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Abstract 

This dissertation is composed of two essays in applied microeconomics. Using farm level 

data, the first essay applied nonparametric methods to test the adherence of individual farm’s 

production choices to profit maximization objective. Results indicate that none of the farms 

consistently satisfy the joint hypothesis of profit maximization. The study took into account the 

uncertainty prevalent in agricultural production by systematically modeling the optimization 

behavior of farms. Departures of observed data of individual farms from profit maximization 

objectives were attributed more due to stochastic influences caused by output production 

decisions than input use decisions. Results also support the existence of technological progress 

during the study period for Kansas farms. At an alpha level of 5%, assuming both input and 

output quantities as stochastic, only 5.3% of the farms violated the joint hypothesis of profit 

maximization with standard error exceeding 10%. Whereas when only input quantities are 

considered stochastic, a total of 71.73% and 2.09% of the farms had minimum standard errors of 

greater than 10% and 20% respectively required for the joint profit maximization hypothesis to 

hold. When only output quantity measurements were assumed as stochastic, a total of 80.10 % 

and 18.84 % of the farms had minimum standard errors of greater than 10% and 20% 

respectively required for the profit maximization hypothesis to hold.  

The second essay examines the demand for alcoholic beverages (beer, wine and distilled 

spirits) for the U.S. using time series data from 1979-2006. The estimation is done using an error 

correction form of the Almost Ideal Demand System . Results indicate that there is a significant 

difference between short run and long run elasticity estimates. The paper addresses the 

exogeneity of log of prices and log of real expenditures. For the beer and wine equations, the 

hypothesis of joint exogeneity of price index and real expenditure cannot be rejected at all the 



conventional levels of significance. For the spirits equation, the tests strongly reject the 

simultaneous exogeneity of price index and real expenditure. When independently tested, price 

index appears to be endogenous variable where as real expenditure seems exogenous variable. 

Based on these results, the real expenditure was considered as an exogenous variable, where as 

the price index for spirits as an endogenous variable. 
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ESSAY  1 - FARM LEVEL NON PARAMETRIC ANALYSIS OF 

PROFIT MAXIMIZATION BEHAVIOR WITH MEASUREMENT 

ERROR 

1. INTRODUCTION 

1.1. Problem Statement  

The use of parametric empirical production analysis involves imposing flexible 

functional forms capable of locally approximating an arbitrary function. This type of production 

analysis proceeds by first postulating a parametric form for the production function (e.g. Cobb-

Douglas, Translog, and Quadratic) and then using standard statistical techniques to estimate the 

unknown parameters from the observed data (Varian, 1984). This type of parametric analysis is 

sensitive to the functional forms used (Shumway and Lim 1993) and can lead to different 

elasticity estimates conditioned on the choice of the flexible functional forms (Chavas and Cox, 

1995). This procedure also does not allow the maintained objective to be directly tested (Hanoch 

and Rothschild, 1972; Varian, 1984). However, nonparametric production analysis does not 

require specification of a particular functional form and furthermore allows testing consistency 

of observed behavior with optimization rules such as profit maximization, cost minimization or 

revenue maximization. 

In general, deterministic nonparametric production analysis approaches often reject the 

maintained behavior of profit maximization tests. When conducting deterministic tests, as Varian 

(1985) puts it “the data are assumed to be observed without error, so that the tests are ‘all or 

nothing’: either the data satisfy the optimization hypothesis or they don’t.” However, data used 

in the analysis of firm behavior could fail the test because producers make decision errors, don't 
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always operate on the efficient boundary (e.g. as in technical or allocative inefficiencies), or 

because observations are not perfect measurements (Hanoch and Rothschild, 1972; Varian, 

1985) or due to lack of generality of the optimization theory, such as in decision making under 

risk (McElroy, 1987).  When real world data are exposed to stochastic influences, application of 

nonparametric stochastic tests allow testing the consistency of data contaminated with error with 

the theoretical optimizing behavior. 

Varian (1984, 1985) hypothesized that one of the reasons for the rejection of profit 

maximization may be due to errors in data. He proposed an approach to conduct a statistical test 

that takes into account the possibility of measurement error in observed data. However, many 

previous studies addressing optimizing behavior and the structure of technology typically used 

national or state level aggregated data rather than individual farm data. Microeconomic theory is 

based upon optimization by individual agents. Featherstone, Moghnieh, and Goodwin (1995) 

argue that the use of aggregate data to characterize individual agents’ optimization behavior can 

cause problems by possibly introducing aggregation bias due to summing across farms.   

Empirical evidence shows that when firm level data are used, the cost minimization or 

profit maximization hypothesis is rejected in most cases, whereas the optimization hypothesis is 

not rejected when aggregate data are used. This necessitates consideration of the level of analysis 

and type of data used. This observation has led Love (1998) to suggest that stochastic 

nonparametric test procedures be used when testing firm-level data for cost-minimizing or profit 

maximizing behavior.  

Given the widespread use of profit maximization as a primary objective in economics, 

testing its validity is important for economic analyses, management decisions and policy 
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recommendations. If a farm’s behavioral objective is different from maximizing profit1

In the presence of risk and uncertainty, farmers commit production resources with an 

expected output price and expected output quantity in mind.  It appears that there is higher 

fluctuation in realized output than in input use. Inherently there is more variability in yield, at 

least in agricultural crop production, implying that the stochastic nature in output production is 

different from input use. This may mean that departures of farmers’ behavior from hypothesized 

optimization objectives such as profit maximization may be attributed more to output error than 

input use. This is to say that higher measurement errors in the output quantity data may occur for 

profit maximization to hold. We also expect to have lower measurement error when we consider 

perturbations in the input side only and even lower when both inputs and outputs are considered 

, results 

based on this assumption could be misleading. It is essential to investigate the relevance of 

maintained behavior (i.e. firms maximize profit in this case) with observed farm behavior. 

Furthermore, when the observed data violates the assumed objective, a formal test of the 

significance of this violation in view of measurement error in variables is necessary (Varian 

1985, Lim and Shumway, 1992a). Although, the theoretical nonparametric production 

approaches that test adherence to these behavioral objectives have been developed for quite some 

time, empirical application of such tests has been limited (Fawson and Shumway 1988; Chavas 

and Cox1995) especially Varian’s approach of estimating measurement error in variables 

(Kuosmanen, Post, and Scholtes, 2007).  

                                                 

1Those who advocate for the market selection argument would predict that significant deviation from 

maximizing profit may eventually force a firm to leave the market (for a discussion on this see Dutta and Radner, 

1999 and Blume and Easly, 1992) 
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stochastic. This essay uses a rich farm level data set on 377 Kansas farms applying Varian’s 

nonparametric production approach allowing for measurement error in variables to meet the 

following objectives.   

1.2. Objectives  

The objective of this essay is to determine the minimum amount of measurement error 

necessary for farm level production data to be consistent with profit maximization.  The specific 

objectives are: 

1. Determine the minimum amount of measurement error in variables (input and output) 

necessary for farm level production data to be consistent with profit maximization. 

2. Determine the minimum amount of measurement error in output variables necessary 

for farm level production data to be consistent with profit maximization. 

3. Determine the minimum amount of measurement error in input variables necessary for 

farm level production data to be consistent with profit maximization. 

1.3. Conceptual Framework 

 
Profit maximization is one of the maintained behavioral objectives of the neoclassical 

theory of firm. Profit is defined as total revenue minus total cost. Economic analysis of a typical 

firm occurs by formulating a profit function )(Π such that xwyP ** −=Π , where P  is output 

price, y  is quantity of output produced by the firm, w is input price, and x  is input quantity used 

by the firm. Adopting the convention that positive numbers denote outputs and negative numbers 

denote inputs so that y  represents the input-output vector (also known as netput vector), we can 
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write the profit function as yP *=Π . Then we can say that Profit ( tΠ ) at any time, t, is the 

product of the netput vector, yt, and its price vector, tP .   

A fundamental precondition for production analysis based on the revealed preference 

approach is that all farms maximize profit at the given prices. Assuming firms are prices takers, 

any firm maximizes profit )(Π by choosing the quantity produced2,3

The following graphical demonstration adapted from Mas-collel et al. (1995) relates the 

firm’s profit maximization problem and the set of profit-maximizing vectors, referred to as 

supply correspondence at p, y (p). In Figure 1-1, the optimizing vector y (p) lies at the point in Y 

associated with the highest level of profit. The quantity, y (p) therefore lies on the iso-profit line 

that intersects the production set furthest to the northeast and is, therefore, tangent to the 

boundary of Y at y (p). 

. It is of interest then to 

check the validity of the maintained rule of profit maximization (Hanoch and Rothschild, 1972) 

because economic decisions and policy recommendations are formulated assuming this 

fundamental behavior of firms. 

 

                                                 

2 Varian’s nonparametric approach of cost minimization developed in this type of analysis is appropriate 

under a competitive market structure. The formulation of such objective functions do not apply when there is a 

deviation from a competitive market setting (e.g. as in non-competitive or uncertain market environments), and 

specific assumptions about the objective functions should be made. Varian (1984) provided a modification of the 

deterministic test for models of imperfectly competitive behavior.   

3 A derivation of profit maximizing output for a competitive firm is contained in the appendix. 
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Figure 1-1: The Profit Maximization Problem 

 

 

Figure 1-2: The Weak Axiom of Profit Maximization 
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So, if we have observed data on tP  and y ( tP ), the profit maximization model implies  

that if profit is maximized given tP , then that profit should be greater than or equal to any other 

profit generated by any other set of outputs and inputs evaluated at tP . This can be formally 

expressed as sttt YPYP ≥   for all t, s = 1, 2,..., n. The Weak Axiom of Profit Maximization 

(WAPM) is demonstrated with a graphical presentation, due to Varian (1992, pp 36.), using two 

observations that violate and satisfy the condition sttt YPYP ≥ .  In panel A, the WAPM is violated 

since 1121 YPYP ≥ , where as in panel B, it is satisfied. 

In practice, theoretically implied hypotheses can be tested using either firm or aggregate 

data. Aggregation theories and procedures have been developed for production analysis to 

indicate the consistency of aggregate industry production functions with the aggregation of micro 

production functions (Grunfeld and Griliches, 1960; Zarembka, 1968), and hence using industry 

level aggregate data for analysis of a representative firm. This is crucially important because it 

can be used to generalize the behavior of a representative firm. Use of aggregated data also can 

overcome the problem with data availability on individual farms. However, aggregation over 

farms may also result in the loss of estimation and testing power (Orcutt, Watts, and Edwards, 

1968) as well as more inconsistency with optimization behaviors (e.g. Fawson and Shumway, 

1988). Such inconsistency is also more likely to occur when nonparametric tests are of a 

deterministic type. i.e. where the tests are ‘sharp’ with no probabilities attached to the hypotheses 

tests.   This is why Love (1998) suggested that stochastic nonparametric procedures be used 

when testing firm-level data for cost-minimizing or profit maximizing behavior.  
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1.4. Summary of Problem Statement, Objectives, and Conceptual Framework  

 
All things kept constant, the practice of locally approximating an arbitrary function by flexible 

functional forms may introduce errors in empirical parametric economic analysis approaches, 

because no one knows for sure what that exact function is. The fact that nonparametric 

approaches do not require specifying functional forms makes them particularly attractive to 

avoid this kind of error related to misspecification bias.  Given this desirable feature of 

nonparametric approaches, it is acknowledged that deterministic nonparametric approaches lack 

formal statistical significance testing of hypothesis tests and a case is developed in favor of 

stochastic tests that do allow formal statistical hypothesis test. In a competitive environment and 

given a well behaved technology, one of the most widely asserted behavioral objective of firms 

is to maximize profit.  Formal stochastic nonparametric tests of this hypothesis are often rejected, 

especially when national aggregate data are used. Therefore, stochastic nonparametric tests are 

applied using firm level data to determine the minimum amount of measurement error (or 

standard error) necessary for farm level production data to be consistent with profit 

maximization.   
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2. LITERATURE REVIEW  

 
Nonparametric approaches are of two types. One type compares a firm with another firm for a 

given year. This approach aims at developing reference technologies against which to calculate 

the efficiency of observations in data sets (Farrell, 1957; Fare, Grosskopf, and Lovell, 1985). The 

second type, which is used in this essay, compares current input/output choices to decisions 

made previously for the purpose of testing data sets for consistency with regularity conditions on 

technology and behavioral objectives (Hanoch and Rothschild, 1972; Varian, 1984). Banker and 

Maindiratta (1988) developed a technique based on efficiency analysis to test the consistency of 

data with technology restrictions and behavioral objectives, thus creating a link between these 

two nonparametric approaches. 

Hanoch and Rothschild (1972), as well as Afriat (1967, 1972) and later Diewert and 

Parkan (1983, 1985) were among the first to propose a nonparametric method to test the validity 

of production theory assumptions and restrictions. These two approaches have been refined and 

extended by many researchers. Varian (1983, 1984) extended these methods in several directions 

to test demand and production data for consistency with maintained hypotheses, test technology 

restrictions such as constant returns to scale, homotheticity, and separabilty, and also proposed a 

way to forecast firm behavior under different scenarios. Chalfant and Alston (1988) provide 

(while studying the demand for meat in the U.S. and Australia) a support for the use of 

nonparametric approaches to account for changes in tastes and argue for the stability of a set 

preferences; as well as rejecting previous conclusions of structural changes in demand. 

 Other extensions to nonparametric test methods include testing technical change and the 

separability hypotheses about the production technology for U.S. Agriculture (e.g. Chavas and 

Cox, 1988; Chavas and Cox, 1990; Cox and Chavas, 1990; Chavas and Cox, 1992). These 
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studies extend Varian’s nonparametric approach by generalizing the weak axioms of profit 

maximization and cost minimization hypotheses to allow for technical change; by specifying a 

technology index in the production function and proposing a linear programming problem for 

empirical implementation of their approaches; by extending previous analysis of production 

decisions in light of the assumption that technical progress increases the effectiveness of inputs 

in the production of outputs4,5

                                                 

4 Under the modeling approach section of this essay, we build on these extensions to examine technological 

change in production function. 

. U.S. data were used to test separability of inputs and outputs from 

other inputs and outputs and technology change in the production function. Strong support for 

the aggregation of inputs into capital, labor, and materials was found by Chavas and Cox (1988), 

although Lim and Shumway (1992b) found no empirical evidence to support this result. Fawson 

and Shumway (1988) empirically tested consistency of farm behavior-using data from 

production regions in the United States- with the joint hypothesis of profit maximization, convex 

technology, and monotonic nonregressive technical change. They observed differences in the 

rejection of hypotheses due to level of aggregation of the data used. For example, greater 

inconsistency with the joint hypothesis was observed when using disaggregated commodity data 

than when using aggregated data. Using U.S. and Japanese manufacturing data, Chavas and Cox 

(1988, 1990) obtained results that showed the existence of a production function exhibiting 

Hicks neutral technical change. Chavas and Cox (1992) further modeled technical progress as a 

function of lagged research expenditures, enabling the investigation of the separate effects of 

5 The assumption that technical progress increases the effectiveness of inputs in the production of outputs 

falls under the subject of augmentation hypothesis (Chavas and Cox 1990).  
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private research and public research on technical progress and agricultural productivity. Their 

findings indicate that public funding on research generate an internal rate of return (IRR) of 28% 

on agricultural productivity compared to a private funding which generates an IRR of 17%. 

Chavas and Cox noted that at least 30 years of lags are necessary to capture the effects of public 

expenditures on research.  In conclusion, for the U.S. data, they found strong empirical support 

to the existence of technical change in agricultural production.  In a separate study, Chavas and 

Cox (1995) demonstrated estimation of supply response in U.S. agriculture using the 

nonparametric approach, generating estimates of supply-demand elasticities for six outputs and 

ten inputs. In this study, Chavas and Cox also established that their approach can also be applied 

for data not consistent with production theory, such as in cases where some data points conflict 

with the profit maximization rule due to, for example, either technical change or production 

inefficiencies. 

Bar-Shira and Finkelshtain (1999) extended and formalized the work done by Fawson 

and Shumway (1988) to account for both monotonic and non-monotonic technical changes. 

Their findings were consistent with previous results (e.g. Chavas and Cox) which found that the 

technological change for U.S agriculture between the years 1948 to 1994 was (Hicks) neutral.  

They further found empirical evidence that observed data were not consistent with profit 

maximization and monotonic technological progress, but consistent with cost minimization and 

monotonic technological progress. 

One of the drawbacks of deterministic nonparametric hypotheses tests was the inability of 

these tests to provide a mechanism that attaches a probability to rejection to the null hypotheses 

(Varian, 1985, 1990, Chavas and Cox 1988). The deterministic test is not a statistical testing 

procedure but is instead an analysis in which observed data are unambiguously consistent with 
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the optimization behavior (Lim and Shumway, 1992). Failure to adhere to the ‘exact’ 

optimization behavior would then result in rejection of the optimizing rule. Cognizant of this 

limitation, Varian (1985, 1990) derived a test statistic that permits stochastic tests to be 

interpreted in terms of classical statistics. One of his approaches was to determine the minimum 

perturbation in variables to cause the firm behavior to be optimal. This was the motivation for 

stochastic approaches to test for data contaminated by measurement error in variables. The other 

approach Varian suggested was to determine minimum deviations from the possible maximum 

profit or minimum cost. Silva and Stefanou (1996) relaxed the linear homogeneity restriction 

imposed on a production function by Hanoch and Rothschild and Varian to assess the underlying 

degree of homogeneity of a production function. They demonstrated that for data consistent with 

homothetic production technology and optimizing behavior, nonparametric tests can be used to 

test consistency of data with a production function of homogeneity of any degree. Silva and 

Stefanou (2003) further introduce dynamic aspects to the previous static nonparametric 

production and behavioral assumption tests. Building on the foundations of dynamic production 

analysis in the context of intertemporal cost minimization, Silva and Stefanou developed 

nonparametric approach to check consistency of data with constant returns to scale and 

homotheticity in a dynamic production structure. Silva and Stefanou (1996, 2003) allowed for 

deterministic and stochastic tests in line with Varian’s proposition. Kuosmanen, Post, and 

Scholtes (2007) further generalized the stochastic tests to include perturbations not only in 

variables that define the objective function, but also in variables that constitute the constraint set 

by relying on efficiency measures. Their approach uses only quantity measurement, hence 

avoiding the need to use price observations. 



