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Abstract
Various tests have been created to compare the means of two populations in many

scenarios and applications. The two-sample t-test, Wilcoxon Rank-Sum Test and bootstrap-

t test are commonly used methods. However, methods for skewed two-sample data set are

not well studied. In this dissertation, several existing two sample tests were evaluated and

four new tests were proposed to improve the test accuracy under moderate sample size and

high population skewness.

The proposed work starts with derivation of a first order Edgeworth expansion for the

test statistic of the two sample t-test. Using this result, new two-sample tests based on

Cornish Fisher expansion (TCF tests) were created for both cases of common variance

and unequal variances. These tests can account for population skewness and give more

accurate test results. We also developed three new tests based on three transformations (Ti

test, i = 1, 2, 3) for the pooled case, which can be used to eliminate the skewness of the

studentized statistic.

In this dissertation, some theoretical properties of the newly proposed tests are presented.

In particular, we derived the order of type I error rate accuracy of the pooled two-sample t-

test based on normal approximation (TN test), the TCF and Ti tests. We proved that these

tests give the same theoretical type I error rate under skewness. In addition, we derived the

power function of the TCF and TN tests as a function of the population parameters. We

also provided the detailed conditions under which the theoretical power of the two-sample

TCF test is higher than the two-sample TN test. Results from extensive simulation studies

and real data analysis were also presented in this dissertation. The empirical results further

confirm our theoretical results. Comparing with commonly used two-sample parametric and

nonparametric tests, our new tests (TCF and Ti) provide the same empirical type I error

rate but higher power.
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Chapter 1

Introduction

In many scenarios and applications, people are interested in doing hypothesis testing con-

cerning differences between means of two populations. For example, based on proper samples

we may wish to decide whether medicine A can be as effective as medicine B, or based on

a survey we may want to decide whether the average weekly income of families in one city

exceeds that in another city and etc. These comparisons of two independent population

means are very common in many research fields.

Various tests have been created to do the comparisons under different scenarios. The

two-sample T test is the most commonly used approach. It is a test to check the equality

of means, and derived under the assumption that the two populations follow normal dis-

tribution. In many research areas, the assumption of normality is often violated. Skewed

data are common. For example, several well-known variables are known to be markedly

skewed, such as the survival time of a product following Weibull distribution; the phar-

macokinetics parameters often following log-normal distribution; the bacterial growth rate

following exponential distribution and etc. When the normality assumption does not hold,

the nonparametric test such as Wilcoxon-Mann-Whitney test or the test based on resam-

pling method such as bootstrap-t test can be used. These tests, however, were not developed

specially for skewed data. There are situations that comparison of means or total in skewed

samples is of interest. One example is about profit in farm animals, such as cattle. The

1



weight gain of some animals may be heavily right skewed due to some diet additives. To

compare the profit based on weight gain of animals with the additives vs. those without the

additives, it is necessary to compare the mean of possibly skewed populations. Figure 1.1

shows a real two-sample data set from exercise 6.17 of the textbook Ott and Longnecker

(2008). The data from both control and treatment groups show a skewed population. To

make the question more challenging, the sample size is not very large. It can be clearly seen

from the boxplot that the medians differs by quite a bit. However, neither the two-sample

t-test nor the Wilcoxon Rank-Sum Test can give significant result.
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Figure 1.1: Descriptive Statistics

In this dissertation, we will evaluate several existing two sample tests and propose new

tests that improve the test accuracy under moderate sample size and high population skew-

ness. Some of our proposed new tests did find significant difference for this example. The

organization of the dissertation is as follows: Chapter 2 reviews several existing two sample

tests, which include ordinary two sample t-test, some nonparametric tests and tests based on

2



resampling method. Since the methodology development utilizes Edgeworth expansion, we

will also review the principle of Edgeworth expansion in Chapter 2. Chapter 3 and Chap-

ter 4 introduce the methodology to derive four new test based on Edgeworth expansion

theory. Chapter 4 gives three new tests obtained with transformations. Simulation study

are presented for comparing the type I error rate and power of several existing tests with the

new tests. We expand this research and apply the results to do the two-sample comparison

for skewed populations with unequal variance in Chapter 5. Appendix A provides the proofs

of several theorems in Chapter 3 and Chapter 4.
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Chapter 2

Literature review

Suppose Y1,1, ., Y1,n1 and Y2,1, ., Y2,n2 are two simple random samples from two independent

populations, with sample size n1 , n2, population mean µ1 , µ2 and variance σ2
1 , σ2

2 respec-

tively. Let N denote the total sample size with N = n1 + n2. We are interested in testing

wether the two populations have equal means or not. In this section, we will review several

commonly used tests in practice under the above settings, including ordinary two sample

t-test, modifications of two sample t-test with non-normal data, some nonparametric tests

and the test based on resampling method. A review of each test is given as follows.

2.1 Commonly used tests

2.1.1 Two-sample t-test

The most commonly used test is Student’s t-test, proposed by Gosset (Mankiewicz, 2004;

Box, 1987). There are various versions of student t-test depending on the context of problem.

Under the settings above, if variances of two populations are different, unpooled two sample

t-test is used. The test statistic is

T =
Ȳ1 − Ȳ2 − (µ0

1 − µ0
2)√

S2
1

n1
+

S2
2

n2

, (2.1.1)
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where µ0
i is the true population mean under null hypothesis, Ȳi =

∑ni
j=1 Yij/ni and S2

i =

1
ni−1

∑ni
i=1(Yi − Ȳi)

2 with i = 1, 2. Under the null hypothesis, when data are normally

distributed the test statistic follows a t-distribution with degree of freedom

DF =

(
S2
1

n1
+

S2
2

n2

)2

1
n1−1

(
S2
1

n1

)2

+ 1
n2−1

(
S2
2

n2

)2 .

If the variance of two populations are the same, the pooled two sample t-test should be used

with the test statistic

T =
Ȳ1 − Ȳ2 − (µ0

1 − µ0
2)

Sp
√

1
n1

+ 1
n2

, (2.1.2)

where Sp =
√

(n1−1)S2
1+(n2−1)S2

2

n1+n2−2
. Under the null hypothesis, when data are normally dis-

tributed, the test statistic follows a t-distribution with degree of freedom n1 + n2 − 2.

Both versions of the two sample t-test presented above require certain assumptions. One

of the most important assumptions is that the data follow normal distribution. This as-

sumption ensures that the test statistics in equations (2.1.1) and (2.1.2) follow t-distribution

with corresponding degrees of freedom. If the normality assumption is violated, the exact

distribution of test statistic becomes unknown. T-test is known to be robust to modest

departures from the normality assumption (Mankiewicz, 2004). However, it still has its

limitations depending on the magnitude of departure from normal distribution.

Skewness is one of the most commonly used statistic to quantify the magnitude to which

the data are asymmetry. Let γ denote the value of skewness of the population calculated

as γi = E[(
Yij−µi
σi

)3]. The sample skewness is γ̂i = ni
(ni−1)(ni−2)

∑ni
j=1(

Yij−Ȳi
Si

)3 with i = 1, 2

in Zhou and Philip (2005). Several investigations have been conducted to figure out the

impact of skewness on Student’s t-test (Chen, 1995; Gayen, 1949; Johnson, 1978). These

studies found that the performance of t-test can be poor when the data are skewed (Barrett

and Goldsmith, 1976; Boos and Hughes, 2000).

If the data are skewed, the most commonly used method to get around skewness is based

on Central Limit Theorem (CLT). It has been justified that normal distribution can be used

to approximate the distribution of test statistic in equations (2.1.1) and (2.1.2) with skewed
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data. When the sample size is large this approximation is shown to have order of accuracy

O(n−1/2) by Hall (1992a). That is,

P (T ≤ x) = Φ(x) +O(n−1/2), (2.1.3)

where Φ(x) is the cumulative distribution function of the standard normal distribution. The

limitation for application of this approximation is that, for a specific data set, a reasonable

size of n used for approximation in (2.1.3) is unknown. The size of n should depend on the

skewness (Barrett and Goldsmith, 1976; Boos and Hughes, 2000).

Another commonly used method under skewness does a transformation on the observed

data, such that the transformed data follow normal distribution. A logarithm transfor-

mation is usually applied to the original data, followed by the two sample t-test on the

transformed data. Finally, inferences will be made on the mean of the transformed data.

By log transformation, skewness problem is avoided on the two sample t-test. However, the

test on the two sample mean difference on the log-transformed data do not always reveal

the relationship of two population means of the original skewed data, due to the fact that

E(log(X)) ≤ log(E(X)) as a result of the Jensen’s Inequality.

2.1.2 Wilcoxon Rank-Sum Test

The two-sample t test is based on three important assumptions: independent sampling,

normality, and equal variances. When the conditions of normality and equal variances are

not valid but the sample sizes are large, using a t test is approximately correct. In this

case, the Wilcoxon Rank-Sum test provides an alternative test procedure that requires less

stringent conditions for comparing two independent samples. It replaces the normality

assumption with that the two samples are taken from identical distribution. It does not

require that the populations have normal distribution. The other conditions, equal variances

and independence of the random samples, are still required for the Wilcoxon Rank-sum test.

In Wilcoxon Rank-sum test, the ranks of all observations are first obtained from the

combined samples. Let Wi be the sum of the ranks of the observations from sample i, here

i = 1, 2. The Wilcoxon Rank-Sum test is a two-sample permutation test based on Wi.
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Assume that n1 observations are from sample 1 and n2 observations from sample 2. And

no two observations have the same value, so that the ranks are distinct. The procedure of

the rank sum test consists of the following steps in below:

• Combine the n1 + n2 observations and rank them from smallest to largest. Find the

observed rank sum Wi of sample i, i = 1, 2.

• Find all the possible permutation of the ranks in which n1 ranks are assigned to sample

1 and n2 ranks are assigned into sample 2 separately.

• For each permutation of the ranks, find the sum of the ranks for sample 1 (or sample

2).

• Determine the upper-tail, lower-tail, or two-sided p-value. For an upper-tail test, the

p-value is:

Pupper tail =
number of rank sums ≥ observed rank sum W(

n1+n2

n1

)
The rank sum of either sample can be used. The choice of sample 1 is arbitrary. Instead of

using the sum of the ranks, the test could also be based on the difference of mean ranks. Let

W1 be the Wilcoxon sum rank for sample 1. Since we have total N = n1 + n2 observations,

the sum of all ranks is: T = 1 + 2 + . . . + N = N(N + 1)/2. And the difference of mean

ranks is defined as:

Difference of mean ranks = W1

(
1

n1

+
1

n2

)
− N(N + 1)

2n2

This implies that the statistical test based on the sum of ranks of one of the treatments

will have the same p-value as just using the first method discussed above. And either to

use upper-tail or lower-tail test is determined by the context of the specific problem. When

there are ties among observations, all the tied observations are grouped together and the

average rank to tied values in that group is calculated and assigned to them. These ranks

are called mid-ranks. So the Wilcoxon rank-sum test adjusted for ties becomes:

• Compute the mid-ranks
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• Perform the permutation test using the mid-ranks, where the test statistic is the sum

of mid-ranks for sample 1 (or sample 2).

2.1.3 Mann-Whitney Test

The Mann-Whitney U test is used to compare differences between two independent groups

when the dependent variable is either ordinal or continuous, but not normally distributed.

The Mann-Whitney U test is often viewed as the nonparametric equivalent of Student’s

t-test. The major difference between the Mann-Whitney Test and Student’s t-Test is that

the former one does not require a normal distribution of the data from the sample. Based

on our two sample settings, assuming the data have no ties so a given observation is either

strictly less than or strictly larger than any other observation. The Mann-Whitney statistic,

denoted as U , is defined as:

U = number of pairs (Y1i, Y2j) for which Y1i < Y2j.

A large U value means that the larger observations tend to occur with sample 2 and a small

U value means that the larger observations tend to occur with sample 1. Lower-tail U values

and upper-tail U values under the null hypothesis (the distributions of Y1 and Y2 are the

same) are related as: Uupper = n1n2 − Ulower. The procedure of the Mann-Whitney U test

consists of the following steps as follows:

• Assign numeric ranks to all observations, starting with 1 for the lowest rank. The

observations with tied values are assigned a mid-rank.

• Calculate the sum of the rank W1 for sample 1 and W2 for sample 2.

• Ui is defined as: Ui = Wi − ni(ni+1)
2

. We have U1 + U2 = n1n2, i = 1, 2.

• The smaller Ui is used to consult significance tables.

The Wilcoxon Rank Sum Test and the Mann-Whitney Test are equivalent. In fact, the test

is often call the Mann-Whitney-Wilcoxon Test (or more commonly called the MWW Test).

These two tests are equivalent in the sense that one is a linear combination of the other.
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2.2 Test bases on resampling methods

2.2.1 Permutation test

The method of permutation, also called randomization, is a very general approach to test-

ing statistical hypotheses. Permutation test can be traced back to at least Fisher (1935)

and Pitman (1937). Permutation test provides an efficient alternative when the data do

not follow normal distribution. It is applicable to very small samples without specifying the

parametric form of the underlying distribution. The speed of modern computers allow us

to perform many statistical test using the permutation method. The advantage is that one

does not have to worry about distribution assumptions of classical testing procedures. In a

two-sample case, let Fi(x) be the cdf of population i, i = 1, 2. The two-sided hypothesis of

permutation test is:

H0 : F1(x) = F2(x) Ha : F1(x) ≤ F2(x) or F1(x) ≥ F2(x) for all x,

where strictly inequality happens for at least one x. The alternative hypothesis indicates

that the observations for population 1 tend to be larger or smaller than the observations

for population 2. With the same two-sample setting, under the above null hypothesis,

any permutation of the observations between the two populations have the same chance

to happen as any other permutations. The steps for a two-sample permutation test are as

follows:

• Compute the mean difference between the two samples, denote as Dobs;

• Permute the N observations from the combined samples, so that there are n1 ob-

servations for sample 1 and n2 observations for sample 2. Obtain all the possible

permutations with a total number
(
N
n1

)
;

• For each permutation of the data, compute the mean difference, denoted as D;

• If the population mean µ1 is bigger than µ2, under H1 compute the p-value as the
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proportion of D’s greater than or equal to Dobs, i.e.

Pupper tail =
number of D′s ≥ Dobs(

N
n1

)
• If the level of significance is α, then reject H0 if the p-value ≤ α.

This permutation test is very flexible. One can choose a test statistic fitted to the context

of the question. Besides testing the mean difference between two populations as a test

statistic, one can also use the sum of each sample. And these two methods will reach the

same conclusion.

2.2.2 Bootstrap tests

Bootstrap is a well-known method to derive asymptotic approximations for carrying out

inference. The basic idea of bootstrapping is that inference about a population from sample

can be modeled by resampling the sample and performing inference on those resamples.

More formally, given the original data, the bootstrap works by treating inference of the true

probability distribution f , as being analogous to inference of the empirical distribution of

f̂ , given the resampled data. The accuracy of inferences regarding f̂ using the resampled

data can be assessed because f̂ is known. If f̂ is a reasonable approximation to f , then the

quality of inference on f can in turn be inferred. This technique allows estimation of the

sampling distribution of almost any statistic using random sampling methods.

2.2.2.1 Basic Bootstrap

The permutation tests described in Section 2.2.1 are special nonparametric resampling tests,

in which the resampling process is done without replacement. In this section we discuss

the resampling procedure with replacement rather than without. Basic bootstrap test is

based on the resampling procedure with replacement, which may apply to much wider areas

including hypothesis testing.

When doing significance tests, the probability calculation under the null hypothesis is

crucial. With the same two-sample settings about Y1 and Y2, we are interested in comparing
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two populations means. So the test statistic of basic bootstrap test is defined as T = Ȳ1−Ȳ2.

The steps for a basic bootstrap test are listed below:

• Randomly draw ni bootstrap samples from sample i with replacement, i = 1, 2. Repeat

this process B times.

• Calculate the bootstrap sample mean Ȳi
∗

for sample i, and then the bootstrap test

statistic T ∗ = Ȳ ∗1 − Ȳ ∗2 .

• Under H0 : µ1 = µ2, compute the p-value as the proportion of T ∗ ≥ T , which is

P -value =
1 + number of T ∗ ≥ T

B + 1

2.2.2.2 Tilted Bootstrap

Based on the same two-sample example of basic bootstrap test above, generally we might tilt

the empirical distribution of T ∗ by sampling with weight pi = (pi1, . . . , pini), attached to the

data values yi1, . . . , yini , with i = 1, 2. For the sampling procedure of basic bootstrap, the

corresponding weight pi = n−1
i (1, . . . , 1). Of course, the pi’s form a multinomial distribution

with pi > 0 and
∑

i pi = 1. The Tilted bootstrap test follows the same steps of the basic

bootstrap test except sampling with weight pi, which is listed as follows:

• Randomly draw with replacement ni bootstrap samples from sample i with weighs

(p̂i1, . . . , p̂ini), here i = 1, 2 and p̂ij is the weight of jth observation from sample i.

Repeat this process B times.

• Calculate the bootstrap sample mean Ȳi for sample i, then the bootstrap test statistic

is T ∗ = Ȳ ∗1 − Ȳ ∗2 .

• Under H0 : µ1 = µ2, compute the p-value as the proportion of T ∗ ≥ T , which is

P -value =
1 + number of T ∗ ≥ T

B + 1

Tilting is used in many contemporary generalizations of the bootstrap, such as empirical

likelihood and the weighted or biased bootstrap.
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2.2.2.3 Studentized Bootstrap

The studentized bootstrap test is generally referred as bootstrap-t test, which is the test

that works similarly as the usual Student’s t-test, but replaces the quantiles derived from the

normal or Student t-distribution approximation by the quantiles from the bootstrapped dis-

tribution of the Student’s t-test. The estimated quantiles from bootstrap distribution are

theoretically demonstrated to give more accurate asymptotic approximation under skew-

ness (Hall, 1992a).

To illustrate the procedure of Bootstrap-t, consider the same two sample settings about

Y1 and Y2 and testing whether the two populations have equal means or not. The test statis-

tic of pooled two sample t-test T is defined in (2.1.2). The Bootstrap-t test uses resampling

method to estimate the quantiles of test statistic T by its bootstrapped distribution. The

main principle is illustrated as follows:

• Draw B bootstrap samples of size N = n1 + n2 with replacement from the original

two samples respectively, with sample of size n1 from original sample one and sample

of size n2 from original sample two.

• For each bootstrap sample, compute

T ∗b =
Ȳ ∗1b − Ȳ ∗2b − Ȳ1n + Ȳ2n

S∗pb

√
1
n1

+ 1
n2

,

where Ȳ ∗1b and Ȳ ∗2b are the sample means of the bth bootstrap sample from sample 1

and sample 2 respectively; Ȳ1n and Ȳ2n are the sample means of original sample 1 and

original sample 2 respectively; S∗pb =
√

(n1−1)S∗21 +(n2−1)S∗22
n1+n2−2

is the pooled two sample

standard deviation of bth bootstrap sample; S∗i =
√

1
ni−1

∑ni
j=1(Y ∗ij − Ȳ ∗ib)2, i = 1, 2 is

the bth bootstrap sample standard deviation for each sample.

• Estimate the p-value as the proportion of T ∗b ≥ T , which is

P -value =
1 + number of T ∗b ≥ T

B + 1
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2.2.2.4 Other Bootstrap methods

Several bootstrap methods are specifically created for constructing confidence intervals. In

this section, we will review two of them: bias-corrected and accelerated bootstrap (BCa) by

Efron (1987) and t-Pivot by Fisher and Hall (1989).

The bias-corrected and accelerated bootstrap (BCa) is an improved version of boot-

strap method, which adjusts for both bias and skewness in the bootstrap distribution. This

method has been widely used in constructing confidence intervals. And it has been shown

to give better intervals in terms of higher coverage accuracy, narrower width and less com-

putation requirements.

These good properties of BCa bootstrap intervals will be demonstrated by the following

example. Considering the location model X = µ + ε, where E(ε) = 0, the interest is to

construct a confidence interval for µ. With an i.i.d. sample of X : {X1, ..., Xn}, a standard

way to construct the confidence interval is based on an asymptotic normal approximation

as follows:
X̄n − µ
s/
√
n
∼ N(0, 1).

Its 1− 2α standard confidence interval is

[X̄n + zαs/
√
n , X̄n + z1−αs/

√
n], (2.2.1)

where zα and z1−α are the αth and (1 − α)th percentiles of standard normal distribution.

When the population distribution is heavily skewed, the above confidence interval (2.2.1)

can be greatly improved by replacing X̄n and µ by some monotone transformation g(.) with

φ̂ = g(X̄n) and φ = g(µ), some bias constant z0, and some acceleration constant a. Now

the asymptotic normal approximation becomes:

(φ̂− φ)/τ ∼ N(−z0σφ, σ
2
φ)

σφ = 1 + aφ,
(2.2.2)

where σφ > 0 and τ is the standard error of φ̂. In addition, it has been shown that (2.2.2)

can always be reduced to the case with τ = 1 by (Efron, 1987). Denote Ĝ−1(α) to be the
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αth percentile of the bootstrap distribution. Then the (1− 2α)th BCa bootstrap confidence

interval for µ becomes

[Ĝ−1(Φ(z[α])), Ĝ
−1(Φ(z[1−α]))],

where

z[α] = z0 +
(z0 + zα)

1− a(z0 + zα)
,

and z[1−α] is similarly defined. In addition, the constant a and z0 are estimated by:

z0 ≈ Φ−1(Ĝ(X̄n))

a ≈ 1

6
SKEWµ=X̄n(İµ),

where SKEWµ=X̄n(X) is the skewness of a random variable X, evaluated at parameter

µ = X̄n, and İ is the score function of the family fµ(X̄n):

İµ(X̄n) = ∂/∂µ log fµ(X̄n). (2.2.3)

Luckily, the bootstrap process will automatically transfer X̄n to normal. Therefore one does

not need to compute the exact form of transformation function g(.) beforehand.

Besides bias-corrected and accelerated bootstrap (BCa) method, pivoting bootstrap is

another improved version of bootstrap method for constructing confidence intervals. The

pivoting bootstrap confidence intervals were first created by Fisher and Hall (1989). They

found that the bootstrap confidence intervals based on pivotal statistics have higher coverage

accuracy than the ones derived from nonpivotal statistics. In our two-sample case, with test

statistic T defined in (2.1.2), the distribution of T depends only on the distribution of the

error term ε. To demonstrate this, replacing Yij in (2.1.2) with µi + εij gives

Tε =
ε̄1 − ε̄2

Sεp
√

1
n1

+ 1
n2

,

where ε̄i is the sample mean of error of sample i, and S2
εp is

S2
εp =

2∑
i=1

ni∑
j=1

(εij − ε̄i)2

n1 + n2 − 2
.
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If εij follows normal distribution, then T and Tε are equivalent under the null hypothesis

and both follow t-distribution with degrees of freedom n1 + n2 − 2. So the 95% confidence

interval for µ1 − µ2 can be obtained by solving the following inequality

−t0.975 < T =
Ȳ1 − Ȳ2 − (µ1 − µ2)

Sp
√

1
n1

+ 1
n2

< t0.975,

where t0.975 is the 97.5th percentile of the t-distribution with degrees of freedom n1 +n2− 2.

If εij’s do not follow normal distribution, then t-Pivot bootstrap can be used to approximate

the distribution of Tε and obtain a bootstrap confidence interval for the difference of the

means µ1 − µ2. The steps are as follows:

• Calculate the observed error ε̂ij = Yij− ȳi and combine the ε̂ij of two samples together;

• Randomly draw ni errors with replacement from the set of all errors and assign them

to sample i. Denote these errors as ε∗ij then compute Tε based on ε∗ij and denote it as

T ∗ε .

• Repeat the previous step B times to get T ∗ε.b, b = 1, 2, . . . , B;

• Find 2.5th and 97.5th sample percentiles of T ∗ε.b and denote them as te,.025 and te,.975.

Then the 95% bootstrap confidence interval of µ1−µ2 based on t-Pivot can be obtained

by solving the following inequality:

te,.025 < T =
Ȳ1 − Ȳ2 − (µ1 − µ2)

Sp
√

1
n1

+ 1
n2

< te,.975,

with

Ȳ1 − Ȳ2 − te,.975Sp

√
1

n1

+
1

n2

< µ1 − µ2 < Ȳ1 − Ȳ2 − te,.025Sp

√
1

n1

+
1

n2

.

2.3 Edgeworth expansion and Cornish Fisher expan-

sion

Edgeworth expansion by Hall (1992a) is a well known asymptotic expansion theory. It is used

for investigating the behaviour of asymptotically normally distributed random variables such
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as sum of independent variables. In some cases, Edgeworth expansion theory helps find the

convolution integral or sum explicitly and derive any asymptotic expansion from an explicit

form. By the end, we can get an explicit function to approximate the distribution of the

statistics. Cornish Fisher expansion is an inverse form of the Edgeworth expansion that gives

an asymptotic expansion of percentiles, so it is also called Cornish Fisher inversion. Cornish

and Fisher (1938) and Fisher and Cornish (1960) studied the Cornish Fisher expansion of

the sums of independent variables. Generally, Cornish Fisher expansion can be derived

from Edgeworth expansion. In this section, we will first introduce the general idea of these

two expansions in Section 2.3.1. Then an example of Edgeworth expansion is provided to

construct confidence interval for two sample mean difference from Zhou and Philip (2005)

is given in Section 2.3.2.

2.3.1 General idea of the two expansions

We will demonstrate these two expansions by constructing the asymptotic expansion for

Sn = 1√
n

∑n
i=1 Xi, where Xi are independently and identically distributed random variables

from F (x) with population mean µ = 0 and variance σ2 = 1. Denoting γ = E(X3
i ) and

τ = E(X4
i ) with τ <∞, γ and τ are the population skewness and kurtosis respectively. By

Central limit theorem, for each X:

P (Sn ≤ x)→ Φ(x).

The Edgeworth expansion of Sn is built on the above approximation, but gives a better

approximation of P (Sn ≤ x) than Φ(x). The main principle is illustrated as follows:

1. Compute the characteristic function of Sn:

ΨSn(t) = E exp{(it/
√
n)
∑
i

Xi} = [ΨX(t/
√
n)]n.

2. Apply Taylor expansion on exp{itX/
√
n}, as n→∞, then

ΨX(
t√
n

) = E{1 +
itX√
n

+
(it)2X2

2n
+

(it)3X3

6n
√
n

+
(it)4X4

24n2
}+ o(

1

n2
)

= (1− t2

2n
) +

(it)3γ

6n
√
n

+
(it)4τ

24n2
+ o(

1

n2
).
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Increasing exp{itX/
√
n} to its nth power gives:[

ΨX(
t√
n

)
]n

=
[
(1− t2

2n
)n + (1− t2

2n
)n−1(

(it)3γ

6
√
n

+
(it)4τ

24n
)

+ (1− t2

2n
)n−2 (n− 1)(it)6γ2

72n2

]
+ o(

1

n
).

By binomial theory (Bag, 1966), ΨSn(t) in step 1 becomes:

ΨSn(t) = e−t
2/2
[
1− t4

8n
+

(it)3γ

6
√
n

+
(it)4τ

24n
+

(it)6γ2

72n

]
+ o(

1

n
)

= e−t
2/2
[
1 +

(it)3γ

6
√
n

+
(it)4(τ − 3)

24n
+

(it)6γ2

72n

]
+ o(

1

n
).

3. Do a Fourier Transformation (Bochner and Chandrasekharan, 1949) on the approxi-

mated characteristic function of Sn in step 1 to get the following probability density

function g(x) as an approximation of the distribution of Sn:

g(x) =
1

2π

(∫ ∞
−∞

e−itxe−t
2/2dt+

γ

6
√

(n)

∫ ∞
−∞

e−itxe−t
2/2(it)3dt

+
τ − 3

24n

∫ ∞
−∞

e−itxe−t
2/2(it)4dt+

γ2

72n

∫ ∞
−∞

e−itxe−t
2/2(it)6dt

)
.

Simplify the integrals in this equation to yield

g(x) = φ(x)
(

1 +
γH3(x)

6
√
n

+
(τ − 3)H4(x)

24n
+
γ2H6(x)

72n

)
,

where Hj(x) is the jth Hermite polynomials (Fedoryuk, 2001).

4. Integrate g(x) to get its cumulative distribution function of G(x):

G(x) = Φ(x)− φ(x)
(γH2(x)

6
√
n

+
(τ − 3)H3(x)

24n
+
γ2H5(x)

72n

)
= Φ(x)− φ(x)

(γ(x2 − 1)

6
√
n

+
(τ − 3)(x3 − 3x)

24n
+
γ2(x5 − 10x3 − 15x)

72n

)
.

(2.3.1)

The G(x) function in equation (2.3.1) is the second-order Edgeworth expansion of distribu-

tion of Sn. And the first-order Edgeworth expansion of distribution of Sn is:

P (Sn ≤ x) = G(x)
′
+O(n−1) = Φ(x)− φ(x)

(γ(x2 − 1)

6
√
n

)
+O(n−1). (2.3.2)

From the above two expansions in (2.3.1) and (2.3.2) we can see that:
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1. If distribution F (x) is symmetric and γ = 0, then zero order central limit theorem

approximation Φ(x) becomes first-order accurate.

2. The distribution approximation of Sn based on the first order Edgeworth expansion

in (2.3.2) can adjust to the population skewness, which provide a more accurate ap-

proximation than the one from Central limit theorem with skewed population.

From the approximated distribution G(x) in (2.3.2), the αth percentiles of F (x) can be

derived by Cornish Fisher expansion. By inverting the equation (2.3.2), we can show that

the solution x = µα of the equation P (Sn ≤ x) = α admits an expansion as follows:

µα = zα +
γ(x2 − 1)

6
√
n

, (2.3.3)

where zα is the αth percentile of standard normal distribution given by Φ(zα) = α. The

inverse formula in (2.3.3) is called first-order Cornish Fisher expansion (Hall, 1992a). The

percentile of µα in (2.3.3) adjusts the approximation by taking into account of the population

skewness, which provides a more accurate approximation under high skewness.

2.3.2 Application of Edgeworth expansion in two-sample case

So far, the Edgeworth expansion theory has been used to construct confidence intervals under

skewness in many studies. The corresponding confidence intervals or tests give more accu-

rate results than the ordinary ones (Hall, 1992a). We will first review the way to construct

confidence intervals by three transformations depending on the final form of Edgeworth ex-

pansion. Section 2.3.2.2 reviews the work on constructing confidence intervals by Edgeworth

expansion in a two-sample comparison scenario.

2.3.2.1 Confidence intervals based on three transformations

Considering the same settings from Section 2.3.1, Xi are independently and identically

distributed random variables from F (x) with population mean µ and variance σ2. Usually,

the interval of population mean µ is based on the one-sample t-statistic:

t =
X̄ − µ
S/
√
n
,
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where X̄ is the sample mean, S is the sample standard deviation and n is the sample size.

The corresponding t-statistic based confidence interval of population mean µ is:(
X̄ − tα/2,n−1

S√
n
, X̄ + tα/2,n−1

S√
n

)
,

where tα/2,n−1 is the α
2
th percentile of a t-distribution with degrees of freedom n − 1. This

confidence interval is known to have exact 1− α coverage when F (x) follows normal distri-

bution. But when F (x) does not follow normal distribution and highly skewed, the coverage

accuracy of the above t-statistic based confidence interval can be poor.

