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Abstract 

In the classic split-plot design where whole plots have a completely randomized design, 

the conventional analysis approach assumes a compound symmetry (CS) covariance structure for 

the errors of observation. However, often this assumption may not be true.  In this report, we 

examine using different covariance models in PROC MIXED in the SAS system, which are 

widely used in the repeated measures analysis, to model the covariance structure in the split-plot 

data in which the simple compound symmetry assumption does not hold. The comparison of the 

covariance structure models in PROC MIXED and the conventional split-plot model is illustrated 

through a simulation study. In the example analyzed, the heterogeneous compound symmetry 

(CSH) covariance model has the smallest values for the Akaike and Schwarz’s Bayesian 

information criteria fit statistics and is therefore the best model to fit our example data.  
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CHAPTER 1 - Introduction 

1.1 Split-plot in Completely Randomized Design (CRD) 

Split-plot designs were first introduced by Fisher (1925) in the agriculture experiments 

and widely used in the industrial experiments (Kowalski and Potcner, 2003) for the reason that 

some treatment is hard to change, either practically or economically. 

A split-plot experiment is regarded as a blocked experiment (Mbegbu and Francis, 2012), 

where the hard-to-change factors are applied to the blocks, which are referred to as the whole 

plots, and the other factors are then applied to the small experimental units, which are referred to 

as the subplots or split-plots. Therefore, there are two levels of experimental units in the split-

plot design. Corresponding to the two levels of experimental units, there are two levels of 

randomization. One randomization is conducted to assign the whole plot treatment to the whole 

plot experimental units, and the other is conducted to assign the subplot treatment to the subplot 

experimental units. Owing to the two levels of randomization, there are two sources of errors in 

the split plot model. 

Split-plot designs are considered for use when a completely randomized design is 

structurally impossible, expensive, inefficiency or less valid, see Jones and Nachsheim (2009) 

for details. However, due to the existence of two sources of errors, the analysis of a split-plot 

design is more complicated than that for a completely randomized design. The usual assumptions 

made about the errors in split-plot designs are that whole-plot errors are independently and 

identically distributed (iid) as 2(0, )wN  , subplot errors are iid 2(0, )eN  , and the whole-plot 

errors and subplot errors are independent. 

The ANOVA model (for example, see Box and Jones, 1990) for the response in a 

balanced two-factor split-plot design where whole plots are in a CRD with a levels of whole plot 

factor A, b levels of subplot factor B, r replications of the i
th

 level of factor A, and the number of 

observations n abr , is given by: 

 ( )ijk i ik j ij ijky w e           (1.1) 

Where µ is a constant and ( )ij i j ij         is the mean of the ij
th

 A by B treatment 

combination with i  as the effect of the i
th

 level of whole-plot factor A, j  as the effect of the j
th
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level subplot factor B, and ( )ij  as the interaction effect of the i
th

 level of A with the j
th

 level of 

B (or the A by B interaction effect). Here ikw is the random error associated with the k
th

 whole 

plot assigned to the i
th

 level of A and ijke  is the random error associated with the subplot assigned 

to the j
th

 level of B within the k
th

 whole plot assigned to the i
th

 level of A. As noted above, it is 

assumed that 2~ iid (0, )ik ww N  , 2~ iid (0, )ijk ee N  , and all ikw and ijke terms are assumed to be 

independent.  

 The model given in Equation 1.1 can be written in matrix form as 

   y Xβ Zu e    

Where y is the 1n  vector of responses; X is the n p  design matrix for the fixed effects 

parameters, β is the p-dimensional vector of unknown fixed effects parameters; Z is the n ar  

design matrix for the whole-plot errors; u is the ar-dimensional vector of unknown random 

whole plot errors; and e is the n-dimensional vector of unknown random subplot errors. In this 

model it is assumed that u is a multivariate normal random vector with a mean vector containing 

all zeroes and a variance-covariance matrix that has 2

w  for all diagonal elements and all zeroes 

for the off-diagonal elements, i.e. 2~ ( , )w arN u 0 I  where 0 is a vector/matrix of zeroes of 

appropriate dimension and arI  is an ar ar  identity matrix. Similarly, we assume that 

2~ ( , )e nN e 0 I  where vectors u and e are independent. Based on the above model assumptions, 

the covariance matrix of the response vector y can be expressed as                      

 2 2

w e n  Σ ZZ I    

where Z  denotes the transpose of matrix Z. If the observations are grouped by whole plots, the 

covariance matrix of the response vector is the block-diagonal matrix given by 

  1 2, , , ardiagΣ V V V    

where the i
th 

element on the diagonal is the same b b matrix V with the form of 

 2 2

e b w b  V I J  (1.2) 

or simplified as 

 2( )e b b  V I J   
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where bJ  is a b b  matrix of ones and 2 2

w e    measures how much the subplots within the 

same whole plot are correlated (cf . Vahl and Milliken, 2011). In a more general form, the mixed 

model can be written as * y Xβ e , where X and β as before but now * ~ ( , )Ne 0 Σ . 

From Equation (1.2) we can note two prominent features of V: (1) the same value of 

2 2

e w    appears on the diagonal and (2) the same value of 2

w  appears on the off-diagonal. 

Feature (1) implies that all subplot treatment factors have the same variance and Feature (2) 

implies the covariance between any two subplots within the same whole plot is 2

w which, 

because it is a variance, must always be non-negative. This variance-covariance structure 

obtained through the standard split-plot analysis is identical to fitting a repeated measures 

structure to the subplots assuming compound symmetry. For a repeated measures model with 

compound symmetry, the variance covariance matrix within a whole plot or subject (in the 

language of repeated measures) is given by  

 2

1

1

1

1

  

  

   

  

 
 
 
 
 
 
  

V  . (1.3) 

If we let 2 2 2

e w     and 2 2 2( )w e w     , note that / ( 1)    , we see that the variance-

covariance structure obtained through the usual split-plot analysis is a special case of compound 

symmetry where the correlation between any two subplots within the same whole plot is non-

negative. Note that compound symmetry does not require that 0  , only that 1 1    (cf. 

Littell et al., 1996).  

However, the randomization of subplot factor levels to subplots within whole plots does 

not guarantee the whole plot errors will be mutually independent unless the application of 

treatments to subplots is also applied completely independently. If this is not the case, the split-

plot errors may not be mutually independent within whole plots, and so the assumption of the 

compound symmetry (CS) may not be justified. For example, consider an experiment to study 

the effect of temperature and baking time on bread. The researcher bakes three loaves of bread in 

an oven at the same time and, after 8 minutes, he takes one randomly selected loaf of bread out 

and measures a response. After 10 minutes, he takes out another at random and measures its 
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response. Finally, after 12 minutes, he takes out the last loaf of bread and measures its response. 

Here, the levels of temperature are assigned to all three loaves of bread baked at the same time, 

but a baking time is randomly assigned to each loaf in the oven resulting in a split-plot in 

randomized complete block design. Obviously, this is not a repeated measures design since the 

same unit (i.e. a loaf) was not measured three different times. However, this kind of split-plot 

experiment is like a repeated measures experiment in that, although baking time was randomly 

assigned, the same application of baking temperature overlaps for the three loaves. It would be 

expected that two loaves baked closer together in time would be more similar than those further 

apart. In other words, it is reasonable to conclude that the loaves been taken out after 8 and 10 

minutes are more similar than the loaves taken out after 8 and 12 minutes. There also may be 

some drift in the response as time elapses causing an increase (or decrease) in the variance. Thus, 

for this kind of split-plot experiment, the conventional analysis approach which requires the 

assumption of a CS covariance structure to be hold, may not work very well. 

Because of the abovementioned problem, we look for other approaches that do not 

require the covariance structure to be a particular form, and this leads us to consider other 

variance-covariance structures in the mixed model. 

1.2 Mixed Models  

In the last a few decades, mixed models have been widely used in fitting data from 

agronomy, social science, pharmaceuticals industry, economics, physical science and etc. 

(Wolfinger, Tobias and Sall, 1991). The increase of use of mixed models is partly due to the 

development of mixed models software, such as the MIXED procedure (PROC MIXED) in the 

SAS system and JMP software (Littell, Milliken, Stroup, and Wolfinger, 1996). The mixed 

model is particularly useful in the analysis of animal experiments with repeated measures data 

(Wang and Goonewardene, 2004), because it embeds the structure and relationships among the 

errors, and thus is more flexible than the classic repeated measures approaches which assume a 

very simple structure of dependence among errors. 

1.3 Mixed Models Analysis of Data from Repeated Measures Design 

The repeated measures design refers to multiple, or repeated, measurements made on the 

same experimental unit or subject which is observed over time. A repeated measures study 

usually consists of a completely randomized design with data been collected sequentially over 
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time (Littell et al., 2006). In a repeated measures design, often, measurements taken on the same 

subject are more likely to be correlated than those taken on different subjects, and two 

measurements taken close together on the same subject are likely to be more correlated than 

those taken further apart. Therefore, it is critical to properly identify the covariance structure of 

the errors in the analysis of the repeated measures (Littell, Pendergast, and Natarajan, 2000). 