13 

The stochastic tests have been applied in empirical analysis of agricultural technology 

(e.g. Lim and Shumway, 1992a, 1992b; Featherstone, Moghnieh, and Goodwin, 1995). Lim and 

Shumway (1992a) applied nonparametric techniques to statewide aggregate production data for 

the United States from 1956 through 1982. They estimated measurement errors of about 3% 

from the stochastic tests and conclude consistency with the profit-maximization hypothesis in 

nearly all states. Lim and Shumway (1992b) also used nonparametric analysis to investigate 

separability in state-level agricultural technology. Although there was variability in results 

among states and among alternative categories, their findings did not rule out a reasonable 

amount of data aggregation among inputs and outputs.  

Featherstone, Moghnieh, and Goodwin (1995) applied nonparametric techniques to 

analyze agricultural technology and production behavior for a sample of 289 Kansas farms, using 

annual farm level data for an 18-year period, 1973 to 1990. Their results rejected strict adherence 

of the observed data to the hypotheses of cost minimization and profit maximization. Based on 

relatively larger number of rejection and greater percentage of deviation of the profit 

maximization than the cost minimization tests, Featherstone, Moghnieh, and Goodwin (1995) 

concluded that the sample of Kansas farms may be more cost minimizing than profit maximizing 

farms.  A similar conclusion was reached by Tauer (1995) that a group of New York dairy farms 

were not very successful in maximizing profits, but came close to displaying cost minimization 

behavior.  

 For a sample of Pennsylvania dairy operators during the time period 1986-1992, Silva 

and Stefanou (2003) found observed data inconsistent with the hypothesis of a weak axiom of 

dynamic cost minimization; and rejection of the joint hypothesis of dynamic cost minimization 

and constant returns to scale. Using stochastic dynamic cost minimization tests, they found the 
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minimum standard error required for consistency of observed data with dynamic cost 

minimization hypotheses in the range between 25.87% and 39.05% across years. They also 

found that the lower bound of the standard error in the input quantity data for the hypothesis of 

homotheticity and dynamic cost minimization tests ranged from 78.69% to 120.02% across 

years. Taking 10% measurement error as a rejection criterion, they concluded that the deviations 

from the optimizing rules in both tests were statistically significant. 

 

2.1. Summary of Literature Review 

Since its development, the literature on nonparametric production analysis focused on two 

distinct approaches. The first approach compares a firm with another firm for a given year in an 

attempt to develop reference technology with which to compare efficiency scores of observed 

data sets (Farrell, 1957; Fare, Grosskopf, and Lovell, 1985). The second approach, the main 

focus of this literature review, compares current input/output choices to decisions made 

previously to test data sets for consistency with behavioral objectives and technology regularity 

conditions (Hanoch and Rothschild, 1972; Varian, 1984).   Later on, a link between these two 

approaches was established as demonstrated by Banker and Maindiratta (1988) and Fare and 

Grosskopf (1995). 

The contribution of many researchers to the development of nonparametric production 

analysis is documented (e.g. Afriat, 1967, 1972; Hanoch and Rothschild, 1972; Diewert and 

Parkan, 1983, 1985). Varian (1984, 1985) helped popularize the approach by extending it in 

several directions. Notably, Varian introduced stochastic tests that formalized the deterministic 

tests to conform with classical statistical hypothesis testing in the presence of measurement error.  

The work of other (e.g. Chavas and Cox, 1988, 1990, 1992; Cox and Chavas, 1990; and Fawson 
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and Shumway, 1988) who have done extensive work to test consistency of data with 

optimization rules.  

In addition to theoretical developments, the nonparametric approach has been applied 

empirically to test consistency of observed data with behavioral objectives and technology 

regularity conditions using national aggregate data (e.g. Fawson and Shumway, 1988; Lim and 

Shumway, 1992a, 1992b) and firm level data (e.g. Featherstone, Moghnieh, and Goodwin, 1995; 

Tauer, 1995), predominantly on U.S. agriculture. 
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3. MODELING APPROACH 

3.1. Nonparametric Production Analysis 

Varian (1984, 1985) developed a deterministic test of profit maximization and a stochastic test of 

the magnitude of measurement error required for consistency with the profit maximization 

behavior when some observations violate the deterministic test. In the deterministic test, the 

entire test fails if the optimizing hypothesis is violated once. The stochastic test allows for 

measurement error in data when considering consistency with the optimizing behavior.  

3.2. Deterministic Tests 

Following Varian (1984), let T be the production possibility set of all input-output 

bundles (-x, y) compatible with available technology. The set of feasible netput vector, termed as 

the production set, represents the production activities or production plans. The production 

possibility set T is nonempty, closed, bounded from above, convex, and allows for free disposal. 

The property of non-emptiness implies that the firm can produce the output with at least one set 

of input. The production possibility set T is closed indicates that the set T includes its boundary. 

Free disposal implies that it is always possible to absorb any additional amounts of inputs 

without any reduction in outputs. It can be interpreted that any extra amount of input can be 

disposed of at no cost. The convexity assumption says that if t, t’ ∈T and α  ∈[0, 1], then α t+ 

(1- α ) t’ ∈T (Mas-Colell, Whinston, and Green, 1995).  

A specific production set at time t is represented by a netput vector Y = (Y1, . . ., Ym) in 

T, where positive iY s represent outputs and negative iY s represent inputs. The set of all feasible 

production plans, Y, a subset of T, is closed, convex, and negative monotonic.  This negative 
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monotonic property corresponds to the free disposal hypothesis (Varian, 1984). The boundary of 

the convex set reflects an efficient production frontier, because no other way exists to produce 

the given output with fewer inputs or to produce more output with given inputs. This implies that 

profit ( tΠ ) at any time, t, is the product of the netput vector, Yt, and its price vector, tP . Varian 

(1984, 1985) showed that the following conditions are equivalent: (1) There exists a production 

set that p-rationalizes6
sttt YPYP ≥ the data; (2)   for all t, s = 1, 2,... ,n and (3) there exists a 

closed, convex, negative monotonic production set that p-rationalizes the data. 

Under constant technology over the sample period, consistency of the observed data with 

competitive profit maximization requires:  

sttt YPYP ≥   for all t, s = 1, 2, ..., n,       (1) 

where tY  is in Y. Varian (1984) calls this Weak Axiom of Profit Maximization (WAPM). 

This axiom implies that if profit is maximized given tP , then that profit should be greater than or 

equal to any other profit generated by any other set of outputs and inputs evaluated at tP .  In 

practice, this would require checking equation 1 to test for adherence of the observed data set 

with the profit maximization rule. This would require 2n  pair wise comparisons and nn −2  pair 

wise comparisons excluding the equality constraints.  Condition (2) or equation (1) is a 

necessary and sufficient condition for profit maximization (Samuelson, 1947; Hanoch and 

                                                 

6 A production set Y is said to p-rationalize the data ( tt yp ,  ) if ypyp ttt ≥ for all y in Y for t= 1, . . . , n 

(Varian 1984). 
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Rothschild, 1972; Varian, 1984). Reconciliation of condition (2) in view of the classical 

derivation of first and second order conditions for a profit maximization problem is shown in 

Appendix. 

The test in equation (1) assumes constant technology. Technological progress increases 

the efficiency of inputs used in the production of output. Chavas and Cox (1988) assert that it is 

possible that failure to consider technological change over the period of study can contribute to 

rejection of the maintained hypothesis. Chavas and Cox (1995 pp.87 ) state that “Technical 

progress shifts the production function up, causing "older" data points to appear technically 

inefficient and thus inconsistent with profit maximization based on a stable technology”. They 

extended the nonparametric approach to include technological change by specifying a 

technology index in the production function. Thus to account for monotonic nonregressive 

technical change i.e. to insure that any technology used in production period s is also available in 

production period t for all s < t, we can introduce the following technology restriction as: 

sttt YPYP ≥   for all t, s = 1, 2, ..., n, only for ts <       (2) 

This technology restriction, ts < , reduces the number of pair wise comparisons to check 

for consistency of the observed data with the deterministic profit maximization rule to 
2

2 nn −  .   

3.3  Stochastic Tests 

The deterministic test fails if the optimizing behavior is violated even once. However, the 

observed data could fail the test for many reasons. These can be attributed to producers making 

decision errors, or due to technical and allocative inefficiencies, and/or because of a random 

environment or observations aren't perfect measurements (Hanoch and Rothschild, 1972; Varian, 
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1985) or due to lack of generality of the optimization theory, such as the case of decision making 

under risk (McElroy, 1987).  

Varian (1985) proposed a general nonparametric method of statistical hypothesis testing 

when data are subject to measurement error. Following Varian’s (1985) notation, consider the 

null hypothesis, OH , that the data ( tt pY , ) satisfy the joint hypothesis of profit maximization  

and convex technology. Assume that the true netput k quantity for observation t is related to the 

observed netput quantity in the following manner: 

)1( tktktk YQ ε+=          (3)  

where tkQ  is the true netput quantity, tkY  is the observed netput quantity, and tkε  is a 

random error term that is independently and identically distributed N (0, 2σ ). Since netputs are 

measured in different units (e.g., tons, bushels, acres etc), the use of proportional error proposed 

by Varian (1985) and applied by Lim and Shumway (1992a , 1992b) helps overcome the 

problem of differences in measurement units of the netput.7 However, this set up requires that 

observed data should be greater than zero in all of the netput vector in any given year8

                                                 

7 Varian (1985), and Lim and Shumway (1992a) used these equations to relate optimization problems for 

cost minimization and profit maximization with measurement errors. 

. Given 

this condition, the following test statistic can be developed: 

8 Later in this section, we postulate an additive error and provide a way how to deal with this formulation as 

well. 
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Under the null hypothesis, equation (4) follows a chi-squared distribution with 

n x m degrees of freedom.  Although we can choose critical values ( αC ) for given α  levels, in 

practice we don’t know the values of tkQ and the true 2σ  . However, we can use the variance 

from observed data to obtain a critical lower bound estimate of the error variance when the null 

hypothesis is true. To do so, the following quadratic programming problem is formulated: 
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 for all t, s=1, 2,…, n      (5) 

where  tkZ  and skZ are solutions to the quadratic programming problem that minimize the 

sum of squared proportional residuals, R. Under the null hypothesis, the true data ( tQ , tP ) satisfy 

the constraints. Hence, under this OH , the minimum sum of squared errors, R, must not exceed 

the critical values αC  for a given level ofα from the true distribution. In other words, we will 

fail to accept the null hypothesis if αCR > . If we denote the numerator sum of squared residuals 
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YZ  by K, and rearrange the inequality, the null hypothesis is not accepted if 

2σ <
αC

K .  The critical lower bound estimate of the standard error at α  can be computed as σ  
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=
5.0
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




αC
K and the OH  is not accepted if the standard error of measurement of the data is less 

thanσ .  

Following Fawson and Shumway (1988) and Chavas and Cox (1988), the joint 

hypothesis of profit maximization; convex technology; and monotonic, non-regressive, technical 

change may be tested by changing the indexes t and s to reflect technology indexes in (4) as 

follows: 
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 for all t, s=1, 2,…,n and ts < ,    (6) 

The technology restriction ts < in equation (6) reduces the number of pair wise 

comparisons to 
2

2 nn −  , with n x m degrees of freedom used to compute the αC from the Chi-

squared distribution. 

If some of the observed netput data equal to zero, a proportional error specification as in 

equation (3) poses computational problems during the minimization of the squared residuals in 

equations (5) and (6). Because the observed netput quantity vector ( tkY ) appears in the 

denominator of the equation, division by zero will make the objective function undefined. 

Therefore, in addition to the proportional error used by Lim and Shumway (1992a), we further 
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modify the analysis to use an additive error formulation with transformed data when some of the 

netputs are equal to zero. The use of additive error avoids zero observations and also provides a 

unified framework to accommodate for multiproduct analysis with flexibility to deal with data 

when some outputs are not produced for some years or when some farms produce only one 

output. To proceed with the additive error formulation, we first normalize each of the elements in 

the netput vector by dividing the corresponding mean of the observations t = 1, 2, ..., n, such that 

the mean is equal to one. The transformed netput vector is then unit invariant and the additive 

error model can be used. In this manner, the true netput and observed netput vectors are related 

as:  

tktktk YQ ε+=                                (7) 

when tkQ  is the true netput quantity, tkY  is the observed netput quantity, and tkε  is a 

random error term that is independently and identically distributed with mean zero and constant 

variance. Now, if the true data, ( tkQ ), could be observed, the test statistic could be calculated as: 
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        (8)  

Under the null hypothesis, equation (8) has a chi-squared distribution with n x m degrees 

of freedom. Although the true 2σ  is unknown, we can use the variance from the observed data to 

obtain a critical lower bound estimate of the error variance when the null hypothesis is true. In a 

similar fashion as in the proportional disturbances, the following quadratic programming 

problem is formulated: 
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where  tkZ  and skZ are solutions to the quadratic programming problem that minimize the 

sum of squared additive residuals, R. Under OH  the true data ( tt pQ , ) satisfy the constraints in 

equation (9). Following the same analogy as in equation (5), we fail to accept OH if the standard 

error of measurement of the data is less than the critical lower bound estimate of the standard 

errorσ .  

To impose monotonic nonregressive technological change, the above equations can be 

modified as: 
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Varian (1985) first analyzed cost minimizing behavior where only input variables are 

considered to contain errors and outputs are assumed to be measured with full accuracy. He 

developed an aggregate cost function that accounts for only stochastic input quantities. Similarly, 
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Silva and Stefanou (2003) assumed only input demand data were measured with error to analyze 

production behavior of Pennsylvania dairy operators during the time period 1986-1992. They 

constructed a dynamic cost function as an aggregate measure of the behavioral objective of the 

dairy farms. Kuosmanen, Post, and Scholtes (2007) further noted that a similar approach can be 

used to regard as the measurement error occurring in the outputs, where inputs are assumed to be 

measured with full accuracy, such that revenue maximizing behavior can be considered as an 

aggregate measure. When profit maximization is used as an aggregate measure, the measurement 

errors are considered to account for both the input and output side. Although any measurement is 

likely to be contaminated with some sort of error, the sensitivity of the joint hypothesis might 

depend on what constitutes the error structure, i.e. whether it is more on the input side or output 

side. Given that decision making in agriculture is done under risk and uncertainty and that 

farmers commit production resources with an expected output price and expected output quantity 

in mind, their response to output risk is not the same as in input use risk. Inherently there is 

variability in yield, at least in agricultural crop production. It is of practical interest then to 

hypothesize that the stochastic nature in input use is different from output production, which in 

turn implies that the severity of measurement error can be different on the input side from the 

output side. This exercise can also provide an upper and lower bound on the magnitude of the 

measurement error depending on whether the error occurs in the input or output side. In other 

words, given that farmers consider risk when making output decisions, relatively greater 

deviation from the profit maximization objective would result due to output decisions. This is to 

say that higher percentage standard errors in the output quantity data would be required for the 

specified joint hypothesis of profit maximization to hold at a given significance level and hence 

relatively higher probability of rejecting the joint hypothesis.  Conversely, we may expect to 
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have lower measurement error when we consider the input side only and even lower when both 

inputs and outputs are considered stochastic.   

Based on these farm characteristics, we can examine the composition of the error terms in 

the above equations (4) and (7) to include only output or input quantities. To investigate 

measurement error only for outputs, we assume that the input side is measured with full 

accuracy. Based on this assumption, define the following minimization objective function of a 

proportional error as 2
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constrained by the profit maximization restrictions, but only the output side is stochastic. To 

incorporate this information into Varian’s basic profit maximization constraint set, we have 

partitioned the netput vector into inputs and outputs such that 1k  and 1m  refer to the outputs and 

2k  and 2m  refer to inputs, in which the observed input is the same as with the true input. Hence 

the modified constraint will be; 
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where 
1tkZ and 

1skZ are solutions to the quadratic programming problem that minimize the 

sum of squared proportional output residuals, R. The task is to find a critical lower bound 

estimate of the standard error computed at α  as σ  =
5.0
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αC
K with n x 1m degrees of freedom. To 
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impose monotonic nonregressive technological change, we put a technology restriction to 

equation (11) as: 
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 Performing the analysis for the additive error involves changing the minimization 

objective function to 2
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restrictions same as in equations (11) and (12) for constant technology and technological change 

respectively. 