Hall (1992b) and Zhou and Philip (2005) proposed three transformations to set up the

confidence intervals of Studentized statistics under skewness. These three transformations

can eliminate skewness from the distribution of a Studentized statistic. Let us denote these

three transformations as Ti, i = 1, 2, 3, and they are listed as follows:

T1 = T1(U) = U + aγ̂U2 +
1

3
a2γ̂2U3 + n−1bγ̂ (2.3.4)

T2 = T2(U) = (2an−1/2γ̂)−1{exp(2an−1/2γ̂U)− 1}+ n−1bγ̂ (2.3.5)

T3 = T3(U) = U + U2 +
1

3
U3 + n−1bγ̂, (2.3.6)

where the values of a, b and γ depend on the final form of the statistic derived from Edge-

worth expansion. For example, under the settings in Section 2.3.1, Xi are independently

and identically distributed random variables from F (x) with population mean µ = 0 and

variance σ2 = 1. Applying T1 transformations to U = 1√
n
Sn = 1

n

∑n
i=1 Xi, then the values

of a, b and γ in (2.3.4) depend on the Edgeworth expansion of Sn in (2.3.2):

P (Sn ≤ x) = G(x) +O(n−1) =Φ(x)− φ(x)√
n

[
γ(
x2

6
− 1

6
)
]

+O(n−1)

=Φ(x)− φ(x)√
n

[
γ(ax2 + b)

]
+O(n−1)

We have a = 1
6
, b = −1

6
and γ equals to the population skewness of Xi.

In addition, these three transformations have two properties:
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1. After transformation, the Studentized statistic under skewness becomes virtually sym-

metric and approximately normal, with property:

P (
√
nTi(U) ≤ x) = Φ(x) +O(n−1). (2.3.7)

2. The three transformations are monotone and have simple, explicit inversion formulae

as follows:

T−1
1 (t) = (aγ̂)−1{1 + 3aγ̂(t− bγ̂/n)}1/3 − (aγ̂)−1 (2.3.8)

T−1
2 (t) = (2an−1/2γ̂)−1log{2an−1/2γ̂(t− n−1bγ̂) + 1} (2.3.9)

T−1
3 (t) = {1 + 3(t− n−1bγ̂)}1/3 − 1. (2.3.10)

According to the above two properties, the procedure to construct t-statistic based confi-

dence intervals under skewness by each of the three transformations is:

• Denote the t-statistic as T . Do a Ti transformation on the U = 1√
n
T to derive a new

statistic. The distribution of the transformed statistic
√
nTi(U) is virtually symmetric

and approximate standard normal

• Use the percentile of standard normal distribution, say zα/2, to approximate the per-

centile of the transformed variable
√
nTi(U)

• Now, Ti(U)α/2 =
zα/2√
n

is the α
2
th percentile of Ti(U). Plugging in Ti(U)α/2 into T−1

i (U)

to get the corresponding α
2
th percentile of U

• Since U = 1√
n
T , the α

2
th percentile of the original t-test statistic is

√
nT−1

i

(
zα/2√
n

)
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By the above procedure, we can get confidence interval of µ from each of the three

transformations as follows:(
X̄ −

√
nT−1

i

(
z1−α/2√

n

)
S√
n
, X̄ −

√
nT−1

i

(
zα/2√
n

)
S√
n

)
,

where i = 1, 2, 3 and zα/2 and z1−α/2 is the α/2th and 1 − α/2th percentiles of standard

normal distribution respectively. The confidence intervals based on three transformations

above have better coverage accuracy than the ones from t-statistic under skewness.

2.3.2.2 Confidence intervals in two sample case by Edgeworth expansion

Zhou and Philip (2005) applied the above idea to construct confidence intervals in a two-

sample scenario. Suppose Y1,1, ., Y1,n1 and Y2,1, ., Y2,n2 are two simple random samples from

two independent populations, with sample sizes n1 , n2, population means µ1 , µ2, variances

σ2
1 , σ2

2 and skewness γ2
1 , γ2

2 , respectively. Let N denote the total sample size, i.e., N =

n1 + n2. We are interested in constructing confidence intervals for µ1 − µ2.

By Edgeworth expansion theory, Zhou and Philip (2005) derived an approximation dis-

tribution for the test statistic of unpooled two sample t-test defined in (2.1.1) as follow:

Let λN = n1/(n1 + n2) = n1/N . Assume λN = λ + O(N−r) for some r ≥ 0. Under regu-

larity conditions in Hall (1992a) Appendix A, the distribution of the unpooled two sample

t-statistic T given in (2.1.1) has the following expansion:

P (T ≤ x) = Φ(x) +
A

6
√
N

(2x2 + 1)φ(x) +O(N−min(1,r+1/2)), (2.3.11)

where φ(x) is the probability density function of the standard normal distribution, Φ(x) is

the cumulative distribution function of the standard normal distribution and

A =

{
σ2

1

λ
+

σ2
2

1− λ

}−3/2{
σ3

1γ1

λ2
− σ3

2γ2

(1− λ)2

}
. (2.3.12)

By the same idea in Section 2.3.2.1, Zhou and Philip (2005) provided three (1 − α)100%

transformation-based confidence intervals as follows:(
Ȳ1 − Ȳ2 −

√
nT−1

i

(
z1−α/2√

n

)
S, X̄ −

√
nT−1

i

(
zα/2√
n

)
S

)
,
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where T−1
i is one of the three inverse transformations, i = 1, 2, 3 and S =

√
S2
1

n1
+

S2
2

n2
.

Zhou and Philip (2005) proved that the coefficient of A/
√
N in equation (2.3.11) can

represent the extent of skewness in a two-sample scenario. When A/
√
N is small (< 0.3),

the coverage accuracy of t-based confidence interval is good; Meanwhile, when the A/
√
N is

large (≥ 0.3), the t-based confidence intervals can be improved by T1 and T3 transformation-

based confidence intervals.

So far, we have reviewed four confidence intervals of the difference of two sample means,

one based on Cornish Fisher expansion and the other three based on transformations. The

confidence intervals can account for population skewness. We would like to consider similar

ideas to hypothesis tests and hope that the derived tests would have better test properties

such as Type I error rate and power. In the next Section 2.4, we will review factors related

to the performance of a test.

2.4 Factors related to type I error rate and power of

the test

Type I error rate and power are two of the most important properties of a test. The value

of type I error rate is defined as the probability to reject a true null hypothesis. Under

our setting, the type I error is the incorrect rejection of a true null hypothesis. It happens

when we conclude that the two populations have different means while their true population

means are equal.

Type I Error Rate = P (reject null hypothesis | null hypothesis is true).

The maximum Type I error rate is defined as the level of significance, denoted as α. The

value of α is often predetermined before data collection and usually α = 0.05.

The power of a test is defined as the probability to reject a false null hypothesis, which

under our setting is the probability of rejecting null hypothesis when the true population

means are unequal.

22



Power = P (reject null hypothesis | alternative hypothesis is true).

For every test, we want to increase the power as much as possible, while maintain the

type I error rate to be a small value. The power of a test depends on several parameters,

which are listed as follows:

• the distribution of the test statistic

• the significance level;

• the sample size from each population;

• the effect size δ, defined as the difference between true and hypothetical value of the

parameter of interest (Cohen, 1988);

• the two population variances;

• the two population skewness (if populations are skewed).

In two-sample comparison, the effect size equals the absolute value of the true population

mean difference minus the hypothetical mean difference, as δ = (µ1−µ2)−hypothetical(µ1−

µ2).

There are several ways to increase the power of a test. First, one can define a larger

value of significance level, which will enlarge the area of rejection region. As a result,

the probability of rejecting the null hypothesis will increase, so does the power of test.

The second thing is to increase the sample size. The greater the sample size, the more

information for the population. Then the test will have bigger chance to reject the null

hypothesis when the two populations have different means. A third way is to magnify the

effect size. The effect size actually reflects how much the ‘true’ value of the parameter is

away from the one specified in the null hypothesis. In other words, the greater the difference

between the ‘true’ value of the parameter and the value specified in the null hypothesis, the

greater the power of the test.
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On the contrary, either increasing the population variance or skewness decreases the

power of a test. A big population variance increases the amount of sampling error inherent

in a test result. This reduces the probability of rejecting the null hypothesis when the two

populations have different means and hence reduces the power of the test. In addition, the

population skewness has been proved to have effect on the power of one sample t-test by

(Chaffin and Rhiel, 1993; Reineke et al., 2003). When data are skewed, the test statistic

of t-test does not follow t-distribution any more. So it is no longer appropriate to use

t-distribution to approximate the distribution of the test statistic. Furthermore, using an

inaccurate test statistic distribution will not only decrease the accuracy of a test but also

reduce the power of a test.

Although Zhou and Philip (2005) already gave the explicit form of Edgeworth expansion

of the unpooled two sample test statistic, it is still important to find the form of Edgeworth

expansion of the pooled two sample test statistic. As we know, with same population

variances and unbalanced sample size, the pooled two sample test gives higher power than

the unpooled two sample test. This increment of power of the test is a crucial factor to

increase the test accuracy when the sample size is small and limited. In phase-one study

of pharmaceutical industry, the researchers often need to test if there is a significantly

difference in population means of some pharmaceutical dynamics parameters between two

groups of healthy volunteers. In most of the studies, the two group sample sizes are often

limited. In this case, the pooled two sample test is preferred when the two groups have same

population variance, in that the pooled two sample test gives higher power and provides

bigger chance to reject the null hypothesis when the two populations have different means.

In the following Chapter 3 and Chapter 4, we will derived the explicit form of Edgeworth

expansion of the pooled two sample test statistic and provide four new two sample tests

under skewness, one based on Cornish Fisher expansion and three based on transformation.
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Chapter 3

Proposed two-sample test using

Cornish Fisher expansion

In this chapter, we will derive a better approximation of the distribution for pooled two

sample t-statistics based on Edgeworth expansion theorem. The new approximated dis-

tribution can account for population skewness and gives more accurate test results. The

theoretical results are given in Section 3.1 and 3.2. Section 3.3 presents a simulation study

to investigate and compare the type I error rate and power of different two-sample tests

under skewness.

3.1 Edgeworth expansion of the pooled two sample t-

statistic

In this section, we derive the Edgeworth expansion of the pooled two sample t-statistics to

achieve a better approximation of the distribution of the test statistics, which we expect to

account for the effect of skewness.

Suppose X1,1, ., X1,n1 and X2,1, ., X2,n2 are two simple random samples from two indepen-

dent populations with mean µ1, µ2 and common variance σ2. The two population distribu-

tions are possibly from different families which are distinct from each other with population
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skewness γ1 and γ2 respectively. Denote N as the total sample size N = n1 + n2 and the

population parameters are summarized in Table 3.1: We know that, the test statistic for

mean variance skewness

population 1 µ1 σ γ1

population 2 µ2 σ γ2

Table 3.1: Parameters of the two populations

the pooled two sample t-test is as follows,

T =
X̄1 − X̄2 − (µ0

1 − µ0
2)

Sp
√

1
n1

+ 1
n2

, (3.1.1)

where µ0
i is the true population mean under null hypothesis, X̄i =

∑ni
j=1Xij/ni, Sp =√

(n1−1)S2
1+(n2−1)S2

2

n1+n2−2
and S2

i = 1
ni−1

∑ni
i=1(Xi − X̄i)

2 with i = 1, 2.

Let Y ∗ij =
Xij−µ0i

σ
, Ȳ ∗i = 1

ni

∑ni
j=1X

∗
ij and S∗

2

i = 1
ni−1

∑ni
j=1(Y ∗ij − Ȳ ∗i )2, for i = 1, 2 and

j = 1, ..., ni. Using these newly defined equations to replace the original statistics in pooled

two sample t-statistic, we have

T =
σȲ ∗1 − σȲ ∗2√

(n1−1)σ2S∗
2

1 +(n2−1)σ2S∗
2

2

n1+n2−2
(n1+n2)
n1n2

=
√
N

Ȳ ∗1 − Ȳ ∗2√
(n1−1)S∗

2
1 +(n2−1)S∗

2
2

(N−2)λN (1−λN )

, (3.1.2)

where λN = n1/N = n1/(n1 + n2).

Furthermore, let X = (X1, X2, X3, X4), where

X1 = Ȳ ∗1 , X2 =
1

n1

n1∑
j=1

Y ∗
2

1j , X3 = Ȳ ∗2 , X4 =
1

n2

n2∑
j=1

Y ∗
2

2j .

Now plugging X into (3.1.2) to further transform the pooled two sample t-statistic, finally

we can write the test statistic T as a function of X with T =
√
Ng(X), which has the form

as follows:

T =
√
Ng(X) =

√
N(X1 −X3)

k(X)1/2
,
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where, k(X) =
(n1−1)S∗

2

1 +(n2−1)S∗
2

2

(N−2)λN (1−λN )
=

(n1−1)(X2−X2
1 )+(n2−1)(X4−X2

3 )

(N−2)λN (1−λN )
. Next, applying Taylor

expansion to g(X) at EX ≡ U ≡ (U1, U2, U3, U4) = (0, 1, 0, 1) gives:

g(X) = g(U) +
∂g(U)

′

∂U
(X− U) +

1

2
(X− U)

′ ∂2g(U)

∂U2
(X− U) + . . . ,

note that g(U) = 0. so

T =
√
N

{
∂g(U)

′

∂U
(X− U) +

1

2
(X− U)

′ ∂2g(U)

∂U2
(X− U) + . . .

}
.

If we let

WN =
√
N

{
∂g(U)

′

∂U
(X− U) +

1

2
(X − U)

′ ∂2g(U)

∂U2
(X− U)

}
.

Under regularity conditions, we can show that

T = WN +Op(N
−1).

Corollary 3.1.1. Assuming EY 6
ij <∞. The first three moments of WN are as follows:

E(WN) = −1

2
N−1/2[λ(1− λ)]1/2(γ1 − γ2) +O(N−min(1,r+ 1

2
)), (3.1.3)

E(W 2
N) = 1 +O(N−1), (3.1.4)

E(W 3
N) = −

[
λ(1−λ)

4N

]1/2(
11λ− 2

λ
γ1 −

9− 11λ

1− λ
γ2

)
+O(N−min(1,r+ 1

2
)), (3.1.5)

where λN = n1

n1+n2
= n1

N
. Assume λN = λ+O(N−r) for some r ≥ 0. γi = E[(

Yij−µi
σi

)3] is the

population skewness, i = 1, 2.

The proof of Corollary 3.1.1 is given in Appendix A.1.1.

Corollary 3.1.2. Let K1N , K2N and K3N be the first three cumulants of WN . The following

results hold:

K1N = − 1

2
√
N

[λ(1− λ)]1/2(γ1 − γ2) +O(N−min(1/2,r+1/2)), (3.1.6)

K2N = 1 +O(N−min(1,r+1/2)), (3.1.7)

K3N = −
[
λ(1−λ)

4N

]1/2 [
(
8λ− 2

λ
)γ1 − (

6− 8λ

1− λ
)γ2

]
+O(N−min(1/2,r+1/2)), (3.1.8)

where λ is given in Corollary 3.1.1.
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The proof of Corollary 3.1.2 is given in Appendix A.1.2.

Let χN(t) be the characteristic function of WN . Then:

χN(t) = exp

{
K1N(it) +K2N

(it)2

2
+K3N

(it)3

6
+ . . .

}
Based on the properties of cumulants from (Good, 1977), all cumulants of order r ≥ 3 of

the standardized sum tend to zero, which is a demonstration of central limit theorem. Since

WN is a function of the standardized sum, then we have the following results:

χN(t) = exp

{
K1N(it) +K2N

(it)2

2
+K3N

(it)3

6
+O(N−min(1,r+1/2))

}
= exp

(
−t

2

2

)
exp

{
N−1/2

(
−A(it)−B(it)3

)
+O(N−min(1,r+1/2))

}
,

(3.1.9)

where A and B are defined as

A = [λ(1− λ)]1/2(γ1 − γ2)/2,

B = [λ(1− λ)]1/2
(

8λ− 2

λ
γ1 −

6− 8λ

1− λ
γ2

)
/12.

(3.1.10)

By Taylor expansion, we have

χN(t) = exp

(
−t

2

2

){
1 +N−1/2

(
−A(it)−B(it)3

)
+O(N−min(1,r+1/2))

}
. (3.1.11)

Using Fourier Transformation, the probability density function of WN can be obtained with:

fWN
(x) =

1

2π

∫ ∞
−∞

e−itxχN(t)dt

=
1

2π

∫ ∞
−∞

e−itxexp

(
−t

2

2

){
1 +N−1/2

(
−A(it)−B(it)3

)}
dt+O(N−min(1,r+1/2)).

Based on the properties of Hermite polynomials of kth order

Hk(x)φ(x) =
1

2π

∫ ∞
−∞

e−itxe−t
2/2(it)kdt.

We can write

fWN
(x) = φ(x)−N−1/2AH1(x)φ(x)−N−1/2BH3(x)φ(x) +O(N−min(1,r+1/2))

= φ(x)[1 +N−1/2(3B − A)x−N−1/2Bx3] +O(N−min(1,r+1/2)).
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where H1(x) = x and H3(x) = x3− 3x. To get the cumulative distribution function of WN ,

we can use another property of the Hermite polynomial

d

dx
[Hk(x)φ(x)] = −Hk+1(x)φ(x).

Then

P (WN ≤ x) =

∫ x

−∞
fWN

(x)dx+O(N−min(1,r+1/2))

=

∫ x

−∞

[
φ(x)−N−1/2AH1(x)φ(x)−N−1/2BH3(x)φ(x)

]
dx+O(N−min(1,r+1/2))

=Φ(x) +N−1/2AH0(x)φ(x) +N−1/2BH2(x)φ(x) +O(N−min(1,r+1/2))

=Φ(x) +N−1/2[A+B(x2 − 1)]φ(x) +O(N−min(1,r+1/2)),

(3.1.12)

where H0(x) = 1 and H2(x) = x2 − 1. Since T = WN + Op(N
−1), we have the following

result for the distribution of T :

Theorem 3.1.3. Let λN = n1/(n1 + n2) = n1/N . Assuming λN = λ + O(N−r) for some

r ≥ 0, under regularity conditions (in Appendix A), the distribution of the pooled two sample

t-statistic T given in (2.1.2) has the following expansion:

F
(1)
T (x) = P (T ≤ x) = Φ(x) +N−1/2[A+B(x2 − 1)]φ(x) +O(N−min(1,r+1/2)), (3.1.13)

where φ(x) is the probability density function of the standard normal distribution, Φ(x) is the

cumulative distribution function of the standard normal distribution and A, B are defined

in (3.1.10).

The proof of Theorem 3.1.3 is given in Appendix A.1.

The right hand side of equation (3.1.13) is the first order Edgeworth expansion of the

pooled two sample t-statistic, which can account for population skewness by A and B in the

second term of this expansion. The Edgeworth expansion theory can be applied to construct

confidence intervals by giving better approximation of the percentiles of the test statistic.

Following this idea, we construct a new two-sample test with rejection region derived from
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the Edgeworth expansion theory. The details are given in Section 3.2. This rejection region

is expected to be more accurate than the ones from normal approximation under skewness.

We expect the new test to provide a better power in detecting the true two population mean

difference.

3.2 Cornish Fisher expansion and the new test based

on Cornish Fisher expansion

3.2.1 A two-sample test based on Cornish Fisher expansion

One new test can be constructed by Cornish Fisher expansion theory. From Section 2.3.1,

we know that the Cornish Fisher expansion can be used to compute the percentiles of

the distribution derived from Edgeworth expansion. In this case, the percentiles of the

distribution in (3.1.13) admits a Cornish Fisher expansion, which has the form as follows

Corollary 3.2.1. Let ηα denote the αth percentile of distribution F
(1)
T (t) in (3.1.13). Then

based on Cornish Fisher expansion theory, the value of ηα admits an expansion with the

form below:

ηα = zα −N−1/2[A+B(z2
α − 1)] +O(N−min(1,r+1/2)), (3.2.1)

where zα is the αth percentile of the standard normal distribution and A , B are defined

in (3.1.10).

This corollary is a direct result of the theory for Fisher expansion from Hall (1992a).

Hence we omit the proof.

Now define t̂cfα = zα −N−1/2[Â+ B̂(z2
α − 1)], where

Â = [λN(1− λN)]1/2(γ̂1 − γ̂2)/2

B̂ = [λN(1− λN)]1/2
(

8λN − 2

λN
γ̂1 −

6− 8λN
1− λN

γ̂2

)
/12,
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and

γ̂i =
ni

(ni − 1)(ni − 2)

ni∑
j=1

{
Xij − X̄i

Si

}3

λN =
n1

(n1 + n2)
, i = 1, 2.

With the test statistic T defined in equation (2.1.2), we have:

1. The rejection region for two-sided test with hypothesis H0 : µ1 − µ2 = µ10 − µ20 vs.

Ha : µ1 − µ2 6= µ10 − µ20 is

T ≤ t̂cfα/2 or T ≥ t̂cf1−α/2 (3.2.2)

2. The rejection region for one-sided upper tail test with hypothesis H0 : µ1 − µ2 =

µ10 − µ20 vs. Ha : µ1 − µ2 > µ10 − µ20 is

T ≥ t̂cf1−α. (3.2.3)

3. The rejection region for one-sided lower tail test with hypothesis H0 : µ1 − µ2 =

µ10 − µ20 vs. Ha : µ1 − µ2 < µ10 − µ20 is

T ≤ t̂cfα . (3.2.4)

We reject the null hypothesis if T falls into the rejection regions for corresponding al-

ternative hypothesis. In the further discussions, we will refer the two sample test based on

Cornish Fisher expansion as “TCF” and the two sample test based on normal approximation

as “TN”.

3.2.2 Type I error rate of the two-sided test based on Cornish

Fisher expansion

In this section, we calculate the order of approximation to type I error rate for the two-

sided test with rejection region in (3.2.2) from the first order Cornish Fisher expansion.
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Under the two-sample setting in above Subsection 3.2.1, the distribution of the test statistic

T is F
(1)
T (x) defined in Theorem 3.1.3, and the rejection region of the test is defined in

formula (3.2.2). Denote the two cutoffs in formula (3.2.2) as

t̂cfα/2 = zα/2 −N−1/2[Â+ B̂(z2
α/2 − 1)] , zα/2 + ∆̂N,α/2

t̂cf1−α/2 = z1−α/2 −N−1/2[Â+ B̂(z2
1−α/2 − 1)] , z1−α/2 + ∆̂N,1−α/2,

(3.2.5)

where

∆̂N,α/2 = −N−1/2[Â+ B̂(z2
α/2 − 1)]

∆̂N,1−α/2 = −N−1/2[Â+ B̂(z2
1−α/2 − 1)].

Note that the two cutoffs in (3.2.2) are not symmetric about zero. Instead, they are a shift

version of the cutoff from the large sample normal test. From Bai and NG (2005), under

standard regularity conditions we have

γ̂i = γi +Op(N
−1/2),

and as defined previously λN = λ+O(N−r). Then we have the following results

Â = [λN(1− λN)]1/2(γ̂1 − γ̂2)/2

= [(λ(1− λ))1/2 +O(N−r)][
γ1 − γ2

2
+Op(N

−1/2)]

= (λ(1− λ))1/2γ1 − γ2

2
+Op(N

−min(r, 1
2

))

= A+Op(N
−min(r, 1

2
)),

similarly

B̂ = [λN(1− λN)]1/2
(

8λN − 2

λN
γ̂1 −

6− 8λN
1− λN

γ̂2

)
/12

= [(λ(1− λ))1/2 +O(N−r)]

{
8λ− 2

λ
γ1 −

6− 8λ

1− λ
γ2 +Op(N

−min(r, 1
2

))

}
/12

= (λ(1− λ))1/2(
8λ− 2

λ
γ1 −

6− 8λ

1− λ
γ2)/12 +Op(N

−min(r, 1
2

))

= B +Op(N
−min(r, 1

2
)).
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Based on the above results of Â and B̂, we can obtain

∆̂N,α/2 = −N−1/2[Â+ B̂(z2
α/2 − 1)]

= −N−1/2[(A+Op(N
−min(r, 1

2
))) + (B +Op(N

−min(r, 1
2

)))(z2
α/2 − 1)]

= −N−1/2[A+B(z2
α/2 − 1)] +Op(N

−min(1,r+1/2))

= ∆N,α/2 +Op(N
−min(1,r+1/2)),

and

∆̂N,1−α/2 = ∆N,1−α/2 +Op(N
−min(1,r+1/2)).

Now we have

t̂cfα/2 = tcfα/2 +Op(N
−min(1,r+1/2))

t̂cf1−α/2 = tcf1−α/2 +Op(N
−min(1,r+1/2)),

and the following Lemma:

Lemma 3.2.2. Let ηα denote the αth percentile of distribution F
(1)
T (t) in (3.1.13) and η̂α

denote the estimate of ηα, which satisfies η̂α = ηα+Op(N
−min(1,r+1/2)). Then under standard

regularity conditions, the following result holds:

P (T < η̂α/2) + P (T > η̂1−α/2)

= 1− F (1)
T (η1−α/2) + F

(1)
T (ηα/2) +O(N−min(1,r+1/2)).

Recall that the distribution of F
(1)
T (x) in Theorem 3.1.3 takes the following form

F
(1)
T (x) = P (T ≤ x) = Φ(x) +N−1/2[A+B(x2 − 1)]φ(x) +O(N−min(1,r+1/2)).

Hence, based on the result of Lemma 3.2.2, the type I error rate of the two-sample TCF

test can be obtained as

P (type I error of the two-sided TCF test)

=1− F (1)
T (tcf1−α/2) + F

(1)
T (tcfα/2) +O(N−min(1,r+1/2))

=1− Φ(tcf1−α/2) + Φ(tcfα/2)−N−1/2[A+B((tcf1−α/2)2 − 1)]φ(tcf1−α/2)

+N−1/2[A+B((tcfα/2)2 − 1)]φ(tcfα/2) +O(N−min(1,r+1/2)).

(3.2.6)
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Due to the fact that A and B in (3.1.10) are fixed, then we have

∆N,α/2 = ∆N,1−α/2 = O(N−1/2) (3.2.7)

Note that

−N−1/2[A+B((tcfα/2)2 − 1)]

= −N−1/2[A+B((zα/2 + ∆N,α/2)2 − 1)]

= −N−1/2[A+B(z2
α/2 +O(∆N,α/2)− 1)]

= ∆N,α/2 +O(∆N,α/2 ·N−1/2)

= ∆N,α/2 +O(N−1). (3.2.8)

Similarly,

−N−1/2[A+B((tcf1−α/2)2 − 1)]

= ∆N,1−α/2 +O(N−1) = ∆N,α/2 +O(N−1). (3.2.9)

Then apply Taylor expansion to Φ(tcf1−α/2), φ(tcf1−α/2) at z1−α/2 and to Φ(tcfα/2), φ(tcfα/2) at zα/2

correspondingly, we have

Φ(tcf1−α/2) = Φ(z1−α/2) + φ(z1−α/2)∆N,1−α/2 +O(∆2
N,1−α/2),

Φ(tcfα/2) = Φ(zα/2) + φ(zα/2)∆N,α/2 +O(∆2
N,α/2),

φ(tcf1−α/2) = φ(z1−α/2) + φ
′
(z1−α/2)∆N,1−α/2 +O(∆2

N,1−α/2),

φ(tcfα/2) = φ(zα/2) + φ
′
(zα/2)∆N,α/2 +O(∆2

N,α/2).

Using these four Taylor expansions and (3.2.8), (3.2.9) to replace the terms in (3.2.6), we
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have:

P (type I error of the two-sided TCF test )

= 1− Φ(tcf1−α/2) + Φ(tcfα/2)−N−1/2[A+B((tcf1−α/2)2 − 1)]φ(tcf1−α/2)

+N−1/2[A+B((tcfα/2)2 − 1)]φ(tcfα/2) +O(N−min(1,r+1/2))

= α/2− φ(z1−α/2)∆N,α/2 + α/2 + φ(zα/2)∆N,α/2 +O(∆2
N,α/2)

+[∆N,α/2 +O(N−1)][φ(z1−α/2) + φ
′
(z1−α/2)∆N,α/2 +O(∆2

N,α/2)]

−[∆N,α/2 +O(N−1)][φ(zα/2) + φ
′
(zα/2)∆N,α/2 +O(∆2

N,α/2)]

+O(N−min(1,r+1/2))

= α + ∆N,α/2φ(z1−α/2)−∆N,α/2φ(zα/2) +O(N−1) +O(N−min(1,r+1/2))

= α +O(N−min(1,r+1/2)), (3.2.10)

where (3.2.10) is due to the fact that φ(z1−α/2) = φ(zα/2) and ∆N,α/2 = ∆N,1−α/2 =

O(N−1/2). Then we have the follow theorem,

Theorem 3.2.3. Under standard regularity conditions, when H0 is true, the theoretical type

I error rate of the two-sample TCF test, with level of significance α is

P (T < t̂cfα/2) + P (T > t̂cf1−α/2)

= α +O(N−min(1,r+1/2)).

We can easily show that the approximated type I error rate of the pooled two-sample

t-test based on normal approximation is α+O(N−min(1,r+1/2)). This means the type I error

rate accuracy is the same order of O(N−min(1,r+1/2)) for both the test based on Cornish

Fisher expansion and the test based on normal approximation.

3.2.3 Power of the two-sided test based on Cornish Fisher expan-

sion

Now consider data generated under Ha : µ1 − µ2 6= µ10 − µ20. For power calculation, let

δ = (µ1 − µ2)− (µ10 − µ20). When Ha is true, the theoretical power equals the probability

35



of rejecting the null hypothesis with formula:

PHa

(
T ≥ t̂cf1−α/2

)
+ PHa

(
T ≤ t̂cfα/2

)
.

Following the same Edgeworth expansion procedures in Section 3.1, the distribution of the

test statistic T under Ha can be obtained:

Theorem 3.2.4. Let λN = n1/(n1 + n2) = n1/N . Assume λN = λ + O(N−r) for some

r ≥ 0, and δ = O(N−1/2) under Ha. Then under regularity conditions (in Appendix A), the

distribution of the pooled two sample t-statistic T given in (2.1.2) has the following expansion

under Ha

F
(Ha)
T (x) = PHa(T ≤ x) = F

(1)
T (x− cn) +

qn
2

(x− cn)φ(x− cn) +O(N−min(1,r+ 1
2

)),(3.2.11)

where φ(x) is the probability density function of the standard normal distribution, Φ(x) is

the cumulative distribution function of the standard normal distribution, and F
(1)
T (x) is the

distribution of T under H0 defined in Theorem 3.1.3. Here, cN = δ/
√
σ2( 1

n1
+ 1

n2
) and

qN = δσ−1[λ(1− λ)](γ1 − γ2).

The proof of Theorem 3.2.4 is given in Appendix A.2. Now, denote

Q(x) =
qN
2

(x− cN)φ(x− cN). (3.2.12)

Thus the equation (3.2.11) becomes

F
(Ha)
T (x) = PHa(T ≤ x) = F

(1)
T (x− cN) +Q(x) +O(N−min(1,r+1/2)). (3.2.13)

Let tcf1−α/2 and tcfα/2 be the 1−α/2 and α/2 percentiles obtained from distribution F
(1)
T (x).

Denote t̂cf1−α/2 and t̂cfα/2 their sample estimate given in (3.2.5).

L̂cfu = t̂cf1−α/2 − δ/
√
σ2(

1

n1

+
1

n2

)

= z1−α/2 + ∆̂N,1−α/2 − δ/
√
σ2(

1

n1

+
1

n2

)

= UN,1−α/2 + ∆̂N,1−α/2

= UN,1−α/2 + ∆N,1−α/2 +Op(N
−min(1,r+1/2))

= Lcfu +Op(N
−min(1,r+1/2))
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where UN,1−α/2 = z1−α/2 − δ/
√
σ2( 1

n1
+ 1

n2
) and Lcfu = UN,1−α/2 + ∆N,1−α/2. Similarly

L̂cfl = t̂cfα/2 − δ/
√
σ2(

1

n1

+
1

n2

)

= zα/2 + ∆̂N,α/2 − δ/
√
σ2(

1

n1

+
1

n2

)

= UN,α/2 + ∆̂N,α/2

= UN,α/2 + ∆N,α/2 +Op(N
−min(1,r+1/2))

= Lcfl +Op(N
−min(1,r+1/2))

where UN,α/2 = zα/2 − δ/
√
σ2( 1

n1
+ 1

n2
) and Lcfl = UN,α/2 + ∆N,α/2. We have,

L̂cfu = Lcfu +Op(N
−min(1,r+1/2))

L̂cfl = Lcfl +Op(N
−min(1,r+1/2)).

