfp[i] := 0;
tempfp := 0;

for i := to do
ljbleft [i] := 0;

temple ft := 0;

for i := to do
ljbright[i] := 0;
tempright := 0;

for i := to do
ljbir[i] := 0;
tempir := 0;

for i := to do
ljbdata[i] := 0;

tempdata : = ;

for i := to 4095 do
ljbrara[i] := 0;
tempram := ;

ljbprog[0] : = 0;
ljbprog[l] : = 0;

ljbprog[2] : = 3;

ljbprog[3] : = 10;
ljbprog[4] : = 0;

ljbprog[5] : = 4;

ljbprog[6] : = l;

ljbprog[7] : = 2;

ljbprog[8] : = 4;

ljbprog[9] : = 13
ljbprog[10] := 2

1 jbprog [11] := 5

ljbprog[12] := 2

1 jbprog [13] := 1

ljbprog[14] := 10;

1 jbprog [15] := 4

1 jbprog [16] := 2

1 jbprog[17] := 1

ljbprog[18] :=

ljbprog[19] := 2

ljbprog[20] := 1 3;

E2



1 jbprog 21] = 4

1 jbprog 22] = 3;

1 jbprog 23] = 10;
ljbprog 24] 7

1 jbprog 25] = 3
ljbprog 26] - 1

ljbprog 27] = 9

ljbprog 28] - 14;
ljbprog 29] = 2;
ljbprog 30] = 5;

ljbprog 31] = 13;
ljbprog 32] = 1

ljbprog 33] = 2

ljbprog 34] - 1
ljbprog 35] - 13;
ljbprog 36] = 2;
ljbprog 37] = 1;

ljbprog 38] = 12;
ljbprog 39] = 2;
ljbprog 40] = 6;

ljbprog 41] = 10;
ljbprog 42] 12;
ljbprog 43] =

ljbprog 44] = 1

ljbprog 45] -
ljbprog 46] =

ljbprog 47] = 3

ljbprog 48] = 10;
ljbprog 49] = 14;
ljbprog 50] = 2;
ljbprog 51] = 1;

ljbprog 52] = 12;
ljbprog 53] = 4;

ljbprog 54] = 4;
ljbprog 55] = 10;
ljbprog 56] « 2;
ljbprog 57] = 3;
ljbprog 58] = 10;
ljbprog 59] 4

ljbprog [60] =

ljbprog [61] = 1

ljbprog [62] = 1

ljbprog [63] =

ljbprog 64] =

ljbprog [65] =

ljbprog [66] = 13;
ljbprog [67] = 4

ljbprog [68] = 2

ljbprog [69] = 2

ljbprog [70] = 13;
ljbprog [71] = 10;

ljbprog [72] = 4

E3



1 jbprog 73] : = 2;

1 jbprog 74] : = 6;

1 jbprog 75] : - 10;

1 jbprog 76] : = l;

1 jbprog 77] : = 0;
1 jbprog 78] : = 2;
ljbprog 79] : = 13;
ljbprog 80] : - 2;
ljbprog 81] : = 2;
ljbprog 82] : = 12;
ljbprog 83] : = 10;
ljbprog 84] : = 4;
ljbprog 85] : = 3;
ljbprog 86] : = 5;
ljbprog 87] : - 6;

ljbprog 88] : = 2;
ljbprog 89] : = 5;
ljbprog 90] : - 14;
ljbprog 91] : = l;

ljbprog 92] : = 3;
ljbprog 93] : = 8;

ljbprog 94] : = 9;

ljbprog 95] : = 14;
ljbprog 96] : = 2;
ljbprog 97] : = 5;
ljbprog 98] : = 13;
ljbprog 99] : = 2;
ljbprog 100] := 4;

ljbprog 101] := 12;
ljbprog 102] := 2;
ljbprog 103] := 1;

ljbprog [104] := 10;
ljbprog 105] := 2;
ljbprog [106] := 4;
ljbprog [107] := 13;
ljbprog [108] := 2;
ljbprog [109] := 1;