Due to the characteristics of repeated measures data, the conventional univariate ANOVA 

and multivariate ANOVA repeated approaches often work poorly compared to the mixed model 

approach using PROC MIXED in the SAS system (Wang and Goonewardene, 2004). The 

univariate ANOVA approach assumes a compound symmetric covariance structure of errors, and 

it cannot deal with the problem of unequal time spacing or missing data (Wang and 

Goonewardene, 2004). The multivariate ANOVA approach assumes only an unstructured 

covariance structure and cannot directly describe the covariance structure of errors, and it also 

requires data to be balanced (Wang and Goonewardene, 2004). While the mixed model approach 

in the SAS PROC MIXED can take the covariance structure of errors into consideration, and also 

it has the ability to handle missing data and unequal time spacing.  

The covariance structure of repeated measures often can be easily obtained by using the 

REPEATED statement in PROC MIXED in SAS system and the “TPYE =” option in the 

REPEATED statement determines the covariance structure of repeated measures (Littell et al., 

2006). 

1.4 Review of Some Candidate Covariance Structures in Mixed Model Procedure 

1.4.1 Mixed Model Analysis with AR(1) Covariance Structure 

The first-order autoregressive model {AR(1)} is a classic model in the time series 

analysis, and it is based on the idea that the current value of the process Yt depends on its past 

value Yt-1. The covariance structure of AR(1) assumes the correlation between any two 

observations that are right next to each other, such as 1
st
 and 2

nd
, 2

nd
 and 3

rd
, 3

rd
 and 4

th
, and so 

on, is ρ; and the correlation between any two observations that have been separated by 1n  

other observations, is ρ
n
. And it also assumes homogeneous variances among all the 

observations. The variance-covariance matrix of AR(1) is expressed as following: 
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2 1

2

2 2

1 2

1

1

1

1

k

k

k k

  

  

  



  





 

 
 
 
 
 
 
 
 

V   

where k is the number of repeated measurements per experimental unit. From the matrix form of 

AR(1) covariance structure above, we can see that, if 1 1   , two observations tend to get 

less and less correlated as they get farther and farther apart. The variances across the time points 

are all equal because the same value of 2 is on the main diagonal of the matrix. Also note the 

AR(1) model requires only two parameters: 2 and ρ. 

1.4.2 Mixed Model Analysis with ARH(1) Covariance Structure 

Unlike the AR(1) covariance structure which assumes homogeneous variances among all 

the observations, the heterogeneous first-order autoregressive {ARH(1)} allows the variances to 

be different. The variance–covariance matrix of ARH(1) is expressed as following: 

2 2 1

1 1 2 1 3 1

2 2

2 1 2 2 3 2

2 2

3 1 3 2 3

2

1 2 2

1 2 2

k

k

k

k

k k

k k

k k k k k

         

         

      

  

         







 



 
 
 
 
 
 
 
 

V  

From the matrix form of ARH(1) covariance structure above, we can see that the variances of the 

main diagonal of the matrix are different. Therefore, the ARH(1) models requires more 

parameters than AR(1) model. The ARH(1) model requires k +1 covariance parameters, where k 

represents the number of the observations per subject. 

1.4.3 Mixed Model Analysis with CSH Covariance Structure 

The only difference between CS model and heterogeneous compound symmetry (CSH) 

model is that the CSH does not require the variances to be the same, which is exactly like the 

difference between AR(1) and ARH(1). The variance-covariance structure of CSH is expressed 

as following: 
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2

1 1 2 1 3 1

2

2 1 2 2 3 2

2

3 1 3 2 3

2

2

1 2 2

k

k

k k

k k k k k

         

         

      

  

         





 
 
 
 
 
 
 
 

V  

 

From the matrix form of CSH covariance structure above, we can see that the variances on the 

main diagonal of the matrix are different. And the CSH model also requires k +1 covariance 

parameters, where k represents the number of the observations per subject exactly like the 

ARH(1) model. 

1.4.4 Mixed Model Analysis with UN Covariance Structure 

Among all the covariance structures in the mixed model procedures, the unstructured 

(UN) covariance structure is the most complex one, because it places no requirement on the 

covariance structure. The UN structure allows both the variance terms and covariance terms to 

be different. The variance-covariance structure of UN is expressed as following: 

2

1 12 13 1

2

12 2 23 2

2

13 23 3 3

2

1 2 3

k

k

k

k k k k

   

   

   

   

 
 
 
 
 
 
 
 

V  

Since the UN structure places no conditions on the covariance structure, it requires fitting the 

most variance-covariance parameters of all the structures, that is ( 1) / 2k k  .  

1.5 Research Objective of My Report 

In repeated measures design, if the time-dependent correlation is ignorable, the 

conventional approach univariate analysis of variance is often used to analyze the repeated 

measures data. This analysis basically treats the repeated measures data as the split-plot design, 

where the time is considered as the split-plot treatment. In this report, we examine treating the 

split-plot data, in which the assumption of compound symmetry does not hold, as a repeated 

measure design, and using the mixed models in the SAS system to describe the covariance 

structure of the split-plot data. We will also examine when the traditional split-plot analysis of a 

repeated measures design with an AR(1) variance-covariance structure is acceptable. 
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CHAPTER 2 - Real Data Example 

2.1 Profile of the Example Data 

Stelzleni et al. (2008) investigated the effects of concentrate feeding of cull beef cows 

and the muscle type on the tenderness of meat. Twenty-four cull beef cows were selected to 

conduct this experiment and were randomly assigned to a concentrate of feeding for 0, 42 or 84 

days. We refer to this treatment factor as days on feed (DOF). From each beef cow, one steak 

from each of the nine muscle types (MT) was extracted. Each steak was cooked and several 

cores from each steak were taken. The Warner-Bratzler shear force (WBS) value, i.e. the force in 

kilograms required to shear the sample, was obtained on each core.  

2.2 Examination of the Structure of the Experiment 

The design of this experiment can be considered to be a split-plot with whole plots run in 

a completely randomized design. The whole plot treatment is DOF and its levels were randomly 

assigned to individual beef cows making a cow the whole plot experimental unit. For each whole 

plot experimental unit or cow, the levels of the subplot treatment factor, MT, are then observed 

by the selection of a steak from each of the nine muscle types. Here the subplot experimental unit 

is the steak and cores from each steak are subsamples. Strictly speaking, it is not possible to 

randomly assign the levels of MT individual steaks. Instead, the steaks are cut from the particular 

parts of the beef cow, and this makes them “random” samples of those particular muscle types. 

Because we cannot assign each of the nine steaks taken from an individual animal completely at 

random to a particular muscle type, one might argue that this experiment has no true 

randomization at the subplot treatment level, and the subplot measurements are more like 

repeated measures. However, this experiment does look a lot like a split-plot since it contains 

two levels of experimental units (the cow and the steak) with the smaller units always nested 

within the larger units. Thus, we could analyze it as a split-plot with completely randomized 

whole plots. Because some groups of muscle types are more similar to each other than types 

from another group, we suspect that the constant covariance term between subplot observations 

from compound symmetry may not hold here, especially because the subplot treatment factor 

contains a relatively large number of levels. Also, because some muscle types are tougher than 
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others, it would not be surprising if the assumption of a constant variance among subplot 

treatments were violated as well.  

2.3 Examination of the Covariance Structure 

The unstructured covariance structure places no restriction on the covariance structure. If 

the dataset is big enough, one could always try to fit the unstructured covariance structure first 

and have a brief idea about the covariance structure of the dataset. Table 2.1 is the covariance 

matrix gained by fitting the unstructured covariance structure in PROC MIXED to the example 

data. From this table we can see that, values on the diagonal, which are the variances, range from 

0.60 to 3.17, and some of them are quite different from each other. This suggests possible 

heterogeneous covariance structure in the example data and the conventional split-plot approach 

which requires the compound symmetry covariance structure in the data may not be very proper 

here. Therefore, we consider using a repeated measures approach which incorporates this 

structure and the apparent relationships among the subplots to analyze the example data.  

 

Table 2.1 The covariance matrix obtained by fitting the UN structure for the example data 

MT 1 2 3 4 5 6 7 8 9 

1 1.84 0.38 0.80 0.51 0.86 0.20 0.24 0.26 -0.002 

2 0.38 0.60 0.11 0.04 0.06 0.07 0.35 0.06 -0.08 

3 0.80 0.11 1.21 0.65 0.62 0.15 0.17 0.55 -0.06 

4 0.51 0.04 0.65 3.17 1.11 0.36 0.42 0.83 -0.60 

5 0.86 0.06 0.62 1.11 1.24 0.29 0.10 0.28 -0.15 

6 0.20 0.07 0.15 0.36 0.29 0.23 -0.07 0.15 -0.18 

7 0.24 0.35 0.17 0.42 0.10 -0.07 1.10 0.04 0.41 

8 0.26 0.06 0.55 0.83 0.28 0.15 0.04 1.20 -0.31 

9 -0.002 -0.08 -0.06 -0.60 -0.15 -0.18 0.41 -0.31 1.17 

 

2.4 Different Covariance Structure Models in PROC MIXED 

We fit the example data with five different covariance structure models in PROC MIXED 

(CS, CSH, AR(1), ARH(1), and UN). The CS covariance model yields the same AIC value as 

the conventional split-plot approach does. To use these five covariance structures in the SAS 

system, one just needs to add the ‘TYPE =’ option in the REPEATED statement in PROC 
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MIXED. For example, the SAS code for PROC MIXED with an AR(1) covariance structure is 

given below:  

PROC MIXED DATA=COW; 

     CLASS ANIMAL DOF MT; 

     MODEL WBS=DOF MT DOF*MT; 

     REPEATED MT/SUBJECT=ANIMAL(DOF) TYPE=AR(1) R RCORR; 

RUN; 

 

The AIC and BIC fit statistics for the five covariance models are shown in Table 2.2. 