Then based on the result of Lemma 3.2.2, under standard regularity conditions, the theo-

retical power of the two-sample TCF test can be obtained by

PHa

(
T ≥ t̂cf1−α/2

)
+ PHa

(
T ≤ t̂cfα/2

)
= 1− F (Ha)

T (tcf1−α/2) + F
(Ha)
T (tcfα/2) +O(N−min(1,r+1/2))

= 1− Φ(Lcfu )−N−1/2[A+B((Lcfu )2 − 1)]φ(Lcfu )−Q(Lcfu )

+Φ(Lcfl ) +N−1/2[A+B((Lcfl )2 − 1)]φ(Lcfl ) +Q(Lcfl ) +O(N−min(1,r+1/2)).(3.2.14)

Under the local alternative, we consider the departure from the null hypothesis δ = δN →

0 in the order of O(N−1/2) i.e. δN = O(N−1/2). In this case, the order of δ/
√
σ2( 1

n1
+ 1

n2
)

is O(1) and both UN,α/2, UN,1−α/2 have the same order of O(1). While under the fixed

alternative, δ equals a constant which is O(1). Therefore the order of δ/
√
σ2( 1

n1
+ 1

n2
) is

O(
√
N) and both UN,α/2 and UN,1−α/2 have the same order of O(

√
N).

Note that the main purpose of this study is to improve the power of the two-sample test

when the two population mean difference is small and the total sample size is limited, i.e.,

δ/σ is small and the total sample size N is not very big. Under this scenario, without loss

of generality, we can assume:

z1−α/2 > δ/

√
σ2(

1

n1

+
1

n2

).
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For example, if α = 0.05 we have:

z1−α/2 − δ/
√
σ2(

1

n1

+
1

n2

) > 0

⇒ 1.96 >
δ

σ

√
n1n2

N

⇒ N <
1.962σ2

δ2λN(1− λN)
,

The Figure 3.1 shows the upper bound of N that satisfies the above equation, with effect

size δ
σ

in (0.1, 0.3). When δ
σ

= 0.3 the minimum upper bound of N is 170, which is reached

at λN = 0.5. As long as N is smaller than the values on the plot with corresponding λN ,

we have:

z1−α/2 − δ/
√
σ2( 1

n1
+ 1

n2
) > 0

⇒ δ < z1−α/2σ
√

n1+n2

n1n2

⇒ δ = O(N−1/2),

Therefore, under the main focus of this study, the order of δ is more close to O(N−1/2),

which is the order under local alternative hypothesis. Thus, for further discussion, we will

focus on the power of two-sample TCF test with the data generated under local alternative

hypothesis.

3.2.3.1 Power of the two-sided TCF test under local alternative hypothesis

Recall that, under the local alternative, both UN,α/2 and UN,1−α/2 have the same order of

O(1). Therefore we have

−N−1/2[A+B((Lcfl )2 − 1)]

=−N−1/2[A+B((UN,α/2 + ∆N,α/2)2 − 1)]

=−N−1/2[A+B(U2
N,α/2 +O(N−1/2)− 1)]

=−N−1/2[A+B(U2
N,α/2 − 1)] +O(N−1).

(3.2.15)

Similarly, −N−1/2[A + B((Lcfu )2 − 1)] = −N−1/2[A + B(U2
N,1−α/2 − 1)] + O(N−1). Then

apply Taylor expansion to Φ(Lcfu ), φ(Lcfu ) at UN,1−α/2 and to Φ(Lcfl ), φ(Lcfl ) at UN,α/2
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Figure 3.1: Upper bound of total sample size N for local alternative. The upper bound is

a function of the effect size = δ
σ

and λN .

correspondingly, we have

Φ(Lcfu ) = Φ(UN,1−α/2) + φ(UN,1−α/2)∆N,1−α/2 +O(∆2
N,1−α/2),

Φ(Lcfl ) = Φ(UN,α/2) + φ(UN,α/2)∆N,α/2 +O(∆2
N,α/2),

φ(Lcfu ) = φ(UN,1−α/2) + φ
′
(UN,1−α/2)∆N,1−α/2 +O(∆2

N,1−α/2),

φ(Lcfl ) = φ(UN,α/2) + φ
′
(UN,α/2)∆N,α/2 +O(∆2

N,α/2).

(3.2.16)
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Then (3.2.14) can be further calculated as

power of the two-sided TCF test = 1− F (Ha)
T (tcf1−α/2) + F

(Ha)
T (tcfα/2) +O(N−min(1,r+1/2))

= 1− Φ(UN,1−α/2)− φ(UN,1−α/2)∆N,α/2 + Φ(UN,α/2) + φ(UN,α/2)∆N,α/2 +O(N−1)−(
N−1/2[A+B(U2

N,1−α/2 − 1)] +O(N−1)
)

(φ(UN,1−α/2) + φ
′
(UN,1−α/2)∆N,1−α/2 +O(N−1))

+
(
N−1/2[A+B(U2

N,α/2 − 1)] +O(N−1)
) (
φ(UN,α/2) + φ

′
(UN,α/2)∆N,α/2 +O(N−1)

)
−Q(Lcfu ) +Q(Lcfl ) +O(N−min(1,r+1/2))

= 1− Φ(UN,1−α/2)−N−1/2[A+B(U2
N,1−α/2 − 1)]φ(UN,1−α/2)−Q(Lcfu ) +Q(Lcfl )

+ Φ(UN,α/2) +N−1/2[A+B(U2
N,α/2 − 1)]φ(UN,α/2) + LN,γ1,γ2,λ +O(N−min(1,r+1/2)),

(3.2.17)

where LN,γ1,γ2,λ has the form

L(N,γ1,γ2,λ) =− φ(UN,1−α/2)∆N,α/2 + φ(UN,α/2)∆N,α/2 +O(N−1)

− (N−1/2[A+B(U2
N,1−α/2 − 1)]φ

′
(UN,1−α/2)∆N,1−α/2

+ (N−1/2[A+B(U2
N,α/2 − 1)]φ

′
(UN,α/2)∆N,α/2

=− φ(UN,1−α/2)∆N,α/2 + φ(UN,α/2)∆N,α/2 +O(N−1)

=∆N,α/2[φ(UN,α/2)− φ(UN,1−α/2)] +O(N−1)

(3.2.18)

Note that, the approximated power of the same test based on standard normal approxima-

tion is:

power of the two-sided TN test = 1− F (Ha)
T (UN,1−α/2) + F

(Ha)
T (UN,α/2) +O(N−min(1,r+1/2))

= 1− Φ(UN,1−α/2)−N−1/2[A+B(U2
N,1−α/2 − 1)]φ(UN,1−α/2)−Q(UN,1−α/2) +Q(UN,α/2)

+ Φ(UN,α/2) +N−1/2[A+B(U2
N,α/2 − 1)]φ(UN,α/2) +O(N−min(1,r+1/2)),

(3.2.19)

By comparing the two power functions in (3.2.17) and (3.2.19), we can prove the following

result.

Corollary 3.2.5. For the two-sided tests at level α,

Power of TCF test - Power of TN test = LN,γ1,γ2,λ +O(N−min(1,r+1/2)). (3.2.20)
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The proof of Corollary 3.2.5 is given in Appendix A.3. Clearly, the power of the test

from Cornish Fisher expansion in (3.2.17) will be bigger than the power of the test based

on normal approximation in (3.2.19) if L(N,γ1,γ2,λ) in (3.2.18) is bigger than zero.

Corollary 3.2.6. The two-sided TCF test at level α is more powerful than the TN test, if

and only if the following inequality holds

(8 + cα −
2

λ
)γ1 > (8 + cα −

2

1− λ
)γ2, (3.2.21)

where cα = 6
z2
α/2
−1

.

The proof is given in Appendix A.5. Clearly the sign of LN,γ1,γ2,λ depends on the values of

λ, γ1 and γ2. In real practice, the values of γ1 and γ2 are determined by the population. Then

the value of λ = λN +O(N−r) = n1/N+O(N−r) becomes the main factor to control the sign

of LN,γ1,γ2,λ. With a fixed value of γ1 and γ2, we can further rewrite the equation (3.2.21)

into

(8 + cα −
2

λ
)γ1 > (8 + cα −

2

1− λ
)γ2

⇔ (8 + cα)(γ1 − γ2)λ2 + [(8 + cα)(γ2 − γ1)− 2(γ1 + γ2)]λ+ 2γ1 < 0. (3.2.22)

The left side of inequality (3.2.22) always has roots since

[(8 + c)(γ2 − γ1)− 2(γ1 + γ2)]2 − 4(8 + c)(γ1 − γ2)(2γ1)

=(c+ 6)2γ2
1 + (c+ 6)2γ2

2 − (56 + 24c+ 2c2)γ1γ2

=[(c+ 6)γ1 − (c+ 6)γ2]2 + 2(c+ 6)2γ1γ2 − (56 + 24c+ 2c2)γ1γ2

=[(c+ 6)γ1 − (c+ 6)γ2]2 + 16γ1γ2 ≥ 0,

with equality holds iff γ1 = γ2 = 0. Suppose ω1 and ω2 are the two roots of the left side

of (3.2.22), without loss of generality let ω1 ≤ ω2. Then we have the following solutions of

λ for LN,γ1,γ2,λ > 0:

• if γ1 > γ2 then ω1 ≤ λ ≤ ω2;

• if γ1 < γ2 then λ ≤ ω1 or λ ≥ ω2.
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To demonstrate the relationship between λ and L(N,γ1,γ2,λ), consider one specific example.

Suppose population 1 follows Gamma distribution and population 2 follows normal dis-

tribution. Let the two populations have common population variance σ2 and population

skewness γ1 > 0 and γ2 = 0 respectively. In addition, the total sample size N = 40 and

the true two population mean difference µ1 − µ2 departs from H0 in the amount of δ that

satisfies δ/σ = 0.3. With α = 0.05, the TCF and TN tests were applied to test the two

population mean difference. Since γ1 > γ2, by solving the inequations (3.2.22), the solutions

can be obtained as ω1 < λ < ω2, where ω1 = 2
8+c

= 0.1978 and ω2 = 1. The power gains of

TCF over TN test (i.e. L(N,γ1,γ2,λ)) for γ1 = 2 and γ2 = 6 are shown in Figure 3.2.
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Figure 3.2: Power difference between TCF test and pooled two-sample t-test

From Figure 3.2, we can see that the power of TCF test is bigger than the pooled two-

sample t-test when the value of λ is between 0.1978 and 1, which is the same solution from

solving the inequations (3.2.22). In majority of real applications, the two sample sizes satisfy

this condition of 0.19 < λ < 1, which promises a higher power of TCF test than the pooled

two-sample t-test. Note that we should ignore the phenomenon around λ = 0 in the plot.

This is because the Edgeworth expansion theory was established for fixed λ > 0.

Discussion: the difference of power relies on the value γ1, γ2 critically. In practice, γ1, γ2
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are unknown. We would need an estimate of them in order to see the difference in power.

With larger sample size, the estimate γ̂i is generally close to γ1 (in the order of O(N−1/2)).

But with small sample size, the estimated γ̂i may be far from the γ1. In this case the actual

power difference from the tests can only achieve L(N,γ̂1,γ̂2,λN ). For example, N = 40, λ = 0.6,

(which gives n1 = 24, n2 = 16), γ1 = 6, γ2 = 0. In this setting with data from gamma

distribution for population 1 and normal distribution for population 2, the average estimate

of γ̂1 from 10000 runs is only 3.17. However the true parameter is γ1 = 6. Even though

γ̂2 is close to γ2, the power difference is L(N,γ̂1,γ̂2,λN ) which is around 0.13. If we had used

L(N,γ1,γ2,λ), we would expect the difference of power to be 0.258. This would be unrealistic

since the γ̂1 estimate used in the test did not get close enough to 6.

From this section, we know that the power difference between the two-sample TCF test

and the pooled two-sample t-test depends on LN,γ1,γ2,λ. Under local alternative, we can

always arrange the λN to achieve a higher power of TCF test in real practice. In addition,

the actual power increment depends on the estimation accuracy of the population skewness

λi.

3.2.3.2 The difference of sample sizes needed to achieve certain power for TCF

and TN tests

In Section 3.2.3.1, the theoretical power the of two-sample TCF test and TN test can be

calculated based on the equations (3.2.17) and (3.2.19) respectively. Thus, with a given

level of significance α and the desired power, we can compute the minimum sample size

of two-sample TCF test and TN test by solving these two equations. For example, with

given population parameters (γ1, γ2, λ) and desired power, we can plug these values into the

power equations (3.2.17) and (3.2.19) to solve for the total sample size N :

power of the two-sided TCF test = desired power (3.2.23)

power of the two-sided TN test = desired power. (3.2.24)

The equation is a nonlinear function of the total sample size N . The solution can be obtained

numerically using known root find algorithms. Some examples are bisection method, secant
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method, Newton’s method, fixed point iteration method, etc. We provide an R function to

solve for the total sample size.

From Section 3.2.3, we know that the power of the two-sided TCF test is bigger than the

power of the two-sided TN test if the condition in Corollary 3.2.6 holds. In this case, the

two-sided TCF test will need smaller sample size than the two-sided TN test to achieve the

same power under skewness. In this section, we will illustrate this property by an example.

Suppose population 1 follows gamma distribution and population 2 follows normal dis-

tribution, with common population variance σ2. Suppose the population skewness is γ1 and

γ2 = 0 respectively. In addition, the true two population mean difference µ1 − µ2 departs

from H0 in the amount of δ that satisfies δ/σ = 0.3. Take λ = 0.6, that is n1 = 0.6N . With

α = 0.05, we want to use TCF and TN tests to test the two population mean difference.

Then the total sample sizes needed for each test to achieve power 0.8 are shown in Table 3.2.

γ1 NTCF NTN Ndiff ∆N,α/2

0 363 363 0 0.00

1 355 366 11 -0.04

2 347 369 22 -0.08

3 339 371 32 -0.13

4 331 374 43 -0.17

5 323 377 54 -0.22

6 314 380 66 -0.27

7 306 383 77 -0.32

8 297 386 89 -0.36

9 290 389 99 -0.42

10 281 392 111 -0.47

Table 3.2: Sample size to achieve power=0.8 for TCF and TN tests

In Table 3.2, γ1 is the population 1 skewness that increases from 0 to 10. NTCF and

NTN are the sample sizes needed to achieve 0.8 power for two-sample TCF and TN tests
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respectively. Ndiff = NTN−NTCF is the sample size difference between two-sample TCF and

TN tests. ∆N,α/2 = Lcfl − UN,α/2 = −N−1/2[A+B(z2
α − 1)] equals the amount of percentile

correction based on Cornish Fisher expansion in equation (3.2.1) from Corollary 3.2.1. The

amount of percentile correction |∆N,α/2| gets bigger as the skewness γ1 becomes larger.

Clearly, the TN test needs more samples to achieve the same power 0.8 than the TCF test

when γ1 > 0. In addition, the sample size difference Ndiff increases quickly as γ1 increases.

Note that the sample size calculation of these two tests is based on the population

skewness γ1 and γ2. In practice, the values of population skewness are unknown. We have

to estimate the population skewness by sample skewness γ̂1 and γ̂2. Thus, the computation

of NTCF and NTN relies on the estimation accuracy of γ1 and γ2 critically. In this case,

the sample sized needed is the max(Nα, Nβ), where Nα is the sample size needed to give

satisfactory estimate of the population skewness and Nβ refers to the sample size calculated

from solving equations (3.2.23) and (3.2.24).

Recall that, if the condition in Corollary 3.2.6 holds, the power of the two-sided TCF

test is higher than the power of the two-sided T test under skewness. This power increment

of the test is a crucial factor to increase the test accuracy. Furthermore, when the sample

is limited or very expensive to be obtained, the two-sample TCF test can not only achieve

a higher power of the test but also save money in collecting the data comparing with the

two-sample TN test.

3.2.4 Type I error rate of the one-sided test based on Cornish

Fisher expansion

As is known in the Edgeworth expansion literature that one-sided tests may behave differ-

ently from two-sided tests. We also present the order of approximation to type I error rate

for the one-sided TCF test with rejection regions given in (3.2.3) and (3.2.4) for upper and

lower-tailed tests respectively under the same two-sample setting.
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3.2.4.1 Type I error rate of the one-sided upper-tailed TCF test

Recall that the distribution of F
(1)
T (x) in Theorem 3.1.3 takes the following form

F
(1)
T (x) = P (T ≤ x) = Φ(x) +N−1/2[A+B(x2 − 1)]φ(x) +O(N−min(1,r+1/2)).

Then the type I error rate of the one-side upper-tailed TCF test can be expressed as:

P (type I error of the one-sided upper TCF test)

=1− F (1)
T (tcf1−α) +O(N−min(1,r+1/2))

=1− Φ(tcf1−α)−N−1/2[A+B((tcf1−α)2 − 1)]φ(tcf1−α) +O(N−min(1,r+1/2)).

(3.2.25)

Earlier from (3.2.8), we can approve:

−N−1/2[A+B((tcf1−α)2 − 1)] = ∆N,1−α +O(N−1), (3.2.26)

where tcf1−α = z1−α+∆N,1−α and ∆N,1−α = −N−1/2[A+B(z2
1−α−1)]. From previous results,

we can also show:

Φ(tcf1−α) = Φ(z1−α) + φ(z1−α)∆N,1−α +O(∆2
N,1−α),

φ(tcf1−α) = φ(z1−α) + φ
′
(z1−α)∆N,1−α +O(∆2

N,1−α).
(3.2.27)

Put (3.2.26) and (3.2.27) into (3.2.25), we have

P (type I error of the one-sided upper TCF test )

= 1− Φ(tcf1−α)−N−1/2[A+B((tcf1−α)2 − 1)]φ(tcf1−α/2) +O(N−min(1,r+1/2))

= α− φ(z1−α)∆N,α +O(∆2
N,α)

+[∆N,α +O(N−1)][φ(z1−α) + φ
′
(z1−α)∆N,α +O(∆2

N,α)]

+O(N−min(1,r+1/2))

= α + ∆N,αφ(z1−α)−∆N,αφ(zα) +O(N−1) +O(N−min(1,r+1/2))

= α +O(N−min(1,r+1/2)), (3.2.28)

Then we have the follow theorem,

Theorem 3.2.7. Under standard regularity conditions, when H0 is true, the theoretical type

I error rate of the upper-tailed TCF test, with level of significance α is

P (T > t̂cf1−α) = α +O(N−min(1,r+1/2)).
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3.2.4.2 Type I error rate of the one-sided lower-tailed TCF test

Following the same procedures in Section 3.2.4.1, the type I error rate of the one-sided

lower-tailed TCF test is:

P (type I error of the one-sided lower TCF test)

=F
(1)
T (tcfα ) +O(N−min(1,r+1/2))

=Φ(tcfα ) +N−1/2[A+B((tcfα )2 − 1)]φ(tcfα ) +O(N−min(1,r+1/2)).

(3.2.29)

Again from (3.2.8), we can show:

−N−1/2[A+B((tcfα )2 − 1)] = ∆N,α +O(N−1), (3.2.30)

where tcfα = zα + ∆N,α and ∆N,α = −N−1/2[A+B(z2
α − 1)]. Furthermore,

Φ(tcfα ) = Φ(zα) + φ(zα)∆N,α +O(∆2
N,α),

φ(tcfα ) = φ(zα) + φ
′
(zα)∆N,α +O(∆2

N,α).
(3.2.31)

Put (3.2.30) and (3.2.31) into (3.2.29), we have

P (type I error of the one-sided lower TCF test )

= Φ(tcfα ) +N−1/2[A+B((tcfα )2 − 1)]φ(tcfα/2) +O(N−min(1,r+1/2))

= α + φ(zα)∆N,α +O(∆2
N,α)

−[∆N,α +O(N−1)][φ(zα) + φ
′
(zα)∆N,α +O(∆2

N,α)]

+O(N−min(1,r+1/2))

= α + ∆N,αφ(zα)−∆N,αφ(zα) +O(N−1) +O(N−min(1,r+1/2))

= α +O(N−min(1,r+1/2)), (3.2.32)

Then we have the follow theorem,

Theorem 3.2.8. Under standard regularity conditions, when H0 is true, the theoretical type

I error rate of the lower-tailed TCF test, at significance level α is

P (T < t̂cfα ) = α +O(N−min(1,r+1/2)).
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For the two-sample TCF test, both one-sided upper and lower-tailed tests have the

same type I error rate approximation accuracy of α + O(N−min(1,r+1/2)). Moreover, we can

show that the approximated type I error rates of the same one-sided tests based on normal

approximation are

P (type I error of the one-sided lower-tailed TN test )

= Φ(zcfα ) +N−1/2[A+B((zcfα )2 − 1)]φ(zcfα/2) +O(N−min(1,r+1/2))

= α +O(N−1/2). (3.2.33)

P (type I error of the one-sided upper-tailed TN test )

= 1− Φ(zcf1−α)−N−1/2[A+B((zcf1−α)2 − 1)]φ(zcf1−α/2) +O(N−min(1,r+1/2))

= α +O(N−1/2). (3.2.34)

According to the above results, the type I error rate accuracy for the one-sided TCF test

has higher approximation accuracy than the one-sided TN test, since min(1, r+ 1/2) > 1/2

with r > 0 as defined in Corollary 3.1.1.

3.2.5 Power of the one-sided TCF test under local alternative

hypothesis

In this section, we derive the power function of the one-sided upper and lower tail TCF and

TN tests under local alternative hypothesis. We also provide the detailed condition under

which the theoretical power of the one-sample TCF test is higher than the one-sample TN

test.

3.2.5.1 Power of the one-sided upper-tailed TCF test under local alternative

hypothesis

According to the previous two-sided results in Section 3.2.3.1, now we consider data gener-

ated under Ha : µ1− µ2 > µ0
1− µ0

2. When Ha is true, the theoretical power of the one-sided
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upper-tailed TCF test equals the probability of rejecting the null hypothesis:

PHa

(
T ≥ t̂cf1−α

)
,

where t̂cf1−α is the estimated (1 − α)th percentile from distribution F
(1)
T (x) following similar

formula as (3.2.5). Denote

L̂cf1−α = t̂cf1−α − δ/
√
σ2(

1

n1

+
1

n2

)

= z1−α + ∆̂N,1−α − δ/
√
σ2(

1

n1

+
1

n2

)

= UN,1−α + ∆̂N,1−α

= UN,1−α + ∆N,1−α +Op(N
−min(1,r+1/2))

= Lcf1−α +Op(N
−min(1,r+1/2)),

where UN,1−α = z1−α − δ/
√
σ2( 1

n1
+ 1

n2
), and Lcf1−α = UN,1−α + ∆N,1−α. We have

L̂cf1−α = Lcf1−α +Op(N
−min(1,r+1/2)).

Then the power can be expressed as,

PHa

(
T ≥ L̂cf1−α

)
= 1− F (1)

T (Lcf1−α)−Q(Lcf1−α) +O(N−min(1,r+1/2))

= 1− Φ(Lcf1−α)−N−1/2[A+B((Lcf1−α)2 − 1)]φ(Lcf1−α)

−Q(Lcf1−α) +O(N−min(1,r+1/2)). (3.2.35)

We have shown in equations (3.2.15) and (3.2.16) that

−N−1/2[A+B((Lcf1−α)2 − 1)] = −N−1/2[A+B(U2
N,1−α − 1)] +O(N−1); (3.2.36)

Φ(Lcf1−α) = Φ(UN,1−α) + φ(UN,1−α)∆N,1−α +O(∆2
N,1−α)

φ(Lcf1−α) = φ(UN,1−α) + φ
′
(UN,1−α)∆N,1−α +O(∆2

N,1−α).
(3.2.37)
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Putting equations (3.2.36) and (3.2.37) back into (3.2.35), we have the

power of one-sided upper tail TCF test = 1− F (Ha)
T (Lcf1−α) +O(N−min(1,r+1/2))

= 1− Φ(UN,1−α)− φ(UN,1−α)∆N,1−α +O(∆2
N,1−α)

−
(
N−1/2[A+B(U2

N,1−α − 1)] +O(N−1)
)

(φ(UN,1−α) + φ
′
(UN,1−α)∆N,1−α

+O(∆2
N,1−α))−Q(Lcf1−α) +O(N−min(1,r+1/2))

= 1− Φ(UN,1−α)−N−1/2[A+B(U2
N,1−α − 1)]φ(UN,1−α)−Q(Lcf1−α)

+ LuN,γ1,γ2,λ +O(N−min(1,r+1/2)),

(3.2.38)

where LuN,γ1,γ2,λ has the form

Lu(N,γ1,γ2,λ)

=− φ(UN,1−α)∆N,1−α −N−1/2[A+B(U2
N,1−α − 1)]φ

′
(UN,1−α)∆N,1−α

=− φ(UN,1−α)∆N,1−α +O(N−1)

(3.2.39)

The approximated power of the same T statistic based on standard normal approximation

is:

power of the one-sided upper tail TN test = 1− F (Ha)
T (UN,1−α) +O(N−min(1,r+1/2))

= 1− Φ(UN,1−α)−N−1/2[A+B(U2
N,1−α − 1)]φ(UN,1−α)−Q(UN,1−α)

+O(N−min(1,r+1/2)).

(3.2.40)

From (3.2.38) and (3.2.40) the difference in power relies on LuN,γ1,γ2,λ. We write this result

in the following Corollary.

Corollary 3.2.9. For the one-sided upper-tailed tests at level α,

Power of TCF test - Power of TN test = LuN,γ1,γ2,λ +O(N−min(1,r+1/2)). (3.2.41)

The prove is similar to Corollary (3.2.5). Then we have the following result:

Corollary 3.2.10. The one-sided upper-tailed TCF test at level α is more powerful than

the TN test, if and only if the following inequality holds

(8 + cα −
2

λ
)γ1 > (8 + cα −

2

1− λ
)γ2, (3.2.42)
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where cα = 6
z2α−1

.

Comparing Corollary (3.2.10) with Corollary (3.2.6), the inequality conditions in (3.2.42)

and (3.2.21) are the same. Therefore, the discussion on the sign of LN,γ1,γ2,λ in Section 3.2.3.1

still holds for the sign of LuN,γ1,γ2,λ. With given estimates of two population skewness γ1 and

γ2, we can solve (3.2.42) to get a solution of λ as follows,

• if γ1 > γ2 then ω1 ≤ λ ≤ ω2;

• if γ1 < γ2 then λ ≤ ω1 or λ ≥ ω2,

where ω1 and ω2 are the two roots of the left side of (3.2.22), here without loss of generality

assume ω1 ≤ ω2.

3.2.5.2 Power of the lower-tailed TCF test under local alternative hypothesis

Following the same procedure in Section 3.2.5.1, now consider data generated under Ha :

µ1 − µ2 < µ0
1 − µ0

2. When Ha is true, the theoretical power of the one-sided lower tail TCF

test is:

PHa
(
T ≤ t̂cfα

)
,

where t̂cfα is the estimated αth percentile from distribution F
(1)
T (x) using formula similar

to (3.2.5). Denote

L̂cfα = t̂cfα − δ/
√
σ2(

1

n1

+
1

n2

)

= zα + ∆̂N,α − δ/
√
σ2(

1

n1

+
1

n2

)

= UN,α + ∆̂N,α

= UN,α + ∆N,α +Op(N
−min(1,r+1/2))

= Lcfα +Op(N
−min(1,r+1/2)),

where UN,α = zα − δ/
√
σ2( 1

n1
+ 1

n2
), and Lcfα = UN,α + ∆N,α. We have

L̂cfα = Lcfα +Op(N
−min(1,r+1/2)).
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Then the power can be expressed as

PHa

(
T ≤ L̂cfα

)
= F

(1)
T (Lcfα ) +Q(Lcfα ) +O(N−min(1,r+1/2))

= Φ(Lcfα ) +N−1/2[A+B((Lcfα )2 − 1)]φ(Lcfα ) +Q(Lcfα ) +O(N−min(1,r+ 1
2

)) (3.2.43)

We have shown in equations (3.2.15) and (3.2.16) that

−N−1/2[A+B((Lcfα )2 − 1)] = −N−1/2[A+B(U2
N,α − 1)] +O(N−1); (3.2.44)

Φ(Lcfα ) = Φ(UN,α) + φ(UN,α)∆N,α +O(∆2
N,α)

φ(Lcfα ) = φ(UN,α) + φ
′
(UN,α)∆N,α +O(∆2

N,α).
(3.2.45)

Putting equations (3.2.44) and (3.2.45) back into (3.2.43), we have the

power of one-sided lower tail TCF test = F
(Ha)
T (tcfα ) +O(N−min(1,r+1/2))

= Φ(UN,α) + φ(UN,α)∆N,α +O(∆2
N,α)

+
(
N−1/2[A+B(U2

N,α − 1)] +O(N−1)
)

(φ(UN,α) + φ
′
(UN,α)∆N,α

+O(∆2
N,α)) +Q(Lcfα ) +O(N−min(1,r+1/2))

= Φ(UN,α) +N−1/2[A+B(U2
N,α − 1)]φ(UN,α) +Q(Lcfα )

+ LlN,γ1,γ2,λ +O(N−min(1,r+1/2)),

(3.2.46)

where LlN,γ1,γ2,λ is defined as

Ll(N,γ1,γ2,λ)

=φ(UN,α)∆N,α +N−1/2[A+B(U2
N,α − 1)]φ

′
(UN,α)∆N,α

=φ(UN,α)∆N,α +O(N−1)

(3.2.47)

The approximated power of the same T statistic based on standard normal approximation

is:

power of the one-sided lower tail TN test = F
(Ha)
T (UN,α) +O(N−min(1,r+1/2))

= Φ(UN,α) +N−1/2[A+B(U2
N,α − 1)]φ(UN,α) +Q(UN,α) +O(N−min(1,r+1/2)).

(3.2.48)

Again, the power difference depends on LlN,γ1,γ2,λ. We state this result in the following

Corollary.
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Corollary 3.2.11. For the one-sided lower-tailed tests at level α,

Power of TCF test - Power of TN test = LlN,γ1,γ2,λ +O(N−min(1,r+1/2)). (3.2.49)

The prove is similar to Corollary (3.2.5). Then we have the following result:

Corollary 3.2.12. The one-sided lower-tailed TCF test at level α is more powerful than

the TN test, if and only if the following inequality holds

(8 + cα −
2

λ
)γ1 < (8 + cα −

2

1− λ
)γ2, (3.2.50)

where cα = 6
z2α−1

.

Comparing Corollary (3.2.12) with Corollary (3.2.6), the inequality in (3.2.50) defines

a set that is the complement of the set given in (3.2.21). Thus, the sign of LN,γ1,γ2,λ in

Section 3.2.3.1 is opposite of the sign of LuN,γ1,γ2,λ. Given the two population skewness γ1

and γ2, we can solve (3.2.50) to get a solution of λ as follows,

• if γ1 < γ2 then ω1 ≤ λ ≤ ω2;

• if γ1 > γ2 then λ ≤ ω1 or λ ≥ ω2,

where ω1 ≤ ω2 are the two roots of (3.2.22).

In summary, for two-sided test the power difference between the TCF test and the pooled

two-sample t-test relies on LN,γ1,γ2,λ. Under local alternative, we can always arrange the

λN to achieve a higher power of TCF test in real practice. In addition, the actual power

gain depends on the estimation accuracy of the population skewness λi. For one-sided tests,

the power difference depends on LuN,γ1,γ2,λ for the upper-tailed test and LlN,γ1,γ2,λ for the

lower-tailed test respectively. The way to arrange λN for achieving a higher power of TCF

test is also presented.

As we have seen that the sets to ensure higher power for the TCF test than the TN

test mutually exclusive for the upper-tailed and lower-tailed test. Therefore, only one of the

one-sided TCF test will have higher power than the TN test.
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3.3 Simulation study for two-sample TCF test

3.3.1 Main purpose of the simulation study

Recall that the main purpose of this study is to improve the power of the two-sample test

under skewness, when the two population mean difference is small and the total sample

size is limited. Thus, the main purpose of this simulation study is to compare the type

I error rate and the power of our TCF test with commonly used tests under the above

scenario. We consider the following four tests, pooled two-sample t-test, test by Cornish

Fisher expansion, Bootstrap-t test (Davison and Hinkley, 1997; Efron and Tibshirani, 1993)

and Wilcoxon Rank-Sum Test. We apply the four tests in this simulation study on testing

the population mean difference between two independent populations with equal variances.