When inputs only are allowed to be stochastic where as the outputs assumed to be 

measured with full accuracy, the minimization objective function of a proportional error will be 

defined for the input side as  2
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inputs constrained by the profit maximization restrictions . The profit maximization restriction 

for this objective function will be: 

∑∑∑∑
====

+≥+
2

2

22

1

1

11

2

2

22

1

1

11
1111

m

k
sktk

m

k
sktk

m

k
tktk

m

k
tktk ZpYpZpYp  for all t,s=1, 2,…,n   (13) 

where 
2tkZ and 

2skZ are solutions to the quadratic programming problem that minimize the 

sum of squared proportional input residuals, R. The critical lower bound estimate of the standard 

error is computed at α  as σ  =
5.0










αC
K  with n x 2m degrees of freedom, as in the previous cases. 
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To impose monotonic nonregressive technological change, we put a technology restriction to 

equation (11) as: 
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Performing the analysis for the additive error involves changing the minimization 

objective function to 2
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restrictions same as in equations (13) and (14) for constant technology and technological change 

respectively. 

3.4. Summary of Modeling Approach 

Under the nonparametric approach, deterministic and stochastic tests are available. The 

deterministic is ‘an all or none’ test in that the entire test fails if the optimizing hypothesis is 

violated even once. The deterministic test checks consistency of observed behavior with 

maintained profit maximization rules. This entails checking if observed behavior using data on a 

vector of quantity and prices of inputs and of outputs conform with the joint hypothesis of a 

closed, convex, negative monotonic production set that profit-rationalizes the data. Empirically 

this is equivalent with checking the inequality sttt YPYP ≥   for all t, s = 1, 2,..., n (Varian, 1984) 

which is a necessary and sufficient condition for a profit maximization rule (Samuelson, 1947; 

Hanoch and Rothschild, 1972; Varian, 1984). The joint hypothesis of profit maximization plus 
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monotonic nonregressive technical change in the production function is checked by imposing the 

restriction s < t to the above inequality (Chavas and Cox, 1988, 1995). 

 Stochastic nonparametric tests are developed when the deterministic tests fail for reasons 

such as farms are not technically or economically efficient, or there is measurement error in the 

data or due to farms’ objectives other than profit maximization. Proportional and additive models 

are specified to capture the measurement error between the true quantity data and observed data. 

Assuming that the measurement errors are random and independently and identically distributed 

with (0, 2σ ), the models are formulated such that the squared measurement errors (residuals) 

follow a chi-squared distribution.  The main task is to find the lower bound/threshold 

measurement error (and hence the lower bound standard error) required for consistency of the 

observed data with the joint hypothesis of profit maximization. The joint null hypothesis of profit 

maximization is rejected if the standard error present is believed to be less than the computed 

threshold level standard error.  

 The models are developed to test behavioral objectives of farms other than profit 

maximization. For example, only output decisions are allowed to be stochastic in the models to 

reflect cases where farms act in a way to minimize output risks. In cases where the stochastic 

influences are believed to have come from decisions related with inputs quantities, the models 

also incorporate this behavior such that input quantities are made stochastic. The models also 

allow perturbations to occur in both the input and output quantities.  

In all the models, the joint profit maximization hypothesis is modified to allow testing of 

technological change. Empirical implementation is done with a nonlinear minimization problem 

using GAMS.  
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4. DATA AND METHODS 

The nonparametric approach is used to evaluate the profit maximization behavior of 377 Kansas 

farms observed from 1988 to 2007. In particular, consistency with deterministic profit-

maximization behavior with and without technological change will be tested for each of the 

farms. Adherence to stochastic profit-maximization behavior with and without technological 

change is examined for each of the farms. A total of 190 farms are used for the analysis under 

proportional error specification after removing farms that have no production in one or more 

years; and all 377 farms are used under the additive error specification. 

The analysis applied nonlinear optimization using GAMS (General Algebraic Modeling 

System) to determine the minimum perturbation of the input and output set to calculate the 

magnitude of measurement error necessary for observed data to be consistent with profit 

maximization rule for each of the farms.  

Income and balance sheet data for 377 farms are obtained from the Kansas Farm 

Management Association (Langemeier, 2007; Mugera, 2009). Two outputs: crops and livestock 

are defined. The physical output quantities are calculated by dividing the farms’ gross income in 

each of the two output categories by the price of each output as follows: 

Livestock Quantity = Gross livestock Income / Livestock Price. 

Crop Quantity= Gross Crop Income/ Crop Price. 

The farms are defined to have three inputs:  labor, purchased inputs and capital inputs. 

Labor includes hired, family, and operator labor inputs. The components of the purchased inputs 

and capital inputs are as described below.  

Purchased Input: includes fuel and oil, seed and other crop expense, fertilizer and lime, dairy 

expense, irrigation energy, crop marketing and storage, herbicide and insecticide, feed 
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purchased, veterinarian expense, livestock marketing and breeding, organizational fees and 

publications, utilities, and crop insurance. 

Capital Input: Includes machinery repair, irrigation repair, machine hire, auto expense, building 

repair, conservation, cash interest, cash farm rent, real estate tax, property tax, general farm 

insurance, depreciation, and opportunity interest charge on owned equity. 

Price indexes for inputs and outputs are obtained from USDA’s Kansas Agricultural 

Statistics (USDA, 2007a) and Agricultural Prices (USDA, 2007b). Physical input indices for 

quantities are obtained by dividing the farms’ cash operating expenses in each of the three input 

categories by the price for each input.  

For the additive error model, the netput and price vectors are scaled so that the mean of 

each netput and price vectors is equal to one. From (7), we have that 

tktktk YQ −=ε   

We can normalize this relationship by dividing the true and observed quantities by the mean of 

each netput vector, and get a new normalized additive error term expressed in terms of the 

normalized true netput and normalized observed netput quantities as follows: 

k

tk

k

tk

k

tk

Y
Y

Y
Q

Y
−=

ε  

So that we have the following relationship 

tktktk YQ *** −=ε  

where
k

tk
tk

Y
εε =* , 

k

tk
tk

Y
QQ =*  and 

k

tk

Y
YY =* . 

Based on the above transformations, the new error term from the additive model (and 

hence the standard errors from the minimization problem) is interpreted as a proportion of the 

mean. 
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4.1. Kernel Density Estimation 

Histograms are often used for easy presentation and analyses of results. Histograms are a 

useful but limited way to estimate or visualize the true, underlying density of some observed data 

with an unknown distribution. Histograms are discontinuous step functions. So, if it is believed 

that data are generated by a continuous density, then another estimation procedure such as 

Kernel density estimation might be preferable (The Wolfram Demonstration Project, 2010). 

It was already assumed in the theory section that the squared error term (R) is an 

independently and identically distributed random variable. The goal of density estimation as 

applied in this essay is to approximate the probability density function f(.) of the random variable 

R . Assuming n independent univariate observations 1r , 2r  ,…, nr  from the random variable R, the 

kernel density estimator of the density value f ( r ) at point r  is defined as: 
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where k (.) is a symmetric probability density satisfying the following conditions: 
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r  is the observation that the kernel is centered on, n is the number of observations, and h 

is the optimal bandwidth. The restriction on the kernel function k (.) is that it is nonnegative and 

integrated to 1 over its support (Pagan and Ullah, 1999). 

 
There are many kernels that satisfy the above conditions, including the Gaussian, 

Epanechnikov, triangular, biweight, and rectangular (Silverman, 1986). For the construction of 

kernel densities of the squared measurement errors in this study, the Epanechnikov method was 
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applied.  For a large sample, any kernel function will be close to an optimal one and, therefore, 

the choice of kernel is a minor issue (Pittau and Zelli, 2004). Silverman (1986) evaluated the 

efficiency of many potential kernels in terms of mean integrated squared errors, an accuracy 

statistic computed as the sum of the integrated square bias and the integrated variance relative to 

the true density. Silverman concluded that, while there are few differences between the potential 

kernels, the Epanechnikov kernel is the most efficient among kernels that are themselves 

probability density functions where efficiency is defined as minimizing mean integrated squared 

error (MISE). The Epanechnikov kernel function is defined as: 
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4.2. Summary of Data and Methods 

The deterministic and stochastic nonparametric approaches were used to evaluate the 

profit maximization behavior of 377 Kansas farms observed from 1988 to 2007. A total of 190 

farms are used for the analysis under proportional error specification after removing farms that 

have no production in one or more years; and all 377 farms are used under the additive error 

specification. A nonlinear optimization problem using GAMS (General Algebraic Modeling 

System) was formulated to determine the minimum perturbation of the input and output data set 

to calculate the magnitude of measurement error necessary for observed data to be consistent 

with profit maximization rule for each of the farms.  

The farms are assumed to have two outputs: crops and livestock and three inputs:  labor, 

purchased inputs and capital inputs. These data were obtained from the Kansas Farm 

Management Association databank (Langemeier, 2007; Mugera, 2009). Price indexes for inputs 
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and outputs are obtained from USDA’s Kansas Agricultural Statistics (USDA, 2007a) and 

Agricultural Prices (USDA, 2007b).  

Kernel density estimation is done to summarize the results. 
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5. EMPIRICAL RESULTS 

5.1. Deterministic Tests 

With 20 years of data, checking for the deterministic nonparametric tests involve 380 

price-output comparisons. The number of profit maximization violations for the individual farms 

ranged from 184 to 207, with a mean of 191.5. The standard deviation of violations was 2.9. All 

farms violated Varian’s deterministic WAPM. Under monotonic non-regressive technical 

change, a total of 190 price-output comparisons are possible. For these deterministic WAPM 

tests, the number of violations of profit maximization ranged from 8 to 167, with a mean of 72.9, 

and a standard deviation of 44.8 (Table 1-1).  

Because all the farms violated the deterministic WAPM rules, it is of interest to find out 

the magnitude of these violations.  

Table 1-1: Summary Statistics for Deterministic Profit Maximization Tests for 377 Kansas 

Farms 

 

5.2. Stochastic Tests 

The stochastic test results are organized in three sections.  Each section represents a 

specific production characteristic relating to the possible influences on the perturbations in the 

observed quantity data. The first section provides results where the measurement errors can 

Hypothesis Mean Standard deviation Minimum Maximum 

Deterministic profit 
maximization violations 

191.5       2.9 184 207 

Deterministic profit 
maximization under non-
regressive technical change          

72.9        44.8 8 167 
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originate from both inputs and outputs. The second section contains results where the stochastic 

influences come from the output side of the quantity data and the inputs are measured with full 

accuracy. The sources of the measurement error in the third section are assumed to be composed 

of the input side of the quantity data while output quantities are assumed to be deterministic.  

Under each section, the results of the proportional and additive measurement error 

specifications are presented, followed by comparison of results of these two specifications. In 

addition, the results for each specification are presented with and without technological change. 

5.2.1. Stochastic Input and Output Variables 

5.2.1.1. Proportional Error Specification 

The minimized proportional residual (R) values estimated using equation (5) follow a 

chi-square distribution with 100 degrees of freedom. These minimized R values were used to 

calculate the critical standard error (σ ) values with an alpha level of 0.05. With the assumption 

of no technological change over the sample period, i.e. allowing the subscripts s and t to take any 

values as in the constraint in equation (5), the minimum σ  required to maintain the hypothesis 

of profit maximization ranged from 0.1015 to 0.3803 with a mean of 0.1901 and median of 

0.1748 and a standard deviation of 0.0575 (Table 1-2). These critical values are used to test the 

null hypothesis that the profit maximization rule holds in equation 5. For example, using the 

mean value of the minimumσ , 0.1901, we would reject the joint hypothesis of profit 

maximization at the 5% level of significance had the quantity data been measured with standard 

error of less than 19.01 %.  

Consistency of the joint profit maximization hypothesis under technological change was 

tested using equation (6). The constraint function in this equation restricts ts ≤  insuring that any 

technology used in production period s is also available in production period t.  The technology 
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index restriction ts ≤  on the constraint function reduces the number of pair wise comparisons 

from 380 to 190. With an alpha level of 0.05, the minimum critical R values follow a chi-square 

distribution with 100 degrees of freedom. The critical minimum σ  ranged from 0.0198 to 

0.1288 with a mean value of 0.0644 and median value of 0.0617 and with a standard deviation of 

0.0196 (Table 1-3). Under this, we would have required on average a standard error of 

measurement of the data not more than 6.43 % to reject the null hypothesis of joint profit 

maximization. 

Table 1-2: Summary of Standard Errors of Measurement with Constant Technology 

Model Mean Med. Standard 
Deviation 

Min. Max. 

Proportional Error Models  

Stochastic input and outputs 
quantities  

0.1901 0.1748 0.0575 0.1015 0.3803 

Stochastic input  and deterministic 
output quantities 

9.7978 6.3178 13.3846 0.5222 146.0338 

Stochastic output and deterministic 
input quantities 

1548.188 99.1769 7373.104 0.4069 75281.45 

Additive Error models  

Stochastic input and output 
quantities 

0.2633 0.2077 0.2010 0.0952 1.5779 

Stochastic input  and deterministic 
output quantities 

6.0272 3.9363 8.5361 0.6388 94.4272 

Stochastic output and deterministic 
input quantities 

208.4570 25.0941 1510.393 0.3130 26447.02 

 

It is noticeable here that the σ computed under no technological change assumption were 

larger than those computed under the assumption of technological change. All farms had a 
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minimum σ  that exceed 0.10 to be consistent with the joint hypothesis of profit maximization 

under constant technology. In contrast, under technological change, 94.7% of the farms had 

minimum σ of less than 0.10 required for the profit maximization hypothesis to hold and 22.5 % 

had σ of less than 0.05.  

Table 1-3: Summary of Standard Errors of Measurement with Technical Change 

Model Mean Med. Standard 
Deviation 

Min. Max. 

Proportional Error Models  

Stochastic input and outputs 
quantities  

0.0644 0.0617 0.0196 0.0196 0.1288 

Stochastic input  and deterministic 
output quantities 

0.1210 0.1181 0.0357 0.0416 0.2712 

Stochastic  output and deterministic 
input quantities 

0.1567 0.1333 0.1016 0.0376 1.1948 

Additive Error models  

Stochastic input and output 
quantities 

0.1398 0.0897 0.1565 0.0239 1.0261 

Stochastic input  and deterministic 
output quantities 

0.2306 0.1460 0.2560 0.0385 1.6371 

Stochastic  output and deterministic 
input quantities 

0.3505 0.2194 0.4106 0.0582 2.6113 

 

In absolute terms, the change in the σ before and after restricting the technology index 

ranged from a minimum decline of 0.0351 to a maximum decline of 0.1626 with mean 0.1257 

and standard deviation of 0.0573. In percentage wise, the change in the magnitude of α  before 

and after accounting for a technological change ranged from a minimum reduction of 24.84 % to 

a maximum reduction of 90.76 % with a mean of 63.89 % and standard deviation of 12.97%. In 
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general, a smaller percent standard error of measurement is needed in the data to reject the joint 

hypothesis of profit maximization in the presence of technological change than with no 

technological change.  

5.2.1.2. Additive Error Specification 

The minimized additive residual (R) values calculated using equation (9) also follow a 

chi-square distribution with 100 degrees of freedom. These minimized R values were used to 

calculate the critical standard error (σ ) at an alpha level of 0.05. With the assumption of 

constant technology over the sample period, the minimum σ required for the profit 

maximization hypothesis to hold ranged from 0.0952 to 1.5778 with a mean of 0.2632 and 

median of 0.2077 and a standard deviation of 0.2010 (Table 1- 2). We notice that the range of the 

results is influenced by the large number of farms included as well as the behavior of data for 

individual farms used in the analyses. The highest σ  values are for those farms with zero 

outputs (mostly livestock) for most of the years.  Investigation of the data showed that the farm 

with the largest σ  had only livestock output only in one year (year 1997) and all other years, 

there had not been any production. Similarly, the farms with the second and third largest σ  had 

livestock quantity only in the first year of the study period and none thereafter. Those farms may 

have discontinued livestock production and completely shifted to crop production. This behavior 

of suddenly switching from one enterprise to another or exhibiting irregular production patterns 

implies inefficient production behavior and hence causing significant deviation from the 

optimization objective.  

Consistency of the profit maximization hypothesis under technological change was tested 

using equation (10). The constraint function in equation (10) restricts ts ≤  insuring that any 

technology used in production period s is also available in production period t. The minimum σ  
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for this test ranged from 0.0239 to 1.0261 with a mean value of 0.1398 and median value of 

0.0897 and a standard deviation of 0.1565 (Table 1- 3).  

Under no technological change assumption, a total of 99.73 % of the farms require a 

minimum σ greater than 0.10 to maintain the hypothesis of profit maximization.  In contrast, 

under technological change, a total of 39.78 % of the farms had minimum σ that exceed 0.10 

required for the profit maximization hypothesis to hold.  

In absolute terms, the change in the minimum standard error of measurement before and 

after restricting the technology index ranged from a minimum decline of 0.0039 to a maximum 

decline of 1.0755 with mean decline of 0.1234 and standard deviation of 0.0917. In percentage 

wise, the change in the magnitude of σ before and after accounting for a technological change 

ranged from a minimum reduction of 0.88 % to a maximum reduction of 96.2124 % with a mean 

reduction of 51.1978 % and standard deviation of 17.68%. The σ computed under constant 

technology assumption were larger than those computed under the assumption of technological 

change. 