From this table, we can see that both AIC and BIC values for the CSH covariance structure 

model are smaller than the corresponding AIC and BIC values for the rest covariance models. 

Therefore, we can conclude that the CSH covariance model fits the example data best among the 

five selected models and becomes our choice of model. Also note that UN and ARH(1), which 

also allow for unequal subplot treatment variances, both had smaller AIC values than CS. 

 

Table 2.2 Model fit statistics with five different covariance structures for the example data 

Fit statistics 

Covariance Structures 

CS CSH AR(1) ARH(1) UN 

AIC 632.2 609.3 639.2 618.5 628.0 

BIC 634.5 621.1 641.6 630.3 681.0 
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CHAPTER 3 - Simulation Study 

In this section, the simulation study is conducted to evaluate the effectiveness of our 

proposed repeated measures approach in selecting the covariance structure of the simulated 

datasets. In this report, we consider two cases: 

 

Case 1: We generate split-plot datasets with true CS covariance structure and then use CS 

and AR(1) covariance models in PROC MIXED, as well as the conventional split-plot 

model to analyze them and see how many times the conventional split-plot model can 

yield smaller AIC value than AR(1) covariance model. 

 

Case 2: We generate split-plot datasets with AR(1) covariance structure and then use CS 

and AR(1) covariance models in PROC MIXED, as well as the conventional split-plot 

model to analyze them and see how many times the AR(1) covariance model can yield 

smaller AIC value than the conventional split-plot model. 

 

For each case, we consider the number of whole plot treatment levels to be a = 2; number 

of split-plot treatment levels b =3, 6, or 9; number of replications for whole plot units r = 3, 6, or 

9; and variance ratio 2 2

w e   = 0.1, 0.5, 1, 2, 10.  

3.1 Simulation Study for Case 1 

3.1.1 Simulation Procedure for Case1 

For each selected setting: 

(1) Generate a split-plot in CRD dataset with CS covariance structure. 

(2) Use CS and AR(1) covariance models in PROC MIXED, as well as the conventional 

split-plot model to analyze the dataset been generated. For each model, we consider both default 

and Satterthwaite approximation method for computing the denominator degrees of freedom for 

the tests of fixed effects. 

(3) Repeat step (1) and (2) for N = 2000 times. 
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(4) Report the Type I error rate of the whole plot treatment main effect, subplot treatment 

main effect, and the interaction effect and also the percent of times that the AIC value of the 

conventional split-plot model is smaller than that of the AR(1) covariance model. 

(5) Do step (1) to (4) for all the parameter settings. 

(6) Display and summarize the results in the form of tables. 

3.1.2 Simulation Results for Case 1 

In the simulation study for case 1, we use R to generate the datasets we need and then 

export them to SAS to do the analysis using three different models. The simulation results are 

shown in Appendix A (Tables A.1 to A.9).  

From Table A.1 to A.9, we can see that for each selected setting of a, b, r, n and N, as the 

value of η gets bigger, the percent of times that the AIC value of the conventional split-plot 

model is smaller than that of the AR(1) covariance model gets bigger. This suggests that when 

the whole plot error variance is significantly larger than the subplot error variance, the proposed 

repeated measures approach tends to have a larger chance to choose the true covariance structure 

of the data. From Table 3.1 below, we can see that as the sample size n increases, the chance that 

the proposed repeated measures approach has on selecting the true covariance structure of the 

data increases, and this is especially obvious when η is not very small. For the datasets with the 

same sample size, the proposed repeated measures approach works better on the dataset with a 

larger number of subplot treatment levels b.  

As to the Type I error rate, from Table A.1 to A.9, we can see that for all the methods, the 

Type I error rates of the whole plot treatment main effect seem to be a little bit conservative. And 

as the value of η increases, it seems that the Type I error rates tend to get more conservative for 

most cases of the CS covariance model and quite a few cases of the conventional split-plot 

model. For the subplot treatment main effect and interaction effect, the Type I error rates of the 

CS covariance model and the conventional split-plot model are pretty good; while the Type I 

error rates of the AR(1) covariance model tend to be inflated a little bit, especially when η is big.  
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Table 3.1 Comparison of percent of times when AIC value of conventional split-plot method is 

smaller than that of AR(1) covariance model for different sample size for datasets with true CS 

covariance structure. 

n a b r η=0.1 η=0.5 η=1 η=2 η=10 

18 2 3 3 63.70% 60.05% 61.50% 67.10% 70.75% 

36 2 3 6 63.90% 64.55% 72.85% 77.60% 80.80% 

36 2 6 3 69.60% 74.50% 84.10% 90.15% 92.70% 

54 2 3 9 67.90% 69.10% 78.70% 83.10% 86.15% 

54 2 9 3 69.75% 80.85% 92.35% 97.40% 98.25% 

72 2 6 6 67.30% 85.35% 96.00% 98.45% 98.70% 

108 2 6 9 68.40% 91.70% 98.90% 99.70% 99.70% 

108 2 9 6 67.00% 94.20% 99.55% 99.95% 99.95% 

162 2 9 9 66.85% 98.05% 99.95% 100.00% 100.00% 

 

3.2 Simulation Study for Case 2 

3.2.1 Simulation Procedure for Case 2 

For each selected setting: 

(1) Generate a split-plot in CRD dataset with AR(1) covariance structure. 

(2) Use CS and AR(1) covariance models in PROC MIXED, as well as the conventional 

split-plot model to analyze the dataset been generated. For each model, we consider both default 

and Satterthwaite approximation method for computing the denominator degrees of freedom for 

the tests of fixed effects. 

(3) Repeat step (1) and (2) for N=2000 times. 

(4) Report Type I error rate of the whole plot treatment main effect, subplot treatment 

main effect, and the interaction effect and also the percent of times that the AIC value of the 

AR(1) covariance model is smaller than that of the conventional split-plot model. 

(5) Do step (1) to (4) for all the parameter settings. 

(6) Display and summarize the results in the form of tables. 
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3.2.1 Simulation Result for Case 2 

In the simulation study for case 2, we use SAS to generate the datasets we need through 

the method developed by Song, Xue and Li (2013) and then analyze them with three different 

models. The simulation results are shown in Appendix A (Tables A.10 to A.18). 

From Table A.10 to A.18, we can see that for each selected setting of a, b, r, n and N, as 

the value of η gets bigger, the percent of times that the AIC value of the AR(1) covariance model 

is smaller than that of the conventional split-plot model gets bigger. This also suggests that when 

the whole plot error variance is significantly larger than the subplot error variance, the proposed 

repeated measures approach tends to have a larger chance to choose the true covariance structure 

of the data. From Table 3.2 below, we can see that as sample size n increases, the chance that the 

proposed repeated measures approach has on selecting the true covariance structure of the data 

increases, and this is especially obvious when η is not very small. For the datasets with the same 

sample size, the proposed repeated measures approach works better on the dataset with a larger 

number of b when η is not very small. However, unlike in Case 1, the proposed repeated 

measures approach consistently tends to choose the true covariance structure more than the 

untrue one, in Case 2, when η is very small, the proposed mixed model tends to choose the CS 

covariance structure instead of the true AR(1) covariance structure no matter how big the values 

of n and b are. 

As to the Type I error rate, from Table A.10 to A.18, we can see that for all the methods, 

the Type I error rated of the whole plot treatment main effect seem to be acceptable, except that 

when η is very small, the conventional split-plot with Satterthwaith approximation method tends 

to be a little bit conservative than other methods. For the split-plot treatment main effect and 

interaction effect, when b is small, all methods have done similar work on controlling the Type I 

error rates; however as b gets bigger, the conventional split-plot model and the CS covariance 

model tend to inflate the Type I error rates, especially when η is very large. 
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Table 3.2 Comparison of percent of times when AIC value of AR(1) covariance model is smaller 

than that of conventional split-plot method for different sample size for datasets with true AR(1) 

covariance structure.. 

n a b r η=0.1 η=0.5 η=1 η=2 η=10 

18 2 3 3 34.40% 47.35% 55.30% 63.80% 69.75% 

36 2 3 6 37.40% 56.30% 68.85% 73.60% 79.55% 

36 2 6 3 32.80% 59.50% 76.90% 83.75% 90.60% 

54 2 3 9 38.25% 65.40% 74.55% 78.20% 85.45% 

54 2 9 3 34.65% 70.05% 87.20% 93.75% 97.35% 

72 2 6 6 39.10% 80.70% 91.50% 95.75% 98.25% 

108 2 6 9 44.25% 86.75% 96.40% 98.10% 99.65% 

108 2 9 6 42.95% 90.25% 97.75% 99.40% 99.90% 

162 2 9 9 49.50% 96.65% 99.30% 99.95% 100.00% 
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CHAPTER 4 - Discussion 

In this report, we investigated the use of mixed models in selecting the covariance 

structure of the split-plot data. Through the simulation study, we show that the proposed repeated 

measures approach works well on selecting the true covariance structure of the simulated 

datasets when the variance ratio η is not very small, and the sample size n and number of subplot 

treatment levels b is relatively big. And we also show that the true covariance model in both 

cases does a good job on controlling the Type I error rates of the subplot treatment main effect 

and interaction effect. In the real data example, we fit the data using five different covariance 

structure models in PROC MIXED (CS, CSH, AR(1), ARH(1), and UN) and it turns out that the 

CSH covariance model has the smallest values for the Akaike and Schwarz’s Bayesian 

information criteria fit statistics and is therefore the model of our choice.  