This simulation study considers on one-sided upper-tailed test, one-sided lower-tailed test

and two-sided test.

3.3.2 Detailed settings of a simulation study

This simulation study has two pairs of population settings. We let the first population be

Gamma or Log-normal distribution and let the second population be normal distribution.

Under the null hypothesis of equal means, the settings of each population parameters are

listed in Table 3.3.

Population1 Population2 γ1

Pair1 Gamma(α = 0.1, β = 0.08) N(µ1 = 1.25, σ2
1 = 15.625) 6.3

Pair2 Lognormal(µ2 = 0, σ2
2 = 1) N(µ1 = e1/2, σ2

1 = e1(e1 − 1)) 2.9

Table 3.3: Population parameters setting

Under the alternative hypothesis of one-sided upper-tailed and two-sided tests, a constant

in the amount of 0.3σ was added to the first population mean. That is the population mean

of the first population is bigger than the second population, and the mean difference is 0.3σ.
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Under the alternative hypothesis of one-sided lower-tailed test, a constant in the amount of

0.3σ was subtracted from the first population mean. The reason that we choose the value

0.3σ is according to Cohen (1988), the effect size is considered as small when δ/σ = 0.2,

medium when δ/σ = 0.5, and large when δ/σ = 0.8. In other words, the mean difference

of the two population is relatively small, so that we can check how much power these four

tests have to detect a small amount of population mean difference.

As we mentioned in Chapter 2, the power of the test depends on several factors. In order

to figure out the effect of the skewness on the power of the test, we have to fix the other

parameters. The parameter settings of each test and population are as follows:

• Significance level α = 0.05;

• First population sample size n1 = 15, 25, . . . , 150;

• λN = n1/N = 0.6, here N = n1 + n2;

• Second population sample size n2 = (1− λN)N ;

• Effect size: δ = (µ1 − µ2) −Hypothesized(µ1 − µ2) = 0.3σ, where σ2 is the common

variance.

Note that the population 1 is a right skewed distribution either from Gamma distribution

or Log-normal distribution and population 2 is symmetric. The value of λ reflects the sample

size ratio. When λ is close to 1, the majority samples are from population 1. When λ is close

to 0, the majority samples are from population 2. Thus, under fixed population skewness

and sample size n1, the two-sample data sets with bigger λ are easier to detect departure

from H0 than the two-sample data sets with small λ. In addition, when we increase n1, the

total sample size N increase faster than n1 with a smaller λ.

In order to achieve a small sampling variation for the four tests, we generate 10, 000 sam-

ples for each parameter setting and each sample size. For bootstrap tests, 1, 000 bootstrap

samples are resampled from each generated data set.
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3.3.3 Details of the simulation study for each test

For each simulation setting, the empirical type I error rate and power of the pooled two-

sample t-test, the TCF test and the Wilcoxon Rank-Sum Test are calculated as follows:

1. Generate 10, 000 data sets, each contains a sample of size n1, n2 from the two popu-

lations respectively, with sample of size n1 from population one and sample of size n2

from population two.

2. For each generated data set, conduct the pooled two sample t-test using R built-in

function t.test with var.equal=T and the Wilcoxon Rank-Sum Test using R function

wilcox.test. For the TCF test, compute the test statistic T defined in equation (2.1.2)

as

T =
Ȳ1 − Ȳ2 − (µ1 − µ2)

Sp
√

1
n1

+ 1
n2

.

Reject H0 if the test statistic T falls into the rejection regions given by 3.2.2, 3.2.3

and 3.2.4 for two-sided, upper-tailed and lower-tailed test, respectively.

3. Repeat this testing process for each of the 10, 000 generated data set.

4. When the alternative hypothesis is true, the two populations having different means,

the proportion of times rejecting the null hypothesis out of 10, 000 generated data

set is the empirical power of the tests. When the null hypothesis is true, the two

populations having equal means, the proportion of times rejecting the null hypothesis

out of 10, 000 generated data set is the empirical type I error rate.

The empirical type I error rate and power of the two-sided bootstrap-t test can be

computed by the following steps:

1. Draw B = 1, 000 bootstrap samples of size N = n1 + n2 with replacement from each

of the 10, 000 generated data set, with sample of size n1 from sample one and sample

of size n2 from sample two.
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2. For each bootstrap sample, compute

T ∗b =
X̄∗1b − X̄∗2b − X̄1n + X̄2n

S∗pb

√
1
n1

+ 1
n2

,

where X̄∗1b and X̄∗2b are the bth bootstrap sample means of sample one and sample two

respectively; X̄1n and X̄2n are the sample means for original sample one and original

sample two respectively; S∗pb =
√

(n1−1)S∗21 +(n2−1)S∗22
n1+n2−2

is the pooled two sample standard

deviation of bth bootstrap sample; S∗i =
√

1
ni−1

∑ni
j=1(X∗ij − X̄∗ib)2, i = 1, 2 are the bth

bootstrap sample standard deviation for sample i.

3. Estimate the α/2th percentile of test statistic T by the value t̂α/2 such that

B−1

B∑
b=1

I(T ∗b ≤ t̂α/2) = α/2

4. The rejection region of two-sided bootstrap-t test with significance level α is then:

T ≤ t̂α/2 or T ≥ t̂1−α/2.

Reject H0 if the test statistic T falls into the rejection region above.

5. When the alternative hypothesis is true, the two populations having different means,

the proportion of times rejecting the null hypothesis out of 10, 000 generated data

set is the empirical power of the test. When the null hypothesis is true, the two

populations having equal means, the proportion of times rejecting the null hypothesis

out of 10, 000 generated data set is the empirical type I error rate.

For the one-sided bootstrap-t test, the αth percentile and (1 − α)th percentile can be

estimated as the same way from step 3. Then the rejection region for one-sided upper-tailed

bootstrap-t test is

T ≥ t̂1−α,

and the rejection region for one-sided lower-tailed bootstrap-t test is

T ≤ t̂α.

In the following section, we will present the results of a simulation study with data generated

from skewed distributions for first population and normal for second population.
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3.3.4 Results of simulation study and discussion

Following the data generation settings description in Section 3.3.2, we run the simulation

study with the procedure in Section 3.3.3. The simulation results are shown in the following

three sections.

3.3.4.1 Simulation results for two-sided test

The simulation results of the four tests from each pair of population settings are presented

in Figure 3.3, Table 3.4 and Table 3.5.

Figure 3.3 shows the empirical type I error rate and power from four tests includ-

ing pooled two-sample t-test denoted as “T”, two-sample Bootstrap-t test denoted as

“bootstrap”, Wilcoxon Rank-Sum Test denoted as “Wilcox” and the Cornish Fisher ex-

pansion based two sample TCF test denoted as “CF”. The top two panels in Figure 3.3

give the empirical type I error rate of the four tests with λ = 0.6. The bottom two graphes

provide their corresponding empirical powers. From Figure 3.3, when n1 < 15, only the

two-sample Bootstrap-t test gives a type I error rate below α. The empirical type I error

rate of the other three tests are all bigger than 0.1. When n1 > 15, the empirical type I

error rate of all four tests reduces to α except for Wilcoxon Rank-Sum Test. The empirical

type I error rate of Wilcoxon Rank-Sum Test keeps increasing as n1 getting larger. The

two-sample TCF test gives a constant higher empirical power than the other three tests.

The two-sample Bootstrap-t test gives the second highest power and the Wilcoxon Rank-

Sum Test provides the smallest power. The numerical results of the empirical power are

presented in Tables 3.4 and 3.5.

This simulation study shows that the two sample TCF test has significantly better

power than the other tests in testing the two population mean difference under skewness.

Comparing with the two-sample T and bootstrap t-test, the two-sample TCF test provides

the same amount of type I error rate but requires fewer sample size to reach the desired

power. The Wilcoxon Rank-Sum Test gives the most rejection regardless of under our

H0 or Ha. That’s because the assumption of the Wilcoxon Rank-Sum Test is violated in
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this simulation study. From Section 2.1.2, we know that the Wilcoxon Rank-Sum Test

assumes the two samples are taken from identical distribution but the two populations in

this simulation follow distinct distributions.

Tests

n1 skewness T-Test Bootstrap-t Wilcox CF

H0 Ha H0 Ha H0 Ha H0 Ha

15 0.477 0.087 0.107 0.070 0.146 0.124 0.132 0.100 0.228

25 0.435 0.081 0.134 0.069 0.199 0.132 0.156 0.083 0.271

35 0.412 0.078 0.175 0.068 0.247 0.147 0.175 0.079 0.318

45 0.385 0.076 0.220 0.066 0.306 0.163 0.200 0.074 0.369

55 0.364 0.070 0.266 0.065 0.350 0.177 0.211 0.070 0.419

65 0.350 0.067 0.310 0.063 0.401 0.188 0.237 0.066 0.466

75 0.335 0.066 0.365 0.062 0.448 0.207 0.259 0.068 0.512

85 0.322 0.065 0.416 0.060 0.497 0.213 0.282 0.063 0.562

95 0.313 0.063 0.458 0.059 0.538 0.224 0.298 0.062 0.599

105 0.302 0.061 0.503 0.057 0.580 0.230 0.323 0.060 0.638

115 0.293 0.062 0.554 0.058 0.625 0.244 0.343 0.060 0.682

125 0.286 0.061 0.590 0.060 0.660 0.258 0.364 0.062 0.712

135 0.278 0.059 0.629 0.060 0.688 0.267 0.384 0.061 0.739

145 0.271 0.058 0.663 0.059 0.718 0.277 0.403 0.060 0.762

Table 3.4: Proportion of rejections for two-sided tests when 1st population is Gamma

3.3.4.2 Simulation results for one-sided upper-tailed test

Figure 3.4, Table 3.6 and Table 3.7 present the simulation results of one-sided upper-tail

test. In Figure 3.4, when n1 > 15 all four tests maintain their type I error rate below

or close to α. When it comes to the empirical power, the one-side upper-tail TCF test

gives consistently higher power than the other three tests, which is similar as the results of
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Tests

n1 skewness T-Test Bootstrap-t Wilcox CF

H0 Ha H0 Ha H0 Ha H0 Ha

15 0.302 0.073 0.104 0.067 0.143 0.086 0.104 0.090 0.186

25 0.283 0.068 0.139 0.064 0.194 0.097 0.126 0.077 0.233

35 0.273 0.067 0.175 0.060 0.238 0.105 0.144 0.072 0.278

45 0.259 0.064 0.222 0.058 0.288 0.116 0.167 0.066 0.327

55 0.248 0.062 0.268 0.058 0.336 0.125 0.185 0.066 0.378

65 0.240 0.065 0.312 0.059 0.381 0.135 0.203 0.066 0.415

75 0.231 0.063 0.368 0.057 0.429 0.147 0.230 0.066 0.468

85 0.223 0.060 0.416 0.058 0.476 0.155 0.252 0.061 0.515

95 0.219 0.058 0.454 0.056 0.514 0.164 0.272 0.061 0.554

105 0.213 0.057 0.501 0.058 0.558 0.173 0.294 0.061 0.596

115 0.207 0.057 0.547 0.056 0.599 0.185 0.321 0.059 0.636

125 0.203 0.058 0.586 0.058 0.634 0.196 0.341 0.061 0.670

135 0.199 0.054 0.622 0.056 0.668 0.200 0.359 0.060 0.703

145 0.195 0.054 0.655 0.056 0.696 0.211 0.378 0.060 0.729

Table 3.5: Proportion of rejections for two-sided tests when 1st population is Lognormal

empirical power in two-sided tests from Figure 3.3. The numerical values of the type I error

and power are given in Tables 3.6 and 3.7.

For one-sided upper-tailed test, all four tests control their type I error rate well. The

TCF test still provides higher empirical power than the other three tests under skewed

populations.

3.3.4.3 Simulation results for two-sided lower-tailed test

The results for lower-tailed tests are given in Figure 3.5. They are quite different from the

results for two-sided or upper-tailed test. The Wilcoxon Rank-Sum Test failed to maintain
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Tests

n1 skewness T-Test Bootstrap-t Wilcox CF

H0 Ha H0 Ha H0 Ha H0 Ha

15 0.477 0.034 0.161 0.061 0.212 0.043 0.174 0.074 0.288

25 0.435 0.030 0.222 0.058 0.289 0.033 0.205 0.061 0.351

35 0.412 0.029 0.280 0.056 0.344 0.029 0.237 0.056 0.410

45 0.385 0.028 0.343 0.056 0.410 0.022 0.267 0.058 0.470

55 0.364 0.029 0.399 0.056 0.461 0.018 0.288 0.056 0.520

65 0.350 0.030 0.452 0.055 0.513 0.018 0.315 0.054 0.566

75 0.335 0.030 0.507 0.057 0.562 0.017 0.343 0.056 0.614

85 0.322 0.031 0.561 0.057 0.610 0.014 0.373 0.054 0.663

95 0.313 0.030 0.606 0.057 0.647 0.012 0.392 0.056 0.696

105 0.302 0.032 0.647 0.054 0.688 0.012 0.417 0.051 0.730

115 0.293 0.031 0.690 0.056 0.730 0.010 0.442 0.052 0.766

125 0.286 0.032 0.722 0.056 0.756 0.009 0.464 0.052 0.794

135 0.278 0.034 0.754 0.058 0.783 0.010 0.484 0.054 0.818

145 0.271 0.031 0.778 0.056 0.808 0.008 0.508 0.052 0.839

Table 3.6: Proportion of rejections of one-sided upper-tailed tests when 1st population is

Gamma

the type I error rate as in the two-sided case. The T test has elevated type I error rates even

with a big n1 sample size. In fact, for most of the n1 sample size settings, the type I error of

the T test is close to or more than 0.1, twice the intended level significance level α = 0.05.

When n1 > 15, the type I error rate of TCF and bootstrap-t test are both smaller than the

T test and approaches α as n1 increases.

Wilcoxon Rank-Sum Test gives the most rejection regardless of under our H0 or Ha.

Among the remaining three tests, the T test provides the biggest power at the expense of

doubling the type I error rate. On the contrary, bootstrap-t test gives the lowest power and

smallest type I error rate. The TCF test is in the middle, not only keeps a reasonable type
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Tests

n1 skewness T-Test Bootstrap-t Wilcox CF

H0 Ha H0 Ha H0 Ha H0 Ha

15 0.302 0.036 0.163 0.060 0.210 0.033 0.143 0.064 0.253

25 0.283 0.033 0.224 0.058 0.279 0.025 0.184 0.058 0.317

35 0.273 0.032 0.283 0.056 0.335 0.020 0.214 0.055 0.373

45 0.259 0.033 0.343 0.053 0.395 0.018 0.245 0.053 0.434

55 0.248 0.030 0.400 0.052 0.449 0.015 0.267 0.050 0.484

65 0.240 0.031 0.447 0.052 0.492 0.014 0.293 0.051 0.529

75 0.231 0.035 0.499 0.055 0.542 0.013 0.325 0.056 0.576

85 0.223 0.032 0.554 0.056 0.591 0.011 0.354 0.053 0.624

95 0.219 0.035 0.594 0.054 0.629 0.012 0.377 0.053 0.660

105 0.213 0.036 0.639 0.054 0.671 0.009 0.400 0.052 0.702

115 0.207 0.036 0.679 0.052 0.707 0.008 0.430 0.050 0.733

125 0.203 0.038 0.711 0.055 0.735 0.007 0.450 0.054 0.761

135 0.199 0.039 0.741 0.058 0.762 0.007 0.475 0.054 0.787

145 0.195 0.037 0.767 0.055 0.788 0.006 0.498 0.052 0.812

Table 3.7: Proportion of rejections of one-sided upper-tailed tests when 1st population is

Lognormal

I error rate but also gives a good power. These three tests clearly demonstrate the trade

off between the type I error rate and power. The T test sacrifices the type I error rate but

gives a higher power, while the bootstrap-t test is more conservative on the type I error rate

which leads to a small power.

This simulation study shows that the two-sample TCF test has good property in testing

the two population mean difference under all three hypotheses for skewed data. It can not

only maintain a reasonable type I error rate close to α, but also provides a higher power

than the other commonly used tests.
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Tests

n1 skewness T-Test Bootstrap-t Wilcox CF

H0 Ha H0 Ha H0 Ha H0 Ha

15 0.477 0.109 0.303 0.063 0.199 0.137 0.348 0.082 0.248

25 0.435 0.106 0.355 0.065 0.262 0.176 0.502 0.080 0.294

35 0.412 0.099 0.398 0.063 0.301 0.198 0.605 0.076 0.335

45 0.385 0.100 0.436 0.063 0.345 0.223 0.689 0.074 0.373

55 0.364 0.092 0.480 0.060 0.381 0.240 0.763 0.069 0.412

65 0.350 0.089 0.515 0.055 0.416 0.256 0.815 0.065 0.449

75 0.335 0.088 0.542 0.056 0.448 0.279 0.855 0.064 0.477

85 0.322 0.084 0.571 0.055 0.479 0.285 0.891 0.064 0.509

95 0.313 0.080 0.599 0.052 0.513 0.298 0.912 0.061 0.540

105 0.302 0.075 0.627 0.051 0.540 0.312 0.936 0.058 0.567

115 0.293 0.077 0.649 0.052 0.567 0.327 0.953 0.060 0.591

125 0.286 0.076 0.676 0.053 0.594 0.341 0.964 0.060 0.621

135 0.278 0.074 0.695 0.052 0.618 0.354 0.974 0.059 0.639

145 0.271 0.073 0.721 0.051 0.646 0.367 0.979 0.055 0.667

Table 3.8: Proportion of rejections of one-sided lower-tailed tests when 1st population is

Gamma

3.4 Summary

In this chapter, we obtained the Edgeworth expansion of the test statistic of pooled two

sample t-test to derive a new approximation of it under skewness. The explicit form of its

first order expansion was given in Theorem 3.1.3. On the basis of this expansion, a new

two-sample test from Cornish Fisher expansion theory was constructed. We proved that the

new two-sample test based on Cornish Fisher expansion (TCF test) can not only control the

type I error rate but give a higher power of the test comparing with the pooled two-sample

test under local alternatives with skewness. The power increment equals LN,γ1,γ2,λ defined
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Tests

n1 skewness T-Test Bootstrap-t Wilcox CF

H0 Ha H0 Ha H0 Ha H0 Ha

15 0.302 0.093 0.270 0.059 0.194 0.108 0.307 0.082 0.246

25 0.283 0.088 0.324 0.060 0.256 0.138 0.443 0.076 0.289

35 0.273 0.087 0.379 0.057 0.301 0.153 0.555 0.073 0.337

45 0.259 0.085 0.425 0.058 0.354 0.172 0.650 0.070 0.383

55 0.248 0.080 0.469 0.060 0.396 0.188 0.721 0.068 0.425

65 0.240 0.081 0.514 0.057 0.441 0.198 0.780 0.067 0.469

75 0.231 0.080 0.552 0.055 0.481 0.218 0.830 0.065 0.506

85 0.223 0.077 0.580 0.055 0.516 0.224 0.864 0.064 0.536

95 0.219 0.074 0.612 0.053 0.550 0.239 0.894 0.061 0.570

105 0.213 0.072 0.641 0.054 0.580 0.256 0.916 0.061 0.597

115 0.207 0.072 0.659 0.052 0.599 0.266 0.936 0.062 0.617

125 0.203 0.071 0.687 0.052 0.629 0.276 0.947 0.060 0.646

135 0.199 0.071 0.713 0.052 0.657 0.287 0.961 0.060 0.672

145 0.195 0.067 0.736 0.051 0.683 0.298 0.970 0.057 0.695

Table 3.9: Proportion of rejections of one-sided lower-tailed tests when 1st population is

Lognormal

in equation (3.2.18). In practice, majority of settings satisfy the sample ratio condition in

Corollary 3.2.6, which leads to higher power for the TCF test.

Furthermore, the results from the example in Section 3.2.3.2 and the simulation study

in Section 3.3 support the theoretical results in Section 3.2 well. Under the simulation

settings in Section 3.3, the two-sample TCF test provided the highest power and should be

recommended over the pooled two-sample t-test, Bootstrap t-test and Wilcoxon Rank-Sum

Test for skewed data.

Note that this simulation study focuses on the empirical results based on a fixed sample

ratio λ = 0.6 and population skewness, i.e., γ1 ≈ 6 and γ2 = 0. In Section 4.4, we will
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conduct a more completed simulation study to figure out the effects of the following factors

on the empirical type I error rate and power of the test:

1. Different population distributions;

2. Different levels of λ;

3. Different levels of common population variance σ2;

4. Different levels of population skewness γi.
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Figure 3.3: Proportion of rejections of two-sided test. In top 2 panels the data were gen-

erated under H0. In bottom 2 panels, the data were generated under Ha. The left 2 panels

correspond to population 1 being Gamma distribution. The right two panels correspond to

population 1 being Lognormal distribution.
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Figure 3.4: Proportion of rejections of one-sided upper tail test. In top 2 panels the data

were generated under H0. In bottom 2 panels, the data were generated under Ha. The

left 2 panels correspond to population 1 being Gamma distribution. The right two panels

correspond to population 1 being Lognormal distribution.
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Figure 3.5: Proportion of rejections of one-sided lower tail test. In top 2 panels the data

were generated under H0. In bottom 2 panels, the data were generated under Ha. The

left 2 panels correspond to population 1 being Gamma distribution. The right two panels

correspond to population 1 being Lognormal distribution.
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Chapter 4

New tests through transformations

based on Edgeworth expansions

4.1 Two-sample tests based on three transformations

Here we introduce three new tests based on transformations proposed by Hall (1992b)

and Zhou and Philip (2005). These three transformations can be used to improve the

coverage probability of confidence intervals based on studentized statistic under skewness

by eliminating the skewness from the corresponding distribution of the studentized statistic.

In particular, when the cumulative distribution function of a studentized statistic has an

Edgeworth expansion

Φ(x) +
φ(x)√
n

[
γ(ax2 + b)

]
+O(n−1), (4.1.1)

then the three transformations have the forms

T1 = T1(U) = U + aγ̂U2 +
1

3
a2γ̂2U3 + n−1bγ̂,

T2 = T2(U) = (2an−1/2γ̂)−1{exp(2an−1/2γ̂U)− 1}+ n−1bγ̂,

T3 = T3(U) = U + U2 +
1

3
U3 + n−1bγ̂,

where a, b and γ are the coefficients of Edgeworth expansion in (4.1.1). In our Edgeworth ex-

pansion under the two-sample settings in Section 3.2.1, the cumulative distribution function
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of the test statistic T in (3.1.1) under H0 has the form

P (T ≤ x) = Φ(x) +
φ(x)√
n

[A+B(x2 − 1)] +O(N−min(1,r+1/2)),

where A and B are defined in equation (3.1.10).

Clearly, our Edgeworth expansion does not have the same format as the expansion

in (4.1.1) of Hall (1992b), in that our expansion has an extra term A. In this case, we can

not directly follow the standard procedures in Section 2.3.2.1 to get the values of a, b and γ

for each transformation and derive the values of percentiles. To solve this problem, we first

apply a linear transformation on T as in Phillip and Zhou (2005):

Theorem 4.1.1. Let T
′
= T +N−1/2Â, then under H0,

PH0(T
′ ≤ x) = Φ(x) +N−1/2B(x2 − 1)φ(x) +O(N−min(1,r+1/2)). (4.1.2)

And under Ha, assume δ = O(N−1/2). Then

PHa(T
′ ≤ x) = Φ(x− cN) +N−1/2B((x− cN)2 − 1)φ(x− cN)

+Q(x) +O(N−min(1,r+1/2))

= PH0(T
′ ≤ x− cN) +Q(x) +O(N−min(1,r+1/2)), (4.1.3)

where cN = δ/
√
σ2( 1

n1
+ 1

n2
) and Q(x) is defined in (3.2.12). And Â is the estimate of A

given by

Â = [λN(1− λN)]1/2(γ̂1 − γ̂2)/2,

B = [λN(1− λN)]1/2
(

8λN − 2

λN
γ1 −

6− 8λN
1− λN

γ2

)
/12,

where

γ̂i =
ni

(ni − 1)(ni − 2)

ni∑
j=1

{
Xij − X̄i

Si

}3

, i = 1, 2,

λN =
n1

(n1 + n2)
.
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The proof is given in Appendix A.4. Obviously, T
′

in (4.1.2) has the same format as the

expansion in (4.1.1). Therefore, we can first use the three transformations to find the αth

and (1 − α)th percentiles of distribution of T
′
, then transfer them back to get the αth and

(1− α)th percentiles of distribution of T . Based on the distribution of T
′

in Theorem 4.1.1,

we have a = 1/3, b = −1/3 and γ = 3N−1/2B with its estimate γ̂ = 3N−1/2B̂, where

B̂ = [λN(1− λN)]1/2
(

8λN − 2

λN
γ̂1 −

6− 8λN
1− λN

γ̂2

)
/12.

Given a two-sided hypothesis with significance level α and the test statistic T in (3.1.1), the

three new rejection regions can be computed through the following steps:

1. Do a Ti transformation on the U = 1√
N
T
′
to derive a new statistic. The distribution of

the transformed statistic
√
NTi(U) is virtually symmetric and approximately standard

normal.

2. Use the percentile of standard normal distribution, say zα/2, to approximate the per-

centile of the transformed statistic
√
NTi(U).

3. Denote ηi,α/2 =
zα/2√
N

, then ηi,α/2 is the α
2
th percentile of Ti(U). Accordingly, T−1

i (ηi,α/2)

gives α
2
th percentile of U , where T−1

i (.) is the inverse transform of Ti(.). They are given

as follows:

T−1
1 (t) = (aγ̂)−1{1 + 3aγ̂(t− bγ̂/N)}1/3 − (aγ̂)−1

T−1
2 (t) = (2aN−1/2γ̂)−1log{2aN−1/2γ̂(t−N−1bγ̂) + 1}

T−1
3 (t) = {1 + 3(t−N−1bγ̂)}1/3 − 1.

4. Since U = 1√
N
T
′
, the α

2
th percentile of the distribution T

′
is
√
NT−1

i

(
zα/2√
N

)
5. Report the rejection regions of T

′
based on each of the three transformations as:

T
′ ≤
√
NT−1

i

(
zα/2√
N

)
or T

′ ≥
√
NT−1

i

(
z1−α/2√
N

)
, (4.1.4)

where i = 1, 2, 3.

71



6. Finally, the new rejection regions of T can be derived from (4.1.4) based on the linear

transformation in Theorem 4.1.1,

T ≤ −Â√
N

+
√
NT−1

i (
zα/2√
N

) or T ≥ −Â√
N

+
√
NT−1

i (
z1−α/2√
N

), (4.1.5)

where i = 1, 2, 3.

We reject the null hypothesis if T falls into the rejection regions in (4.1.5) for the two-sided

hypothesis. In the further discussions, we will refer the two sample test based on three

transformations as “Ti” test, i = 1, 2, 3. Accordingly, the rejection region for one-sided

upper-tailed Ti test is

T ≥ −Â√
N

+
√
NT−1

i (
z1−α√
N

), (4.1.6)

and the rejection region for one-sided lower-tailed Ti test is

T ≤ −Â√
N

+
√
NT−1

i (
zα√
N

). (4.1.7)

4.2 Type I error rate of the test based on three trans-

formations

In this section, we present the theoretical type I error rate for the three tests introduced

in Section 4.1. Under the two-sample setting in Section 3.2.1, the distribution of the test

statistic T is still F
(1)
T (t), and the rejection regions are given by (4.1.5), (4.1.6) and (4.1.7)

for two-sided, upper-tailed and lower-tailed Ti test, respectively.

4.2.1 Type I error rate of the two-sided Ti test

Based on the results from Theorem 4.1.1, we have T
′
= T +N−1/2Â and the rejection region

of T
′

shows in (4.1.4) as

T
′ ≤
√
NT−1

i (
zα/2√
N

) or T
′ ≥
√
NT−1

i (
z1−α/2√
N

),
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where i = 1, 2, 3 and T
′

has the cdf given in (4.1.2). Denote the lower threshold in for-

mula (4.1.4) as t
(i)
α/2 and the upper threshold as t

(i)
1−α/2. That is

t
(i)
α/2 =

√
NT−1

i (
zα/2√
N

)

t
(i)
1−α/2 =

√
NT−1

i (
z1−α/2√
N

).

These two values are not symmetric about zero. When H0 is true, the theoretical type I

error rate of the Ti test is obtained by:

P (T
′ ≥ t

(i)
1−α/2) + P (T

′ ≤ t
(i)
α/2) (4.2.1)

In addition, based on the results from Hall (1992b) introduced in equation (2.3.7) and the

results from Theorem 3.1.3, in two-sample case we have

P (
√
NTi(U) ≤ x) = Φ(x) +O(N−min(1,r+1/2)) (4.2.2)

where U = 1√
N
T
′
. Based on the above results, the type I error rate of these tests based on

transformations can be derived as:

P (type I error of Ti test) = P (T
′ ≥ t

(i)
1−α/2) + P (T

′ ≤ t
(i)
α/2)

= 1− P (T
′ ≤ t

(i)
1−α/2) + P (T

′ ≤ t
(i)
α/2)

= 1− P (
√
NTi(U) ≤

√
NTi(t

(i)
1−α/2/

√
N) + P (

√
NTi(U) ≤

√
NTi(t

(i)
α/2/
√
N),

where the last equality holds due to the fact that Ti(t) are monotone functions. Replacing

t
(i)
1−α/2 and t

(i)
α/2 with their definitions, we have

P (type I error of Ti test) = 1− P (
√
NTi(U) ≤ z1−α/2) + P (

√
NTi(U) ≤ zα/2)

= 1− Φ(z1−α/2) + Φ(zα/2) +O(N−min(1,r+1/2))

= α +O(N−min(1,r+1/2)).

(4.2.3)

Therefore, the approximated type I error rate of the two-sample Ti test has an order of

O(N−min(1,r+1/2)), which is the same order of the type I error rate of the two-sample TN

test.
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4.2.2 Type I error rate of the one-sided upper-tailed Ti test

For the one-sided upper-tailed Ti test, the rejection region in (4.1.6) can be expressed by T
′

based on the linear transformation T
′
= T+N−1/2Â from Theorem 4.1.1. The new rejection

region for one-sided upper-tailed Ti test becomes:

T
′ ≥
√
NT−1

i (
z1−α√
N

), (4.2.4)

where i = 1, 2, 3. Denote the threshold in (4.2.4) as t
(i)
1−α. That is

t
(i)
1−α =

√
NT−1

i (
z1−α√
N

).

When H0 is true, the theoretical type I error rate of one-sided upper-tailed Ti test is obtained

by:

P (T
′ ≥ t

(i)
1−α) (4.2.5)

Recall that we have P (
√
NTi(U) ≤ x) = Φ(x) + O(N−min(1,r+1/2)) from (4.2.2), where

U = 1√
N
T
′
. Then the type I error rate of one-sided upper-tailed Ti test can be derived as:

P (type I error of one-sided upper-tailed Ti test) = P (T
′ ≥ t

(i)
1−α)

= 1− P (T
′ ≤ t

(i)
1−α) = 1− P (

√
NTi(U) ≤

√
NTi(t

(i)
1−α/
√
N),

where the equality holds due to the fact that Ti(t) are monotone functions. Plugging in t
(i)
1−α

with its definition, we have

P (type I error of one-sided upper-tailed Ti test) = 1− P (
√
NTi(U) ≤ z1−α)

= 1− Φ(z1−α) +O(N−min(1,r+1/2)) = α +O(N−min(1,r+1/2)).
(4.2.6)

4.2.3 Type I error rate of the one-sided lower-tailed Ti test

Following the same procedures in Section 4.2.2, the new rejection region of one-sided lower-

tailed Ti test under H0 can be expressed by T
′

as

T
′ ≤
√
NT−1

i (
zα√
N

), (4.2.7)
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where i = 1, 2, 3. Denote

t(i)α =
√
NT−1

i (
zα√
N

).