5.2.1.3. Comparison of Results from the Proportional and Additive Error Specifications  

Although we used all 377 farms to do the analysis for the additive residual specifications, 

to avoid possible bias in the quantity data due to the farms that had zero observations in some 

years, we isolated the additive residual results of those 191 farms that were also used to compute 

the proportional residuals. It turns out that there is a remarkable similarity between these two 

results as shown in table 1-4. Both results suggest that one would need to attribute much smaller 

standard error of measurement in the quantity data to reject the joint hypothesis of profit 

maximization with technological change than with no technological change.  Specifically, on 
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average we would have to have less than 10 % of standard error of measurement in the data for 

the joint hypothesis of profit maximization with technological change to be rejected compared 

with less than 20% with no technological change.  

The distributions of the residuals for the stochastic profit maximization hypothesis with 

and without technological change are shown in Figures 1-3 and 1-4, respectively.  In Figures 1-3 

and 1-4, the upper panels show the histogram of residuals for proportional error models and the 

lower panels show the histogram of residuals for additive error models. A visual investigation of 

the histograms in these two figures reveals a similar pattern of skewness in the distribution of the 

residuals. Applying the Epanechnikov method, the kernel densities for these two model 

specifications were also fitted to the distribution of the residuals as shown in Figure 1-5 when 

constant technology was assumed and 1- 6 when technological change was assumed. Relatively 

speaking, the kernel densities in Figure 1-5 seem to give similar densities for both additive and 

proportional specifications.   

Table 1-4: Comparison of Standard Errors of Measurement with Stochastic Input and 

Output Variables  

Model 
Specification 

Constant Technology Technological Change 

Mean Median Standard 
Deviation 

Mean Median Standard 
Deviation 

Additive 
Residual  

0.1911 0.1829 0.0538 0.0767 0.0726 0.0240 

Proportional 
Residual  

0.1901 0.1748 0.0575 0.0644 0.0617 0.0196 
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An ordinary least squared (OLS) regression was fitted to relate the standard errors from 

the two error specifications. The regression output is shown in table 1-5.   Using the standard 

errors of measurements from the additive model as a right hand side variable to relate with the 

standard errors of measurement for the proportional model as a left hand side variable, we find a 

positive and significant relationship between the results of these two specifications.  For 

example, for a constant technology assumption, we have an R-squared of 0.8266 implying that 

82.66% of the variance of the proportional residual can be explained by the variance of the 

additive residuals. Or using the additive residuals, we are able to predict the values of 

proportional residuals pretty well. 

Out of the 377 farms, 186 farms did not consistently produce output either for crop or 

livestock or both outputs. The results of standard errors for those farms which consistently 

produced outputs excluding these 186 farms are shown in the Tables 1-4 and 1-5. There are close 

similarities between the additive and proportional standard errors of measurement values. 

However, there is greater variance as well as higher minimum standard error of measurement 

required for the hypothesis of profit maximization to hold for these 186 farms. A summary of 

these results is shown in Tables 1-10 and 1-11.  

5.2.2. Stochastic Output and Deterministic Inputs Quantities 

5.2.2.1. Proportional Error Specification 

At an alpha level of 0.05, the minimum critical R values also follow a chi-square 

distribution with 40 degrees of freedom. The minimized residual (R) values, with the assumption 

of constant technology over the sample period required to maintain the hypothesis of profit 

maximization ranged from 0.4069 to 75281.45 with a mean of 1548.188 and median of 99.17693 
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and a standard deviation of 7373.104 (Table 1-2). The results for most of the farms were 

exceedingly high. 

Table 1-5: Relationship between Proportional and Additive Residuals Specification for 

Stochastic Input and Output Variables  

Estimates Constant Technology Technological Change 

Constant 0.0212** 

(0.0087) 

0.0299*** 

(0.0040) 

Beta Coefficient 0.8837*** 

(0.0438) 

0.4490*** 

(0.0495) 

R squared 0.6832 0.3036 

Correlation 0.8266 0.5510 

Note: *, **, and *** represents significance at the 10%, 5% and 1% alpha levels, respectively 

 Consistency of the profit maximization hypothesis under technological change was 

tested using equation (12). Allowing for technological change over the study period, by 

imposing the technology restrictions, ts ≤ ,   consistency of the profit maximization hypothesis 

was tested. The minimum critical R values also follow a chi-square distribution with 40 degrees 

of freedom, at an alpha level of 0.05. The critical σ  ranged from 0.0377 to 1.1949 with a mean 

value of 0.1567 and median value of 0.1333 and with a standard deviation of 0.1017 (Table 1- 

3). A total of 80.10 % of the farms had minimum standard errors of greater than 0.10 required for 

the profit maximization hypothesis to hold. 

5.2.2.2. Additive Error Specification 

Under the assumption of constant technology over the sample period, the minimum 

standard error of measurement required for the profit maximization hypothesis to hold ranged 
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from 0.3129 to 26447.02 with a mean of 208.457 and median of 25.0941 and a standard 

deviation of 1510.393 (Table 1- 2). The standard error results are very high here as well. 

Consistency of the profit maximization hypothesis under technological change was tested 

imposing the technology index restriction as in equation (12) to the additive error minimization 

objective function. By restricting the technology index, ts ≤ , to insure that any technology used 

in production period s is also available in production period t, the hypothesis of profit 

maximization was also tested.  The standard errors of measurement ranged from 0.0582 to 

2.6113 with a mean value of 0.3505 and median value of 0.2194 and with a standard deviation of 

0.4109 (Table 1-3). In this test, only 1.86% of the farms had a minimum standard error of less 

than 0.10 and 55.17 % greater than 0.20 and 26 farms had standard error of measurement that 

exceeded 1 required for the profit maximization hypothesis to hold. 

5.2.2.3. Comparison of Results from the Proportional and Additive Error Specifications  

Using the results of the same 191 farms used for both additive and proportional residual 

specifications, the standard errors of measurements were compared. There is also a relatively 

notable similarity between the central tendencies measures (mean and median) of these results as 

shown in the table 1-6 with technological change assumption imposed in the analysis. However, 

the density distributions of the residuals from these two specifications as shown in Figure 1-7 do 

not seem fairly similar. This is further shown in the kernel density estimates in Figure1- 8. 

Relaxing the technical change constraint resulted in greater discrepancy between these two 

model specifications as shown in table 1-6 as well as the regression results in table 1-7, in which 

case the R-squared value is close to 0.  
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5.2.3. Stochastic Input Quantities and Deterministic Outputs 

5.2.3.1. Proportional Error Specification 

The minimum critical R values also follow a chi-square distribution with 60 degrees of 

freedom, at an alpha level of 0.05. Under the assumption of constant technology, the minimum 

standard error of measurement required to maintain the hypothesis of profit maximization ranged 

from 0.5222 to 146.0338 with a mean of 9.7977 and median of 6.3178 and a standard deviation 

of 13.3846 (Table 1-2). The results for no technological change appear to be very high with 

97.91 % of the farms scoring standard error of greater than greater than 1. 

Consistency of the profit maximization hypothesis under technological change was tested 

using equation (14). Allowing for technological change over the study period, by imposing the 

technology restrictions, ts ≤ ,   consistency of the profit maximization hypothesis was tested. The 

minimum critical R values follow a chi-square distribution with 60 degrees of freedom, at an 

alpha level of 0.05. These ranged from 0.0417 to 0.2712 with a mean value of 0.1210 and 

median value of 0.1181 and a standard deviation of 0.0357 (Table 1-3). A total of 71.73% of the 

farms had minimum standard errors of greater than 0.10 required for the profit maximization 

hypothesis to hold. 

5.2.3.2. Additive Error Specification 

With the assumption of constant technology over the sample period, the minimum 

standard errors of measurement required to maintain the hypothesis of profit maximization 

ranged from 0.6388 to 94.4272 with a mean of 6.0272 and median of 3.9363 and a standard 

deviation of 8.5361(Table 1-2). All farms had standard error of greater than 0.6388 for the 

hypothesis of profit maximization to hold and 96.82% with greater than 1. 
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Table 1-6: Comparison of Standard Errors of Measurement with Stochastic Output and 

Deterministic Input Variables   

Model 
specification 

Constant Technology Technological Change 

Mean Median Standard 
Deviation 

Mean Median Standard 
Deviation 

Additive 
Residual  

276.4677 25.6178 1984.179 0.1849 0.1745 0.0610 

Proportional 
Residual  

1548.1877 99.1769 7373.1039 0.1528 0.1333 0.0717 

 

Table 1-7: Relationship between proportional and additive residuals for with Stochastic 

Output and Deterministic Input Variables   

Estimates Constant Technology Technological Change 

Constant 1331.587** 

(527.9624) 

0.0360* 

(0.0217) 

Beta Coefficient 0.7835*** 

(0.2642) 

0.6528*** 

(0.1115) 

R squared 0.0445 0.1536 

Correlation 0.2110 0.3919 

Note: *, **, and *** represents significance at the 10%, 5% and 1% alpha levels, respectively 

Consistency of the profit maximization hypothesis under technological change was tested 

imposing the technology index restriction as in equation (14) to the additive error minimization 

objective function. By restricting the technology index, ts ≤ , to insure that any technology used 

in production period s is also available in production period t, the hypothesis of profit 

maximization was also tested.  For this test, the critical standard errors ranged from 0.0385 to 

1.6371 with a mean value of 0.2306 and median value of 0.1460 and with a standard deviation of 
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0.2561(Table 1-3). A total of 80.11 % of the farms had minimum standard errors of greater than 

0.10 required for the profit maximization hypothesis to hold. 

5.2.3.3. Comparison of Results from the Proportional and Additive Error Specifications  

Using the results of the same 191 farms used for both additive and proportional residual 

specifications, the standard errors of measurements were compared.  The discrepancy in the 

summary values is relatively smaller when the technical change constraint was imposed in the 

test compared to no technical change condition. These two observations are shown in table 1-8 as 

well as the regression output in table 1-9 with an estimated coefficient that exceeded 2 units for 

each unit change in the additive error.  
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Table 1-8: Comparison of Standard Errors of Measurement with Stochastic input and 

deterministic output variables  

Model 
specification 

Constant Technology Technological Change 

Mean Median Standard 
Deviation 

Mean Median Standard 
Deviation 

Additive 
Residual  

4.8733 3.5085 5.3835 0.1263 0.1216 0.0393 

Proportional 
Residual  

9.7978 6.3178 13.3846 0.1210 0.1181 0.0357 

 

Table 1-9: Relationship between proportional and additive residuals for stochastic input and 

deterministic output variables 

Estimates Constant Technology Technological Change 

Constant -1.0614* 

(0.5816) 

0.0558*** 

(0.0072) 

Beta Coefficient 2.2283*** 

(0.0802) 

0.5161*** 

(0.0544) 

R squared 0.8033 0.3225 

Correlation 0.8963 0.5679 

Note: *, **, and *** represents significance at the 10%, 5% and 1% alpha levels, respectively 
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Table 1-10: Summary of standard error of measurement with constant technology for all 

farms and for farms with missing observations only 

Model Mean Med. Standard 
Deviation 

Min. Max. 

Additive Error models  

Stochastic input and output 
quantities 

0.3373 

(0.2632) 

0.2613 

(0.2076) 

0.2612 

(0.2010) 

0.1198 

(0.0952) 

1.5778 

(1.5778) 

Stochastic input  and deterministic 
output quantities 

7.2120 

(6.0272) 

4.3228 

(3.9362) 

10.7490 

(8.5361) 

0.63888 

(0.6388) 

94.4272 

(94.4272) 

Stochastic output and deterministic 
input quantities 

138.6181 

(208.457) 

24.3399 

(25.094) 

763.8792 

(1510.39) 

0.4547 

(0.3129) 

10066 

(26447) 

The values without parenthesis refer to results for only the 186 farms that had some missing quantity 

observations in the data in some years either for crop or livestock or both outputs and the values in parenthesis refer 

to results for all 377 farm including these 186 farms. 

Table 1-11: Summary standard error of measurement with technological change 

Model Mean Med. Standard 
Deviation 

Min. Max. 

Additive Error models  

Stochastic input and output 
quantities 

0.2046 

(0.1398) 

0.1338 

(0.0896) 

0.2021 

(0.1565) 

0.0389 

(0.0239) 

1.0261 

(1.0261) 

Stochastic input  and deterministic 
output quantities 

0.3377 

(0.2306) 

0.2197 

(0.1459) 

0.3300 

(0.2560) 

0.0606 

(0.0385) 

1.6371 

(1.6371) 

Stochastic  output and 
deterministic input quantities 

0.5205 

(0.3504) 

0.3250 

(0.2194) 

0.5309 

(0.4108) 

0.1001 

(0.0581) 

2.6113 

(2.6113) 

The values without parenthesis refer to results for only the 186 farms that had some missing quantity 

observations in the data in some years either for crop or livestock or both outputs and the values in parenthesis refer 

to results for all 377 farm including these 186 farms. 
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5.3. Summary of Results 

Results indicated that all farms violated Varian’s deterministic Weak Axiom of Profit 

Maximization (WAPM). Because all the farms violated the deterministic WAPM, the next step 

was to determine the minimum amount of measurement error necessary for farm level 

production data to be consistent with the joint hypotheses of profit maximization, closed and 

convex technology and monotonic nonregressive technological change.  This was achieved by 

the stochastic test analysis. The results of the stochastic tests were analyzed in three ways.  The 

first way was when the sources of measurement errors are assumed to originate from both the 

input and output side of the observed quantity data. The second was where the stochastic 

influences on the data are assumed to have come from the output side of the quantity data while 

the inputs are assumed to be deterministic.  The third way was when the perturbations in the 

quantity data are assumed to have occurred on the input side of the observed quantity data. For 

each way, results of a proportional and additive measurement error models with a multiproduct 

setting were presented. The results also reflect the characteristics of agricultural production 

behavior with and without technological change along the years under study.  

The stochastic test was formulated as a quadratic programming problem that minimizes 

the sum of squared residuals (R). These residual values that minimize the implied measurement 

error follow a chi-square distribution. The R values were used to compute the critical standard 

error (σ ) with an alpha level of 0.05 as σ  =
5.0










αC
K . For the proportional measurement errors 

specification, when both input and output quantities were considered to be stochastic, the 

minimum σ  required to maintain the hypothesis of profit maximization ranged from 0.1015 to 

0.3803 with a mean of 0.1901 and median of 0.1748 and a standard deviation of 0.0575. When 
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technical change was imposed, these values ranged from 0.0198 to 0.1288 with a mean value of 

0.0644 and a median value of 0.0617 and a standard deviation of 0.0196. For the additive 

measurement error specification, with constant technology over the sample period, the minimum 

α ranged from 0.0952 to 1.5778 with a mean of 0.2632 and median of 0.2077 and a standard 

deviation of 0.2010. With technological change constraint imposed, these values varied from 

0.0239 to 1.0261 with a mean value of 0.1398 and median value of 0.0897 and a standard 

deviation of 0.1565. Although we used all 377 farms to do the analysis for the additive residual 

specification, to avoid possible bias in the quantity data because of farms that had no output 

production in some years, the additive residual results were summarized again for those 191 

farms that were used to compute the proportional residuals. For these farms, the minimum α  

ranged from 0.0952 to 0.3741 with a mean of 0.1911 and median of 0.1829 and a standard 

deviation of 0.0538. With technical change constraint imposed, these values ranged from 0.0239 

to 0.1657 with a mean of 0.0767 and median of 0.0726 and a standard deviation of 0.0240. These 

later results from the additive error model are similar to those from proportional error model. The 

correlation between these two model results is also positive and strong before and after 

technological change constraint was imposed. 

  When quantity of output observations are believed to account the majority of the 

stochastic influence on the data, the  σ  values for the proportional error model constrained for 

technical change varied from 0.0377 to 1.1949 with a mean value of 0.1567 and median value of 

0.1333 and with a standard deviation of 0.1017. The corresponding σ  values for the additive 

error model varied from 0.0582 to 2.6113 with a mean value of 0.3505 and median value of 

0.2194 and with a standard deviation of 0.4109. However, for the 191 farms only the α  values 

ranged from 0.0582 to 0.4409 with a mean of 0.1849 and median of 0.1745 and a standard 
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deviation of 0.0610. Here again, when the technological index in the constraint function were 

allowed to take any values such that constant technology is implied, the minimized residuals 

were too high.    

When the perturbation in the quantity data was assumed to be solely influenced by the 

input quantities whereas the output quantities considered to be deterministic, again for the 

proportional measurement error model, the σ  ranged from 0.0417 to 0.2712 with a mean value 

of 0.1210 and median value of 0.1181 and a standard deviation of 0.0357 when technical change 

was imposed. For the additive measurement error model, these values ranged from 0.0385 to 

1.6371 with a mean value of 0.2306 and median value of 0.1460 and with a standard deviation of 

0.2561. Using those 191 farms that were also used to compute the proportional residuals, these 

critical standard errors ranged from 0.0385 to 0.2552 with a mean value of 0.1263 and median 

value of 0.1216 and a standard deviation of 0.0393 . There is strong and positive correlation 

between the results of these two specifications.  Furthermore, the values of the standard errors 

with constant technology were exceedingly high. 

In a nutshell, for the stochastic tests, a 10% standard error of measurement has been used 

as a benchmark (as in some empirical studies such as by Lim and Shumway 1992a and Silva and 

Stefanou 2003) against which the results of the tests could be compared. With technological 

change, assuming both input and output quantities as stochastic, at an alpha level of 5%, only 

5.3% of the farms violated the joint hypothesis of profit maximization with the minimum critical 

standard error exceeding 10%. Whereas when only inputs quantities are considered stochastic, a 

total of 71.73% and 2.09% of the farms had minimum standard errors of greater than 0.10 and 

0.20 respectively required for the profit maximization hypothesis to hold. In contrast, when 

assuming only stochastic output quantity measurements, a total of 80.10 % and 18.84 % of the 
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farms had minimum standard errors of greater than 0.10 and 0.20 respectively required for the 

profit maximization hypothesis to hold. 