ljbprog 110] := 12;
ljbprog 111] := 2;
ljbprog [112] = l;

ljbprog 113] := 10;
ljbprog 114] := 4

ljbprog [115] := 2

ljbprog ril6] := 1

ljbprog 117] := 13;
ljbprog 118] := 3

ljbprog 119] := 5

ljbprog 120] := 7

ljbprog 121] :=

ljbprog 122] := 1

ljbprog 123] :=

ljbprog 124] :-

E4



ljbprog[125] - 5

ljbprog[126] = 13;
ljbprog[127] = 9;

ljbprog[128] = 14;
ljbprog[129] =

ljbprog[130] =

ljbprog[131]
ljbprog[132] =
tempprog := 0;

end; {initvalues}

function dologic (funct, left, right: integer): integer;
const mask = 2147483647;
var value : integer;
begin

value := 0;

case funct of
: value := 0;

1 : value := right;
2 : value := left;
3 : value := mask - left;
4 : value := left + right;
5 : value := left - right;
6 : while (right > 0) and (left <> 0) do begin

left := land(left + left, mask);
value := left;
right := right - 1;

end;
7 : value := left * right;
8 : value := landdeft, right);
9 : value := left + right - landdeft, right);
10: value := left + right - landdeft, right) * 2;
11: value := 0;
12: if left = right then value := 1;
13: if left < right then value := 1

end; {case}
dologic := value;

end; {dologic}

function sinput (address : integer): integer;
var datum: char;

data: integer;
begin

if address = then begin
read (input, datum);
sinput := ord (datum)

end
else if address = 1 then begin

read (input, data)

;

sinput := data
end
else begin

E5



write (output, 'Input from address
readln (input, data);
s input := data;

end
end; {sinput}

address : 1,

procedure soutput (address, data: integer);
begin

if address = then writeln (output, chr(data))
else if address = 1 then writeln (output, data)
else writeln (output, 'Output to address ', address :1,

': ', data:l)
end; {soutput}

begin
initvalues;
cycles := 0;
if cycles = then begin
writeln ( 'Number of cycles to trace')
read (cycles)

;

end;
cyclecount := 0;
while cyclecount <= cycles do begin
case land(tempstate, 63) of

ljbrom := = 4184 ;

1 ljbrom := = 256;
2 ljbrom :

= > 256;
3 ljbrom :

= > 256;
4 ljbrom :

= > 288;
5 ljbrom :

= 256;
6 ljbrom :

= -- 256;
7 ljbrom : = 256;
8 ljbrom :

= 296;
9 ljbrom : = 256;
10 : ljbrom - 143;
11 : ljbrom - 1536;
12 : ljbrom = 256;
13 : ljbrom = 150;
14 : ljbrom = 832 6;

15 : ljbrom = 576
16 : ljbrom = 256
17 : ljbrom = 25C
18 : ljbrom = 396
19 : ljbrom = 16;
20 : ljbrom = 320;
21 : ljbrom = 2182;
22 : ljbrom = 17 92;
23 : ljbrom = 320;
24 : ljbrom = 320;
25 : ljbrom = 0;

26 : ljbrom - 0;
27 : ljbrom = 0;

E6



28 : 1 jbrom = 0,

29 : ljbrom .
= 0,

30 : 1 jbrom • = 0,

31 : ljbrom = 4164;
32 : ljbrom = 0;

33 : ljbrom 132
34 : ljbrom = 196
35 : ljbrom = 196
36 : ljbrom = 132
37 : ljbrom = 134
38 : ljbrom = 134
39 : ljbrom = 134
40 : ljbrom = 256
41 : ljbrom = 256
42 : ljbrom = 134
43 : ljbrom 134
44 : ljbrom 32;
45 : ljbrom - 134
46 : ljbrom = 134
47 : ljbrom = 256
48 : ljbrom = 0;