When H0 is true, the theoretical type I error rate of one-sided lower-tailed Ti test is:

P (T
′ ≤ t(i)α ) (4.2.8)

Based on the results from (4.2.2), we have

P (type I error of one-sided lower-tailed Ti test) = P (T
′ ≤ t(i)α )

= P (T
′ ≤ t(i)α ) = P (

√
NTi(U) ≤

√
NTi(t

(i)
α /
√
N).

Then plug in t
(i)
α =

√
NT−1

i ( zα√
N

), we have

P (type I error of one-sided lower-tailed Ti test) = P (
√
NTi(U) ≤ zα)

= Φ(zα) +O(N−min(1,r+1/2)) = α +O(N−min(1,r+1/2)).
(4.2.9)

From Section 3.2.4.1, we know that the approximated type I error rates of the same

one-sided upper-tailed and lower-tailed TN tests are both α + O(N−1/2). Then the type I

error rate accuracy for the one-sided Ti test has higher approximation accuracy than the

one-sided TN test.

4.3 Power of the test based on three transformations

Now consider the data generated under Ha. We derive the power function of the one-sided

and two-sided Ti tests under local alternative hypothesis.

4.3.1 Power of the two-sided Ti test under local alternative hy-

pothesis

Based on Theorem 4.1.1, the theoretical power of the two-sided Ti test is given by

PHa(T ≤
−Â√
N

+
√
NT−1

i (
zα/2√
N

)) + PHa(T ≥
−Â√
N

+
√
NT−1

i (
z1−α/2√
N

))

= PH0(T
′ ≥ t

(i)
1−α/2 − cN) + PH0(T

′ ≤ t
(i)
α/2 − cN)−Q(t

(i)
1−α/2) +Q(t

(i)
α/2), (4.3.1)
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where cN = δ/
√
σ2( 1

n1
+ 1

n2
) and Q(x) = qN

2
(x− cN)φ(x− cN). Denoting ti1−α/2− cN as L

(i)
u

and tiα/2 − cN as L
(i)
l , then the power can be expressed as:

power of two-sided Ti test = 1− PH0(T
′ ≤ L(i)

u ) + PH0(T
′ ≤ L

(i)
l )−Q(L(i)

u ) +Q(L
(i)
l )

=1− PH0(
√
NTi(U) ≤

√
NTi(L

(i)
u /
√
N) + PH0(

√
NTi(U) ≤

√
NTi(L

(i)
l /
√
N)

−Q(L(i)
u ) +Q(L

(i)
l ),

where the last equality is due to the fact that Ti(t) are monotone functions. Then replacing

L
(i)
u and L

(i)
l with their definitions, we have

power of two-sided Ti test

=1− PH0

(√
NTi(U) ≤

√
NTi

[
(t

(i)
1−α/2 − δ/

√
σ2(

1

n1

+
1

n2

))/
√
N

])
+ PH0

(√
NTi(U) ≤

√
NTi

[
(t

(i)
α/2 − δ/

√
σ2(

1

n1

+
1

n2

))/
√
N

])
−Q(L(i)

u ) +Q(L
(i)
l ).

(4.3.2)

Under the local alternative, δ = O(N−1/2) and δ/
√
σ2( 1

n1
+ 1

n2
) = O(1). Therefore we have

PH0

(√
NTi(U) ≤

√
NTi

[(
ti1−α/2 − δ/

√
σ2(

1

n1

+
1

n2

)

)
/
√
N

])
=E

(
E

(√
NTi(U) ≤

√
NTi

[(
ti1−α/2 − δ/

√
σ2(

1

n1

+
1

n2

)

)
/
√
N

]∣∣∣∣ B̂))
=E

(
Φ

{√
NTi

[(
ti1−α/2 − δ/

√
σ2(

1

n1

+
1

n2

)

)
/
√
N

]})
+O(N−min(1,r+1/2))

=E

(
Φ

{√
NTi

[
T−1
i (

z1−α/2√
N

)− δ/
√
σ2(

1

n1

+
1

n2

)/
√
N

]})
+O(N−min(1,r+1/2))

Due to the fact that

T−1
i (

z1−α/2√
N

)− δ/
√
σ2(

1

n1

+
1

n2

)/
√
N

= T−1
i (

z1−α/2√
N

) +O(N−1/2).

We can apply Taylor expansion to Ti(U) at T−1
i (

z1−α/2√
N

) to get

PH0

(√
NTi(U) ≤

√
NTi

[(
ti1−α/2 − δ/

√
σ2(

1

n1

+
1

n2

)

)
/
√
N

])
= E

(
Φ

{
z1−α/2 − T

′

i

[
T−1
i (

z1−α/2√
N

)

]
δ/

√
σ2(

1

n1

+
1

n2

)

})
+O(N−min(1,r+1/2)).
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Now equation (4.3.2) can be simplified as:

power of two-sided Ti test = 1− E
(

Φ
{
z1−α/2 − T

′
i

[
T−1
i (

z1−α/2√
N

)
]
δ/
√
σ2( 1

n1
+ 1

n2
)
})

+E
(

Φ
{
zα/2 − T

′
i

[
T−1
i (

zα/2√
N

)
]
δ/
√
σ2( 1

n1
+ 1

n2
)
})

−Q(L
(i)
u ) +Q(L

(i)
l ) +O(N−min(1,r+1/2)). (4.3.3)

Comparing the power of the two-sided Ti test in (4.3.3) with the power of the two-

sample TN test in (3.2.19), they do not have the same functional form even though their

approximation order is identical. The approximation in equation (4.3.3) adjusts the term

δ/
√
σ2( 1

n1
+ 1

n2
) by a coefficient T

′
i

[
T−1
i (

zα/2√
N

)
]
, which is a function of standard normal

percentile.

Next, we further investigate the power of Ti tests and compare them with the power of

TCF test. Recall that the three transformations have the forms:

T1 = T1(U) = U + aγ̂U2 +
1

3
a2γ̂2U3 +N−1bγ̂, (4.3.4)

T2 = T2(U) = (2aN−1/2γ̂)−1{exp(2aN−1/2γ̂U)− 1}+N−1bγ̂, (4.3.5)

T3 = T3(U) = U + U2 +
1

3
U3 +N−1bγ̂, (4.3.6)

where a = 1/3, b = −1/3 and γ̂ = 3N−1/2B̂. Conditional on B̂, γ̂ = O(N−1/2). The

derivatives of Ti(U) are given by

T
′

1 = T
′

1(U) = 1 + 2aγ̂U + a2γ̂2U2 = (1 + aγ̂U)2, (4.3.7)

T
′

2 = T
′

2(U) = exp(2aN−1/2γ̂U), (4.3.8)

T
′

3 = T
′

3(U) = 1 + 2U + U2 = (1 + U)2. (4.3.9)

To evaluate T
′
i

[
T−1
i (

z1−α/2√
N

)
]
, recall that the inverse transforms are

T−1
1 (t) = (aγ̂)−1{1 + 3aγ̂(t− bγ̂/N)}1/3 − (aγ̂)−1, (4.3.10)

T−1
2 (t) = (2aN−1/2γ̂)−1log{2aN−1/2γ̂(t−N−1bγ̂) + 1}, (4.3.11)

T−1
3 (t) = {1 + 3(t−N−1bγ̂)}1/3 − 1. (4.3.12)
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Both
z1−α/2√

N
and

zα/2√
N

are O(N−1/2). So we can apply Taylor expansion to T−1
i (t) at t =

0. Specifically, since conditional on B̂, γ̂ = O(N−1/2) , then {1 + 3aγ̂(t − bγ̂/N)}1/3,

log{2aN−1/2γ̂(t−N−1bγ̂) + 1} and {1 + 3(t−N−1bγ̂)}1/3 can be approximated with Taylor

expansion as

{1 + 3aγ̂(t− bγ̂/N)}1/3 = 1 + 3aγ̂(t− bγ̂/N)1/3 +O([aγ̂(t− bγ̂/N)]2),

log{2aN−1/2γ̂(t−N−1bγ̂) + 1}

= log(1) + 2aN−1/2γ̂(t−N−1bγ̂) +O([2aN−1/2γ̂(t−N−1bγ̂)]2),

{1 + 3(t−N−1bγ̂)}1/3 = 1 + 3(t−N−1bγ̂)1/3 +O([t−N−1bγ̂]2).

Therefore for t = O(N−1/2), conditional on B̂,

T−1
1 (t) = (aγ̂)−1{1 + 3aγ̂(t− bγ̂/N)1/3 +O(N−2)} − (aγ̂)−1

= t−N−1bγ̂ +O(N−3/2), (4.3.13)

T−1
2 (t) = (2aN−1/2γ̂)−1{log(1) + 2aN−1/2γ̂(t−N−1bγ̂) +O(N−3)}

= t−N−1bγ̂ +O(N−2), (4.3.14)

T−1
3 (t) = 1 + 3(t−N−1bγ̂)1/3 +O(N−1)− 1

= t−N−1bγ̂ +O(N−1). (4.3.15)

4.3.1.1 Power of the two-sided T1 test under local alternative hypothesis

Recall that, conditional on B̂

T
′

1 = T
′

1(U) = (1 + aγ̂U)2

T−1
1 (t) = t−N−1bγ̂ +O(N−3/2) for t = O(N−1/2).
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Thus the first two terms of the T1 power function from (4.3.3) becomes

1− E
(

Φ

{
z1−α/2 − T

′

1

[
T−1

1 (
z1−α/2√
N

)

]
δ/

√
σ2(

1

n1

+
1

n2

)

})
= 1− E

(
Φ

{
z1−α/2 − δ/

√
σ2(

1

n1

+
1

n2

)

[(
1 + aγ̂

(
z1−α/2√
N
− bγ̂

N
+Op(N

−3/2)

))2
]})

= 1− E
(

Φ

{
z1−α/2 − δ/

√
σ2(

1

n1

+
1

n2

)

[
1 +

2aγ̂z1−α/2√
N

+Op(N
−2)

]})
Apply Taylor expansion to Φ(x), we know the above term is equal to

= 1− E

Φ(UN,1−α/2)−
N−1/2δ2aγ̂z1−α/2φ(UN,1−α/2)√

σ2( 1
n1

+ 1
n2

)
+O(N−2)

 , (4.3.16)

where UN,1−α/2 = z1−α/2 − δ/
√
σ2( 1

n1
+ 1

n2
). Then the power function of the two-sided T1

test becomes

1− E

Φ(UN,1−α/2)−
N−1/2δ2aγ̂z1−α/2φ(UN,1−α/2)√

σ2( 1
n1

+ 1
n2

)

−Q(L(1)
u ) +Q(L

(1)
l )

+E

Φ(UN,α/2)−
N−1/2δ2aγ̂zα/2φ(UN,α/2)√

σ2( 1
n1

+ 1
n2

)

+O(N−min(1,r+1/2)) (4.3.17)

= 1− Φ(UN,1−α/2) +
2aN−1/2δz1−α/2√

σ2( 1
n1

+ 1
n2

)
φ(UN,1−α/2)E(γ̂)−Q(L(1)

u ) +Q(L
(1)
l )

+Φ(UN,α/2)−
2aN−1/2δzα/2√
σ2( 1

n1
+ 1

n2
)
φ(UN,α/2)E(γ̂) +O(N−min(1,r+1/2))

Note that γ̂ = 3N−1/2B̂ = 3N−1/2(B + Op(N
−min(r,1/2))) and B̂ is a linear combination of

γ̂1, γ̂2, whose distribution is continues, we know E(γ̂) = γ + O(N−min(r+1/2,1)). Hence the
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power of the two-sided T1 test is

1− Φ(UN,1−α/2) +
N−1/2δ2aγz1−α/2φ(UN,1−α/2)√

σ2( 1
n1

+ 1
n2

)
−Q(L(1)

u ) +Q(L
(1)
l )

+Φ(UN,α/2)−
N−1/2δ2aγzα/2φ(UN,α/2)√

σ2( 1
n1

+ 1
n2

)
+O(N−min(1,r+1/2))

= 1− Φ(UN,1−α/2) + Φ(UN,α/2)−Q(L(1)
u ) +Q(L

(1)
l )

+N−1/2[φ(UN,1−α/2) + φ(UN,α/2)]
δ2aγz1−α/2√
σ2( 1

n1
+ 1

n2
)

+O(N−min(1,r+1/2)) (4.3.18)

Recall that the power of the two-sided TCF test in (3.2.17) is,

1− Φ(UN,1−α/2)−N−1/2[A+B(U2
N,1−α/2 − 1)]φ(UN,1−α/2)−Q(Lcfu ) +Q(Lcfl )

+Φ(UN,α/2) +N−1/2[A+B(U2
N,α/2 − 1)]φ(UN,α/2) + LN,γ1,γ2,λ +O(N−min(1,r+1/2)),

where

LN,γ1,γ2,λ = ∆N,α/2[φ(UN,α/2)− φ(UN,1−α/2)] +O(N−1),

and ∆N,α/2 = −N−1/2[A+B(z2
α/2− 1)]. The power difference between the two-sided T1 test

and the two-sided TCF test can be expressed as:

Power of two-sided T1 test - Power of two-sided TCF test

= N−1/2[φ(UN,1−α/2) + φ(UN,α/2)]
δ2aγz1−α/2√
σ2( 1

n1
+ 1

n2
)

+N−1/2A[φ(UN,1−α/2)− φ(UN,α/2)]

+N−1/2B[φ(UN,1−α/2)(U2
N,1−α/2 − 1)− φ(UN,α/2)(U2

N,α/2 − 1)]

−
{
−N−1/2[A+B(z2

α/2 − 1)]
}

[φ(UN,α/2)− φ(UN,1−α/2)]

−Q(L(1)
u ) +Q(L

(1)
l ) +Q(Lcfu )−Q(Lcfl ) +O(N−min(1,r+1/2))

= N−1/2[φ(UN,1−α/2) + φ(UN,α/2)]
δ2aγz1−α/2√
σ2( 1

n1
+ 1

n2
)

+

B√
N

[φ(UN,1−α/2)(U2
N,1−α/2 − z2

1−α/2)− φ(UN,α/2)(U2
N,α/2 − z2

α/2)]

−Q(L(1)
u ) +Q(L

(1)
l ) +Q(Lcfu )−Q(Lcfl ) +O(N−min(1,r+1/2)).
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After further investigating the power difference, we have

−Q(L(i)
u ) +Q(L

(i)
l ) +Q(Lcfu )−Q(Lcfl ) = O(N−1). (4.3.19)

The proof is given in Appendix A.7. In addition, a = 1/3, γ = 3N−1/2B and

U2
N,α/2 − z2

α/2 =
δ2

σ2( 1
n1

+ 1
n2

)
−

2δzα/2√
σ2( 1

n1
+ 1

n2
)
,

then we have the following result.

Corollary 4.3.1. The power difference between two-side T1 test and two-sided TCF test at

level α is

Bδ
√
N
√
σ2( 1

n1
+ 1

n2
)

φ(UN,1−α/2)

−2z1−α/2 +
δ√

σ2( 1
n1

+ 1
n2

)

 (4.3.20)

+φ(UN,α/2)

−2z1−α/2 −
δ√

σ2( 1
n1

+ 1
n2

)

+O(N−min(1,r+1/2))

4.3.1.2 Power of the two-sided T2 test under local alternative hypothesis

In this Section, we will derive the power function of the two-sided T2 test and compare it

with the power of the two-sided TCF test. Recall that conditional on B̂,

T
′

2 = T
′

2(U) = exp(2aN−1/2γ̂U)

T−1
2 (t) = t−N−1bγ̂ +O(N−2).

Then we can compute the first two terms of the T2 power function from (4.3.3) as

1− E
(

Φ

{
z1−α/2 − T

′

2

[
T−1

2 (
z1−α/2√
N

)

]
δ/

√
σ2(

1

n1

+
1

n2

)

})
= 1− E

(
Φ

{
z1−α/2 − δ/

√
σ2(

1

n1

+
1

n2

)

[
exp

{
2aγ̂√
N

(
z1−α/2√
N
− bγ̂

N
+O(N−3/2)

)}]})
Apply Taylor expansion to ex, we have

= 1− E
(

Φ

{
z1−α/2 − δ/

√
σ2(

1

n1

+
1

n2

)

[
1 +

2aγ̂z1−α/2

N
+O(N−3)

]})
Apply Taylor expansion to Φ(x), we have

= 1− Φ(UN,1−α/2) + E

δ2aγ̂z1−α/2φ(UN,1−α/2)

N
√
σ2( 1

n1
+ 1

n2
)

+O(N−3)

 , (4.3.21)
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where UN,1−α/2 = z1−α/2 − δ/
√
σ2( 1

n1
+ 1

n2
). Now we have the power function of two-sided

T2 test:

1− Φ(UN,1−α/2) +
δ2aE(γ̂)z1−α/2φ(UN,1−α/2)

N
√
σ2( 1

n1
+ 1
n2

)
−Q(L

(2)
u ) +Q(L

(2)
l )

+Φ(UN,α/2)− δ2aE(γ̂)zα/2φ(UN,α/2)

N
√
σ2( 1

n1
+ 1
n2

)
+O(N−min(1,r+1/2))

= 1− Φ(UN,1−α/2) +
δ2aγz1−α/2φ(UN,1−α/2)

N
√
σ2( 1

n1
+ 1
n2

)
−Q(L

(2)
u ) +Q(L

(2)
l )

+Φ(UN,α/2)− δ2aγzα/2φ(UN,α/2)

N
√
σ2( 1

n1
+ 1
n2

)
+O(N−min(1,r+1/2))

= 1− Φ(UN,1−α/2) + Φ(UN,α/2)−Q(L
(2)
u ) +Q(L

(2)
l )

+N−1/2[φ(UN,1−α/2) + φ(UN,α/2)]
N−1/2δ2aγz1−α/2√

σ2( 1
n1

+ 1
n2

)
+O(N−min(1,r+1/2)). (4.3.22)

Based on the result in (4.3.19), the power difference between two-sided T2 test and two-sided

TCF test can be obtained:

Power of two-sided T2 test - Power of two-sided TCF test

= N−1/2[φ(UN,1−α/2) + φ(UN,α/2)]
N−1/2δ2aγz1−α/2√

σ2( 1
n1

+ 1
n2

)
+N−1/2A[φ(UN,1−α/2)− φ(UN,α/2)]

+N−1/2B[φ(UN,1−α/2)(U2
N,1−α/2 − 1)− φ(UN,α/2)(U2

N,α/2 − 1)]

−
{
−N−1/2[A+B(z2

α/2 − 1)]
}

[φ(UN,α/2)− φ(UN,1−α/2)] +O(N−min(1,r+1/2))

= N−1/2[φ(UN,1−α/2) + φ(UN,α/2)]
N−1/2δ2aγz1−α/2√

σ2( 1
n1

+ 1
n2

)
+

B√
N

[φ(UN,1−α/2)(U2
N,1−α/2 − z2

1−α/2)− φ(UN,α/2)(U2
N,α/2 − zα/2)] +O(N−min(1,r+1/2)).

Here a = 1/3 and γ = 3N−1/2B. Then Corollary below states this result.

Corollary 4.3.2. The power difference between two-side T2 test and two-sided TCF test at

level α is

Bδ
√
N
√
σ2( 1

n1
+ 1

n2
)

φ(UN,1−α/2)

−2z1−α/2 +
δ√

σ2( 1
n1

+ 1
n2

)

 (4.3.23)

+φ(UN,α/2)

−2z1−α/2 −
δ√

σ2( 1
n1

+ 1
n2

)

+O(N−min(1,r+1/2))
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4.3.1.3 Power of the two-sided T3 test under local alternative hypothesis

In this Section, we will investigate the power difference between the two-sided T3 test and

the two-sided TCF test. Let’s first recall that, conditional on B̂,

T
′
3 = T

′
1(U) = (1 + U)2,

T−1
3 (t) = t−N−1bγ̂ +O(N−1) for t = O(N−1/2).

Then the first two terms of the T3 power function based on (4.3.3) can be derived as:

1− E
(

Φ

{
z1−α/2 − T

′

3

[
T−1

3 (
z1−α/2√
N

)

]
δ/

√
σ2(

1

n1

+
1

n2

)

})
= 1− E

(
Φ

{
z1−α/2 − δ/

√
σ2(

1

n1

+
1

n2

)

[
(1 +

z1−α/2√
N
− bγ̂

N
+O(N−1))2

]})
= 1− E

(
Φ

{
z1−α/2 − δ/

√
σ2(

1

n1

+
1

n2

)

[
1 +

2z1−α/2√
N

+O(N−1)

]})
Apply Taylor expansion to Φ(x), the above term is equal to

= 1− Φ(UN,1−α/2) +
N−1/2δ2z1−α/2φ(UN,1−α/2)√

σ2( 1
n1

+ 1
n2

)
+O(N−1), (4.3.24)

where UN,1−α/2 = z1−α/2 − δ/
√
σ2( 1

n1
+ 1

n2
). Then the power function of the two-sided T3

test becomes

1− Φ(UN,1−α/2) +
N−1/2δ2z1−α/2φ(UN,1−α/2)√

σ2( 1
n1

+ 1
n2

)
−Q(L

(3)
u ) +Q(L

(3)
l )

+Φ(UN,α/2)− N−1/2δ2zα/2φ(UN,α/2)√
σ2( 1

n1
+ 1
n2

)
+O(N−min(1,r+1/2))

= 1− Φ(UN,1−α/2) + Φ(UN,α/2)−Q(L
(3)
u ) +Q(L

(3)
l )

+N−1/2[φ(UN,1−α/2) + φ(UN,α/2)]
δ2z1−α/2√
σ2( 1

n1
+ 1
n2

)
+O(N−min(1,r+1/2)). (4.3.25)

Based on the result in (4.3.19), the power difference between two-sided T3 test and two-sided

TCF test can be expressed as:

Power of two-sided T3 test - Power of two-sided TCF test

= N−1/2[φ(UN,1−α/2) + φ(UN,α/2)]
δ2z1−α/2√
σ2( 1

n1
+ 1

n2
)

+
B√
N

[φ(UN,1−α/2)(U2
N,1−α/2 − z2

1−α/2)− φ(UN,α/2)(U2
N,α/2 − zα/2)] +O(N−min(1,r+1/2)).
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Then we have the following result.

Corollary 4.3.3. The power difference between two-side T3 test and two-sided TCF test at

level α is

δ
√
N
√
σ2( 1

n1
+ 1

n2
)

φ(UN,1−α/2)

2z1−α/2 − 2Bz1−α/2 +
Bδ√

σ2( 1
n1

+ 1
n2

)

 (4.3.26)

+φ(UN,α/2)

2z1−α/2 − 2Bz1−α/2 −
Bδ√

σ2( 1
n1

+ 1
n2

)

+O(N−min(1,r+1/2))

4.3.1.4 Power comparison of three two-sided Ti tests under local alternative

hypothesis

In this section, we will further investigate the power of three two-sided Ti tests under local

alternative hypothesis. Recall that the power function of the three two-sided Ti tests are

given in equations (4.3.18), (4.3.22) and (4.3.25) for i = 1, 2, 3 respectively. Denote the

common term of these three equations as

ΩN = N−1/2z1−α/2
[
φ(UN,1−α/2) + φ(UN,α/2)

] δ√
σ2( 1

n1
+ 1

n2
)
. (4.3.27)

Denote Htwo = −Q(UN,1−α/2) +Q(UN,α/2). In Section A.7, we showed that

−Q(L(i)
u ) +Q(L

(i)
l ) = Htwo +O(N−m),

where m ≥ 1. Then the three power functions are

• Power of T1

= 1− Φ(UN,1−α/2) + Φ(UN,α/2) +
2B√
N

ΩN +Htwo +O(N−min(1,r+1/2)), (4.3.28)

• Power of T2

= 1− Φ(UN,1−α/2) + Φ(UN,α/2) +
2B

N
ΩN +Htwo +O(N−min(1,r+1/2)), (4.3.29)
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• Power of T3

= 1− Φ(UN,1−α/2) + Φ(UN,α/2) + 2ΩN +Htwo +O(N−min(1,r+1/2)). (4.3.30)

It is obvious that the only difference among these three equations (4.3.28), (4.3.29)

and (4.3.30) is the coefficient of ΩN . We can compare the power of three Ti tests by

investigating the three coefficients above. We know that B is O(1) under local alternative

hypothesis, and ΩN has order O(N−1/2), which sign depends on δ. Besides, we can always

arrange the two populations such that B or ΩN is positive. Without loss of generality, we

arrange the two populations and make ΩN > 0. Then for large N and B > 0

2ΩN >
2B√
N

ΩN >
2B

N
ΩN > 0 (4.3.31)

Therefore, as N gets larger, T3 test is more powerful than T1 and T2 tests. In addition, T1

test is more powerful than T2 test. On the other hand, for large N and B < 0

2ΩN > 0 >
2B

N
ΩN >

2B√
N

ΩN (4.3.32)

Therefore, as N gets larger, T3 test is more powerful than T1 and T2 tests. In addition, T2

test is more powerful than T1 test.

4.3.1.5 Power comparison between TCF and three two-sided Ti tests under

local alternative hypothesis

In this section, we investigate the power difference between the three Ti test and TCF test.

Denoting

D = B
cN√
N

[
φ(UN,1−α/2)

(
2z1−α/2 − cN

)
+ φ(UN,α/2)

(
2z1−α/2 + cN

)]
, (4.3.33)

where cN = δ√
σ2( 1

n1
+ 1
n2

)
. Here we have B = [λ(1 − λ)]1/2

(
8λ−2
λ
γ1 − 6−8λ

1−λ γ2

)
/12 and λ =

n1

n1+n2
+O(N−r) as defined in Theorem (3.1.3). Then the three power differences become

• Power of T1− power of TCF from (4.3.20):

−D +O(N−min(1,r+1/2)), (4.3.34)
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• Power of T2− power of TCF from (4.3.23):

−D +O(N−min(1,r+1/2)), (4.3.35)

• Power of T3− power of TCF from (4.3.26):

2CN −D +O(N−min(1,r+1/2)). (4.3.36)

Recall that

D = B
cN√
N

[
φ(UN,1−α/2)

(
2z1−α/2 − cN

)
+ φ(UN,α/2)

(
2z1−α/2 + cN

)]
Note that, in Section 3.2.3 we studied the sign of z1−α/2 − cN and presented Figure 3.1 to

show the upper bound of N ≤ 1.962σ2

δ2λN (1−λN )
, which satisfies the above inequality z1−α/2−cN > 0

when α = 0.05. Now, when it comes to the inequality 2z1−α/2− cN > 0, the upper bound of

N will increase 4 times. In this case, under the local alternative hypothesis and the main

focus of this study, without loss of generality we can assume 2z1−α/2 − cN > 0.

Since φ(UN,1−α/2) > φ(UN,α/2) > 0, the sign of D depends on the sign of BcN . Besides,

we can always arrange the two populations such that B or cN is positive. Without loss of

generality, we arrange the two populations and make cN > 0. Then,

• if B > 0, we have D > 0 and the power of two-sided TCF test is higher than the

two-sided T1 and T2 tests;

• if B < 0, we have D < 0 and the power of two-sided TCF test is smaller than the

two-sided T1 and T2 tests.

As shown in (4.3.26), the power difference between two-side T3 test and two-sided TCF test

at level α is:

δ
√
N
√
σ2( 1

n1
+ 1

n2
)

φ(UN,1−α/2)

2z1−α/2 − 2Bz1−α/2 +
Bδ√

σ2( 1
n1

+ 1
n2

)


+φ(UN,α/2)

2z1−α/2 − 2Bz1−α/2 −
Bδ√

σ2( 1
n1

+ 1
n2

)

+O(N−min(1,r+1/2))
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As we can see, this power difference depends on α, common population standard deviation

σ, sample sizes n1 and n2, skewness γ1 and γ2 and effect size δ. So it is not easy to give

an explicit cutoff to pick the one with higher power. However, we can give a rule of thumb

cutoff, which is satisfied by the majority of real applications.

Again, without loss of generality, we arrange the two populations and make δ > 0. When

the sample size ratio λ is around 0.5 and γ1−γ2 ≤ 6, we have B ≤ 1 and 2z1−α/2−2Bz1−α/2+

Bδ√
σ2( 1

n1
+ 1
n2

)
> 0. Then

Power of two-sided T3 test - Power of two-sided TCF test

=
δ

√
N
√
σ2( 1

n1
+ 1

n2
)

φ(UN,1−α/2)

2z1−α/2 − 2Bz1−α/2 +
Bδ√

σ2( 1
n1

+ 1
n2

)


+φ(UN,α/2)

2z1−α/2 − 2Bz1−α/2 −
Bδ√

σ2( 1
n1

+ 1
n2

)

+O(N−min(1,r+1/2))

≥
δ4z1−α/2

√
N
√
σ2( 1

n1
+ 1

n2
)
φ(UN,α/2)(1−B) +Op(N

−min(1,r+1/2)) ≥ 0.

Thus the power of the two-sided T3 test will be larger than the TCF when B ≤ 1. On the

other hand, when population is highly skewed and the sample are very unbalanced, the data

can yield a much larger B. Then the power of the two-sided T3 test will be smaller than the

TCF test. This result means the two-sided TCF test can provide more accurate two sample

mean comparison when the two populations are highly skewed.

4.3.2 Power of the one-sided upper-tailed Ti test under local al-

ternative hypothesis

Under Ha, the theoretical power of the one-sided upper-tailed Ti test is obtained by:

1− PH0(T
′ ≤ t

(i)
1−α − cN)−Q(t

(i)
1−α). (4.3.37)

Denoting ti1−α − δ/
√
σ2( 1

n1
+ 1

n2
) as L

(i)
1−α, then the power can be expressed as:

power of one-sided upper-tailed Ti test

=1− PH0(
√
NTi(U) ≤

√
NTi(L

(i)
1−α/
√
N)−Q(t

(i)
1−α),
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where the last equality is due to the fact that Ti(t) are monotone functions. Then replacing

L
(i)
1−α with its definition, we can get

power of one-sided upper-tailed Ti test

=1− PH0(
√
NTi(U) ≤

√
NTi[(t

(i)
1−α − δ/

√
σ2(

1

n1

+
1

n2

))/
√
N ])−Q(t

(i)
1−α).

(4.3.38)

Based on the (4.3.3) from Section 4.3.1, we can write

power of one-sided upper-tailed Ti test

=1− E
(

Φ

{
z1−α − T

′

i

[
T−1
i (

z1−α√
N

)

]
δ/

√
σ2(

1

n1

+
1

n2

)

})
−Q(t

(i)
1−α).

(4.3.39)

Next, based on the results from Section 4.3.1.1, 4.3.1.2 and 4.3.1.3, the power functions of

the one-sided upper-tailed Ti tests, i = 1, 2, 3 can also be obtained. Define

Cupper
N = N−1/2z1−αφ(UN,1−α)

δ√
σ2( 1

n1
+ 1

n2
)

(4.3.40)

Hupper = −Q(UN,1−α).