 Relatively speaking, the additive error model with stochastic output and 

deterministic input had the largest critical lower bound mean value of standard error of 0.3505 

with technical change assumed. Therefore, we would have rejected the joint hypothesis of profit 

maximization, closed and convex technology and monotonic nonregressive technical change at 

the 5% level of significance had any of the quantity data been measured with standard error of 

less than 35.05 %. The proportional error model with stochastic input and output quantities had 

the smallest lower bound mean value of standard error of 0.0644. In this case, we would have 

needed a much smaller standard error, i.e. less than 6.44 % to reject the joint hypothesis of profit 

maximization with technological change. For this model, with the technical change restriction 

relaxed, the minimum critical lower bound standard error was 0.1901 and hence we would have 

required a standard error of measurement less than 19.01 % to reject the joint hypothesis of profit 

maximization. 
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6. CONCLUSION AND IMPLICATIONS 

Results indicate that none of the farms perfectly satisfy the joint hypothesis of profit 

maximization, closed and convex technology set with and without technological change. The 

empirical evidence also seems to support the existence of technological change over the study 

period. Given that farmers consider risk and uncertainty when making output decisions, results 

of the current study may indicate that relatively greater deviations from the joint hypothesis of 

profit maximization objective may be due to perturbations associated with output decisions. As 

expected, on average higher percentage standard errors in the output quantity data were required 

for the joint hypothesis of profit maximization to hold at 5% significance level, implying that 

there was higher probability of rejecting the joint hypothesis. An additive error specification 

developed in this study also provided similar implications on the behavioral characteristics of the 

Kansas farms.   

    The use of nonparametric tests of a type used in this paper has been suggested as a pre-

test method to aid in the selection of an appropriate parametric functional forms and behavioral 

hypotheses in production analysis.  Given the widespread use of profit maximization as a 

primary objective in economic analyses, testing its validity using the approach developed in the 

current study is helpful for accurate economic analyses, sound management decisions and 

appropriate policy recommendations.  

The study could be extended to include farm size and degree of specialization into 

account. More specifically, we can ask whether farm size affects the behavioral motivation of 

farms. We may also look at the degree of output specialization as in the case of multi-

product/multi-output versus single output farms in view of the general farm behavioral 

objectives. Another venue would be to consider the efficiency of the farms with respect to 
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technological regularity conditions and behavioral motivations. How do the different measures of 

efficiency (e.g. technical and allocative efficiencies) of farms relate with their behavioral 

objectives?  We may also test all the previous conditions with a more disaggregated data of input 

use by farms.  Theoretically, it can be extended to test behavioral objectives other than profit 

maximization such as expected utility of profit maximization with probabilities attached to the 

prices and quantities. 
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Figure 1-3: Histogram of Residuals for Proportional and Additive Error Models with 

Constant Technology 
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Figure 1-4: Histogram of Residuals for Proportional and Additive Error Models with 

Technological Change 
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Figure 1-5: Kernel Density Estimation of Proportional and Additive Residuals Models with 

Constant Technology 

0
.0

5
.1

.1
5

.2
D

en
si

ty

0 5 10 15 20
Residuals

kdensity pnotechng kdensity anotechng

(with constant technological ,n=191)
Kernel Density of Residuals for Proportional and Additive Models

 

 

 

 

 

 

 

 



58 

Figure 1-6: Kernel Density Estimation of Proportional and Additive Residuals Models with 

technological change 
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Figure 1-7: Histogram of Residuals for Proportional and Additive Error Models for 

Stochastic Output Only with Technological Change 
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Figure 1-8: Comparison of Kernel Densities of Proportional and Additive Residuals Models 

for Stochastic Output Only with technological change 
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Figure 1-9: Histogram of Residuals for Proportional and Additive Error Models for 

Stochastic Input Only with Technological Change 
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Figure 1-10: Comparison of Kernel Densities of Proportional and Additive Residuals 

Models for Stochastic Input Only with technological change 
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APPENDIX  

The derivations of the equations for a profit to be maximized by a firm are contained in 

any standard economic text book. In the general case, a firm maximizes its profit,   

)()()( qCqRq −=π , by choosing output q . To get the necessary condition for a maximum at a 

positive level of output, differentiating profit with respect to q and set the derivative equal to 

zero as in equation (A1) below: 

0)()()( ***

=−=
dq

qdC
dq

qdR
dq

qdπ        (A1) 

where *q is the profit-maximizing output. Equation (A1) implies that 
dq

qdC
dq

qdR )()( **

=  

where the expression on the left hand side is marginal revenue at *q and the expression on the 

right hand side is marginal cost at *q  . The next step is to find the sufficient condition for profit 

to be maximized at 0* >q  , that is the second-order condition as in equation (A2) below: 

0)()()()()( **

2

*2

2

*2

2

*2

<−=−=
dq

qdMC
dq

qdMR
dq

qCd
dq

qRd
dq

qd π    (A2) 

Equation (A2) can also be rewritten as 

dq
qdMC

dq
qdMR )()( **

<         (A3) 

It follows that a sufficient condition for a maximum is that the slope of the marginal 

revenue (MR) curve is less than that of marginal cost (MC) curve and that MC curve cuts the 

MR curve from below at *q . 
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For a competitive firm, where )()( qCpqq −=π , the necessary condition for profit to be 

maximized will be 

)( *qMCp =           (A4) 

Equation (A4) says that a profit maximizing, competitive firm sets its output at *q where 

its marginal cost equals its price (marginal revenue). Because a competitive firm’s marginal 

revenue, p , is a constant, and following equation (A3), we have 0==
dq
dp

dq
dMR  . Thus for a 

competitive firm, a sufficient condition for profit to be maximized, equation (A3) can be 

rewritten as 

 
dq

qdMC )(0
*

<           (A5) 

In the theory section, it was discussed that the following conditions are equivalent: (1) 

There exists a production set that profit-rationalizes the data; (2) sttt YPYP ≥   for all t, s = 1, 2... n 

and (3) there exists a closed, convex, negative monotonic production set that p-rationalizes the 

data. This is Varian’s Theorem 3 (1984). It had been shown that Condition (2) is a necessary and 

sufficient condition for profit maximization (Samuelson, 1947; Hanoch and Rothschild, 1972; 

Varian, 1984). Silva and Stefanou (2003) also provide a proof of these two conditions for a 

dynamic cost minimization rule. 
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ESSAY  2 - THE DEMAND FOR ALCOHOLIC BEVERAGES IN 

THE U.S: AN ERROR CORRECTION APPROACH 

1. INTRODUCTION 

1.1. Problem Statement  

There is a much research that investigates the consumption of alcoholic beverages due to the 

economic and social significance of these commodities.  From a social point of view, driving 

under the influence of alcohol is a serious issue. There are also health concerns associated with 

the consumption of alcoholic beverages in terms of physical and physiological damage to the 

consumer as well as loss of productivity due to excessive intake of alcohol.  However, 

consumption of alcoholic beverage generates revenue for the government, generally in terms of 

sales tax and sin taxes. If consumed responsibly, alcoholic beverages are sources entertainment. 

Because of the reasons mentioned above, the analysis of demand for alcoholic beverages has 

received considerable attention in Britain, Canada, Australia, United States and Ireland (Thom, 

1984; Duffy, 1987; Selvanathan, 1991; Nelson and Moran, 1995; Wang et al., 1996; 

Andrikopoulous et al., 1997; Blake and Nied, 1997; Larivirea, Larueb, and Chalfant, 2000).  For 

example Heien and Pompelli (1989) modeled alcoholic beverage demand as a system including 

non-alcoholic beverages by specifically taking into account the effect of demographic variables . 

Their results indicated that demographic effects play an important role in determining 

consumers’ alcoholic beverage consumption decisions.  In another study, Lariviere, Larueb, and 

Chalfant, (2000) discovered the ineffectiveness of advertising in enlarging markets in Ontario, 

and that the estimated demand elasticities were sensitive to the specification of the advertizing. 
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They also found that the effectiveness of advertising varied across beverage types.  In general, 

the majority of previous studies on demand of alcoholic beverages were examined under static 

model specifications. However, consumers’ adjustment in demand in response to changes in 

price, expenditure, and other factors is usually smaller in the short run than in the long run, 

especially for the consumption of goods like alcoholic beverages and tobacco products. Thus, a 

model incorporating this dynamic demand behavior is more appropriate for alcoholic beverages. 

In one of their classic paper, Deaton and Muellbauer (1980a) developed a static Almost 

Ideal Demand System (AIDS) model to explain consumers’ behavior in terms of budget share 

equations as function of prices and real expenditures. The parameter estimates from this static 

model specification does not allow short-run elasticity measures to differ from the long-run 

estimates. Attempts have been made to add more reality to consumer decisions over time and 

capture intertemporal dynamics in the AIDS model by recognizing the time series properties of 

the data (Johnson et al., 1992; Balcombe and Davis, 1996; Karagiannis and Velentzas, 1997; 

Karagiannis et. al, 2000; Coulson et. al, 2001; Eakins and Gallagher, 2003). These studies show 

that the short-run estimates do differ from their long-run counter parts. These studies are 

responses to the suggestion made by Deaton and Muellbauer (1980a) that the AIDS model in its 

static form may not satisfactorily explain consumers’ behavior.  

The intertemporal adjustment behavior of alcoholic beverage consumption has not been 

adequately addressed to account for an evolution of possible long term relationship 

(cointegration) of the economic variables. Given that most time series data are first-order 

integrated, use of first differenced series can result in a stationary demand model and then 

dynamic regression models may be specified. However, this differencing approach may 

eliminate the opportunity to estimate possible relationships between the levels of the dependent 
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and independent variables. In such a situation, the use of an error correction approach is 

recommended (Engle and Granger, 1987; Davidson and Mackinnon, 1993).  

Karagiannis et al. (2000) made the case that based on the time series properties of the 

data and as long as cointegration between the dependent and a linear combination of independent 

variables is ensured, an error correction mechanism for the AIDS model can be established. The 

evidence of cointegration between budget shares, log of prices, and log of total real expenditure 

in U.S for alcoholic beverages (beer, wine, and distilled spirits) is already supported with a study 

conducted by Coulson et al., (2001) using quarterly U.S. data as well as in a similar study 

conducted in Ireland by Eakins and Gallagher (2003). This latter study found that beer, wine, and 

distilled spirits had price inelastic demand in the short run, with the demand for wine switching 

from being price inelastic in the short run to price elastic in the long run.  

The exogeneity of explanatory variables in a demand system may have a consequence on 

the efficiency of parameter estimates. When applying an error correction approach, the 

exogeneity of prices and real expenditures are not assumed to be known a priori (Fanelli and 

Mazzocchi, 2002); especially when estimating a conditional demand system using time-series 

data.  Research suggests that the potential endogeneity of prices and real expenditures need to be 

examined (LaFrance, 1991) because these have consequences on the efficiency of system 

parameter estimates. It is well established that when explanatory variables are endogenous, that 

is when the explanatory variables and error terms are correlated, then Ordinary Least Squares 

(OLS) gives biased and inconsistent estimates of the causal effect of an explanatory variable on 

the dependent variable.  
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1.2. Objective  

This essay aims to investigate the existence of long-run equilibrium relationships 

between economic variables that influence alcohol consumption. The specific objectives of the 

essay are to: 

1. Examine whether alcohol budget shares, prices and expenditures are cointegrated, and 

if so apply error correction approach to model dynamic demand model.  

2. Inspect the exogeneity of prices and real expenditure in a conditional alcoholic 

beverages demand model. 

1.3. Conceptual framework 

1.3.1. Utility Function and Separability of Utility Function  

Assume that a utility function (U ) represents a continuous, locally non-satiated 

preference on LR+ , and differentiable function. The continuity property of the utility function 

implies that consumer preferences cannot exhibit sharp “jumps” in the preferences of elements 

(Mas-Colell et al., 1995). Furthermore, assume that the consumer’s objective is to maximize 

utility by choosing the existing affordable consumption bundle.  Formally, given a vector of 

prices (p >> 0) and wealth level (w > 0), the consumer’s most preferred consumption bundle can 

be stated as a utility maximization problem, i.e.  

0≥xMax  )(xU   

s.t. wpx ≤  
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It follows that the optimal demand correspondence (or function, if single-valued) for the 

consumer can be expressed as a function of prices and given wealth , i.e.  ),(* wpx , known as the 

Marshallian demand correspondence/function, or the ‘uncompensated’ demand 

correspondence/function. Unlike the Hicksian demand function described under expenditure 

minimization, that requires the optimization analysis to maintain a certain level of utility, the 

Marshallian analyses does not require a particular adjustment or “compensation” via 

wealth/income to changes in prices to maintain  a given level of utility and hence the name 

‘uncompensated’ demand function. 

 Now, consider an individual whose preferences are represented by a utility function with 

m number of goods. A direct utility function expressed as ),...,,...,( 1 NG qqqv is said to exhibit 

“weak separability” if there exists a partition of the m  goods into n  subsets, n functions )( ii qv , 

and a function V such that  

)](),...,(),...,([)( 11 NNGG qvqvqvfqV =   

where 2≥n and iq is the vector of goods in the thi subset.  This utility function is weakly 

separable if and only if the marginal rate of substitution involving two goods from the same 

subset depends only on the goods in that subset. A necessary and sufficient condition for weak 

separability is that the marginal rate of substitution between any two goods within a group is 

independent of goods outside the group.  
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1.3.2. Expenditure Minimization Problem 

The expenditure minimization problem is the dual to the utility maximization problem. 

Instead of maximizing utility for a given budget constraint, one can consider the dual problem of 

minimizing the expenditures necessary to obtain a given level of utility. Thus, the consumer 

chooses the consumption bundle for which expenditure is minimized, i.e.  

0≥xMin  Xp.  

s.t.  UxU ≥)(  

The set of consumption bundles that are solutions to the expenditure minimization 

problem at prices p  and required utility U  is denoted as ),( Uph  ⊆  LR+  and we will refer to it 

as the Hicksian demand correspondence (or function, if single-valued). Hicksian demand is also 

called compensated demand, because if prices increase, expenditure is implicitly adjusted as 

needed in order to keep utility constant. But the consumption bundle x may change to make the 

increase in expenditures as small as possible. 

1.3.3. Two stage budgeting 

Another important assumption for the construction of the model in this essay is the 

assumption of weak separability. The assumption of weak separability implies a two-stage model 

for consumer behavior. This makes it attractive to empirical estimations, which narrow the focus, 

reduces the data requirements and conserves statistical degrees of freedom in empirical work 

(Swofford and Whitney, 1987). In the first stage of budgeting, the consumer allocates 

expenditures among broad categories of goods. Then, in the second stage the consumer allocates 

expenditures among the goods within each broad category based only on the relative prices of 

the goods in that category.  
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1.3.4.Theoretical restrictions of demand functions 

 

Generally, the following properties of demand function, discussed in detail in Deaton and 

Muellbauer (1980b), hold for both Hicksian and Marshallian demand functions.  

Adding Up: the total value of demand equals to the total expenditure, that is, 

),( Upph∑ = ),( pwpx∑ = w  

Homogeneity: the Hicksian demand functions are homogenous of degree zero in prices, 

and the Marshallian demand functions are homogenous of degree zero in total expenditure and 

prices together, that is, for scalar θ  

),( Uphi θ = ),( Uphi  and ),( pwx = ),( pwg θ  

Symmetry: the cross price derivatives of the Hicksian demands are symmetric, that is, for 

all ji ≠  

i

j

j

i

p
Uph

p
Uph

∂

∂
=

∂
∂ ),(),(  

Negativity: the n-by-n matrix formed by the elements 
i

j

p
Uph

∂

∂ ),(
is negative semi-

definite. 
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1.4. Summary of Problem Statement, Objectives and Conceptual Framework  

 

Alcoholic beverage demand has been studied in many countries. The majority of those 

studies adopt the specifications of static models, assuming the parameter estimates remain 

constant over time. However, consumers’ adjustment in demand in response to changes in price, 

expenditure, and other factors may be smaller in the short run than in the long run, especially for 

the consumption of goods like alcoholic beverages and tobacco products. The exogeneity issue 

of prices and real expenditure has largely been overlooked in previous studies on U.S. alcohol 

demand. 

This essay aims to investigate the existence of long-run equilibrium relationships 

between economic variables that influence alcohol consumption. The specific objectives of the 

essay are to:1) Examine if the alcohol budget shares, prices and expenditures are cointegrated, 

and if so apply error correction approach to model dynamic demand model, and 2)Examine the 

exogeneity of prices and real expenditure in a conditional alcoholic beverages demand model. 

 The consumer’s utility maximization problem and expenditure minimization 

problems are briefly reviewed to lay the conceptual framework for the subsequent demand 

models to be developed. The importance of the assumptions of weak separability and two stage 

budgeting are also briefly highlighted in view of the empirical estimation of demand models. 

Theoretical restrictions that pertain to the conditional demand system are also reviewed. 