Even though in this report, we mainly focus on the split-plot in completely randomized 

design, the proposed repeated measures approach can also be applied to other split-plot designs, 

such as split-plot in randomized complete block design. We have applied the covariance 

structure models in PROC MIXED to other example data, and the results turn out to be very 

good. 

There are some questions we need to take into consideration for future research. Firstly, 

in the simulation study, when the variance ratio η is very small, the simulation results are not that 

satisfying for both cases. One may consider other covariance models in PROC MIXED or 

analyzing the data as the completely randomized design since small η value may suggest that the 

whole plot error variance is so small that we can treat it as zero. Secondly, in the simulation 

study for Case 1, we find that for all the methods, the Type I error rates of the whole plot 

treatment seem to be a little bit conservative. Therefore it requires further study to properly 

explain and address those issues. 
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Appendix A - Simulation Results for Case 1 and 2 

Table A.1 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true CS covariance 

structure and where a=2, b=3, r=3, n=18, and N=2000. 

  
1
a=2; b=3; r=3; n=18; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.033 0.027 0.033 0.021 0.023 

SP 0.058 0.061 0.045 0.052 0.057 

WP*SP 0.054 0.060 0.055 0.043 0.056 

Split-plot/satterth 

WP 0.016 0.020 0.028 0.021 0.023 

SP 0.054 0.059 0.045 0.052 0.057 

WP*SP 0.048 0.055 0.055 0.043 0.056 

CS 

WP 0.050 0.031 0.033 0.021 0.023 

SP 0.047 0.058 0.045 0.052 0.057 

WP*SP 0.044 0.053 0.055 0.043 0.056 

CS/satterth 

WP 0.050 0.031 0.033 0.021 0.023 

SP 0.047 0.058 0.045 0.052 0.057 

WP*SP 0.044 0.053 0.055 0.043 0.056 

AR(1) 

WP 0.045 0.039 0.037 0.024 0.023 

SP 0.056 0.065 0.049 0.060 0.069 

WP*SP 0.058 0.051 0.059 0.052 0.068 

AR(1)/satterth 

WP 0.029 0.026 0.033 0.023 0.023 

SP 0.057 0.065 0.051 0.058 0.069 

WP*SP 0.056 0.054 0.059 0.053 0.068 

Percent of times AIC of 
2
SP<AIC of AR(1) 63.70% 60.05% 61.50% 67.10% 70.75% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.2 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true CS covariance 

structure and where a=2, b=6, r=3, n=36, and N=2000. 

  
1
a=2; b=6; r=3; n=36; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.026 0.031 0.026 0.017 0.022 

SP 0.054 0.056 0.058 0.046 0.046 

WP*SP 0.058 0.051 0.054 0.047 0.058 

Split-plot/satterth 

WP 0.008 0.018 0.025 0.017 0.022 

SP 0.052 0.055 0.058 0.046 0.046 

WP*SP 0.055 0.051 0.054 0.047 0.058 

CS 

WP 0.048 0.028 0.026 0.017 0.022 

SP 0.046 0.053 0.058 0.046 0.046 

WP*SP 0.051 0.050 0.053 0.046 0.058 

CS/satterth 

WP 0.048 0.028 0.026 0.017 0.022 

SP 0.046 0.053 0.058 0.046 0.046 

WP*SP 0.051 0.050 0.053 0.046 0.058 

AR(1) 

WP 0.039 0.065 0.060 0.037 0.024 

SP 0.053 0.052 0.061 0.065 0.071 

WP*SP 0.047 0.044 0.063 0.072 0.081 

AR(1)/satterth 

WP 0.016 0.032 0.045 0.031 0.023 

SP 0.061 0.061 0.064 0.066 0.071 

WP*SP 0.059 0.050 0.065 0.073 0.081 

Percent of times AIC of 
2
SP <AIC of AR(1) 69.60% 74.50% 84.10% 90.15% 92.70% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.3 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true CS covariance 

structure and where a=2, b=9, r=3, n=54, and N=2000. 

  
1
a=2; b=9; r=3; n=54; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.029 0.029 0.022 0.017 0.023 

SP 0.066 0.061 0.048 0.057 0.054 

WP*SP 0.055 0.058 0.053 0.054 0.053 

Split-plot/satterth 

WP 0.007 0.018 0.022 0.017 0.023 

SP 0.065 0.061 0.048 0.057 0.054 

WP*SP 0.054 0.058 0.053 0.054 0.053 

CS 

WP 0.042 0.027 0.022 0.017 0.023 

SP 0.060 0.061 0.048 0.057 0.054 

WP*SP 0.050 0.057 0.053 0.054 0.053 

CS/satterth 

WP 0.042 0.027 0.022 0.017 0.023 

SP 0.060 0.061 0.048 0.057 0.054 

WP*SP 0.050 0.057 0.053 0.054 0.053 

AR(1) 

WP 0.041 0.076 0.081 0.054 0.027 

SP 0.049 0.046 0.049 0.060 0.074 

WP*SP 0.045 0.044 0.044 0.066 0.086 

AR(1)/satterth 

WP 0.014 0.037 0.055 0.041 0.026 

SP 0.072 0.052 0.054 0.065 0.074 

WP*SP 0.062 0.054 0.049 0.068 0.086 

Percent of times AIC of 
2
SP <AIC of AR(1) 69.75% 80.85% 92.35% 97.40% 98.25% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.4 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true CS covariance 

structure and where a=2, b=3, r=6, n=36, and N=2000. 

  
1
a=2; b=3; r=6; n=36; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.029 0.021 0.020 0.015 0.018 

SP 0.050 0.047 0.055 0.052 0.049 

WP*SP 0.055 0.049 0.057 0.049 0.047 

Split-plot/satterth 

WP 0.023 0.020 0.020 0.015 0.018 

SP 0.046 0.047 0.055 0.052 0.049 

WP*SP 0.048 0.048 0.057 0.049 0.047 

CS 

WP 0.042 0.023 0.020 0.015 0.018 

SP 0.043 0.047 0.055 0.052 0.049 

WP*SP 0.044 0.048 0.057 0.049 0.047 

CS/satterth 

WP 0.042 0.023 0.020 0.015 0.018 

SP 0.043 0.047 0.055 0.052 0.049 

WP*SP 0.044 0.048 0.057 0.049 0.047 

AR(1) 

WP 0.038 0.031 0.024 0.015 0.018 

SP 0.048 0.051 0.047 0.065 0.063 

WP*SP 0.049 0.052 0.054 0.052 0.058 

AR(1)/satterth 

WP 0.032 0.029 0.024 0.015 0.018 

SP 0.049 0.050 0.049 0.065 0.063 

WP*SP 0.048 0.051 0.054 0.052 0.058 

Percent of times AIC of 
2
SP <AIC of AR(1) 63.90% 64.55% 72.85% 77.60% 80.80% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.5 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true CS covariance 

structure and where a=2, b=6, r=6, n=72, and N=2000. 

  
1
a=2; b=6; r=6; n=72; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.030 0.015 0.012 0.014 0.015 

SP 0.056 0.048 0.049 0.054 0.054 

WP*SP 0.053 0.052 0.062 0.044 0.057 

Split-plot/satterth 

WP 0.023 0.015 0.012 0.014 0.015 

SP 0.056 0.048 0.049 0.054 0.054 

WP*SP 0.053 0.052 0.062 0.044 0.057 

CS 

WP 0.045 0.015 0.012 0.014 0.015 

SP 0.055 0.048 0.049 0.054 0.054 

WP*SP 0.050 0.052 0.062 0.044 0.057 

CS/satterth 

WP 0.045 0.015 0.012 0.014 0.015 

SP 0.055 0.048 0.049 0.054 0.054 

WP*SP 0.050 0.052 0.062 0.044 0.057 

AR(1) 

WP 0.049 0.054 0.045 0.026 0.016 

SP 0.051 0.041 0.058 0.061 0.076 

WP*SP 0.043 0.044 0.062 0.057 0.085 

AR(1)/satterth 

WP 0.036 0.045 0.039 0.024 0.016 

SP 0.055 0.042 0.060 0.062 0.076 

WP*SP 0.050 0.046 0.064 0.057 0.085 

Percent of times AIC of 
2
SP <AIC of AR(1) 67.30% 85.35% 96.00% 98.45% 98.70% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.6 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true CS covariance 

structure and where a=2, b=9, r=6, n=108, and N=2000. 