Then the power functions are

• Power of the one-sided upper-tailed T1 tests

1− Φ(UN,1−α) +
N−1/2δ2aγz1−αφ(UN,1−α)√

σ2( 1
n1

+ 1
n2

)
+Hupper +O(N−min(1,r+1/2))

= 1− Φ(UN,1−α) + 2B√
N
Cupper
N +Hupper +O(N−min(1,r+1/2)). (4.3.41)

• Power of the one-sided upper-tailed T2 tests

1− Φ(UN,1−α/2) +
N−1δ2aγz1−αφ(UN,1−α)√

σ2( 1
n1

+ 1
n2

)
+Hupper +O(N−min(1,r+1/2))

= 1− Φ(UN,1−α) + 2B
N
Cupper
N +Hupper +O(N−min(1,r+1/2)). (4.3.42)

• Power of the one-sided upper-tailed T3 tests

1− Φ(UN,1−α) +
N−1/2δ2z1−αφ(UN,1−α)√

σ2( 1
n1

+ 1
n2

)
+Hupper +O(N−min(1,r+1/2))

= 1− Φ(UN,1−α) + 2Cupper
N +Hupper +O(N−min(1,r+1/2)). (4.3.43)
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For the upper-tailed tests, we always have δ > 0 and Cupper
N > 0. Then for large N and

B > 0

2Cupper
N >

2B√
N
Cupper
N >

2B

N
Cupper
N > 0 (4.3.44)

Therefore, as N gets larger, T3 test is more powerful than T1 and T2 tests. In addition, T1

test is more powerful than T2 test. On the other hand, for large N and B < 0

2Cupper
N > 0 >

2B

N
Cupper
N >

2B√
N
Cupper
N (4.3.45)

Therefore, as N gets larger, T3 test is more powerful than T1 and T2 tests. In addition, T2

test is more powerful than T1 test.

Furthermore, the power difference between the one-sided upper-tailed Ti tests and the

one-sided upper-tailed TCF test at level α can be obtained as well. Define

Dupper = B
Ω√
N
φ(UN,1−α) (2z1−α − cN) , (4.3.46)

then we have

• Power difference between the one-sided upper-tailed T1 test and TCF test

−Dupper +O(N−min(1,r+1/2)); (4.3.47)

• Power difference between the one-sided upper-tailed T2 test and TCF test

−Dupper +O(N−min(1,r+1/2)); (4.3.48)

• Power difference between the one-sided upper-tailed T3 test and TCF test

2Cupper
N −Dupper +O(N−min(1,r+1/2)). (4.3.49)

Following the same discussion for the two-sided test, without loss of generality we can also

assume 2z1−α − cN > 0 under upper-tailed local alternative hypothesis. Since δ and cN are

both positive under the local alternative of one-sided upper-tailed test, then
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• if B > 0, we have Dupper > 0 and the power of two-sided TCF test is higher than the

two-sided T1 and T2 tests;

• if B < 0, we have Dupper < 0 and the power of two-sided TCF test is smaller than the

two-sided T1 and T2 tests.

Note that the power difference between the one-sided upper-tailed T3 tests and the one-

sided upper-tailed TCF test at level α is:

cN√
N
{φ(UN,1−α) [2z1−α − 2Bz1−α +BcN ]}+O(N−min(1,r+1/2))

Based on the same rule of thumb in two-sided case, when B ≤ 1, we have 2z1−α− 2Bz1−α +

BcN > 0. Then the power of the one-sided upper-tailed T3 tests will be larger than the

one-sided upper-tailed TCF test.

4.3.3 Power of the one-sided lower-tailed Ti test under local al-

ternative hypothesis

Similarly, the theoretical power of the one-sided lower-tailed Ti test is obtained by:

PH0(T
′ ≤ t(i)α − cN) +Q(t(i)α ). (4.3.50)

Denoting t
(i)
α − cN as L

(i)
α , then the power can be expressed as:

power of one-sided lower-tailed Ti test

=PH0(
√
NTi(U) ≤

√
NTi(L

(i)
α /
√
N) +Q(t(i)α ),

where the last equality is due to the fact that Ti(t) are monotone functions. Then replacing

L
(i)
α with its definition, we can get

power of one-sided lower-tailed Ti test

=PH0(
√
NTi(U) ≤

√
NTi[(t

(i)
α − δ/

√
σ2(

1

n1

+
1

n2

))/
√
N ]) +Q(t(i)α ).

(4.3.51)
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First of all, based on the results (4.3.3) from Section 4.3.1, we have

power of one-sided lower-tailed Ti test

=E

(
Φ

{
zα + T

′

i

[
T−1
i (

zα√
N

)

]
δ/

√
σ2(

1

n1

+
1

n2

)

})
+Q(t(i)α ).

(4.3.52)

Next, based on the results from Section 4.3.1.1, 4.3.1.2 and 4.3.1.3, the power functions of

the one-sided lower-tailed Ti tests, i = 1, 2, 3 can also be obtained. Define

C lower
N = N−1/2z1−αφ(UN,α)

δ√
σ2( 1

n1
+ 1

n2
)

(4.3.53)

Hlower = Q(UN,α).

Then below are the power functions of the Ti tests:

• Power of the one-sided lower-tailed T1 test

Φ(UN,α)− N−1/2δ2aγzαφ(UN,α)√
σ2( 1

n1
+ 1
n2

)
+Hlower +O(N−min(1,r+1/2))

= Φ(UN,α) + 2B√
N
C lower
N +Hlower +O(N−min(1,r+1/2)) (4.3.54)

• Power of the one-sided lower-tailed T2 test

Φ(UN,α)− N−1δ2aγzαφ(UN,α)√
σ2( 1

n1
+ 1
n2

)
+Hlower +O(N−min(1,r+1/2))

= Φ(UN,α) + 2B
N
C lower
N +Hlower +O(N−min(1,r+1/2)) (4.3.55)

• Power of the one-sided lower-tailed T3 test

Φ(UN,α)− N−1/2δ2zαφ(UN,α)√
σ2( 1

n1
+ 1
n2

)
+Hlower +O(N−min(1,r+1/2))

= Φ(UN,α) + 2C lower
N +Hlower +O(N−min(1,r+1/2)) (4.3.56)

For the lower-tailed tests, we always have δ < 0 and C lower
N < 0. Then for large N and

B > 0

2C lower
N <

2B√
N
C lower
N <

2B

N
C lower
N < 0 (4.3.57)
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Therefore, as N gets larger, T2 test is more powerful than T1 and T3 tests. In addition, T1

test is more powerful than T3 test. On the other hand, for large N and B < 0

2B√
N
C lower
N >

2B

N
C lower
N > 0 > 2C lower

N (4.3.58)

Therefore, as N gets larger, T1 test is more powerful than T2 and T3 tests. In addition, T2

test is more powerful than T3 test.

Furthermore, the power difference between the one-sided lower-tailed Ti tests and the

one-sided lower-tailed TCF test at level α can be obtained as well. Define

Dlower = B
Ω√
N
φ(UN,α) (2z1−α + Ω) , (4.3.59)

then we have

• Power difference between the one-sided upper-tailed T1 test and TCF test

−Dlower +O(N−min(1,r+1/2)); (4.3.60)

• Power difference between the one-sided upper-tailed T2 test and TCF test

−Dlower +O(N−min(1,r+1/2)); (4.3.61)

• Power difference between the one-sided upper-tailed T3 test and TCF test

2C lower
N −Dupper +O(N−min(1,r+1/2)). (4.3.62)

Following the same discussion for the two-sided test, without loss of generality we can also

assume 2z1−α + Ω > 0 under lower-tailed local alternative hypothesis. Since δ and Ω are

both negative under the local alternative of one-sided lower-tailed test, then

• if B > 0, we have Dlower < 0 and the power of two-sided TCF test is smaller than the

two-sided T1 and T2 tests;

• if B < 0, we have Dlower > 0 and the power of two-sided TCF test is higher than the

two-sided T1 and T2 tests.
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Note that the power difference between the one-sided lower-tailed T3 tests and the one-

sided lower-tailed TCF test at level α is:

Ω√
N
{φ(UN,α) [2z1−α − 2Bz1−α −BΩ]}+O(N−min(1,r+1/2))

When B ≤ 1, we have 2z1−α− 2Bz1−α−BΩ > 0. In addition, since Ω < 0, the power of the

one-sided lower-tailed T3 tests will be smaller than the one-sided lower-tailed TCF test.

For given population parameters and fixed sample size, the theoretical type I error rate

of the two-sample TCF tests and three Ti test introduced in Section 3.2 and Section 4.1

approach to α by an order of O(N−min(1,r+1/2)). The theoretical powers of the four tests

depend on terms listed in below:

• How close the F
(1)
T (t) to the true distribution of the test statistic T ;

• The significance level α;

• The two sample sizes n1, n2 and their ratio λN = n1

n1+n2
;

• The effect size δ;

• The two population variances σ2
1 and σ2

2;

• The two population skewness γ1 and γ2.

In next Section 4.4, we will conduct a simulation study aiming to figure out that to what

extent, the four new two sample tests can improve the power of the test and maintain the

type I error rate under skewness.

4.4 Simulation study

4.4.1 Main purpose of the simulation study

Zhou and Philip (2005) used the coefficient A√
N

in equation (2.3.11) in Section 2.3.2.2 to

represent the relative skewness in two-sample scenario. Zhou and Philip (2005) found the
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relative skewness A√
N

can affect the coverage accuracy of confidence intervals based on normal

approximation. Under our two-sample setting with equal variances, the relative skewness

can be calculated as γ = 3N−1/2B, where B is in equation (3.1.10) in Theorem 3.1.3. So

the main purpose of this simulation study is to figure out how the relative skewness affect

the test results accuracy and to which extent, the four new tests derived from Edgeworth

expansion can improve the test accuracy.

The simulation study compares the type I error rate and the power of seven tests under

skewness. The seven tests are pooled two sample t-test, tests by three transformations (Ti),

test by Cornish Fisher expansion (TCF ), Bootstrap-t test (Davison and Hinkley, 1997; Efron

and Tibshirani, 1993) and Bias acceleration bootstrap-t test(BCa) (Efron, 1987). The above

seven tests in this simulation study, are testing the population mean difference between two

independent populations with equal variances. Furthermore, this simulation study focuses

on two-sided hypothesis test, one-sided lower-tailed hypothesis test and one-sided upper-

tailed hypothesis test, which assume equal population means under the null hypothesis and

unequal population means under the alternative hypothesis.

4.4.2 Detailed settings of simulation study

The two skewed populations are chosen from Gamma family and Log-normal family, which

are both right skewed and their relative skewness depends on the value of γ = 3N−1/2B.

Based on the formula of B in Theorem 3.1.3, it is clear that if both samples are skewed,

their relative skewness can cancel each other and yield a small value of γ = 3N−1/2B. To

prevent this happen, we let the first population follow Gamma or Log-normal distribution

and let the second population follow normal distribution.

Denote normal distribution as N(µ1, σ
2
1) , where µ1 and σ2

1 are the mean and variance

of the normal distribution. Let Gamma(α, β) be the notation for gamma distribution with

shape parameter α and rate parameter β. We know, when α = 1, the gamma distribution is

an exponential distribution and when β = 0.5, the gamma distribution is a χ2 distribution.

Let LN(µ2, σ
2
2) be the notation for Log-normal distribution with log-transformed mean µ2
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and log-transformed variance σ2
2. We summarize these three distributions in Table 4.1

N(µ1, σ
2
1) Gamma(α, β) Lognormal(µ2, σ

2
2)

parameter mean=µ1 ∈ R shape=α > 0 Location= µ2 ∈ R

variance= σ2
1 > 0 rate= β > 0 scale=σ2 > 0

mean µ1 α/β eµ2+σ2
2/2

variance σ2
1 α/β2 (eσ

2
2 − 1)e2µ2+σ2

2

skewness 0 2/
√
α (eσ

2
2 + 2)

√
eσ

2
2 − 1

Table 4.1: Population Parameters of Three Distribution Families

There are six pairs of populations used in this simulation study. Under null hypothe-

sis, the setting of each population parameters is listed in Table 4.2 and the corresponding

distributions of each pair are presented in Figure 4.1. From Table 4.2, the distributions in

pair1, pair3 and pair5 have small common variance, while the distributions from pair2, pair4

and pair6 have big common variance. In addition the second population in pair3, pair4 and

pair6 have higher skewness than the second populations in pair1, pair2 and pair5.

Population2 Population1 γ1

Pair1 N(µ1 = 1, σ2
1 = 1) Gamma(α = 1, β = 1) 2.0

Pair2 N(µ1 = 8, σ2
1 = 16) Gamma(α = 4, β = 0.5) 1.0

Pair3 N(µ1 = 0.4, σ2
1 = 2) Gamma(α = 0.08, β = 0.2) 7.1

Pair4 N(µ1 = 1.25, σ2
1 = 15.625) Gamma(α = 0.1, β = 0.08) 6.3

Pair5 N(µ1 = e0.5/2, σ2
1 = e0.5(e0.5 − 1)) Lognormal(µ2 = 0, σ2

2 = 0.5) 2.9

Pair6 N(µ1 = e1.5/2, σ2
1 = e1.5(e1.5 − 1)) Lognormal(µ2 = 0, σ2

2 = 1.5) 12.1

Table 4.2: 6 Pairs of Population Settings

Under the alternative hypothesis of one-sided upper-tailed and two-sided tests, a constant

in the amount of 0.3σ was added to the first population mean. That is the population mean

of the first population is bigger than the second population, and the mean difference is 0.3σ.

95



Under the alternative hypothesis of one-sided lower-tailed test, a constant in the amount of

0.3σ was subtracted from the first population mean. Again, the reason we choose the value

0.3 is according to Cohen (1988), we are here to check if these seven tests have enough power

to detect a small amount of population mean difference. The other population parameter

settings are the same with those in Section 3.3.2:

• Significance level α = 0.05;

• First population sample size n1 = 5, 10, 15, . . . , 150;

• λN = n1/N = 0.3, 0.5, 0.8, here N = n1 + n2;

• Second population sample size n2 = (1− λN)N ;

• Effect size: δ = (µ1 − µ2) −Hypothesized(µ1 − µ2) = 0.3σ, where σ2 is the common

variance.

Note that when λN = 0.3 or λN = 0.8, the two-sample data set becomes highly unbalanced.

Same as in Section 3.3.2, there are 10, 000 simulated samples generated for each parameter

setting and each sample size. For bootstrap tests, 1, 000 bootstrap samples are resampled

from each generated data set.
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Figure 4.1: 6 pairs of distributions
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4.4.3 Steps of simulation study for each test

For each simulation setting in Subsection 4.4.2, we generate 10, 000 data sets of size N =

n1 +n2 from the two populations respectively, with sample of size n1 from population 1 and

sample of size n2 from population 2. Then apply the seven tests on each data set. When the

alternative hypothesis is true, the two populations having different means, the proportion of

times rejecting the null hypothesis out of 10, 000 generated data set is the empirical power

of the test. When the null hypothesis is true, the two populations having equal means, the

proportion of times rejecting the null hypothesis out of 10, 000 generated data set is the

empirical type I error rate.

Below we describe how each test is conducted. The pooled two sample t-test, tests by

three transformations and test by Cornish Fisher expansion are calculated as follows:

1. For each generated data set, compute the test statistic T defined in equation (2.1.2)

as

T =
Ȳ1 − Ȳ2 − (µ1 − µ2)

Sp
√

1
n1

+ 1
n2

.

2. For each of the five tests above, reject H0 if the test statistic T falls into their corre-

sponding rejection regions. Repeat this testing process for each of the 10, 000 generated

data set.

Follow the same procedure in Subsubsection 2.2.2.3, the empirical type I error rate and

power of the bootstrap-t test can be computed by the following step:

1. Draw B = 1, 000 bootstrap samples of size N = n1 + n2 with replacement from each

of the 10, 000 generated data set, with sample of size n1 from sample one and sample

of size n2 from sample two.

2. For each bootstrap sample, compute

T ∗b =
X̄∗1b − X̄∗2b − X̄1n + X̄2n

S∗pb

√
1
n1

+ 1
n2

,

98



where X̄∗1b and X̄∗2b are the bth bootstrap sample means of sample one and sample two

respectively; X̄1n and X̄2n are the sample means for original sample one and original

sample two respectively; S∗pb =
√

(n1−1)S∗21 +(n2−1)S∗22
n1+n2−2

is the pooled two sample standard

deviation of bth bootstrap sample; S∗i =
√

1
ni−1

∑ni
j=1(X∗ij − X̄∗ib)2, i = 1, 2 are the bth

bootstrap sample standard deviation for sample i.

3. Estimate the α/2th percentile of test statistic T by the value t̂α/2 such that

B−1

B∑
b=1

I(T ∗b ≤ t̂α/2) = α/2

4. The rejection region of bootstrap-t test with significance level α is then:

T ≤ t̂α/2 or T ≥ t̂1−α/2.

Reject H0 is the test statistic T falls into the rejection region above.

Follow the same procedure in Subsubsection 2.2.2.4, the empirical type I error rate and

power of the BCa test can be obtained by the following step:

1. Draw B = 1, 000 bootstrap samples of size N = n1 + n2 with replacement from each

of the 10, 000 generated data set, with sample of size n1 from sample one and sample

of size n2 from sample two.

2. For each bootstrap sample, compute the BCa confidence interval of µ1−µ2 introduced

in Subsubsection 2.2.2.4, which has a form(
Ĝ−1(Φ(z[α/2])), Ĝ

−1(Φ(z[1−α/2]))
)
.

Equate the lower and upper bounds of this interval with the t-statistic based confidence

intervals for µ1 − µ2:(
X̄1n − X̄2n − t1−α/2Sp

√
1

n1

+
1

n2

, X̄1n − X̄2n − tα/2Sp
√

1

n1

+
1

n2

)
.
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3. By solving the above the equations, the rejection region of BCa test with significance

level α is then:

T ≤
X̄1n − X̄2n − Ĝ−1(Φ(z[1−α/2]))

Sp
√

1
n1

+ 1
n2

or T ≥
X̄1n − X̄2n − Ĝ−1(Φ(z[α/2]))

Sp
√

1
n1

+ 1
n2

. (4.4.1)

Reject H0 if the test statistic T falls into the rejection region above.

So far, we described the steps to compute type I error rate and power of each seven

tests in this simulation study. In the following section, we will present the results of the

simulation study with differen levels of population skewness, sample size ratio and common

variance.

4.4.4 Simulation results for two-sided test

In this simulation study we have six pairs of population settings shown in Table 4.2. The

population 1 of the first four pairs follows Gamma distribution and the population 1 of the

last two pairs follows Log-normal distribution. The population 2 of all six pairs follows

normal distribution.

The simulation results consist of two parts. The first part includes the theoretical results

of the type I error and the power of the five two-sample tests including pooled two-sample

t-test, TCF test and three Ti tests based on transformations. Recall that these five two-

sample tests have the same test statistic T defined in equation (2.1.2). Therefore, our new

approximation of T in 3.1.13 based on the first order Edgeworth expansion can be used to

calculated the type I error and power of each test. Note that, for the two-sided test, we have

already provided the forms of the (α/2)th and (1− α/2)th percentiles of the above five two-

sample tests in Chapter 3 and 4. Thus, without generating any data sets, the theoretical

results can be obtained on the basis of the two percentiles calculated by the population

parameters from each simulation setting:

Type I error rate = 1− F (1)
T (T1−α/2) + F

(1)
T (Tα/2)

Power = 1− F (1)
T (T1−α/2 − δ/

√
σ2( 1

n1
+ 1

n2
)) + F

(1)
T (Tα/2 − δ/

√
σ2( 1

n1
+ 1

n2
))
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However, we can not get the theoretical results of the Bootstrap t-test and BCa test, because

these two methods need to resample from a data set.

The second part of this simulation study is the empirical results from seven tests men-

tioned in Section 4.4.1. And the empirical type I error rate and power of these seven tests

were obtained by calculating the proportion of rejections in each simulation setting under

H0 and Ha respectively.

The results of the theoretical and empirical type I error rate and power of the seven

tests from each pair of population settings were presented with twelve figures in Figures 4.2

through 4.13 and eighteen tables from Table 4.3 to Table 4.20. In the further discussion,

we will refer the simulation results for the first pair of population setting as “Pair1”, the

second pair of population setting as “Pair2” and so forth. The results of Pair1 will be

given first then followed by the results from Pair2 and so on.

Pair1 has a distribution combination with small skewness and small common variance.

Figure 4.2 is the theoretical type I error rate and power for Pair1 from five tests including

pooled two sample t-test denoted as “T”, the three transformation-based two sample tests

denoted as “T1”, “T2”, “T3” respectively and Cornish Fisher expansion based two sample

test denoted as “CF”. There are six panels in Figure 4.2. The top three panels are the

theoretical type I error rate of five tests with λ = 0.3, 0.5, 0.8 respectively. The bottom

three panels provide the corresponding theoretical power of each test. From Figure 4.2,

under every level of λ, all five tests have a fairly stable theoretical type I error rate, which

is close to α = 0.05 for n1 ≥ 20, and the T3 test gives a constantly higher theoretical power

than the other four tests. When λ > 0.5, the theoretical power of T1 and CF becomes

higher than T and T2.

The six panels in Figure 4.3 give the corresponding empirical type I error rate and

power for the tests in Figure 4.2. Besides the five tests above, Bootstrap-t test denoted as

“bootstrap” and BCa test denoted as “BCa” are also included. For the empirical results,

the BCa test gives higher type I error rate than the other tests when sample size is small. As

the sample size increases, the type I error rate of all seven tests reduced to α. When λ = 0.8,

the type I error rate of BCa test became much larger than the other six tests. The patterns
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of empirical power in Figure 4.3 support the theoretical power results in Figure 4.2. The

pooled two-sample t-test gives the lowest power while T3 test provides the highest power

across all levels of λ. When λ > 0.3, TCF test and BCa test give the second largest power.

The numerical results of Pair1 empirical power were presented in Tables 4.3, 4.4 and 4.5.
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Pair2 has a distribution combination with small skewness and big common variance.

Figure 4.4 is the theoretical type I error rate and power for Pair2 and Figure 4.5 gives the

corresponding empirical results. The numerical results of empirical power were presented

in Table 4.6, 4.7 and 4.8. The simulation results of Pair2 is very similar to Pair1. All the

discussions from Pair1 still hold for the results of Pair2.
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Pair3 has a distribution combination with big skewness and small common variance.

Figure 4.6 gives the theoretical type I error rate and power for Pair3 and Figure 4.7 gives

the corresponding empirical results. The numerical results of empirical power were presented

in Tables 4.9, 4.10 and 4.11. Since Pair3 has bigger skewness than Pair1 and Pair2, the

simulation results are quite different. From Figure 4.6, across all levels of λ the theoretical

type I error rate of five tests are all smaller or equal to α. The pooled two-sample t-test

still provides the lowest power. When λ = 0.3, T3 test gives the highest power followed by

the TCF and T1 test. When λ > 0.5, TCF test becomes the test with the largest power

and T1 test gives the second largest followed by the third largest from T3 test.

Note that the theoretical results in Figure 4.6 are consistent with the empirical results

in Figure 4.7. When λ = 0.3, the type I error rates of Bootstrap t-test and BCa test are

larger than 0.05 and close to 0.1. While the type I error rates of all the other tests are

smaller than α = 0.05. BCa test, T3 test and Bootstrap-t test give higher power than the

other tests. When λ = 0.5 and n1 > 15, the type I error rate of all the tests are close to

α = 0.05 except BCa test. The power of TCF test and T3 test are higher than the power of

BCa test and Bootstrap-t test. As λ reaches 0.8, i.e., there are 80% of the data coming from

the skewed population 1, the type I error rate of all the tests are bigger than 0.10 when n1

is small. Among seven tests, Bootstrap-t test and BCa test have a smaller type I error rate

than the other tests. However, the Bootstrap-t test and BCa test also provide smaller power

comparing to the TCF, T3 and T1 tests. Among all the seven tests, the pooled two-sample

t-test offers smallest power of the test across all levels of λ.
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Pair4 has a distribution combination with big skewness and big common variance. Fig-

ure 4.8 gives the theoretical results and Figure 4.9 gives the corresponding empirical results.

The numerical results of empirical power were shown in Tables 4.12, 4.13 and 4.14. We

found that simulation results of Pair4 is very similar to Pair3, so we omit the discussion

of simulation results form Pair4.
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The population 1 of Pair5 follows Log-normal distribution and the Pair5 has a distri-

bution combination with small skewness and small common variance, which is similar to

the setting of Pair1. We found that the theoretical results showed in Figure 4.10 for Pair5

have the same pattern as the results in Figure 4.2 for Pair1. The empirical results of Pair5

in Figure 4.11 also resemble that for Pair1. The numerical results of empirical power are

given in Tables 4.15, 4.16 and 4.17.
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The simulation setting of Pair6 is similar to Pair4 with big skewness and big common

variance. We found the simulation results of Pair6 in Figure 4.12 and Figure 4.13 are

similar to the simulation results of Pair4. The numerical results of empirical power are in

Tables 4.18, 4.19 and 4.20.
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4.4.5 Simulation results for one-sided test

For the simulation study of the one-sided test, we only present the empirical results from

the seven tests mentioned in Section 4.4.1. And the empirical type I error rate and power of

these seven tests were obtained by calculating the proportion of rejections in each simulation

setting under H0 and Ha respectively. Figure 4.14 and Figure 4.15 give the empirical type

I error rate and power for one-sided upper-tailed and lower-tailed tests respectively. The

numerical results of Figure 4.14 are presented in Tables 4.21, 4.23 and 4.25; while the

numerical results of Figure 4.15 are given in Tables 4.22, 4.24 and 4.26.

Under the simulation settings of Pair1, all the seven two-sample one-sided upper-tailed

tests keep the empirical type I error rate under 0.1 shown in the upper panel of Figure 4.14.

Among all the seven tests, the one-sided upper-tailed T3 test gives higher empirical type I

error rate than the other six tests across all levels of λ from 0.3 to 0.8. The empirical power

of the seven tests are close to each other except the empirical power of T3 test, which is

slightly higher than the rest of the six tests.

For the one-sided lower-tailed tests in Figure 4.15, T3 test gives the smallest empirical

type I error rate than the other tests. Across all levels of λ, the type I error rate of all seven

tests are below 0.1. The highest empirical power comes from the pooled two-sample t-test,

which also keeps its empirical type I error rate close to 0.05. Although the type I error rate

of T3 is consistently smaller than 0.05, its empirical power is much lower than the other

tests.
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As mentioned previously, the Pair2 has a distribution combination with small skewness

and big common variance. The empirical results of the one-sided upper-tailed and lower-

tailed tests are given in Figure 4.16 and Figure 4.17 respectively. Their corresponding

numerical results are given in Table 4.27, 4.29, 4.31 and Table 4.28, 4.30, 4.32 respectively.

The empirical results of seven one-sided tests under the simulation settings of Pair2 are

very similar to those from Pair1. All the discussions from Pair1 still hold for the results

of Pair2.
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Pair3 has a distribution combination with big skewness and small common variance.

The empirical results of Pair3 are presented in Figure 4.18 and Figure 4.19. The numerical

results are in Table 4.33, 4.35, 4.37 and Table 4.34, 4.36, 4.38. Since Pair3 has bigger

skewness than Pair1 and Pair2, the simulation results are quite different.

From Figure 4.18, when λ = 0.3, the bootstrap-t test and BCa test provide an empirical

type I error rate below 0.05, but also give the highest power. when λ = 0.5 with balanced

sample, the highest power goes to TCF test and T3 test, which both keep the type I error rate

close to α = 0.05. when λ = 0.8, the majority of the samples are from the first population

which is a highly skewed Gamma distribution. The type I error rate of all the seven tests

are bigger than α except the pooled two-sample t-test. As the sample size n1 increasing,

the type I error rate of all seven tests decrease and drop below 0.1. The empirical power

of TCF, T1 and T3 tests are higher than the rest of tests, but these three test also give a

bigger type I error rate.

From Figure 4.19, when λ = 0.3 the empirical type I error rates of bootstrap-t test and

BCa test are consistently above 0.1 even with a large sample size n1 = 150. The rest of

the tests maintain the type I error rate at or below α, while give the similar power. As λ

increases to 0.5, only TCF, T1 and T3 tests keep the type I error rate close to α, then give

slightly smaller power than the other four tests. Given λ = 0.8, all the tests have a type I

error rate bigger or equal to 0.1 except for bootstrap-t test. Although the bootstrap-t test

maintains the type I error rate below 0.05, its empirical power is much smaller than the

other six tests.
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Pair4 has a distribution combination with big skewness and big common variance. Fig-

ure 4.20 and Figure 4.21 present the empirical results of type I error rate and power of

upper-tailed and lower-tailed tests respectively. The numerical results are given in Ta-

ble 4.39, 4.41, 4.43 and Table 4.40, 4.42, 4.44. Despite that the populations setting of Pair4

has a much bigger common variance than the population setting of Pair3, their simulation

results are quite the same. In this case, we omit the discussion of the simulation results of

Pair4.
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As we know, the population 1 of Pair5 follows Log-normal distribution and the Pair5

has a distribution combination with small skewness and small common variance, which

is similar to the setting of Pair1. Although the two population settings choose different

skewed populations, their simulation results are similar. We found that the empirical results

for the one-sided upper-tailed test in Figure 4.22 for Pair5 have the same pattern as the

results in Figure 4.14 for Pair1. Besides, the empirical results of the one-sided lower-tailed

test of Pair5 in Figure 4.23 also resemble those for Pair1. The numerical results of the

empirical type I error rate and power of the upper-tailed and lower-tailed test are given in

Table 4.45, 4.47, 4.49 and Table 4.46, 4.48, 4.50 respectively.
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The simulation setting of Pair6 is similar to Pair4, which has a big skewness and

common variance. Although the two settings have difference skewed populations, one from

Gamma and one from Log-normal, their simulation results are quite similar. The simulation

results of Pair6 in Figure 4.24 and Figure 4.25 are similar to the simulation results of

Pair4. The numerical results of the empirical type I error rate and power are given in

Table 4.51, 4.53, 4.55 and Table 4.52, 4.54, 4.56.
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4.4.6 Discussion

From the simulation study, we can conclude several findings as follows:

1. Across all levels of λ, as the sample size gets larger, the power of all the seven tests

increases and the type I error rate of the seven tests approaches the significant level.

When the sample size n1 remains constant, the type I error rate of the seven tests

increases as the relative skewness γ = 3N−1/2B gets bigger.

2. The theoretical type I error rate of TCF test and Ti test is smaller than α under each

simulation settings. However, the empirical type I error rate of the four new tests

is close to α when the relative skewness γ = 3N−1/2B is smaller. When the relative

skewness is big, the empirical type I error rate of the four new tests is bigger than 0.1

even with a big sample size.

3. Among all the seven tests, the two-sample TCF test and T3 test not only give con-

sistently bigger power but also control the type I error rate well. As the population

relative skewness γ = 3N−1/2B increases, the power of these two tests outperform the

power of Bootstrap-t test and BCa test.

4. The two-sample Bootstrap-t test and BCa test give better power when the two-sample

data are balanced and less skewed; The pooled two-sample t-test gives the smallest

power among the seven tests across all the simulation settings. In addition, the pooled

two-sample t-test also gives the highest type I error rate when the data set is small

and highly skewed.

5. This simulation study can not reflect the effect of the common variance σ2 on the power

of the test. That’s because the term of σ2 was canceled out during the calculation

of two sample relative skewness γ = 3N−1/2B and δ/
√
σ2( 1

n1
+ 1

n2
), in that δ/σ is

considered a constant in our simulation setting.

6. In this simulation study, we investigated two positive skewed families, Gamma dis-

tribution and Log-normal distribution. We found that the power of the test was not
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significantly affected by the types of the skewed distribution. In both lognormal and

gamma families, the amount of their population skewness γi affect the performance of

the tests.

4.5 Two sample comparisons with population skew-

ness from outliers

In our previous simulation study, the population skewness comes from the population dis-

tribution being skewed, i.e., from Gamma distribution or log-normal distribution. In this

section, we will study the case that the population skewness is only due to some outliers.

In other words, the skewed population becomes symmetric if we delete all its outliers. Thus

the main purpose of this section is to check if the TCF test and the three Ti tests have

enough power to detect the population mean difference under this situation.

To investigate the above questions, a simulation was conducted to compare the type

I error rate and power of the eight tests: pooled two-sample t-test, Wilcoxon Rank-Sum

Test, Bootstrap t-test, BCa test, three Ti tests and TCF test. Under H0, the data were

generated from standard normal distribution without outliers. Under Ha, outliers were

added to population 1. The outliers were randomly generated integers from 10 to 20, which

accounts for 5% of the population 1 original sample size.