49 : ljbrom = 196
50 : ljbrom = 134
51 • ljbrom » 134
52 ljbrom = 2437;
53 ljbrom = 131;
54 ljbrom = 64;
55 ljbrom =

56 ljbrom =

57 ljbrom =

58 ljbrom =

59 ljbrom =
60 ljbrom —
61 ljbrom =

62 ljbrom =

63 ljbrom =

end;
ljbexit := dol<sg ic (1 indologic (land (ljbrom, 256) div 256 + 12, tempram,

landdjbrom, 256) * 16);
case landdjbrom, 1024) div 1024 of

: ljbrelpc := temppc;
1 : ljbrelpc := 0;

end;
case landdjbrom, 512) div 512 of

: ljboffset := 1;

1 : ljboffset := templeft;
end;
ljbnewpc := ljbrelpc + ljboffset;
case landdjbrom, 7) of

1 jbpsp :=

1 1 jbpsp :=

2 ljbpsp :=

E7



= tempfp;
= 1;
= templeft;
= 1;
= tempright;

dologic (land(ljbrom, 2) div 2 + land (ljbrom,

3 : ljbpsp
4 : ljbpsp
5 : ljbpsp
6 : ljbpsp
7 : ljbpsp

end;
ljbpushpop !

4), tempsp, ljbpsp)
case land(tempir, 1) of

: ljbselfp := tempsp;
1 : ljbselfp := tempram;

end;
ljbafp := tempfp + templeft;
case landdjbrom, 32) div 32 of

: ljbaddr := tempsp;
1 : ljbaddr := ljbafp;

end;
ljbneg := - tempram;
case land (tempstate, 63) of

: ljbparm :
=" 0;

1 : ljbparm :
== 0;

2 : ljbparm :
= 387;

3 : ljbparm :
= 160;

4 : ljbparm :
= 25;

5 : ljbparm :
= 0;

6 : ljbparm : = 224;
7 : ljbparm :

= 6;

8 : ljbparm :
= 9;

9 : ljbparm :
= > 192;

10 : ljbparm = 11;
11 : ljbparm = 0;
12 : ljbparm = 0;
13 : ljbparm = 4;
14 : ljbparm = 15;
15 : ljbparm = 25;
16 : ljbparm = 416;
17 : ljbparm = 432;
18 : ljbparm = 9;

19 : ljbparm = 8;
20 : ljbparm = 433;
21 : ljbparm = 10;
22 : ljbparm = 96;
23 : ljbparm = 436;
24 : ljbparm = 407;
25 : ljbparm = 0;
26 : ljbparm = 18;
27 : ljbparm = 14;
28 : ljbparm = 13;
29 : ljbparm = 7;

30 : ljbparm - 5;

31 : ljbparm = 0;

32 : ljbparm = 31;

BS



33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62

63
end;
case

1

2

3

4

5

6

7

8

9

10
11
12
13
14
15

end;
case

1 jbparm
1 jbparra

1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm
1 jbparm

= 1

= 2

= 2
= 12
= 30
= 29
= 29
= 0;
= 224
= 30
= 30
= 12
- 28
= 27
= 32
= 0;
= 24
= 26
= 19
= 64
= 21
= 22
=
=
=
=
=
=
=
=
=

land(tempir, 15) of
1 jbop
1 jbop
1 jbop
1 jbop
1 jbop
1 jbop
1 jbop
1 jbop
1 jbop
1 jbop
1 jbop
1 jbop
1 jbop
1 jbop
1 jbop
1 jbop

=
= 1

= 4

= 1

= 13;
= 12;
- 3;
= 0;
= 4;
= 7;
= 2;
= 1;
= 12;
= 5;

land (1 jbparm, 32) div 32 of
ljbselr := tempright;

E9



ljbselr := tempfp;1

end;
ljbalu := dologic (1 jbop, tempram, ljbselr);
case landdjbexit, 1) + land(ljbrom, 12288) div 2048 of