2. MODELING APPROACH 

Our modeling strategy assumes that the utility function is weakly separable. We also 

assume two-stage budgeting of household consumption decisions whereby alcoholic beverage 
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consumption is weakly separable9

 The assumption of weak separability allows the utility function to be partitioned into at 

least two subsets, one including alcoholic beverages and another one for all other goods. In this 

instance, the demand for a good in a particular subset can he expressed as a function of the prices 

of the goods in that subset and the level of expenditure spent on those goods (Pollak and Wales, 

1992). The prices of goods belonging to the other subset and the level of expenditure spent on all 

subsets influences the demand for a good in a given subset only through the level of expenditure 

allocated to the given subset. Weak separability is not a sufficient condition for treating 

expenditures of a given subset as exogenous (LaFrance, 1991). Hence, the estimation of 

conditional demand systems should endogenize subset expenditures.  

 from the consumption of all other items. In the first stage, 

consumers decide how much of their total expenditure will be allocated to alcoholic beverages, 

and then, in the second stage, the demand for each of the alcoholic beverage is determined by the 

prices of the individual beverage and expenditures. 

Formally, the implication of the weak separability assumption is that the direct utility 

function of each consumer can be written in the form: 

)](),...,(),...,([)( 11 NNGG qvqvqvfqv ==µ          (1) 

                                                 

9 Wang et al. (1996) tested the weak separability between non-alcoholic drinks and alcoholic beverages 

using a level Rotterdam model. Their results failed to reject the null hypothesis that alcoholic beverages are weakly 

separable from other drinks. 
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where )(qv  is a strictly quasi-concave, increasing and differentiable function, q is the 

commodity vector, ƒ is some increasing function and NG vvv ,,1 are well-behaved subutility 

functions (e.g utility derived from the consumption of food items, leisure, alcohol etc.) with non-

overlapping subvectors NG qqq ,...,,1 .   

A utility function of the form of equation (1) gives rise to second stage Marshallian 

demands for all goods i of group G of the form:  

),(. GGhGii PXgq =          (2) 

where GX is expenditure on group G  and GP  is the vector of within-group prices. For 

example, GX  is total expenditures on alcoholic beverage and PG is the vector of prices for beer, 

spirits and wine. The second stage demands are a result of the maximization of Gv  subject to 

Gii Xqp =∑  and have all the usual properties of demand functions because they are derived 

from the standard utility maximization procedure. The function ),(. GGhGii PXgq = is a 

conditional demand function for the thi good. It is conditional demand function because the 

expenditure on all alcoholic beverages ( h ) is assumed to be preallocated and therefore, weak 

separabilty implies that expenditure and the prices of goods other than the subset that contains 

alcoholic beverages enter the demand function  for alcoholic beverages only through their effect 

on total expenditures on alcoholic beverages. The utility maximizing values of iq are 

independent of the preallocated goods. 
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2.1. The Almost Ideal Demand System  

This essay builds on the static model developed by Deaton and Muellbauer (1980a), 

commonly referred to as the Almost Ideal Demand System (AIDS). This model is a flexible 

demand specification obtained from the PIGLOG (price-independent generalized logarithmic) 

expenditure function consistent with economic theory. The alcohol expenditure function in 

logarithmic form is defined as 

)(ln)}(ln{)1(),(ln pbVpaVVpe +−=       (3) 

where e  is the minimum level of expenditure that is necessary to achieve utility level V  

at given prices, and a( p) and b( p) can be regarded as the expenditures on subsistence and bliss 

respectively defined as: 
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where the ith commodity price is denoted by ip   and ij
*γ  is the parameter on the natural 

log (ln) of the ith commodity price and the natural log of the jth commodity price. Applying 

Shephard’s Lemma to the expenditure function (i.e. differentiating with respect to ln ip ), and 

rearranging, the expenditure shares ( iw* ) on each type of alcoholic beverage in terms of total 

alcohol expenditure are:  

iij
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P
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where ijγ  is the parameter on the log of the jth alcoholic beverage price, iu  is an error 

term, and iπ  is the parameter on the log of expenditure ( *X ) divided by P, where P is the price 

index given by: 

j

N

j
iij

N

i
i

N

i
pppP lnln

2
1lnln

111
0 ∑∑∑

===

++= γα      (7) 

and 

 ( )**

2
1

jiijij γγγ +=          (8) 

The use of a non-linear price index P in equation (7) raises some empirical difficulties, 

especially when aggregate annual time-series data are used. Deaton and Muellbauer (1980a) 

suggest the use of the Stone Geometric Price Index to overcome this difficulty. This index can be 

formulated as follows: 

it

N

i
it pwP lnln

1
∑
=

=          (9) 

Economic theory requires that the demand functions satisfy the adding up, homogeneity 

and symmetry restrictions. The restriction on adding up implies the alcoholic beverage budget 

shares add up to total alcohol expenditure ( 1=∑
i

iw ), which can be imposed by not estimating 

one of the equations in the demand system. This implies 0=∑
i

iπ  and 0=∑
i

ijγ   and 1=∑
i

iα .  

The homogeneity restriction requires 0=∑
j

ijγ  implying the demand functions are homogenous 

of degree zero in prices and real expenditure, while symmetry implies jiij γγ = . Homogeneity of 
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degree zero implies that the feasible consumption bundle in the utility maximization problem 

does not change when all prices and wealth (income) are multiplied by a constant 0>α . 

  The compensated ( ij
He ) and uncompensated ( ij

Me ) price elasticities are 

computed as follows:     

ijj
i

ij
ij

H w
w

e δ
γ

−+=           (10) 

 ijj
i

i

i

ij
ij

M w
ww

e δ
πγ

−−=          (11) 

where δ  is the Kronecker delta defined equal to 1 if ji = and 0 if ji ≠ . 

 The elasticity of alcoholic beverage demand with respect to the real expenditure 

on any type of alcoholic beverage is given by: 

i

i
i w

π
η += 1                      (12) 

Empirical evidence shows that many economic time series are not stationary. However, if 

the nonstationary economic variables of interest are cointegrated, there exists a long-run 

relationship between them. Furthermore, it can be established that the short-run dynamics can be 

described by an error correction form (Hendry et al., 1984; Engle and Granger, 1987).  As long 

as there is evidence of cointegration, an error correction form for the AIDS model can be 

constructed to characterize the short run adjustment process towards the long run equilibrium 

relationships (Karagiannis and Velentzas, 1997). 
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If the data series are integrated, we normally can transform the data into stationary series 

by differencing. Given that most time series data are first order integrated, first differencing of 

the AIDS model can often transform it to stationary model, and then dynamic regression models 

may be specified.  This differencing approach may eliminate the opportunity to estimate possible 

relationships between the levels of the dependent and independent variables. In such a situation, 

Davidson and MacKinnon (1993) warn that using differenced data simply is often not an 

appropriate strategy.  

 Building on the concept of cointegration, the single equation error correction model 

specified by Davidson and MacKinnon (1993) can be applied to the AIDS model in a system as 

follows10
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tiv , ~IID (0, 2σ )         (13) 

The vector tiz , includes a constant term and other independent variables. This model can 

be modified to incorporate age group effects which may be important in alcoholic beverage 

consumption. We can incorporate age variables by defining  ∑
=

+=
m

k
kikiti dZZZ

1
0,    ni ,...,1=  

where 0iz  and the ikz  are parameters to be estimated and the kd  are age variables (Heien and 

                                                 

10 Balcombe and Davis (1996) and Karagiannis et al. (2000) were among the first to use the error correction 

form in the AID system model. 
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Pompelli, 1989).To capture dynamics sufficiently, we may include more lags of the price and 

real expenditure variables and increasing the lag on the error-correcting terms.   

In most cases, jλ and iη  in equation (13) will not be known. One way to estimate 

dynamic AIDS model to be of an error correction form of the static AIDS model (Karagiannis et. 

al, 2000; Eakins and Gallagher, 2003), as in the Engel-Granger two step method (Engel and 

Granger, 1987), which specifies the disequilibrium component separate from the long-run 

equilibrium and thus gives short-run relationship between the demand variables. In this dynamic 

version, the error term tiu ,  from equation (7) is calculated as the equilibrium error in the short-

run which is then used to bind the short-run adjustment behavior of the dependent variable to its 

long-run value. The disequilibrium tiu ,  can be computed as: 
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Therefore, the dynamic AIDS model is given by: 
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where ∆  represents the first difference operator,  1−itu  is the estimated error terms lagged 

from the AIDS cointegrating equation (equation 14), *w  and *X  are defined as before. The 

vector of age variables is represented by D and the price of each alcoholic beverage is 

represented by jp . The problem with the Engel-Granger two-step procedure is that it often does 

not work well in finite samples as evidenced by a number of Monte Carlo experiments (Banerjee 

et. al, 1986, 1993). Referring to the estimates from the Engel-Granger two-step method applied 
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in finite samples, Davidson and MacKinnon, (1993 pp. 724) state that, “The problem is that the 

estimates are severely biased. The problem appears to be least severe when the R2 of the 

cointegrating regression is close to 1, as it must be when the sample size is sufficiently large. 

Thus a relatively low value of the R2 from the cointegrating regression should be taken as a 

warning that the two step procedure may not work well.”  

Davidson and MacKinnon (1993) provide a general model as an alternative to the Engel-

Granger two step procedures. We modify this model specification to suit the estimation of the 

AIDS model as:  
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in which the new parameters ijδ and iθ  are - ijiλβ  and - iiηβ  respectively. The iβ  is the 

speed of adjustment (short run multiplier) to the long run equilibrium. If iβ is large or closer to 

one in absolute value then there is a rapid adjustment, i.e. the disturbance quickly disappears and 

we are back along the long-run path. The smaller the iβ  is, the slower the adjustment to long run 

equilibrium. In turn, the long run parameters of interest,  ijλ  and iη , can be estimated by 

iijij βδλ ˆ/ˆˆ −=  and iii βθη ˆ/ˆˆ −=  respectively. 

2.2. Endogeneity Issues 

When estimating a conditional demand system using time-series data, as is true in our 

case, the potential endogeneity of prices and real expenditure needs to be examined (LaFrance, 

1991). The problem of endogeneity occurs when an explanatory variable is related to the error 

term in the population model of the data generating process. When explanatory variables are 
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endogenous, Ordinary Least Squares (OLS) gives biased and inconsistent estimates of the causal 

effect of an explanatory variable on the dependent variable.  

 

2.3. Instrumental Variable (IV) Estimation  

 

Suppose we have the following linear equation as  εβ += Xy  such that if observations 

on the explanatory variables (X) are unrelated to draws from the error terms ( ε ), then the OLS 

estimators have the desirable properties of being consistent estimators. But if there is strong 

correlation between the Xs and sε , then in general the OLS estimators are not consistent 

estimators of β s, because of endogenous regressors.   

We want to investigate whether one or more of the stochastic regressors (X) is 

contemporaneously correlated with the error vector ε . The presence of endogenous regressors 

has an effect on the parameter estimates and instrumental variables (IV) techniques are required.   

The instrumental variable should be one that is uncorrelated with the error term but correlated 

with the potentially endogenous variable (Maddala, 2001). The IV estimator uses one or more 

instruments to predict the value of the potentially endogenous regressor. The predicted values are 

then used as regressors in the original model. We can develop the IV estimators in a general form 

as follows11

                                                 

11 For more details on the IV estimators and their properties see Griffiths et al. (1993 Pp 472-475); 

Davidson, R. and MacKinnon , (1993, Pp. 215-224) 

: 
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Let matrix Z contains the set of all the variables that could serve as instrument regressors.  

The simple IV estimator is then of the form: 
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The IV estimation is done in two steps:  First regress the endogenous variable(s) on all 

the exogenous variables.  Second, use the fitted values from the first step, plus the actual values 

of any regressors that serve as their own instruments, as regressors in the original equation.  This 

procedure is referred to as Two-Stage Least Squares (TSLS). Given that the instruments are 

correlated with the endogenous variable but uncorrelated with the error term, the IV estimates of 

the effect of the endogenous variable are consistent. 

 

2.4. Durbin-Wu-Hausman Exogeneity Tests 

A test first developed by Durbin (1954) and later extended by Wu (1973) and Hausman 

(1978), commonly referred to as DWH test, provides a procedure to test the null hypothesis that 

the error terms are uncorrelated with all the regressors against the alternative hypothesis that they 

are correlated with some of the regressors, and not with the instrumental variables.  Applying 

Davidson and MacKinnon’s (1993, 2004) notation, denote the matrix of the instrumental 

variables by the vector Z and we can formally put the null and alternative hypotheses for the 

DWH test as: 
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:0H εβ += Xy , ),,0(~ 2IIID σε  0)( =εTXE  

:1H εβ += Zy , ),,0(~ 2IIID σε  0)( =εTZE  

Under the null hypothesis, both the OLS estimator and the IV estimator IVβ̂ are 

consistent, while under the alternative hypothesis only the IVβ̂ is consistent. That is to say under 

the 0H  plim ( IVβ̂ - OLSβ̂ ) is equal to zero and under the 1H , it is different from zero. Hence the 

DWH test is essentially testing whether the difference ( IVβ̂ - OLSβ̂ ) is significantly different from 

zero or not using the given sample. The following derivations12

 

, after Davidson and MacKinnon 

(1993), called vector of contrast can be developed: 

IVβ̂ - OLSβ̂  = yZXZ TT 1)( − - yXXX TT 1)( −  

  = yXXXXZyZXZ TTTTT 11 ))((()( −− −   

  = )))(((()( 11 yXXXXIZXZ TTTT −− −  

Now, denoting the expression in the middle  ))(( 1 TT XXXXI −−  by XM , the above 

equation reduces to: 

IVβ̂ - OLSβ̂ = )()( 1 yMZXZ X
TT −  

Using the methods outlined in Davidson and MacKinnon (1993, 2004), the logarithm of 

price indices/real expenditure is first regressed on all the other right hand side variables in the 

demand system and a set of the instrumental variables. The demand in budget share form is then 

estimated with the residual from this regression as an additional regressor. If the estimated 

coefficient of the residual is significantly different from zero, then the null hypothesis of 

                                                 

12 The notations used here are modified to be consistent with previous notations introduced in this essay. 
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exogenous prices/real expenditure is rejected. An F-test is applied to determine whether the 

vector of the residuals in the second stage regression are significantly different from zero or not.   

2.5. Testing for Cointegration  

The concept of cointegration introduced by Granger (1981) and Granger and Weiss 

(1983) and elaborated in Engle and Granger (1987) relates short run dynamics with long run 

equilibrium. More generally, if a linear combination of a set of I (1) variables is I (0), then the 

variables are said to be cointegrated. This implies that these variables are related with one or 

more long run relationships, although they may wander from these relationships in the short run. 

Engle and Granger (1987) give the following formal definition of cointegration: 

Definition: The components of the vector xt are said to be co-integrated of order d, b, 

denoted xt CI~ (d, b), if (i) all components of xt are I (d); (ii) there exists a vector Π  so that 'Π xt 

~I (d -b), b>0. The vector Π   is called the co-integrating vector. 

If xt  has N>2 components, then there may be more than one cointegrating vectorΠ . It is 

then possible for several equilibrium relations to regulate the joint behavior of the variables. If 

there are exactly r linearly independent co-integrating vectors, with r≤N - 1, then these can be 

gathered together into the N x r matrixΠ . This r is the rank of Π and is termed as co-integrating 

rank of xt (Engle and Granger, 1987). 

 It is important to run unit root tests on the variables to check whether they are I(1) or not. 

Once the order of integration of the variables is established, then we proceed to test for 

cointegration. One method to test for cointegration is the residual based method (Engle and 

Granger, 1987). This involves running a regression of the form as in equation (6) and uses the 

estimated residuals as in equation (13) as a proxy for the true residuals. We then apply unit root 
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tests on the estimated residuals. Rejecting the null hypothesis of a unit root is evidence in support 

of cointegration. 

A second approach is to use a dynamic modeling procedure proposed by Banerjee et al. 

(1986) and Kremers et al. (1992). This procedure uses the lagged residuals from the OLS 

regression of equation (6) to test for cointegration in the ECM as in equation (14). In this case, 

the null hypothesis that the coefficient of the EC term ( iβ ) is not statistically different from zero 

is tested using a conventional t-test. If the null hypothesis is rejected, then the variables under 

consideration are cointegrated.  

A third approach is the Johansen’s maximum likelihood estimates of the cointegrating 

relationships (Johansen, 1988). In general, for a group of cointegrated variables, we can write the 

ECM as: 

 t
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j
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=
−−

1

1
1        (17) 

when Π  has less than full rank but is not equal to zero, Π  can be decomposed as 

'αβ=Π which is the cointegration matrix, where α and β  are n x r matrices. We can interpret 

α  as the speed of adjustment towards long run equilibrium. The Johansen procedure (1988) 

requires calculation of eigenvalues of the matrixΠ  which implies that the number of 

cointegrating vectors for the elements of xt depends on the rank ofΠ . There are two likelihood 

ratio tests for determining the rank ofΠ  proposed by Johansen. 

The first test, called the eigenvalue trace test, is used to test the null hypothesis that there 

are less than or equal to r cointegrating vectors versus a general alternative hypothesis. We can 

compute the Likelihood Ratio (LR) test by 



90 

∑
+=

−−
n

ri
iT

11

)1ln( λ          (18) 

here T is the number of observations and nλλλ >>> ...21 are the eigenvalues from the 

estimated Π  matrix. 