  
1
a=2; b=9; r=6; n=108; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.029 0.018 0.017 0.012 0.011 

SP 0.057 0.046 0.065 0.053 0.046 

WP*SP 0.055 0.044 0.047 0.048 0.050 

Split-plot/satterth 

WP 0.018 0.017 0.017 0.012 0.011 

SP 0.057 0.046 0.065 0.053 0.046 

WP*SP 0.054 0.044 0.047 0.048 0.050 

CS 

WP 0.037 0.018 0.017 0.012 0.011 

SP 0.053 0.046 0.065 0.053 0.046 

WP*SP 0.053 0.044 0.047 0.048 0.050 

CS/satterth 

WP 0.037 0.018 0.017 0.012 0.011 

SP 0.053 0.046 0.065 0.053 0.046 

WP*SP 0.053 0.044 0.047 0.048 0.050 

AR(1) 

WP 0.042 0.080 0.058 0.028 0.012 

SP 0.048 0.035 0.052 0.063 0.069 

WP*SP 0.046 0.030 0.047 0.060 0.073 

AR(1)/satterth 

WP 0.027 0.059 0.050 0.025 0.012 

SP 0.056 0.039 0.055 0.065 0.069 

WP*SP 0.050 0.033 0.050 0.061 0.074 

Percent of times AIC of 
2
SP <AIC of AR(1) 67.00% 94.20% 99.55% 99.95% 99.95% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.7 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true CS covariance 

structure and where a=2, b=3, r=9, n=54, and N=2000. 

  
1
a=2; b=3; r=9; n=54; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.038 0.032 0.015 0.009 0.007 

SP 0.050 0.053 0.055 0.045 0.060 

WP*SP 0.061 0.045 0.050 0.053 0.051 

Split-plot/satterth 

WP 0.032 0.032 0.015 0.009 0.007 

SP 0.050 0.053 0.055 0.045 0.060 

WP*SP 0.059 0.045 0.050 0.053 0.051 

CS 

WP 0.050 0.032 0.015 0.009 0.007 

SP 0.044 0.053 0.055 0.045 0.060 

WP*SP 0.052 0.044 0.050 0.053 0.051 

CS/satterth 

WP 0.050 0.032 0.015 0.009 0.007 

SP 0.044 0.053 0.055 0.045 0.060 

WP*SP 0.052 0.044 0.050 0.053 0.051 

AR(1) 

WP 0.049 0.039 0.021 0.010 0.007 

SP 0.048 0.049 0.055 0.048 0.063 

WP*SP 0.055 0.043 0.045 0.060 0.059 

AR(1)/satterth 

WP 0.042 0.038 0.020 0.009 0.007 

SP 0.048 0.049 0.055 0.048 0.063 

WP*SP 0.054 0.042 0.045 0.061 0.059 

Percent of times AIC of 
2
SP <AIC of AR(1) 67.90% 69.10% 78.70% 83.10% 86.15% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.8 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true CS covariance 

structure and where a=2, b=6, r=9, n=108, and N=2000. 

  
1
a=2; b=6; r=9; n=108; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.034 0.018 0.013 0.008 0.010 

SP 0.059 0.056 0.047 0.043 0.050 

WP*SP 0.050 0.054 0.057 0.052 0.051 

Split-plot/satterth 

WP 0.028 0.018 0.013 0.008 0.010 

SP 0.058 0.056 0.047 0.043 0.050 

WP*SP 0.050 0.054 0.057 0.052 0.051 

CS 

WP 0.039 0.018 0.013 0.008 0.010 

SP 0.054 0.056 0.047 0.043 0.050 

WP*SP 0.048 0.054 0.057 0.052 0.051 

CS/satterth 

WP 0.039 0.018 0.013 0.008 0.010 

SP 0.054 0.056 0.047 0.043 0.050 

WP*SP 0.048 0.054 0.057 0.052 0.051 

AR(1) 

WP 0.040 0.050 0.036 0.015 0.011 

SP 0.053 0.039 0.046 0.056 0.075 

WP*SP 0.049 0.040 0.049 0.060 0.067 

AR(1)/satterth 

WP 0.031 0.042 0.033 0.014 0.011 

SP 0.058 0.041 0.047 0.056 0.075 

WP*SP 0.051 0.042 0.049 0.060 0.067 

Percent of times AIC of 
2
SP <AIC of AR(1) 68.40% 91.70% 98.90% 99.70% 99.70% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.9 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true CS covariance 

structure and where a=2, b=9, r=9, n=162, and N=2000. 

  
1
a=2; b=9; r=9; n=162; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.033 0.022 0.014 0.014 0.010 

SP 0.052 0.051 0.052 0.058 0.048 

WP*SP 0.050 0.053 0.058 0.051 0.049 

Split-plot/satterth 

WP 0.028 0.022 0.014 0.014 0.010 

SP 0.051 0.051 0.052 0.058 0.048 

WP*SP 0.050 0.054 0.058 0.051 0.049 

CS 

WP 0.041 0.022 0.014 0.014 0.010 

SP 0.049 0.051 0.052 0.058 0.048 

WP*SP 0.049 0.054 0.058 0.051 0.049 

CS/satterth 

WP 0.041 0.022 0.014 0.014 0.010 

SP 0.049 0.051 0.052 0.058 0.048 

WP*SP 0.049 0.054 0.058 0.051 0.049 

AR(1) 

WP 0.055 0.082 0.058 0.026 0.010 

SP 0.044 0.032 0.044 0.067 0.074 

WP*SP 0.046 0.034 0.050 0.070 0.081 

AR(1)/satterth 

WP 0.045 0.070 0.052 0.025 0.010 

SP 0.048 0.034 0.047 0.067 0.074 

WP*SP 0.049 0.035 0.052 0.070 0.081 

Percent of times AIC of 
2
SP <AIC of AR(1) 66.85% 98.05% 99.95% 100.00% 100.00% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.10 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true AR(1) covariance 

structure and where a=2, b=3, r=3, n=18, and N=2000. 

  
1
a=2; b=3; r=3; n=18; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.032 0.042 0.056 0.055 0.048 

SP 0.068 0.057 0.053 0.052 0.061 

WP*SP 0.064 0.053 0.061 0.063 0.055 

Split-plot/satterth 

WP 0.014 0.028 0.046 0.046 0.047 

SP 0.062 0.053 0.051 0.052 0.061 

WP*SP 0.057 0.051 0.059 0.062 0.055 

CS 

WP 0.043 0.050 0.058 0.054 0.047 

SP 0.057 0.051 0.050 0.052 0.061 

WP*SP 0.051 0.051 0.057 0.062 0.055 

CS/satterth 

WP 0.043 0.050 0.058 0.054 0.047 

SP 0.057 0.051 0.050 0.052 0.061 

WP*SP 0.051 0.051 0.057 0.062 0.055 

AR(1) 

WP 0.037 0.041 0.057 0.052 0.047 

SP 0.062 0.057 0.052 0.045 0.056 

WP*SP 0.053 0.046 0.050 0.056 0.052 

AR(1)/satterth 

WP 0.024 0.032 0.050 0.046 0.047 

SP 0.060 0.058 0.053 0.048 0.056 

WP*SP 0.054 0.048 0.053 0.057 0.052 

Percent of times AIC of AR(1)<AIC of 
2
SP 34.40% 47.35% 55.30% 63.80% 69.75% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.11 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true AR(1) covariance 

structure and where a=2, b=6, r=3, n=18, and N=2000. 

  
1
a=2; b=6; r=3; n=36; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.037 0.048 0.052 0.040 0.057 

SP 0.058 0.055 0.058 0.085 0.094 

WP*SP 0.058 0.067 0.059 0.099 0.098 

Split-plot/satterth 

WP 0.010 0.022 0.034 0.035 0.056 

SP 0.055 0.054 0.058 0.085 0.094 

WP*SP 0.055 0.067 0.058 0.098 0.098 

CS 

WP 0.050 0.054 0.050 0.041 0.057 

SP 0.052 0.052 0.057 0.084 0.094 

WP*SP 0.049 0.064 0.057 0.098 0.098 

CS/satterth 

WP 0.050 0.054 0.050 0.041 0.057 

SP 0.052 0.052 0.057 0.084 0.094 

WP*SP 0.049 0.064 0.057 0.098 0.098 

AR(1) 

WP 0.044 0.043 0.043 0.039 0.060 

SP 0.051 0.051 0.040 0.057 0.045 

WP*SP 0.050 0.060 0.049 0.068 0.059 

AR(1)/satterth 

WP 0.019 0.019 0.024 0.027 0.048 

SP 0.062 0.059 0.048 0.062 0.046 

WP*SP 0.060 0.067 0.058 0.073 0.060 

Percent of times AIC of AR(1)<AIC of 
2
SP 32.80% 59.50% 76.90% 83.75% 90.60% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.12 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true AR(1) covariance 

structure and where a=2, b=9, r=3, n=54, and N=2000. 