Population2 Population1

Pair1 N(µ1 = 0, σ2
1 = 1) N(µ1 = 0, σ2

1 = 1)+ Outliers

Pair2 N(µ1 = 0, σ2
1 = 1) N(µ1 = 0.3, σ2

1 = 1)+ Outliers

Table 4.57: Two Pairs of Population Settings

Since all the outliers are positive integers, the first population mean µ1 is bigger than the

second population mean µ2. These outliers also make the first population right skewed with

a positive population skewness γ1. The second population is symmetric with γ2 = 0. The

other simulation settings are the same as in Section 3.3.2. 10, 000 samples were generated for
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each parameter setting and each sample size. For bootstrap tests, 1, 000 bootstrap samples

are resampled from each generated data set.

• Significance level α = 0.05;

• First population sample size n1 = 15, 25, . . . , 145;

• λN = n1/N = 0.6, here N = n1 + n2;

• Second population sample size n2 = (1− λN)N ;

• Effect size: δ = (µ1− µ2)−Hypothesized(µ1− µ2), depends totally on the outliers in

pair1 setting and is equal to 0.3 plus the effects due to added outliers to popoulation1

for pair2 setting .

The simulation results are presented in Figure 4.26, Table 4.58 and Table 4.59.

Figure 4.26 shows the empirical type I error rate and power from these eight two-sample

tests including pooled two-sample t-test denoted as “T”, Wilcoxon Rank-Sum Test denoted

as “Wilcox”, three Ti tests denoted as “Ti”, i = 1, 2, 3 and two sample TCF test denoted

as “CF”. The two-sample Bootstrap-t test and two-sample BCa test are constructed based

on two different resampling methods. The first resampling method generates bootstrap

samples from each group separately. In the second resampling method the bootstrap samples

were generated from the pooled Xij − X̄i., all i, j. We denote the tests based on the first

resampling method as “boot1” and “BCa1”. And denote the tests based on the second

resampling method as “boot2” and “BCa2”. The top two panels in Figure 4.26 give the

empirical type I error rate of the eight tests with λ = 0.6. The bottom two panels provide

their corresponding empirical powers.

Table 4.58 and Table 4.59 present the numeric results of the empirical power under each

pair of population settings in Figure 4.26. The γ̂1, γ̂2 and B̂ are the mean estimates of

population 1 skewness γ1, population 2 skewness γ1 and B respectively. The “skewness”

calculated as 3B̂
2
√
N

stands for the mean estimate of the relative skewness of two populations

defined as 3B
2
√
N

.
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From Figure 4.26, all the eight tests control the type I error rate well. For the empirical

power of pair1, the Bootstrap-t test and BCa test based on the first resampling method give

the best power, which are consistently higher than the power of the other tests. The TCF

test, T1 and T3 tests provide the second best power. The power of Wilcoxon Rank-Sum Test

is very small, which is almost 0. The empirical power results of pair2 keep the same pattern

as the results from pair1, except that the power of the Wilcoxon Rank-Sum Test is higher

than the pooled two-sample t-test and T2 test as long as n1 < 65. The empirical powers of

the eight tests for pair2 increase faster than the powers of pair1, because the two population

mean difference for pair2 is larger than pair1.

From Table 4.58 and Table 4.59, the mean estimate of γ̂1 is around 4 and γ̂2 is around 0,

which means the first population is heavily skewed and the second population is symmetric.

Moreover, the mean estimate of the relative skewness is between 0.23 and 0.65, which means

the two pairs of population settings have a high relative skewness.

Under this simulation setting, the bootstrap-t test and BCa test based on the first re-

sampling method have significantly better power than the other tests in testing the two

population mean difference when the population skewness comes from the outliers. Com-

paring with the pooled two-sample t-test, our four new tests are more robust with the

existence of outliers. The Wilcoxon Rank-Sum Test gives the worst power in the two sim-

ulation settings. Regarding the two resampling methods for the bootstrap-t test and BCa

test, we found the empirical powers based on the first resampling method provides much

higher power than the second resampling method in this data generating setting.
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4.6 Real data analysis

In this section we report the result of applying our four new two-sample tests, pooled two-

sample t-test and bootstrap t-test to analyze two real data sets. These two data sets are

both from textbook Ott and Longnecker (2008).

The first data set is about bonus percentage of employees. A personnel officer took

samples of 24 female and 36 male managers to see whether there was any difference in

bonuses, expressed as a percentage of yearly salary. The data are listed here:

Gender Bonus Percentage

F 9.2 7.7 11.9 6.2 9.0 8.4 6.9 7.6 7.4

8.0 9.9 6.7 8.4 9.3 9.1 8.7 9.2 9.1

8.4 9.6 7.7 9.0 9.0 8.4

M 10.4 8.9 11.7 12.0 8.7 9.4 9.8 9.0 9.2

9.7 9.1 8.8 7.9 9.9 10.0 10.1 9.0 11.4

8.7 9.6 9.2 9.7 8.9 9.2 9.4 9.7 8.9

9.3 10.4 11.9 9.0 12.0 9.6 9.2 9.9 9.0

Table 4.60: Bonus percentage data set. The data set is from exercise 6.13 of textbook Ott

and Longnecker (2008)

The data set is unbalanced with λN = 0.4 and total sample size 60. Standard practice is

to first conduct an equal variance F-test to decide whether pooled or unpooled t-test should

be used. Here the sample standard deviation of the female group is 1.188959 and that for

the male group is 1.00385, which leads to non-rejection for the F-test. As a results, the

two population variances can be treated as equal. The F-test however, is sensitive to the

assumption of normality for the population distribution. In Figure 4.27, we can see that

the sample median of Bonus Percentage from the male is higher than that from the female.

And the sample from male does not follow normal distribution. The pooled two-sample t

statistic value is −4.036748. The cut offs for the rejection regions and the conclusions of
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the tests are given in Table 4.61. We can see that all the six two-sample tests reject the

null hypothesis and conclude that the two populations have significantly different means.

In addition the Wilcoxon Rank-sum test also reject the null hypothesis with a p-value of

0.00015. Even though all tests reject H0, they have quite different rejection regions except

for TCF and T1 tests. Comparing to the rejection region of the two-sample t-test, the cutoff

values for all other tests have different amount of shift in both ends to reflect the correction

on skewness.
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Figure 4.27: Box-plot and Q-Q plot for bonus percentage data

The second two-sample data set is from a cable TV company who was interested in

making its operation more efficient by cutting down on the distance between service calls

while still maintaining at least the same level of service quality. A treatment group of 18

repair-persons was assigned to a dispatcher who monitored all the incoming requests for

cable repairs and then provided a service strategy for that day’s work orders. A control

group of 18 repair-persons was to perform their work in a normal fashion, by providing
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lower cutoff upper cutoff Conclusion at level 0.05

T.test -2.002 2.002 Reject H0

bootstrap -2.081 2.037 Reject H0

TCF -1.881 2.039 Reject H0

T1 -1.884 2.043 Reject H0

T2 -1.949 1.971 Reject H0

T3 -2.959 1.612 Reject H0

Table 4.61: The cutoff for rejection region and conclusion of different tests

service in roughly a sequential order as requests for repairs were received. The average daily

mileage for the 36 repair-persons are in Table 4.62:

Groups Mileage

Treatment Group 62.2 79.3 83.2 82.2 84.1 89.3

95.8 97.9 91.5 96.6 90.1 98.6

85.2 87.9 86.7 99.7 101.1 88.6

Control Group 97.1 70.2 94.6 182.9 85.6 89.5

109.5 101.7 99.7 193.2 105.3 92.9

63.9 88.2 99.1 95.1 92.4 87.3

Table 4.62: Cable TV Company data set. The data set is from exercise 6.17 of textbook Ott

and Longnecker (2008)

The two-sample data set is balanced, with λN = 0.5 and total sample size 36. In

Figure 4.28, the two samples have different medians and at least one population appears to

be skewed. The pooled two-sample t statistic value is 1.70509. Then comparing to the cut

off values of the rejection region listed in Table 4.63, we can see that the two-sample TCF,

T1, T3 and bootstrap t-tests reject the null hypothesis and conclude that the two populations

have significantly different means. But the pooled two-sample t-test, Wilcoxon Rank-Sum

Test(p-value = 0.082) and T2 test fail to reject the null hypothesis and conclude the two

populations means are not significantly different with p-value all close to 0.1.
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Figure 4.28: Box-plot and Q-Q plot for mileage data

In this first example, our four new test gave consistent testing results as the pooled

two-sample t-test, bootstrap t-test and Wilcoxon Rank-Sum Test. Furthermore, when it

comes to the second example whose data are more skewed, our proposed new two-sample

tests reject the null hypothesis and conclude that the two population means are significantly

different from each other except for T2 test, while the commonly used pooled two-sample

t-test and Wilcoxon Rank-Sum Test did not reject the null hypothesis and conclude that

the two population means are not significantly different.

4.7 Summary

In this chapter, we presented three new two-sample tests based on transformations followed

by extensive simulation studies. When testing the two population mean difference, our

study shows that the four new two-sample tests, one based on Cornish Fisher expansion
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lower cutoff upper cutoff Conclusion at level 0.05

T.test -2.088 2.088 Do Not Reject H0

bootstrap -3.760 1.570 Do Not Reject H0

TCF -2.362 1.558 Reject H0

T1 -2.475 1.614 Reject H0

T2 -2.062 1.851 Do Not Reject H0

T3 -3.710 1.454 Reject H0

Table 4.63: The cutoff for rejection region and conclusion of different tests

(TCF ) and three based on transformations (Ti), i = 1, 2, 3, can provide more accurate tests

under skewness. Comparing to the two-sample test based on normal approximation (TN),

TCF and Ti tests have the same type I error rate but give higher power for the same sample

size.

The Bootstrap-t test and BCa test not only provide elevated type I error rate but

also need significantly more computation time due to bootstrap resampling. Among the

seven two-sample tests in the simulation study, the two-sample TCF test and T3 test are

recommended for comparing skewed populations over the TN test since they have better

power both theoretically and empirically in addition to well maintained type I error control.
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Chapter 5

Proposed two-sample test using

Cornish Fisher expansion for skewed

populations with unequal variances

In this chapter, we will extend this research in previous chapter by considering two-sample

comparison for the skewed population with unequal variances. As introduced in Sec-

tion 2.3.2.2, Zhou and Philip (2005) derived an approximation distribution for the test

statistic of unpooled two sample t-test by Edgeworth expansion theory as follows:

Let λN = n1/(n1 +n2) = n1/N . Assume λN = λ+O(N−r) for some r ≥ 0. Under regu-

larity conditions, the distribution of the unpooled two sample t-statistic T
′

given in (2.1.1)

has the following expansion:

F
(U)
T (x) = P (T

′ ≤ x) = Φ(x) +
A
′

6
√
N

(2x2 + 1)φ(x) +O(N−min(1,r+1/2)), (5.0.1)

where φ(x) is the probability density function of the standard normal distribution, Φ(x) is

the cumulative distribution function of the standard normal distribution and

A
′
=

{
σ2

1

λ
+

σ2
2

1− λ

}−3/2{
σ3

1γ1

λ2
− σ3

2γ2

(1− λ)2

}
. (5.0.2)

Based on the above approximation distribution in (5.0.1), we follow the same procedures

in Chapter 3 to derive a new two-sample t-test by the Cornish Fisher expansion theory.
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5.1 New test based on Cornish Fisher expansion under

unequal variances

5.1.1 A two-sample test based on Cornish Fisher expansion under

unequal variances

As introduced in Section 2.3.1, the percentiles of the distribution in (5.0.1) admits a Cornish

Fisher expansion, which has the form as follows.

Corollary 5.1.1. Let τα denote the αth percentile of the distribution F
(U)
T (t) in (5.0.1).

Then based on Cornish Fisher expansion theory, the value of τα admits an expansion with

the form below:

τα = zα −
A
′

6
√
N

(2z2
α + 1) +O(N−min(1,r+1/2)), (5.1.1)

where zα is the αth percentile of the standard normal distribution and A
′

is defined in (5.0.2).

This corollary is a direct result of the theory for Fisher expansion from Hall (1992a).

Hence we omit the proof.

Now define τ̂α = zα − Â
′

6
√
N

(2z2
α + 1), where

Â
′
=

{
S2

1

λN
+

S2
2

1− λN

}−3/2{
S3

1 γ̂1

λ2
N

− S3
2 γ̂2

(1− λN)2

}
,

and

γ̂i =
ni

(ni − 1)(ni − 2)

ni∑
j=1

{
Xij − X̄i

Si

}3

λN =
n1

(n1 + n2)
, i = 1, 2.

With the test statistic T
′

defined in equation (2.1.1), we have:

1. The rejection region for two-sided test with hypothesis H0 : µ1 − µ2 = µ10 − µ20 vs.

Ha : µ1 − µ2 6= µ10 − µ20 is

T
′ ≤ τ̂α/2 or T

′ ≥ τ̂1−α/2 (5.1.2)
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2. The rejection region for one-sided upper-tailed test with hypothesis H0 : µ1 − µ2 =

µ10 − µ20 vs. Ha : µ1 − µ2 > µ10 − µ20 is

T
′ ≥ τ̂1−α. (5.1.3)

3. The rejection region for one-sided lower-tailed test with hypothesis H0 : µ1 − µ2 =

µ10 − µ20 vs. Ha : µ1 − µ2 < µ10 − µ20 is

T
′ ≤ τ̂α. (5.1.4)

We reject the null hypothesis if T
′

falls into the rejection regions for corresponding

alternative hypothesis. In the further discussions, we will refer this two sample test based

on Cornish Fisher expansion under unequal variances as “unpooled-TCF test”

5.1.2 Type I error rate of the two-sided unpooled-TCF test

In this section, we calculate the order of approximation to type I error rate for the two-

sided unpooled-TCF test with rejection region in (5.1.2) from the first order Cornish Fisher

expansion. Under the two-sample setting in above Section 3.2.1, the distribution of the test

statistic T
′

is F
(U)
T (x) defined in (5.0.1). Denote the two cutoffs in formula (5.1.2) as

τ̂α/2 = zα/2 −
Â
′

6
√
N

(2z2
α/2 + 1) , zα/2 + ∆̂

′

N,α/2

τ̂1−α/2 = z1−α/2 −
Â
′

6
√
N

(2z2
1−α/2 + 1) , z1−α/2 + ∆̂

′

N,1−α/2,

(5.1.5)

where

∆̂
′

N,α/2 = − Â
′

6
√
N

(2z2
α/2 + 1)

∆̂
′

N,1−α/2 = − Â
′

6
√
N

(2z2
1−α/2 + 1).

Under standard regularity conditions and previous results, we have

γ̂i = γi +Op(N
−1/2),

Si = σi +Op(N
−1/2),

λN = λ+O(N−r).
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Then we can show that

Â
′
=

{
S2

1

λN
+

S2
2

1− λN

}−3/2{
S3

1 γ̂1

λ2
N

− S3
2 γ̂2

(1− λN)2

}
=

{
σ2

1

λ
+

σ2
2

1− λ
+Op(N

−min(r, 1
2

))

}−3/2{
σ3

1γ1

λ2
− σ3

2γ2

(1− λ)2
+Op(N

−min(r, 1
2

))

}
= A

′
+Op(N

−min(r, 1
2

)),

Based on the above result of Â
′
, we can obtain

∆̂
′

N,α/2 = − Â
′

6
√
N

(2z2
α/2 + 1)

= −(A
′
+Op(N

−min(r, 1
2

)))

6
√
N

(2z2
α/2 + 1)

= − A
′

6
√
N

(2z2
α/2 + 1) +Op(N

−min(1,r+1/2))

= ∆
′

N,α/2 +Op(N
−min(1,r+1/2)),

and

∆̂
′

N,1−α/2 = ∆
′

N,1−α/2 +Op(N
−min(1,r+1/2)).

Now we have

τ̂α/2 = τα/2 +Op(N
−min(1,r+1/2))

τ̂1−α/2 = τ1−α/2 +Op(N
−min(1,r+1/2)),

and the following Lemma:

Lemma 5.1.2. Let τα denote the αth percentile of distribution F
(U)
T (t) in (5.0.1) and τ̂α

denote the estimate of τα given in (5.1.5). Then under standard regularity conditions, the

following result holds:

P (T ≤ τ̂α/2) + P (T ≥ τ̂1−α/2)

= 1− F (U)
T (τ1−α/2) + F

(U)
T (τα/2) +O(N−min(1,r+1/2)).
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Recall that the distribution of F
(2)
T (x) in equation (5.0.1) takes the following form

F
(U)
T (x) = P (T

′ ≤ x) = Φ(x) +
A
′

6
√
N

(2x2 + 1)φ(x) +O(N−min(1,r+1/2)),

Hence, based on the result of Lemma 5.1.2, the type I error rate of the two-sample

unpooled-TCF test can be obtained as

P (type I error of the two-sided unpooled-TCF test)

=1− F (U)
T (τ1−α/2) + F

(U)
T (τα/2) +O(N−min(1,r+1/2))

=1− Φ(τ1−α/2) + Φ(τα/2)− A
′

6
√
N

(2τ 2
1−α/2 + 1)φ(τ1−α/2)

+
A
′

6
√
N

(2τ 2
α/2 + 1)φ(τα/2) +O(N−min(1,r+1/2)).

(5.1.6)

Due to the fact that A
′

are finite constant, then we have

∆
′

N,α/2 = ∆
′

N,1−α/2 = O(N−1/2) (5.1.7)

Note that

− A
′

6
√
N

(2τ 2
α/2 + 1)

= − A
′

6
√
N

(2(zα/2 + ∆
′

N,α/2)2 + 1)

= − A
′

6
√
N

(2z2
α/2 + 1 +O(N−1/2))

= ∆
′

N,α/2 +O(N−1). (5.1.8)

Similarly,

− A
′

6
√
N

(2τ 2
1−α/2 + 1) = ∆

′

N,1−α/2 +O(N−1) = ∆
′

N,α/2 +O(N−1). (5.1.9)

Then apply Taylor expansion to Φ(τ1−α/2), φ(τ1−α/2) at z1−α/2 and to Φ(τα/2), φ(τα/2) at

zα/2 correspondingly, we have

Φ(τ1−α/2) = Φ(z1−α/2) + φ(z1−α/2)∆
′

N,1−α/2 +O(∆
′2
N,1−α/2),

Φ(τα/2) = Φ(zα/2) + φ(zα/2)∆
′

N,α/2 +O(∆
′2
N,α/2),

φ(τ1−α/2) = φ(z1−α/2) + φ
′
(z1−α/2)∆

′

N,1−α/2 +O(∆
′2
N,1−α/2),

φ(τα/2) = φ(zα/2) + φ
′
(zα/2)∆

′

N,α/2 +O(∆
′2
N,α/2).

(5.1.10)
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Using these four Taylor expansions and (5.1.8), (5.1.9) to replace the terms in (5.1.6), we

have:

P (type I error of the two-sided unpooled-TCF test )

= 1− Φ(τ1−α/2) + Φ(τα/2)− A
′

6
√
N

(2τ 2
1−α/2 + 1)φ(τ1−α/2)

+
A
′

6
√
N

(2τ 2
α/2 + 1)φ(τα/2) +O(N−min(1,r+1/2))

= α/2− φ(z1−α/2)∆
′

N,α/2 + α/2 + φ(zα/2)∆
′

N,α/2 +O(∆
′2
N,α/2)

+[∆
′

N,α/2 +O(N−1)][φ(z1−α/2) + φ
′
(z1−α/2)∆

′

N,1−α/2 +O(∆
′2
N,1−α/2)]

−[∆
′

N,α/2 +O(N−1)][φ(zα/2) + φ
′
(zα/2)∆

′

N,α/2 +O(∆
′2
N,α/2)]

+O(N−min(1,r+1/2))

= α + ∆
′

N,α/2φ(z1−α/2)−∆
′

N,α/2φ(zα/2) +O(N−1) +O(N−min(1,r+1/2))

= α +O(N−min(1,r+1/2)), (5.1.11)

Then we have the follow theorem,

Theorem 5.1.3. Under standard regularity conditions, when H0 is true, the theoretical type

I error rate of the two-sample unpooled-TCF test, with level of significance α is

P (T
′ ≤ τ̂α/2) + P (T

′ ≥ τ̂1−α/2) = α +O(N−min(1,r+1/2)).

Note that the approximated type I error rate of unpooled two-sample t-test based on

normal approximation is also α+O(N−min(1,r+1/2)). This means that the two tests have the

same type I error rate accuracy.

5.1.3 Power of the two-sided unpooled-TCF test

Now consider data generated under Ha : µ1 − µ2 6= µ10 − µ20. For power calculation, let

δ = |(µ1− µ2)− (µ10− µ20)|. When Ha is true, the theoretical power equals the probability

of rejecting the null hypothesis with formula:

PHa

(
T
′ ≥ τ̂1−α/2

)
+ PHa

(
T
′ ≤ τ̂α/2

)
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Following the same Edgeworth expansion procedures in Section 3.2.3, the distribution of

the test statistic T
′

under Ha can be obtained. We state the result in the Theorem below.

Theorem 5.1.4. Let λN = n1/(n1 + n2) = n1/N . Assume λN = λ + O(N−r) for some

r ≥ 0, and δ = O(N−1/2) under Ha. Then under regularity conditions (in Appendix A),

the distribution of the unpooled two sample t-statistic T
′

given in (2.1.1) has the following

expansion under Ha:

F
(Ha)
T.unpooled(x) = F

(U)
T (x− cN) +

qN
2

(x− cN)φ(x− cN) +O(N−min(1,r+1/2)), (5.1.12)

where φ(x) is the probability density function of the standard normal distribution, Φ(x) is

the cumulative distribution function of the standard normal distribution and F
(U)
T (x) is the

distribution of T
′

under H0 defined in (5.0.1). Here, cN = δ/
√
σ2( 1

n1
+ 1

n2
) and qN =

δσ−1[λ(1− λ)](γ1 − γ2).

Denoting

L̂
′

u = τ̂1−α/2 − δ/

√
σ2

1

n1

+
σ2

2

n2

= z1−α/2 + ∆̂
′

N,1−α/2 − δ/

√
σ2

1

n1

+
σ2

2

n2

= U
′

N,1−α/2 + ∆̂
′

N,1−α/2

= U
′

N,1−α/2 + ∆
′

N,1−α/2 +Op(N
−min(1,r+1/2))

= L
′

u +Op(N
−min(1,r+1/2))

where U
′

N,1−α/2 = z1−α/2 − δ/
√

σ2
1

n1
+

σ2
2

n2
and L

′
u = U

′

N,1−α/2 + ∆
′

N,1−α/2. Similarly

L̂
′

l = τ̂α/2 − δ/

√
σ2

1

n1

+
σ2

2

n2

= L
′

l +Op(N
−min(1,r+1/2))

where U
′

N,α/2 = zα/2 − δ/
√

σ2
1

n1
+

σ2
2

n2
and L

′

l = U
′

N,α/2 + ∆
′

N,α/2. We have

L̂
′

u = L
′

u +Op(N
−min(1,r+1/2)),

L̂
′

l = L
′

l +Op(N
−min(1,r+1/2)).
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Then based on the result of Lemma 5.1.2, under standard regularity conditions, the theo-

retical power of the two-sample unpooled-TCF test can be obtained by

PHa

(
T ≥ L̂

′
u

)
+ PHa

(
T ≤ L̂

′

l

)
= 1− F (U)

T (L
′
u) + F

(U)
T (L

′

l)−Q(L̂
′
u) +Q(L̂

′

l) +O(N−min(1,r+1/2))

= 1− Φ(L
′
u) + Φ(L

′

l)− A
′

6
√
N

(2L
′2
u + 1)φ(L

′
u)−Q(L̂

′
u)

+ A
′

6
√
N

(2L
′2
l + 1)φ(L

′

l) +Q(L̂
′

l) +O(N−min(1,r+1/2)). (5.1.13)

5.1.4 Power of the two-sided unpooled-TCF test under local al-

ternative hypothesis

Recall that, under the local alternative, both U
′

N,α/2 and U
′

N,1−α/2 have the same order of

O(1). Therefore we have

− A
′

6
√
N

(2L
′2
u + 1) = − A

′

6
√
N

(2U
′2
N,1−α/2 + 1) +O(N−1). (5.1.14)

Similarly, − A
′

6
√
N

(2L
′2
l + 1) = − A

′

6
√
N

(2U
′2
N,α/2 + 1) + O(N−1). Then apply Taylor expansion

to Φ(L
′
u), φ(L

′
u) at U

′

N,1−α/2 and to Φ(L
′

l), φ(L
′

l) at U
′

N,α/2 correspondingly, we have

Φ(L
′

u) = Φ(U
′

N,1−α/2) + φ(U
′

N,1−α/2)∆
′

N,1−α/2 +O(∆
′2
N,1−α/2),

Φ(L
′

l) = Φ(U
′

N,α/2) + φ(U
′

N,α/2)∆
′

N,α/2 +O(∆
′2
N,α/2),

φ(L
′

u) = φ(U
′

N,1−α/2) + φ
′
(U
′

N,1−α/2)∆
′

N,1−α/2 +O(∆
′2
N,1−α/2),

φ(L
′

l) = φ(U
′

N,α/2) + φ
′
(U
′

N,α/2)∆
′

N,α/2 +O(∆
′2
N,α/2).

(5.1.15)

Then (5.1.13) can be further calculated as

power of the two-sided unpooled-TCF test =

1− Φ(U
′

N,1−α/2)− A
′

6
√
N

(2U
′2
N,1−α/2 + 1)φ(U

′

N,1−α/2)−Q(U
′

N,1−α/2) +Q(U
′

N,α/2)

+ Φ(U
′

N,α/2) +
A
′

6
√
N

(2U
′2
N,α/2 + 1)φ(U

′

N,α/2) + L
′

N,γ1,γ2,λ
+O(N−min(1,r+1/2)),

(5.1.16)

where L
′

N,γ1,γ2,λ
has the form

L
′

(N,γ1,γ2,λ) = ∆
′

N,α/2[φ(U
′

N,α/2)− φ(U
′

N,1−α/2)] +O(N−1) (5.1.17)
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Note that, the approximated power of the unpooled two-sample t-test based on standard

normal approximation is:

power of the unpooled two-sample t-test =

1− Φ(U
′

N,1−α/2)− A
′

6
√
N

(2U
′2
N,1−α/2 + 1)φ(U

′

N,1−α/2)−Q(U
′

N,1−α/2) +Q(U
′

N,α/2)

+ Φ(U
′

N,α/2) +
A
′

6
√
N

(2U
′2
N,α/2 + 1)φ(U

′

N,α/2) +O(N−min(1,r+1/2)).

(5.1.18)

From (5.1.16) and (5.1.18) we have the following Corollary:

Corollary 5.1.5. The two-sided unpooled-TCF test at level α is more powerful than the

unpooled two-sample t-test if and only if the following inequality holds

c
′

α(1− λ)2σ3
1γ1 > c

′

αλ
2σ3

2γ2, (5.1.19)

where c
′
α = 2z2

α/2 − 1.

In real practice, the sign of L
′

(N,γ1,γ2,λ) can be manipulated by adjusting λ = λN +

O(N−r) = n1/N +O(N−r), since γ1 and γ2 are determined by the population. With a fixed

value of γ1 and γ2, we can further rewrite the equation (5.1.19) as

(c
′

ασ
3
1γ1 − c

′

ασ
3
2γ2)λ2 − 2c

′

ασ
3
1γ1λ+ c

′

ασ
3
1γ1 > 0. (5.1.20)

Now we can solve for λ which satisfy the inequality in (5.1.19). The left side of inequal-

ity (5.1.20) will have real roots if (5.1.21) is nonnegative.

(2c
′
ασ

3
1γ1)2 − 4(c

′
ασ

3
1γ1 − c

′
ασ

3
2γ2)c

′
ασ

3
1γ1 > 0.

That is 4c
′2
ασ

3
1σ

3
2γ1γ2 > 0. (5.1.21)

Clearly, (5.1.21) satisfied if γ1γ2 ≥ 0, since c
′
α, σ1 and σ2 are all greater than 0 in real

practise. When γ1γ2 < 0, we can switch the two samples and let γ1 > 0 and γ2 < 0. Then

the inequality (5.1.19) always hold. Suppose ω
′
1 and ω

′
2 are the two roots of the left side

of (5.1.20). Without loss of generality, let ω
′
1 ≤ ω

′
2. Then under γ1γ2 ≥ 0, we have the

following solutions of λ for L
′

N,γ1,γ2,λ
> 0:
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• if σ3
1γ1 − σ3

2γ2 ≥ 0 then λ ≤ ω
′
1 or λ ≥ ω

′
2;

• if σ3
1γ1 − σ3

2γ2 < 0 then ω
′
1 ≤ λ ≤ ω

′
2.

To demonstrate the relationship between λ and L
′

(N,γ1,γ2,λ), consider one specific example.

Suppose population 1 follows Gamma distribution with population skewness γ1 = 2 and

population standard deviation σ1 = 3; population 2 follows Log-normal distribution with

population skewness γ1 = 6 and population standard deviation σ1 = 1. With α = 0.05,

the unpooled-TCF and unpooled two-sample t-tests were applied to test the two population

mean difference. Based on the given population parameters, we can solve for λ that gives a

higher power in the two-sample unpooled-TCF test. Since γ1γ2 ≥ 0 and σ3
1γ1 − σ3

2γ2 ≥ 0,

by solving the inequality (5.1.20), the solutions can be obtained as λ ≤ ω
′
1 or λ ≥ ω

′
2, where

ω
′
1 = 0.75 and ω

′
2 = 1.5.

5.1.5 Summary

In this chapter, we derived the order of type I error rate accuracy and the power function

of the two-sample unpooled-TCF test. Besides, we also provide the detailed conditions

under which the theoretical power of the two-sample unpooled-TCF test is higher than the

two-sample TN test. Comparing with the TCF test, the unpooled-TCF test can test the

population mean difference under unequal variance assumption.
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Dissertation summary

In this dissertation, we applied the Edgeworth expansion on the test statistic of pooled two

sample t-test to derive a new approximation of its distribution under skewness. On the

basis of this new expansion, a new two-sample test from Cornish Fisher expansion theory

(TCF test) was constructed. We proved that the TCF test can maintain the type I error

at rate O(N−min(1,r+1/2)), but give a higher power than the pooled two-sample t-test when

the underlying data are skewed. We quantified the power increment as a function of the

sample size ratio and population skewnesses. A sufficient and necessary condition was given

in the dissertation to guide users on the range of sample size ratio such that the TCF test

has higher power than the two-sample t-test.

We also developed three new tests based on three transformations (Ti test, i = 1, 2, 3)

for the pooled two-sample case. These three transformations help to eliminate the skewness

of the studentized statistic. We proved that the three Ti tests have the same order of

type I error rate accuracy as the pooled two-sample t-test based on normal approximation

(TN test) and the TCF test. In terms of power, we proved that the two-sided TCF test

has higher power than the two-sided T1 and T2 tests; the power difference between two-

sided TCF test and T3 test depends on the relative skewness B defined in (3.1.10). Small

population skewness difference yield a small B, which leads to a higher power for the T3

test than the TCF test. On the other hand, a big population skewness difference will yield

a large B, which leads to a lower power in T3 test than TCF test. This result means the

two-sided TCF test can provide more accurate two sample comparison when the populations

are highly skewed.

Beyond theoretical development, this dissertation also give extensive simulation studies

to compare the proposed tests with commonly used two-sample tests. The simulation study

in Section 3.3 shows that the two-sample TCF test not only maintained the type I error rate
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but provided highest power and should be recommended over the pooled two-sample t-test,

Bootstrap t-test and Wilcoxon Rank-Sum Test for skewed data. Moreover, the simulation

results for two-sided hypothesis or upper-tailed test show that, among all the seven tests,

the two-sample TCF test and T3 test not only give consistently higher power but also control

the type I error rate well. As the population relative skewness increases, the power of these

two tests outperform the power of Bootstrap-t test and BCa test. For the lower-tailed test,

we observed interesting phenomenon. For populations with smaller relative skewness, the

TN test performs the best in terms of both type I error and power. When the relative

skewness increases, the TN test exhibits higher power but also has the most elevated type

I error rate.