The trace test is conducted as follows:  

i. H0:  r=0, (at most zero cointegration)         cannot be rejected →stop 

          Rejected →next test 

ii. H0:  r<=1, (at most one cointegration)       cannot be rejected →stop→r=1 

Rejected →next test 

iii. H0:  r<=2, (at most two cointegration)      cannot be rejected →stop→r=2 

Rejected →next test 

The second test which we use in this study, called the maximal eigenvalue test, has the 

test statistic given by 

)1ln( maxλ−−T          (19) 

Where maxλ  is maximum eigenvalue, after the estimated eigenvalues of Π  are sorted in 

descending order. The null hypothesis is that there are r cointegrating vectors versus the 

alternative hypothesis of r + 1 cointegrating vectors. The maxλ  test is preferred to the Trace test 

due to its sharper alternative hypothesis. 

 The maxλ  test is conducted as follows:  
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H0: r= r 0 Vs. H1: r= r 0 +1 

i. H0: r=0   Vs.   H1: r=1; if reject H0 then 

ii. H1: r=1   Vs.    H2: r=2; if reject H1 then 

iii. H2: r=2   Vs.   H3: r=3; … 

iv. Hk-1: r=k-1   Vs.   Hk: r=k 

In situations where there are multiple explanatory variables and where there is a possibility of 

multiple cointegrating vectors exist, Johansen’s maximum likelihood cointegrating technique is 

preferred (Johansen, 1988; Johansen and Juselius, 1990). 

 

2.6. Summary of modeling approach 

 

This part begins by assuming weak separabilty of consumer preferences and two stage 

budgeting. The assumption of weak separability is appealing to empirical researchers because 

weak separability implies a two-stage budgeting for consumer behavior. In the first stage, the 

consumer allocates expenditures among the various broad categories of goods. In the second 

stage the consumer allocates expenditures among the goods within each broad category based 

only on the relative prices of the goods in that category. 

The static Almost Ideal Demand System (AIDS) developed by Deaton and Muellbauer 

(1980a) is adopted to construct the dynamic demand model of an error correction form. This 

demand model is attractive for many reasons. It is flexible demand specification obtained from 

expenditure function consistent with economic theory. It satisfies exactly the axioms of choice 
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and it is easy to estimate.  During empirical estimation, the problem of using a non-linear price 

index in the conditional demand model can be overcome using the Stone Geometric Price Index. 

   Deaton and Muellbauer (1980a) observed that the rejection of homogeneity in demand 

analysis in a static set up may be due to insufficient attention to the dynamic aspects of consumer 

behavior. Many empirical studies also reveal that the short run elasticity estimates do differ from 

their long run counterparts. On top of this, empirical evidence also shows that many economic 

time series are not stationary. If the nonstationary economic variables of interest are 

cointegrated, there exists a long-run relationship between them. Furthermore, it can be 

established that the short-run dynamics can be described by an error correction form. As long as 

there is evidence of cointegration, an error correction form for the AID system model can be 

constructed to characterize the short run adjustment process towards the long run equilibrium 

relationships.  

Building on the concept of cointegration, the single equation error correction model 

specified by Davidson and Mackinnon (1993) can be successfully applied to the AID system 

model in a system as in equation (1). In most empirical estimations, the dynamic AID system 

modeled to be of an error correction form of the static AID system model as in the Engel-

Granger two step method which specifies the disequilibrium component separated from the long-

run equilibrium and thus gives short-run relationship between the demand variables. The error 

term tiu ,  from a static model, is calculated as the equilibrium error in the short-run which is then 

used to bind the short-run adjustment behavior of the dependent variable to its long-run value. 

The problem with the Engel-Granger two step procedures is that it often does not work well in 

finite samples as evidenced by a number of Monte Carlo experiments.  
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Davidson and Mackinnon (1993) provide a general model as an alternative to the Engel-

Granger two step procedures. Based on their alternative procedure, we specify a dynamic AID 

system model with an error correction form for the demand for alcoholic beverages as in 

equation (4).   

Based on the concept of cointegration, short run dynamics are related with long run 

equilibrium. Generally, if a linear combination of a set of I (1) variables is I (0), then the 

variables are said to be cointegrated. This implies that these variables are related with one or 

more long run relationships, although they may wander from these relationships in the short run. 

Three methods are suggested in conduct cointegration tests. One method to test for cointegration 

is the residual based method. A second approach is to use a dynamic modeling procedure. A 

third approach which is used in this study is the Johansen’s maximum likelihood estimates 

(MLE) of cointegrating relationships. In situations where there are multiple explanatory variables 

and where there is a possibility of multiple cointegrating vectors exist, Johansen’s maximum 

likelihood cointegrating technique is preferred (Johansen, 1988; Johansen and Juselius, 1990). 

The need to examine the potential endogeneity of prices and real expenditure especially 

in a conditional demand modeling is emphasized, because the presence of endogenous regressors 

has an effect on the parameter estimates. The Durbin-Wu-Hausman test, commonly referred to as 

DWH test, provides a procedure to test the null hypothesis that the error terms are uncorrelated 

with all the regressors against the alternative that they are correlated with some of the regressors, 

and not with the instrumental variables.  Applying the methods outlined in Davidson and 

MacKinnon (1993), the logarithm of price indices/real expenditure is first regressed on all other 

right hand side variables in the demand system and a set of the instrumental variables. The 

demand in budget share form is then estimated with the residual from this regression as an 
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additional regressor. If the estimated coefficient of the residual is significantly different from 

zero, then the null hypothesis of exogenous prices/real expenditure is rejected. 

3. DATA AND METHODS 

 

A time series data collected from the U.S. Department of Agriculture, Economic 

Research Service (ERS) from 1979 to 2006 were used.  The three alcoholic beverages are beer, 

wine and distilled spirits. The ERS food availability (per capita) data system includes three 

distinct but related data series on food consumption. The data serve as popular proxies for actual 

consumption. CPI on price was obtained from U.S. Consumer Expenditure Survey and Bureau of 

Labor Statistics13

Researchers noted that alcohol use declines with age, especially among the elderly, and 

the proportion of abstainers increases with age for both sexes (Hilton and Clark 1987) and with 

changes in the proportion of all age groups. The U.S. drinking patterns are likely to be affected 

by a decrease in the college-aged population that began in 1981 and by an increase in the elderly 

population. Nelson (1997) suggested empirical studies that examine average per capita 

consumption should include variables that capture the changes taking place in both tails of the 

population age distribution. In this paper, we will include two population age distributions 

(Figure 2-1).  These variables might help capture the change in alcoholic beverage consumption 

in the U.S and might enhance the explanatory power of the demand system model. Data for these 

variables were obtained from Population Division, U.S. Census Bureau. 

. 

                                                 

13 The Bureau of Labor Statistics uses retail prices to compute the CPI- http://www.bls.gov/opub/hom/pdf/homch17.pdf 
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We test for cointegration of the budget shares and the price indices and the total real 

expenditure employing Johansen’s maximum likelihood cointegration analysis. The AID system 

model was estimated as two share equations for beer and spirits and the wine share equation was 

dropped when estimating a set of share equations. The estimation was done using both the 

multivariate regression and iterated Seemingly Unrelated Regressions (SUR). This procedure 

adjusts for cross-equation contemporaneous correlation and consequently takes into account the 

optimization process behind the demand system. Eales and Unnevehr (1989) noted that assuming 

the AID system type preferences, SUR estimates of the AID system model are appropriate when 

prices are predetermined and quantities endogenous. A constant term was included in the 

regression equations with first differences. While applying this procedure if the coefficient is 

found to be significant, then it may imply a linear trend in the levels original equation (Maddala, 

2001; Deaton and Muellbauer 1980a).  Price and expenditure elasticities were estimated for three 

different categories of alcohol: beer, spirits and wine. These elasticities are estimated for both 

short run and long run.  

 

3.1. Summary of data and methods 

A time series data set collected by the U.S. Department of Agriculture, Economic 

Research Service (ERS) from 1979 to 2006 is used.  The three alcoholic beverages are beer, 

wine, and distilled spirits. Consumer price index (CPI) is obtained from U.S. Consumer 

Expenditure Survey and Bureau of Labor Statistics.  In this paper, we include two variables for 

age distributions. These variables might help capture the change in alcoholic beverage 
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consumption and might enhance explanatory power of the demand system model. Data for these 

variables were obtained from Population Division, U.S. Census Bureau. 

We test for cointegration of the budget shares, the price indices, and the total real 

expenditure by using Johansen’s maximum likelihood and the residual based cointegration 

analysis. The AID system model is estimated as two share equations for beer and spirits and the 

wine share equation is dropped when a set of share equations is estimated. The estimation is 

conducted using both the multivariate regression and iterated Seemingly Unrelated Regressions 

(ITSUR). Price and expenditure elasticities are estimated for three different categories of 

alcohol: beer, spirits and wine. These elasticities are estimated for both short run and long run. 
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4. EMPIRICAL RESULTS 

 

 4.1. Analysis of the Endogeneity/Exogeneity tests for Prices Indices and Real 

Expenditure 

We run the exogeneity tests for price indexes and total real expenditure using 

instrumental variables (IV) method outlined above. We tested individually and jointly for both 

variables. Under the assumptions that the instruments are correlated with the endogenous 

explanatory variable but have no direct association with the outcome under study, we have used 

all-less-food–and-beverage /energy/Medicare CPI measures one at a time as instruments for 

alcoholic beverage price indices; and per capita median income 2000 dollar and trend as 

instruments for real expenditure.  

4.1.1. All less food and beverage CPI, per capita median income and trend as instruments 

For the Beer equation, when the test was conducted treating both variables jointly, both price 

index and real expenditure were exogenous at an acceptable levels of significance. For wine, in 

both independent and joint tests, the null hypothesis that both price index and real expenditure 

are exogenous cannot be rejected at all acceptable levels of alpha. When independently tested, 

both wine price index and real expenditure seem exogenous variables. The result is a little 

different for Spirits, in that when the test is conducted treating both variables simultaneously, the 

null hypothesis that both price index and real expenditure are exogenous was strongly rejected. 

In the first stage regression for the predicted value of spirits price and real expenditure, the F test 

for the joint significance of the coefficients was rejected for both the predicted values of spirits 
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price and real expenditure. However, when independently tested, price index appears to be 

endogenous variable, whereas real expenditure seems exogenous variable.  

4.1.2. Energy CPI, per capita median income and trend as instruments 

For the beer equation, both independent and joint tests indicated that price index and real 

expenditure appears to be exogenous variables, at an acceptable levels of significance. For the 

spirits equation, when the test was conducted for both variables simultaneously, the null 

hypothesis that both price index and real expenditure are exogenous was strongly rejected. 

Investigation of the first stage regressions may provide more information on the quality of 

instruments, such as the F test for the joint significance of the coefficients was rejected for the 

predicted values of spirits price while it failed to reject the joint significance of the coefficients 

for the predicted value of real expenditure. In the case of wine equation, the results were in 

conclusive in that when independently tested, both wine price index and real expenditure seem 

exogenous variables, where as in the joint test , the null hypothesis that both price index and real 

expenditure are exogenous cannot be rejected at all acceptable levels of alpha. In the first stage 

regression for the predicted value of spirits price, The F test for the joint significance of the 

coefficients was strongly rejected, while for the predicted value of real expenditure, the joint non 

significance of the coefficients was rejected at all acceptable levels of alpha.  

 

4.1.3. Medicare CPI, per capita median income and trend as instruments 

For beer, the joint test showed that both price index and real expenditure were exogenous 

at an acceptable level of significance. In the case of the spirits equation, when the test is 

conducted for both variables simultaneously, the null hypothesis that both price index and real 
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expenditure are exogenous cannot be rejected 1% and 5 % level of significance, but was rejected 

at 10% alpha level. In the first stage regression for the predicted value of spirits price, the F test 

for the joint significance of the coefficients was strongly rejected, while for the predicted value 

of real expenditure, the joint significance of the coefficients cannot be rejected at acceptable 

levels of significance. In the wine equation, similarly when the test is conducted treating both 

variables simultaneously, the null hypothesis that both price index and real expenditure are 

exogenous cannot be rejected at all acceptable levels of alpha. Further investigation indicates 

that, in the first stage regression for the predicted value of spirits price, the F test for the joint 

non-significance of the coefficients was strongly rejected, while for the predicted value of real 

expenditure, the joint non-significance of the coefficients cannot be rejected at acceptable levels 

of significance. 

In summary, as we have seen from the previous results analysis, the all-less-food-and-

beverage CPI used in combination with per capita median income and trend as instruments 

performed better than alternative energy CPI and Medicare CPI and because in the joint 

exogeneity tests, the F-tests are significant for both price index and real expenditure. The F test 

in the first-stage regression is a rough guide to the quality of IV estimates as suggested by Bound 

et al. (1995).  

Based on the indications of the above results, we considered the real expenditure as an 

exogenous variable, where as the price index for spirits as an endogenous variable.  

4.2. Dynamic demand specifications 

Whether or not the demand system can be modeled in the error correction form is 

determined by the existence of long run relationships between the variables in the model and the 
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appropriateness of the data series for the dynamic specifications. Applying the residual based co-

integrating test, the ADF test was used to see if the residuals appear stationary. For the beer 

equation, the ADF test showed that the null hypothesis of unit root in the residuals was rejected 

at 5% alpha level and hence the beer budget share and the price and real expenditure appear to be 

cointegrated. The same conclusion was reached for the wine equation although at 10% alpha 

level (p-value 0.0787). However, for the spirits equation, the null hypothesis of unit root in the 

residuals was not rejected at conventional alpha levels.  

Further application of Johansen’s maximum eigenvalue test revealed that the null 

hypotheses of no cointegrated relationship between the variables of interest were rejected in all 

equations. This implies that all the budget shares and the log of prices and log of total real 

expenditure are cointegrated, with more than one cointegrated vectors found in all equations, 

thus justifying the use of an error correction approach (Table 2-3). 

Using equation 15, the dynamic AID system is estimated applying an ITSUR procedure. 

In general, the adjusted R2 in the dynamic specification was much better than the static 

specification in both the beer and spirits equations. More than half of the estimated coefficients 

are found to be significant at acceptable statistical levels of significance. The log of total real 

expenditure seems to explain the budget allocation by consumers more in the long run than in the 

short run as can be seen from the higher significance level in the long run coefficients.  

In general, the equations including age group variables performed better in terms of 

goodness of fit. In each equation, the adjusted R2 was higher when these age variables were 

included. For comparison purposes, the regressions result from the static AID model without the 

age group variables is reported on table 2-11.  
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4.2.1. Long run estimates 

We run standard Augmented Dickey-Fuller (ADF) tests (Dickey and Fuller, 1981) for the 

presence of unit roots in all the data series used in the estimation of demand equations. The result 

of these tests is presented in table 2-1.  All the data series in levels have unit roots and are found 

to be nonstationary, while after first-differencing all of the data series were found to be 

stationary.  

The results of the long run coefficient estimates are presented in Table 2-4. Note that 

these results are obtained using instrumented price of spirits. Furthermore, the estimation results 

are those that are obtained using ITSUR after deleting the wine equation14

The own-price estimates for beer and spirits show a negative relationship with their 

budget shares, and the own price estimate for wine shows positive relationship with its budget 

.  Testing the 

theoretical restrictions of homogeneity for the beer equation could not be rejected at all standard 

significance levels, where as the homogeneity restriction for the spirits equation was strongly 

rejected. Symmetry restriction also could not be rejected at all standard significance levels. 

Hence, the estimation results shown in Table 2-4 are after imposing homogeneity restriction in 

the beer equation as well as symmetry restriction. Although the analysis here is made based on 

the estimation results of equation (16), we have also estimated the demand relationships 

following equation (15), the Engel-Granger two step model, for the sake of comparing this two 

model specification (tables 2-8 and 2-9). 

                                                 

14 We have run the ITSUR deleting one equation at a time for each of the alcoholic beverages, and the 

estimated results were almost the same regardless of which equation was deleted. 
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share. The total real expenditure does not seem to strongly explain the budget allocation towards 

any of the alcoholic beverages, although for beer the significance level is just slightly above the 

10% alpha level. Both age variables significantly explain the budget share of the spirits equation 

and the age group 40-60 variable also explains the beer budget share equation significantly, 

implying that the more the age proportion of the U.S in this group, the less they tend to allocate 

their budget  to beer. 

The long run uncompensated own price elasticities are -4.060  , -1.273   , -1.278  for beer, 

spirits and wine respectively and the compensated own price elasticities are -0.592, -1.265,-1.026 

for beer, spirits and wine respectively. The absolute magnitudes of the uncompensated price 

elasticities are larger than the compensated price elasticities for all three alcoholic beverages.  

The expenditure elasticities are 3.996, 0.131, and 3.377 for beer, spirits and wine 

respectively. Thus, both beer and wine appear to be luxury goods, while spirits is a necessity 

good as per the model. 

The error correction term iβ  for beer is -0.048. This implies that 4.8 % of the disturbance 

to the long-run equilibrium in the previous period is corrected or adjusted back to long-run 

equilibrium in this period. The speed of adjustment for spirits is much higher (-0.510), with 51% 

of the disequilibrium is corrected within one period (year). The speed of adjustment for wine 

similar to spirits (0.558), with 55.8 % of the disequilibrium is corrected within one period (year). 

4.2.2. Short run estimates 

Both the proportion of the age group 20 to 34 and age group 40 to 64 variables were 

significant. For the beer equation, the age group 20 to 34 was positively related with the beer 

share and the age group 40 to 64 was negatively related to the beer share. Conversely, the age 
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group 20 to 34 was negatively related with the spirits share and the age group 40 to 64 was 

positively related to the spirits share. 