  
1
a=2; b=9; r=3; n=54; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.038 0.051 0.051 0.052 0.050 

SP 0.060 0.060 0.075 0.100 0.125 

WP*SP 0.062 0.066 0.067 0.102 0.130 

Split-plot/satterth 

WP 0.009 0.023 0.036 0.041 0.050 

SP 0.057 0.060 0.075 0.100 0.125 

WP*SP 0.060 0.065 0.067 0.102 0.130 

CS 

WP 0.051 0.048 0.047 0.050 0.050 

SP 0.051 0.059 0.074 0.100 0.125 

WP*SP 0.054 0.064 0.065 0.102 0.130 

CS/satterth 

WP 0.051 0.048 0.047 0.050 0.050 

SP 0.051 0.060 0.074 0.100 0.125 

WP*SP 0.054 0.064 0.065 0.102 0.130 

AR(1) 

WP 0.044 0.044 0.043 0.046 0.044 

SP 0.044 0.047 0.047 0.049 0.058 

WP*SP 0.049 0.055 0.043 0.051 0.054 

AR(1)/satterth 

WP 0.015 0.017 0.019 0.023 0.035 

SP 0.061 0.061 0.058 0.054 0.059 

WP*SP 0.062 0.066 0.052 0.062 0.055 

Percent of times AIC of AR(1)<AIC of 
2
SP 34.65% 70.05% 87.20% 93.75% 97.35% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.13 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true AR(1) covariance 

structure and where a=2, b=3, r=6, n=36, and N=2000. 

  
1
a=2; b=3; r=6; n=36; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.037 0.046 0.043 0.058 0.053 

SP 0.053 0.055 0.050 0.059 0.058 

WP*SP 0.060 0.050 0.065 0.054 0.056 

Split-plot/satterth 

WP 0.031 0.043 0.043 0.058 0.053 

SP 0.050 0.054 0.050 0.059 0.058 

WP*SP 0.057 0.049 0.065 0.054 0.056 

CS 

WP 0.048 0.048 0.044 0.058 0.053 

SP 0.046 0.054 0.049 0.059 0.058 

WP*SP 0.053 0.048 0.065 0.054 0.056 

CS/satterth 

WP 0.048 0.048 0.044 0.058 0.053 

SP 0.046 0.054 0.049 0.059 0.058 

WP*SP 0.053 0.048 0.065 0.054 0.056 

AR(1) 

WP 0.043 0.047 0.042 0.057 0.054 

SP 0.051 0.057 0.054 0.057 0.055 

WP*SP 0.059 0.049 0.060 0.049 0.049 

AR(1)/satterth 

WP 0.036 0.041 0.039 0.054 0.054 

SP 0.051 0.057 0.053 0.059 0.055 

WP*SP 0.058 0.048 0.060 0.050 0.049 

Percent of times AIC of AR(1)<AIC of 
2
SP 37.40% 56.30% 68.85% 73.60% 79.55% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.14 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true AR(1) covariance 

structure and where a=2, b=6, r=6, n=72, and N=2000. 

  
1
a=2; b=6; r=6; n=72; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.034 0.051 0.063 0.046 0.050 

SP 0.055 0.059 0.070 0.069 0.100 

WP*SP 0.047 0.060 0.060 0.069 0.095 

Split-plot/satterth 

WP 0.025 0.049 0.062 0.046 0.050 

SP 0.054 0.059 0.070 0.069 0.100 

WP*SP 0.047 0.059 0.060 0.069 0.095 

CS 

WP 0.044 0.055 0.063 0.046 0.050 

SP 0.048 0.058 0.070 0.069 0.100 

WP*SP 0.045 0.059 0.060 0.069 0.095 

CS/satterth 

WP 0.044 0.055 0.063 0.046 0.050 

SP 0.048 0.058 0.070 0.069 0.100 

WP*SP 0.045 0.059 0.060 0.069 0.095 

AR(1) 

WP 0.045 0.049 0.060 0.047 0.050 

SP 0.048 0.057 0.050 0.051 0.044 

WP*SP 0.042 0.054 0.043 0.047 0.052 

AR(1)/satterth 

WP 0.029 0.042 0.050 0.041 0.049 

SP 0.058 0.064 0.053 0.052 0.044 

WP*SP 0.046 0.057 0.047 0.049 0.052 

Percent of times AIC of AR(1)<AIC of 
2
SP 39.10% 80.70% 91.50% 95.75% 98.25% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.15 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true AR(1) covariance 

structure and where a=2, b=9, r=6, n=108, and N=2000. 

  
1
a=2; b=9; r=6; n=108; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.037 0.051 0.055 0.048 0.052 

SP 0.051 0.067 0.079 0.091 0.118 

WP*SP 0.055 0.062 0.071 0.092 0.120 

Split-plot/satterth 

WP 0.026 0.044 0.054 0.048 0.052 

SP 0.050 0.067 0.079 0.091 0.118 

WP*SP 0.055 0.061 0.071 0.092 0.120 

CS 

WP 0.049 0.050 0.055 0.048 0.052 

SP 0.047 0.066 0.079 0.091 0.118 

WP*SP 0.051 0.060 0.071 0.092 0.120 

CS/satterth 

WP 0.049 0.050 0.055 0.048 0.052 

SP 0.047 0.066 0.079 0.091 0.118 

WP*SP 0.051 0.060 0.071 0.092 0.120 

AR(1) 

WP 0.049 0.048 0.053 0.045 0.047 

SP 0.047 0.049 0.054 0.052 0.048 

WP*SP 0.048 0.046 0.039 0.051 0.047 

AR(1)/satterth 

WP 0.031 0.035 0.040 0.037 0.045 

SP 0.051 0.057 0.059 0.054 0.050 

WP*SP 0.053 0.050 0.045 0.055 0.048 

Percent of times AIC of AR(1)<AIC of 
2
SP 42.95% 90.25% 97.75% 99.40% 99.90% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.16 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true AR(1) covariance 

structure and where a=2, b=3, r=9, n=54, and N=2000. 

  
1
a=2; b=3; r=9; n=54; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.041 0.051 0.053 0.052 0.046 

SP 0.056 0.045 0.041 0.058 0.061 

WP*SP 0.052 0.055 0.051 0.051 0.058 

Split-plot/satterth 

WP 0.034 0.050 0.053 0.052 0.046 

SP 0.053 0.045 0.041 0.058 0.061 

WP*SP 0.049 0.055 0.051 0.051 0.058 

CS 

WP 0.049 0.051 0.053 0.052 0.046 

SP 0.051 0.044 0.041 0.058 0.061 

WP*SP 0.047 0.055 0.051 0.051 0.058 

CS/satterth 

WP 0.049 0.051 0.053 0.052 0.046 

SP 0.051 0.044 0.041 0.058 0.061 

WP*SP 0.047 0.055 0.051 0.051 0.058 

AR(1) 

WP 0.040 0.048 0.055 0.052 0.048 

SP 0.055 0.044 0.044 0.056 0.056 

WP*SP 0.056 0.059 0.046 0.047 0.050 

AR(1)/satterth 

WP 0.035 0.047 0.054 0.051 0.047 

SP 0.055 0.044 0.044 0.055 0.056 

WP*SP 0.056 0.059 0.046 0.047 0.050 

Percent of times AIC of AR(1)<AIC of 
2
SP 38.25% 65.40% 74.55% 78.20% 85.45% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.17 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true AR(1) covariance 

structure and where a=2, b=6, r=9, n=108, and N=2000. 

  
1
a=2; b=6; r=9; n=108; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.043 0.057 0.054 0.052 0.058 

SP 0.053 0.062 0.069 0.075 0.088 

WP*SP 0.051 0.052 0.061 0.064 0.080 

Split-plot/satterth 

WP 0.038 0.056 0.054 0.052 0.058 

SP 0.052 0.062 0.069 0.075 0.088 

WP*SP 0.050 0.052 0.061 0.064 0.080 

CS 

WP 0.050 0.057 0.054 0.052 0.058 

SP 0.048 0.061 0.069 0.075 0.088 

WP*SP 0.049 0.052 0.061 0.064 0.080 

CS/satterth 

WP 0.050 0.057 0.054 0.052 0.058 

SP 0.048 0.061 0.069 0.075 0.088 

WP*SP 0.049 0.052 0.061 0.064 0.080 

AR(1) 

WP 0.049 0.055 0.050 0.051 0.055 

SP 0.050 0.046 0.058 0.051 0.048 

WP*SP 0.047 0.041 0.050 0.047 0.047 

AR(1)/satterth 

WP 0.041 0.051 0.044 0.049 0.054 

SP 0.053 0.048 0.059 0.051 0.048 

WP*SP 0.049 0.044 0.052 0.049 0.047 

Percent of times AIC of AR(1)<AIC of 
2
SP 44.25% 86.75% 96.40% 98.10% 99.65% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Table A.18 Comparison of Type I error rate and AIC value of CS and AR(1) covariance mixed 

model methods, and conventional split-plot method for datasets with true AR(1) covariance 

structure and where a=2, b=9, r=9, n=162, and N=2000. 

  
1
a=2; b=9; r=9; n=162; N=2000 

Method 
3
Source η=0.1 η=0.5 η=1 η=2 η=10 

Split-plot 

WP 0.047 0.050 0.049 0.046 0.043 

SP 0.056 0.061 0.084 0.087 0.123 

WP*SP 0.050 0.062 0.076 0.097 0.118 

Split-plot/satterth 

WP 0.042 0.048 0.049 0.046 0.043 

SP 0.056 0.061 0.084 0.087 0.123 

WP*SP 0.049 0.062 0.076 0.097 0.118 

CS 

WP 0.052 0.051 0.049 0.046 0.043 

SP 0.053 0.061 0.084 0.087 0.123 

WP*SP 0.047 0.062 0.076 0.097 0.118 

CS/satterth 

WP 0.052 0.051 0.049 0.046 0.043 

SP 0.053 0.061 0.084 0.087 0.123 

WP*SP 0.047 0.062 0.076 0.097 0.118 

AR(1) 

WP 0.053 0.048 0.051 0.043 0.043 

SP 0.052 0.050 0.050 0.051 0.050 

WP*SP 0.047 0.052 0.048 0.053 0.050 

AR(1)/satterth 

WP 0.042 0.037 0.044 0.038 0.042 

SP 0.056 0.052 0.054 0.052 0.050 

WP*SP 0.051 0.056 0.050 0.055 0.050 

Percent of times AIC of AR(1)<AIC of 
2
SP 49.50% 96.65% 99.30% 99.95% 100.00% 

1
a is the whole plot treatment level, b is the split-plot treatment level, r is number of replications 

for whole plot units, n is the sample size, and N is repetitions. 