: ljbnewst := land(ljbparm, 31);
1 : ljbnewst := land(ljbparm, 31);
2 : ljbnewst := land (tempprog, 15) + land(ljbrom, 4) *

32;
land (tempprog, 15) + land(ljbrom, 4) *

4

5
6

7

end;

ljbnewst
32;

ljbnewst
ljbnewst
ljbnewst
ljbnewst

32;

= 0;
= land (ljbparm, 31);
= 0;
= land (tempprog, 15) + landdjbrom, 4)

4 +

4 +

case landdjbparm, 224) div 32 of
1 jbwrite
1 jbwrite
1 jbwrite
ljbwrite
1 jbwrite
ljbwrite

16;
ljbwrite := templeft;
ljbwrite := ljbneg;

ljbalu;
= ljbalu;
= tempfp;
= temppc;
= landftempir, 1) ;

= land (tempdata, 15) + land (tempram, 4095) *

1

2

3
4

5

6

7

end;
write ('Cycle ', cyclecount :3)

;

writeln;
adrstate := 0;

datastate := tempstate;
opnstate := 1;
adrpc := 0;
datapc := temppc;
opnpc := landdjbrom, 64) div 64;
adrsp := 0;

datasp := tempsp;
opnsp := landdjbrom, 128) div 128;
adrfp := 0;
datafp := tempfp;
opnfp := land(ljbrom, 2048) div 2048;
adrleft := 0;
dataleft := templeft;
opnleft := landdjbrom,
adrright :

dataright
opnright :

adrir := 0;

datair := tempir;
opnir := land(ljbrom, 40 96) div 4096;
adrdata := 0;

datadata := tempdata;

3) div
= 0;
:= tempright;
landdjbrom, 16) div 16;

E10



opndata := land(l jbparm, 256) div 256;
adrram := land (ljbaddr, 4095);
dataram := tempram;
opnrara := land (ljbrom, 256) div 256 + landd jbaddr, 4096)

div 2048;
adrprog := temppc;
dataprog := tempprog;
opnprog := 0;

tempstate := ljbnewst;
ljbstate [adrstate] := tempstate;
case land(opnpc, 3) of

0: temppc := ljbpc [adrpc]

;

1 : begin
temppc := ljbnewpc;
ljbpc [adrpc] := temppc;

end;
2: temppc := sinput (adrpc)

;

3 : begin
temppc := ljbnewpc;
soutput (adrpc, temppc)

;

end
end; (case)
case land(opnsp, 3) of

0: tempsp := ljbsp [adrsp]

;

1 : begin
tempsp :« ljbpushpop;
ljbsp [adrsp] := tempsp;

end;
2: tempsp := sinput (adrsp)

;

3 : begin
tempsp := ljbpushpop;
soutput (adrsp, tempsp)

;

end
end; (case)
case land(opnfp, 3) of

0: tempfp := 1 jbfp [adrfp]

;

1: begin
tempfp := ljbselfp;
1 jbfp [adrfp] := tempfp;

end;
2: tempfp := sinput (adrfp)

;

3 : begin
tempfp := ljbselfp;
soutput (adrfp, tempfp)

;

end
end; (case)
case land (opnleft, 3) of

0: templeft := 1 jbleft [adrleft]

;

1 : begin
templeft := tempram;
1 jbleft [adrleft] := templeft;

end;

Ell



2: templeft := sinput (adrleft)

;

3: begin
templeft := tempram;
soutput (adrleft, templeft);

end
end; (case)
case land (opnright, 3) of

0: tempright := 1 jbright [adrright ]

;

1: begin
tempright := tempram;
1 jbright [adrright] := tempright;

end;
2: tempright := sinput (adrright)

;

3: begin
tempright := tempram;
soutput (adrright, tempright);

end
end; (case)
case land(opnir, 3) of

0: tempir := 1 jbir [adrir]

;

1 : begin
tempir := tempprog;
ljbir [adrir] := tempir;

end;
2: tempir := sinput (adrir)