4.3. Summary of Results 

Under the assumptions that the instruments are correlated with the endogenous 

explanatory variable but have no direct association with the error terms, we have used all-less-

food–and-beverage /energy/Medicare CPI measures one at a time as instruments for alcoholic 

beverage price indices; and per capita median income 2000 dollar and trend as instruments for 

real expenditure. The test results are included in table 2-1. In summary, the all-less-food-and-

beverage CPI used in combination with per capita median income and trend as instruments 

performs better than alternative energy CPI and Medicare CPI. Based on test results, we consider 

the real expenditure as an exogenous variable, while consider the price index for spirits as an 

endogenous variable.  

Whether or not the demand system can be modeled in the error correction form is 

determined by the existence of long run relationships between the variables in the model and the 

appropriateness of the data series for the dynamic specifications. Standard Augmented Dickey-

Fuller (ADF) tests for the presence of unit roots in all the data series used in the estimation of 

demand equations. The results of these tests are presented in table 2-2.  All the data series in 

levels have unit roots and are found to be nonstationary, while after first-differencing all of the 

data series are found to be stationary.   

Application of Johansen’s maximum eigenvalue test reveals that the null hypotheses of 

no cointegrated relationship between the variables of interest are rejected in all equations (table 

2-3). This implies that all the budget shares, the log of prices, and the log of total real 
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expenditure are cointegrated, with more than one cointegrated vectors found in all equations, 

thus justifying the use of an error correction approach. 

The results of the long run coefficient estimates and elasticities are presented in tables 2-4 

and 2-5 and the results for the short run model are included in tables 2-6 and 2-7. The long run 

estimation results in table 2-4 are obtained using instrumented price of spirits. Homogeneity for 

the beer equation cannot be rejected at all standard significance levels, while the homogeneity 

restriction for the spirits equation is strongly rejected. Symmetry restriction also cannot be 

rejected at all standard significance levels. Hence, we impose homogeneity and symmetry and 

obtain the estimation results in table 2-4.  

The own-price estimates for beer and spirits show a negative relationship with their 

budget shares, and the own price estimate for wine shows positive relationship with its budget 

share. The total real expenditure does not seem to strongly explain the budget allocation towards 

any of the alcoholic beverages, although for beer the significance level is just slightly above the 

10% level. Both age variables significantly explain the budget share of the spirits equation and 

the age group 40-60 variable also explains the beer budget share equation significantly, implying 

that the higher the proportion in this age group, the less they tend to allocate their budget  to 

beer. 

The long run compensated own price elasticities are -0.592, -1.265,-1.026 for beer, 

spirits, and wine, respectively. The absolute magnitudes of the uncompensated price elasticities 

are larger than the compensated price elasticities for all three alcoholic beverages. The 

expenditure elasticities are 3.996, 0.131, and 3.377 for beer, spirits and wine respectively. Thus, 

both beer and wine appear to be luxury goods, while spirits is a necessity good as per the model 
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(table 2-5). The values of price and expenditure elasticities in this paper are within the value 

range of the corresponding elasticities reported by the existing literature (table 2-10). 

The error correction term iβ  for beer is -0.048. This implies that 4.8 % of the disturbance 

to the long-run equilibrium in the previous period is corrected to long-run equilibrium in this 

period. The speed of adjustment for spirits is much quicker (-0.510), with 51% of the 

disequilibrium is corrected within one period (year). The speed of adjustment for wine is similar 

to spirits (0.558), with 55.8 % of the disequilibrium is corrected within one period (year). 

Both the proportion of the age group 20 to 34 and age group 40 to 64 variables are 

significant. For the beer equation, the age group 20 to 34 is positively related with the beer share 

and the age group 40 to 64 is negatively related to the beer share. Conversely, the age group 20 

to 34 is negatively related with the spirits share and the age group 40 to 64 is positively related to 

the spirits share. 
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5. CONCLUSION AND IMPLICATIONS 

 

The paper applied time-series econometrics for estimating an error-corrected Almost 

Ideal Demand System (AIDS) model for three alcoholic beverages (beer, spirits and wine) using 

annual data from 1979 to 2006. Assuming weak separability, the demand system is modeled at 

the second stage of a two-stage budgeting procedure based on a consumer expenditure 

minimization problem. Using Johansen’s ML test, cointegration was established for the budget 

shares and price indices and total real expenditure on the three alcoholic beverages, thus 

justifying the use of an error correction AID system model. During the empirical estimation of 

the error correction model, the Engel-Granger two step method is widely used. However, at 

times it may not be the best option as demonstrated in this essay.  It is widely recognized that in 

demand analysis that demonstrates that the choice of a functional form has a strong incidence on 

calculated elasticities (Larivierea, Larueb, & Chalfant, 2000). The one step alternative model 

developed in this essay also has the ability to provide estimates of both short- and long-run 

demand elasticities with due investigation of time series properties of the data. Age group 

variables also play an important role in explaining consumer consumption decisions. The 

estimated elasticities in this study are within the range of previous estimated elasticities (table 2-

10).  

Exogeneity tests of the variables have produced interesting results. For the beer and wine 

equations, the hypothesis of joint exogeneity of price index and real expenditure cannot be 

rejected at all the conventional levels of significance. For spirits equation, the tests strongly 

reject the simultaneous exogeneity of price index and real expenditure. When independently 
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tested, price index appears to be endogenous variable where as real expenditure seems 

exogenous variable. Based on these results, the real expenditure was considered as an exogenous 

variable, where as the price index for spirits as an endogenous variable. 

  Although the use of annual time series data has been extensively used to study the 

demand for alcoholic beverages, there is some concern that its use may not reflect the full range 

of demand variability, because the consumption of alcoholic beverages displays substantial 

seasonal variation (Nelson, 1997). When conditions permit, it would be interesting and more 

informative to employ more frequent data observations such as quarterly data. Another point to 

consider in alcoholic beverage consumption is expenditures on advertizing. Some studies have 

shown that advertizing has little to no impact on the demand for alcoholic beverages, apart from 

influencing brand choices or choices between beverage types. It is also reported that normally 

the advertising of a given beverage lasts less than a year and hence when using time series data 

we may not expect to capture the effect of advertising. This feature may also warrant use of more 

frequent data when trying to incorporate advertising in the model. 
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Figure 2-1: U.S. Population Proportion by Age Group 
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a) Age group 20-34    b) Age group 40-64 

Source: Population Division, U.S. Census Bureau 
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Table 2-1: Summary of the independent and joint endogeneity/exogeneity tests for prices 

indices and real expenditure using various instrumental variables 

All-less-food-and-beverage CPI, per capita median income and trend as instruments 

 Beer Spirits Wine 

 1% 5% 10% 1% 5% 10% 1% 5% 10% 

Price alone NR NR RJ RJ RJ RJ NR NR NR 

Expenditure alone NR NR NR NR NR NR NR NR NR 

Both price and expenditure NR*,* NR NR RJ*,* RJ RJ NR*,- NR-,** NR 

 

Energy CPI, per capita median income and trend as instruments   

Beer Spirits Wine 

 1% 5% 10% 1% 5% 10% 1% 5% 10% 

Price alone NR NR NR NR NR RJ NR NR NR 

Expenditure alone NR NR NR NR NR NR NR NR NR 

Both price and expenditure NR*,- NR  NR  RJ*,- RJ RJ NR*,- NR NR 

 

Medicare CPI, per capita median income and trend as instruments 

Beer Spirits Wine 

 1% 5% 10% 1% 5% 10% 1% 5% 10% 

Price alone NR RJ RJ RJ RJ RJ NR NR NR 

Expenditure alone NR NR NR NR NR NR NR NR NR 

Both price and expenditure NR*,- NR NR NR*,- NR RJ NR*,- NR NR 

RJ=rejected-implying Endogeneity 

NR=not rejected- implying Exogeneity 

*,* significance of F-test (the first asterisk is for price index, and the second asterisk is for real expenditure) 
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Table 2-2:  Augmented Dickey Fuller unit root tests of the data series  

Series Level Series 

none 5% critical 
value 

drift 5% critical 
value 

trend 5% critical 
value 

Log Price of Beer 1.7191 -1.95 -1.4389 -2.93 -1.8209 -3.50 

Log  Price of Spirits 2.5024 -1.95 -1.5751 -2.93 -0.8858 -3.50 

Log  Price of Wine 2.5272 -1.95 -1.1807 -2.93 -0.7983 -3.50 

Log real expenditure -1.2777 -1.95 -1.0218 -2.93 -1.2966 -3.50 

Beer Budget Share -0.0264 -1.95 -1.6654 -2.93 -1.1425 -3.50 

Spirits Budget Share 0.8316 -1.95 -2.8647 -2.93 -0.0057 -3.50 

Wine Budget Share -0.2374 -1.95 -1.9206 -2.93 -1.6601 -3.50 

 

Series First Differenced Series 

none 5% critical 
value 

drift 5% critical 
value 

trend 5% critical 
value 

Log Price of Beer -1.7321 -1.95 -3.1958 -2.93 -3.0125 -3.50 

Log  Price of Spirits -1.1662 -1.95 -3.7209 -2.93 -3.2058 -3.50 

Log  Price of Wine -1.5557 -1.95 -3.6607 -2.93 -2.9525 -3.50 

Log real expenditure -1.0481 -1.95 -3.1915 -2.93 -1.6465 -3.50 

Beer Budget Share -1.7516* -1.95 -1.6761 -2.93 -2.2327 -3.50 

Spirits Budget Share -2.2043 -1.95 -1.915 -2.93 -2.7385 -3.50 

Wine Budget Share -2.185 -1.95 -2.4102 -2.93 -2.1996 -3.50 

* Significant only at 10% alpha value (10% critical value is -1.61)  
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Table 2-3: Johansen’s MLE cointegration test 

           

Hypothesized # 
of C.I.’s 

 

Beer budget share 
equation 

Spirits  budget share 
equation 

Wine budget share 
equation 

Test              5%   critical 

statistic                 value 

 

Test           5% critical 

statistic              value 

 

Test            5% critical 

statistic               value  

None  

 

52.37 34.40 54.50 34.40 52.75 34.40 

At most 1  

 

44.12 28.14 39.98 28.14 30.80 28.14 

At most 2  

 

16.94 22.00 26.05 22.00 14.24 22.00 

At most 3  

 

10.52 15.67 13.64 15.67 11.65 15.67 

At most 4  

 

7.03 9.24 4.37 9.24 8.24 9.24 

Figures in bold indicate significance at 5% alpha level. 
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Table 2-4: Iterative Seemingly Unrelated Regression results of the long run estimates for 

the dynamic AIDS model 

Variable Beer Spirits Wine 

Real expenditure  2.600  

 

-0.050  

 

0.178 

Beer price -0.399  

 

 -0.041* 

 

-0.072 

Spirits price     1.355** 

 

 -0.019  

 

0.099 

Wine price -0.480  

 

      0.037*** 

 

-0.008  

age 20-34 -0.118 

 

   0.077** 

 

 

age 40-64    -0.115** 

 

    0.079*** 

 

 

iβ  -0.048 

(.151) 

   -0.510*** 

(.109) 

0.558 

           *, **, and *** represent significance at the 10%, 5% and 1% alpha level, respectively 
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Table 2-5: Long run estimates of demand elasticities for the dynamic AIDS model 

Equation          Beer                   Spirits                  Wine 

  Uncompensated  

Beer -4.060    1.390**   -0.777 

Spirits 0.040*   -1.273    0.706 

Wine -3.024    1.194   -1.278 

 Compensated 

Beer -0.592    1.619**   -0.478 

Spirits 0.154*   -1.265    0.716 

Wine -0.093    1.388   -1.026 

 Expenditure 

 3.996   0.131    3.377   

Note: The elasticities are computed at mean values. 

          *, **, and *** represent significance at the 10%, 5% and 1% alpha level, respectively 
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Table 2-6: Iterative Seemingly Unrelated Regression results of the short run estimates for 

the dynamic AIDS model 

 Beer 

Coefficient 

(Std. error) 

Spirits 

Coefficient 

(Std. error) 

Wine 

Coefficient 

 

Real expenditure 0.005 

(0.058) 

0.010 

(0.013) 

-0.015 

Beer price 0.079** 

(0.032) 

-0.034*** 

(0.010) 

-0.045 

Spirits price -0.034*** 

(0.010) 

-0.016 

(0.017) 

0.050 

Wine price -0.045 

(0.029) 

0.028*** 

(0.010) 

0.016 

age 20-34 -0.151 

(0.111) 

 0.081*** 

(0.027) 

0.070 

age 40-64 -0.196 

(0.195) 

-0.017 

(0.051) 

0.214 

R2 0.649 0.937 - 

           *, **, and *** represent significance at the 10%, 5% and 1% alpha level, respectively 
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Table 2-7: Short run estimates of demand elasticities for the dynamic AIDS model  

Equation Beer                   Spirits                   Wine 

  Uncompensated  

Beer -0.914**  -0.040***   -0.052 

Spirits -0.748***   -1.282   0.478*** 

Wine -0.419    0.679   -0.765 

 Compensated 

Beer -0.041**    0.018***    0.023 

Spirits 0.272***   -1.214    0.566*** 

Wine 0.270    0.725   -0.705 

 Expenditure 

 1.006   1.175    0.794    

Note: The elasticities are computed at mean values. 

           *, **, and *** represent significance at the 10%, 5% and 1% alpha level, respectively 
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Table 2-8: Long run estimates of demand elasticities for the static AIDS model, from the 

first step of Engel-Granger two step model  

 Beer Spirits Wine 

Uncompensated Own Price  Elasticity -0.826 0.179 -0.353 

Compensated Own Price Elasticity  -0.005 0.237 -0.232 

Expenditure Elasticity 0.947 0.999 1.62 

Note: The elasticities are computed at mean values. 

Table 2-9: Short run estimates of demand elasticities for the static AIDS model, from the 

second step of Engel-Granger two step model  

 Beer Spirits Wine 

Uncompensated Own Price  Elasticity -0.899 -0.448 -0.463 

Compensated Own Price Elasticity  -0.053 -0.377 -0.380 

Expenditure Elasticity 0.975 1.233 1.115 

Note: The elasticities are computed at mean values. 
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Table 2-10: Summary of selected elasticities  

Study Country Time period and data 
type 

Own price Income/Expenditure 

beer spirits wine beer spirits wine 
Johnson et al. (1992) Canada 1956-83 (annual) -0.14 0.37 -1.17 0.27 1.02 2.19 
Blake and Neid (1997) U.K. 1963-92  (annual) -0.95 -1.32 -0.93 0.89 0.98 1.61 
Selvanathan and 
Selvanathan (2004) 

Australia 1956–1999 (annual) -0.16 -0.62 -0.31 0.66 2.47 0.83 

Coulson et al. (2001) U.S.A. 1970-1990 (quarterly) -0.27 -0.33 -0.59 -0.27 0.41 0.76 
Duffy ( 1982) U.K. 1979-1987 (monthly) -0.17 -0.84 -1.14 0.49 1.65 1.50 
Median Elasticities† 
Gallet (2007) 

  –0.360 (315) –0.679 (294) –0.700 (300) 0.394 (278) 1.000 (245) 1.100 (240) 

Only AID System model* 

Eakins and 
Gallagher(2003) 

Ireland 1960-1998 (annual) -0.77 to -0.42  -.93 to 0.84 -1.95 to -0.36 0.77 to 1.05 0.82 to 1.15 1.26 to 
2.33 

Blake and Neid (1997) U.K. 1952- 1991(annual) -0.95 -1.32 -0.95 0.89 0.98 1.61 

Nelson and Moran 
(1995) 

U.S.A. 1964-1990 (annual) -0.08 -0.08 -0.26 0.79 1.26 1.06 

Thom (1984) Ireland 1969-1980 (quarterly) -0.59 to -0.76 -1.29 to -1.54 -1.61 to -1.6 0.8 1.386 1.23 

Jones (1989) U.K. 1964-1983 (quarterly) -0.27 -0.95 -0.77 0.31 1.14 1.15 
Gao et al. (1995) U.S.A. 1987-1989 (cross 

sectional) 
-0.23 -0.4 -0.25 -0.09 5.03 1.21 

Minimum (absolute)   -0.08 -0.08 -0.25 -0.09 0.083 1.06 

Maximum (absolute)   -0.95 -1.54 -1.61 0.96 5.03 2.33 

†Median elasticities correspond to the median across all elasticities surveyed by Gallet (2007). E.g., across the 315 previous price elasticities (indicated 

in parenthesis) surveyed for beer, the median equals –0.360. 

* The lower part of the table shows previous elasticities estimated via the AID system model 
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Table 2-11: Iterative Seemingly Unrelated Regression results of static AID system model 

with no demographic variables 

 Beer 

Coefficient 

(Std. error) 

Spirits 

Coefficient 

(Std. error) 

Wine 

Coefficient 

 

Real expenditure -0.077*  

(0.040) 

 0.0014  

(0.019) 

0.076 

Beer price  0.090*** 

(0.034) 

-0.039** 

(0.017) 

-0.051 

Spirits price -0.034 

(0.060) 

0.013  

(0.029) 

0.021 

Wine price -0.0201  

(0.033) 

 -0.009 

(0.016) 

0.029 

R2   0.339  0.446 - 

           *, **, and *** represent significance at the 10%, 5% and 1% alpha level, respectively 
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