2
SP is the conventional split-plot method. AIC of SP is exactly the same as AIC of CS model. 

3
Source: WP is whole plot main effect, SP is subplot main effect, WP*SP is interaction effect. 
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Appendix B - R and SAS Programs for Case 1 

B.1 R Program for Case 1 

#### 

Generate datasets with WPTrt=2; SPTrt=3; Rep=3; N=2000. 

By changing the variances of u and e, we can get different variance ratio η. 

################# 

datagen<-function(x){ 

repli=factor(rep(1:3,each=6)) 

wp=factor(rep(rep(1:2,each=3),3)) 

sp=rep(seq(8,12,by=2),6) 

Z1=model.matrix(~0+repli) 

Z2=model.matrix(~0+wp:repli) 

Z=cbind(Z1,Z2) 

u=rnorm(9,0,1) 

e=rnorm(18,0,10) 

y=Z%*%u+e 

y=round(y,1) 

sim=data.frame(repli,wp,sp,y)} 

n.2000 <- NULL 

for(i in 1:2000) {  

      dd <- 1:2000 

      n.2000 <- rbind(n.2000, datagen(dd)) 

   } 

sim<-factor(rep(1:2000,each=18)) 

data1<-cbind(n.2000,sim) 

 

library(foreign) 

write.foreign(data1, "D:/my directory/data1.txt", "D:/my    directory/data1.sas",package="SAS") 
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#### 

Generate datasets with WPTrt=2; SPTrt=6; Rep=3; N=2000. 

By changing the variances of u and e, we can get five different variance ratio η we want. 

################# 

datagen<-function(x){ 

repli=factor(rep(1:3,each=12)) 

wp=factor(rep(rep(1:2,each=6),3)) 

sp=rep(seq(2,12,by=2),6) 

Z1=model.matrix(~0+repli) 

Z2=model.matrix(~0+wp:repli) 

Z=cbind(Z1,Z2) 

u=rnorm(9,0,1) 

e=rnorm(36,0,10) 

y=Z%*%u+e 

y=round(y,1) 

sim=data.frame(repli,wp,sp,y)} 

 

n.2000 <- NULL 

for(i in 1:2000) {  

      dd <- 1:2000 

      n.2000 <- rbind(n.2000, datagen(dd)) 

   } 

sim<-factor(rep(1:2000,each=36)) 

data6<-cbind(n.2000,sim) 

 

library(foreign) 

write.foreign(data6, "E:/my directory/data6.txt", "E:/my directory/data6.sas",package="SAS") 
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#### 

Generate datasets with WPTrt=2; SPTrt=9; Rep=3; N=2000. 

By changing the variances of u and e, we can get different variance ratio η. 

################# 

datagen<-function(x){ 

repli=factor(rep(1:3,each=18)) 

wp=factor(rep(rep(1:2,each=9),3)) 

sp=rep(seq(2,18,by=2),6) 

Z1=model.matrix(~0+repli) 

Z2=model.matrix(~0+wp:repli) 

Z=cbind(Z1,Z2) 

u=rnorm(9,0,1) 

e=rnorm(54,0,10) 

y=Z%*%u+e 

y=round(y,1) 

sim=data.frame(repli,wp,sp,y)} 

 

n.2000 <- NULL 

for(i in 1:2000) {  

      dd <- 1:2000 

      n.2000 <- rbind(n.2000, datagen(dd)) 

   } 

sim<-factor(rep(1:2000,each=54)) 

data11<-cbind(n.2000,sim) 

 

library(foreign) 

write.foreign(data11, "D:/my directory/data11.txt", "D:/my 

directory/data11.sas",package="SAS") 
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#### 

Generate datasets with WPTrt=2; SPTrt=3; Rep=6; N=2000. 

By changing the variances of u and e, we can get different variance ratio η. 

################# 

datagen<-function(x){ 

repli=factor(rep(1:6,each=6)) 

wp=factor(rep(rep(1:2,each=3),6)) 

sp=rep(seq(8,12,by=2),12) 

Z1=model.matrix(~0+repli) 

Z2=model.matrix(~0+wp:repli) 

Z=cbind(Z1,Z2) 

u=rnorm(18,0,1) 

e=rnorm(36,0,10) 

y=Z%*%u+e 

y=round(y,1) 

sim=data.frame(repli,wp,sp,y)} 

 

n.2000 <- NULL 

for(i in 1:2000) {  

      dd <- 1:2000 

      n.2000 <- rbind(n.2000, datagen(dd)) 

   } 

sim<-factor(rep(1:2000,each=36)) 

data16<-cbind(n.2000,sim) 

 

library(foreign) 

write.foreign(data16, "D:/my directory/data16.txt", "D:/my 

directory/data16.sas",package="SAS") 
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#### 

Generate datasets with WPTrt=2; SPTrt=6; Rep=6; N=2000. 

By changing the variances of u and e, we can get different variance ratio η. 

################# 

datagen<-function(x){ 

repli=factor(rep(1:6,each=12)) 

wp=factor(rep(rep(1:2,each=6),6)) 

sp=rep(seq(2,12,by=2),12) 

Z1=model.matrix(~0+repli) 

Z2=model.matrix(~0+wp:repli) 

Z=cbind(Z1,Z2) 

u=rnorm(18,0,1) 

e=rnorm(72,0,10) 

y=Z%*%u+e 

y=round(y,1) 

sim=data.frame(repli,wp,sp,y)} 

 

n.2000 <- NULL 

for(i in 1:2000) {  

      dd <- 1:2000 

      n.2000 <- rbind(n.2000, datagen(dd)) 

   } 

sim<-factor(rep(1:2000,each=72)) 

data21<-cbind(n.2000,sim) 

 

library(foreign) 

write.foreign(data21, "D:/my directory/data21.txt", "D:/my 

directory/data21.sas",package="SAS") 
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#### 

Generate datasets with WPTrt=2; SPTrt=9; Rep=6; N=2000. 

By changing the variances of u and e, we can get different variance ratio η. 

################# 

datagen<-function(x){ 

repli=factor(rep(1:6,each=18)) 

wp=factor(rep(rep(1:2,each=9),6)) 

sp=rep(seq(2,18,by=2),12) 

Z1=model.matrix(~0+repli) 

Z2=model.matrix(~0+wp:repli) 

Z=cbind(Z1,Z2) 

u=rnorm(18,0,1) 

e=rnorm(108,0,10) 

y=Z%*%u+e 

y=round(y,1) 

sim=data.frame(repli,wp,sp,y)} 

 

n.2000 <- NULL 

for(i in 1:2000) {  

      dd <- 1:2000 

      n.2000 <- rbind(n.2000, datagen(dd)) 

   } 

sim<-factor(rep(1:2000,each=108)) 

data26<-cbind(n.2000,sim) 

 

library(foreign) 

write.foreign(data26, "D:/my directory/data26.txt", "D:/my 

directory/data26.sas",package="SAS") 
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#### 

Generate datasets with WPTrt=2; SPTrt=3; Rep=9; N=2000. 

By changing the variances of u and e, we can get different variance ratio η. 

################# 

datagen<-function(x){ 

repli=factor(rep(1:9,each=6)) 

wp=factor(rep(rep(1:2,each=3),9)) 

sp=rep(seq(8,12,by=2),18) 

Z1=model.matrix(~0+repli) 

Z2=model.matrix(~0+wp:repli) 

Z=cbind(Z1,Z2) 

u=rnorm(27,0,1) 

e=rnorm(54,0,10) 

y=Z%*%u+e 

y=round(y,1) 

sim=data.frame(repli,wp,sp,y)} 

 

n.2000 <- NULL 

for(i in 1:2000) {  

      dd <- 1:2000 

      n.2000 <- rbind(n.2000, datagen(dd)) 

   } 

sim<-factor(rep(1:2000,each=54)) 

data31<-cbind(n.2000,sim) 

 

library(foreign) 

write.foreign(data31, "D:/my directory/data31.txt", "D:/my 

directory/data31.sas",package="SAS") 
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#### 

Generate datasets with WPTrt=2; SPTrt=6; Rep=9; N=2000. 

By changing the variances of u and e, we can get different variance ratio η. 