Finally, this dissertation extends the study to compare two skewed populations with

unequal variances. We derived the unpooled-TCF test based on the Edgeworth expansion

of the test statistic of the unpooled two-sample t-test. The theoretical result shows that

the unpooled-TCF test gives the same order of type I error rate accuracy as the unpooled

two-sample t-test based on normal approximation. We also provided the condition on the

sample ratio to yield a higher power for the unpooled-TCF test.

The five new two-sample tests i.e., TCF test, unpooled-TCF test and three Ti tests are es-

pecially designed for the two-sample comparison under the skewed populations. Comparing

with the commonly used pooled and unpooled two-sample t-tests and Wilcoxon Rank-Sum

test, the five new tests have less restricted assumptions and provide better power to detect

departure from the null hypothesis. Compared to resampling based bootstrap-t test and

BCa test, the five new tests have better type I error control while giving a comparable

power.
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Appendix A

Proof of Theorems

A.1 Proof of Theorem 3.1.3

Proof of Theorem 3.1.3:

Under the sufficient regularity conditions from Hall (1992a):

E(|X|j+2) <∞ and lim sup
|t|→∞

|X(t)| < 1 (A.1.1)

holds if the distribution of X is nonsingular.

The pooled two sample t-test is as follows,

T =
Ȳ1 − Ȳ2 − (µ1 − µ2)

Sp
√

1
n1

+ 1
n2

,

where Ȳi =
∑ni

j=1 Yij/ni, Sp =
√

(n1−1)S2
1+(n2−1)S2

2

n1+n2−2
and S2

i = 1
ni−1

∑ni
i=1(Yi−Ȳi)2 with i = 1, 2.

Let Y ∗ij =
Yij−µi
σi

, Ȳ ∗i = 1
ni

∑ni
j=1 Y

∗
ij and S∗

2

i = 1
ni−1

∑ni
j=1(Y ∗ij − Ȳ ∗i )2, for i = 1, 2 and

j = 1, ..., ni. Use these new defined variables to replace the original statistics in pooled two

sample t-statistic, we have

T =
σ1Ȳ

∗
1 − σ2Ȳ

∗
2√

(n1−1)σ2
1S
∗2
1 +(n2−1)σ2

2S
∗2
2

n1+n2−2
(n1+n2)
n1n2

=
√
N

σ1Ȳ
∗

1 − σ2Ȳ
∗

2√
(n1−1)σ2

1S
∗2
1 +(n2−1)σ2

2S
∗2
2

(N−2)λN (1−λN )

,
(A.1.2)
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where λN = n1/N = n1/(n1 + n2).

Furthermore, let X = (X1, X2, X3, X4), where

X1 =Ȳ ∗1 , X2 =
1

n1

n1∑
j=1

Y ∗
2

1j ,

X3 =Ȳ ∗2 , X4 =
1

n2

n2∑
j=1

Y ∗
2

2j .

Now plug X into (A.1.2) to further transform the pooled two sample t-statistic, finally we

can write test statistic T as a function of X with T =
√
Ng(X), which has the form as

follows:

T =
√
Ng(X) =

σ1X1 − σ2X3

k(X)1/2

k(X) =
(n1 − 1)σ2

1S
∗2
1 + (n2 − 1)σ2

2S
∗2
2

(N − 2)λN(1− λN)

=
(n1 − 1)σ2

1(X2 −X2
1 ) + (n2 − 1)σ2

2(X4 −X2
3 )

(N − 2)λN(1− λN)

Next, apply Taylor expansion to g(X) with EX ≡ U ≡ (U1, U2, U3, U4) = (0, 1, 0, 1), we

have

g(X) = g(U) +
∂g(U)

∂U
(X − U) +

1

2

∂2g(U)

∂U2
(X − U)2 + . . .

T =
√
N{∂g(U)

∂U
(X − U) +

1

2
(X − U)

′ ∂2g(U)

∂U2
(X − U) + . . .},

where g(U) = 0.

Now, if we let

WN =
√
N{∂g(U)

′

∂U
(X − U) +

1

2
(X − U)

′ ∂2g(U)

∂U2
(X − U)}.

Under regularity condition in (A.1.1), from Zhou and Philip (2005) we can show that

T = WN +O(N−1).
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Assuming EY 6
ij <∞, the first three moments of WN are as follows:

E(WN) = −1

2
N−1/2[λ(1− λ)]1/2(γ1 − γ2) +O(N−min(1,r+ 1

2
)), (A.1.3)

E(W 2
N) = 1 +O(N−1), (A.1.4)

E(W 3
N) = −

[
λ(1−λ)

4N

]1/2

(
11λ− 2

λ
γ1 −

9− 11λ

1− λ
γ2) +O(N−min(1,r+ 1

2
)), (A.1.5)

where γi = E[(
Yij−µi
σi

)3] is the population skewness and i = 1, 2.

A.1.1 Proof of Corollary 3.1.1

The proof of Corollary 3.1.1 is shown as follows: First we will find E(WN).

EWN =
√
NE

∂g(U)
′

∂U
(X − U) +

1

2

√
NE(X − U)

′ ∂2g(U)

∂U2
(X − U).

To calculate E{∂g(U)
′

∂U
(X −U)} and E{(X −U)

′ ∂2g(U)
∂U2 (X −U)}, denote P =

N2(n1−1)σ2
1

(N−2)n1n2
and

Q =
N2(n2−1)σ2

2

(N−2)n1n2
. Then,

E

{
∂g(U)

′

∂U
(X − U)

}

= E


[(

σ2
1

P +Q
)1/2 , 0 , −(

σ2
2

P +Q
)1/2) , 0]


X1

X2 − 1

X3

X4 − 1




= E

(
X1(

σ2
1

P +Q
)1/2 −X3(

σ2
2

P +Q
)1/2

)
= 0

(A.1.6)

Then the expectation of the second term

E

{
(X − U)

′ ∂2g(U)

∂U2
(X − U)

}

= E


[X1, X2 − 1, X3, X4 − 1]


∂2g(X)

∂X2
1
· · · ∂2g(X)

∂X1∂X4

...
. . .

...

∂2g(X)
∂X4∂X1

· · · ∂2g(X)

∂X2
4




X1

X2 − 1

X3

X4 − 1




(A.1.7)
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We break (A.1.7) down to calculate the middle term first:
∂2g(X)

∂X2
1
· · · ∂2g(X)

∂X1∂X4

...
. . .

...

∂2g(X)
∂X4∂X1

· · · ∂2g(X)

∂X2
4



=


0 −P

2
σ1(P +Q)−3/2 0 −Q

2
σ1(P +Q)−3/2

−P
2
σ1(P +Q)−3/2 0 P

2
σ2(P +Q)−3/2 0

0 P
2
σ2(P +Q)−3/2 0 Q

2
σ2(P +Q)−3/2

−Q
2
σ1(P +Q)−3/2 0 −Q

2
σ2(P +Q)−3/2 0


(A.1.8)

Denote the matrix in (A.1.8) as W , and we put W back to (A.1.7)

E


[X1, X2 − 1, X3, X4 − 1]W


X1

X2 − 1

X3

X4 − 1




= E

[
(−P )(P +Q)−3/2σ1X1(X2 − 1)

]
+ E

[
(Q)(P +Q)−3/2σ2X3(X4 − 1)

]
(A.1.9)

Here (X1, X2) are independent with (X3, X4), and P , Q and σi are all constants. So the
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random terms in (A.1.9) are E [(X2 − 1)X1] and E [(X4 − 1)X3].

E [(X2 − 1)X1] =E

[
(

1

n1

n1∑
j=1

Y ∗
2

1j − 1)(
1

n1

n1∑
i=1

Y ∗1i)

]

=E

[
1

n1

n1∑
j=1

(Y ∗
2

1j − 1)(
1

n1

n1∑
i=1

Y ∗1i)

]

=
1

n2
1

n1∑
j=1

n1∑
i=1

E[(Y ∗
2

1j − 1)Y ∗1i]

if i 6= j then Y ∗1j independent with Y ∗1i

=
1

n2
1

n1∑
j=1

E[(Y ∗
2

1j − 1)Y ∗1i]

=
1

n1

E[(Y ∗
3

1j ]

=
γ1

n1

.

(A.1.10)

Based on the similar calculation, we get E [(X4 − 1)X3] = γ2
n2

. Put the results in (A.1.10)

back to (A.1.9), we have

E


[X1, X2 − 1, X3, X4 − 1]W


X1

X2 − 1

X3

X4 − 1




=(−P )(P +Q)−3/2σ1

γ1

n1

+ (Q)(P +Q)−3/2σ2
γ2

n2

.

(A.1.11)

Combing the results from (A.1.6) and (A.1.11), we have

E(WN) =E

{√
N [
∂g(U)

′

∂U
(X − U) +

1

2
(X − U)

′ ∂2g(U)

∂U2
(X − U)]

}
=

1

2

√
N

{
Q(P +Q)−3/2σ2

γ2

n2

− P (P +Q)−3/2σ1
γ1

n1

} (A.1.12)

The first term 1
2

√
N
{
Q(P +Q)−3/2σ2

γ2
n2

}
can be computed as,

1

2

√
N

{
Q(P +Q)−3/2σ2

γ2

n2

}
=

1

2

√
N

(
N2(n2 − 1)σ2

2

(N − 2)n1n2

)(
N2[(n1 − 1)σ2

1 + (n2 − 1)σ2
2]

(N − 2)n1n2

)− 3
2

σ2
γ2

n2

.

(A.1.13)
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let B1 =
N2σ

3
2
2 γ2

(N−2)n1n2

(
N2[(n1−1)σ2

1+(n2−1)σ2
2 ]

(N−2)n1n2

)− 3
2

then, above equation is equal to1
2

√
N(B1− B1

n2
).

Then we apply Tyler expansion to term [(n1 − 1)σ2
1 + (n2 − 1)σ2

2]−
3
2 in B1 and have,

[(n1 − 1)σ2
1 + (n2 − 1)σ2

2]−
3
2

=[(λNN − 1)σ2
1 + (N − λNN − 1)σ2

2]−
3
2

=[λNNσ
2
1 +N(1− λN)σ2

2]−
3
2 +

3

2
[λNNσ

2
1 +N(1− λN)σ2

2]−
5
2 (σ2

1 + σ2
2) +O(N−

7
2 )

(since λN = λ+O(N−r), we have)

=[(λ+O(N−r))Nσ2
1 +N(1− λ+O(N−r))σ2

2]−
3
2 +O(N−

5
2 )

=N−3/2
{

[λσ2
1 + (1− λ)σ2

2 +O(N−r)]−
3
2 )
}

+O(N−
5
2 )

=N−3/2
{

[λσ2
1 + (1− λ)σ2

2]−
3
2 +O(N−r)

}
+O(N−

5
2 ).

(A.1.14)

Then putting the results from (A.1.14) back to B1, we have,

B1 =
N2σ

3
2
2 γ2

(N − 2)n1n2

(
N2[(n1 − 1)σ2

1 + (n2 − 1)σ2
2]

(N − 2)n1n2

)− 3
2

=σ
3
2
2 γ2(

N − 2

N2
)1/2 [(n1 − 1)σ2

1 + (n2 − 1)σ2
2]−3/2

(n1n2)−1/2

=σ
3
2
2 γ2(

N − 2

N2
)1/2

N−3/2
{

[λσ2
1 + (1− λ)σ2

2]−
3
2 +O(N−r)

}
N−1[λ(1− λ) +O(N−r)]−

1
2

=σ
3
2
2 γ2(

N − 2

N3
)1/2

{
[λσ2

1 + (1− λ)σ2
2]−

3
2 +O(N−r)

}
[λ(1− λ)]−

1
2 +O(N−r)

=σ
3
2
2 γ2(

N − 2

N3
)1/2

{
[λσ2

1 + (1− λ)σ2
2]−

3
2

[λ(1− λ)]−
1
2

+O(N−r)

}

=σ
3
2
2 γ2

{
[λσ2

1 + (1− λ)σ2
2]−

3
2

N [λ(1− λ)]−
1
2

+O(N−r−1)

}
.

(A.1.15)

Then plug B1 back to (A.1.13), we have

1

2

√
N(B1 −

B1

n2

)

=
1

2
√
N
σ

3
2
2 γ2

{
[λσ2

1 + (1− λ)σ2
2]−

3
2

[λ(1− λ)]−
1
2

}
+O(N−r−1/2).

(A.1.16)
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Placing (A.1.16) back to (A.1.12), we have

E(WN) =E

{√
N [
∂g(U)

′

∂U
(X − U) +

1

2
(X − U)

′ ∂2g(U)

∂U2
(X − U)]

}
=− 1

2
√
N

{
σ3

1γ1 − σ3
2γ2

λ(1− λ)

}{
σ2

1

1− λ
+
σ2

2

λ

}−3/2

+O(N−r−1/2)

=− 1

2
√
N

[λ(1− λ)]1/2(γ1 − γ2) +O(N−r−1/2),

(A.1.17)

where the last equality is due to σ1 = σ2.

Next, we will compute E(W 2
N):

E(W 2
N) = E

{
N{∂g(U)

′

∂U
(X − U) +

1

2
(X − U)

′ ∂2g(U)

∂U2
(X − U)}2

}
= NE {[(G1) + (G2) + (G3)]} ,

(A.1.18)

where

(G1) =
{
∂g(U)

′

∂U
(X − U)

}2

,

(G2) = {∂g(U)
′

∂U
(X − U)}{(X − U)

′ ∂2g(U)
∂U2 (X − U)},

(G3) = 1
4

{
(X − U)

′ ∂2g(U)
∂U2 (X − U)

}2

.

The expectations E(G1), E(G2) and E(G3) are

E(G1) =
σ2

1

n1(P +Q)
+

σ2
2

n2(P +Q)
,

E(G2) =
−Pσ2

1

n2
1(P +Q)2

(τ1 − 1)− Qσ2
2

n2
2(P +Q)2

(τ2 − 1) = O(N−2),

E(G3) = O(N−2).

(A.1.19)

Based on the equations in (A.1.19) and (A.1.18), we can get

E(W 2
N) = N {[E(G1) + E(G2) + E(G3)]}

= N

{
σ2

1

n1(P +Q)
+

σ2
2

n2(P +Q)
+O(N−2)

}
= 1 +O(N−1).

(A.1.20)

Finally, we will calculate E(W 3
N):

E(W 3
N) = E

{
N3/2{∂g(U)

′

∂U
(X − U) +

1

2
(X − U)

′ ∂2g(U)

∂U2
(X − U)}3

}
= N3/2E {[(D1) + (D2) + (D3) + (D4)]} ,

(A.1.21)
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where

(D1) =
{
∂g(U)

′

∂U
(X − U)

}3

,

(D2) = 3
2
{∂g(U)

′

∂U
(X − U)}2{(X − U)

′ ∂2g(U)
∂U2 (X − U)},

(D3) = 3
4
{∂g(U)

′

∂U
(X − U)}{(X − U)

′ ∂2g(U)
∂U2 (X − U)}2,

(D4) = 1
8

{
(X − U)

′ ∂2g(U)
∂U2 (X − U)

}3

.

Their expectations are

E(D1) =
a3

1γ1

n2
1

+
a3

3γ2

n2
2

,

E(D2) =3

{
a2

1b12
3γ1

n2
1

+ (a2
1b34 + 2a1a3b14)

γ2

n1n2

}
+ 3

{
(a2

3b12 + 2a1a3b23)
γ1

n1n2

+ a2
3b34

3γ2

n2
2

+O(N−3)

}
,

E(D3) =O(N−3),

E(D4) =O(N−3),

(A.1.22)

where,

a1 = (
σ2

1

P +Q
)
1
2 , a2 = 0, a3 = −(

σ2
2

P +Q
)
1
2 , a4 = 0,

b12 = b21 = −Pσ1

2
(P +Q)−

3
2 , b14 = b41 = −Qσ1

2
(P +Q)−

3
2 ,

b23 = b32 =
Pσ2

2
(P +Q)−

3
2 , b34 = b43 = −Qσ2

2
(P +Q)−

3
2 ,

(A.1.23)

and all other bijs are zero, i = 1, 2, 3, 4 and j = 1, 2, 3, 4. Based on the results from (A.1.22)

and (A.1.21), we have

E(W 3
N) = N3/2E {[(D1) + (D2) + (D3) + (D4)]}

= N3/2E {[(D1) + (D2)]}+O(N−3)

= − 1

2
√
N

[λ(1− λ)]1/2
[
(
11λ− 2

λ
)γ1 − (

9− 11λ

1− λ
)γ2

]
+O(N−r−1/2).

(A.1.24)

A.1.2 Proof of Corollary 3.1.2

Let K1N , K2N and K3N be the first three cumulants of WN . Then,
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K1N = EWN

K2N = EW 2
N − (EWN)2

K3N = E(WN − EWN)3

(A.1.25)

Plugging in the results of Corollary 3.1.1, we can get the following equations

K1N = − 1

2
√
N

[λ(1− λ)]1/2(γ1 − γ2) +O(N−min(3/2,r+1/2)),

K2N = 1 +O(N−min(1,r+1/2)),

K3N = − 1

2
√
N

[λ(1− λ)]1/2
[
(
8λ− 2

λ
)γ1 − (

6− 8λ

1− λ
)γ2

]
+O(N−min(3/2,r+1/2)).

(A.1.26)

Let χN(t) be the characteristic function of WN . Then,

χN(t) =exp

{
K1N(it) +K2N

(it)2

2
+K3N

(it)3

6
+ . . .

}
=exp

{
K1N(it) +K2N

(it)2

2
+K3N

(it)3

6
+O(N−min(1,r+1/2))

}
=exp

(
−t

2

2

)
exp

{
N−1/2

(
−A(it)−B(it)3

)
+O(N−min(1,r+1/2))

}
.

(A.1.27)

By Taylor expansion, we have

χN(t) = exp

(
−t

2

2

)
exp

{
1 +N−1/2

(
−A(it)−B(it)3

)
+O(N−min(1,r+1/2))

}
. (A.1.28)

Based on the results of Hermite polynomials (Fedoryuk, 2001) and Fourier Transforma-

tion (Bochner and Chandrasekharan, 1949), the probability density function of WN is

fWN
(x) =

1

2π

∫ ∞
−∞

e−itxχN(t)dt

=
1

2π

∫ ∞
−∞

e−itxexp

(
−t

2

2

)
exp

{
1 +N−1/2

(
−A(it)−B(it)3

)}
dt+O(N−min(1,r+1/2))

= φ(x)−N−1/2AH1(x)φ(x)−N−1/2BH3(x)φ(x) +O(N−min(1,r+1/2))

= φ(x)[1 +N−1/2(3B − A)x−N−1/2Bx3] +O(N−min(1,r+1/2)),

(A.1.29)
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where H1 = x and H3 = x3 − 3x. Then the cumulative distribution function of WN is

P (WN ≤ x) =

∫ ∞
−∞

fWN
(x)dx+O(N−min(1,r+1/2))

=

∫ ∞
−∞

φ(x)−N−1/2AH1(x)φ(x)−N−1/2BH3(x)φ(x)dx+O(N−min(1,r+1/2))

=Φ(x)−N−1/2AH0(x)φ(x)−N−1/2BH2(x)φ(x) +O(N−min(1,r+1/2))

=Φ(x) +N−1/2[A+B(x2 − 1)]φ(x) +O(N−min(1,r+1/2)),

(A.1.30)

where H0 = 1 and H2 = x2 − 1. Since T = WN +O(N−1), Theorem 3.1.3 follows.

A.2 Proof of Theorem 3.2.4

The test statistic of the pooled two sample t-test under Ha is

T =
Ȳ1 − Ȳ2 − (µ0

1 − µ0
2)

Sp
√

1
n1

+ 1
n2

=
Ȳ1 − Ȳ2 − (µ1 − µ2) + δ

Sp
√

1
n1

+ 1
n2

,

where δ = µ1 − µ2 − (µ0
1 − µ0

2). Similarly, with the same X = (X1, X2, X3, X4) defined in

Section A.1, we can express the T under Ha as

T =
√
N(g(X) +m(X)) =

X1 −X3 + δ

k(X)1/2
,

where

g(X) = (X1 −X3)k(X)−1/2

m(X) = δk(X)−1/2,

and

k(X) =
(n1 − 1)S∗

2

1 + (n2 − 1)S∗
2

2

(N − 2)λN(1− λN)
=

(n1 − 1)(X2 −X2
1 ) + (n2 − 1)(X4 −X2

3 )

(N − 2)λN(1− λN)
.

Next, apply Taylor expansion to g(X) and m(X) with EX ≡ U ≡ (U1, U2, U3, U4) =

(0, 1, 0, 1), we have

g(X) = g(U) +
∂g(U)

∂U
(X − U) +

1

2

∂2g(U)

∂U2
(X − U)2 + . . .

m(X) = m(U) +
∂m(U)

∂U
(X − U) +

1

2

∂2m(U)

∂U2
(X − U)2 + . . . ,
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where g(U) = 0. Now, we let

WN =
√
N{∂g(U)

′

∂U
(X − U) +

1

2
(X − U)

′ ∂2g(U)

∂U2
(X − U)}

Wδ =
√
N{m(U) +

∂m(U)
′

∂U
(X − U) +

1

2
(X − U)

′ ∂2m(U)

∂U2
(X − U)}

Under regularity conditions in (A.1.1),

T = WN +Wδ +O(N−1).

Assuming EY 6
ij <∞, the first three moments of WN +Wδ can be obtained

E(WN +Wδ) = E(WN) + cN +O(N−min(1,r+ 1
2

)),

E(WN +Wδ)
2 = E(WN)2 + c2

N − δσ[λ(1− λ)](γ1 − γ2) +O(N−min(1,r+ 1
2

)),

E(WN +Wδ)
3 = E(WN)3 + c3

N + 3δσ
√
N [λ(1− λ)]1/2

−9

2
δ2σ−2

√
N [λ(1− λ)]3/2(γ1 − γ2) +O(N−min(1,r+ 1

2
)),

where cN = δ/
√
σ2( 1

n1
+ 1

n2
) and E(WN)i are the first three moments of WN under Ha,

i = 1, 2, 3. They follow the same formulae (A.1.3) − (A.1.5) as in the case of H0. Based on

the first three moments of WN +Wδ, the first three cumulants of WN +Wδ can be obtained

as follows

KHa
1N = K1N + cN +O(N−min(1,r+ 1

2
)),

KHa
2N = E(WN +Wδ)

2 − E2(WN +Wδ) = K2N + q +O(N−min(1,r+ 1
2

)),

KHa
3N = E(WN +Wδ − E(WN +Wδ))

3 = K3N ,

where qN = δσ−1[λ(1− λ)](γ1− γ2) and KiN are the first three cumulants of WN under H0,

i = 1, 2, 3. Let χN(t)Ha be the characteristic function of WN +Wδ. Then,

χN(t)Ha = exp
{
KHa

1N (it) +KHa
2N

(it)2

2
+KHa

3N
(it)3

6
+ . . .

}
= exp

{
(K1N + cN)(it) + (K2N + q) (it)2

2
+K3N

(it)3

6

}
+O(N−min(1,r+ 1

2
)).

Apply Taylor expansion and result in (A.1.28), we have

χN(t)Ha = exp

(
itcN −

t2

2

){
1 +N−1/2

(
−A(it)−B(it)3

)
+
t2q

2
+O(N−min(1,r+ 1

2
))

}
.
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Based on the results of Hermite polynomials (Fedoryuk, 2001) and Fourier Transforma-

tion (Bochner and Chandrasekharan, 1949), the probability density function of WN + Wδ

is

fWN+Wδ
(x) =

1

2π

∫ ∞
−∞

e−itxχN(t)Hadt =

φ(x− cN)
[
1−N−1/2AH1(x− cN)−H2(x− cN)

qN
2
−N−1/2BH3(x− cN)

]
+O(N−min(1,r+1/2)),

where H1 = x, H2 = x2 − 1 and H3 = x3 − 3x. Then the cumulative distribution function

of WN +Wδ is

P (WN +Wδ ≤ u) =
∫ u
−∞ fWN+Wδ

(x)dx+O(N−min(1,r+1/2))

= Φ(u− c) +N−1/2[A+B((u− c)2 − 1)]φ(x− c) + q
2
(u− c)φ(u− c)

+O(N−min(1,r+1/2)).

Since T = WN +Wδ +O(N−1), Theorem 3.2.4 follows.

A.3 Proof of Corollary 3.2.5

By subtracting the two power functions in (3.2.17) and (3.2.19), we can get

Power of TCF test - Power of TN test

= −Q(Lcfu ) +Q(Lcfl ) +Q(UN,1−α/2)−Q(UN,α/2) + LN,γ1,γ2,λ +O(N−min(1,r+1/2)).

Thus, if we can prove

−Q(Lcfu ) +Q(Lcfl ) +Q(UN,1−α/2)−Q(UN,α/2) = O(N−1),

then we are done. Note that

Q(Lcfu ) =
qN
2

(UN,1−α/2 + ∆N,1−α/2)φ(UN,1−α/2 + ∆N,1−α/2).
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Since ∆N,1−α/2 = −N−1/2[A+B((tcf1−α/2)2 − 1)] = O(N−1/2) and qN = O(N−1/2), we have

Q(Lcfu ) =
qN
2

(UN,1−α/2 +O(N−1/2))φ(UN,1−α/2 +O(N−1/2))

=
qN
2

[(UN,1−α/2)φ(UN,1−α/2) +O(N−1/2)]

=
qN
2

(UN,1−α/2)φ(UN,1−α/2) +O(N−1)

= Q(UN,1−α/2) +O(N−1)

Thus, we have

Q(Lcfu )−Q(UN,1−α/2) = O(N−1).

Similarly, we can also show that

Q(Lcfl )−Q(UN,α/2) = O(N−1).

Therefore,

−Q(Lcfu ) +Q(Lcfl ) +Q(UN,1−α/2)−Q(UN,α/2) = O(N−1).

Then the results in Corollary 3.2.5 holds.

A.4 Proof of Theorem 4.1.1

Proof of Theorem 4.1.1. Under H0,

P (T
′ ≤ x) = P (T +N−1/2Â ≤ x) = P (T ≤ x−N−1/2Â)

= Φ(x−N−1/2Â) +N−1/2[A+B((x−N−1/2Â)2 − 1)]

φ(x−N−1/2Â) +O(N−min(1,r+1/2)).

(A.4.1)
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Applying Taylor expansion at x, we can calculate the probability as

Φ(x−N−1/2Â) +N−1/2[A+B((x−N−1/2Â)2 − 1)]φ(x−N−1/2Â) +O(N−min(1,r+1/2))

=[Φ(x) + φ(x)(−N−1/2Â) +O(N−1)] +N−1/2[A+B(x2 −N−1/2Âx− 1 +O(N−1)]

[φ(x) + φ
′
(x)(−N−1/2Â) +O(N−1)] +O(N−min(1,r+1/2))

=Φ(x) +N−1/2[−Â+ Â+ B̂(x2 − 1) +O(N−1/2)]φ(x) +O(N−1) +O(N−min(1,r+1/2))

=Φ(x) +N−1/2B̂(x2 − 1)φ(x) +O(N−1) +O(N−min(1,r+1/2))

=Φ(x) +N−1/2B̂(x2 − 1)φ(x) +O(N−min(1,r+1/2)),

then the distribution of P (T
′ ≤ x) follows the same form as that in Hall (1992b) and Zhou

and Philip (2005). The proof under Ha is similar and is thus omitted.

A.5 Proof of Corollary 3.2.6

Proof of Corollary 3.2.6:

We know that

LN = ∆N,α/2[φ(UN,α/2)− φ(UN,1−α/2)] +O(N−1),

where φ(UN,α/2) < φ(UN,1−α/2). So LN > 0 if and only if ∆N,α/2 < 0. Note that

∆N,α/2 = −N−1/2[A+B(z2
α/2 − 1)].

So ∆N,α/2 < 0 if and only if A+B(z2
α/2 − 1) > 0. Recall that

A = [λ(1− λ)]1/2(γ1 − γ2)/2,

B = [λ(1− λ)]1/2
(

8λ− 2

λ
γ1 −

6− 8λ

1− λ
γ2

)
/12.

Plugging A and B into A+B(z2
α/2 − 1) > 0, we have

8λ− 2

λ
γ1 −

6− 8λ

1− λ
γ2 > (γ2 − γ1)

6

z2
α/2 − 1

⇔(8 +
6

z2
α/2 − 1

− 2

λ
)γ1 > (8 +

6

z2
α/2 − 1

− 2

1− λ
)γ2

⇔(8 + c− 2

λ
)γ1 > (8 + c− 2

1− λ
)γ2,
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where c = 6
z2
α/2
−1

. Then corollary 3.2.6 holds.

A.6 Proof of Corollary 5.1.5

Proof of Corollary 5.1.5:

We know that

L
′

(N,γ1,γ2,λ) = ∆
′

N,α/2[φ(U
′

N,α/2)− φ(U
′

N,1−α/2)] +O(N−1),

where φ(U
′

N,α/2) < φ(U
′

N,1−α/2). So L
′

(N,γ1,γ2,λ) > 0 if and only if ∆
′

N,α/2 < 0. Note that

∆
′

N,α/2 = − A
′

6
√
N

(2z2
α/2 + 1).

So ∆
′

N,α/2 < 0 if and only if A
′
(2z2

α/2 + 1) > 0. Recall that

A
′
=

{
σ2

1

λ
+

σ2
2

1− λ

}−3/2{
σ3

1γ1

λ2
− σ3

2γ2

(1− λ)2

}
.

Plugging A
′

into A
′
(2z2

α/2 + 1) > 0, we have{
σ2

1

λ
+

σ2
2

1− λ

}−3/2{
σ3

1γ1

λ2
− σ3

2γ2

(1− λ)2

}
(2z2

α/2 + 1) > 0

⇔
{
σ3

1γ1

λ2
− σ3

2γ2

(1− λ)2

}
(2z2

α/2 + 1) > 0

⇔
{

(1− λ)2σ3
1γ1 − λ2σ3

2γ2

}
(2z2

α/2 + 1) > 0

⇔c′α(1− λ)2σ3
1γ1 > c

′

αλ
2σ3

2γ2,

where c
′
α = 2z2

α/2 − 1. Then corollary 5.1.5 holds.

A.7 Proof of Results 4.3.19

We want to prove

−Q(L(i)
u ) +Q(L

(i)
l ) +Q(Lcfu )−Q(Lcfl ) = O(N−1).
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Recall that

T−1
i (t) = t−N−1bγ̂ +O(N−m) and γ̂ = O(N−1/2),

where m ≥ 1 and

L(i)
u = ti1−α/2 − cN =

√
NT−1

i (
z1−α/2√
N

)− cN

L
(i)
l = tiα/2 − cN =

√
NT−1

i (
zα/2√
N

)− cN .

We have

Q(L(i)
u ) =

qN
2
φ

(√
NT−1

i (
z1−α/2√
N

)− cN
)(√

NT−1
i (

z1−α/2√
N

)− cN
)

=
qN
2
φ

(√
N(

z1−α/2√
N
−N−1bγ̂)− cN

)(√
N(

z1−α/2√
N
−N−1bγ̂)− cN

)
=
qN
2
φ(z1−α/2 − cN +O(N−1/2))(z1−α/2 − cN +O(N−1/2))

=
qN
2
φ(z1−α/2 − cN)(z1−α/2 − cN) +O(N−1)

=
qN
2
φ(UN,1−α/2)(UN,1−α/2) +O(N−1)

= Q(UN,1−α/2) +O(N−1)

Similarly, we can also show that

Q(L
(i)
l ) = Q(UN,α/2) +O(N−1).

In Section A.3 we have proved that

Q(Lcfu ) = Q(UN,1−α/2) +O(N−1)

Q(Lcfl ) = Q(UN,α/2) +O(N−1).

Then the result in equation (4.3.19) holds.
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