;

3 : begin
tempir := tempprog;
soutput (adrir, tempir)

;

end
end; (case)
case land(opndata, 3) of

0: tempdata := ljbdata [adrdata]

;

1 : begin
tempdata := tempprog;
ljbdata [adrdata] := tempdata;

end;
2: tempdata := sinput (adrdata)

;

3 : begin
tempdata := tempprog;
soutput (adrdata, tempdata)

;

end
end; (case}
case land(opnram, 3) of

0: tempram := 1 jbram[adrram]

;

1: begin
tempram := ljbwrite;
1 jbram[adrram] := tempram;

end;
2: tempram := sinput (adrram)

;

3 : begin
tempram := ljbwrite;
soutput (adrram, tempram)

;

E12



end
end; {case)
tempprog := ljbprog [adrprog]

;

cyclecount := cyclecount + 1;
if cyclecount = cycles + 1 then begin
writeln ( 'Continue to cycle (0 to quit)');
read (cycles)

;

end;
end; {while}
end.

E13



Appendix F

Example of specification translation to a hardware diagram

Specification in ASIM II

# tiny computer specification 1986 June 12

{macro definition of instrucions}
~LD 256 ~ST 384 ~BB 512 ~BR 640 ~SU 768

state* nextstate phase pc* incpc newpc ir decode ma
memory ac* borrow alu sel sell b2 sub.

M state nextstate. 0.1 1 1 {state counter}
A nextstate %0100 state 1

S phase state. 0.1 %0001 %0010 %0100 %1000
A incpc %0100 pc 1 {add pc+1 (or load ir) in

phase .2

}

S newpc decode . 1 incpc ir
M pc newpc. 0.6 phase. 2 1

M ir memory phase . 1 1

S decode ir . 7 .

9

phase. 3, #00
phase.

2

borrow, #0
#10 {unconditional only}
1, phase. 3, #00

A alu decode. 3, #01 ac memory. 0.9 {subtract or load}
M ac alu. 0.10 decode. 2 1

M borrow sel b2 1 {borrow flag set only on
subtract}

Fl



A b2 8 phase. 3 sub
A sub 12 %110 ir.7.9
A sel 8 sub sell

A sell 8 alu.10 phase.

3

S ma phase. 2 pc ir
M memory ma. 0.6 ac decode . -128
{decimal memory data follows

{operation and during phase 3}
{is this a subtract operation?}
{ select based on subtract
operation and}

{phase 3 and bit 10 of alu}

-LD+30
-SU+31

-LD+30
-SU+32
-LD+32
-SU+30
-LD+34
-SU+33
-LD+30
-SU+31

5 7 7

{load accumulator from location 30}
{subtract value in location 31 from
accumulator}

0000000000000
10 5

0000000000
0000000000

0000000000000000000000000000
0000000000000000

F2



2K x 8 bit RAM
quad AND
dual D flip flop

4 bit adder

4 bit comparator
" to 1 multiplexor

dual 4 to 1 multiplexor

quad 2 to 1 multiplexor

hex D flip flop

quad D flip flop

4 bit alu

F3



COMPUTER ARCHITECTURE SIMULATION
USING A REGISTER TRANSFER LANGUAGE

by

LESTER BARTEL

B. A., Tabor College, 1983

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1986



ABSTRACT

ASIM II (Architecture Simulator II) is a compiler which compiles

an electronic hardware description to Pascal. When executed, this Pascal

code simulates the hardware described in the specification. The

components of an electronic system are described by three primitives:

ALU, selector, and memory. These three primitives are sufficient to

describe any piece of digital electronic equipment and resemble their

hardware counterparts in a digital electronic system. ASIM II is different

from' other computer hardware description languages in that it uses only

these three primitives. It is not based upon an underlying programming

language on which it is implemented, or on a more complex set of

primitives. ASIM II significantly reduces the simulation time over an

interpreter while maintaining the same functionality.