################# 

datagen<-function(x){ 

repli=factor(rep(1:9,each=12)) 

wp=factor(rep(rep(1:2,each=6),9)) 

sp=rep(seq(2,12,by=2),18) 

Z1=model.matrix(~0+repli) 

Z2=model.matrix(~0+wp:repli) 

Z=cbind(Z1,Z2) 

u=rnorm(27,0,1) 

e=rnorm(108,0,10) 

y=Z%*%u+e 

y=round(y,1) 

sim=data.frame(repli,wp,sp,y)} 

 

n.2000 <- NULL 

for(i in 1:2000) {  

      dd <- 1:2000 

      n.2000 <- rbind(n.2000, datagen(dd)) 

   } 

sim<-factor(rep(1:2000,each=108)) 

data36<-cbind(n.2000,sim) 

 

library(foreign) 

write.foreign(data36, "D:/my directory/data36.txt", "D:/my 

directory/data36.sas",package="SAS") 

 

 

 



 44 

#### 

Generate datasets with WPTrt=2; SPTrt=9; Rep=9; N=2000. 

By changing the variances of u and e, we can get different variance ratio η. 

################# 

datagen<-function(x){ 

repli=factor(rep(1:9,each=18)) 

wp=factor(rep(rep(1:2,each=9),9)) 

sp=rep(seq(2,18,by=2),18) 

Z1=model.matrix(~0+repli) 

Z2=model.matrix(~0+wp:repli) 

Z=cbind(Z1,Z2) 

u=rnorm(27,0,1) 

e=rnorm(162,0,10) 

y=Z%*%u+e 

y=round(y,1) 

sim=data.frame(repli,wp,sp,y)} 

 

n.2000 <- NULL 

for(i in 1:2000) {  

      dd <- 1:2000 

      n.2000 <- rbind(n.2000, datagen(dd)) 

   } 

sim<-factor(rep(1:2000,each=162)) 

data41<-cbind(n.2000,sim) 

 

library(foreign) 

write.foreign(data41, "D:/my directory/data41.txt", "D:/my 

directory/data41.sas",package="SAS") 
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B.2 SAS Program for Case 1 

/*Input the dataset been generated through R program*/ 

DATA  rdata ; 

INFILE  "D:/my directory/data1.txt"  

     DSD  

     LRECL= 21 ; 

INPUT 

 repli 

 wp 

 sp 

 y 

 sim 

; 

FORMAT repli repli. ; 

FORMAT wp wp. ; 

FORMAT sim sim. ; 

RUN; 

 

/*conventional split plot model*/ 

/*By deleting the “/ddfm=satterth”, we get the default way */ 

proc mixed data=rdata ic; 

  by sim; 

  class repli wp sp; 

  model y=wp sp wp*sp/ddfm=satterth; 

  random repli(wp); 

  lsmeans wp sp wp*sp; 

  ods output Tests3=test0 infocrit=critical; 

run; 

 

/*Check type 1 error rate for geno, fert, and geno*fert*/ 

data type1wp0;set test0; 

  by sim; 

  where ProbF<0.05 and Effect="wp"; 

run; 

data type1sp0;set test0; 

  by sim; 

  where ProbF<0.05 and Effect="sp"; 

run; 

data type1wp_sp0;set test0; 

  by sim; 

  where ProbF<0.05 and Effect="wp*sp"; 

run; 
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/*CS covariance structure model*/ 

/*By deleting the “/ddfm=satterth”, we get the default way */ 

proc mixed data=rdata ic; 

   by sim; 

   class repli wp sp; 

   model y=wp sp wp*sp/ddfm=satterth; 

   repeated sp/subject=repli(wp) type=cs r rcorr; 

   lsmeans wp sp wp*sp; 

  ods output Tests3=test1 infocrit=critical1; 

run; 

data type1wp1;set test1; 

  by sim; 

  where ProbF<0.05 and Effect="wp"; 

run; 

data type1sp1;set test1; 

  by sim; 

  where ProbF<0.05 and Effect="sp"; 

run; 

data type1wp_sp1;set test1; 

  by sim; 

  where ProbF<0.05 and Effect="wp*sp"; 

run; 

 

/*AR(1) covariance structure model*/ 

/*By deleting the “/ddfm=satterth”, we get the default way */ 

proc mixed data=rdata ic; 

   by sim; 

   class repli wp sp; 

   model y=wp sp wp*sp/ddfm=satterth; 

   repeated sp/subject=repli(wp) type=ar(1) r rcorr; 

   lsmeans wp sp wp*sp; 

  ods output Tests3=test2 infocrit=critical2; 

run; 

data type1wp2;set test2; 

  by sim; 

  where ProbF<0.05 and Effect="wp"; 

run; 

data type1sp2;set test2; 

  by sim; 

  where ProbF<0.05 and Effect="sp"; 

run; 

data type1wp_sp2;set test2; 

  by sim; 

  where ProbF<0.05 and Effect="wp*sp"; 

run; 



 47 

/*Sort data to count the times that the AIC values of conventional split-plot model is smaller than 

that of the AR(1) covariance model*/ 

proc sort data=Critical(keep=AIC sim); 

  by sim; 

run; 

proc sort data=Critical2(keep=AIC sim); 

  by sim; 

run; 

data null; 

  retain count 0; 

  merge Critical 

       Critical2(rename=(AIC=AICar1)); 

  by sim; 

  if AIC<AICar1 

    then do; 

    count +1; 

  end; 

run; 
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Appendix C - SAS Programs for Case 2 

/* Generate datasets with WPTrt=2; SPTrt=3; Rep=3; N=2000; rho=1/11.*/ 

/* By changing values of i and k, we can change the values of SPtrt and Rep */ 

/* In this program, the value of rho can be changed corresponding to the value of η in Case 1*/ 

/* In this program, the value of sigma is chosen corresponding to variances of u and e in Case 1*/ 

 

%macro Simulate(Rounds); 

%do m = 1 %to &Rounds;  

data temp&m; 

   do i = 1 to 3; 

      do j=1 to 2; 
           rho=1/11; 
           sigma = rannor(0)*sqrt(11); 

              do k = 1 to 3; 

                   day = k; 

                   if k = 1 then 

                        do; sigma = rannor(0)*sqrt(11); s = 0; output; end; 

                   else do; 

                        s = rannor(0)*sqrt((1-rho*rho)*11); 

                        sigma = (rho)*sigma+s; 

                        output; 

                  end; 

         end; 

      end; 

   end; 

run; 

data temp&m(keep=i j day round y); 

   set temp&m; 

   round=&m; 

   y = sigma; 

run; 

%end;  

%mend; 

%Simulate(2000);run; 

data ardata; 

 set Temp1-Temp2000; 

run; 

data ardata; 

 rename i=repli 

        j=wp 

       day=sp 

       round=sim; 

 set ardata; 

run; 
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/*conventional split plot model*/ 

/*By deleting the “/ddfm=satterth”, we get the default way */ 

proc mixed data=rdata ic; 

  by sim; 

  class repli wp sp; 

  model y=wp sp wp*sp/ddfm=satterth; 

  random repli(wp); 

  lsmeans wp sp wp*sp; 

  ods output Tests3=test0 infocrit=critical; 

run; 

/*Check type 1 error rate for geno, fert, and geno*fert*/ 

data type1wp0;set test0; 

  by sim; 

  where ProbF<0.05 and Effect="wp"; 

run; 

data type1sp0;set test0; 

  by sim; 

  where ProbF<0.05 and Effect="sp"; 

run; 

data type1wp_sp0;set test0; 

  by sim; 

  where ProbF<0.05 and Effect="wp*sp"; 

run; 

 

/*CS covariance structure model*/ 

/*By deleting the “/ddfm=satterth”, we get the default way */ 

proc mixed data=rdata ic; 

   by sim; 

   class repli wp sp; 

   model y=wp sp wp*sp/ddfm=satterth; 

   repeated sp/subject=repli(wp) type=cs r rcorr; 

   lsmeans wp sp wp*sp; 

  ods output Tests3=test1 infocrit=critical1; 

run; 

data type1wp1;set test1; 

  by sim; 

  where ProbF<0.05 and Effect="wp"; 

run; 

data type1sp1;set test1; 

  by sim; 

  where ProbF<0.05 and Effect="sp"; 

run; 

data type1wp_sp1;set test1; 

  by sim; 

  where ProbF<0.05 and Effect="wp*sp"; 

run; 
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/*AR(1) covariance structure model*/ 

/*By deleting the “/ddfm=satterth”, we get the default way */ 

proc mixed data=rdata ic; 

   by sim; 

   class repli wp sp; 

   model y=wp sp wp*sp/ddfm=satterth; 

   repeated sp/subject=repli(wp) type=ar(1) r rcorr; 

   lsmeans wp sp wp*sp; 

  ods output Tests3=test2 infocrit=critical2; 

run; 

data type1wp2;set test2; 

  by sim; 

  where ProbF<0.05 and Effect="wp"; 

run; 

data type1sp2;set test2; 

  by sim; 

  where ProbF<0.05 and Effect="sp"; 

run; 

data type1wp_sp2;set test2; 

  by sim; 

  where ProbF<0.05 and Effect="wp*sp"; 

run; 

 

/*Sort data to count the times that the AIC values of conventional split-plot model is larger than 

that of the AR(1) covariance model*/ 

proc sort data=Critical(keep=AIC sim); 

  by sim; 

run; 

proc sort data=Critical2(keep=AIC sim); 

  by sim; 

run; 

data null; 

  retain count 0; 

  merge Critical 

       Critical2(rename=(AIC=AICar1)); 

  by sim; 

  if AIC>AICar1 

   then do; 

   count +1; 

 end; 

run; 
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